WO2012144533A1 - リチウムイオン酸素電池 - Google Patents

リチウムイオン酸素電池 Download PDF

Info

Publication number
WO2012144533A1
WO2012144533A1 PCT/JP2012/060495 JP2012060495W WO2012144533A1 WO 2012144533 A1 WO2012144533 A1 WO 2012144533A1 JP 2012060495 W JP2012060495 W JP 2012060495W WO 2012144533 A1 WO2012144533 A1 WO 2012144533A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
lithium ion
positive electrode
oxygen battery
metal oxide
Prior art date
Application number
PCT/JP2012/060495
Other languages
English (en)
French (fr)
Inventor
拓哉 谷内
潔 田名網
洋 酒井
満央 堀
磯谷 祐二
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN201280018186.2A priority Critical patent/CN103460502B/zh
Priority to EP12774482.9A priority patent/EP2685551B1/en
Priority to JP2012556333A priority patent/JP5336007B2/ja
Priority to US14/111,586 priority patent/US9130228B2/en
Publication of WO2012144533A1 publication Critical patent/WO2012144533A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/125Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3
    • C01G45/1264Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3 containing rare earth, e.g. La1-xCaxMnO3, LaMnO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • H01M12/065Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode with plate-like electrodes or stacks of plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a lithium ion oxygen battery.
  • lithium ion battery including a positive electrode including lithium cobaltate (LiCoO 2 ) as an active material, a negative electrode including graphite as an active material, and an electrolyte layer sandwiched between the positive electrode and the negative electrode and capable of conducting lithium ions.
  • the lithium ion battery the lithium ion is occluded or released (intercalation or deintercalation) into or from lithium cobaltate or graphite in accordance with charge / discharge in the positive electrode or the negative electrode.
  • the lithium cobalt oxide cannot maintain the crystal structure when the amount of extracted lithium increases, the theoretical capacity is 274 mAh / g, whereas the capacity that can be normally used is 120 to 140 mAh / g. It is considered.
  • the graphite has a capacity of 372 mAh / g, and has a capacity about three times that which is considered to be normally available in the lithium cobalt oxide.
  • the lithium ion battery when the lithium ion battery is configured, it is necessary to make the mass of the positive electrode active material about 3 times the mass of the negative electrode active material, and sufficiently increase the energy density per mass. There is a problem that can not be.
  • a positive electrode containing oxygen as an active material and containing lithium oxide or lithium peroxide, a negative electrode containing graphite as an active material, and an electrolyte sandwiched between the positive electrode and the negative electrode and capable of conducting lithium ions A lithium ion oxygen battery including a layer has been proposed (see, for example, Patent Document 1).
  • the positive electrode includes activated carbon fibers and is open to the atmosphere, and oxygen in the atmosphere is oxidized by the activated carbon fibers.
  • lithium ion oxygen battery during discharge, as shown in the following formula, metallic lithium occluded (intercalated) in the negative electrode is ionized to generate lithium ions and electrons. And the produced
  • oxygen taken in from the atmosphere receives electrons and becomes oxygen ions, and reacts with the lithium ions to generate lithium oxide or lithium peroxide. Therefore, electrical energy can be taken out by connecting the negative electrode and the positive electrode with a conductive wire.
  • lithium ions, electrons, and oxygen are generated from lithium oxide or lithium peroxide in the positive electrode, and the generated lithium ions pass through the electrolyte layer and move to the negative electrode.
  • the lithium ions receive electrons and are deposited as metallic lithium. The deposited metallic lithium is occluded (intercalated) into the graphite.
  • An object of the present invention is to provide a lithium ion oxygen battery capable of eliminating such inconveniences and obtaining a high energy density without lowering the performance due to moisture or carbon dioxide in the atmosphere.
  • the present invention is sandwiched between a positive electrode containing oxygen as an active material and containing a lithium source, a negative electrode made of a material capable of inserting or extracting lithium ions, and the positive electrode and the negative electrode.
  • a lithium ion oxygen battery including an electrolyte layer capable of conducting lithium ions
  • the positive electrode, the negative electrode, and the electrolyte layer are housed in a sealed case, and the positive electrode includes an oxygen storage material and a lithium compound ( However, a composite metal oxide of lithium and another metal is excluded).
  • the positive electrode since the positive electrode, the negative electrode, and the electrolyte layer are accommodated in the sealed case, it prevents the moisture or carbon dioxide in the atmosphere from entering the battery and degrading the performance. be able to.
  • the positive electrode since the positive electrode includes the oxygen storage material and the lithium compound, lithium ions are generated from the lithium compound during charging, and oxygen generated by oxidation of oxygen ions can be stored in the oxygen storage material. it can.
  • the positive electrode can reduce oxygen extracted from the oxygen storage material to generate oxygen ions, and can generate lithium oxide or lithium peroxide from the oxygen ions and the lithium ions. .
  • the oxygen storage material has a function of occluding and releasing oxygen, and can adsorb and desorb oxygen on the surface thereof.
  • the oxygen storage material accompanies generation and dissociation of chemical bonds with oxygen when storing and releasing oxygen, but only intermolecular force is used when adsorbing and desorbing oxygen on the surface. Acts and does not involve the formation or dissociation of chemical bonds.
  • the adsorption and desorption of oxygen to the surface of the oxygen storage material is performed with lower energy than when the oxygen storage material occludes and releases oxygen, and the cell reaction involves the surface of the oxygen storage material.
  • Oxygen adsorbed on is preferentially used. As a result, a decrease in reaction rate and an increase in overvoltage can be suppressed.
  • the material capable of inserting or extracting lithium ions is preferably made of a carbonaceous material. According to the carbonaceous material, the lithium can be occluded between molecules during charging, and the lithium occluded between molecules can be released during discharging.
  • the carbonaceous material is more preferably made of either graphite or hard carbon. According to the graphite or the hard carbon, the lithium can be occluded between the layers during charging, and the lithium occluded between the layers can be released during discharging.
  • the oxygen storage material may be a composite metal oxide containing Y and Mn, or a general formula Mn 2- (a + b + c) Zr a Ag b Ru c O 3 (wherein 2 > A + b + c> 0) is preferable.
  • the oxygen storage material is composed of any one of the above complex metal oxides, and has a function of occluding or releasing the oxygen.
  • the oxygen storage material can adsorb and desorb oxygen on the surface, and can perform a chemical reaction in the positive electrode. Can act as a catalyst.
  • FIG. 3 is a graph showing a charge / discharge curve in the lithium ion oxygen battery of Example 1.
  • 5 is a graph showing a charge / discharge curve in the lithium ion oxygen battery of Example 2.
  • 6 is a graph showing a charge / discharge curve in the lithium ion oxygen battery of Example 3.
  • Example 6 is a graph showing a charge / discharge curve in the lithium ion oxygen battery of Example 5.
  • 10 is a graph showing a charge / discharge curve in the lithium ion oxygen battery of Example 6.
  • 10 is a graph showing a charge / discharge curve in the lithium ion oxygen battery of Example 7.
  • 10 is a graph showing a charge / discharge curve in the lithium ion oxygen battery of Example 8.
  • a lithium ion oxygen battery 1 includes a positive electrode 2, a negative electrode 3, and an electrolyte layer 4 disposed between the positive electrode 2 and the negative electrode 3. 3 and the electrolyte layer 4 are hermetically accommodated in a case 5.
  • the case 5 includes a cup-shaped case body 6 and a lid body 7 that closes the case body 6, and an insulating resin 8 is interposed between the case body 6 and the lid body 7.
  • the positive electrode 2 includes a positive electrode current collector 9 between the top surface of the lid 7 and the negative electrode 3 includes a negative electrode current collector 10 between the bottom surface of the case body 6.
  • the positive electrode 2 includes an oxygen storage material, a conductive material, and a binder, and includes a lithium compound.
  • the oxygen storage material has a function of occluding and releasing oxygen, and at the same time, can adsorb and desorb oxygen on the surface thereof.
  • the oxygen storage material accompanies generation and dissociation of chemical bonds with oxygen when storing and releasing oxygen, but only intermolecular force is used when adsorbing and desorbing oxygen on the surface. Acts and does not involve the formation or dissociation of chemical bonds.
  • the adsorption and desorption of oxygen to the surface of the oxygen storage material is performed with lower energy than when the oxygen storage material occludes and releases oxygen, and the cell reaction involves the surface of the oxygen storage material.
  • Oxygen adsorbed on is preferentially used. As a result, a decrease in reaction rate and an increase in overvoltage can be suppressed.
  • the oxygen storage material has a function of occluding or releasing oxygen, can adsorb and desorb oxygen on the surface, and also functions as a catalyst for a chemical reaction in the positive electrode 2.
  • an oxygen storage material for example, a composite metal oxide containing Y and Mn or a general formula Mn 2 ⁇ (a + b + c) Zr a Ag b Ru c O 3 (where 2> a + b + c> 0) Any of the mixed metal oxides to be used can be mentioned.
  • Examples of the composite metal oxide containing Y and Mn include YMnO 3 or a compound in which Y or part of MnO 3 is substituted with another metal.
  • the YMnO 3 may be subjected to a reduction treatment and may contain other metal oxides such as ZrO 2 .
  • Examples of the compound in which Y or a part of Mn of YMnO 3 is substituted with another metal include, for example, the general formula Y 1-x Ag x Mn 1-y A y O 3 (wherein A represents Ru or And a compound represented by Ti>1>x> 0 and 1>y> 0).
  • the compound represented by the general formula Y 1-x Ag x Mn 1 -y A y O 3 may be the acid treatment and reduction treatment is performed.
  • examples of the conductive material include carbonaceous materials such as ketjen black and vapor grown carbon fiber (VGCF).
  • examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), and an acrylic resin.
  • the lithium compound may be any compound except for a complex metal oxide of lithium and other metals such as lithium cobaltate (LiCoO 2 ).
  • LiCoO 2 lithium cobaltate
  • Li 2 O 2 lithium peroxide
  • Li 2 O lithium oxide
  • Li 2 O lithium oxide
  • the negative electrode 3 is made of a material capable of inserting or extracting lithium ions, a binder, and a dispersant, and may further contain a conductive material or a viscosity modifier.
  • Examples of the material that can occlude or release lithium ions include carbonaceous materials such as graphite and hard carbon.
  • carbonaceous materials such as graphite and hard carbon.
  • the graphite may be mixed with other carbonaceous materials such as vapor grown carbon fiber (VGCF) and carbon black.
  • VGCF vapor grown carbon fiber
  • binder examples include polyvinylidene fluoride (PVDF), styrene-butadiene rubber (SBR), acrylic resin, and the like.
  • dispersant examples include N-methyl-2-pyrrolidone (NMP) and pure water.
  • examples of the conductive material include carbonaceous materials such as ketjen black.
  • examples of the viscosity modifier include carboxymethyl cellulose (CMC).
  • the electrolyte layer 4 may be, for example, a nonaqueous electrolyte solution immersed in a separator, or a molten salt or a solid electrolyte.
  • non-aqueous electrolyte solution for example, a lithium salt dissolved in a non-aqueous solvent can be used.
  • the lithium salt include lithium hexafluorophosphate (LiPF 6 ).
  • the non-aqueous solvent include a carbonate ester solvent, an ether solvent, and an ionic liquid.
  • carbonate ester solvent examples include ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate. Two or more of the carbonate ester solvents can be used in combination.
  • ether solvent examples include dimethoxyethane, dimethyl trigram, polyethylene glycol and the like. Two or more of the ether solvents can be used in combination.
  • the ionic liquid examples include cations such as imidazolium, ammonium, pyridinium, and peridium, bis (trifluoromethylsulfonyl) imide (TTSI), bis (pentafluoroethylsulfonyl) imide (BETI), tetrafluoroborate, park, and the like.
  • examples thereof include salts with anions such as lorate and halogen anions.
  • separator examples include glass fiber, glass paper, polypropylene nonwoven fabric, polyimide nonwoven fabric, polyphenylene sulfide nonwoven fabric, and polyethylene porous film.
  • examples of the solid electrolyte include oxide solid electrolytes and sulfide solid electrolytes.
  • oxide-based solid electrolyte examples include glass ceramics mainly composed of Li 7 La 3 Zr 2 O 12 which is a composite metal oxide of lithium, lanthanum, and zirconium, lithium, aluminum, silicon, titanium, germanium, and phosphorus.
  • Li 7 La 3 Zr 2 O 12 replaces part of lithium, lanthanum, and zirconium with other metals such as strontium, barium, silver, yttrium, bismuth, lead, tin, antimony, hafnium, tantalum, and niobium. It may be what was done.
  • examples of the positive electrode current collector 9 include those made of a mesh or a porous material such as titanium, stainless steel, nickel, and aluminum.
  • examples of the negative electrode current collector 10 include a metal foil or a porous body in which lithium such as copper, titanium, and stainless steel is not alloyed.
  • lithium ions and oxygen ions are generated from the lithium peroxide or lithium oxide as the lithium compound at the positive electrode 2 as shown in the following formula.
  • the lithium ions permeate through the electrolyte layer 4 and move to the negative electrode 3, and the oxygen ions are stored by generating a chemical bond in the oxygen storage material or adsorbed on the surface thereof.
  • the lithium ions that have moved from the positive electrode 2 receive electrons to generate metallic lithium, and the generated metallic lithium is occluded (intercalated) in the carbonaceous material.
  • Example 1 In this example, first, yttrium nitrate pentahydrate, manganese nitrate hexahydrate, and malic acid were pulverized and mixed in a molar ratio of 1: 1: 6 to obtain a composite metal oxide. A mixture of materials was obtained. Next, the resulting mixture of composite metal oxide materials was reacted at a temperature of 250 ° C. for 30 minutes, and further reacted at a temperature of 300 ° C. for 30 minutes and at a temperature of 350 ° C. for 1 hour. Next, the mixture of reaction products was pulverized and mixed, and then fired at a temperature of 1000 ° C. for 1 hour to obtain a composite metal oxide represented by the chemical formula YMnO 3 .
  • the negative electrode 3 includes the copper foil as a negative electrode current collector 10.
  • the negative electrode current collector 10 and the negative electrode 3 were arranged inside the bottomed cylindrical SUS case main body 6 having an inner diameter of 15 mm so that the negative electrode current collector 10 was in contact with the bottom surface of the case main body 6.
  • a separator made of a non-woven fabric having a diameter of 15 mm (manufactured by Tapirs Co., Ltd.) was superposed on the negative electrode 3.
  • the positive electrode 2 and the positive electrode current collector 9 obtained as described above were superimposed on the separator so that the positive electrode 2 was in contact with the separator.
  • the mass of lithium peroxide in the positive electrode 2 was set to be twice the mass of graphite in the negative electrode 3.
  • a non-aqueous electrolyte solution was injected into the separator to form an electrolyte layer 4.
  • the non-aqueous electrolyte solution lithium hexafluorophosphate (LiPF 6 ) was dissolved as a supporting salt at a concentration of 1 mol / liter in a mixed solution in which 30 parts by mass of ethylene carbonate and 70 parts by mass of diethyl carbonate were mixed.
  • the solution (made by Kishida Chemical Co., Ltd.) was used.
  • a laminated body composed of the negative electrode current collector 10, the negative electrode 3, the electrolyte layer 4, the positive electrode 2, and the positive electrode current collector 9 housed in the case body 6 is formed into a bottomed cylindrical SUS lid body 7 having an inner diameter of 15 mm. Closed. At this time, by disposing a ring-shaped insulating resin 8 made of polytetrafluoroethylene having an outer diameter of 70 mm, an inner diameter of 40 mm, and a thickness of 0.3 mm between the case body 6 and the lid body 7, FIG. The lithium ion oxygen battery 1 shown was obtained.
  • the lithium ion oxygen battery 1 obtained in this example was mounted on an electrochemical measurement device (manufactured by Toho Giken Co., Ltd.), and between the negative electrode 3 and the positive electrode 2, 0 per 1 cm 2 of the negative electrode 3.
  • a current of 0.1 mA (0.078 mA) was applied and charged for 50 hours, and then discharged until the cell voltage reached 2V.
  • the relationship between the cell voltage and the discharge capacity at this time is shown in FIG.
  • the laminated body including the negative electrode current collector 10, the negative electrode 3, the electrolyte layer 4, the positive electrode 2, and the positive electrode current collector 9 has a case body 6 and a lid body 7. Since the case 5 made of the insulating resin 8 is hermetically sealed, the battery performance was not deteriorated by moisture or carbon dioxide in the atmosphere.
  • Example 2 a lithium ion battery was manufactured in exactly the same manner as in Example 1 except that the positive electrode 2 obtained in this comparative example was used.
  • the lithium ion battery obtained in this comparative example was mounted on an electrochemical measuring device (manufactured by Toho Giken Co., Ltd.), and 0.1 mA per 1 cm 2 of the negative electrode 3 between the negative electrode 3 and the positive electrode 2.
  • a current of (0.078 mA) was applied and charged for 20 hours, and then discharged until the cell voltage reached 2.5V.
  • the relationship between the cell voltage and the discharge capacity at this time is shown in FIG.
  • the composite metal is applied to the positive electrode 2.
  • the lithium ion battery 1 of Example 1 in which the positive electrode 2 includes the composite metal oxide represented by the chemical formula YMnO 3 and lithium peroxide, the composite metal is applied to the positive electrode 2.
  • the lithium ion battery 1 of Example 1 it is clear that a high energy density can be obtained.
  • Example 2 In this example, first, a composite metal oxide represented by the chemical formula YMnO 3 was obtained in exactly the same manner as in Example 1. Next, the obtained YMnO 3 was reduced at a temperature of 300 ° C.
  • the negative electrode 3 was formed.
  • the negative electrode 3 includes the nickel porous body as a negative electrode current collector 10.
  • a lithium ion oxygen battery 1 shown in FIG. 1 was obtained in the same manner as in Example 1 except that the positive electrode 2 and the negative electrode 3 obtained in this example were used.
  • the lithium ion oxygen battery 1 obtained in this example was mounted on an electrochemical measurement device (manufactured by Toho Giken Co., Ltd.), and between the negative electrode 3 and the positive electrode 2, 0 per 1 cm 2 of the negative electrode 3. After applying a current of 0.0125 mA (0.022 mA) and charging for 85 hours, the battery was discharged at a current of 0.025 mA (0.044 mA) per 1 cm 2 of the negative electrode 3 until the cell voltage reached 2V. The relationship between the cell voltage and the discharge capacity at this time is shown in FIG.
  • Example 2 a lithium ion battery was manufactured in exactly the same manner as in Example 2 except that the positive electrode 2 obtained in this comparative example was used.
  • the lithium ion battery obtained in this comparative example was mounted on an electrochemical measuring device (manufactured by Toho Giken Co., Ltd.), and between the negative electrode 3 and the positive electrode 2, 0.0125 mA per 1 cm 2 of the negative electrode 3. After applying a current of (0.022 mA) and charging for 140 hours, the battery was discharged at a current of 0.025 mA (0.044 mA) per 1 cm 2 of the negative electrode 3 until the cell voltage became 2V. The relationship between the cell voltage and the discharge capacity at this time is shown in FIG.
  • the lithium ion oxygen battery 1 of Example 2 including the composite metal oxide represented by the chemical formula YMnO 3 and subjected to the reduction treatment and the lithium peroxide on the positive electrode 2, the positive electrode Compared to the lithium ion battery of Comparative Example 2 in which 2 does not contain the composite metal oxide and lithium peroxide at all, a capacity about three times as large can be obtained. Therefore, according to the lithium ion oxygen battery 1 of Example 2, it is clear that a high energy density can be obtained.
  • Example 3 In this example, first, a composite metal oxide represented by the chemical formula YMnO 3 was obtained in exactly the same manner as in Example 1. Next, the obtained YMnO 3 was reduced at a temperature of 300 ° C.
  • the obtained mixture was applied to a 400 ⁇ m thick nickel porous body (manufactured by Toyama Sumitomo Electric Co., Ltd., trade name: Celmet), dried and then punched out by a press to have a negative electrode having a diameter of 15 mm and a thickness of 350 ⁇ m. 3 was formed.
  • the negative electrode 3 includes the nickel porous body as a negative electrode current collector 10.
  • a lithium ion oxygen battery 1 shown in FIG. 1 was obtained in the same manner as in Example 1 except that the positive electrode 2 and the negative electrode 3 obtained in this example were used.
  • the lithium ion oxygen battery 1 obtained in this example was mounted on an electrochemical measurement device (manufactured by Toho Giken Co., Ltd.), and between the negative electrode 3 and the positive electrode 2, 0 per 1 cm 2 of the negative electrode 3. After applying a current of 0.0125 mA (0.022 mA) and charging to 4.2 V, the battery was discharged until the cell voltage reached 2 V at a current of 0.025 mA (0.044 mA) per 1 cm 2 of the negative electrode 3. The relationship between the cell voltage and the discharge capacity at this time is shown in FIG.
  • Example 4 In this example, first, yttrium nitrate pentahydrate, manganese nitrate hexahydrate, and malic acid were mixed at a molar ratio of 1: 1: 6 at a temperature of 25 ° C. using a mortar. Mixing for 15 minutes gave a mixture of composite metal oxide materials. Next, the obtained mixture of composite metal oxide materials was heated at a temperature of 350 ° C. for 1 hour to perform primary firing. Next, the resultant product obtained by the primary firing, water, and a commercially available water-dispersed zirconia sol as a binder are used at a mass ratio of 10: 100: 10, and a rotary ball mill is used.
  • the mixed metal oxide precursor was obtained by pulverization and mixing for 5 hours at a rotational speed of rotation / minute.
  • the obtained composite metal oxide was dried at 120 ° C. for 12 hours, and then fired at a temperature of 1000 ° C. for 1 hour to obtain a composite metal oxide represented by the chemical formula YMnO 3 and containing ZrO 2 .
  • the obtained ZrO 2 -containing YMnO 3 was subjected to reduction treatment at a temperature of 300 ° C.
  • the lithium ion oxygen battery 1 shown in FIG. 1 was obtained in the same manner as in Example 3 except that the positive electrode 2 obtained in this example was used.
  • the lithium ion oxygen battery 1 obtained in this example was mounted on an electrochemical measurement device (manufactured by Toho Giken Co., Ltd.), and between the negative electrode 3 and the positive electrode 2, 0 per 1 cm 2 of the negative electrode 3. After applying a current of 0.0125 mA (0.022 mA) and charging to 4.2 V or 200 hours, until the cell voltage reaches 2 V at a current of 0.025 mA (0.044 mA) per 1 cm 2 of the negative electrode 3 Discharged. The relationship between the cell voltage and the discharge capacity at this time is shown in FIG.
  • Example 5 In this example, first, yttrium nitrate pentahydrate, silver nitrate, manganese nitrate hexahydrate, ruthenium nitrate, citric acid, and water were mixed in 0.95: 0.05: 0.95: The mixture was mixed at a temperature of 25 ° C. for 15 minutes using a mortar so as to have a molar ratio of 0.05: 6: 40 to obtain a mixture of composite metal oxide materials. Next, the obtained mixture of composite metal oxide materials was heated at a temperature of 350 ° C. for 1 hour to perform primary firing. Next, the resultant product obtained by the primary firing was pulverized and mixed using a mortar and then fired at a temperature of 1000 ° C.
  • a lithium ion oxygen battery 1 shown in FIG. 1 was obtained in the same manner as in Example 4 except that the positive electrode 2 was formed using 3 .
  • Example 4 charging and discharging were performed in exactly the same manner as in Example 4 except that the lithium ion oxygen battery 1 obtained in this example was used.
  • the relationship between the cell voltage and the discharge capacity at this time is shown in FIG.
  • Example 6 In this example, first, a composite metal oxide represented by the chemical formula Y 0.95 Ag 0.05 Mn 0.95 Ru 0.05 O 3 was obtained exactly as in Example 5. Next, the obtained Y 0.95 Ag 0.05 Mn 0.95 Ru 0.05 O 3 was acid-treated by immersing it in a nitric acid solution having a pH of 1 at a temperature of 25 ° C. for 12 hours. The reduction treatment was performed at a temperature of.
  • a lithium ion oxygen battery 1 shown in FIG. 1 was obtained in the same manner as in Example 4 except that the positive electrode 2 was formed using 0.05 A 3 .
  • Example 4 charging and discharging were performed in exactly the same manner as in Example 4 except that the lithium ion oxygen battery 1 obtained in this example was used.
  • the relationship between the cell voltage and the discharge capacity at this time is shown in FIG.
  • Example 7 In this example, first, yttrium nitrate pentahydrate, silver nitrate, manganese nitrate hexahydrate, titanium oxide, citric acid, and water were mixed in 0.95: 0.05: 0.95: The mixture was mixed at a temperature of 25 ° C. for 15 minutes using a mortar so as to have a molar ratio of 0.05: 6: 40 to obtain a mixture of composite metal oxide materials. Next, the obtained mixture of composite metal oxide materials was heated at a temperature of 350 ° C. for 1 hour to perform primary firing. Next, the resultant product obtained by the primary firing was pulverized and mixed using a mortar, and then fired at a temperature of 800 ° C.
  • a lithium ion oxygen battery 1 shown in FIG. 1 was obtained in the same manner as in Example 4 except that the positive electrode 2 was formed using 3 .
  • Example 4 charging and discharging were performed in exactly the same manner as in Example 4 except that the lithium ion oxygen battery 1 obtained in this example was used.
  • the relationship between the cell voltage and the discharge capacity at this time is shown in FIG.
  • Example 8 In this example, first, zirconium oxynitrate, manganese nitrate hexahydrate, silver nitrate, ruthenium nitrate, citric acid, and water were mixed at 0.02: 1.88: 0.05: 0.05. The mixture was mixed at a temperature of 25 ° C. for 15 minutes using a mortar so as to obtain a molar ratio of 6:40 to obtain a mixture of composite metal oxide materials. Next, the obtained mixture of composite metal oxide materials was heated at a temperature of 350 ° C. for 1 hour to perform primary firing. Next, the resultant obtained by the primary firing was pulverized and mixed using a mortar, and then fired at a temperature of 800 ° C.
  • a lithium ion oxygen battery 1 shown in FIG. 1 was obtained in the same manner as in Example 4 except that the positive electrode 2 was formed using 3 .
  • Example 4 charging and discharging were performed in exactly the same manner as in Example 4 except that the lithium ion oxygen battery 1 obtained in this example was used.
  • the relationship between the cell voltage and the discharge capacity at this time is shown in FIG.
  • the positive electrode 2 does not contain the composite metal oxide used in Examples 3 to 8 and lithium peroxide at all. Compared to the lithium ion batteries of Examples 1 and 2, an excellent capacity can be obtained. Therefore, according to the lithium ion oxygen batteries 1 of Examples 3 to 8, it is apparent that a high energy density can be obtained as in the lithium ion oxygen batteries 1 of Examples 1 and 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Hybrid Cells (AREA)
  • Secondary Cells (AREA)

Abstract

 大気中の水分又は二酸化炭素により性能が低下することが無く、高いエネルギー密度を得ることができるリチウムイオン酸素電池を提供する。 リチウムイオン酸素電池1は、酸素を活物質とすると共にリチウム源を含む正極2と、リチウムイオンを吸蔵又は放出することができる材料からなる負極3と、正極2と負極3とに挟持されリチウムイオンを伝導可能な電解質層4とを備える。正極2、負極3及び電解質層4は密封ケース5に収容されている。正極3は酸素貯蔵材料と、リチウム源としてのリチウム化合物(ただし、リチウムと他の金属との複合金属酸化物を除く)とを備える。

Description

リチウムイオン酸素電池
 本発明は、リチウムイオン酸素電池に関する。
 従来、活物質としてコバルト酸リチウム(LiCoO)を含む正極と、活物質としてグラファイトを含む負極と、該正極と負極とに挟持されリチウムイオンを伝導可能な電解質層とを備えるリチウムイオン電池が知られている(例えば非特許文献1参照)。前記リチウムイオン電池では、前記正極又は負極において、充放電に伴ってリチウムイオンがコバルト酸リチウム又はグラファイトに吸蔵又は放出(インターカレーション又はデインターカレーション)されることにより電池として作用する。
 ところが、前記コバルト酸リチウムは、引き抜かれるリチウム量が増大すると結晶構造を維持することができなくなるために、理論容量が274mAh/gであるのに対し、通常利用できる容量は120~140mAh/gと考えられている。一方、前記グラファイトは、その容量が372mAh/gであり、前記コバルト酸リチウムにおいて通常利用できると考えられている容量の約3倍の容量を備えている。
 そこで、前記リチウムイオン電池は、電池を構成する際に、負極活物質の質量に対して、正極活物質の質量を約3倍とする必要があり、質量当たりのエネルギー密度を十分に大きくすることができないという問題がある。
 前記問題を解決するために、酸素を活物質とすると共に酸化リチウム又は過酸化リチウムを含む正極と、活物質としてグラファイトを含む負極と、該正極と負極とに挟持されリチウムイオンを伝導可能な電解質層とを備えるリチウムイオン酸素電池が提案されている(例えば特許文献1参照)。前記リチウムイオン酸素電池において、前記正極は、活性炭素繊維を備えると共に大気に開放されており、大気中の酸素を該活性炭素繊維により酸化する。
 前記リチウムイオン酸素電池では、放電時には、次の式に示すように前記負極においてグラファイトに吸蔵(インターカレーション)されている金属リチウムがイオン化してリチウムイオンと電子が生成する。そして、生成したリチウムイオンは前記グラファイトから放出(デインターカレーション)されて、前記電解質層を透過して正極に移動する。
 一方、正極においては、大気中から取り込まれた酸素が電子を受け取って酸素イオンとなり、前記リチウムイオンと反応して酸化リチウム又は過酸化リチウムを生成する。そこで、前記負極と正極とを導線で接続することにより、電気エネルギーを取り出すことができる。
   (負極)  4Li → 4Li +4e
   (正極)  O + 4e → 2O2-
         4Li + 2O2- → 2Li
         2Li + 2O2- →  Li
 また、充電時には、次の式に示すように前記正極において酸化リチウムまたは過酸化リチウムからリチウムイオンと電子と酸素とが生成し、生成したリチウムイオンは前記電解質層を透過して負極に移動する。そして、負極では前記リチウムイオンが電子を受け取り、金属リチウムとして析出する。析出した金属リチウムは、前記グラファイトに吸蔵(インターカレーション)される。
   (正極)  2LiO → 4Li + O + 4e 
          Li → 2Li + O + 4e 
   (負極)  4Li +4e → 4Li
 前記リチウムイオン酸素電池によれば、前記正極は大気中の酸素を活物質とするので、正極活物質の質量に制約を受けることが無く、質量当たりのエネルギー密度を増大させることができる。
特開2005-166685号公報
石井壮一郎、片山恵一、「リチウムイオン二次電池用電極材料」、東海大学紀要工学部、東海大学、2000年、pp.65-70
 しかしながら、前記従来のリチウムイオン酸素電池には、正極が大気に開放されているために、大気中に含まれる水分や二酸化炭素が電池内に侵入して各構成要素が劣化され、性能が低下するという不都合がある。
 本発明は、かかる不都合を解消して、大気中の水分又は二酸化炭素により性能が低下することが無く、高いエネルギー密度を得ることができるリチウムイオン酸素電池を提供することを目的とする。
 かかる目的を達成するために、本発明は、酸素を活物質とすると共にリチウム源を含む正極と、リチウムイオンを吸蔵又は放出することができる材料からなる負極と、該正極と負極とに挟持されリチウムイオンを伝導可能な電解質層とを備えるリチウムイオン酸素電池において、該正極、負極及び電解質層は密封ケースに収容されていると共に、該正極は酸素貯蔵材料と、該リチウム源としてのリチウム化合物(ただし、リチウムと他の金属との複合金属酸化物を除く)とを備えることを特徴とする。
 本発明のリチウムイオン酸素電池によれば、前記正極、負極及び電解質層が密封ケースに収容されているので、大気中の水分又は二酸化炭素が電池内に侵入して性能が低下することを防止することができる。また、前記正極は、前記酸素貯蔵材料と前記リチウム化合物とを含むので、充電時には前記リチウム化合物からリチウムイオンを生成させると共に、酸素イオンの酸化により生成した酸素を前記酸素貯蔵材料に貯蔵することができる。一方、前記正極は、放電時には、該酸素貯蔵材料から取出された酸素を還元して酸素イオンを生成させると共に、該酸素イオンと前記リチウムイオンとから酸化リチウム又は過酸化リチウムを生成させることができる。
 前記酸素貯蔵材料は、酸素を吸蔵、放出する機能を備えると同時に、その表面に酸素を吸着、脱着させることができる。ここで、前記酸素貯蔵材料は、酸素を吸蔵、放出する場合には、酸素との化学結合の生成、解離を伴うが、その表面に酸素を吸着、脱着させる場合には単に分子間力のみが作用し、化学結合の生成、解離を伴わない。
 従って、前記酸素貯蔵材料の表面に対する酸素の吸着、脱着は、該酸素貯蔵材料が酸素を吸蔵、放出する場合に比較して低エネルギーで行われることとなり、電池反応には該酸素貯蔵材料の表面に吸着されている酸素が優先的に用いられる。この結果、反応速度の低下及び過電圧の上昇を抑制することができる。
 本発明のリチウムイオン酸素電池において、前記リチウムイオンを吸蔵又は放出することができる材料は炭素質材料からなることが好ましい。前記炭素質材料によれば、充電時には前記リチウムを分子間に吸蔵することができ、放電時には分子間に吸蔵している該リチウムを放出することができる。
 また、前記炭素質材料はグラファイト又はハードカーボンのいずれかからなることがさらに好ましい。前記グラファイト又はハードカーボンによれば、いずれも充電時には前記リチウムを層間に吸蔵することができ、放電時には層間に吸蔵している該リチウムを放出することができる。
 また、本発明のリチウムイオン酸素電池において、前記酸素貯蔵材料は、YとMnとを含む複合金属酸化物又は、一般式Mn2-(a+b+c)ZrAgRu(式中、2>a+b+c>0)で表される複合金属酸化物のいずれかであることが好ましい。前記酸素貯蔵材料は、前記いずれかの複合金属酸化物からなることにより、前記酸素を吸蔵又は放出する機能を備え、その表面に酸素を吸着、脱着させることができると共に、前記正極における化学反応の触媒として作用することができる。
本発明の酸素電池の一構成例を示す説明的断面図。 実施例1のリチウムイオン酸素電池における充放電曲線を示すグラフ。 比較例1のリチウムイオン電池における充放電曲線を示すグラフ。 実施例2のリチウムイオン酸素電池における充放電曲線を示すグラフ。 比較例2のリチウムイオン電池における充放電曲線を示すグラフ。 実施例3のリチウムイオン酸素電池における充放電曲線を示すグラフ。 実施例4のリチウムイオン酸素電池における充放電曲線を示すグラフ。 実施例5のリチウムイオン酸素電池における充放電曲線を示すグラフ。 実施例6のリチウムイオン酸素電池における充放電曲線を示すグラフ。 実施例7のリチウムイオン酸素電池における充放電曲線を示すグラフ。 実施例8のリチウムイオン酸素電池における充放電曲線を示すグラフ。
 次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。
 図1に示すように、本実施形態のリチウムイオン酸素電池1は、正極2と、負極3と、正極2と負極3との間に配設される電解質層4とを備え、正極2、負極3及び電解質層4は、ケース5に密閉して収容されている。
 ケース5は、カップ状のケース本体6と、ケース本体6を閉蓋する蓋体7とを備え、ケース本体6と蓋体7との間には絶縁樹脂8が介装されている。また、正極2は蓋体7の天面との間に正極集電体9を備えており、負極3はケース本体6の底面との間に負極集電体10を備えている。
 リチウムイオン酸素電池1において、正極2は酸素貯蔵材料と、導電材料と、結着剤とからなり、リチウム化合物を含んでいる。前記酸素貯蔵材料は、酸素を吸蔵、放出する機能を備えると同時に、その表面に酸素を吸着、脱着させることができる。ここで、前記酸素貯蔵材料は、酸素を吸蔵、放出する場合には、酸素との化学結合の生成、解離を伴うが、その表面に酸素を吸着、脱着させる場合には単に分子間力のみが作用し、化学結合の生成、解離を伴わない。
 従って、前記酸素貯蔵材料の表面に対する酸素の吸着、脱着は、該酸素貯蔵材料が酸素を吸蔵、放出する場合に比較して低エネルギーで行われることとなり、電池反応には該酸素貯蔵材料の表面に吸着されている酸素が優先的に用いられる。この結果、反応速度の低下及び過電圧の上昇を抑制することができる。
 前記酸素貯蔵材料は、酸素を吸蔵又は放出する機能を備え、その表面に酸素を吸着、脱着させることができると共に、正極2における化学反応の触媒としても作用することが好ましい。このような酸素貯蔵材料として、例えば、YとMnとを含む複合金属酸化物又は、一般式Mn2-(a+b+c)ZrAgRu(式中、2>a+b+c>0)で表される複合金属酸化物のいずれかを挙げることができる。
 また、前記YとMnとを含む複合金属酸化物としては、例えば、YMnO又は、YMnOのYもしくはMnの一部が他の金属で置換されている化合物を挙げることができる。前記YMnOは、還元処理されていてもよく、ZrO等の他の金属酸化物を含んでいてもよい。
 また、YMnOのYもしくはMnの一部が他の金属で置換されている化合物としては、例えば、一般式Y1-xAgMn1-y(式中、AはRu又はTiであり、1>x>0かつ1>y>0)で表される化合物を挙げることができる。前記一般式Y1-xAgMn1-yで表される化合物は酸処理及び還元処理が施されていてもよい。
 また、前記導電材料としては、例えば、ケッチェンブラック、気相法炭素繊維(VGCF)等の炭素質材料を挙げることができる。また、前記結着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、アクリル系樹脂等を挙げることができる。
 また、前記リチウム化合物としては、コバルト酸リチウム(LiCoO)のようなリチウムと他の金属との複合金属酸化物を除けばどのようなものでもよく、例えば、過酸化リチウム(Li)、酸化リチウム(LiO)等を挙げることができる。
 次に、負極3は、リチウムイオンを吸蔵又は放出することができる材料と、結着剤と、分散剤とからなり、さらに導電材料又は粘度調整剤を含んでいてもよい。
 前記リチウムイオンを吸蔵又は放出することができる材料としては、例えば、グラファイト又はハードカーボン等の炭素質材料を挙げることができる。前記炭素質材料としてグラファイトを用いる場合、該グラファイトは気相法炭素繊維(VGCF)、カーボンブラック等の他の炭素質材料と混合して用いてもよい。
 前記結着剤としては、例えば、ポリフッ化ビニリデン(PVDF)、スチレン-ブタジエンゴム(SBR)、アクリル系樹脂等を挙げることができる。また、前記分散剤としては、例えば、N-メチル-2-ピロリドン(NMP)、純水等を挙げることができる。
 また、前記導電材料としては、例えば、ケッチェンブラック等の炭素質材料を挙げることができる。また、前記粘度調整剤としては、例えば、カルボキシメチルセルロース(CMC)等を挙げることができる。
 次に、電解質層4は、例えば、非水系電解質溶液をセパレータに浸漬させたものであってもよく、溶融塩又は固体電解質であってもよい。
 前記非水系電解質溶液は、例えば、リチウム塩を非水系溶媒に溶解したものを用いることができる。前記リチウム塩としては、例えば、六フッ化リン酸リチウム(LiPF)等を挙げることができる。また、前記非水系溶媒としては、例えば、炭酸エステル系溶媒、エーテル系溶媒、イオン液体等を挙げることができる。
 前記炭酸エステル系溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート等を挙げることができる。前記炭酸エステル系溶媒は2種以上混合して用いることもできる。
 前記エーテル系溶媒としては、例えば、ジメトキシエタン、ジメチルトリグラム、ポリエチレングリコール等を挙げることができる。前記エーテル系溶媒は2種以上混合して用いることもできる。
 前記イオン液体としては、例えば、イミダゾリウム、アンモニウム、ピリジニウム、ペリジウム等のカチオンと、ビス(トリフルオロメチルスルフォニル)イミド(TTSI)、ビス(ペンタフルオロエチルスルフォニル)イミド(BETI)、テトラフルオロボレート、パークロレート、ハロゲンアニオン等のアニオンとの塩を挙げることができる。
 前記セパレータとしては、例えば、ガラス繊維、ガラス製ペーパー、ポリプロピレン製不織布、ポリイミド製不織布、ポリフェニレンスルフィド製不織布、ポリエチレン製多孔フィルム等を挙げることができる。
 また、前記固体電解質としては、例えば、酸化物系固体電解質、硫化物系固体電解質等を挙げることができる。
 前記酸化物系固体電解質としては、例えば、リチウム、ランタン、ジルコニウムの複合金属酸化物であるLiLaZr12、リチウム、アルミニウム、ケイ素、チタン、ゲルマニウム、リンを主成分とするガラスセラミックス等を挙げることができる。前記LiLaZr12は、リチウム、ランタン、ジルコニウムの一部を、それぞれストロンチウム、バリウム、銀、イットリウム、ビスマス、鉛、スズ、アンチモン、ハフニウム、タンタル、ニオブ等の他の金属で置換されたものであってもよい。
 次に、正極集電体9としては、例えば、チタン、ステンレス鋼、ニッケル、アルミニウム等のメッシュ又は多孔質体からなるものを挙げることができる。また、負極集電体10としては、例えば、銅、チタン、ステンレス鋼等のリチウムが合金化することのない金属箔又は多孔質体を挙げることができる。
 本実施形態のリチウムイオン酸素電池1では、充電時には、正極2において、次の式に示すように、前記リチウム化合物としての過酸化リチウム又は酸化リチウムからリチウムイオンと酸素イオンとが生成する。ここで、前記リチウムイオンは電解質層4を透過して負極3に移動し、前記酸素イオンは前記酸素貯蔵材料に化学結合を生成して吸蔵され、或いはその表面に吸着されることにより、貯蔵される。
 一方、負極3においては、正極2から移動して来た前記リチウムイオンが電子を受け取って金属リチウムを生成し、生成した金属リチウムは前記炭素質材料に吸蔵(インターカレーション)される。
   (正極)   LiO → 2Li + O2- 
          Li → 2Li + 2O 
   (負極)   Li +e → Li
 また、放電時には、次の式に示すように、負極3において金属リチウムがイオン化してリチウムイオンと電子とが生成する。生成したリチウムイオンは、前記炭素質材料から放出(デインターカレーション)され、電解質層4を介して正極2に移動する。一方、正極2においては、前記酸素貯蔵材料から化学結合の解離により放出され、或いはその表面から脱着されることにより取出された酸素が、負極3から移動して来た前記リチウムイオンと共に電子を受け取って、過酸化リチウム又は酸化リチウムを生成する。そこで、負極3と正極2とを導線(図示せず)で接続することにより、電気エネルギーを取り出すことができる。
   (負極)  Li → Li +e
   (正極)  4Li + O + 4e → 2Li
         2Li + O + 2e → Li
 次に、実施例及び比較例を示す。
 〔実施例1〕
 本実施例では、まず、硝酸イットリウム5水和物と、硝酸マンガン6水和物と、リンゴ酸とを、1:1:6のモル比となるようにして、粉砕混合し、複合金属酸化物材料の混合物を得た。次に、得られた複合金属酸化物材料の混合物を250℃の温度で30分間反応させた後、さらに、300℃の温度で30分間、350℃の温度で1時間反応させた。次に、反応生成物の混合物を粉砕混合した後、1000℃の温度で1時間焼成して、化学式YMnOで表される複合金属酸化物を得た。
 次に、得られたYMnO40質量部と、導電材料としてのケッチェンブラック(株式会社ライオン製)50質量部と、結着剤としてのポリテトラフルオロエチレン(ダイキン工業株式会社製)10質量部と、さらにリチウム化合物としての過酸化リチウム(株式会社高純度化学研究所製)80質量部を加え混合した。そして、得られた混合物を、チタンメッシュからなる正極集電体9に10MPaの圧力で圧着し、直径15mm、厚さ1mmの正極2を形成した。
 次に、炭素材料としてのグラファイト(ティムカル・グラファイト・アンド・カーボン社製)90質量部と、結着剤としてのポリフッ化ビニリデン(株式会社クレハ製)10質量部とを、N-メチル-2-ピロリドン125質量部に分散させて混合した。そして、得られた混合物を、アプリケーターで厚さ12.5μmの銅箔上に塗布し、乾燥させた後、プレスにより打ち抜いて、直径15mm、厚さ50μmの負極3を形成した。負極3は、前記銅箔を負極集電体10として備えている。
 次に、内径15mmの有底円筒状のSUS製ケース本体6の内部に、負極集電体10及び負極3を、負極集電体10がケース本体6の底面に当接するように配置した。
 次に、負極3上に、直径15mmの不織布(タピルス株式会社製)からなるセパレータを重ね合わせた。次に、前記セパレータ上に、前記のようにして得られた正極2及び正極集電体9を、正極2が該セパレータに接するように重ね合わせた。尚、本実施例では、正極2の過酸化リチウムの質量は、負極3のグラファイトの質量の2倍になるようにした。
 次に、前記セパレータに非水系電解質溶液を注入し、電解質層4を形成した。前記非水系電解質溶液としては、エチレンカーボネート30質量部と、ジエチルカーボネート70質量部とを混合した混合溶液に、支持塩として六フッ化リン酸リチウム(LiPF)を1モル/リットルの濃度で溶解した溶液(キシダ化学株式会社製)を用いた。
 次に、ケース本体6に収容された負極集電体10、負極3、電解質層4、正極2、正極集電体9からなる積層体を、内径15mmの有底円筒状のSUS製蓋体7で閉蓋した。このとき、ケース本体6と蓋体7との間に、外径70mm、内径40mm、厚さ0.3mmのポリテトラフルオロエチレンからなるリング状の絶縁樹脂8を配設することにより、図1に示すリチウムイオン酸素電池1を得た。
 次に、本実施例で得られたリチウムイオン酸素電池1を電気化学測定装置(東方技研株式会社製)に装着し、負極3と正極2との間に、負極3の1cm当たりに対し0.1mA(0.078mA)の電流を印加し、50時間充電した後、セル電圧が2Vになるまで放電した。このときのセル電圧と放電容量との関係を図2に示す。
 また、本実施例で得られたリチウムイオン酸素電池1は、負極集電体10、負極3、電解質層4、正極2、正極集電体9からなる積層体が、ケース本体6、蓋体7、絶縁樹脂8からなるケース5に密封されているので、大気中の水分又は二酸化炭素により電池性能が低下することがなかった。
 〔比較例1〕
 本比較例では、まず、YMnOに代えてコバルト酸リチウム(LiCoO、日本化学工業株式会社製)を用いると共に、過酸化リチウムを全く用いず、LiCoO40質量部と、導電材料としてのケッチェンブラック(株式会社ライオン製)50質量部と、結着剤としてのポリテトラフルオロエチレン(ダイキン工業株式会社製)10質量部とを混合した。そして、得られた混合物を、チタンメッシュからなる正極集電体9に10MPaの圧力で圧着し、直径15mm、厚さ1mmの正極2を形成した。
 次に、本比較例で得られた正極2を用いた以外は、実施例1と全く同一にしてリチウムイオン電池を製造した。
 次に、本比較例で得られたリチウムイオン電池を電気化学測定装置(東方技研株式会社製)に装着し、負極3と正極2との間に、負極3の1cm当たりに対し0.1mA(0.078mA)の電流を印加し、20時間充電した後、セル電圧が2.5Vになるまで放電した。このときのセル電圧と放電容量との関係を図3に示す。
 図2及び図3に示すように、正極2に化学式YMnOで表される複合金属酸化物と過酸化リチウムとを含む実施例1のリチウムイオン酸素電池1によれば、正極2に前記複合金属酸化物と過酸化リチウムとを全く含まない比較例1のリチウムイオン電池に比較して、約4倍の容量を得ることができる。従って、実施例1のリチウムイオン酸素電池1によれば、高いエネルギー密度を得ることができることが明らかである。
 〔実施例2〕
 本実施例では、まず、実施例1と全く同一にして、化学式YMnOで表される複合金属酸化物を得た。次に、得られたYMnOを300℃の温度で還元処理した。
 次に、前記還元処理が施されたYMnO80質量部と、導電材料としてのケッチェンブラック(株式会社ライオン製)8質量部と、導電材料としての気相法炭素繊維(VGCF、昭和電工株式会社製)2質量部と、結着剤としてのポリフッ化ビニリデン(株式会社クレハ製)10質量部と、リチウム化合物としての過酸化リチウム(株式会社高純度化学研究所製)80質量部とを、N-メチル-2-ピロリドン600質量部に分散させて混合した。そして、得られた混合物を、アルミニウムメッシュ(株式会社くればぁ製)からなる正極集電体9に塗布し、乾燥させて、直径15mm、厚さ0.5mmの正極2を形成した。
 次に、炭素材料としてのハードカーボン(株式会社クレハ製)90質量部と、導電材料としてのケッチェンブラック(株式会社ライオン製)2質量部と、結着剤としてのポリフッ化ビニリデン(株式会社クレハ製)8質量部とを、N-メチル-2-ピロリドン150質量部に分散させて混合した。そして、得られた混合物を、厚さ400μmのニッケル多孔体(富山住友電工株式会社製、商品名:セルメット)の上に塗布し、乾燥させた後、プレスにより打ち抜いて、直径15mm、厚さ300μmの負極3を形成した。負極3は、前記ニッケル多孔体を負極集電体10として備えている。
 次に、本実施例で得られた正極2と負極3とを用いた以外は、実施例1と全く同一にして、図1に示すリチウムイオン酸素電池1を得た。
 次に、本実施例で得られたリチウムイオン酸素電池1を電気化学測定装置(東方技研株式会社製)に装着し、負極3と正極2との間に、負極3の1cm当たりに対し0.0125mA(0.022mA)の電流を印加し、85時間充電した後、負極3の1cm当たりに対し0.025mA(0.044mA)の電流でセル電圧が2Vになるまで放電した。このときのセル電圧と放電容量との関係を図4に示す。
 〔比較例2〕
 本比較例では、まず、還元処理されたYMnOに代えてコバルト酸リチウム(LiCoO、日本化学工業株式会社製)を用いると共に、過酸化リチウムを全く用いず、LiCoO80質量部と、導電材料としてのケッチェンブラック(株式会社ライオン製)8質量部と、結着剤としてのポリフッ化ビニリデン(株式会社クレハ製)12質量部とを、N-メチル-2-ピロリドン150質量部に分散させて混合した。そして、得られた混合物を、アルミニウムからなる正極集電体9に塗布し、乾燥させて、直径15mm、厚さ0.5mmの正極2を形成した。
 次に、本比較例で得られた正極2を用いた以外は、実施例2と全く同一にしてリチウムイオン電池を製造した。
 次に、本比較例で得られたリチウムイオン電池を電気化学測定装置(東方技研株式会社製)に装着し、負極3と正極2との間に、負極3の1cm当たりに対し0.0125mA(0.022mA)の電流を印加し、140時間充電した後、負極3の1cm当たりに対し0.025mA(0.044mA)の電流でセル電圧が2Vになるまで放電した。このときのセル電圧と放電容量との関係を図5に示す。
 図4及び図5に示すように、正極2に化学式YMnOで表され還元処理が施された複合金属酸化物と過酸化リチウムとを含む実施例2のリチウムイオン酸素電池1によれば、正極2に前記複合金属酸化物と過酸化リチウムとを全く含まない比較例2のリチウムイオン電池に比較して、約3倍の容量を得ることができる。従って、実施例2のリチウムイオン酸素電池1によれば、高いエネルギー密度を得ることができることが明らかである。
 〔実施例3〕
 本実施例では、まず、実施例1と全く同一にして、化学式YMnOで表される複合金属酸化物を得た。次に、得られたYMnOを300℃の温度で還元処理した。
 次に、前記還元処理が施されたYMnO40質量部と、導電材料としてのケッチェンブラック(株式会社ライオン製)30質量部と、結着剤としてのアクリル系樹脂(日本ゼオン株式会社製)30質量部と、リチウム化合物としての過酸化リチウム(株式会社高純度化学研究所製)40質量部とを、N-メチル-2-ピロリドン500質量部に分散させて混合した。そして、得られた混合物を、アルミニウムメッシュ(株式会社くればぁ製)からなる正極集電体9に塗布し、乾燥させて、直径15mm、厚さ0.5mmの正極2を形成した。
 次に、炭素材料としてのグラファイト(株式会社クレハ製)90質量部と、導電材料としてのケッチェンブラック(株式会社ライオン製)2質量部と、結着剤としてのポリフッ化ビニリデン(株式会社クレハ製)8質量部とを、N-メチル-2-ピロリドン100質量部に分散させて混合した。そして、得られた混合物を、厚さ400μmのニッケル多孔体(富山住友電工株式会社製、商品名:セルメット)に塗布し、乾燥させた後、プレスにより打ち抜いて、直径15mm、厚さ350μmの負極3を形成した。負極3は、前記ニッケル多孔体を負極集電体10として備えている。
 次に、本実施例で得られた正極2と負極3とを用いた以外は、実施例1と全く同一にして、図1に示すリチウムイオン酸素電池1を得た。
 次に、本実施例で得られたリチウムイオン酸素電池1を電気化学測定装置(東方技研株式会社製)に装着し、負極3と正極2との間に、負極3の1cm当たりに対し0.0125mA(0.022mA)の電流を印加し、4.2Vまで充電した後、負極3の1cm当たりに対し0.025mA(0.044mA)の電流でセル電圧が2Vになるまで放電した。このときのセル電圧と放電容量との関係を図6に示す。
 〔実施例4〕
 本実施例では、まず、硝酸イットリウム5水和物と、硝酸マンガン6水和物と、リンゴ酸とを、1:1:6のモル比となるようにして、乳鉢を用い25℃の温度で15分間混合して、複合金属酸化物材料の混合物を得た。次に、得られた複合金属酸化物材料の混合物を350℃の温度で1時間加熱し一次焼成を行った。次に、前記一次焼成で得られた結果物と、水と、バインダーとしての市販の水分散ジルコニアゾルとを、10:100:10の質量比となるようにして、回転式ボールミルを用い、100回転/分の回転数で5時間粉砕混合し、複合金属酸化物の前駆体を得た。次に、得られた複合金属酸化物を120℃で12時間乾燥させた後、1000℃の温度で1時間焼成して、化学式YMnOで表されZrOを含む複合金属酸化物を得た。次に、得られたZrO含有YMnOを300℃の温度で還元処理した。
 次に、前記還元処理が施されたZrO含有YMnO80質量部と、導電材料としてのケッチェンブラック(株式会社ライオン製)10質量部と、結着剤としてのポリフッ化ビニリデン(アルケマ株式会社製)10質量部と、リチウム化合物としての過酸化リチウム(株式会社高純度化学研究所製)80質量部とを、N-メチル-2-ピロリドン600質量部に分散させて混合した。そして、得られた混合物を、アルミニウムメッシュ(株式会社くればぁ製)からなる正極集電体9に塗布し、乾燥させて、直径15mm、厚さ0.5mmの正極2を形成した。
 次に、本実施例で得られた正極2を用いた以外は、実施例3と全く同一にして、図1に示すリチウムイオン酸素電池1を得た。
 次に、本実施例で得られたリチウムイオン酸素電池1を電気化学測定装置(東方技研株式会社製)に装着し、負極3と正極2との間に、負極3の1cm当たりに対し0.0125mA(0.022mA)の電流を印加し、4.2Vまで又は200時間充電した後、負極3の1cm当たりに対し0.025mA(0.044mA)の電流でセル電圧が2Vになるまで放電した。このときのセル電圧と放電容量との関係を図7に示す。
 〔実施例5〕
 本実施例では、まず、硝酸イットリウム5水和物と、硝酸銀と、硝酸マンガン6水和物と、硝酸ルテニウムと、クエン酸と、水とを、0.95:0.05:0.95:0.05:6:40のモル比となるようにして、乳鉢を用い25℃の温度で15分間混合して、複合金属酸化物材料の混合物を得た。次に、得られた複合金属酸化物材料の混合物を350℃の温度で1時間加熱し一次焼成を行った。次に、前記一次焼成で得られた結果物を、乳鉢を用いて粉砕混合した後、1000℃の温度で1時間焼成して、化学式Y0.95Ag0.05Mn0.95Ru0.05で表される複合金属酸化物を得た。次に、得られたY0.95Ag0.05Mn0.95Ru0.05を300℃の温度で還元処理した。
 次に、前記還元処理が施されたZrO含有YMnOに代えて、本実施例で得られた前記還元処理が施されたY0.95Ag0.05Mn0.95Ru0.05を用いて正極2を形成した以外は、実施例4と全く同一にして、図1に示すリチウムイオン酸素電池1を得た。
 次に、本実施例で得られたリチウムイオン酸素電池1を用いた以外は、実施例4と全く同一にして充電及び放電を行った。このときのセル電圧と放電容量との関係を図8に示す。
 〔実施例6〕
 本実施例では、まず、実施例5と全く同一にして、化学式Y0.95Ag0.05Mn0.95Ru0.05で表される複合金属酸化物を得た。次に、得られたY0.95Ag0.05Mn0.95Ru0.05を、pH1の硝酸溶液中に、25℃の温度で12時間浸漬して酸処理し、さらに300℃の温度で還元処理した。
 次に、前記還元処理が施されたZrO含有YMnOに代えて、本実施例で得られた前記酸処理及び還元処理が施されたY0.95Ag0.05Mn0.95Ru0.05を用いて正極2を形成した以外は、実施例4と全く同一にして、図1に示すリチウムイオン酸素電池1を得た。
 次に、本実施例で得られたリチウムイオン酸素電池1を用いた以外は、実施例4と全く同一にして充電及び放電を行った。このときのセル電圧と放電容量との関係を図9に示す。
 〔実施例7〕
 本実施例では、まず、硝酸イットリウム5水和物と、硝酸銀と、硝酸マンガン6水和物と、酸化チタンと、クエン酸と、水とを、0.95:0.05:0.95:0.05:6:40のモル比となるようにして、乳鉢を用い25℃の温度で15分間混合して、複合金属酸化物材料の混合物を得た。次に、得られた複合金属酸化物材料の混合物を350℃の温度で1時間加熱し一次焼成を行った。次に、前記一次焼成で得られた結果物を、乳鉢を用いて粉砕混合した後、800℃の温度で1時間焼成して、化学式Y0.95Ag0.05Mn0.95Ti0.05で表される複合金属酸化物を得た。次に、得られたY0.95Ag0.05Mn0.95Ti0.05を300℃の温度で還元処理した。
 次に、前記還元処理が施されたZrO含有YMnOに代えて、本実施例で得られた前記還元処理が施されたY0.95Ag0.05Mn0.95Ti0.05を用いて正極2を形成した以外は、実施例4と全く同一にして、図1に示すリチウムイオン酸素電池1を得た。
 次に、本実施例で得られたリチウムイオン酸素電池1を用いた以外は、実施例4と全く同一にして充電及び放電を行った。このときのセル電圧と放電容量との関係を図10に示す。
 〔実施例8〕
 本実施例では、まず、オキシ硝酸ジルコニウムと、硝酸マンガン6水和物と、硝酸銀と、硝酸ルテニウムと、クエン酸と、水とを、0.02:1.88:0.05:0.05:6:40のモル比となるようにして、乳鉢を用い25℃の温度で15分間混合して、複合金属酸化物材料の混合物を得た。次に、得られた複合金属酸化物材料の混合物を350℃の温度で1時間加熱し一次焼成を行った。次に、前記一次焼成で得られた結果物を、乳鉢を用いて粉砕混合した後、800℃の温度で1時間焼成して、化学式Zr0.02Mn1.88Ag0.05Ru0.05で表される複合金属酸化物を得た。次に、得られたZr0.02Mn1.88Ag0.05Ru0.05を300℃の温度で還元処理した。
 次に、前記還元処理が施されたZrO含有YMnOに代えて、本実施例で得られた前記還元処理が施されたZr0.02Mn1.88Ag0.05Ru0.05を用いて正極2を形成した以外は、実施例4と全く同一にして、図1に示すリチウムイオン酸素電池1を得た。
 次に、本実施例で得られたリチウムイオン酸素電池1を用いた以外は、実施例4と全く同一にして充電及び放電を行った。このときのセル電圧と放電容量との関係を図11に示す。
 図6~図11に示すように、実施例3~8のリチウムイオン酸素電池1によれば、正極2に実施例3~8に用いた複合金属酸化物と過酸化リチウムとを全く含まない比較例1,2のリチウムイオン電池に比較して、優れた容量を得ることができる。従って、実施例3~8のリチウムイオン酸素電池1によれば、実施例1,2リチウムイオン酸素電池1と同様に高いエネルギー密度を得ることができることが明らかである。
 1…金属酸素電池、 2…正極、 3…負極、 4…電解質層、 5…ケース。

Claims (9)

  1.  酸素を活物質とすると共にリチウム源を含む正極と、リチウムイオンを吸蔵又は放出することができる材料からなる負極と、該正極と負極とに挟持されリチウムイオンを伝導可能な電解質層とを備えるリチウムイオン酸素電池において、
     該正極、負極及び電解質層は密封ケースに収容されていると共に、該正極は酸素貯蔵材料と、該リチウム源としてのリチウム化合物(ただし、リチウムと他の金属との複合金属酸化物を除く)とを備えることを特徴とするリチウムイオン酸素電池。
  2.  請求項1記載のリチウムイオン酸素電池において、前記リチウムイオンを吸蔵又は放出することができる材料は炭素質材料からなることを特徴とするリチウムイオン酸素電池。
  3.  請求項2記載のリチウムイオン酸素電池において、前記炭素質材料はグラファイト又はハードカーボンのいずれかであることを特徴とするリチウムイオン酸素電池。
  4.  請求項1記載のリチウムイオン酸素電池において、前記酸素貯蔵材料は、YとMnとを含む複合金属酸化物又は、一般式Mn2-(a+b+c)ZrAgRu(式中、2>a+b+c>0)で表される複合金属酸化物のいずれかであることを特徴とするリチウムイオン酸素電池。
  5.  請求項4記載のリチウムイオン酸素電池において、前記YとMnとを含む複合金属酸化物は、YMnO、還元処理されているYMnO、ZrOを含むYMnO、一般式Y1-xAgMn1-y(式中、AはRu又はTiであり、1>x>0かつ1>y>0)で表される化合物、酸処理及び還元処理されている一般式Y1-xAgMn1-y(式中、AはRu又はTiであり、1>x>0かつ1>y>0)で表される化合物からなる群から選択されるいずれか1種の複合金属酸化物であることを特徴とするリチウムイオン酸素電池。
  6.  請求項1記載のリチウムイオン酸素電池において、前記炭素質材料はグラファイトであり、前記酸素貯蔵材料はYとMnとを含む複合金属酸化物又は、一般式Mn2-(a+b+c)ZrAgRu(式中、2>a+b+c>0)で表される複合金属酸化物のいずれかであることを特徴とするリチウムイオン酸素電池。
  7.  請求項6記載のリチウムイオン酸素電池において、前記YとMnとを含む複合金属酸化物は、YMnO、還元処理されているYMnO、ZrOを含むYMnO、一般式Y1-xAgMn1-y(式中、AはRu又はTiであり、1>x>0かつ1>y>0)で表される化合物、酸処理及び還元処理されている一般式Y1-xAgMn1-y(式中、AはRu又はTiであり、1>x>0かつ1>y>0)で表される化合物からなる群から選択されるいずれか1種の複合金属酸化物であることを特徴とするリチウムイオン酸素電池。
  8.  請求項1記載のリチウムイオン酸素電池において、前記炭素質材料はハードカーボンであり、前記酸素貯蔵材料はYとMnとを含む複合金属酸化物からなることを特徴とするリチウムイオン酸素電池。
  9.  請求項8記載のリチウムイオン酸素電池において、前記複合金属酸化物は、YMnOであることを特徴とするリチウムイオン酸素電池。
PCT/JP2012/060495 2011-04-19 2012-04-18 リチウムイオン酸素電池 WO2012144533A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280018186.2A CN103460502B (zh) 2011-04-19 2012-04-18 锂离子氧电池
EP12774482.9A EP2685551B1 (en) 2011-04-19 2012-04-18 Lithium ion oxygen battery
JP2012556333A JP5336007B2 (ja) 2011-04-19 2012-04-18 リチウムイオン酸素電池
US14/111,586 US9130228B2 (en) 2011-04-19 2012-04-18 Lithium ion oxygen battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-092960 2011-04-19
JP2011092960 2011-04-19

Publications (1)

Publication Number Publication Date
WO2012144533A1 true WO2012144533A1 (ja) 2012-10-26

Family

ID=47041639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060495 WO2012144533A1 (ja) 2011-04-19 2012-04-18 リチウムイオン酸素電池

Country Status (5)

Country Link
US (1) US9130228B2 (ja)
EP (1) EP2685551B1 (ja)
JP (1) JP5336007B2 (ja)
CN (1) CN103460502B (ja)
WO (1) WO2012144533A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013069680A (ja) * 2011-09-07 2013-04-18 Honda Motor Co Ltd 金属酸素電池
JP2013218986A (ja) * 2012-04-12 2013-10-24 Nippon Telegr & Teleph Corp <Ntt> リチウム空気二次電池
WO2014165068A1 (en) * 2013-03-13 2014-10-09 Miles Melvin H Lithium-air battery for electric vehicles and other applications using molten nitrate electrolytes
JP2016162678A (ja) * 2015-03-04 2016-09-05 日本電信電話株式会社 リチウム空気二次電池
KR20170142948A (ko) * 2016-06-20 2017-12-28 혼다 기켄 고교 가부시키가이샤 변형된 산화물 조성물의 제조 및 특성화

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012153774A1 (ja) * 2011-05-10 2012-11-15 本田技研工業株式会社 酸素電池
CN110416478A (zh) 2012-03-01 2019-11-05 约翰逊Ip控股有限责任公司 固态复合隔膜、其制造方法以及固态可充电锂电池
US10084168B2 (en) 2012-10-09 2018-09-25 Johnson Battery Technologies, Inc. Solid-state battery separators and methods of fabrication
CN105024113B (zh) * 2015-07-10 2018-03-16 苏州迪思伏新能源科技有限公司 一种基于嵌锂石墨的可充放锂离子氧气电池的制备方法
WO2017112804A1 (en) 2015-12-21 2017-06-29 Johnson Ip Holding, Llc Solid-state batteries, separators, electrodes, and methods of fabrication
US10218044B2 (en) 2016-01-22 2019-02-26 Johnson Ip Holding, Llc Johnson lithium oxygen electrochemical engine
US11005128B2 (en) * 2016-12-16 2021-05-11 Medtronic, Inc. Lithium ion batteries and methods of sterilization
JP2019133933A (ja) * 2018-01-30 2019-08-08 財團法人工業技術研究院Industrial Technology Research Institute 固体電解質および固体電池
CN108933310B (zh) * 2018-05-25 2021-07-02 四川大学 一种高容量高功率型锂离子/空气混合电池系统
JP2022131625A (ja) * 2021-02-26 2022-09-07 本田技研工業株式会社 パウチセル、パウチセルの製造方法
EP4336602A1 (en) * 2022-09-12 2024-03-13 L & T Technology Services Limited Methane-assisted metal ion battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251087A (ja) * 1992-03-02 1993-09-28 Tonen Corp 高温固体電解質燃料電池用カソード材料
JPH07249414A (ja) * 1994-03-11 1995-09-26 Kyocera Corp 固体電解質型燃料電池セル
JP2005166685A (ja) 2005-02-07 2005-06-23 Toshiba Corp 空気リチウム二次電池
JP2008112724A (ja) * 2006-10-06 2008-05-15 Toyota Central R&D Labs Inc 正極用触媒及びリチウム空気二次電池
JP2009230985A (ja) * 2008-03-21 2009-10-08 Toyota Central R&D Labs Inc 非水系空気電池
WO2010131536A1 (ja) * 2009-05-13 2010-11-18 日本電気株式会社 触媒電極、燃料電池、空気電池および発電方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3764623B2 (ja) * 2000-03-27 2006-04-12 株式会社東芝 酸素リチウム二次電池
US7696126B2 (en) * 2006-02-14 2010-04-13 Honda Motor Co., Ltd. Method of producing oxidation catalyst for cleaning exhaust gas
JP2009207981A (ja) * 2008-03-04 2009-09-17 Honda Motor Co Ltd 排ガス浄化用酸化触媒
JP5050225B2 (ja) * 2009-01-16 2012-10-17 トヨタ自動車株式会社 空気二次電池およびその製造方法
US8980482B2 (en) * 2009-08-24 2015-03-17 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte lithium ion secondary battery
US8697297B2 (en) * 2010-03-16 2014-04-15 Honda Motor Co., Ltd. Metal-air battery
WO2012029743A1 (ja) * 2010-08-31 2012-03-08 本田技研工業株式会社 金属酸素電池
WO2012058644A1 (en) * 2010-10-28 2012-05-03 Board Of Trustees Of Northern Illinois University Rare-earth manganese oxides for gas separation and oxygen storage
WO2012153774A1 (ja) * 2011-05-10 2012-11-15 本田技研工業株式会社 酸素電池
JP5204334B2 (ja) * 2011-07-06 2013-06-05 本田技研工業株式会社 金属酸素電池
JP5254483B2 (ja) * 2011-09-13 2013-08-07 本田技研工業株式会社 金属酸素電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251087A (ja) * 1992-03-02 1993-09-28 Tonen Corp 高温固体電解質燃料電池用カソード材料
JPH07249414A (ja) * 1994-03-11 1995-09-26 Kyocera Corp 固体電解質型燃料電池セル
JP2005166685A (ja) 2005-02-07 2005-06-23 Toshiba Corp 空気リチウム二次電池
JP2008112724A (ja) * 2006-10-06 2008-05-15 Toyota Central R&D Labs Inc 正極用触媒及びリチウム空気二次電池
JP2009230985A (ja) * 2008-03-21 2009-10-08 Toyota Central R&D Labs Inc 非水系空気電池
WO2010131536A1 (ja) * 2009-05-13 2010-11-18 日本電気株式会社 触媒電極、燃料電池、空気電池および発電方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2685551A4
SOICHIRO ISHII; KEIICHI KATAYAMA: "Electrode Materials foi Lithium Ion Secondary Batteries", PROCEEDINGS OF THE SCHOOL OF ENGINEERING OFTOKAI UNIVERSITY, 2000, pages 65 - 70

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013069680A (ja) * 2011-09-07 2013-04-18 Honda Motor Co Ltd 金属酸素電池
JP2013218986A (ja) * 2012-04-12 2013-10-24 Nippon Telegr & Teleph Corp <Ntt> リチウム空気二次電池
WO2014165068A1 (en) * 2013-03-13 2014-10-09 Miles Melvin H Lithium-air battery for electric vehicles and other applications using molten nitrate electrolytes
JP2016162678A (ja) * 2015-03-04 2016-09-05 日本電信電話株式会社 リチウム空気二次電池
KR20170142948A (ko) * 2016-06-20 2017-12-28 혼다 기켄 고교 가부시키가이샤 변형된 산화물 조성물의 제조 및 특성화
JP2018002584A (ja) * 2016-06-20 2018-01-11 本田技研工業株式会社 修飾酸化物組成物の調製および特性評価
US11075379B2 (en) 2016-06-20 2021-07-27 Honda Motor Co., Ltd. Preparation and characterization of modified oxide compositions
JP7043188B2 (ja) 2016-06-20 2022-03-29 本田技研工業株式会社 修飾酸化物組成物の調製および特性評価
KR102410411B1 (ko) * 2016-06-20 2022-06-16 혼다 기켄 고교 가부시키가이샤 변형된 산화물 조성물의 제조 및 특성화

Also Published As

Publication number Publication date
EP2685551A1 (en) 2014-01-15
CN103460502A (zh) 2013-12-18
JP5336007B2 (ja) 2013-11-06
US9130228B2 (en) 2015-09-08
US20140045082A1 (en) 2014-02-13
EP2685551B1 (en) 2015-11-04
CN103460502B (zh) 2015-09-30
JPWO2012144533A1 (ja) 2014-07-28
EP2685551A4 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
JP5336007B2 (ja) リチウムイオン酸素電池
JP5202767B2 (ja) 金属酸素電池
JP5202766B2 (ja) 酸素電池
JP5204335B2 (ja) 金属酸素電池
JP5204333B2 (ja) 金属酸素電池
JP5276203B2 (ja) 金属酸素電池
JP5220232B1 (ja) 金属酸素電池及びそれに用いる酸素貯蔵材料の製造方法
JP5220211B1 (ja) 金属酸素電池
JP5393735B2 (ja) 金属酸素電池
JP5373869B2 (ja) 金属酸素電池
JP5202697B2 (ja) 金属酸素電池
JP5393748B2 (ja) 金属酸素電池
JP5285134B2 (ja) リチウムイオン酸素電池
JP5393747B2 (ja) 金属酸素電池
JP5398879B2 (ja) 金属酸素電池
JP2013206872A (ja) 金属酸素電池
JP2013051091A (ja) 金属酸素電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012556333

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774482

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012774482

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14111586

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE