WO2012144518A1 - 金属材料用耐食合金コーティング膜及びその形成方法 - Google Patents

金属材料用耐食合金コーティング膜及びその形成方法 Download PDF

Info

Publication number
WO2012144518A1
WO2012144518A1 PCT/JP2012/060449 JP2012060449W WO2012144518A1 WO 2012144518 A1 WO2012144518 A1 WO 2012144518A1 JP 2012060449 W JP2012060449 W JP 2012060449W WO 2012144518 A1 WO2012144518 A1 WO 2012144518A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
coating film
corrosion
alloy coating
metal material
Prior art date
Application number
PCT/JP2012/060449
Other languages
English (en)
French (fr)
Inventor
和也 中田
中島 隆
知義 小西
正昭 別府
Original Assignee
日本パーカライジング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本パーカライジング株式会社 filed Critical 日本パーカライジング株式会社
Priority to US14/112,153 priority Critical patent/US20140030635A1/en
Priority to CN201280017954.2A priority patent/CN103459681B/zh
Priority to EP12774353.2A priority patent/EP2700738B1/en
Priority to KR1020137026737A priority patent/KR101437806B1/ko
Publication of WO2012144518A1 publication Critical patent/WO2012144518A1/ja
Priority to US14/666,154 priority patent/US20150197857A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/52Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating using reducing agents for coating with metallic material not provided for in a single one of groups C23C18/32 - C23C18/50
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • B32B15/015Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium the said other metal being copper or nickel or an alloy thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/619Amorphous layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • C25D3/14Electroplating: Baths therefor from solutions of nickel or cobalt from baths containing acetylenic or heterocyclic compounds
    • C25D3/18Heterocyclic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12778Alternative base metals from diverse categories

Definitions

  • the present invention relates to an alloy coating film having excellent corrosion resistance formed on the surface of a metal material, a method for forming the film, and a component having the film.
  • Ni-based alloys such as ceramics, austenitic stainless steel, Hastelloy (trademark), and Inconel have been adopted for structural materials and mechanical parts that require high corrosion resistance.
  • these materials are all very expensive and have problems such as difficult processing.
  • various surface treatment methods for improving corrosion resistance have been developed. Wet processes such as chemical conversion treatment (chromate, non-chromate), plating, thermal spraying, PVD method (physical vapor deposition method), CVD method (chemical vapor phase) Dry process).
  • This surface treatment film has a function of suppressing the progress of corrosion of the steel member by a self-repairing function accompanying elution of hexavalent chromium ions.
  • its anticorrosive effect is generally inferior to austenitic stainless steels and Ni-based alloys, and further, recent environmental regulations are triggering, and substitution to non-chromate chemicals is rapidly progressing.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2007-262577.
  • This is a zirconium and / or titanium-based metal surface treatment composition containing an organosiloxane which is a polycondensate of organosilane and having at least two amino groups in one molecule, and includes zirconium element and / or
  • an organosiloxane which is a polycondensate of organosilane and having at least two amino groups in one molecule, and includes zirconium element and / or
  • the surface concealing property, coating film adhesion and corrosion resistance are expressed.
  • the corrosion resistance and oxidation resistance of the surface treatment film cannot be said to be sufficient under strong acidity.
  • Patent Document 2 Japanese Patent Laid-Open No. 5-179482
  • Patent Document 2 Japanese Patent Laid-Open No. 5-179482
  • the cobalt in the acidic plating bath is reduced with respect to zinc + cobalt so that the cobalt content in the plating film is 2 to 30 wt%.
  • it is a method of manufacturing by adjusting the concentration to 30 to 85 mol%, the acid resistance and oxidation resistance of the formed surface treatment film are not sufficient.
  • Patent Document 3 Japanese Patent Laid-Open No. 6-65751
  • silicon carbide fine particles are added to an electroless plating bath in which a nickel-tungsten metal salt and a nickel-tungsten-phosphorus alloy are precipitated using hypophosphite as a reducing agent. It is said that good wear resistance and corrosion resistance can be ensured by dispersing and co-depositing fine particles, but durability is insufficient in a relatively concentrated mineral acid solution.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2004-209389
  • This is a photocatalytic titanium oxide or titanium suboxide produced and dispersed in at least one kind of granular and plate forms on the surface and at least part of the inside of an alloy in which at least one of carbon, chromium and nickel is added to iron.
  • the present invention relates to an antibacterial antifouling and corrosion resistant material characterized by being made and a manufacturing method thereof, and it is shown that a titanium alloy can be produced by a PVD method such as vacuum deposition, sputtering, ion plating, ion beam deposition, etc. Yes.
  • the material formed by this method has insufficient long-term corrosion resistance under strong acidity.
  • Patent Document 5 Japanese Patent Laid-Open No. 5-132777.
  • a silicon diffusion layer or a silicon overlay coating layer is formed by chemical vapor deposition on the surface of a metal substrate, particularly iron or an iron alloy, to develop corrosion resistance, gas adsorption property, moisture absorption resistance and the like.
  • the surface treatment film formed by this method may be easily etched in a special mixed acid solution containing hydrofluoric acid.
  • the present invention solves the above-mentioned problems of the prior art, and provides an alloy coating film having excellent corrosion resistance on the surface of a metal material by a simple formation method that is low cost and mass-productive.
  • the present inventors have completed a new alloy coating film excellent in corrosion resistance and a method for forming the same, which solves the problems of the prior art.
  • the present invention in particular, we tried to form a solid solution alloy of the plating film for the purpose of improving the corrosion resistance by the composite plating treatment with Ni solution using chromium silicide particles and the heat treatment after the composite plating treatment. went.
  • the process of co-depositing particles in the matrix is the same as in the prior art, but after that, the heat treatment is actively performed to decompose and dissolve the particles, thereby dramatically improving the properties of the matrix, especially its corrosion resistance. Successfully improved.
  • chromium silicide particles such as Cr 3 Si, Cr 5 Si 3 , Cr 3 Si 2 , CrSi and CrSi 2 are used, but these particles are classified as high melting point compounds, and the melting point thereof is It is very high at 1480-1770 ° C.
  • the present inventors show that when eutectoidized in a Ni matrix, these particles easily decompose at a relatively low heating temperature of 600 ° C. and form a solid solution alloy with Ni. Etc. discovered.
  • the formed Ni—Cr—Si solid solution alloy coating film can significantly delay the progress of corrosion because Cr in the coating film promotes passivation of the surface in an acid corrosion environment or a chloride ion corrosion environment.
  • the crystal grain size is very small and the width of the grain boundary is narrow, so that it has been clarified that the film has a film structure in which the corrosive liquid is difficult to enter from the grain boundary.
  • Cr and Si are effective elements for forming an oxidation-resistant protective film, and in steel parts on which the alloy coating film of the present invention is formed, the coating film and the It has been found that the oxidation of the substrate is significantly delayed.
  • the alloy coating film of the present invention is formed on the iron-based substrate.
  • an interdiffusion layer (part of the alloy coating film) mainly composed of Ni and Cr as plating film components and Fe as a base material component is added to the silica.
  • the present inventors have found that the film can be formed approximately 10 times thicker under the same heating conditions as compared with the case where there is no chromium oxide particles (FIG. 1: a cross-sectional photograph of an alloy coating film according to Example 9 of the present invention).
  • the corrosion-resistant alloy coating film of the present invention can be formed by performing, for example, [composite plating treatment + heat treatment] on the machined product, but because the adhesion between the coating film and the substrate is high, It is also possible to perform bending or press molding after [composite plating treatment + heat treatment].
  • the present invention provides the following (1) to (8).
  • the content ratio of Si is 1 to 50% by weight based on the total weight of the film, the Si content ratio is 0.1 to 30% by weight based on the total weight of the film, and 0.1 to 1000 ⁇ m.
  • a corrosion-resistant alloy coating film having a thickness.
  • the metal material according to (2), wherein the metal material is an iron-based substrate.
  • the alloy coating film having excellent corrosion resistance and the method for forming the same according to the present invention it is possible to modify the surface of an inexpensive material, and the economic merit is very large. In addition, damage and replacement of materials due to corrosion and high-temperature oxidation are extremely reduced, leading to reduction of industrial waste emissions.
  • FIG. 1 is a cross-sectional photograph of an alloy coating film according to the present invention.
  • FIG. 2 is a test piece used in the corrosion resistance test in the examples.
  • the raw material applied to this invention will not be specifically limited if it is a metal material,
  • a metal material For example, cold-rolled steel plate (SPC material), hot-rolled steel plate (SPH material), general structural rolled steel (SS material), carbon steel (SC material), various alloy steels, stainless steel, Al and alloys thereof, Mg and alloys thereof, Cu and alloys thereof, Zn and alloys thereof, Ni-base alloys, Co-base alloys, etc.
  • the shape is not particularly limited, such as a rod, a band, a tube, a wire, a cast forged product, or a bearing.
  • iron-based materials Ni and Cr from the plating film and Fe from the base material form an interdiffusion layer mainly at the interface between the base material and the coating film by heat treatment. It can be expressed.
  • this mutual diffusion layer is also a part of the coating film.
  • the iron-type material which concerns on this invention means the metal material whose ratio of iron is 50 weight% or more among the elements used as a structural component.
  • Metal surface cleaning process The surface of the metal material can be degreased and cleaned in advance as necessary.
  • the method is not particularly limited, and a solvent-based, water-based or emulsion-based degreasing method can be employed. Moreover, even if it performs various pickling processes as needed after a degreasing process, there is no problem.
  • the method for forming the Ni—Cr—Si alloy coating film in the present invention is not particularly limited. For example, it is possible to obtain a good alloy coating film by stacking Ni foil on the surface of a metal material and heat-treating chromium silicide particles in the gap, but it is compared to products of various shapes.
  • a method for forming a corrosion-resistant alloy coating film by composite plating will be described in detail.
  • Ni solution used as the plating solution in the present invention is not particularly limited as long as it is a solution containing Ni ions or Ni complex ions, but is preferably an aqueous solution from the viewpoint of ease of handling.
  • Plating solutions mainly composed of nickel chloride, nickel sulfate, nickel sulfamate, etc. can be used. If necessary, reducing agents, pH buffering agents, complexing agents, additives, dispersion aids, etc. can be added. it can.
  • hypophosphite As the reducing agent, hypophosphite, phosphite, borohydride compound, dimethylamine borane, hydrazine, formalin, titanium trichloride and the like can be used.
  • pH buffering agents examples include monocarboxylic acids such as formic acid, acetic acid and propionic acid, or alkali salts thereof, dicarboxylic acids such as oxalic acid, succinic acid and malonic acid, or alkali salts thereof, glycolic acid, tartaric acid and citric acid.
  • dicarboxylic acids such as oxalic acid, succinic acid and malonic acid, or alkali salts thereof, glycolic acid, tartaric acid and citric acid.
  • Inorganic acids such as boric acid, carbonic acid, and sulfurous acid, or alkali salts thereof can be used.
  • Complexing agents for the stable presence of metal ions in the plating solution include citric acid, hydroxyacetic acid, lactic acid, oxalic acid, succinic acid, malonic acid, salicylic acid, glycine, phthalic acid, tartaric acid, malic acid, tartronic acid , Gluconic acid, cyanic acid, thiocyanic acid, or an alkali salt thereof, ammonia, and the like can be used.
  • Additives added for the purpose of smoothing, glossing, preventing pits, reducing internal stress, improving anode solubility, etc. include polyethylene glycol, saccharin, p-toluenesulfonamide, 1,5-naphthalenedisulfone Water-soluble sulfur-containing compounds represented by acid salts, 1,3,6-naphthalene trisulfonate, lauryl sulfate, 1,4-butanediol, propargyl alcohol, coumarin, ethylene cyanhydrin and the like
  • An unsaturated bond-containing organic compound, chloride represented by sodium chloride, potassium chloride and the like can be used.
  • Dispersion aid Further, by adding a dispersion aid in the plating solution and adsorbing it on the surface of the chromium silicide particles or other particles, aggregation of the particles can be prevented and the particles can be stably dispersed in the solution.
  • a dispersion aid a cationic surfactant, an anionic surfactant, an amphoteric surfactant, a nonionic surfactant and the like can be used.
  • the treatment liquid for the electroplating treatment and electroless plating treatment contains nickel as an essential component, but chromium, manganese, iron, cobalt, copper, zinc, ruthenium, rhodium, palladium, silver, cadmium, indium, tin, Metal ions and metal complexes such as rhenium, osmium, iridium, platinum, gold, mercury, thallium, lead, titanium, vanadium, yttrium, zirconium, niobium, molybdenum, hafnium, tantalum, tungsten, aluminum, gallium, germanium, antimony, bismuth There is no problem even if ions are included.
  • the conditions for the electroplating process and the electroless plating process are not particularly limited. If Ni can be deposited as a matrix such as Ni ion concentration, plating solution temperature, plating time, pH, current density, dispersed particle concentration, stirring conditions, reducing agent type, concentration, etc., the problem will be Absent.
  • the Ni ion concentration in the Ni solution is not particularly limited, but is preferably in the range of 0.3 to 600 g / L. More preferably, it is in the range of 6 to 180 g / L. If it is less than 0.3 g / L, it is difficult to form a normal plating film, and if it exceeds 600 g / L, the Ni compound precipitates in the solution past the limit that can be stably dissolved as Ni ions, Economically useless.
  • the supply source of Cr and Si is preferably at least one kind of chromium silicide particles selected from Cr 3 Si, Cr 5 Si 3 , Cr 3 Si 2 , CrSi and CrSi 2 .
  • chromium silicide particles selected from Cr 3 Si, Cr 5 Si 3 , Cr 3 Si 2 , CrSi and CrSi 2 .
  • Chromium silicide is preferred.
  • the particle size of the chromium silicide particles is not particularly limited, but the particle size of the eutectoid particles in the Ni matrix is preferably 100 ⁇ m or less, and more preferably 20 ⁇ m or less, in the major axis. More preferably, it is 5 ⁇ m or less.
  • the lower limit value is not particularly limited, but is, for example, 0.1 ⁇ m.
  • the dispersion concentration of chromium silicide in the Ni solution is not particularly limited, but is preferably in the range of 10 to 2000 g / L. A more preferred range is 50 to 1500 g / L, and a further more preferred range is 100 to 1000 g / L. If the dispersion concentration is less than 10 g / L, it is difficult to contain 1% by weight or more of Cr, and if it exceeds 2000 g / L, the amount of particles with respect to the solution is too large to stably disperse. Becomes difficult.
  • the conditions of the plating tank and the stirring conditions in the plating tank are not particularly limited as long as the chromium silicide particles can be sufficiently dispersed in the liquid.
  • a liquid circulation method using a pump, a propeller stirring method, an upflow method, a plate pump method, an air stirring method, a work rotation method, a sedimentation eutectoid method, and a brush plating method are suitable.
  • chromium silicide solid solution conditions The chromium silicide particles co-deposited in the Ni matrix are decomposed and dissolved by heat treatment at a temperature of 600 ° C. or more, more preferably in the temperature range of 700 to 1300 ° C., and still more preferably 800 to 1100. It is a temperature range of ° C. Below 600 ° C, chromium silicide particles cannot be decomposed or dissolved by 50% or more, and at 600 to 700 ° C, they can be decomposed or dissolved by 50% or more. Absent. Although decomposition and solid solution are possible even when the temperature exceeds 1300 ° C., the energy required for heating is large, which is not economical.
  • the heating time for decomposing and dissolving the chromium silicide particles is not particularly limited.
  • a preferable heating time is in the range of 0.5 second to 48 hours, more preferably in the range of 1 second to 24 hours, although it depends on the heating temperature. If it is less than 0.5 seconds, the decomposition and solid solution of chromium silicide particles do not proceed sufficiently. Moreover, although it can be decomposed
  • the heating time for forming the Ni and Fe interdiffusion layer mainly on the surface of the iron-based substrate is not particularly limited. Although the preferred heating time depends on the heating temperature, it is in the range of 0.5 second to 48 hours, more preferably in the range of 1 second to 24 hours. If the time is less than 0.5 seconds, the diffusion does not proceed sufficiently. If the time exceeds 48 hours, a diffusion layer is formed. However, the energy required for maintaining the temperature increases, which is not economical.
  • the atmosphere during the heat treatment is not particularly limited, it means that the formation of a Ni—Cr—Si alloy is promoted, so that a vacuum state of 5 ⁇ 10 ⁇ 2 Pa or less, a nitrogen gas atmosphere, an Ar gas atmosphere, Any of a He gas atmosphere, a hydrogen gas atmosphere, or a high-temperature salt bath is desirable.
  • the heat treatment method is not particularly limited, and a combination with a heating atmosphere furnace, a molten salt bath, a pressure heat treatment, an electric current heat treatment, and induction hardening using high frequency induction heating can also be adopted.
  • high frequency induction heating method for iron-based substrates
  • steel materials are hardened (higher strength), chromium silicide particles are decomposed, solid solution (corrosion resistance is given), and the mutual relationship between Ni and Fe.
  • diffusion layer providing adhesion
  • alloy coating film surface amorphous enhanced corrosion resistance
  • high-frequency heating has the advantage of shortening the heating time, so it is effective for relatively low melting point substrates such as Al and its alloys, Mg and its alloys, Cu and its alloys, Zn and its alloys. is there.
  • a good corrosion-resistant alloy coating film is formed by utilizing the heat of the use environment without performing the heat treatment as described above after the composite plating process. It is possible to make it.
  • the treatment process is not particularly limited. For example, degreasing ⁇ water washing ⁇ acid washing ⁇ water washing ⁇ (Ni strike treatment) ⁇ Ni / chromium silicide composite plating ⁇ heating treatment In order, a corrosion-resistant alloy coating film can be formed.
  • the content ratio of Ni in the corrosion-resistant alloy coating film in the present invention is 10 to 98% by weight, preferably 20 to 90% by weight, more preferably 30 to 80% by weight, based on the total weight of the film. It is. If it is less than 10% by weight, it is difficult to maintain a solid solution state, and corrosion resistance and oxidation resistance may not be sufficiently exhibited. On the other hand, if it exceeds 98% by weight, the content ratio of Cr and Si decreases, and it becomes difficult to exhibit sufficient corrosion resistance, which is not preferable. As will be described below, when an interdiffusion layer is formed, the interdiffusion layer is also a part of the alloy coating film.
  • the Ni content ratio but also the following Cr content ratio and Si content ratio may differ depending on the content ratio in the interdiffusion layer and the content ratio in the layer on the interdiffusion layer.
  • the content ratio defined in this specification is an average value of the entire film (that is, the layer on the interdiffusion layer + the layer on the interdiffusion layer).
  • the content ratio of Cr in the corrosion resistant alloy coating film in the present invention is 1 to 50% by weight, preferably 5 to 40% by weight, more preferably 10 to 30% by weight, based on the total weight of the film. It is. If it is less than 1% by weight, the anticorrosion effect due to the passivation of chromium is small, and it is difficult to sufficiently withstand in a corrosive environment. Moreover, even if it exceeds 50 weight%, although corrosion resistance is exhibited, the effect is saturated and the processing after heat processing becomes difficult because the toughness is lowered, which is not preferable.
  • the content ratio of Si in the corrosion-resistant alloy coating film in the present invention is 0.1 to 30% by weight, preferably 0.5 to 20% by weight, more preferably 1 to 15%, based on the total weight of the film. It is in the range of wt%. If it is less than 0.1% by weight, the anticorrosion effect and the oxidation resistance are lowered, and it is difficult to sufficiently withstand in a corrosive environment or a high temperature environment. Moreover, even if it exceeds 30 weight%, although corrosion resistance and oxidation resistance are exhibited, the effect will be saturated and the processing after heat processing will become difficult because toughness falls, and it is not preferable.
  • the thickness of the corrosion resistant alloy coating film needs to be 0.1 to 1000 ⁇ m, preferably 5 to 500 ⁇ m, more preferably 10 to 200 ⁇ m.
  • the said interdiffusion layer is also a part of coating film. That is, the film thickness of the corrosion resistant alloy coating layer is a film thickness including the mutual diffusion layer. If the thickness is less than 0.1 ⁇ m, the shielding effect against the corrosive substance becomes small and sufficient corrosion resistance cannot be exhibited. Moreover, even if it exceeds 1000 micrometers, since a corrosion-resistant effect is saturated, it is economically useless.
  • the coating thickness refers to “thickness after heat treatment” and does not necessarily match the thickness immediately after plating.
  • the interdiffusion layer is formed by heat treatment. Get fat.
  • the chromium silicide particles are decomposed and dissolved by 50% or more. More preferably, it is 80% or more, More preferably, it is 95% or more. If it is less than 50%, since there are many boundary portions between the matrix and the undecomposed particles, corrosion tends to proceed from that portion, and a sufficient anticorrosive effect cannot be obtained. Further, if the chromium silicide particles are decomposed and dissolved by 95% or more, the effects of corrosion resistance and oxidation resistance are saturated.
  • Oxygen O may be taken in by oxidation during heat treatment, but bonds with Si and Cr in the coating film to form chemically stable SiO 2 and Cr 2 O 3 , greatly reducing corrosion resistance. There is nothing to do.
  • an interdiffusion layer of Ni and Fe is formed as part of the corrosion-resistant alloy coating film.
  • the Ni and Fe interdiffusion layer preferably has a thickness of 50 nm or more, more preferably 1 ⁇ m or more. Even if the thickness of the interdiffusion layer is less than 50 nm, there will be no problem with corrosion resistance. For example, it requires strong adhesion to the base material in addition to the corrosion resistance of alloy coating films such as various sliding parts. When it is applied to such a product, it becomes difficult to express its effect.
  • the upper limit is not particularly limited, but for example is 80% with respect to the coating film thickness.
  • the “interdiffusion layer” in the present invention refers to a part of a plating film component (for example, Ni, Cr, Si, etc.) and an element in a metal material (for example, Fe, Al, etc.) in the alloy coating film.
  • C, N, etc. refers to the part where a part of the layer coexists, and (metal material element abundance) / (plating film component element content + metal material element abundance) is 20 to 80 It means a layer that is weight percent.
  • the heat treatment after the composite plating according to the present invention does not adversely affect it, it can be combined with other plating films or surface treatment films to exhibit a composite function.
  • plating treatment is performed in a Co aqueous solution in which Cr 3 C 2 particles are dispersed, and further, heat treatment at 900 ° C. is performed for a predetermined time, so that excellent corrosion resistance and high temperature wear resistance can be obtained. It is possible to obtain a combined alloy coating film.
  • the corrosion-resistant alloy coating film of the present invention includes a separator for a fuel cell, an incinerator damper, a duct, a cylinder for an injection molding machine, a cylinder for an extrusion molding machine, a ship part, a marine / bridge structure part, a chemical plant part, and a pickling tank.
  • an alloy coating film having excellent corrosion resistance can be formed on the surface of various metal materials by a relatively simple method, and can be applied to a wide range of applications.
  • the chromium silicide particles were prepared by mixing commercially available Cr particles and Si particles in a carbon crucible so as to achieve the desired composition ratio and solid-phase diffusing in a 1500 ° C. hydrogen gas atmosphere. Thereafter, it was pulverized using a stamp mill, a ball mill, a mortar, or the like as necessary to obtain chromium silicide particles having a predetermined particle diameter.
  • a fine cleaner E6400 manufactured by Nihon Parkerizing Co., Ltd.
  • an aqueous solution diluted to 2% by weight with tap water was heated to 60 ° C., and the material to be treated was immersed for 10 minutes.
  • a 5% by weight sulfuric acid aqueous solution was used, and after heating to 25 ° C., the material to be treated was immersed for 1 minute.
  • a Ni-based composite plating film was formed by using a DC power supply device with the material to be treated as a cathode and the Ni plate as an anode.
  • hydrochloric acid or sodium hydroxide was used as needed for pH adjustment of the composite plating treatment solution. Draining and drying were performed using an electric oven at 80 ° C. for 10 minutes.
  • the thickness of the coating film, the thickness of the interdiffusion layer, the solid solubility of the chromium silicide particles, the component content in the coating film, the corrosion resistance, Workability was evaluated by the following method.
  • “after surface treatment” means a state after performing plating treatment and heat treatment.
  • Thickness of interdiffusion layer The cross section of the S45C test piece after the surface treatment was observed using the SEM, and the thickness of the white layer portion existing below the coating film was determined as an interdiffusion layer.
  • Solid solubility of chromium silicide particles The surface of the S45C specimen before and after the heat treatment was measured using an X-ray diffraction analyzer (X'Per-MPD) manufactured by PHILIPS.
  • the X-ray source was Cu-K ⁇ ray, and it was measured at 45 kV and 40 mA.
  • the solid solubility of the chromium silicide particles was calculated from the diffraction intensity ratio of each chromium silicide particle before and after the heat treatment. That is, the solid solubility was set to 100% when diffraction due to particles did not appear after the heat treatment.
  • Oxidation resistance Using an electric muffle furnace, the S45C test piece after the surface treatment was heated in air at 1000 ° C. for 24 hours, and the amount of increase in oxidation was measured. When there is no exfoliation of the oxide scale, it means that the smaller the increase in oxidation, the better the oxidation resistance.
  • Example 1 The test piece completed from the pickling to washing with water is drained and dried, and a volume-based median diameter of 1 ⁇ m of Cr 3 Si particles is uniformly applied at a rate of 5 g / m 2 on the test piece, and the thickness is measured thereon. An 8 ⁇ m Ni foil was applied. Furthermore, while pressurizing under the condition of 10 kg / cm 2 , the vacuum furnace was used for 2.5 hours under the conditions of 1 ⁇ 10 ⁇ 5 Pa and 900 ° C., and the furnace was cooled as it was.
  • Example 2 The test piece completed from the pickling to washing with water is immersed in the following composite plating solution (1), and the plate to be treated is a cathode, the Ni plate is an anode, and electrolysis is performed at a current density of 10 A / dm 2 for 60 minutes using a DC power supply. And the composite plating film was formed on the to-be-processed board.
  • the heat treatment after the composite plating treatment was performed for 3 hours under the conditions of 1 ⁇ 10 ⁇ 3 Pa and 900 ° C. using a vacuum furnace, and the furnace was cooled as it was.
  • Composite plating solution (1) ⁇ Liquid component> ⁇ Nickel sulfamate 500g / L ⁇ Sodium chloride 10g / L ⁇ Boric acid 35g / L ⁇ CrSi 2 500 g / L (volume-based median diameter: 40 ⁇ m) ⁇ PH> ⁇ Temperature> ⁇ Stirring> 4.5 60 ° C sedimentation eutectoid method
  • Example 3 The test piece completed from the pickling to washing with water is immersed in the following composite plating solution (2), the plate to be treated is made into a cathode, the Ni plate is made into an anode, and electrolysis is performed for 2 hours by the PR pulse method with a lower waveform. A composite plating film was formed on the plate. The heat treatment after the composite plating treatment was performed for 2 hours in an Ar gas atmosphere at 900 ° C., and the furnace was cooled as it was.
  • Composite plating solution (2) ⁇ Liquid component> ⁇ Nickel sulfate hexahydrate 200g / L ⁇ Nickel chloride hexahydrate 50g / L ⁇ Boric acid 25g / L ⁇ CrSi 2 20 g / L (volume-based median diameter: 10 ⁇ m) ⁇ CrSi 20 g / L (volume-based median diameter: 12.5 ⁇ m) ⁇ PH> ⁇ Temperature> ⁇ Stirring> 4.0 55 ° C.
  • Propeller stirring method (Formula 2)
  • Example 4 The test piece completed from the pickling to washing with water is immersed in the following composite plating solution (3), and the plate to be treated is used as a cathode and the Ni plate is used as an anode, and electrolysis is performed at a current density of 10 A / dm 2 for 20 minutes using a DC power supply device. And the composite plating film was formed on the to-be-processed board. The heat treatment after the composite plating treatment was carried out for 12 hours in a nitrogen gas atmosphere at 850 ° C., and the furnace was cooled as it was.
  • Composite plating solution (3) ⁇ Liquid component> ⁇ Nickel sulfamate 500g / L ⁇ Nickel chloride hexahydrate 50g / L ⁇ Boric acid 30g / L ⁇ Saccharin sodium 5g / L ⁇ 1,4-butanediol 100mg / L ⁇ Cr 3 Si 1200 g / L (volume-based median diameter: 1 ⁇ m) ⁇ PH> ⁇ Temperature> ⁇ Stirring> 4.5 60 ° C upflow method
  • Example 5 The test piece completed from the pickling to washing with water is immersed in the following composite plating solution (4), and the plate to be treated is used as a cathode and the Ni plate is used as an anode, and electrolysis is performed at a current density of 10 A / dm 2 for 120 minutes using a DC power supply. And the composite plating film was formed on the to-be-processed board. The heat treatment after the composite plating treatment was performed for 36 hours under the conditions of 1 ⁇ 10 ⁇ 5 Pa and 680 ° C. using a vacuum furnace, and the furnace was cooled as it was.
  • Composite plating solution (4) ⁇ Liquid component> ⁇ Nickel sulfamate 500g / L ⁇ Nickel chloride hexahydrate 50g / L ⁇ Boric acid 30g / L ⁇ ⁇ -Naphthalenesulfonic acid formalin condensate sodium salt 500mg / L ⁇ Methyl alcohol 1g / L ⁇ Cr 5 Si 3 350 g / L (volume-based median diameter: 2 ⁇ m) ⁇ Cr 3 Si 2 350 g / L (volume-based median diameter: 4.5 ⁇ m) ⁇ PH> ⁇ Temperature> ⁇ Stirring> 3.8 50 ° C plate pump method
  • Example 6 The test piece completed from the pickling to washing with water was immersed in the next composite plating solution (5) for 120 minutes to form a composite plating film on the plate to be treated.
  • the heat treatment after the composite plating treatment was performed for 8 hours in a nitrogen gas atmosphere and at 820 ° C., and the furnace was cooled as it was.
  • Composite plating solution (5) ⁇ Liquid component> ⁇ Nickel sulfate hexahydrate 50g / L ⁇ Sodium hypophosphite monohydrate 15g / L ⁇ Ammonium sulfate 65g / L ⁇ Trisodium citrate dihydrate 60g / L ⁇ Cr 3 Si 350 g / L (volume-based median diameter: 1.5 ⁇ m) ⁇ CrSi 2 350 g / L (volume-based median diameter: 2.5 ⁇ m) ⁇ PH> ⁇ Temperature> ⁇ Stirring> 12.5 80 °C air stirring method
  • Example 7 After performing the composite plating process under the conditions described in Example 4, the surface of the test piece was polished, and the thickness of the plating film was adjusted to 4 ⁇ m. Next, using an induction hardening apparatus, it reached 1050 ° C. by heating in a nitrogen gas atmosphere for 3 seconds and immediately cooled with water.
  • Example 9 The test piece completed from the pickling to water washing is immersed in the following composite plating solution (6), and the plate to be treated is used as a cathode and the Ni plate is used as an anode, and electrolysis is performed at a current density of 5 A / dm 2 for 45 minutes using a DC power supply. And the composite plating film was formed on the to-be-processed board.
  • the heat treatment after the composite plating treatment was performed for 5 hours under the conditions of 1 ⁇ 10 ⁇ 3 Pa and 900 ° C. using a vacuum furnace, and the furnace was cooled as it was.
  • Composite plating solution (6) ⁇ Liquid component> ⁇ Nickel sulfamate 300g / L ⁇ Cobalt chloride hexahydrate 150g / L ⁇ Sodium chloride 10g / L ⁇ Boric acid 35g / L ⁇ CrSi 2 400 g / L (volume-based median diameter: 2.5 ⁇ m) ⁇ PH> ⁇ Temperature> ⁇ Stirring> 4.5 60 °C Propeller stirring
  • Example 10 After performing the composite plating process under the conditions described in Example 5, the heat treatment was performed for 24 hours under the conditions of 1 ⁇ 10 ⁇ 5 Pa and 650 ° C. using a vacuum furnace, and the furnace was cooled as it was.
  • Example 11 After performing the composite plating process under the conditions described in Example 4, the surface of the test piece was polished, and the thickness of the plating film was adjusted to 4 ⁇ m. Next, using an induction hardening apparatus, it reached 880 ° C. by heating for 1 second in a nitrogen gas atmosphere and immediately cooled with water.
  • Composite plating solution (7) ⁇ Liquid component> ⁇ Nickel sulfate hexahydrate 200g / L ⁇ Nickel chloride hexahydrate 50g / L ⁇ Boric acid 25g / L ⁇ PH> ⁇ Temperature> ⁇ Stirring> 4.0 55 °C propeller stirring method
  • Example 4 After performing the composite plating process under the conditions described in Example 4, the surface of the test piece was polished, and the thickness of the plating film was adjusted to 4 ⁇ m. Next, using an electric muffle furnace, heating was performed in an air atmosphere at 1000 ° C. for 48 hours, and the furnace was cooled as it was.
  • Example 5 After performing the composite plating process under the conditions described in Example 4, the surface of the test piece was polished, and the thickness of the plating film was adjusted to 4 ⁇ m. Next, heat treatment was performed for 30 seconds under the conditions of 1 ⁇ 10 ⁇ 3 Pa and 900 ° C. using a vacuum furnace, and the furnace was cooled as it was. Thereafter, the surface of the test piece was repolished and adjusted so that the thickness of the plating film was 0.05 ⁇ m.
  • the component contents of the coating films obtained in Examples and Comparative Examples, the alloy coating film thickness, the thickness of the interdiffusion layer, the solid solubility of the chromium silicide particles, and eutectoid were analyzed.
  • the particle size (major axis) of the chromium silicide particles and the evaluation results of the corrosion resistance, oxidation resistance, and work adhesion are shown (Comparative Examples 1 and 2 are not evaluated comprehensively because only the corrosion resistance is evaluated).
  • the alloy coating film thickness in Table 1 is a value including the mutual diffusion layer when the mutual diffusion layer is formed.
  • the eutectoid particle size is the minimum and maximum particle diameter that can be confirmed within the range of “(longitudinal) plating film thickness ⁇ (horizontal) 100 ⁇ m” in the cross-sectional observation before the heat treatment. is there.
  • the said diameter in Example 7, Example 11, and the comparative example 4 is a measured value before grinding
  • the alloy coating films obtained in Examples 1 to 9 all had good corrosion resistance, oxidation resistance, and work adhesion. Further, the alloy coating film obtained in Example 10 had excellent oxidation resistance and work adhesion, although the corrosion resistance was slightly inferior because of the low solid solubility of the chromium silicide particles. Further, the alloy coating film obtained in Example 11 had excellent corrosion resistance and oxidation resistance, although the inter-diffusion layer was not formed and the work adhesion was slightly inferior.
  • the corrosion resistance of SUS316L of Comparative Example 1 and Hastelloy C-22 of Comparative Example 2 is generally said to be very good, but this test did not reach the corrosion resistance of the examples.
  • the film did not contain Cr and Si, and the corrosion resistance, oxidation resistance, and work adhesion were inferior to those of Examples.
  • the coating film of Comparative Example 4 contains Cr and Ni, since it was affected by oxidation before sufficient solid solution alloying proceeded, the content ratio of Cr and Ni was small, and the corrosion resistance and work adhesion were inferior. It was. Further, since Fe in the base material was violently oxidized during heating, a large amount of iron oxide was generated in the coating film, and a part of the film floated at the interface between the base material and the coating film.
  • the coating film of Comparative Example 5 was thin, sufficient corrosion resistance and oxidation resistance could not be exhibited.
  • the coating film of Comparative Example 6 co-deposits Cr-based particles, but does not contain Si, and since these particles do not form a solid solution by heat treatment, the performance is clearly inferior to that of the Example. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Chemically Coating (AREA)

Abstract

【課題】 低コストで且つ、量産性のある簡単な形成方法により、金属材料の表面に耐食性に優れた合金コーティング膜の提供。 【解決手段】 )金属材料の表面に形成するものであって、必須成分として、Ni、Cr、Siを含み、さらにCrの含有比率が1~50重量%であり、Siの含有比率が0.1~30重量%であり、且つ0.1~1000μmの厚みを有する耐食合金コーティング膜。

Description

金属材料用耐食合金コーティング膜及びその形成方法
 本発明は、金属材料の表面に形成させる、耐食性に優れた合金コーティング膜及びその形成方法、その膜を有した部品に関するものである。
 従来より、高い耐食性が要求される構造材料やメカニカル部品には、セラミックス、オーステナイト系ステンレスやハステロイ(商標)、インコネルなどのNi基合金が採用されている。しかし、これらの材料はいずれも非常に高価であり、また加工が難しいなどの課題を抱えている。一方、耐食性を向上させる表面処理方法も種々開発されており、化成処理(クロメート、ノンクロメート)、めっきなどのウエットプロセスや、溶射、PVD法(物理気相成長法)、CVD法(化学気相成長法)などのドライプロセスが挙げられる。
 具体的な表面処理方法の一つとして、以前より、亜鉛めっきを施した鉄鋼材料にクロメート処理を行う方法が広く採用されてきた。この表面処理皮膜は、6価クロムイオンの溶出に伴う自己修復機能により、鉄鋼部材の腐食進行を抑制する働きを有している。しかし、その防食効果は、一般にオーステナイト系ステンレスやNi基合金よりも劣り、さらに、昨今の環境規制が引き金となり、ノンクロメート薬剤への代替が急速に進んでいる。
 ノンクロメート薬剤を用いた従来技術としては、例えば、特許文献1(特開2007-262577)に開示の金属表面処理用組成物、金属表面処理方法、及び金属材料が挙げられる。これは、ジルコニウム及び/又はチタン系の金属表面処理用組成物において、オルガノシランの重縮合物であり且つ1分子中に少なくとも2つのアミノ基を有すオルガノシロキサンを含有させ、ジルコニウム元素及び/又はチタン元素の含有量、オルガノシロキサンの含有量、オルガノシロキサンに対するジルコニウム元素及び/又はチタン元素の質量比、及び、重縮合率を特定することにより、素地隠蔽性、塗膜密着性及び耐食性を発現させるものであるが、強酸性下において、この表面処理膜の耐食性や耐酸化性は十分なものとは言えない。
 電気めっき方式による従来技術としては、例えば、特許文献2(特開平5-179481)に開示の高耐食性亜鉛-コバルトめっき鋼材の製造方法が挙げられる。これは、鉄鋼材料に対して、酸性Zn-Co電気めっきを施す際に、めっき皮膜中のコバルト含有量が2~30wt%となるよう、酸性めっき浴中のコバルトを、亜鉛+コバルトに対して30~85mol%濃度に調整して製造する方法であるが、形成された表面処理膜の耐酸性や耐酸化性は十分ではない。
 また、無電解めっき方式による従来技術としては、例えば、特許文献3(特開平6-65751)に開示の無電解複合めっき浴及びめっき方法が挙げられる。これは、ニッケル及びタングステンの金属塩を、次亜リン酸塩を還元剤としてニッケル-タングステン-リンの合金を析出させる無電解めっき浴に、炭化珪素微粒子を添加し、被めっき物表面に炭化珪素微粒子を分散共析させることで良好な耐摩耗性と耐食性を確保できるとしているが、比較的に濃厚な鉱酸溶液中では耐久性が不十分である。
 PVD法を用いた従来技術としては、例えば、特許文献4(特開2004-209389)に開示の抗菌防汚・耐食材料が挙げられる。これは、光触媒性チタン酸化物または亜酸化チタンを、鉄に炭素、クロム、ニッケルのうち少なくとも一種添加した合金の表面及び内部の少なくとも一部に、粒状及び板状の少なくとも一種の形態で生成分散させていることを特徴とする抗菌防汚・耐食性材料とその製造方法に関するものであり、真空蒸着、スパッタリング、イオンプレーティング、イオンビーム蒸着等のPVD法により、チタン合金を作製できることが示されている。しかし、この方法により形成された材料は、強酸性下における長期の耐食性が不十分である。
 CVD法を用いた従来技術としては、例えば、特許文献5(特開平5-132777)に開示の金属基板表面に化学的蒸着により、珪素拡散層または珪素オーバレーコーティングを形成する方法が挙げられる。これは金属基板表面、とくに鉄または鉄合金に化学的蒸着により、珪素拡散層または珪素オーバレーコーティング層を形成し、耐食性、ガス吸着性、耐吸湿性等を発現させるものである。しかし、この方法により形成された表面処理膜は、フッ化水素酸を含有する特殊な混酸溶液中では容易にエッチングされる恐れがある。
 したがって、現在のところ、腐食環境とくに強酸性下で用いられる材料や部品に対して、安価で耐食性や耐酸化性、加工性に優れる材料はなく、新材料の開発が望まれているのである。
特開2007-262577 特開平5-179481 特開平6-65751 特開2004-209389 特開平5-132777
 本発明は従来技術の抱える前記問題を解決し、低コストで且つ、量産性のある簡単な形成方法により、金属材料の表面に耐食性に優れた合金コーティング膜を提供するものである。
 本発明者等は、前記課題を解決するための手段について鋭意研究を行った結果、上記従来技術の問題を解決する、新たな耐食性に優れた合金コーティング膜及びその形成方法を完成させるに至った。本発明にあたっては、とくに、ケイ化クロム粒子を用いたNi溶液による複合めっき処理と、複合めっき処理後の加熱処理により、耐食性向上を目的としためっき膜の固溶合金化を試み、鋭意検討を行った。
 これまでの多くの複合めっき処理は、マトリックスに粒子を共析させ、硬さ、潤滑性、抗菌性、色調など、その粒子自体が持っている性質を利用し、機能を発現させることが目的であった。つまり、マトリックスは粒子の性質を生かすための一種のバインダー的な要素を含むものであった。一方、耐食性に関して言えば、従来の複合めっき膜の場合、マトリックスと粒子との境界で腐食が進行していくことが多く、強酸性下などの厳しい腐食環境で十分な耐食性を発揮するコーティング膜は皆無であった。本発明者等は、これまでの複合めっき処理の発想を大きく変え、耐食性に優れる合金コーティング膜を形成できることを見い出した。つまり、マトリックスに粒子を共析させる過程は従来技術と同様であるが、その後に、積極的に加熱処理を施し、粒子を分解、固溶させることで、マトリックスの性質、とくに、その耐食性を飛躍的に向上させることに成功した。
 本発明には、CrSi、CrSi、CrSi、CrSi及びCrSiなどのケイ化クロム粒子を使用するが、これらの粒子は高融点化合物に分類されており、その融点は1480~1770℃と非常に高い。ところが、Niマトリックス中に共析された場合、これらの粒子は、600℃という比較的に低い加熱温度で容易に分解し、且つ、Niとの間に固溶合金を形成することを本発明者等は発見した。形成されたNi-Cr-Si固溶合金コーティング膜は、酸腐食環境下や塩化物イオン腐食環境下においてコーティング膜中のCrが表面の不働態化を促すため、腐食の進行を大幅に遅延できるとともに、結晶粒径が非常に小さく、また粒界の幅も狭いため、粒界から腐食液が浸入しにくい膜構造を有していることが明らかとなった。なお、合金コーティング膜中において、Cr及びSiは耐酸化保護皮膜を生成する有効な元素であり、本発明合金コーティング膜を形成させた鉄鋼部品では、1000℃の大気加熱環境下においてもコーティング膜並びに基材の酸化が大幅に遅延されることを発見した。
 また、めっき膜と基材との界面に拡散層を形成させることは、強固な密着性を発現させる意味で非常に重要であるが、とくに鉄系基材上に本発明の合金コーティング膜を形成させる場合、加熱処理によりケイ化クロム粒子の分解、固溶が起こると、主にめっき膜成分のNi及びCrと基材成分のFeからなる相互拡散層(合金コーティング膜の一部)を、ケイ化クロム粒子がない場合に比較し、同一加熱条件で約10倍厚く形成できることを本発明者等は発見した(図1:本発明の実施例9に係る合金コーティング膜の断面写真)。
 本発明の耐食合金コーティング膜は、機械加工済みの品物に対して、例えば、〔複合めっき処理+加熱処理〕を実施することで形成できるが、コーティング膜と基材との密着性が高いため、〔複合めっき処理+加熱処理〕後に、曲げ加工やプレス成型を行うことも可能である。
 即ち、本発明は、以下の(1)~(8)を提供する。
(1)金属材料の表面に形成される膜であって、必須成分として、Ni、Cr、Siを含み、さらにNiの含有比率が膜の全重量を基準として10~98重量%であり、Crの含有比率が当該膜の全重量を基準として1~50重量%であり、Siの含有比率が当該膜の全重量を基準として0.1~30重量%であり、且つ0.1~1000μmの厚みを有する耐食合金コーティング膜。
(2)前記(1)に記載の耐食合金コーティング膜が形成された金属材料。
(3)金属材料が鉄系基材であることを特徴とする、前記(2)に記載の金属材料。
(4)鉄系基材との界面で厚さ50nm以上の拡散層が耐熱合金コーティング膜の一部として形成されていることを特徴とする、前記(3)に記載の金属材料。
(5)Ni成分とCrSi、CrSi、CrSi、CrSi及びCrSiの中から選ばれる少なくとも1種のケイ化クロム粒子とから成る混合体を金属材料上で同時に加熱して耐食合金コーティング膜を形成させる工程を含む、必須成分として、Ni、Cr、Siを含み、さらにCrの含有比率が当該膜の全重量を基準として1~50重量%であり、Siの含有比率が当該膜の全重量を基準として0.1~30重量%であり、且つ0.1~1000μmの厚みを有する耐食合金コーティング膜が表面に形成された金属材料の製造方法。
(6)Niマトリックスに、CrSi、CrSi、CrSi、CrSi及びCrSiの中から選ばれる少なくとも1種のケイ化クロム粒子が共析されている複合めっき膜を加熱処理して耐食合金コーティング膜を形成させる工程を含む、必須成分として、Ni、Cr、Siを含み、さらにCrの含有比率が当該膜の全重量を基準として1~50重量%であり、Siの含有比率が当該膜の全重量を基準として0.1~30重量%であり、且つ0.1~1000μmの厚みを有する耐食合金コーティング膜が表面に形成された金属材料の製造方法。
(7)前記複合めっき膜を600℃以上の温度で加熱処理することにより、Niマトリックスに共析させたケイ化クロム粒子を50%以上分解、固溶させることを特徴とする、前記(6)に記載の方法。
(8)前記(2)~(4)のいずれかに記載の金属材料を有する、燃料電池用セパレータ、焼却炉ダンパー、ダクト、射出成形機用シリンダ、押出成形機用シリンダ、船舶部品、海洋・橋梁構造物パーツ、化学プラント部品、酸洗用タンク、自動車用外板、ポンプ軸、ケーシング、インペラー、ローター、タービン軸、タービン羽根、回転板、整流板、スクリュー、配管、バルブ、ノズル、ボルト又はナット、或いはステンレス製蒸発・濃縮装置のディストリビューター、ヒーティングエレメント又は蒸発缶体。
 本発明の耐食性に優れた合金コーティング膜及びその形成方法を採用することで、安価な材料の表面改質が可能となり、経済的なメリットは非常に大きい。また、腐食や高温酸化に伴う材料の損傷、交換が極端に少なくなるため、産業廃棄物の排出低減にも繋がる。
図1は、本発明に係る合金コーティング膜の断面写真である。 図2は、実施例での耐食性試験で使用した試験片である。
 以下、本発明の耐食合金コーティング膜及びその形成方法について詳細に説明する。
≪適用素材≫
 本発明に適用される素材は、金属材料であればとくに限定されないが、例えば、冷延鋼板(SPC材)、熱間圧延鋼板(SPH材)、一般構造用圧延鋼(SS材)、炭素鋼(SC材)、各種合金鋼、ステンレススチール、Al及びその合金、Mg及びその合金、Cu及びその合金、Zn及びその合金、Ni基合金、Co基合金などへの適用が可能で、板材のほか、棒、帯、管、線、鋳鍛造品、軸受など、その形状はとくに限定されるものではない。
〈鉄系材料〉
 とくに、鉄系材料の場合には加熱処理により、基材とコーティング膜の界面で主にめっき膜からのNi及びCrと基材からのFeが相互拡散層を形成するため、強力な密着力を発現させることが可能である。ここで、この相互拡散層もコーティング膜の一部である。尚、本発明に係る鉄系材料とは、構成成分となる元素のうち、鉄の比率が50重量%以上である金属材料を意味する。
≪耐食合金コーティング膜の形成方法≫
〈1.素材の表面清浄工程〉
 金属材料の表面には、必要に応じて予め脱脂処理し清浄化することができる。その方法はとくに限定されず、溶剤系、水系またはエマルジョン系の脱脂方法を採用することができる。また、脱脂処理後に必要に応じて各種の酸洗処理を行っても何ら問題はない。
〈2.耐食合金コーティング膜の形成工程〉
 本発明におけるNi-Cr-Si合金コーティング膜の形成方法は、とくに制限されるものではない。例えば、金属材料表面上にNi箔を重ね、その隙間にケイ化クロム粒子を挟んで加熱処理を行っても、良好な合金コーティング膜を得ることはできるが、種々の形状の品物に対して比較的に簡単な方法で安定な薄膜を形成させるという点から、Ni水溶液にケイ化クロム粒子を分散させた液を用いて複合めっき処理を行い、さらに加熱処理を施して合金コーティング膜を形成させる方法が好適である。以下、複合めっき処理による耐食合金コーティング膜の形成方法について詳述する。
{2-1.複合めっき工程}
(2-1-1.めっき膜の形成手法)
 複合めっき処理については、直流電源やパルス電源を利用した電気めっき処理、PRめっき処理、還元剤を利用する無電解めっき処理が考えられるが、いずれの場合も良好なめっき膜を形成させることが可能である。
(2-1-2.めっきの前処理)
 また、複合めっき処理の前処理として、めっき膜と基材との密着性を上げるために、Niストライク処理や、無電解めっき処理の場合には、金属核の種付けを目的として、パラジウムなどを吸着させる触媒化処理を行うことも可能である。
(2-1-3.Ni溶液の条件)
 本発明でめっき液として使用するNi溶液は、NiイオンもしくはNi錯イオンが存在する溶液であればとくに制限されるものではないが、取扱いやすさという点から水溶液であることが好ましい。塩化ニッケル、硫酸ニッケル、スルファミン酸ニッケルなどを主原料とするめっき液が使用可能であり、必要に応じて、還元剤、pH緩衝剤、錯化剤、添加剤、分散助剤などを加えることができる。
(2-1-4.還元剤)
 還元剤としては、次亜りん酸塩、亜りん酸塩、水素化ホウ素化合物、ジメチルアミンボラン、ヒドラジン、ホルマリン、三塩化チタンなどを用いることができる。
(2-1-5.pH緩衝剤)
 pH緩衝剤としては、蟻酸、酢酸、プロピオン酸などのモノカルボン酸、またはそれらのアルカリ塩、シュウ酸、コハク酸、マロン酸などのジカルボン酸、またはそれらのアルカリ塩、グリコール酸、酒石酸、クエン酸などのオキシカルボン酸、またはそれらのアルカリ塩、ホウ酸、炭酸、亜硫酸などの無機酸、またはそれらのアルカリ塩などを用いることができる。
(2-1-6.錯化剤)
 めっき液中で金属イオンを安定に存在させるための錯化剤としては、クエン酸、ヒドロキシ酢酸、乳酸、シュウ酸、コハク酸、マロン酸、サリチル酸、グリシン、フタル酸、酒石酸、リンゴ酸、タルトロン酸、グルコン酸、シアン酸、チオシアン酸、またはそれらのアルカリ塩、アンモニアなどを用いることができる。
(2-1-7.添加剤)
 めっき膜の平滑化、光沢化、ピット発生の防止、内部応力の緩和、アノードの溶解性向上などを目的として加える添加剤としては、ポリエチレングリコールやサッカリン、パラトルエンスルホンアミド、1,5-ナフタレンジスルホン酸塩、1,3,6-ナフタレントリスルホン酸塩、ラウリル硫酸塩などに代表される水溶性硫黄含有化合物、1,4-ブタンジオール、プロパギルアルコール、クマリン、エチレンシアンヒドリンなどに代表される不飽和結合含有有機化合物、塩化ナトリウム、塩化カリウムなどに代表される塩化物などを用いることができる。
(2-1-8.分散助剤)
 また、めっき液中に分散助剤を添加し、ケイ化クロム粒子やその他の粒子の表面に吸着させることで、粒子同士の凝集を防ぎ、液中で粒子を安定に分散させることができる。分散助剤としては、陽イオン性界面活性剤、陰イオン性界面活性剤、両性界面活性剤、非イオン性界面活性剤などを用いることができる。
(2-1-9.共存金属イオンの種類)
 また、前記電気めっき処理及び無電解めっき処理の処理液は、必須成分としてニッケルを含むが、クロム、マンガン、鉄、コバルト、銅、亜鉛、ルテニウム、ロジウム、パラジウム、銀、カドミウム、インジウム、スズ、レニウム、オスミウム、イリジウム、白金、金、水銀、タリウム、鉛、チタン、バナジウム、イットリウム、ジルコニウム、ニオブ、モリブデン、ハフニウム、タンタル、タングステン、アルミニウム、ガリウム、ゲルマニウム、アンチモン、ビスマスなどの金属イオンや金属錯イオンを含んでも問題はない。
(2-1-10.めっき条件)
 電気めっき処理及び無電解めっき処理の条件は、とくに制限されるものではない。Niイオンを始めとする各成分の濃度、めっき液温度、めっき時間、pH、電流密度、分散粒子濃度、攪拌条件、還元剤の種類、濃度、など、マトリックスとしてNiを析出することができれば問題はない。
(2-1-11.Ni濃度)
 Ni溶液中でのNiイオン濃度は、とくに限定されるものではないが、0.3~600g/Lの範囲であることが好ましい。より好ましくは、6~180g/Lの範囲である。0.3g/L未満では正常なめっき膜を形成させることが困難であり、また、600g/Lを超えると、Niイオンとして安定に溶解できる限度を過ぎて液中でNi化合物が析出するため、経済的に無駄である。
(2-1-12.Cr、Siの供給源)
 Cr及びSiの供給源としては、CrSi、CrSi、CrSi、CrSi及びCrSiの中から選ばれる少なくとも1種のケイ化クロムの粒子であることが好ましい。供給源として、金属CrやSiの単独微粒子を使用することも考えられるが、溶液中での分散安定性や、複合めっき処理後の加熱処理における分解、固溶、合金化の容易さから、前記ケイ化クロムが好適である。
(2-1-13.ケイ化クロム粒子の粒径)
 前記ケイ化クロム粒子の粒径は、とくに限定されるものではないが、Niマトリックス中に共析される粒子の粒径は長径で100μm以下であることが好ましく、より好ましくは20μm以下であり、さらに好ましくは5μm以下である。共析粒子の長径が100μmを超えた場合には、Niマトリックス中での分解、固溶に長時間を要するため、生産性が低下し経済的に好ましくない。尚、下限値は特に限定されないが、例えば0.1μmである。
(2-1-14.ケイ化クロム粒子の分散量)
 Ni溶液中でのケイ化クロムの分散濃度は、とくに限定されるものではないが、10~2000g/Lの範囲が好ましい。より好ましくは50~1500g/Lの範囲であり、さらに好ましくは100~1000g/Lの範囲である。10g/L未満の分散濃度では、1重量%以上のCrを含有させることが困難であり、また、2000g/Lを超えた場合には、溶液に対する粒子の量が多すぎて安定に分散することが難しくなる。
(2-1-15.他分散粒子の混合)
 また、本発明においては、ケイ化クロム粒子と他の分散粒子をめっき液に添加し、マトリックスに同時に析出させても、何ら問題はない。例えば、Al、Cr、Cr、TiO、TiN、ZrO、ZrC、Si、WC、BN、ダイヤモンドなどの粒子を共析させることで、耐食性のみならず、耐摩耗性、撥水性、接着性、自己潤滑性などの機能を複合的に発現させることが可能である。
(2-1-16.めっき槽、攪拌条件)
 めっき槽の条件及びめっき槽内の攪拌条件は、前記ケイ化クロム粒子が、液中で十分に分散できる方法であれば、とくに限定されるものではない。例を挙げるとすれば、ポンプによる液循環法、プロペラ攪拌法、アップフロー法、プレートポンプ法、エアー攪拌法、ワーク回転法、沈降共析法、ブラシめっき法などが好適である。
{2-2.加熱工程}
(2-2-1.加熱温度(ケイ化クロムの固溶条件))
 Niマトリックスに共析させたケイ化クロム粒子は、600℃以上の温度で加熱処理することにより分解、固溶させるが、より好ましくは700~1300℃の温度範囲であり、さらに好ましくは800~1100℃の温度範囲である。600℃未満ではケイ化クロム粒子を50%以上分解、固溶させることができず、また、600~700℃では50%以上分解、固溶させることはできるが、長時間を要するため経済的ではない。また、1300℃を超えても分解、固溶させることは可能であるが、加熱に要するエネルギーが大きく経済的に好ましくない。
(2-2-2.加熱時間(ケイ化クロムの固溶条件))
 ケイ化クロム粒子を、分解、固溶させるための加熱時間は、とくに限定されるものではない。好ましい加熱時間は、加熱温度にもよるが、0.5秒~48時間の範囲であり、より好ましくは1秒~24時間の範囲である。0.5秒未満では、ケイ化クロム粒子の分解、固溶が十分に進まない。また、48時間を超えても分解、固溶させることは可能であるが、温度保持に要するエネルギーが大きくなり経済的に好ましくない。
(2-2-3.加熱温度(鉄系基材の場合))
 基材として鉄系材料を用い、その表面に耐食合金コーティング膜を形成させる場合、600℃以上の温度で加熱処理することが好ましい。より好ましくは700~1100℃の温度範囲であり、さらに好ましくは800~1000℃の温度範囲である。600℃未満では、めっき膜からのNiと基材からのFeが十分に相互拡散できないため、密着性を強化することができない。また、1100℃を超えても、NiとFeの相互拡散層の形成は可能であるが、加熱に要するエネルギーが大きく経済的に無駄である。
(2-2-4.加熱時間(鉄系基材の場合))
 前記、鉄系基材の表面に主にNiとFeの相互拡散層を形成させるための加熱時間は、とくに限定されるものではない。好ましい加熱時間は加熱温度にもよるが、0.5秒~48時間の範囲であり、より好ましくは1秒~24時間の範囲である。0.5秒未満では拡散が十分に進まず、また48時間を超えた場合には、拡散層は形成されるが、温度保持に要するエネルギーが大きくなり経済的に好ましくない。
(2-2-5.加熱雰囲気)
 加熱処理時の雰囲気は、とくに限定されるものではないが、Ni-Cr-Si合金の形成を促進するということで、5×10-2Pa以下の真空状態、窒素ガス雰囲気、Arガス雰囲気、Heガス雰囲気、水素ガス雰囲気、あるいは高温塩浴内のいずれかが望ましい。
(2-2-6.加熱方法)
 熱処理方法は、とくに限定されるものではなく、加熱雰囲気炉、溶融塩浴、加圧熱処理、通電熱処理のほか、高周波誘導加熱を利用した高周波焼入れとの組み合せを採用することもできる。
 とくに、鉄系基材に対して、高周波誘導加熱法を採用した場合、鋼材の焼入れ(高強度化)とともに、ケイ化クロム粒子の分解、固溶(耐食性付与)、主にNiとFeの相互拡散層の形成(密着性付与)、及び合金コーティング膜表面のアモルファス化(耐食性強化)により、各種の機能を同時に発現させることが可能である。また、高周波加熱では、加熱時間を短くできる利点があるため、Al及びその合金、Mg及びその合金、Cu及びその合金、Zn及びその合金など、比較的に低融点の基材に対して有効である。
 また、600℃以上の高温環境下で使用する部材については、複合めっき処理後に前記のような加熱処理を施さなくても、使用環境の熱を利用することで、良好な耐食合金コーティング膜を形成させることが可能である。
〈3.その他〉
 本発明における、耐食合金コーティング膜の形成方法において、その処理工程はとくに限定されないが、例えば、脱脂→水洗→酸洗→水洗→(Niストライク処理)→Ni/ケイ化クロム複合めっき→加熱処理の順で、耐食合金コーティング膜を形成させることができる。
 また、予め複合めっき膜や合金コーティング膜を厚く形成させておき、寸法を調整する目的で複合めっき処理後や加熱処理後に研磨し、膜厚をコントロールすることも可能である。
≪合金コーティング膜≫
〈1.各成分の比率〉
(1-1.Ni含有比率)
 本発明での耐食合金コーティング膜におけるNiの含有比率は、膜の全重量を基準として10~98重量%であり、好ましくは20~90重量%であり、より好ましくは30~80重量%の範囲である。10重量%未満では、固溶状態を維持することが困難となり、耐食性や耐酸化性が十分に発揮されない恐れがある。また、98重量%を超えると、CrやSiの含有比率が低下し、十分な耐食性を発揮することが困難になり好ましくない。尚、下記で説明するように、相互拡散層が形成されている場合には、当該相互拡散層も合金コーティング膜の一部である。この場合、Ni含有比率のみならず、以下のCr含有比率やSi含有比率についても、相互拡散層での含有比率と相互拡散層上の層での含有比率とで異なり得る。但し、本明細書で規定する含有比率は、膜全体(すなわち、相互拡散層+相互拡散層上の層)での平均値である。
(1-2.Cr含有比率)
 本発明での耐食合金コーティング膜におけるCrの含有比率は、膜の全重量を基準として1~50重量%であり、好ましくは5~40重量%であり、より好ましくは10~30重量%の範囲である。1重量%未満では、クロムの不働態化による防食効果が小さく、腐食環境下で十分に耐えることが難しい。また、50重量%を超えても、耐食性は発揮されるが、その効果は飽和し、また、靭性が低下することで加熱処理後の加工が困難になり好ましくない。
(1-3.Si含有比率)
 本発明での耐食合金コーティング膜におけるSiの含有比率は、膜の全重量を基準として0.1~30重量%であり、好ましくは0.5~20重量%であり、より好ましくは1~15重量%の範囲である。0.1重量%未満では、防食効果および耐酸化性能が低下し、腐食環境下や高温環境下で十分に耐えることが難しい。また、30重量%を超えても、耐食性および耐酸化性は発揮されるが、その効果は飽和し、また、靭性が低下することで加熱処理後の加工が困難になり好ましくない。
〈2.膜厚範囲〉
 耐食合金コーティング膜の厚さは、0.1~1000μm必要であり、好ましくは5~500μmであり、より好ましくは10~200μmである。尚、鉄系材料のように相互拡散層が形成される場合には、当該相互拡散層もコーティング膜の一部である。即ち、耐食合金コーティング層の膜厚は、当該相互拡散層を含む膜厚である。0.1μm未満では腐食物質に対する遮蔽効果が小さくなり、十分な耐食性を発揮できない。また、1000μmを超えても、耐食効果が飽和するため経済的に無駄である。ここで、コーティング膜厚は、「加熱処理後の厚さ」を指し、めっき直後の膜厚と必ずしも一致しない。特に、鉄系基材のように、加熱処理により原子が相互拡散する材料を採用した場合には、加熱処理により相互拡散層が形成される結果、複合めっき処理にて形成された膜厚よりも太る。
〈3.ケイ化クロム粒子の分解、固溶度〉
 本発明でのNi-Cr-Si合金コーティング膜において、ケイ化クロム粒子は50%以上分解、固溶していることが好ましい。より好ましくは80%以上であり、さらに好ましくは95%以上である。50%未満では、マトリックスと未分解粒子との境界部が多数存在するため、その部分から腐食が進行しやすくなり十分な防食効果を得ることができない。また、ケイ化クロム粒子が95%以上分解、固溶していれば、耐食性および耐酸化性の効果は飽和する。
〈4.その他〉
 複合めっきでは、還元剤、pH緩衝剤、錯化剤、レベリング剤、分散助剤などを添加するため、コーティング膜に不純物として、水素H、ホウ素B、炭素C、窒素N、酸素O、りんP、硫黄Sなどの元素が取り込まれる可能性があるが、コーティング膜中において、これら元素の合計が25重量%以下であることが好ましく、より好ましくは15重量%以下である。
 酸素Oに関しては加熱処理時の酸化により、取り込まれる場合もあるが、コーティング膜中のSiやCrと結合し、化学的に安定なSiOやCrを形成するので、耐食性が大きく低下するということはない。
≪相互拡散層(鉄系基材の場合)≫
 前述のように、鉄系基材の場合には、耐食合金コーティング膜の一部として、NiとFeの相互拡散層が形成される。ここで、このNiとFeの相互拡散層は、50nm以上の厚さであることが好ましく、より好ましくは1μm以上の厚さである。相互拡散層の厚さが50nm未満であっても、耐食性に何ら問題を生じることはないが、例えば、各種摺動部品など、合金コーティング膜の耐食性とともに、基材との強力な密着性を要求されるような品物に適用する場合、その効果を発現することが難しくなる。尚、上限値は特に限定されないが、例えばコーティング膜厚に対して80%である。ここで、本発明における「相互拡散層」とは、合金コーティング膜内において、めっき膜成分(例えば、Ni、Cr、Siなど)の一部と、金属材料中の元素(例えば、Fe、Al、C、Nなど)の一部が共存して層形成している部分を指し、(金属材料元素の存在量)/(めっき膜成分元素の含有量 + 金属材料元素の存在量)が20~80重量%である層を意味する。
≪他表面処理膜との組み合わせ≫
 また、本発明による複合めっき後の加熱処理で悪影響を及ぼさないのであれば、他のめっき膜や表面処理膜と組み合わせ、複合的な機能を発現させることもできる。例えば、本発明による複合めっき後に、Cr粒子を分散させたCo水溶液中でめっき処理を行い、更に900℃の加熱処理を所定時間実施することで、優れた耐食性と高温耐摩耗性を兼ね備えた合金コーティング膜を得ることが可能である。
≪発明対象部材≫
 本発明の耐食合金コーティング膜は、燃料電池用セパレータ、焼却炉ダンパー、ダクト、射出成形機用シリンダ、押出成形機用シリンダ、船舶部品、海洋・橋梁構造物パーツ、化学プラント部品、酸洗用タンク、自動車用外板、ポンプ軸、ケーシング、インペラー、ローター、タービン軸、タービン羽根、回転板、整流板、スクリュー、配管、バルブ、ノズル、ボルト又はナット、或いはステンレス製蒸発・濃縮装置のディストリビューター、ヒーティングエレメント又は蒸発缶体などに代表される金属材料に対して有用である。
 このように、本発明を用いることで、各種金属材料の表面に、比較的簡単な方法で耐食性に優れた合金コーティング膜を形成させることが可能であり、広範な用途に適用することができる。
 以下に、実施例を比較例とともに挙げ、本発明の耐食合金コーティング膜の効果を具体的に説明する。なお、実施例で使用した金属材料、脱脂剤、表面調整剤及び複合めっき処理に用いた薬剤は、市販されている材料や試薬の中から任意に選定したものであり、本発明の耐食合金コーティング膜及びその形成方法の実際の用途を限定するものではない。
 ケイ化クロム粒子については、目的の組成比となるよう、市販のCr粒子及びSi粒子をカーボンるつぼ内で混合し、1500℃の水素ガス雰囲気中で固相拡散させ作製した。その後、必要に応じてスタンプミル、ボールミル、乳鉢等を用いて粉砕し、所定粒径のケイ化クロム粒子を得た。
 被処理材としては、比較例1、比較例2を除き、次の2種類の鋼材を使用した。
・「コーティング膜の厚さ」、「相互拡散層の厚さ」、「ケイ化クロム粒子の固溶度」、「耐食性」、「耐酸化性」、「コーティング膜中の成分含有量」評価用
→機械構造用炭素鋼(JIS:S45C、Φ30×厚さ4mm)
・「加工密着性」評価用
→冷延鋼板SPCC(JIS:G
3141、長さ150×幅70×厚さ0.5mm)
 板中央部Φ30mm以外の部分については、表側、裏側ともに絶縁性のマスキングを施した。
 実施例2~11及び比較例3~6は、次の処理工程でコーティング膜の形成を行った。
(式1)
Figure JPOXMLDOC01-appb-I000001
 各工程の処理条件は、とくに断りのない限り、以下の方法で実施した。
 アルカリ脱脂にはファインクリーナーE6400(日本パーカライジング株式会社製)を用い、水道水で2重量%に希釈した水溶液を60℃に加温した後、被処理材を10分間浸漬した。酸洗には5重量%の硫酸水溶液を用い、25℃に加温した後、被処理材を1分間浸漬した。複合めっき処理は、直流電源装置を用いて被処理材を陰極、Ni板を陽極とし、Niベースの複合めっき膜を形成させた。また、複合めっき処理液のpH調整には、必要に応じて塩酸もしくは水酸化ナトリウムを用いた。水切り乾燥には電気オーブンを使用し、80℃で10分間実施した。
 実施例及び比較例で得られたコーティング膜形成後の試験片について、コーティング膜の厚さ、相互拡散層の厚さ、ケイ化クロム粒子の固溶度、コーティング膜中の成分含有量、耐食性、加工性を次の方法で評価した。なお以下の表現で、「表面処理後」とは、めっき処理および加熱処理を行った後の状態を意味する。
「コーティング膜の厚さ」
 表面処理後のS45C試験片の断面を走査型電子顕微鏡(SEM)を用いて観察し、コーティング膜の厚さを求めた。
「相互拡散層の厚さ」
 表面処理後のS45C試験片の断面について前記SEMを用いて観察し、コーティング膜の下方に存在する白層部分を相互拡散層として、その厚さを求めた。
「ケイ化クロム粒子の固溶度」
 加熱処理前後におけるS45C試験片の表面を、PHILIPS製 X線回折分析装置(X’Per-MPD)を用いて測定した。X線の線源はCu-Kα線を用い、45kV,40mAで行った。加熱処理前後における各ケイ化クロム粒子の回折強度比から、ケイ化クロム粒子の固溶度を算出した。つまり、加熱処理後に粒子に起因する回折が現れなかった場合に固溶度100%とした。
「コーティング膜中の成分含有量」
 表面処理後のS45C試験片のコーティング膜断面(深さ方向全体)について、日本電子株式会社製走査型電子顕微鏡/エネルギー分散型X線分析装置(SEM JSM-6490/EDAX EDS Genesis XM2)を用いて検出元素の定量分析を実施した。電子線はタングステン熱電子放出電子銃を用い、加速電圧15kV,ビーム径60μmφで照射し、Si半導体検出器で検出した。検出した特性X線の強度を簡易定量法(ZAF法)を用いて定量値とした。より詳細には、まず、本機器を用いて定性分析を実施し、検出された元素について、それらの含有比率を算出した。図1に示すように、断面状態の上方から測定した。尚、点線枠から離れた右側や左側の方でも膜の状態は同じであることから、ある部分での元素含有比率を測定し、その値を「全重量に対しての各成分の含有量」とした。
「耐食性」
 表面処理後のS45C試験片について、全面積の半分に対して絶縁性のマスキングを施し、残りの半面積部分に厚さ20μmの電解Agめっきを形成させた。Agめっきの形成が終了した後、水洗、水切り乾燥、マスキング材の除去を行い、この試験片を耐食性試験に使用した(図2参照)。
 68%硝酸:35%塩酸=1:3(体積%)の比率で混合した初期温度30℃の王水中に、上記試験片を10分間浸漬した。10分間浸漬した後に水洗、水切り乾燥を行い、試験片を切断した。切断した試験片の断面について前記SEMを用いて観察し、コーティング膜の厚さを求めた。Agめっき下部のコーティング膜は、Agの保護作用で王水に侵食されないため、これを初期の膜厚(a)とした。また、Agめっきが施されていない部分についても膜厚(b)を測定し、減少したコーティング膜の厚さ(a-b)を求めることにより耐食性を評価した。したがって、この数値が小さいほど、耐食性が良好であることを意味する。
「耐酸化性」
 電気マッフル炉を用いて、表面処理後のS45C試験片を大気雰囲気中で1000℃、24時間加熱し、酸化増量を測定した。酸化スケールの剥離がない場合、酸化増量が少ないほど耐酸化性が良好であることを意味する。
「加工密着性」
 表面処理後のSPCC板を大気雰囲気中で300℃、1分間加熱した後、直ちに水冷し、加工密着性を評価するための折り曲げ試験に供した。この試験片について、長さ方向70mm、幅方向70mm分を万力に挟み、コーティング膜を形成させた部分がちょうど凹部及び凸部となるよう、0.3秒間で90°の折り曲げ加工を実施した。折り曲げ加工部分を金属顕微鏡で観察し、コーティング膜の剥離、亀裂の有無を確認した。評価については、以下の基準で判定した。
(評価基準)
 ○:亀裂、剥離ともになし
 △:亀裂が発生(膜の剥離なし)
 ×:膜の剥離が発生
(実施例1)
 前記酸洗→水洗まで完了した試験片を水切り乾燥し、その試験片の上に、体積基準メジアン径:1μmのCrSi粒子を5g/mの割合で均一にのせ、その上に厚さ8μmのNi箔を被せた。さらに、10kg/cmの条件で加圧しながら、真空炉を用いて1×10-5Pa、900℃の条件で2.5時間実施し、そのまま炉冷した。
(実施例2)
 前記酸洗→水洗まで完了した試験片を、次の複合めっき液(1)に浸漬し、被処理板を陰極、Ni板を陽極とし、直流電源装置により電流密度10A/dmで60分間電解し、被処理板上に複合めっき膜を形成させた。複合めっき処理後の加熱処理は、真空炉を用いて1×10-3Pa、900℃の条件で3時間実施し、そのまま炉冷した。
 複合めっき液(1)
  <液成分>
・スルファミン酸ニッケル 500g/L
・塩化ナトリウム      10g/L
・ホウ酸          35g/L
・CrSi       500g/L(体積基準メジアン径:40μm)
  <pH>    <温度>    <攪拌>
   4.5     60℃     沈降共析法
(実施例3)
 前記酸洗→水洗まで完了した試験片を、次の複合めっき液(2)に浸漬し、被処理板を陰極、Ni板を陽極とし、下波形のPRパルス法により2時間電解し、被処理板上に複合めっき膜を形成させた。複合めっき処理後の加熱処理は、Arガス雰囲気、900℃の条件で2時間実施、そのまま炉冷した。
 複合めっき液(2)
  <液成分>
・硫酸ニッケル6水和物 200g/L
・塩化ニッケル6水和物  50g/L
・ホウ酸         25g/L
・CrSi       20g/L(体積基準メジアン径:10μm)
・CrSi      20g/L(体積基準メジアン径:12.5μm)
  <pH>    <温度>    <攪拌>
   4.0     55℃     プロペラ攪拌法
(式2)
Figure JPOXMLDOC01-appb-I000002
(実施例4)
 前記酸洗→水洗まで完了した試験片を、次の複合めっき液(3)に浸漬し、被処理板を陰極、Ni板を陽極とし、直流電源装置により電流密度10A/dmで20分間電解し、被処理板上に複合めっき膜を形成させた。複合めっき処理後の加熱処理は、窒素ガス雰囲気、850℃の条件で12時間実施、そのまま炉冷した。
 複合めっき液(3)
  <液成分>
・スルファミン酸ニッケル  500g/L
・塩化ニッケル6水和物    50g/L
・ホウ酸           30g/L
・サッカリンナトリウム     5g/L
・1,4-ブタンジオール  100mg/L
・CrSi       1200g/L(体積基準メジアン径:1μm)
  <pH>    <温度>    <攪拌>
   4.5     60℃     アップフロー法
(実施例5)
 前記酸洗→水洗まで完了した試験片を、次の複合めっき液(4)に浸漬し、被処理板を陰極、Ni板を陽極とし、直流電源装置により電流密度10A/dmで120分間電解し、被処理板上に複合めっき膜を形成させた。複合めっき処理後の加熱処理は、真空炉を用いて1×10-5Pa、680℃の条件で36時間実施、そのまま炉冷した。
 複合めっき液(4)
  <液成分>
・スルファミン酸ニッケル   500g/L
・塩化ニッケル6水和物     50g/L
・ホウ酸            30g/L
・β‐ナフタレンスルホン酸
 ホルマリン縮合物ナトリウム塩 500mg/L
・メチルアルコール        1g/L
・CrSi       350g/L(体積基準メジアン径:2μm)
・CrSi     350g/L(体積基準メジアン径:4.5μm)
  <pH>    <温度>    <攪拌>
   3.8     50℃     プレートポンプ法
(実施例6)
 前記酸洗→水洗まで完了した試験片を、次の複合めっき液(5)に120分間浸漬し、被処理板上に複合めっき膜を形成させた。複合めっき処理後の加熱処理は、窒素ガス雰囲気、820℃の条件で8時間実施、そのまま炉冷した。
 複合めっき液(5)
  <液成分>
・硫酸ニッケル6水和物     50g/L
・次亜りん酸ナトリウム1水和物 15g/L
・硫酸アンモニウム       65g/L
・クエン酸3ナトリウム2水和物 60g/L
・CrSi      350g/L(体積基準メジアン径:1.5μm)
・CrSi      350g/L(体積基準メジアン径:2.5μm)
  <pH>    <温度>    <攪拌>
   12.5    80℃     エアー攪拌法
(実施例7)
 前記実施例4に記した条件で複合めっき処理まで行った後、試験片の表面を研磨し、めっき膜の厚さが4μmになるよう調整した。次に、高周波焼入れ装置を使用し、窒素ガス雰囲気中で3秒の加熱によって1050℃に到達させ直ちに水冷した。
(実施例8)
 前記実施例6に記した条件で複合めっき処理まで行った後、850℃に加温したパーカー熱処理工業株式会社製の塩浴剤〔GS660:C3=95:5(重量%)〕に3分間浸漬した。その後、180℃に加温した同社製冷却用塩浴剤AS140に1分間浸漬し、さらに水冷した。
(実施例9)
 前記酸洗→水洗まで完了した試験片を、次の複合めっき液(6)に浸漬し、被処理板を陰極、Ni板を陽極とし、直流電源装置により電流密度5A/dmで45分間電解し、被処理板上に複合めっき膜を形成させた。複合めっき処理後の加熱処理は、真空炉を用いて1×10-3Pa、900℃の条件で5時間実施し、そのまま炉冷した。
 複合めっき液(6)
  <液成分>
・スルファミン酸ニッケル 300g/L
・塩化コバルト6水和物  150g/L
・塩化ナトリウム      10g/L
・ホウ酸          35g/L
・CrSi      400g/L(体積基準メジアン径:2.5μm)
  <pH>    <温度>    <攪拌>
   4.5     60℃     プロペラ攪拌
(実施例10)
 前記実施例5に記した条件で複合めっき処理まで行った後、真空炉を用いて1×10-5Pa、650℃の条件で24時間加熱処理を実施し、そのまま炉冷した。
(実施例11)
 前記実施例4に記した条件で複合めっき処理まで行った後、試験片の表面を研磨し、めっき膜の厚さが4μmになるよう調整した。次に、高周波焼入れ装置を使用し、窒素ガス雰囲気中で1秒の加熱によって880℃に到達させ直ちに水冷した。
(比較例1)
 オーステナイト系ステンレス鋼(JIS:SUS316L、Φ30×厚さ4mm)を、60℃に加温した前記アルカリ脱脂剤ファインクリーナーE6400の2重量%水溶液に10分間浸漬し、水洗、水切り乾燥した。その後、全面積の半分に対して絶縁性のマスキングを施し、残りの半面積部分に厚さ20μmの電解Agめっきを形成させた。その後、水洗、水切り乾燥、マスキング材の除去を行い、耐食性試験に使用した。耐食性試験終了後、断面のSEM観察を実施し、Agめっきを施さなかった部分の減少厚さを求めた。
(比較例2)
 Ni基合金であるハステロイC-22相当材(三菱マテリアル株式会社製、30mm角、厚さ3mm)を、60℃に加温した前記アルカリ脱脂剤ファインクリーナーE6400の2重量%水溶液に10分間浸漬し、水洗、水切り乾燥した。次に、窒素ガス雰囲気、900℃の条件で2.5時間加熱処理を施し、そのまま炉冷した(溶接部の熱履歴を想定)。その後、全面積の半分に対して絶縁性のマスキングを施し、残りの半面積部分に厚さ20μmの電解Agめっきを形成させた。その後、水洗、水切り乾燥、マスキング材の除去を行い、耐食性試験に使用した。耐食性試験終了後、断面のSEM観察を実施し、Agめっきを施さなかった部分の減少厚さを求めた。
(比較例3)
 前記酸洗→水洗まで完了した試験片を、次の複合めっき液(7)に浸漬し、被処理板を陰極、Ni板を陽極とし、直流電源装置により電流密度10A/dmで30分間電解し、被処理板上に複合めっき膜を形成させた。複合めっき処理後の加熱処理は、Arガス雰囲気、900℃の条件で2時間実施、そのまま炉冷した。
 複合めっき液(7)
  <液成分>
   ・硫酸ニッケル6水和物 200g/L
   ・塩化ニッケル6水和物  50g/L
   ・ホウ酸         25g/L
  <pH>    <温度>    <攪拌>
   4.0     55℃     プロペラ攪拌法
(比較例4)
 前記実施例4に記した条件で複合めっき処理まで行った後、試験片の表面を研磨し、めっき膜の厚さが4μmになるよう調整した。次に、電気マッフル炉を使用し、1000℃の大気雰囲気中で48時間加熱し、そのまま炉冷した。
(比較例5)
 前記実施例4に記した条件で複合めっき処理まで行った後、試験片の表面を研磨し、めっき膜の厚さが4μmになるよう調整した。次に、真空炉を用いて1×10-3Pa、900℃の条件で30秒間加熱処理を実施し、そのまま炉冷した。その後、試験片の表面を再研磨し、めっき膜の厚さが0.05μmになるよう調整した。
(比較例6)
 前記酸洗→水洗まで完了した試験片を、次の複合めっき液(8)に浸漬し、被処理板を陰極、Ni板を陽極とし、直流電源装置により電流密度10A/dmで60分間電解し、被処理板上に複合めっき膜を形成させた。複合めっき処理後の加熱処理は、真空炉を用いて1×10-3Pa、900℃の条件で5時間実施し、そのまま炉冷した。
 複合めっき液(8)
  <液成分>
・スルファミン酸ニッケル 500g/L
・塩化ナトリウム      10g/L
・ホウ酸          35g/L
・Cr        500g/L(体積基準メジアン径:1μm)
  <pH>    <温度>    <攪拌>
   4.5     60℃     プロペラ攪拌法
 第1表及び第2表に、実施例及び比較例で得られたコーティング膜の成分含有率、合金コーティング膜厚、相互拡散層の厚さ、ケイ化クロム粒子の固溶度、共析されたケイ化クロム粒子の粒径(長径)、及び耐食性、耐酸化性、加工密着性の評価結果を示す(尚、比較例1及び2に関しては耐食性しか評価していないので総合評価せず)。ここで、第1表中の合金コーティング膜厚は、相互拡散層が形成されている場合には相互拡散層も含めた値である。また、共析された粒径は、加熱処理前の断面観察において「(縦)めっき膜厚×(横)100μm」四方の範囲を観察し、その範囲内で確認できる最小と最大の粒子径である。尚、実施例7、実施例11及び比較例4における当該径は、研磨前での測定値である。
 実施例1~9で得られた合金コーティング膜は、いずれも良好な耐食性、耐酸化性、加工密着性を有していた。また、実施例10で得られた合金コーティング膜は、ケイ化クロム粒子の固溶度が低いため、耐食性がやや劣っていたものの、優れた耐酸化性、加工密着性を有していた。更に、実施例11で得られた合金コーティング膜は、相互拡散層が形成されていなかったので加工密着性がやや劣っていたものの、優れた耐食性、耐酸化性を有していた。
 比較例1のSUS316Lや比較例2のハステロイC-22の耐食性は、一般に非常に良好といわれているが、本試験において実施例の耐食性には及ばなかった。比較例3では膜中にCr及びSiが含有されておらず、実施例に比べて耐食性、耐酸化性、加工密着性が劣っていた。比較例4のコーティング膜はCr及びNiを含んではいるが、十分な固溶合金化が進む前に酸化の影響を受けたため、Cr及びNiの含有比率が少なく、耐食性、加工密着性が劣っていた。また、加熱時に基材中のFeが激しく酸化されたため、コーティング膜中に多くの酸化鉄が生成しており、基材とコーティング膜の界面では一部膜が浮いていた。比較例5のコーティング膜では膜厚が薄いため、十分な耐食性、耐酸化性を発揮することができなかった。比較例6のコーティング膜はCr系の粒子を共析しているが、Siを含んでおらず、またこの粒子が加熱処理で固溶しないため、実施例に比べて明らかに性能が劣っていた。
 以上の結果から、本発明により得られる合金コーティング膜及びその形成方法を適用することで、従来技術と比較して優れた耐食性、耐酸化性及び加工密着性が得られることが明らかである。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004

Claims (8)

  1.  金属材料の表面に形成される膜であって、必須成分として、Ni、Cr、Siを含み、さらにNiの含有比率が膜の全重量を基準として10~98重量%であり、Crの含有比率が当該膜の全重量を基準として1~50重量%であり、Siの含有比率が当該膜の全重量を基準として0.1~30重量%であり、且つ0.1~1000μmの厚みを有する耐食合金コーティング膜。
  2.  請求項1に記載の耐食合金コーティング膜が形成された金属材料。
  3.  金属材料が鉄系基材であることを特徴とする、請求項2に記載の金属材料。
  4.  鉄系基材との界面で厚さ50nm以上の拡散層が耐熱合金コーティング膜の一部として形成されていることを特徴とする、請求項3に記載の金属材料。
  5.  Ni成分とCrSi、CrSi、CrSi、CrSi及びCrSiの中から選ばれる少なくとも1種のケイ化クロム粒子とから成る混合体を金属材料上で同時に加熱して耐食合金コーティング膜を形成させる工程を含む、必須成分として、Ni、Cr、Siを含み、さらにCrの含有比率が当該膜の全重量を基準として1~50重量%であり、Siの含有比率が当該膜の全重量を基準として0.1~30重量%であり、且つ0.1~1000μmの厚みを有する耐食合金コーティング膜が表面に形成された金属材料の製造方法。
  6.  Niマトリックスに、CrSi、CrSi、CrSi、CrSi及びCrSiの中から選ばれる少なくとも1種のケイ化クロム粒子が共析されている複合めっき膜を加熱処理して耐食合金コーティング膜を形成させる工程を含む、必須成分として、Ni、Cr、Siを含み、さらにCrの含有比率が当該膜の全重量を基準として1~50重量%であり、Siの含有比率が当該膜の全重量を基準として0.1~30重量%であり、且つ0.1~1000μmの厚みを有する耐食合金コーティング膜が表面に形成された金属材料の製造方法。
  7.  前記複合めっき膜を600℃以上の温度で加熱処理することにより、Niマトリックスに共析させたケイ化クロム粒子を50%以上分解、固溶させることを特徴とする、請求項6に記載の方法。
  8.  請求項2~4のいずれか一項に記載の金属材料を有する、燃料電池用セパレータ、焼却炉ダンパー、ダクト、射出成形機用シリンダ、押出成形機用シリンダ、船舶部品、海洋・橋梁構造物パーツ、化学プラント部品、酸洗用タンク、自動車用外板、ポンプ軸、ケーシング、インペラー、ローター、タービン軸、タービン羽根、回転板、整流板、スクリュー、配管、バルブ、ノズル、ボルト又はナット、或いはステンレス製蒸発・濃縮装置のディストリビューター、ヒーティングエレメント又は蒸発缶体。
PCT/JP2012/060449 2011-04-19 2012-04-18 金属材料用耐食合金コーティング膜及びその形成方法 WO2012144518A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/112,153 US20140030635A1 (en) 2011-04-19 2012-04-18 Corrosion-resistant alloy coating film for metal materials and method for forming same
CN201280017954.2A CN103459681B (zh) 2011-04-19 2012-04-18 金属材料用耐腐蚀合金涂膜及其形成方法
EP12774353.2A EP2700738B1 (en) 2011-04-19 2012-04-18 Corrosion-resistant alloy coating film for metal materials and method for forming same
KR1020137026737A KR101437806B1 (ko) 2011-04-19 2012-04-18 금속 재료용 내식 합금 코팅막 및 그의 형성 방법
US14/666,154 US20150197857A1 (en) 2011-04-19 2015-03-23 Corrosion-resistant alloy coating film for metal materials and method for forming same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-092928 2011-04-19
JP2011092928A JP5412462B2 (ja) 2011-04-19 2011-04-19 金属材料用耐食合金コーティング膜及びその形成方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/112,153 A-371-Of-International US20140030635A1 (en) 2011-04-19 2012-04-18 Corrosion-resistant alloy coating film for metal materials and method for forming same
US14/666,154 Division US20150197857A1 (en) 2011-04-19 2015-03-23 Corrosion-resistant alloy coating film for metal materials and method for forming same

Publications (1)

Publication Number Publication Date
WO2012144518A1 true WO2012144518A1 (ja) 2012-10-26

Family

ID=47041624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060449 WO2012144518A1 (ja) 2011-04-19 2012-04-18 金属材料用耐食合金コーティング膜及びその形成方法

Country Status (6)

Country Link
US (2) US20140030635A1 (ja)
EP (1) EP2700738B1 (ja)
JP (1) JP5412462B2 (ja)
KR (1) KR101437806B1 (ja)
CN (1) CN103459681B (ja)
WO (1) WO2012144518A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9803283B1 (en) * 2013-10-18 2017-10-31 Hrl Laboratories, Llc Method of electroless deposition of aluminum or aluminum alloy, an electroless plating composition, and an article including the same

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10246778B2 (en) * 2013-08-07 2019-04-02 Macdermid Acumen, Inc. Electroless nickel plating solution and method
CN104207422A (zh) * 2014-10-11 2014-12-17 江苏宏达拉链制造有限公司 一种耐腐蚀不锈钢拉链
JP6015880B1 (ja) * 2015-01-29 2016-10-26 Jfeスチール株式会社 固体高分子形燃料電池のセパレータ用ステンレス鋼板
CN105114426A (zh) * 2015-07-15 2015-12-02 江苏永昊高强度螺栓有限公司 一种耐腐蚀螺栓
US9627365B1 (en) * 2015-11-30 2017-04-18 Taiwan Semiconductor Manufacturing Company, Ltd. Tri-layer CoWoS structure
WO2017187215A1 (en) * 2016-04-29 2017-11-02 Arcelormittal Carbon steel sheet coated with a barrier coating
JP6707994B2 (ja) * 2016-05-31 2020-06-10 日本製鉄株式会社 磁気シールド鋼板およびその製造方法
JP6811041B2 (ja) * 2016-07-04 2021-01-13 上村工業株式会社 無電解白金めっき浴
JP2018123847A (ja) * 2017-01-30 2018-08-09 Kyb株式会社 緩衝器および摺動部材の製造方法
KR102025941B1 (ko) * 2018-01-08 2019-09-26 주식회사 티에스피 선박엔진용 베어링의 도금장치
US11041252B2 (en) 2018-03-22 2021-06-22 Honeywell International Inc. Deposition of wear resistant nickel-tungsten plating systems
CN109082661A (zh) * 2018-09-17 2018-12-25 安徽博耐克摩擦材料有限公司 一种用于金属刹车盘的耐腐蚀金属陶瓷镀层材料
KR20210092271A (ko) 2018-12-27 2021-07-23 닛폰세이테츠 가부시키가이샤 Ni 도금 강판 및 Ni 도금 강판의 제조 방법
KR102201135B1 (ko) * 2019-02-27 2021-01-12 주식회사 수영프리텍 내부식성 및 수명 향상을 위한 금속 체결구의 표면 도금방법
US11205783B2 (en) * 2019-07-31 2021-12-21 Robert Bosch Gmbh Fuel cell bipolar plate including corrosion-resistant ferric oxide layer
RU2713771C1 (ru) * 2019-10-23 2020-02-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Елецкий государственный университет им. И.А. Бунина" Электролит для осаждения сплава Cr-V
JP6805320B1 (ja) * 2019-11-20 2020-12-23 浅井産業株式会社 多層皮膜、その製造方法、及び多層皮膜が被覆された機械部材
CN111235561A (zh) * 2019-12-23 2020-06-05 江苏大学 一种高性能Pb/Al涂层的制备方法
CN111187508B (zh) * 2020-02-25 2021-12-31 江苏卧尔康家居用品有限公司 一种耐热性聚氨酯弹性体的制备方法
CN112323031B (zh) * 2020-10-16 2021-10-08 吉林大学 一种高硬耐腐蚀涂层及其制备方法和应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134107A (ja) * 1984-07-16 1986-02-18 ベー・ベー・ツエー・アクチエンゲゼルシヤフト・ブラウン・ボヴエリ・ウント・コンパニイ ガスタービン羽根の基体上の耐蝕層およびそれを設ける方法
JPS61179900A (ja) * 1984-10-05 1986-08-12 ビ−エイジエイ リミテツド 金属保護被膜の製法
JPH05132777A (ja) 1991-04-17 1993-05-28 L'air Liquide 金属基板表面に化学的蒸着により珪素拡散層又は珪素オーバレーコーテイングを形成する方法
JPH05179481A (ja) 1991-12-27 1993-07-20 Hori Kinzoku Hyomen Shiyori Kogyo Kk 高耐食性亜鉛−コバルトめっき鋼材の製造方法
JPH0665751A (ja) 1992-08-20 1994-03-08 Showa Denko Kk 無電解複合めっき浴及びめっき方法
JPH06346292A (ja) * 1993-06-08 1994-12-20 Shimizu:Kk 複合めっき法
JPH09504341A (ja) * 1994-07-22 1997-04-28 プラクセアー エス テー テクノロジー,インク. 保護被覆
JPH09504832A (ja) * 1994-07-22 1997-05-13 プラクセアー エス テー テクノロジー,インク. 保護被覆
JP2004209389A (ja) 2002-12-27 2004-07-29 Goro Yamauchi 抗菌防汚・耐食材料
JP2005281748A (ja) * 2004-03-29 2005-10-13 Jfe Steel Kk 鋼板熱処理炉用ロールの表面被覆材料
JP2007262577A (ja) 2006-03-01 2007-10-11 Nippon Paint Co Ltd 金属表面処理用組成物、金属表面処理方法、及び金属材料

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH599352A5 (ja) * 1976-10-15 1978-05-31 Bbc Brown Boveri & Cie
FR2617510B1 (fr) * 1987-07-01 1991-06-07 Snecma Procede de codeposition electrolytique d'une matrice nickel-cobalt et de particules ceramiques et revetement obtenu
KR960013481B1 (ko) * 1993-06-29 1996-10-05 니홍고오깡 가부시키가이샤 표면처리강판 및 그 제조방법
US7291231B2 (en) * 2002-05-17 2007-11-06 Metglas, Inc. Copper-nickel-silicon two phase quench substrate

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134107A (ja) * 1984-07-16 1986-02-18 ベー・ベー・ツエー・アクチエンゲゼルシヤフト・ブラウン・ボヴエリ・ウント・コンパニイ ガスタービン羽根の基体上の耐蝕層およびそれを設ける方法
JPS61179900A (ja) * 1984-10-05 1986-08-12 ビ−エイジエイ リミテツド 金属保護被膜の製法
JPH05132777A (ja) 1991-04-17 1993-05-28 L'air Liquide 金属基板表面に化学的蒸着により珪素拡散層又は珪素オーバレーコーテイングを形成する方法
JPH05179481A (ja) 1991-12-27 1993-07-20 Hori Kinzoku Hyomen Shiyori Kogyo Kk 高耐食性亜鉛−コバルトめっき鋼材の製造方法
JPH0665751A (ja) 1992-08-20 1994-03-08 Showa Denko Kk 無電解複合めっき浴及びめっき方法
JPH06346292A (ja) * 1993-06-08 1994-12-20 Shimizu:Kk 複合めっき法
JPH09504341A (ja) * 1994-07-22 1997-04-28 プラクセアー エス テー テクノロジー,インク. 保護被覆
JPH09504832A (ja) * 1994-07-22 1997-05-13 プラクセアー エス テー テクノロジー,インク. 保護被覆
JP2004209389A (ja) 2002-12-27 2004-07-29 Goro Yamauchi 抗菌防汚・耐食材料
JP2005281748A (ja) * 2004-03-29 2005-10-13 Jfe Steel Kk 鋼板熱処理炉用ロールの表面被覆材料
JP2007262577A (ja) 2006-03-01 2007-10-11 Nippon Paint Co Ltd 金属表面処理用組成物、金属表面処理方法、及び金属材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2700738A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9803283B1 (en) * 2013-10-18 2017-10-31 Hrl Laboratories, Llc Method of electroless deposition of aluminum or aluminum alloy, an electroless plating composition, and an article including the same
US10711351B1 (en) 2013-10-18 2020-07-14 Hrl Laboratories, Llc Electroless plating composition for electroless deposition of aluminum or aluminum alloy and article including electroless deposited aluminum layer

Also Published As

Publication number Publication date
CN103459681B (zh) 2015-03-04
KR20130132646A (ko) 2013-12-04
CN103459681A (zh) 2013-12-18
EP2700738B1 (en) 2017-01-04
US20150197857A1 (en) 2015-07-16
JP2012224908A (ja) 2012-11-15
KR101437806B1 (ko) 2014-09-03
JP5412462B2 (ja) 2014-02-12
EP2700738A4 (en) 2014-11-19
US20140030635A1 (en) 2014-01-30
EP2700738A1 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5412462B2 (ja) 金属材料用耐食合金コーティング膜及びその形成方法
Srinivasan et al. Studies on development of electroless Ni–B bath for corrosion resistance and wear resistance applications
KR101261454B1 (ko) 무인 타입의 무전해 니켈 도금액 및 이를 이용한 무전해 도금 방법
JP5251078B2 (ja) 容器用鋼板とその製造方法
CN109477196B (zh) 用于热镀锌的方法和助熔剂
TWI374198B (ja)
JP4856802B2 (ja) 金属表面処理方法
JP5157487B2 (ja) 容器用鋼板とその製造方法
WO2008029953A1 (en) AQUEOUS TREATMENT LIQUID FOR Sn-PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE AND COATING ADHESION, AND METHOD FOR PRODUCING SURFACE-TREATED STEEL SHEET
JP5186814B2 (ja) 容器用鋼板とその製造方法
Sandu et al. A comparative study on surface structure of thin zinc phosphates layers obtained using different deposition procedures on steel
CN1896309A (zh) 压铸铝合金直接化学镀镍工艺
JP5336742B2 (ja) 亜鉛又は亜鉛合金めっき上に加熱耐食性の良い3価クロム化成処理皮膜を形成するための化成処理方法
JP4519727B2 (ja) 耐摩耗性チタン材
CN111826598A (zh) 抗磨损耐腐蚀锌铝镁镀层钢板及其制备方法
Ajibola et al. Effect of Processing Parameters on the Protective Quality of Electroless Nickel‐Phosphorus on Cast Aluminium Alloy
US7641781B2 (en) Method for coating a substrate
YILDIZ et al. A review on the surface treatments used to create wear and corrosion resistant steel surfaces
JP7400766B2 (ja) 亜鉛系電気めっき鋼板およびその製造方法
JP5186815B2 (ja) 容器用鋼板
JP2011236471A (ja) 複合電気亜鉛めっき鋼板及びその製造方法
Dimitrova Study of the Possibilities for Electroless Nickel-Cobalt Coating on Titanium Alloys for Electrical Spark Deposition
KR100569206B1 (ko) 텅스텐-철 합금 무전해도금액 및 그를 이용한 도금방법
Correa et al. Activation, Initiation, and Growth of Electroless Nickel Coatings
Saravanan et al. Introduction to Surface Coatings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774353

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137026737

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14112153

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012774353

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012774353

Country of ref document: EP