WO2012153774A1 - 酸素電池 - Google Patents

酸素電池 Download PDF

Info

Publication number
WO2012153774A1
WO2012153774A1 PCT/JP2012/061907 JP2012061907W WO2012153774A1 WO 2012153774 A1 WO2012153774 A1 WO 2012153774A1 JP 2012061907 W JP2012061907 W JP 2012061907W WO 2012153774 A1 WO2012153774 A1 WO 2012153774A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
positive electrode
lithium
negative electrode
composite metal
Prior art date
Application number
PCT/JP2012/061907
Other languages
English (en)
French (fr)
Inventor
潔 田名網
拓哉 谷内
満央 堀
洋 酒井
磯谷 祐二
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2012528577A priority Critical patent/JP5202766B2/ja
Priority to EP12782848.1A priority patent/EP2709204B1/en
Priority to US14/116,158 priority patent/US8940447B2/en
Priority to CN201280022356.4A priority patent/CN103518286A/zh
Publication of WO2012153774A1 publication Critical patent/WO2012153774A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an oxygen battery.
  • an oxygen battery including a positive electrode using oxygen as an active material, a negative electrode using metal lithium as an active material, and an electrolyte layer sandwiched between the positive electrode and the negative electrode is known.
  • the oxygen battery for example, a battery in which the positive electrode, the negative electrode, and the electrolyte layer are sealed in a case has been proposed (see, for example, Patent Document 1).
  • lithium ions, electrons, and oxygen are generated from lithium oxide or lithium peroxide in the positive electrode, and the generated lithium ions pass through the electrolyte layer and move to the negative electrode.
  • the lithium ions receive electrons and are deposited as metallic lithium.
  • the conventional oxygen battery has a disadvantage that the overvoltage increases and the performance decreases when charging and discharging are repeated.
  • An object of the present invention is to provide an oxygen battery that can eliminate such inconvenience and can suppress an increase in overvoltage even when charging and discharging are repeated.
  • the present invention provides an oxygen battery including a positive electrode using oxygen as an active material, a negative electrode using metal lithium as an active material, and an electrolyte layer sandwiched between the positive electrode and the negative electrode.
  • the positive electrode contains a lithium compound.
  • the positive electrode uniformly contains a lithium compound, lithium ions generated at the positive electrode during charging are uniformly deposited on the metal lithium of the negative electrode. Therefore, according to the oxygen battery of the present invention, when lithium is repeatedly dissolved and precipitated in the negative electrode, the lithium hardly changes its position, thereby preventing the formation of irregularities on the negative electrode surface and increasing the overvoltage. Can be suppressed.
  • the positive electrode, the negative electrode, and the electrolyte layer are disposed in a sealed case, and the positive electrode includes an oxygen storage material.
  • the oxygen storage material has a function of occluding and releasing oxygen, and at the same time, can adsorb and desorb oxygen on the surface thereof.
  • the oxygen storage material accompanies generation and dissociation of chemical bonds with oxygen when storing and releasing oxygen, but only intermolecular force is used when adsorbing and desorbing oxygen on the surface. Acts and does not involve the formation or dissociation of chemical bonds.
  • the adsorption and desorption of oxygen to the surface of the oxygen storage material is performed with lower energy than when the oxygen storage material occludes and releases oxygen, and the cell reaction involves the surface of the oxygen storage material.
  • Oxygen adsorbed on is preferentially used. As a result, a decrease in reaction rate and an increase in overvoltage can be suppressed.
  • the decomposition reaction of the lithium compound proceeds smoothly by the catalytic action of the oxygen storage material. Therefore, the activation energy of the decomposition reaction (charging reaction) of the lithium compound can be reduced, and an increase in overvoltage can be further suppressed.
  • the positive electrode, the negative electrode, and the electrolyte layer are accommodated in a sealed case, and oxygen is supplied by a material having the oxygen storage ability. Therefore, it is not necessary to open the positive electrode to the air, and a decrease in performance due to moisture or carbon dioxide in the air can be avoided.
  • the oxygen storage material is preferably made of a composite metal oxide containing, for example, Y and Mn.
  • the composite metal oxide is, for example, YMnO 3 , has a function of occluding or releasing oxygen, can adsorb and desorb oxygen on the surface, and can also act as a catalyst for a chemical reaction in the positive electrode. .
  • the oxygen battery 1 includes a positive electrode 2 using oxygen as an active material, a negative electrode 3 using metal lithium as an active material, and a positive electrode 2 and a negative electrode 3.
  • the positive electrode 2, the negative electrode 3, and the electrolyte layer 4 are sealed and accommodated in a case 5.
  • the case 5 includes a cup-shaped case body 6 and a lid body 7 that closes the case body 6, and an insulating resin 8 is interposed between the case body 6 and the lid body 7.
  • the positive electrode 2 includes a positive electrode current collector 9 between the top surface of the lid 7 and the negative electrode 3 includes a negative electrode current collector 10 between the bottom surface of the case body 6.
  • the positive electrode 2 includes an oxygen storage material, a conductive material, a binder, and a lithium compound.
  • the oxygen storage material has a function of occluding or releasing oxygen, can adsorb and desorb oxygen on the surface, and also functions as a catalyst for a chemical reaction in the positive electrode 2.
  • An example of such an oxygen storage material is a composite metal oxide.
  • the composite metal oxide include those having a crystal structure such as a hexagonal structure, a C-rare earth structure, an apatite structure, a delafossite structure, a fluorite structure, and a perovskite structure. Specifically, for example, YMnO 3 And a composite metal oxide containing Y and Mn.
  • the composite metal oxide containing Y and Mn is Y 1-x Ag x Mn 1-y A y O 3 (where A is Ru or Ti, 1>x> 0, 1>y> 0).
  • A is Ru or Ti, 1>x> 0, 1>y> 0.
  • ZrO 2 may be further contained.
  • the oxygen storage material may have only a function of occluding or releasing oxygen, or adsorbing and desorbing oxygen on the surface thereof, and does not act as a catalyst.
  • a catalyst such as a noble metal catalyst or a transition metal catalyst is further added to the positive electrode 2.
  • the oxygen storage material including the catalyst include YMnO 3 or Y 1-x Ag x Mn 1-y A y O 3 (where A is Ru or Ti, 1>x> 0, 1>y> 0).
  • Examples thereof include composite metal oxides in which palladium oxide is supported.
  • Examples of the conductive material include carbon materials such as graphite, acetylene black, ketjen black, carbon nanotube, mesoporous carbon, and carbon fiber.
  • binder examples include polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF).
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • the lithium compound can be used as a peroxide, a composite metal oxide, an oxide, a carbonate, a nitrate, an acetate, or the like.
  • Examples of such lithium compounds include lithium peroxide (Li 2 O 2 ) and lithium oxide (Li 2 O).
  • the lithium compound can be used in the same amount as oxygen of the positive electrode active material, and is mixed so as to be in intimate contact with the catalyst.
  • the negative electrode 3 is made of metallic lithium.
  • the electrolyte layer 4 may be, for example, a nonaqueous electrolyte solution immersed in a separator, or a solid electrolyte.
  • non-aqueous electrolyte solution for example, a lithium salt dissolved in a non-aqueous solvent can be used.
  • the lithium salt include carbonates, nitrates, acetates, bis (trifluoromethanesulfonyl) imide salts, and the like.
  • the non-aqueous solvent include a carbonate ester solvent, an ether solvent, and an ionic liquid.
  • carbonate ester solvent examples include ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate. Two or more of the carbonate ester solvents can be used in combination.
  • ether solvent examples include dimethoxyethane, dimethyl trigram, polyethylene glycol and the like. Two or more of the ether solvents can be used in combination.
  • the ionic liquid examples include cations such as imidazolium, ammonium, pyridinium, and peridium, bis (trifluoromethylsulfonyl) imide (TTSI), bis (pentafluoroethylsulfonyl) imide (BETI), tetrafluoroborate, park, and the like.
  • examples thereof include salts with anions such as lorate and halogen anions.
  • separator examples include glass fiber, glass paper, polypropylene nonwoven fabric, polyimide nonwoven fabric, polyphenylene sulfide nonwoven fabric, polyethylene porous film, and polyolefin flat membrane.
  • examples of the solid electrolyte include oxide solid electrolytes and sulfide solid electrolytes.
  • oxide-based solid electrolyte examples include glass ceramics mainly composed of Li 7 La 3 Zr 2 O 12 which is a composite metal oxide of lithium, lanthanum, and zirconium, lithium, aluminum, silicon, titanium, germanium, and phosphorus. Etc. In Li 7 La 3 Zr 2 O 12 , lithium, lanthanum, and zirconium were partially substituted with other metals such as strontium, barium, silver, yttrium, lead, tin, antimony, hafnium, tantalum, and niobium. It may be a thing.
  • examples of the positive electrode current collector 9 include those made of meshes of titanium, stainless steel, nickel, aluminum, copper and the like. Further, as the negative electrode current collector 10, as in the case of the positive electrode current collector 9, a material made of a mesh such as titanium, stainless steel, nickel, aluminum, or copper can be used.
  • lithium ions, electrons, and oxygen ions are generated from the lithium oxide or lithium peroxide as the lithium compound at the positive electrode 2 during charging as shown in the following formula.
  • the generated lithium ions move to the negative electrode 3 and are uniformly deposited on the metal lithium by receiving electrons at the negative electrode 3. Therefore, according to the oxygen battery 1, it is possible to prevent irregularities from being formed on the surface of the negative electrode 3 even after repeated charge and discharge, and no gap is formed between the negative electrode 3 and the electrolyte layer 4. Can be suppressed.
  • the lithium compound is in contact with the catalyst in advance, the activation energy of the decomposition reaction (charging reaction) can be reduced, and the increase in overvoltage can be further suppressed.
  • generated oxygen ion is occluded by adsorb
  • generated oxygen ion gives priority to the adsorption
  • the oxygen storage material is accompanied by dissociation of chemical bonds to release the stored oxygen, but the oxygen adsorbed on the surface can be desorbed with energy corresponding to the intermolecular force. Therefore, oxygen adsorbed on the surface of the oxygen storage material is preferentially used for the battery reaction in the positive electrode 2, and a decrease in reaction rate and an increase in overvoltage can be suppressed.
  • Example 1 In this example, first, yttrium nitrate pentahydrate, manganese nitrate hexahydrate, and malic acid were pulverized and mixed in a molar ratio of 1: 1: 6 to obtain a composite metal oxide. A mixture of materials was obtained. Next, the resulting mixture of composite metal oxide materials was reacted at a temperature of 250 ° C. for 30 minutes, and further reacted at a temperature of 300 ° C. for 30 minutes and at a temperature of 350 ° C. for 1 hour. Next, the mixture of reaction products was pulverized and mixed, and then fired at a temperature of 1000 ° C. for 1 hour to obtain a composite metal oxide.
  • the obtained composite metal oxide was confirmed to be a composite metal oxide represented by the chemical formula YMnO 3 and to have a hexagonal crystal structure by an X-ray diffraction pattern.
  • the obtained YMnO 3 Ketjen black (manufactured by Lion Corporation) as a conductive material, polytetrafluoroethylene (manufactured by Daikin Industries, Ltd.) as a binder, and lithium peroxide ( Manufactured by Kojundo Chemical Laboratory Co., Ltd.) at a mass ratio of 20: 20: 1: 30.
  • the obtained mixture was crimped
  • a negative electrode current collector 10 made of a titanium mesh having a diameter of 15 mm is arranged inside a bottomed cylindrical titanium case body 6 having an inner diameter of 15 mm, and a diameter of 15 mm and a thickness of 0 are formed on the negative electrode current collector 10.
  • a negative electrode 3 made of 1 mm metallic lithium was superposed.
  • a separator made of glass fiber having a diameter of 15 mm (manufactured by Nippon Sheet Glass Co., Ltd.) was superposed on the negative electrode 3.
  • the positive electrode 2 and the positive electrode current collector 9 obtained as described above were superimposed on the separator so that the positive electrode 2 was in contact with the separator.
  • a non-aqueous electrolyte solution was injected into the separator to form an electrolyte layer 4.
  • non-aqueous electrolyte solution a mixed solution obtained by mixing ethylene carbonate and diethyl carbonate at a mass ratio of 30:70, and lithium hexafluorophosphate (LiPF 6 ) as a supporting salt at a concentration of 1 mol / liter.
  • LiPF 6 lithium hexafluorophosphate
  • a laminated body composed of the negative electrode current collector 10, the negative electrode 3, the electrolyte layer 4, the positive electrode 2, and the positive electrode current collector 9 housed in the case body 6 is formed into a bottomed cylindrical titanium lid body 7 having an inner diameter of 15 mm. Closed. At this time, by disposing a ring-shaped insulating resin 8 made of polytetrafluoroethylene (PTFE) having an outer diameter of 32 mm, an inner diameter of 30 mm, and a thickness of 5 mm between the case body 6 and the lid body 7, FIG.
  • PTFE polytetrafluoroethylene
  • the oxygen battery 1 obtained in this example was mounted on an electrochemical measurement device (manufactured by Toho Giken Co., Ltd.), and a current of 0.3 mA / cm 2 was applied between the negative electrode 3 and the positive electrode 2. The battery was charged until the cell voltage reached 4.0V. The relationship between the cell voltage and the charge capacity at this time is shown as “one cycle” in FIG.
  • the oxygen battery 1 obtained in this example was mounted on the electrochemical measurement device, a current of 0.3 mA / cm 2 was applied between the negative electrode 3 and the positive electrode 2, and the cell voltage was 2. It discharged until it became 0V.
  • the relationship between the cell voltage and the discharge capacity at this time is shown as “one cycle” in FIG.
  • FIG. 2 (a) shows the relationship between the cell voltage and the charge capacity after repeating the charge / discharge three times in exactly the same manner as the charge / discharge
  • FIG. 2 (b) shows the relationship between the cell voltage and the discharge capacity. Are shown as “3 cycles”.
  • Example 2 the oxygen battery 1 was made exactly the same as Example 1 except that lithium oxide (manufactured by Kojundo Chemical Laboratory Co., Ltd.) was used as the lithium compound contained in the positive electrode 2 instead of lithium peroxide. Manufactured.
  • FIG. 3 (a) shows the relationship between the cell voltage and the charge capacity after repeating the charge / discharge three times in exactly the same manner as the charge / discharge
  • FIG. 3 (b) shows the relationship between the cell voltage and the discharge capacity. Are shown as “3 cycles”.
  • Example 3 In this example, first, yttrium nitrate pentahydrate, manganese nitrate hexahydrate, and malic acid were pulverized and mixed in a molar ratio of 1: 1: 6 to obtain a composite metal oxide. A mixture of materials was obtained. Next, the resulting mixture of composite metal oxide materials was reacted at a temperature of 250 ° C. for 30 minutes, and further reacted at a temperature of 300 ° C. for 30 minutes and at a temperature of 350 ° C. for 1 hour. Next, the mixture of reaction products was pulverized and mixed, and then fired at a temperature of 1000 ° C. for 1 hour to obtain a composite metal oxide.
  • the obtained composite metal oxide was confirmed to be a composite metal oxide represented by the chemical formula YMnO 3 and to have a hexagonal crystal structure by an X-ray diffraction pattern.
  • YMnO 3 1 g was immersed in an aqueous solution of palladium nitrate dihydrate containing 25 mg of palladium nitrate dihydrate, and then the aqueous solution was evaporated to dryness. Then, the residue after the evaporation to dryness was baked at a temperature of 600 ° C., to obtain a YMnO 3 carrying the palladium oxide.
  • Lithium oxide (manufactured by Kojundo Chemical Laboratory Co., Ltd.) was mixed at a mass ratio of 8: 1: 1: 8. And the obtained mixture was apply
  • a negative electrode current collector 10 made of a SUS mesh having a diameter of 15 mm is placed inside a bottomed cylindrical SUS case body 6 having an inner diameter of 15 mm, and a diameter of 15 mm and a thickness of 0 are formed on the negative electrode current collector 10.
  • a negative electrode 3 made of 1 mm metallic lithium was superposed.
  • a separator made of a polyolefin flat film made by Asahi Kasei E-Materials Co., Ltd.
  • a separator made of a polyolefin flat film made by Asahi Kasei E-Materials Co., Ltd.
  • the positive electrode 2 and the positive electrode current collector 9 obtained as described above were superimposed on the separator so that the positive electrode 2 was in contact with the separator.
  • a non-aqueous electrolyte solution was injected into the separator to form an electrolyte layer 4.
  • non-aqueous electrolyte solution a solution (manufactured by Kishida Chemical Co., Ltd.) in which bis (trifluoromethanesulfonyl) imidolithium (LiTFSI) as a supporting salt was dissolved at a concentration of 1 mol / liter in a solvent dimethoxyethane was used.
  • a laminated body composed of the negative electrode current collector 10, the negative electrode 3, the electrolyte layer 4, the positive electrode 2, and the positive electrode current collector 9 housed in the case body 6 is formed into a bottomed cylindrical SUS lid body 7 having an inner diameter of 15 mm. Closed. At this time, by disposing a ring-shaped insulating resin 8 made of polytetrafluoroethylene (PTFE) having an outer diameter of 32 mm, an inner diameter of 30 mm, and a thickness of 5 mm between the case body 6 and the lid body 7, FIG.
  • PTFE polytetrafluoroethylene
  • the oxygen battery 1 obtained in this example was mounted on an electrochemical measurement device (manufactured by Toho Giken Co., Ltd.), and a current of 0.05 mA / cm 2 was applied between the negative electrode 3 and the positive electrode 2. Then, constant current charging was performed until the cell voltage reached 3.9V. When the cell voltage reached 3.9 V, it shifted to constant voltage charging and charged until the current value reached 0.01 mA / cm 2 . Next, a current of 0.05 mA / cm 2 was applied between the negative electrode 3 and the positive electrode 2 to discharge the cell voltage to 2.0V. The relationship between the cell voltage and the charge / discharge capacity at this time is shown as “one cycle” in FIG.
  • Example 4 In this example, first, yttrium nitrate pentahydrate, silver nitrate, manganese nitrate hexahydrate, ruthenium nitrate, and malic acid were mixed at 0.95: 0.05: 0.95: 0.05. A composite metal oxide was obtained in exactly the same manner as in Example 3, except that the mixture was pulverized and mixed to obtain a molar ratio of 6 to obtain a mixture of composite metal oxide materials.
  • the obtained composite metal oxide was confirmed to be a composite metal oxide represented by the chemical formula Y 0.95 Ag 0.05 Mn 0.95 Ru 0.05 O 3 by an X-ray diffraction pattern.
  • Example 5 In this example, first, yttrium nitrate pentahydrate, silver nitrate, manganese nitrate hexahydrate, ruthenium nitrate, and malic acid were mixed at 0.95: 0.05: 0.95: 0.05. A composite metal oxide was obtained in exactly the same manner as in Example 3, except that the mixture was pulverized and mixed to obtain a molar ratio of 6 to obtain a mixture of composite metal oxide materials.
  • the obtained composite metal oxide was confirmed to be a composite metal oxide represented by the chemical formula Y 0.95 Ag 0.05 Mn 0.95 Ru 0.05 O 3 by an X-ray diffraction pattern.
  • Example 3 in place of palladium oxide-supported YMnO 3 , Example 3 except that palladium oxide-supported Y 0.95 Ag 0.05 Mn 0.95 Ru 0.05 O 3 obtained in this example was used.
  • the oxygen battery 1 shown in FIG. 1 was obtained in exactly the same way.
  • Example 6 In this example, first, yttrium nitrate pentahydrate, silver nitrate, manganese nitrate hexahydrate, titanium nitrate, and malic acid were mixed in 0.95: 0.05: 0.95: 0.05. A composite metal oxide was obtained in exactly the same manner as in Example 3, except that the mixture was pulverized and mixed to obtain a molar ratio of 6 to obtain a mixture of composite metal oxide materials.
  • the obtained composite metal oxide was confirmed to be a composite metal oxide represented by the chemical formula Y 0.95 Ag 0.05 Mn 0.95 Ti 0.05 O 3 by an X-ray diffraction pattern.
  • Example 7 In this example, first, yttrium nitrate pentahydrate, silver nitrate, manganese nitrate hexahydrate, titanium nitrate, and malic acid were mixed in 0.95: 0.05: 0.95: 0.05. A composite metal oxide was obtained in exactly the same manner as in Example 3, except that the mixture was pulverized and mixed to obtain a molar ratio of 6 to obtain a mixture of composite metal oxide materials.
  • the obtained composite metal oxide was confirmed to be a composite metal oxide represented by the chemical formula Y 0.95 Ag 0.05 Mn 0.95 Ti 0.05 O 3 by an X-ray diffraction pattern.
  • Example 3 in place of palladium oxide-supported YMnO 3 , Example 3 except that palladium oxide-supported Y 0.95 Ag 0.05 Mn 0.95 Ti 0.05 O 3 obtained in this example was used.
  • the oxygen battery 1 shown in FIG. 1 was obtained in exactly the same way.
  • Example 8 In this example, first, yttrium nitrate pentahydrate, silver nitrate, manganese nitrate hexahydrate, titanium nitrate, and malic acid were mixed in 0.95: 0.05: 0.95: 0.05. The mixture was pulverized and mixed to obtain a mixture of composite metal oxide materials. Next, after the mixture of the obtained composite metal oxide materials was reacted at a temperature of 250 ° C. for 30 minutes, it was further reacted at a temperature of 300 ° C. for 30 minutes and at a temperature of 350 ° C. for primary firing.
  • a water-dispersed zirconia sol obtained by dispersing zirconium oxide powder in water is mixed and ground for 15 minutes in a mortar so as to have a content of 5% by mass with respect to the product of the primary firing, and then 1000
  • the composite metal oxide was obtained by baking at a temperature of 1 ° C. for 1 hour.
  • the obtained composite metal oxide contains ZrO 2 in the composite metal oxide represented by the chemical formula Y 0.95 Ag 0.05 Mn 0.95 Ti 0.05 O 3 according to the X-ray diffraction pattern. It was confirmed to be a mixture.
  • FIG. 10 (a) shows the relationship between the cell voltage and the charge capacity after repeating charge / discharge three times in exactly the same manner as the charge / discharge
  • FIG. 10 (b) shows the relationship between the cell voltage and discharge capacity. Are shown as “3 cycles”.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)
  • Inert Electrodes (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 過電圧の上昇を抑制することができる酸素電池を提供する。酸素電池1は、酸素を活物質とする正極2と、金属リチウムを活物質とする負極3と、正極2と負極3とに挟持された電解質層4とを備え、正極2は、リチウム化合物を含む。

Description

酸素電池
 本発明は、酸素電池に関する。
 従来、酸素を活物質とする正極と、金属リチウムを活物質とする負極と、該正極と負極とに挟持された電解質層とを備える酸素電池が知られている。前記酸素電池として、例えば、前記正極、負極及び電解質層をケース内に密閉したものが提案されている(例えば特許文献1参照)。
 前記酸素電池では、放電時には、次の式に示すように前記負極において金属リチウムがイオン化してリチウムイオンと電子とが生成し、生成したリチウムイオンは前記電解質層を透過して正極に移動する。一方、正極においては、酸素が電子を受け取って酸素イオンとなり、前記リチウムイオンと反応して酸化リチウムまたは過酸化リチウムを生成する。そこで、前記負極と正極とを導線で接続することにより、電気エネルギーを取り出すことができる。
   (負極)  4Li → 4Li +4e
   (正極)  O + 4e → 2O2-
         4Li + 2O2- → 2Li
         2Li + 2O2- →  Li
 また、充電時には、次の式に示すように前記正極において酸化リチウムまたは過酸化リチウムからリチウムイオンと電子と酸素とが生成し、生成したリチウムイオンは前記電解質層を透過して負極に移動する。そして、負極では前記リチウムイオンが電子を受け取り、金属リチウムとして析出する。
   (正極)  2LiO → 4Li + O + 4e 
          Li → 2Li + O + 4e 
   (負極)  4Li +4e → 4Li
特開2009-230985号公報
 しかしながら、前記従来の酸素電池では、充放電を繰り返すと過電圧が上昇し、性能が低下するという不都合がある。
 本発明は、かかる不都合を解消して、充放電を繰り返しても過電圧の上昇を抑制することができる酸素電池を提供することを目的とする。
 前記従来の酸素電池では、負極側の反応だけを考えると、前記反応式から明らかなように、リチウムの溶解と析出とが繰り返されることとなる。このとき、リチウムは電解質層を往復するので、溶解する位置と析出する位置とが一致しない。また、前記負極の表面には、溶解反応が起きやすい部位と析出反応が起きやすい部位とがある。
 この結果、前記負極では表面におけるリチウムの溶解と析出との繰り返しにより該表面に凹凸が形成され、該凹凸により電解質層との間に空隙が発生するために過電圧が上昇するものと考えられる。
 そこで、本発明は、前記目的を達成するために、酸素を活物質とする正極と、金属リチウムを活物質とする負極と、該正極と負極とに挟持された電解質層とを備える酸素電池において、該正極は、リチウム化合物を含むことを特徴とする。
 本発明の酸素電池では、前記正極がリチウム化合物を均一に含んでいるので、充電時に正極で生成したリチウムイオンは、前記負極の金属リチウム上に均一に析出する。従って、本発明の酸素電池によれば、前記負極においてリチウムが溶解と析出とを繰り返す際に該リチウムは殆ど位置を変えることがなく、該負極表面における凹凸の形成を防止して、過電圧の上昇を抑制することができる。
 本発明の酸素電池において、前記正極、前記負極及び前記電解質層は、密封ケース内に配設されており、該正極は酸素貯蔵材料を含むことが好ましい。前記酸素貯蔵材料は、酸素を吸蔵、放出する機能を備えると同時に、その表面に酸素を吸着、脱着させることができる。ここで、前記酸素貯蔵材料は、酸素を吸蔵、放出する場合には、酸素との化学結合の生成、解離を伴うが、その表面に酸素を吸着、脱着させる場合には単に分子間力のみが作用し、化学結合の生成、解離を伴わない。
 従って、前記酸素貯蔵材料の表面に対する酸素の吸着、脱着は、該酸素貯蔵材料が酸素を吸蔵、放出する場合に比較して低エネルギーで行われることとなり、電池反応には該酸素貯蔵材料の表面に吸着されている酸素が優先的に用いられる。この結果、反応速度の低下及び過電圧の上昇を抑制することができる。
 また、前記正極において、前記リチウム化合物は、前記酸素貯蔵材料と密接に接触しているため、該酸素貯蔵材料の触媒作用により該リチウム化合物の分解反応が円滑に進行する。従って、前記リチウム化合物の分解反応(充電反応)の活性化エネルギーを低減することができ、過電圧の上昇をさらに抑制することができる。
 本発明の酸素電池は、前記正極、前記負極及び前記電解質層が、密封ケース内に収容されており、酸素は前記酸素貯蔵能を備える材料により供給される。従って、正極を空気に開放する必要がなく、空気中の水分や二酸化炭素による性能の低下を避けることができる。
 本発明の酸素電池において、前記酸素貯蔵材料は、例えば、YとMnとを含む複合金属酸化物からなるものが好ましい。前記複合金属酸化物は例えばYMnOであり、酸素を吸蔵又は放出する機能を備え、その表面に酸素を吸着、脱着させることができると共に、前記正極における化学反応の触媒としても作用することができる。
本発明の酸素電池の一構成例を示す説明的断面図。 本発明の第1の実施例の酸素電池における充放電曲線を示すグラフ。 本発明の第2の実施例の酸素電池における充放電曲線を示すグラフ。 本発明の第3の実施例の酸素電池における充放電曲線を示すグラフ。 本発明の第4の実施例の酸素電池における充放電曲線を示すグラフ。 本発明の第5の実施例の酸素電池における充放電曲線を示すグラフ。 本発明の第6の実施例の酸素電池における充放電曲線を示すグラフ。 本発明の第7の実施例の酸素電池における充放電曲線を示すグラフ。 本発明の第8の実施例の酸素電池における充放電曲線を示すグラフ。 比較例の酸素電池における充放電曲線を示すグラフ。
 次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。
 図1に示すように、本発明の第1の実施形態の酸素電池1は、酸素を活物質とする正極2と、金属リチウムを活物質とする負極3と、正極2と負極3との間に配設される電解質層4とを備え、正極2、負極3及び電解質層4は、ケース5に密閉して収容されている。
 ケース5は、カップ状のケース本体6と、ケース本体6を閉蓋する蓋体7とを備え、ケース本体6と蓋体7との間には絶縁樹脂8が介装されている。また、正極2は蓋体7の天面との間に正極集電体9を備えており、負極3はケース本体6の底面との間に負極集電体10を備えている。
 酸素電池1において、正極2は酸素貯蔵材料と、導電材料と、結着剤と、リチウム化合物とからなる。
 前記酸素貯蔵材料は、酸素を吸蔵又は放出する機能を備え、その表面に酸素を吸着、脱着させることができると共に、正極2における化学反応の触媒としても作用することが好ましい。このような酸素貯蔵材料として、例えば複合金属酸化物を挙げることができる。前記複合金属酸化物は、六方晶構造、C-希土類構造、アパタイト構造、デラフォサイト構造、ホタル石構造、ペロブスカイト構造等の結晶構造を備えるものを挙げることができ、具体的には例えばYMnO等のYとMnとを含む複合金属酸化物を挙げることができる。
 また、前記YとMnとを含む複合金属酸化物は、Y1-xAgMn1-y(ただし、AはRu又はTi、1>x>0、1>y>0)のようにYとMnとの一部がそれぞれ他の金属で置換された複合金属酸化物であってもよく、さらにZrOを含んでいてもよい。
 また、前記酸素貯蔵材料は、酸素を吸蔵又は放出し、或いはその表面に酸素を吸着、脱着させる機能のみを備え、触媒として作用しないものであってもよい。この場合には、正極2にさらに貴金属触媒、遷移金属触媒等の触媒を添加する。前記触媒を備える前記酸素貯蔵材料として、例えば、YMnO又はY1-xAgMn1-y(ただし、AはRu又はTi、1>x>0、1>y>0)に酸化パラジウムを担持させた複合金属酸化物を挙げることができる。
 前記導電材料としては、例えば、グラファイト、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ、メソポーラスカーボン、カーボンファイバー等の炭素材料を挙げることができる。
 前記結着剤としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等を挙げることができる。
 前記リチウム化合物は、過酸化物、複合金属酸化物、酸化物、炭酸塩、硝酸塩、酢酸塩等として用いることができる。このようなリチウム化合物として、例えば過酸化リチウム(Li)、酸化リチウム(LiO)等を挙げることができる。前記リチウム化合物は、前記正極活物質の酸素と同程度の量を用いることができ、前記触媒と密接に接触するように混合されている。
 次に、負極3は、金属リチウムからなる。
 次に、電解質層4は、例えば、非水系電解質溶液をセパレータに浸漬させたものであってもよく、固体電解質であってもよい。
 前記非水系電解質溶液は、例えば、リチウム塩を非水系溶媒に溶解したものを用いることができる。前記リチウム塩としては、例えば、炭酸塩、硝酸塩、酢酸塩、ビス(トリフルオロメタンスルフォニル)イミド塩等を挙げることができる。また、前記非水系溶媒としては、例えば、炭酸エステル系溶媒、エーテル系溶媒、イオン液体等を挙げることができる。
 前記炭酸エステル系溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート等を挙げることができる。前記炭酸エステル系溶媒は2種以上混合して用いることもできる。
 前記エーテル系溶媒としては、例えば、ジメトキシエタン、ジメチルトリグラム、ポリエチレングリコール等を挙げることができる。前記エーテル系溶媒は2種以上混合して用いることもできる。
 前記イオン液体としては、例えば、イミダゾリウム、アンモニウム、ピリジニウム、ペリジウム等のカチオンと、ビス(トリフルオロメチルスルフォニル)イミド(TTSI)、ビス(ペンタフルオロエチルスルフォニル)イミド(BETI)、テトラフルオロボレート、パークロレート、ハロゲンアニオン等のアニオンとの塩を挙げることができる。
 前記セパレータとしては、例えば、ガラス繊維、ガラス製ペーパー、ポリプロピレン製不織布、ポリイミド製不織布、ポリフェニレンスルフィド製不織布、ポリエチレン製多孔フィルム、ポリオレフィン製平膜等を挙げることができる。
 また、前記固体電解質としては、例えば、酸化物系固体電解質、硫化物系固体電解質等を挙げることができる。
 前記酸化物系固体電解質としては、例えば、リチウム、ランタン、ジルコニウムの複合金属酸化物であるLiLaZr12、リチウム、アルミニウム、ケイ素、チタン、ゲルマニウム、リンを主成分とするガラスセラミックス等を挙げることができる。前記LiLaZr12は、リチウム、ランタン、ジルコニウムの一部を、それぞれストロンチウム、バリウム、銀、イットリウム、鉛、スズ、アンチモン、ハフニウム、タンタル、ニオブ等の他の金属で置換されたものであってもよい。
 次に、正極集電体9としては、チタン、ステンレス鋼、ニッケル、アルミニウム、銅等のメッシュからなるものを挙げることができる。また、負極集電体10としては、正極集電体9と同様にチタン、ステンレス鋼、ニッケル、アルミニウム、銅等のメッシュからなるものを挙げることができる。
 本実施形態の酸素電池1では、充電時には次の式に示すように、正極2において、前記リチウム化合物としての酸化リチウム又は過酸化リチウムからリチウムイオンと電子と酸素イオンとが生成する。生成したリチウムイオンは負極3に移動し、負極3で電子を受け取ることにより金属リチウム上に均一に析出する。従って、酸素電池1によれば、充放電を繰り返しても、負極3表面に凹凸が形成されることを防止でき、負極3と電解質層4との間に間隙が形成されないので、過電圧の上昇を抑制することができる。
 また、前記リチウム化合物は、予め前記触媒と接触しているので、分解反応(充電反応)の活性化エネルギーを低減することができ、過電圧の上昇をさらに抑制することができる。また、生成した酸素イオンは、前記酸素貯蔵材料の表面に吸着し、或いは酸素貯蔵材料と化学結合を生成することにより吸蔵される。尚、生成した酸素イオンは、化学結合の生成を伴って吸蔵されるよりも、前記酸素貯蔵材料の表面への吸着の方が優先する。
   (正極)  2LiO → 4Li + O + 4e 
          Li → 2Li + O + 4e 
   (負極)  4Li +4e → 4Li
 また、放電時には次の式に示すように、負極3において、金属リチウムがイオン化してリチウムイオンと電子とが生成する。生成したリチウムイオンは、正極2に移動し、前記酸素貯蔵材料から供給された酸素イオンと反応し、充電時に分解されたリチウム化合物が存在していた位置に、前記リチウム化合物の酸化リチウム又は過酸化リチウムとして生成堆積する。
 このとき、前記酸素貯蔵材料では、吸蔵している酸素を放出するには化学結合の解離を伴うが、表面に吸着されている酸素は、分子間力に相当するエネルギーで脱着させることができる。従って、正極2における電池反応には、前記酸素貯蔵材料の表面に吸着されている酸素が優先的に用いられることとなり、反応速度の低下及び過電圧の上昇を抑制することができる。
   (負極)  4Li → 4Li +4e
   (正極)  O + 4e → 2O2-
         4Li + 2O2- → 2Li
         2Li + 2O2- →  Li
 次に、実施例及び比較例を示す。
 〔実施例1〕
 本実施例では、まず、硝酸イットリウム5水和物と、硝酸マンガン6水和物と、リンゴ酸とを、1:1:6のモル比となるようにして、粉砕混合し、複合金属酸化物材料の混合物を得た。次に、得られた複合金属酸化物材料の混合物を250℃の温度で30分間反応させた後、さらに、300℃の温度で30分間、350℃の温度で1時間反応させた。次に、反応生成物の混合物を粉砕混合した後、1000℃の温度で1時間焼成して複合金属酸化物を得た。
 得られた複合金属酸化物は、X線回折パターンにより、化学式YMnOで表される複合金属酸化物であり、六方晶構造を備えることが確認された。
 次に、得られたYMnOと、導電材料としてケッチェンブラック(株式会社ライオン製)と、結着剤としてのポリテトラフルオロエチレン(ダイキン工業株式会社製)と、リチウム化合物としての過酸化リチウム(株式会社高純度化学研究所製)とを、20:20:1:30の質量比で混合した。そして、得られた混合物をチタンメッシュからなる正極集電体9に5MPaの圧力で圧着し、直径15mm、厚さ1mmの正極2を形成した。
 次に、内径15mmの有底円筒状のチタン製ケース本体6の内部に、直径15mmのチタンメッシュからなる負極集電体10を配置し、負極集電体10上に、直径15mm、厚さ0.1mmの金属リチウムからなる負極3を重ね合わせた。
 次に、負極3上に、直径15mmのガラス繊維(日本板硝子株式会社製)からなるセパレータを重ね合わせた。次に、前記セパレータ上に、前記のようにして得られた正極2及び正極集電体9を、正極2が該セパレータに接するように重ね合わせた。次に、前記セパレータに非水系電解質溶液を注入し、電解質層4を形成した。
 前記非水系電解質溶液としては、エチレンカーボネートと、ジエチルカーボネートとを30:70の質量比で混合した混合溶液に、支持塩として六フッ化リン酸リチウム(LiPF)を1モル/リットルの濃度で溶解した溶液(キシダ化学株式会社製)を用いた。
 次に、ケース本体6に収容された負極集電体10、負極3、電解質層4、正極2、正極集電体9からなる積層体を、内径15mmの有底円筒状のチタン製蓋体7で閉蓋した。このとき、ケース本体6と蓋体7との間に、外径32mm、内径30mm、厚さ5mmのポリテトラフルオロエチレン(PTFE)からなるリング状の絶縁樹脂8を配設することにより、図1に示す酸素電池1を得た。
 次に、本実施例で得られた酸素電池1を電気化学測定装置(東方技研株式会社製)に装着し、負極3と正極2との間に、0.3mA/cmの電流を印加し、セル電圧が4.0Vになるまで充電した。このときのセル電圧と充電容量との関係を図2(a)に、「1サイクル」として示す。
 次に、本実施例で得られた酸素電池1を前記電気化学測定装置に装着し、負極3と正極2との間に、0.3mA/cmの電流を印加し、セル電圧が2.0Vになるまで放電した。このときのセル電圧と放電容量との関係を図2(b)に、「1サイクル」として示す。
 次に、前記充放電と全く同一にして充放電を3回繰り返した後のセル電圧と充電容量との関係を図2(a)に、セル電圧と放電容量との関係を図2(b)に、それぞれ「3サイクル」として示す。
 〔実施例2〕
 本実施例では、正極2に含まれるリチウム化合物として、過酸化リチウムに代えて酸化リチウム(株式会社高純度化学研究所製)を用いた以外は、実施例1と全く同一にして酸素電池1を製造した。
 次に、本実施例で得られた酸素電池1を用いた以外は、実施例1と全く同一にして、充放電を行った。このときのセル電圧と充電容量との関係を図3(a)に、セル電圧と放電容量との関係を図3(b)に、それぞれ「1サイクル」として示す。
 次に、前記充放電と全く同一にして充放電を3回繰り返した後のセル電圧と充電容量との関係を図3(a)に、セル電圧と放電容量との関係を図3(b)に、それぞれ「3サイクル」として示す。
 〔実施例3〕
 本実施例では、まず、硝酸イットリウム5水和物と、硝酸マンガン6水和物と、リンゴ酸とを、1:1:6のモル比となるようにして、粉砕混合し、複合金属酸化物材料の混合物を得た。次に、得られた複合金属酸化物材料の混合物を250℃の温度で30分間反応させた後、さらに、300℃の温度で30分間、350℃の温度で1時間反応させた。次に、反応生成物の混合物を粉砕混合した後、1000℃の温度で1時間焼成して複合金属酸化物を得た。
 得られた複合金属酸化物は、X線回折パターンにより、化学式YMnOで表される複合金属酸化物であり、六方晶構造を備えることが確認された。
 次に、得られたYMnOの1gを、硝酸パラジウム二水和物25mgを含む硝酸パラジウム二水和物水溶液に浸漬した後、該水溶液を蒸発乾固した。そして、前記蒸発乾固後の残留物を600℃の温度で焼成し、酸化パラジウムを担持しているYMnOを得た。
 次に、得られた酸化パラジウム担持YMnOと、導電材料としてケッチェンブラック(株式会社ライオン製)と、結着剤としてのポリテトラフルオロエチレン(ダイキン工業株式会社製)と、リチウム化合物としての過酸化リチウム(株式会社高純度化学研究所製)とを、8:1:1:8の質量比で混合した。そして、得られた混合物をアルミニウムメッシュからなる正極集電体9に塗布し、直径15mm、厚さ0.4mmの正極2を形成した。
 次に、内径15mmの有底円筒状のSUS製ケース本体6の内部に、直径15mmのSUSメッシュからなる負極集電体10を配置し、負極集電体10上に、直径15mm、厚さ0.1mmの金属リチウムからなる負極3を重ね合わせた。
 次に、負極3上に、直径15mmのポリオレフィン製平膜(旭化成イーマテリアルズ株式会社製)からなるセパレータを重ね合わせた。次に、前記セパレータ上に、前記のようにして得られた正極2及び正極集電体9を、正極2が該セパレータに接するように重ね合わせた。次に、前記セパレータに非水系電解質溶液を注入し、電解質層4を形成した。
 前記非水系電解質溶液としては、溶媒のジメトキシエタンに、支持塩としてビス(トリフルオロメタンスルフォニル)イミドリチウム(LiTFSI)を1モル/リットルの濃度で溶解した溶液(キシダ化学株式会社製)を用いた。
 次に、ケース本体6に収容された負極集電体10、負極3、電解質層4、正極2、正極集電体9からなる積層体を、内径15mmの有底円筒状のSUS製蓋体7で閉蓋した。このとき、ケース本体6と蓋体7との間に、外径32mm、内径30mm、厚さ5mmのポリテトラフルオロエチレン(PTFE)からなるリング状の絶縁樹脂8を配設することにより、図1に示す酸素電池1を得た。
 次に、本実施例で得られた酸素電池1を電気化学測定装置(東方技研株式会社製)に装着し、負極3と正極2との間に、0.05mA/cmの電流を印加し、セル電圧が3.9Vになるまで定電流充電を行った。セル電圧が3.9Vに達した時点で定電圧充電に移行し、電流値が0.01mA/cmになるまで充電した。次に、負極3と正極2との間に、0.05mA/cmの電流を印加し、セル電圧が2.0Vになるまで放電した。このときのセル電圧と充放電容量との関係を図4に、「1サイクル」として示す。
 次に、前記充放電と全く同一にして充放電を3回繰り返した後のセル電圧と充放電容量との関係を図4に、「3サイクル」として示す。
 〔実施例4〕
 本実施例では、まず、硝酸イットリウム5水和物と、硝酸銀と、硝酸マンガン6水和物と、硝酸ルテニウムと、リンゴ酸とを、0.95:0.05:0.95:0.05:6のモル比となるようにして、粉砕混合し、複合金属酸化物材料の混合物を得た以外は、実施例3と全く同一にして複合金属酸化物を得た。
 得られた複合金属酸化物は、X線回折パターンにより、化学式Y0.95Ag0.05Mn0.95Ru0.05で表される複合金属酸化物であることが確認された。
 次に、酸化パラジウム担持YMnOに代えて、本実施例で得られた化学式Y0.95Ag0.05Mn0.95Ru0.05で表される複合金属酸化物を用いた以外は、実施例3と全く同一にして、図1に示す酸素電池1を得た。
 次に、本実施例で得られた酸素電池1を用いた以外は、実施例3と全く同一にして、充放電を行った。このときのセル電圧と充放電容量との関係を図5に、「1サイクル」として示す。次に、前記充放電と全く同一にして充放電を3回繰り返した後のセル電圧と充放電容量との関係を図5に、「3サイクル」として示す。
 〔実施例5〕
 本実施例では、まず、硝酸イットリウム5水和物と、硝酸銀と、硝酸マンガン6水和物と、硝酸ルテニウムと、リンゴ酸とを、0.95:0.05:0.95:0.05:6のモル比となるようにして、粉砕混合し、複合金属酸化物材料の混合物を得た以外は、実施例3と全く同一にして複合金属酸化物を得た。
 得られた複合金属酸化物は、X線回折パターンにより、化学式Y0.95Ag0.05Mn0.95Ru0.05で表される複合金属酸化物であることが確認された。
 次に、YMnOに代えて、本実施例で得られた化学式Y0.95Ag0.05Mn0.95Ru0.05で表される複合金属酸化物を用いた以外は、実施例3と全く同一にして、酸化パラジウムを担持しているY0.95Ag0.05Mn0.95Ru0.05を得た。
 次に、酸化パラジウム担持YMnOに代えて、本実施例で得られた酸化パラジウム担持Y0.95Ag0.05Mn0.95Ru0.05を用いた以外は、実施例3と全く同一にして、図1に示す酸素電池1を得た。
 次に、本実施例で得られた酸素電池1を用いた以外は、実施例3と全く同一にして、充放電を行った。このときのセル電圧と充放電容量との関係を図6に、「1サイクル」として示す。次に、前記充放電と全く同一にして充放電を3回繰り返した後のセル電圧と充放電容量との関係を図6に、「3サイクル」として示す。
 〔実施例6〕
 本実施例では、まず、硝酸イットリウム5水和物と、硝酸銀と、硝酸マンガン6水和物と、硝酸チタンと、リンゴ酸とを、0.95:0.05:0.95:0.05:6のモル比となるようにして、粉砕混合し、複合金属酸化物材料の混合物を得た以外は、実施例3と全く同一にして複合金属酸化物を得た。
 得られた複合金属酸化物は、X線回折パターンにより、化学式Y0.95Ag0.05Mn0.95Ti0.05で表される複合金属酸化物であることが確認された。
 次に、酸化パラジウム担持YMnOに代えて、本実施例で得られた化学式Y0.95Ag0.05Mn0.95Ti0.05で表される複合金属酸化物を用いた以外は、実施例3と全く同一にして、図1に示す酸素電池1を得た。
 次に、本実施例で得られた酸素電池1を用いた以外は、実施例3と全く同一にして、充放電を行った。このときのセル電圧と充放電容量との関係を図7に、「1サイクル」として示す。次に、前記充放電と全く同一にして充放電を3回繰り返した後のセル電圧と充放電容量との関係を図7に、「3サイクル」として示す。
 〔実施例7〕
 本実施例では、まず、硝酸イットリウム5水和物と、硝酸銀と、硝酸マンガン6水和物と、硝酸チタンと、リンゴ酸とを、0.95:0.05:0.95:0.05:6のモル比となるようにして、粉砕混合し、複合金属酸化物材料の混合物を得た以外は、実施例3と全く同一にして複合金属酸化物を得た。
 得られた複合金属酸化物は、X線回折パターンにより、化学式Y0.95Ag0.05Mn0.95Ti0.05で表される複合金属酸化物であることが確認された。
 次に、YMnOに代えて、本実施例で得られた化学式Y0.95Ag0.05Mn0.95Ti0.05で表される複合金属酸化物を用いた以外は、実施例3と全く同一にして、酸化パラジウムを担持しているY0.95Ag0.05Mn0.95Ti0.05を得た。
 次に、酸化パラジウム担持YMnOに代えて、本実施例で得られた酸化パラジウム担持Y0.95Ag0.05Mn0.95Ti0.05を用いた以外は、実施例3と全く同一にして、図1に示す酸素電池1を得た。
 次に、本実施例で得られた酸素電池1を用いた以外は、実施例3と全く同一にして、充放電を行った。このときのセル電圧と充放電容量との関係を図8に、「1サイクル」として示す。次に、前記充放電と全く同一にして充放電を3回繰り返した後のセル電圧と充放電容量との関係を図8に、「3サイクル」として示す。
 〔実施例8〕
 本実施例では、まず、硝酸イットリウム5水和物と、硝酸銀と、硝酸マンガン6水和物と、硝酸チタンと、リンゴ酸とを、0.95:0.05:0.95:0.05:6のモル比となるようにして、粉砕混合し、複合金属酸化物材料の混合物を得た。次に、得られた複合金属酸化物材料の混合物を250℃の温度で30分間反応させた後、さらに、300℃の温度で30分間、350℃の温度で1時間反応させ、一次焼成した。次に、酸化ジルコニウム粉末を水に分散してなる水分散ジルコニアゾルを、前記一次焼成の生成物に対して5質量%の含有量となるようにして、乳鉢で15分間混合粉砕した後、1000℃の温度で1時間焼成して複合金属酸化物を得た。
 得られた複合金属酸化物は、X線回折パターンにより、化学式Y0.95Ag0.05Mn0.95Ti0.05で表される複合金属酸化物にZrOが含まれている混合物であることが確認された。
 次に、酸化パラジウム担持YMnOに代えて、本実施例で得られた化学式Y0.95Ag0.05Mn0.95Ti0.05で表される複合金属酸化物にZrOが含まれている混合物を用いた以外は、実施例3と全く同一にして、図1に示す酸素電池1を得た。
 次に、本実施例で得られた酸素電池1を用いた以外は、実施例3と全く同一にして、充放電を行った。このときのセル電圧と充放電容量との関係を図9に、「1サイクル」として示す。次に、前記充放電と全く同一にして充放電を3回繰り返した後のセル電圧と充放電容量との関係を図9に、「3サイクル」として示す。
 〔比較例〕
 本比較例では、正極2にリチウム化合物を全く用いなかった以外は、実施例1と全く同一にして酸素電池1を製造した。
 次に、本比較例で得られた酸素電池1を用いた以外は、実施例1と全く同一にして、充放電を行った。このときのセル電圧と充電容量との関係を図10(a)に、セル電圧と放電容量との関係を図10(b)に、それぞれ「1サイクル」として示す。
 次に、前記充放電と全く同一にして充放電を3回繰り返した後のセル電圧と充電容量との関係を図10(a)に、セル電圧と放電容量との関係を図10(b)に、それぞれ「3サイクル」として示す。
 図2~図9から、正極2にリチウム化合物を含む実施例1~8の酸素電池1によれば、充放電を3回繰り返した後にも過電圧の上昇が見られないことが明らかである。これに対し、図10から、正極2にリチウム化合物を全く含まない比較例の酸素電池1では、充放電を3回繰り返した後には過電圧が上昇していることが明らかである。
 1…金属酸素電池、 2…正極、 3…負極、 4…電解質層、 5…ケース。

Claims (8)

  1.  酸素を活物質とする正極と、金属リチウムを活物質とする負極と、該正極と負極とに挟持された電解質層とを備える酸素電池において、
     該正極は、リチウム化合物を含むことを特徴とする酸素電池。
  2.  請求項1記載の酸素電池において、前記正極、前記負極及び前記電解質層は、密封ケース内に配設されており、該正極は酸素貯蔵材料を含むことを特徴とする酸素電池。
  3.  請求項2記載の酸素電池において、前記酸素貯蔵材料は、YとMnとを含む複合金属酸化物からなることを特徴とする酸素電池。
  4.  請求項3記載の酸素電池において、前記酸素貯蔵材料は、YMnO、Y1-xAgMn1-y(ただし、AはRu又はTi、1>x>0、1>y>0)、ZrOを含むY1-xAgMn1-yTi(ただし、1>x>0、1>y>0)からなる群から選択される1種の複合金属酸化物からなることを特徴とする酸素電池。
  5.  請求項3記載の酸素電池において、前記酸素貯蔵材料は、YMnO、Y1-xAgMn1-y(ただし、AはRu又はTi、1>x>0、1>y>0)からなる群から選択される1種の複合金属酸化物からなり、該複合金属酸化物は酸化パラジウムを担持していることを特徴とする酸素電池。
  6.  請求項1記載の酸素電池において、前記リチウム化合物は、過酸化リチウム又は酸化リチウムのいずれかであることを特徴とする酸素電池。
  7.  請求項1記載の酸素電池において、前記正極、前記負極及び前記電解質層は、密封ケース内に配設されており、該正極は酸素貯蔵材料としてのYMnO、Y1-xAgMn1-y(ただし、AはRu又はTi、1>x>0、1>y>0)、ZrOを含むY1-xAgMn1-yTi(ただし、1>x>0、1>y>0)からなる群から選択される1種の複合金属酸化物と、過酸化リチウム又は酸化リチウムのいずれかとを含むことを特徴とする酸素電池。
  8.  請求項1記載の酸素電池において、前記正極、前記負極及び前記電解質層は、密封ケース内に配設されており、該正極は酸素貯蔵材料としてのYMnO、Y1-xAgMn1-y(ただし、AはRu又はTi、1>x>0、1>y>0)からなる群から選択される1種の複合金属酸化物と、過酸化リチウム又は酸化リチウムのいずれかとを含み、該複合金属酸化物は酸化パラジウムを担持していることを特徴とする酸素電池。
PCT/JP2012/061907 2011-05-10 2012-05-09 酸素電池 WO2012153774A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012528577A JP5202766B2 (ja) 2011-05-10 2012-05-09 酸素電池
EP12782848.1A EP2709204B1 (en) 2011-05-10 2012-05-09 Oxygen cell
US14/116,158 US8940447B2 (en) 2011-05-10 2012-05-09 Oxygen cell
CN201280022356.4A CN103518286A (zh) 2011-05-10 2012-05-09 氧电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011104971 2011-05-10
JP2011-104971 2011-05-10

Publications (1)

Publication Number Publication Date
WO2012153774A1 true WO2012153774A1 (ja) 2012-11-15

Family

ID=47139250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061907 WO2012153774A1 (ja) 2011-05-10 2012-05-09 酸素電池

Country Status (5)

Country Link
US (1) US8940447B2 (ja)
EP (1) EP2709204B1 (ja)
JP (1) JP5202766B2 (ja)
CN (1) CN103518286A (ja)
WO (1) WO2012153774A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013069680A (ja) * 2011-09-07 2013-04-18 Honda Motor Co Ltd 金属酸素電池
JP2013218986A (ja) * 2012-04-12 2013-10-24 Nippon Telegr & Teleph Corp <Ntt> リチウム空気二次電池
WO2014065067A1 (ja) * 2012-10-22 2014-05-01 国立大学法人 東京大学 電池
JP2016162678A (ja) * 2015-03-04 2016-09-05 日本電信電話株式会社 リチウム空気二次電池
JP2016170898A (ja) * 2015-03-11 2016-09-23 日本電信電話株式会社 リチウム空気二次電池

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5336007B2 (ja) * 2011-04-19 2013-11-06 本田技研工業株式会社 リチウムイオン酸素電池
US20140295237A1 (en) * 2013-03-28 2014-10-02 General Electric Company Electrochemical cells useful for energy storage devices
KR20190095928A (ko) * 2016-12-21 2019-08-16 로베르트 보쉬 게엠베하 리튬 이온 배터리 및 그 제조 방법
CN110635143B (zh) * 2019-10-23 2022-06-10 西北大学 一种用于电催化反应的高活性催化剂及其制备方法
CN114307952A (zh) * 2021-12-24 2022-04-12 哈尔滨工业大学 氧气吸脱附材料及其制备方法和全封闭式锂空气电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251087A (ja) * 1992-03-02 1993-09-28 Tonen Corp 高温固体電解質燃料電池用カソード材料
JPH07249414A (ja) * 1994-03-11 1995-09-26 Kyocera Corp 固体電解質型燃料電池セル
JP2005166685A (ja) * 2005-02-07 2005-06-23 Toshiba Corp 空気リチウム二次電池
JP2008112724A (ja) * 2006-10-06 2008-05-15 Toyota Central R&D Labs Inc 正極用触媒及びリチウム空気二次電池
JP2009230985A (ja) 2008-03-21 2009-10-08 Toyota Central R&D Labs Inc 非水系空気電池
WO2010082338A1 (ja) * 2009-01-16 2010-07-22 トヨタ自動車株式会社 空気二次電池およびその製造方法
WO2010131536A1 (ja) * 2009-05-13 2010-11-18 日本電気株式会社 触媒電極、燃料電池、空気電池および発電方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4699232B2 (ja) * 2006-02-14 2011-06-08 本田技研工業株式会社 排ガス浄化酸化触媒
US7696126B2 (en) 2006-02-14 2010-04-13 Honda Motor Co., Ltd. Method of producing oxidation catalyst for cleaning exhaust gas
JP2007307446A (ja) * 2006-05-16 2007-11-29 Honda Motor Co Ltd 排ガス浄化酸化触媒
JP5228587B2 (ja) * 2008-04-09 2013-07-03 トヨタ自動車株式会社 空気電池用触媒
EP2269731B1 (en) 2008-04-22 2012-07-11 Honda Motor Co., Ltd. Oxidation catalyst and oxidation catalyst device for exhaust gas purification
JP5184212B2 (ja) * 2008-05-26 2013-04-17 日本電信電話株式会社 リチウム空気二次電池およびリチウム空気二次電池製造方法
CN100593877C (zh) 2008-11-18 2010-03-10 哈尔滨工业大学 一种直接硼氢化物燃料电池的复合膜电极
JP2010161059A (ja) * 2008-12-09 2010-07-22 Panasonic Corp 非水電解質二次電池用負極活物質、非水電解質二次電池用負極および非水電解質二次電池
CN102812590B (zh) * 2010-03-16 2015-03-25 本田技研工业株式会社 金属空气电池
JP5336007B2 (ja) 2011-04-19 2013-11-06 本田技研工業株式会社 リチウムイオン酸素電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251087A (ja) * 1992-03-02 1993-09-28 Tonen Corp 高温固体電解質燃料電池用カソード材料
JPH07249414A (ja) * 1994-03-11 1995-09-26 Kyocera Corp 固体電解質型燃料電池セル
JP2005166685A (ja) * 2005-02-07 2005-06-23 Toshiba Corp 空気リチウム二次電池
JP2008112724A (ja) * 2006-10-06 2008-05-15 Toyota Central R&D Labs Inc 正極用触媒及びリチウム空気二次電池
JP2009230985A (ja) 2008-03-21 2009-10-08 Toyota Central R&D Labs Inc 非水系空気電池
WO2010082338A1 (ja) * 2009-01-16 2010-07-22 トヨタ自動車株式会社 空気二次電池およびその製造方法
WO2010131536A1 (ja) * 2009-05-13 2010-11-18 日本電気株式会社 触媒電極、燃料電池、空気電池および発電方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013069680A (ja) * 2011-09-07 2013-04-18 Honda Motor Co Ltd 金属酸素電池
JP2013218986A (ja) * 2012-04-12 2013-10-24 Nippon Telegr & Teleph Corp <Ntt> リチウム空気二次電池
WO2014065067A1 (ja) * 2012-10-22 2014-05-01 国立大学法人 東京大学 電池
US10566618B2 (en) 2012-10-22 2020-02-18 The University Of Tokyo Cell
JP2016162678A (ja) * 2015-03-04 2016-09-05 日本電信電話株式会社 リチウム空気二次電池
JP2016170898A (ja) * 2015-03-11 2016-09-23 日本電信電話株式会社 リチウム空気二次電池

Also Published As

Publication number Publication date
US20140072885A1 (en) 2014-03-13
JP5202766B2 (ja) 2013-06-05
EP2709204A1 (en) 2014-03-19
EP2709204A4 (en) 2014-10-22
EP2709204B1 (en) 2015-11-04
JPWO2012153774A1 (ja) 2014-07-31
CN103518286A (zh) 2014-01-15
US8940447B2 (en) 2015-01-27

Similar Documents

Publication Publication Date Title
JP5202766B2 (ja) 酸素電池
JP5202767B2 (ja) 金属酸素電池
EP2685551B1 (en) Lithium ion oxygen battery
JP5204335B2 (ja) 金属酸素電池
JP5204334B2 (ja) 金属酸素電池
JP5254483B2 (ja) 金属酸素電池
JP5204333B2 (ja) 金属酸素電池
JP5276203B2 (ja) 金属酸素電池
JP5220232B1 (ja) 金属酸素電池及びそれに用いる酸素貯蔵材料の製造方法
JP5220211B1 (ja) 金属酸素電池
JP5202697B2 (ja) 金属酸素電池
JP5276204B2 (ja) 金属酸素電池
JP5393748B2 (ja) 金属酸素電池
JP5398879B2 (ja) 金属酸素電池
JP2013058405A (ja) リチウムイオン酸素電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012528577

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782848

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012782848

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14116158

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE