WO2012144156A1 - 有機elディスプレイパネル及びその製造方法 - Google Patents

有機elディスプレイパネル及びその製造方法 Download PDF

Info

Publication number
WO2012144156A1
WO2012144156A1 PCT/JP2012/002459 JP2012002459W WO2012144156A1 WO 2012144156 A1 WO2012144156 A1 WO 2012144156A1 JP 2012002459 W JP2012002459 W JP 2012002459W WO 2012144156 A1 WO2012144156 A1 WO 2012144156A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
light emitting
emitting layer
organic light
pixel electrode
Prior art date
Application number
PCT/JP2012/002459
Other languages
English (en)
French (fr)
Inventor
修平 中谷
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/881,725 priority Critical patent/US8829509B2/en
Priority to JP2012534472A priority patent/JP5096648B1/ja
Priority to EP12774563.6A priority patent/EP2618638A4/en
Priority to CN201280001748.2A priority patent/CN102960068B/zh
Publication of WO2012144156A1 publication Critical patent/WO2012144156A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present invention relates to an organic EL display panel and a manufacturing method thereof.
  • An organic EL display panel is a display panel having a light emitting element utilizing electroluminescence of an organic compound.
  • the organic EL display panel has an EL device including a cathode and an anode, and an electroluminescent organic compound layer disposed between the two electrodes.
  • This organic compound that emits light can be broadly classified into a combination of a low molecular organic compound (host material and dopant material) and a high molecular organic compound.
  • Examples of the polymer organic compound that emits light include polyparaphenylene vinylene called PPV and derivatives thereof.
  • An organic EL display panel using an electroluminescent polymer organic compound can be driven at a relatively low voltage and has low power consumption.
  • an organic compound that emits electroluminescence can be made into ink by dissolving it in an organic solvent.
  • a high molecular organic compound can be dissolved in an aromatic organic solvent such as xylene or toluene to form an ink.
  • an organic compound that emits electroluminescence as an ink, an organic light emitting layer can be formed by a printing method such as an ink jet method. For this reason, it is said that it is easy to cope with the enlargement of the screen of the display panel, and the research and development is being actively conducted now.
  • the polymer organic compound that emits electroluminescence is arranged on each pixel by using a printing technique such as inkjet depending on the color of the emitted light (Red, Green, or Blue).
  • a printing technique such as inkjet depending on the color of the emitted light (Red, Green, or Blue).
  • a polymer ink containing a polymer organic compound and a solvent is ejected from an inkjet head and printed on each pixel.
  • the first method is to provide partition walls (banks) that define pixels, and accurately print polymer ink on each pixel. Thereby, the intrusion of ink into adjacent pixels is suppressed (see, for example, Patent Document 1).
  • each pixel arranged in a line is defined by a bank for each column, and polymer ink is printed in a line.
  • the counter electrode and the pixel electrode disposed on the organic light emitting layer may be short-circuited.
  • an insulating layer such as silicon oxide
  • an organic EL element in which the edge of the pixel electrode is directly covered by an insulating layer on the pixel electrode see, for example, Patent Document 4
  • the edge of the pixel electrode is directly or via a hole injection layer
  • the bank base An organic EL element covered with an insulating inorganic layer such as the above (for example, see Patent Documents 5 to 8) has been proposed.
  • a color filter for example, refer to Patent Document 9 having a bank that separates the colorant layer on the transparent substrate and a black matrix that covers the bank and the edge of the colorant layer is known.
  • FIG. 5 shows a bird's-eye view of the organic EL device 10 described in Patent Document 2.
  • An insulating layer 220 is formed so as to cover the edge of the pixel electrode 210 along both the direction along the line bank 230 and the direction orthogonal thereto.
  • 100 is a substrate
  • 240 is a second bank
  • 300 is a pixel region.
  • the second method of printing the polymer ink in a line shape including a plurality of pixels prints the polymer ink on all the pixels more easily and quickly than the first method of printing the polymer ink on each pixel. Can do. Furthermore, the film thickness uniformity of the organic light emitting layer formed in each pixel is better in the second method than in the first method.
  • the second method in which only the sides of the pixel are surrounded by banks, is usually higher in organic light emission than the first method in which the four sides of the pixels are surrounded by banks.
  • a layer can be formed.
  • the organic light emitting layer is formed by the ink jet method
  • the variation in discharge volume between nozzles is directly linked to the variation in film thickness of the organic light emitting layer.
  • the discharge to the line-shaped banks is performed from more nozzles than to discharge to the pixel-shaped banks. For this reason, there is an effect of reducing the influence of the discharge volume variation between the nozzles.
  • research on the second method is somewhat more active than these.
  • the insulating layer such as silicon oxide disposed so as to cover the edge of the pixel electrode disposed in the line bank is a base for the applied polymer ink.
  • the substrate material, the pixel electrode, and the insulating layer exist on the base.
  • unevenness may occur in the organic light emitting layer. This is because the wettability of the polymer ink differs depending on the underlying material. Therefore, it is desirable that the number of base materials is as small as possible.
  • the inorganic insulating layer such as silicon oxide is manufactured by forming an insulating film using a vacuum equipment such as a sputtering method and patterning the insulating film by a photolithography method using a photoresist method. In this method, the manufacturing process becomes long and expensive vacuum equipment is used. For this reason, a manufacturing cost will become high.
  • the insulating layer is preferably a thin film of several tens of nm. Since the insulating layer is intended to insulate the electrode, there is no problem as long as it has a certain thickness or more. However, if the insulating layer is too thick, the organic light emitting layer to be printed thereon cannot be formed uniformly. In the case where the insulating layer is formed of an organic film by applying a resin or the like instead of an inorganic film, the manufacturing cost is reduced. On the other hand, it is difficult to form with a thin film of several tens of nm. For this reason, it becomes difficult to form a uniform organic light emitting layer.
  • the present invention solves the above-mentioned conventional problems, and even when an organic light emitting layer is formed in a line-shaped region where a plurality of pixel electrodes defined by a line bank exist, an organic light emitting excellent in film thickness uniformity.
  • An object of the present invention is to provide an organic EL display panel having a layer, and having less luminance unevenness and light emission color unevenness and good display quality, and a manufacturing method thereof.
  • the first of the present invention relates to the following organic EL display panel.
  • An organic EL display comprising: an insulating layer disposed on the organic light emitting layer and covering opposite edges of adjacent pixel electrodes; and a counter electrode disposed on the organic light emitting layer and on the insulating layer panel.
  • the organic EL display panel according to (1) or (2) further including a second insulating layer that defines the plurality of pixel electrodes in a line shape on the substrate.
  • the organic EL display panel according to (3) wherein the insulating layer is not disposed on an upper surface of the second insulating layer.
  • the insulating layer is made of a resin obtained by curing a delayed curable resin composition that cures after a predetermined time when irradiated with ultraviolet light, according to any one of (1) to (4) The organic EL display panel described.
  • the second of the present invention relates to a method for producing an organic EL display panel shown below.
  • (6) forming a plurality of pixel electrodes on the substrate, forming an organic light emitting layer continuously covering two or more pixel electrodes adjacent to each other, and forming the pixel electrodes on the organic light emitting layer.
  • An organic EL display panel manufacturing method comprising: forming an insulating layer so as to cover an edge; and forming a counter electrode on the organic light emitting layer and on the insulating layer.
  • the step of forming the organic light emitting layer is a step of forming an organic light emitting layer on the substrate and the pixel electrode so as to continuously cover the substrate and the pixel electrode. Manufacturing method of organic EL display panel.
  • the method further includes the step of forming a second insulating layer that defines the pixel electrode in a line shape, and the organic light emitting layer is disposed on the substrate in a line-shaped region defined by the second insulating layer.
  • the organic EL display panel manufacturing method according to (6) or (7) wherein the organic EL display panel is formed on the substrate and the pixel electrode so as to continuously cover the pixel electrode.
  • the insulating layer material containing the delayed curable resin composition is irradiated with ultraviolet light so as to cover the edge of the pixel electrode with the insulating layer material irradiated with the ultraviolet light.
  • the method for producing an organic EL display panel according to any one of (6) to (8), wherein the organic light emitting layer is coated on the organic light emitting layer and the coated insulating layer material is cured by heat treatment.
  • the edge of the pixel electrode and the counter electrode are formed even when the organic light emitting layer is formed by coating in the region formed by the line bank. Can be prevented. Furthermore, it becomes possible to form an organic light emitting layer uniformly. Thereby, an organic EL display panel with good display quality and less luminance unevenness and emission color unevenness of the organic EL display panel can be provided at low cost.
  • Organic EL Display Panel The organic EL display panel of the present invention can be composed of one or more organic EL devices.
  • the organic EL device has a substrate, a pixel electrode, an organic light emitting layer, an insulating layer, and a counter electrode.
  • the organic EL device may further include a TFT, a planarization film, a hole injection layer, an intermediate layer, and a second insulating layer (line bank).
  • the material of the substrate differs depending on whether the organic EL device is a bottom emission type or a top emission type. In the case of the bottom emission type, the substrate is required to be transparent. Therefore, the material of the substrate may be glass or transparent resin. On the other hand, in the case of the top emission type, the substrate does not need to be transparent. The material of the substrate is arbitrary as long as it has insulating properties. “Substrate” refers to a member having a surface on which a pixel electrode is formed. The substrate includes, for example, a TFT and a planarization film.
  • the organic EL device is usually connected to a thin film transistor (drive TFT) for driving the organic EL device. Specifically, the pixel electrode of the organic EL device and the source or drain electrode of the driving TFT are connected. The organic EL device is stacked on the TFT device.
  • driver TFT thin film transistor
  • a planarizing film is formed on the TFT.
  • the planarization film relaxes unevenness on the surface of the TFT and forms a flat surface to form an organic EL device.
  • the planarization film has a contact hole for connecting the pixel electrode of the organic EL device and the source or drain electrode of the driving TFT.
  • the thickness of the planarizing film is usually 3-10 ⁇ m and can be about 5 ⁇ m.
  • a plurality of the pixel electrodes are disposed on the substrate.
  • the pixel electrode is formed on the planarization film.
  • the organic EL device is a bottom emission type, the pixel electrode is required to be a transparent electrode.
  • transparent electrodes include ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), and tin oxide are included.
  • the organic EL device is a top emission type, the pixel electrode is required to have light reflectivity.
  • Examples of such pixel electrodes include, for example, an alloy containing silver, more specifically, a silver-palladium-copper alloy (also referred to as APC), a silver-rubididium-gold alloy (also referred to as ARA), or a molybdenum-chromium alloy. (Also referred to as MoCr), nickel-chromium alloy (also referred to as NiCr), and aluminum alloy.
  • the thickness of the pixel electrode is typically 100-500 nm and can be about 150 nm.
  • the organic light emitting layer continuously covers two or more pixel electrodes adjacent to each other.
  • the organic light emitting layer may directly cover the substrate and the pixel electrode, or may cover another layer.
  • the organic light emitting layer covers the surface of the substrate excluding the portion where the pixel electrode is disposed, on another layer such as a pixel regulating layer made of an inorganic material such as glass or an intermediate layer made of an organic material, It may be arranged.
  • a hole injection layer and an intermediate layer may be disposed between the pixel electrode and the organic light emitting layer.
  • the organic light emitting layer is preferably disposed on the substrate and the pixel electrode so as to continuously cover the substrate and the pixel electrode from the viewpoint of further simplifying the structure and the manufacturing method of the organic EL device. .
  • the hole injection layer is a layer made of a hole injection material.
  • the hole injection material includes poly (3,4-ethylenedioxythiophene) doped with polystyrene sulfonic acid (referred to as PEDOT-PSS), derivatives thereof (such as copolymers), and WO X (tungsten oxide). Or oxides such as MoO X (molybdenum oxide) and VO X (vanadium oxide), or a combination thereof, for example, WO X doped with Mo.
  • the thickness of the hole injection layer is typically 10 nm or more and 100 nm or less, and may be about 30 nm.
  • the hole injection layer is usually disposed on the pixel electrode, but may cover both the substrate and the pixel electrode.
  • the intermediate layer has a role of suppressing transport of electrons to the hole injection layer and a role of efficiently transporting holes to the organic light emitting layer.
  • the intermediate layer is a layer made of, for example, a polyaniline-based material.
  • the thickness of the intermediate layer is usually 10 nm or more and 100 nm or less, preferably about 30 nm.
  • the intermediate layer may cover only the pixel electrode or the hole injection layer, or may cover the substrate and the pixel electrode or the hole injection layer continuously.
  • the organic light emitting layer material contained in the organic light emitting layer is, for example, a polymer light emitting material.
  • polymeric light emitting materials include polyparaphenylene vinylene and derivatives thereof, polyacetylene and derivatives thereof, polyphenylene and derivatives thereof, polyparaphenylene ethylene and derivatives thereof, poly-3-hexylthiophene and derivatives thereof, polyfluorene and derivatives thereof Etc. are included.
  • the organic light emitting layer material may be a low molecular weight light emitting material.
  • the hole injection layer made of an organic material, the intermediate layer, and the organic light emitting layer can be disposed in a region defined by a line bank described later.
  • the line bank is made of, for example, polyimide or acrylic resin.
  • the resin constituting the line bank may contain fluorine.
  • the resin containing fluorine is not particularly limited as long as it has fluorine atoms in at least some of the polymer repeating units.
  • Examples of the resin containing a fluorine compound include a fluorinated polyolefin resin, a fluorinated polyimide resin, a fluorinated polyacrylic resin, and the like.
  • the height of the line bank from the substrate is usually 0.1 to 3 ⁇ m, particularly preferably 0.8 to 1.2 ⁇ m.
  • the shape of the line bank is preferably a forward tapered shape.
  • the forward taper shape means a shape in which the wall surface of the bank is slanted and the area of the bottom surface of the line bank is larger than the area of the top surface of the line bank.
  • the taper angle is usually 20 to 80 °, particularly preferably 30 to 50 °.
  • the wettability of the upper surface of the line bank is low.
  • the upper surface of the line bank means a surface including the vertex of the line bank.
  • the wettability of the upper surface of the line bank is preferably lower than the wettability of the line bank wall surface.
  • the contact angle between the upper surface of the line bank and water is preferably 80 ° or more, more preferably 90 ° or more.
  • the contact angle between the upper surface of the line bank and the anisole, intermediate layer ink or organic light emitting layer ink is preferably 30 to 70 °.
  • the contact angle between the line bank wall surface and anisole, intermediate layer ink or organic light emitting layer ink is preferably 3 to 30 °. The higher the contact angle, the lower the wettability.
  • the insulating layer is disposed on the organic light emitting layer and covers edges of the two or more pixel electrodes adjacent to each other facing each other. A portion of the organic light emitting layer located on the central portion of the pixel electrode is not covered with the insulating layer.
  • the present invention is characterized in that the insulating layer covering the edge of the pixel electrode is disposed on the upper side (opposite electrode side) of the organic light emitting layer and is not disposed on the lower side (pixel electrode side) of the organic light emitting layer.
  • the insulating layer may be directly disposed on the organic light emitting layer, or may be disposed on the organic light emitting layer via another layer such as an electron transport layer.
  • the insulating layer is usually disposed along both the longitudinal direction and the short direction of the pixel electrode.
  • the line bank is usually formed so as to cover the edge of the pixel electrode along the longitudinal direction of the pixel electrode. Therefore, the insulating layer is disposed on the organic light emitting layer along a direction orthogonal to the line bank.
  • the insulating layer may be disposed on the line bank, but is preferably disposed only on the edge of the pixel electrode located between the line banks from the viewpoint of making the counter electrode flat.
  • the insulating layer is preferably composed of a cured resin of a delayed curable resin composition that is cured by ultraviolet light and heat.
  • the resin layer disposed on the organic light emitting layer is irradiated with ultraviolet light, the organic light emitting layer material may be deteriorated.
  • the insulating layer is made of a cured resin of a delayed curable resin composition from the viewpoint of preventing deterioration of the organic light emitting layer due to ultraviolet irradiation.
  • the resin formed by delayed curing of such a resin composition include an epoxy resin.
  • the thickness of the insulating layer is desirably about 1 to 3 ⁇ m.
  • the counter electrode is disposed on the organic light emitting layer and the insulating layer.
  • the material of the counter electrode differs depending on whether the organic EL device is a bottom emission type or a top emission type. When the organic EL device is a top emission type, the counter electrode is required to have optical transparency. Therefore, examples of the material of the counter electrode include ITO and IZO. On the other hand, when the organic EL device is a bottom emission type, the material of the counter electrode is arbitrary as long as it is a conductor.
  • the organic EL display panel of the present invention can be configured by arranging the organic EL devices in a matrix on the same plane.
  • the organic EL display panel of the present invention can be configured by arranging the organic EL devices in a line on the same plane.
  • the organic EL display panel of the present invention can be manufactured by a manufacturing method described later.
  • the organic light emitting layer is formed in the region formed by the line bank by a coating method, a short circuit with the counter electrode at the edge of the pixel electrode can be prevented, and the organic light emitting layer can be uniformly formed. It becomes possible to form. Accordingly, it is possible to provide an organic EL display panel with good display quality at low cost by suppressing the occurrence of luminance unevenness and emission color unevenness of the organic EL display panel.
  • An organic EL display panel of the present invention includes a step of forming a plurality of pixel electrodes on a substrate and an organic light emitting layer continuously covering two or more pixel electrodes adjacent to each other. Forming a step, forming an insulating layer on the organic light emitting layer so as to cover an edge of the pixel electrode, and forming a counter electrode on the organic light emitting layer and the insulating layer.
  • the method for producing an organic EL display panel of the present invention may further include other steps within a range where the effects of the present invention can be obtained. Examples of the method for producing an organic EL display panel of the present invention include, for example, a method for producing the organic EL device.
  • the organic EL device manufacturing method includes, for example, 1) a first step of forming a TFT on a substrate, 2) a second step of forming a planarizing film on the TFT, and 3) a pixel electrode on the planarizing film. 4) a fourth step of forming a hole injection layer on the pixel electrode, and 5) two or more pixel regions arranged so as to cover a part of the hole injection layer. 5) forming a line bank defined in the shape; and 6) applying an intermediate layer ink on the hole injection layer in the pixel region defined in the line shape by the line bank, drying and baking to form the intermediate layer.
  • a sixth step of forming 7) a seventh step of applying an organic light emitting layer ink on the intermediate layer, drying and baking to form an organic light emitting layer, and 8) on the organic light emitting layer and orthogonal to the line bank.
  • laminated film of pixel electrode and hole injection layer A eighth step of forming an insulating layer so as to cover the edge, 9) a ninth step of forming a counter electrode so as to cover the organic light-emitting layer.
  • a TFT is formed on the substrate.
  • the TFT may be a silicon TFT or an organic TFT.
  • a planarizing film is formed on the TFT.
  • the planarizing film is formed by a photolithography method using a photosensitive resin.
  • a contact hole for connecting the TFT electrode and the pixel electrode is formed in the planarizing film.
  • a pixel electrode is formed on the planarizing film.
  • the pixel electrode may be formed, for example, by forming a conductive thin film by sputtering or the like and patterning by etching.
  • the method for manufacturing the pixel electrode is not limited.
  • a hole injection layer is formed on the pixel electrode.
  • the material of the hole injection layer is a transition metal oxide, PEDOT, or other material on which a coating film is formed by a coating method.
  • the hole injection layer is formed on the pixel electrode by sputtering using tungsten oxide as a material.
  • a line bank that defines two or more pixel regions in a line shape is formed so as to cover a part of the hole injection layer.
  • the material of the line bank is a resin synthesized from a photosensitive material such as polyimide or acrylic resin.
  • the resin may contain fluorine.
  • the bank is formed by a photolithography process (coating, baking, exposure, development, baking).
  • the line bank is usually produced so as to cover the edge of the pixel electrode along the longitudinal direction of the pixel electrode through a hole injection layer.
  • an intermediate layer ink containing an intermediate layer material and a solvent is applied on the hole injection layer.
  • the solvent is determined according to the type of the intermediate layer material.
  • the solvent include aromatic solvents such as anisole.
  • the method for applying is not particularly limited.
  • the coating method include an inkjet method, a dispensing method, a nozzle coating method, a spin coating method, a die coating method, an intaglio printing method, and a relief printing method.
  • a preferred coating method is an ink jet method.
  • the intermediate layer is formed by drying and baking the applied film.
  • an organic light emitting layer ink containing an organic light emitting layer material and a solvent is applied to the linear region defined by the line bank.
  • the organic light emitting layer ink to be applied contains a desired light emitting material and a solvent.
  • a solvent is determined according to the kind of luminescent material. Examples of the solvent include aromatic solvents such as anisole.
  • the method for applying is not particularly limited. Examples of the coating method include an inkjet method, a dispensing method, a nozzle coating method, a spin coating method, a die coating method, an intaglio printing method, and a relief printing method.
  • a preferred coating method is an ink jet method. The coated film is dried and baked to form an organic light emitting layer that continuously covers the substrate and the pixel electrode.
  • an insulating layer covering the edge of the pixel electrode is formed on the organic light emitting layer in a direction perpendicular to the longitudinal direction of the pixel electrode.
  • the insulating layer is formed by applying an insulating layer material by a screen printing method, a dispensing method, a die coating method, or the like. If there is no line bank, or if the line bank is made away from the edge of the pixel electrode and the edge of the pixel electrode is not covered by the line bank, the edge of the pixel electrode is moved along the longitudinal direction of the pixel electrode.
  • a covering insulating layer is further formed.
  • the insulating layer material is irradiated with ultraviolet light before the insulating layer material containing the delayed curable resin composition is applied on the organic light emitting layer. Then, the insulating layer material irradiated with ultraviolet rays is applied onto the organic light emitting layer so as to cover the edge of the pixel electrode. Then, the applied insulating layer material is cured by heat treatment to produce an insulating layer.
  • the delayed curable resin composition include, for example, a composition containing an epoxy resin, an aliphatic compound having an epoxy group and a hydroxyl group, and a cationic polymerization initiator described in JP-A-2011-38090. included.
  • a counter electrode is formed so as to cover the organic light emitting layer and the insulating layer.
  • the counter electrode is formed by sputtering a transparent conductive material such as ITO.
  • the manufacturing method of the said organic EL device is not limited to the above-mentioned method.
  • the pixel electrode may be arranged on the substrate without forming the planarizing film.
  • the second step can be omitted.
  • the organic light emitting layer may be formed on the pixel electrode and the substrate without forming the intermediate layer.
  • the sixth step can be omitted.
  • the manufacturing method may further include a step of removing the intermediate layer from the surface of the substrate between the pixel electrodes.
  • a step of removing the coating film of the intermediate layer ink from the surface of the substrate may be further included between the sixth step and the seventh step.
  • the surface of the substrate other than between the pixel electrodes may be covered with a pixel regulation layer.
  • a process of forming a pixel restriction layer may be further included between the third step and the fourth step.
  • Embodiment 1 In Embodiment 1, a top emission type organic EL device will be described.
  • FIG. 1A is a plan view of the organic EL device 20 according to the first embodiment of the present invention.
  • FIG. 1B shows an AA ′ cross-sectional view of the organic EL device in FIG.
  • FIG. 1C shows a BB ′ cross-sectional view of the organic EL device in FIG.
  • the transparent cathode 900 is omitted in FIGS. 1A, 2 ⁇ / b> A, 3 ⁇ / b> A, and 4 ⁇ / b> A.
  • the substrate 500 is, for example, a glass plate.
  • the pixel electrode 600 is a conductive layer disposed on the substrate 500.
  • the pixel electrode 600 is made of an APC alloy, for example.
  • a preferable thickness of the pixel electrode 600 is 100 to 200 nm.
  • the hole injection layer 610 is disposed on the pixel electrode 600.
  • the hole injection layer 610 is made of tungsten oxide (WO X ).
  • a preferred thickness of the hole injection layer 610 is 5 to 30 nm.
  • the line bank 400 defines the region of the organic light emitting layer 700. Specifically, two or more pixel electrodes 600 are formed in a line shape so as to define the line shape. Further, the hole injection layer 610 is disposed so as to cover at least a part thereof. For example, the line bank 400 is disposed so as to cover an edge along the longitudinal direction of the pixel electrode 600 through the hole injection layer 610.
  • the line bank 400 is made of, for example, a fluorinated acrylic resin.
  • the height from the hole injection layer 610 on the substrate of the preferred line bank 400 is 0.1 to 3 ⁇ m. Further, the line bank 400 is formed so that the hole injection layer 610 is exposed.
  • the organic light emitting layer 700 is disposed on the hole injection layer 610.
  • the organic light emitting layer 700 is a series of layers covering the substrate 500 located between the pixel electrodes 600 and the hole injection layer 610.
  • the edge of the pixel electrode 600 is covered with the organic light emitting layer 700 through the hole injection layer 610 (for example, reference numeral 710 in FIG. 1B).
  • a preferred thickness of the organic light emitting layer 700 is 50 to 150 nm.
  • the organic light emitting layer 700 is a layer made of a polyfluorene derivative.
  • the insulating layer 800 is formed on the organic light emitting layer 700 in a direction orthogonal to the line bank 400.
  • the insulating layer 800 is formed to cover the edge of the pixel electrode 600 through the organic light emitting layer 700 and the hole injection layer 610.
  • the thickness of the organic light emitting layer 700 formed on the pixel electrode 600 and the hole injection layer 610 may be reduced at the edge of these layers. For this reason, the pixel electrode 600 and the transparent cathode 900 may be short-circuited.
  • the thickness of the insulating layer 800 is desirably about 0.5 to 3 ⁇ m.
  • the insulating layer 800 is formed so as to continuously cover from the edge of one pixel electrode 610 of two pixel electrodes 600 adjacent along the line bank 400 to the edge of the other pixel electrode 610 through the substrate 500. ing.
  • the transparent cathode 900 is a light transmissive conductive layer disposed on the organic light emitting layer 700 and the insulating layer 800.
  • the material of the transparent cathode 900 is, for example, ITO.
  • the manufacturing method of the organic EL device 20 includes 1) a first step of forming the pixel electrode 600 and the hole injection layer 610 on the substrate 500, 2) covering at least a part of the hole injection layer 610, and two or more pixels.
  • the first step includes a step of forming a material film of the pixel electrode 600 on the substrate 500 by vapor deposition or sputtering, and a step of patterning the pixel electrode 600 by etching the material film. . Further, a hole injection layer 610 is formed on the pixel electrode 600.
  • the manufacturing method is the same as that of the pixel electrode 600, and a film is formed by sputtering or the like and patterned by etching.
  • the line bank 400 is formed on the hole injection layer 610 so that a part thereof is exposed.
  • the line bank 400 is formed by, for example, a photolithography method. Specifically, it is a process of material application, pre-baking, exposure, development, and post-baking. Although not particularly limited, for example, pre-baking is performed at 100 ° C. for 2 minutes. The exposure is performed with i-line having a main peak at 365 nm under an exposure amount of 200 mJ / cm 2 . Development is performed under the conditions of 0.2% TMAH for 60 seconds and rinsing with pure water for 60 seconds. Post baking is performed in a clean oven at 220 ° C. for 60 minutes.
  • the organic light emitting layer 700 is formed on the hole injection layer 610 by, for example, an ink jet method.
  • the organic light emitting layer ink is applied to the entire area of the pixel region defined by the line bank 400 by the inkjet method, the obtained ink coating film is dried and baked. Drying is performed, for example, by putting the substrate into a vacuum chamber and reducing the pressure. The pressure is reduced by exhausting with a vacuum pump up to an ultimate pressure of about 5 Pa.
  • the temperature is 25 ° C. For example, baking is performed on a hot plate at 130 ° C. for 10 minutes.
  • the insulating layer 800 is formed by, for example, a screen printing method.
  • An insulating layer 800 is formed so as to cover the edges of the pixel electrode 600 and the hole injection layer 610 with a film thickness of 1 ⁇ m and so as to be orthogonal to the line bank 400.
  • the insulating layer 800 is also continuously formed on the line bank 400.
  • As the material a delayed curing type photosensitive resin composition is used. If the material is irradiated with ultraviolet light after application, the organic light emitting layer 700 may be deteriorated. For this reason, the insulating layer 800 is formed by applying the material previously irradiated with ultraviolet light by a screen printing method. Irradiation with ultraviolet light is performed, for example, with light having a wavelength of 365 nm under an exposure amount of 1 J / cm 2 . The coating film of the material is heated at 80 ° C. for 1 hour to be cured.
  • the transparent cathode 900 is formed, for example, on the organic light emitting layer 700 and the insulating layer 800 by vapor deposition.
  • the organic light emitting layer 700 is formed by coating in the region formed by the line bank 400, the pixel electrode 600 and the transparent cathode 900 are short-circuited at the edge of the pixel electrode 600. Can be suppressed. In addition, the organic light emitting layer 700 can be formed uniformly.
  • the organic light emitting layers of three colors of Red (red organic light emitting layer 710), Green (green organic light emitting layer 720), and Blue (blue organic light emitting layer 730) can be separately applied. . Therefore, a full-color organic EL display panel can be provided.
  • a full-color organic EL display panel can be provided.
  • FIG. 2A is a plan view of the organic EL device 30 according to the second embodiment of the present invention.
  • FIG. 2B is a CC ′ cross-sectional view of the organic EL device in FIG.
  • the insulating layer 800 is not formed so as to straddle the adjacent pixel electrodes 600 along the line bank 400, but is formed so as to cover each of the edges in the short direction of the pixel electrodes 600 independently. .
  • Other configurations are the same as those in the first embodiment.
  • the organic light emitting layer 700 is formed by coating in the region formed by the line bank 400, a short circuit between the pixel electrode 600 and the transparent cathode 900 at the edge of the pixel electrode 600 is prevented.
  • the organic light emitting layer 700 can be formed uniformly.
  • the volume of the insulating layer 800 formed on the organic light emitting layer 700 becomes smaller. For this reason, the amount of gas emitted from the insulating layer 800 can be reduced, and the deterioration of the organic light emitting layer 700 can be further suppressed.
  • FIG. 3 is a plan view of the organic EL device 40 according to Embodiment 3 of the present invention.
  • the insulating layer 800 is not formed on the line bank 400.
  • the insulating layer material is intermittently applied only in the pixel region defined by the line bank 400, so that the insulating layer 800 is formed so as to cover the edges of the pixel electrode and the hole injection layer.
  • Other configurations are the same as those in the second embodiment.
  • the organic light emitting layer 700 is formed by coating in the region formed by the line bank 400 by the above configuration, a short circuit between the pixel electrode and the transparent cathode at the edge of the pixel electrode can be prevented, and The organic light emitting layer 700 can be formed uniformly. Further, by not forming the insulating layer 800 on the upper surface of the line bank 400, the unevenness of the upper surface of the organic EL device becomes smaller. The light emission characteristics of organic EL devices are degraded by oxygen and water in the environment. For this reason, it is common to form a sealing layer with resin or a thin film. Coverability is required for the sealing layer. It is clear that if the unevenness of the object to be coated is large, the covering property is deteriorated. Therefore, in the organic EL device of Embodiment 3 that can reduce the unevenness of the device, the coverage of the sealing layer is further improved. For this reason, it becomes possible to provide an organic EL device with less degradation of light emission characteristics.
  • FIG. 4A is a plan view of an organic EL device 50 according to Embodiment 4 of the present invention.
  • FIG. 4B is a DD ′ cross-sectional view of the organic EL device in FIG.
  • no bank is formed.
  • a white organic light emitting layer 750 extending over the entire surface of the substrate 500 having the pixel electrode 600 is formed by spin coating or slit coating.
  • An insulating layer 800 is formed in a cross pattern on the white organic light emitting layer 750 so as to cover the edge of the pixel electrode 600 through the white organic light emitting layer 750.
  • a transparent cathode 900 is formed so as to cover the white organic light emitting layer 750 and the insulating layer 800. As a result, a white organic EL device is formed.
  • a silver-palladium-copper (APC) film having a thickness of 150 nm was formed as a pixel electrode on a glass substrate AN100 (370 mm ⁇ 470 mm ⁇ 0.7 mm) manufactured by Asahi Glass Co., Ltd. by a sputtering method.
  • a line bank was formed by photolithography on the glass substrate on which the APC film was formed.
  • As the material of the line bank an acrylic resin material manufactured by Asahi Glass was used.
  • a coating film of an acrylic resin material was formed by spin coating, and prebaked at a temperature of 100 ° C. for 2 minutes.
  • ultraviolet light was irradiated through a photomask.
  • the bank material used this time is a negative type material, and the exposed part is cured by crosslinking reaction.
  • the wavelength of ultraviolet light is broad with a main peak at 365 nm.
  • the exposure illuminance is 20 mW / cm 2 and the exposure time is 10 seconds.
  • an organic light emitting layer ink containing an organic light emitting layer material was printed in an area defined by the line bank by an inkjet method.
  • Cyclohexylbenzene was used as a solvent for the organic light emitting layer ink.
  • the printed ink was dried by vacuum drying. The drying under reduced pressure was performed by housing the substrate in a vacuum chamber and evacuating the chamber with a vacuum pump. The exhaust speed is a speed at which the inside of the chamber is exhausted from atmospheric pressure to 10 Pa in 30 seconds. The drying temperature is 25 ° C. Thereafter, baking was performed at 130 ° C. for 10 minutes on a hot plate.
  • FIG. 6A shows the film profile and film thickness uniformity in the short direction of the pixel electrode (the direction along the line BB ′ in FIG. 1A).
  • the measurement region was set between two parallel line banks (FIG. 6B).
  • FIG. 7A shows the film profile in the longitudinal direction of the pixel electrode (the direction along the line AA ′ in FIG. 1A).
  • the measurement region was between two insulating layers arranged in parallel (FIG. 7B).
  • a silver-palladium-copper (APC) film having a thickness of 150 nm was formed as a pixel electrode on a glass substrate AN100 (370 mm ⁇ 470 mm ⁇ 0.7 mm) manufactured by Asahi Glass Co., Ltd. by a sputtering method.
  • the insulating layer was formed so as to cover the edge of the formed APC film.
  • the insulating layer is a silicon oxide (SiO 2 ) film having a thickness of 100 nm formed by a sputtering method.
  • a line bank was formed thereon by photolithography. The formation conditions of the line bank are the same as in the example.
  • an organic light emitting layer was formed in the region defined by the line bank, and the film shape was evaluated.
  • the conditions for forming the organic light emitting layer and the evaluation method are the same as in the examples.
  • FIG. 6 shows the film profile of the organic light emitting layer and the film thickness uniformity as an index of the film shape in Examples and Comparative Examples.
  • the film thickness uniformity is a value represented by (Expression 1).
  • (Formula 1) Film thickness uniformity (%) ⁇ (film thickness maximum value ⁇ film thickness minimum value) / (2 ⁇ average film thickness) ⁇ ⁇ 100
  • the film profile is more irregular in the comparative example than in the example.
  • the film thickness uniformity in the lateral direction of the pixel electrode was 14.8% in the example and 33.4% in the comparative example.
  • the substrate on which the organic light emitting layer is printed is glass and an APC film in the examples, but is a glass, APC film, and SiO 2 film in the comparative example.
  • the kind of material partially distributed on the surface of the base is more in the comparative example than in the example. Since wettability varies from material to material, coating unevenness is more likely to occur as the number of types of the base material increases.
  • the organic light emitting layer having a more uniform film thickness can be formed when the kind of the base material on which the organic light emitting layer is printed is smaller.
  • the organic EL display panel of the present invention has a uniform film thickness of the organic light emitting layer and is excellent in display quality.
  • the organic EL display panel of the present invention can prevent a short circuit between the pixel electrode and the counter electrode at the edge of the pixel electrode even when the organic light emitting layer is formed by coating in the region formed by the line bank, and It becomes possible to emit light uniformly, and thus an organic EL display panel with good display quality can be provided at low cost.
  • This is not limited to use for organic EL televisions, for example, and is suitable for display units in various electronic devices such as word processors, portable information processing devices such as personal computers, and wristwatch-type electronic devices.
  • Organic EL device 100 500 Substrate 210, 600 Pixel electrode 220, 800 Insulating layer 230, 400 Line bank 240 Second bank 300 Pixel region 610 Hole injection layer 700 Organic light emitting layer 710 Red organic Light emitting layer 720 Green organic light emitting layer 730 Blue organic light emitting layer 750 White organic light emitting layer 900 Transparent cathode

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 本発明は、ラインバンクに発光層を形成する場合でも、有機発光層の塗布ムラによる、輝度ムラや発光色ムラの発生を抑制し、表示品質が良好な有機ELディスプレイパネル及びその製造方法を提供する。本発明は、有機発光層の塗布ムラの原因となる絶縁層を有機発光層上に、かつ画素電極の縁を覆うように形成する。有機発光層の膜形状ムラを抑制することができ、輝度ムラや発光色ムラが少ない表示品質に優れた有機ELディスプレイパネルの提供及びその製造が可能となる。また、画素電極と対向電極との間の短絡が防止される有機ELディルプレイパネルの提供及び製造が可能となる。

Description

有機ELディスプレイパネル及びその製造方法
 本発明は、有機ELディスプレイパネル及びその製造方法に関する。
 有機ELディスプレイパネルとは、有機化合物の電界発光を利用した発光素子を有するディスプレイパネルである。有機ELディスプレイパネルは、カソード及びアノード、並びに両極の間に配置された電界発光する有機化合物層、を含むELデバイスを有する。この電界発光する有機化合物は、低分子有機化合物の組み合わせ(ホスト材料とドーパント材料)と、高分子有機化合物とに大別され得る。
 電界発光する高分子有機化合物の例には、PPVと称されるポリパラフェニレンビニレンやその誘導体などが含まれる。電界発光する高分子有機化合物を利用した有機ELディスプレイパネルは、比較的低電圧で駆動でき、消費電力が低いことが特徴である。
 また、電界発光する有機化合物は、有機溶剤に溶解させることによって、インクとすることができる。例えば、高分子有機化合物は、キシレンやトルエンなどの芳香族系の有機溶剤に溶解させ、インク化することが可能である。電界発光する有機化合物をインクとすることによって、インクジェット法などの印刷工法で有機発光層を形成することが可能となる。このため、ディスプレイパネルの大画面化に対応しやすいとされており、現在積極的にその研究開発が行われている。
 電界発光する高分子有機化合物は、その発光する光の色(Red,GreenまたはBlue)に応じて、各画素にインクジェットなどの印刷技術を用いて配置される。例えば、高分子有機化合物と溶媒を含むポリマーインクを、インクジェットヘッドから吐出して各画素へ印刷する。各画素にポリマーインクを印刷するときに、隣接する画素にポリマーインクが浸入しないようにする必要がある。
 隣接する画素にポリマーインクが浸入しないようにするため、以下の二つの方法が採用されている。
 第一の方法は、画素を規定する隔壁(バンク)を設けて、各画素に正確にポリマーインクを印刷する。それによって、隣接する画素へのインクの浸入を抑制する(例えば、特許文献1を参照)。
 第二の方法は、ライン状に配列された各画素を列毎にバンクで規定して、ライン状にポリマーインクを印刷する。このとき、ラインバンク内に配置された画素電極の縁で有機発光層の膜厚が薄くなることによって、有機発光層の上に配置される対向電極と画素電極が短絡することが起こり得る。これに対して、ラインバンク内に配置された画素電極の縁を覆うようにシリコン酸化物などの絶縁層を配置することで、画素電極と対向電極の短絡を防止することが知られている。(例えば、特許文献2及び3を参照)。
 さらに、画素電極上の絶縁層によって画素電極の縁が直接覆われている有機EL素子(例えば、特許文献4参照)や、画素電極の縁が、直接又は正孔注入層を介して、バンク基部等の絶縁性の無機層によって覆われている有機EL素子(例えば、特許文献5~8参照)などが提案されている。その他にも、透明基板上の着色剤層を隔てるバンクと、バンク上及び着色剤層の縁部を覆うブラックマトリックスとを有するカラーフィルタ(例えば、特許文献9参照)が知られている。
 図5に特許文献2に記載の有機ELデバイス10の鳥瞰図を示している。ラインバンク230に沿う方向及びこれに直交する方向の両方向に沿って、画素電極210の縁を覆うように絶縁層220が形成されている。図5中、100は基板であり、240は第2バンクであり、300は画素領域である。
 各画素にポリマーインクを印刷する第一の方法よりも、複数の画素を含むライン状にポリマーインクを印刷する第二の方法の方が、全ての画素に簡便かつ迅速にポリマーインクを印刷することができる。さらに、各画素に形成された有機発光層の膜厚均一性は、第一の方法よりも第二の方法の方が良好である。
 これは、バンクの端部でポリマーインクが表面張力により引っぱられるためである。このため、有機発光層の膜厚均一性が悪化しやすい。よって、画素の四方をバンクで囲まれている上記第一の方法よりも、画素の側方しかバンクで囲まれていない上記第二の方法の方が、通常、膜厚均一性が高い有機発光層を形成することができる。
 また、インクジェット法で有機発光層を形成する場合、インクジェットヘッドのノズル間の吐出体積のばらつきが懸念される。ノズル間の吐出体積のばらつきは、有機発光層の膜厚ばらつきに直結する。ピクセル状とライン状のバンクに吐出する場合、ライン状のバンクに吐出する方が、ピクセル状のバンクに吐出するよりも多くのノズルから吐出することになる。このため、ノズル間の吐出体積ばらつきの影響を小さくする効果がある。これらのことより、最近では上記第二の方法の研究の方が幾分盛んである。
特開2006-86128号公報 特開2009-200049号公報 米国特許出願公開第2009/0160322号明細書 特開2008-243650号公報 特開2009-70704号公報 米国特許出願公開第2007/0075618号明細書 米国特許出願公開第2005/0112341号明細書 特開2010-33972号公報 特開2006-243171号公報
 上述の従来の構成において、ラインバンク内に配置された画素電極の縁を覆うように配置されたシリコン酸化物などの絶縁層は、塗布されるポリマーインクの下地となる。このため、下地には、基板材料と画素電極と絶縁層が存在する。下地を構成する材料が複数存在すると、有機発光層にムラが発生することがある。これは、下地の材料ごとにポリマーインクの濡れ性が異なるためである。よって、下地の材料の種類は可能な限り少ないことが望ましい。
 また、シリコン酸化物などの無機物の絶縁層は、例えばスパッタリング法などの真空設備を用いて絶縁膜を形成し、フォトレジスト法を用いたフォトリソグラフィ法で絶縁膜をパターニングすることによって作製される。この方法では、製造プロセスが長くなり、高価な真空設備が用いられる。このため、製造コストが高くなってしまう。
 絶縁層は数十nmの薄膜であることが望ましい。絶縁層は電極を絶縁する目的であるから、ある一定以上の膜厚であれば問題ない。しかしながら絶縁層が厚過ぎると、この上に印刷する有機発光層が均一に形成できなくなってしまう。絶縁層を、無機膜でなく、樹脂などを塗布することにより有機膜で形成する場合は、製造コストは低くなる。その一方、数十nmの薄膜で形成することは困難である。このため、均一な有機発光層を形成することは困難になる。
 以上のように、従来の有機ELディスプレイパネルでは、有機発光層を印刷する面に形成された複数種の無機絶縁層により、有機発光層の塗布ムラが発生することがあった。このため、有機発光層の膜厚がばらつき、その結果、輝度ムラや発光色ムラが生じ、表示品質が低下してしまうという課題があった。
 本発明は、前記従来の課題を解決するもので、ラインバンクで規定された複数の画素電極が存在するライン状の領域に有機発光層を形成する場合でも、膜厚均一性に優れた有機発光層を形成し、輝度ムラや発光色ムラの少ない、表示品質が良好な有機ELディスプレイパネル及びその製造方法を提供することを目的とする。
 すなわち、本発明の第一は、以下に示す有機ELディスプレイパネルに関する。
 (1)基板と、前記基板上に配置された複数の画素電極と、前記基板上及び前記画素電極上に配置され、互いに隣り合う二以上の前記画素電極同士を連続して覆う有機発光層と、前記有機発光層上に配置され、隣り合う画素電極のうち対向する互いの縁を覆う絶縁層と、前記有機発光層上及び前記絶縁層上に配置される対向電極と、を有する有機ELディスプレイパネル。
 (2)前記有機発光層が、前記基板及び前記画素電極を連続して覆う、(1)に記載の有機ELディスプレイパネル。
 (3)前記基板上に、複数の前記画素電極をライン状に規定する第2の絶縁層をさらに有する、(1)又は(2)に記載の有機ELディスプレイパネル。
 (4)前記絶縁層は、前記第2の絶縁層の上面には配置されない、(3)に記載の有機ELディスプレイパネル。
 (5)前記絶縁層は、紫外光を照射すると一定時間経過後に硬化する遅延硬化型樹脂組成物を硬化させてなる樹脂で構成されている、(1)~(4)のいずれか一項に記載の有機ELディスプレイパネル。
 本発明の第二は、以下に示す、有機ELディスプレイパネルの製造方法に関する。
 (6)基板上に複数の画素電極を形成するステップと、互いに隣り合う二以上の前記画素電極を連続して覆う有機発光層を形成するステップと、前記有機発光層上に、前記画素電極の縁を覆うように絶縁層を形成するステップと、前記有機発光層上及び前記絶縁層上に対向電極を形成するステップと、を有することを特徴とする有機ELディスプレイパネルの製造方法。
 (7)前記有機発光層を形成するステップが、前記基板及び前記画素電極を連続して覆うように前記基板上及び前記画素電極上に有機発光層を形成するステップである、(6)に記載の有機ELディスプレイパネルの製造方法。
 (8)前記画素電極をライン状に規定する第2の絶縁層を形成するステップをさらに有し、前記第2の絶縁層で規定されたライン状の領域に、前記有機発光層が、前記基板及び前記画素電極を連続して覆うように前記基板上及び前記画素電極上に形成されること、を特徴とする(6)又は(7)に記載の有機ELディスプレイパネルの製造方法。
 (9)前記絶縁層を形成するステップは、遅延硬化型樹脂組成物を含有する絶縁層材料に紫外光を照射し、紫外線が照射された前記絶縁層材料を、前記画素電極の縁を覆うように前記有機発光層上に塗布し、塗布された前記絶縁層材料を熱処理して硬化させる、(6)~(8)のいずれか一項に記載の有機ELディスプレイパネルの製造方法。
 以上のように、本発明の有機ELディスプレイパネル及びその製造方法によれば、ラインバンクで形成された領域に有機発光層を塗布により形成する場合であっても、画素電極の縁と対向電極との短絡を防止できる。さらに有機発光層を均一に形成することが可能となる。これにより、有機ELディスプレイパネルの輝度ムラや発光色ムラの少ない、表示品質が良好な有機ELディスプレイパネルを低コストで提供することができる。
実施の形態1に記載の有機ELデバイスの平面図(A)と断面AA’図(B)と断面BB’図(C)を示す図 実施の形態2に記載の有機ELデバイスの平面図(A)と断面CC’図(B)を示す図 実施の形態3に記載の有機ELデバイスの平面を示す図 実施の形態4に記載の有機ELデバイスの平面図(A)と断面図DD’図(B)を示す図 従来の有機ELデバイスを示す鳥瞰図 画素電極の短手方向における膜のプロファイルと膜厚均一性との関係を示す図 画素電極の長手方向における膜のプロファイルを示す図
 1.有機ELディスプレイパネル
 本発明の有機ELディスプレイパネルは、一又は二以上の有機ELデバイスから構成され得る。
 前記有機ELデバイスは、基板、画素電極、有機発光層、絶縁層、及び対向電極、を有する。前記有機ELデバイスは、TFT、平坦化膜、正孔注入層、中間層、及び第2の絶縁層(ラインバンク)、をさらに有していてもよい。
 前記基板の材料は、有機ELデバイスがボトムエミッション型か、トップエミッション型かによって異なる。ボトムエミッション型の場合には、基板が透明であることが求められる。よって、前記基板の材料は、ガラスや透明樹脂などであればよい。一方、トップエミッション型の場合には、基板が透明である必要はない。前記基板の材料は、絶縁性を有していれば任意である。「基板」とは、画素電極が形成される表面を有する部材を言う。前記基板は、例えばTFT及び平坦化膜を含む。
 前記有機ELデバイスは、通常、有機ELデバイスを駆動するための薄膜トランジスタ(駆動TFT)と接続されている。具体的には、有機ELデバイスの画素電極と、駆動TFTのソースまたはドレイン電極とが接続されている。有機ELデバイスは、TFTデバイス上に積層して配置される。
 TFT上には平坦化膜が形成される。平坦化膜は、TFTの表面の凹凸を緩和して、有機ELデバイスを形成するため平坦な面を形成する。平坦化膜は、有機ELデバイスの画素電極と、駆動TFTのソースまたはドレイン電極とを接続するためのコンタクトホールを有する。平坦化膜の厚さは、通常3~10μmであり、約5μmであり得る。
 前記画素電極は、前記基板上に複数配置される。前記基板が平坦化膜を含む場合は、画素電極は、平坦化膜上に形成される。有機ELデバイスがボトムエミッション型の場合、画素電極が透明電極であることが求められる。透明電極の例には、ITO(Indium
 Tin Oxide)やIZO(Indium Zinc Oxide)や酸化スズが含まれる。有機ELデバイスがトップエミッション型の場合には、画素電極は、光反射性を有することが求められる。このような画素電極の例には、例えば銀を含む合金、より具体的には銀-パラジウム-銅合金(APCとも称する)や銀-ルビジジウム-金合金(ARAとも称する)やモリブデン-クロムの合金(MoCrとも称する)やニッケル-クロム合金(NiCrとも称する)やアルミニウム合金が含まれる。画素電極の厚さは、通常、100~500nmであり、約150nmであり得る。
 前記有機発光層は、互いに隣り合う二以上の画素電極同士を連続して覆う。前記有機発光層は、前記基板及び前記画素電極を、直接覆ってもよいし、他の層を介して覆ってもよい。例えば、前記有機発光層は、前記画素電極が配置されている部分を除く前記基板の表面を覆う、ガラス等の無機材料による画素規制層や有機材料による中間層等の他の層の上に、配置されてもよい。また、前記画素電極と前記有機発光層との間には、正孔注入層及び中間層の一方又は両方が配置されてもよい。前記有機発光層が、前記基板及び前記画素電極を連続して覆うように、前記基板上及び前記画素電極上に配置されることは、有機ELデバイスの構造及び製法をより簡素にする観点から好ましい。
 前記正孔注入層とは正孔注入材料からなる層である。正孔注入材料は、ポリスチレンスルホン酸をドープしたポリ(3,4-エチレンジオキシチオフェン)(PEDOT-PSSと称される)や、その誘導体(共重合体など)及び、WO(タングステンオキサイド)やMoO(モリブデンオキサイド)、VO(バナジウムオキサイド)などの酸化物や、これらの組み合わせ、例えばMoをドープしたWOなどであってもよい。正孔注入層の厚さは通常、10nm以上100nm以下であり、約30nmであり得る。前記正孔注入層は、通常、前記画素電極上に配置されるが、前記基板及び前記画素電極の両方を覆ってもよい。
 前記中間層は、正孔注入層に電子が輸送されるのを抑制する役割や、有機発光層に正孔を効率良く運ぶ役割を有する。前記中間層は、例えばポリアニリン系の材料からなる層である。中間層の厚さは通常10nm以上100nm以下であり、好ましくは約30nmであり得る。前記中間層は、前記画素電極又は前記正孔注入層のみを覆ってもよいし、前記基板と前記画素電極又は前記正孔注入層とを連続して覆ってもよい。
 前記有機発光層に含まれる有機発光層材料は、例えば高分子系発光材料である。高分子系発光材料の例には、ポリパラフェニレンビニレン及びその誘導体、ポリアセチレン及びその誘導体、ポリフェニレン及びその誘導体、ポリパラフェニレンエチレン及びその誘導体、ポリ3-ヘキシルチオフェン及びその誘導体、ポリフルオレン及びその誘導体などが含まれる。有機発光層材料は低分子系発光材料であってもよい。
 有機材料からなる前記正孔注入層、前記中間層、及び前記有機発光層は、後述するラインバンクによって規定された領域内に配置することができる。
 前記ラインバンクは、例えばポリイミドやアクリル樹脂からなる。前記ラインバンクを構成する樹脂は、フッ素を含んでいてもよい。フッ素を含む樹脂は、その高分子繰返し単位のうちの少なくとも一部の繰返し単位に、フッ素原子を有するものであればよく、特に限定されない。フッ素化合物を含む樹脂の例には、フッ素化ポリオレフィン系樹脂、フッ素化ポリイミド樹脂、フッ素化ポリアクリル樹脂などが含まれる。前記ラインバンクの基板からの高さは、通常、0.1~3μmであり、特に0.8~1.2μmであることが好ましい。
 また、ラインバンクの形状は順テーパー状であることが好ましい。順テーパー状とは、バンクの壁面が斜めになっており、ラインバンクの底面の面積がラインバンクの上面の面積よりも大きい形状を意味する。ラインバンクの形状がテーパー状である場合、テーパー角度は、通常、20~80°であり、特に30~50°であることが好ましい。
 ラインバンク上面の濡れ性は、低いことが好ましい。ラインバンクの上面とは、ラインバンクの頂点を含む面を意味する。また、ラインバンク上面の濡れ性は、ラインバンク壁面の濡れ性よりも低いことが好ましい。ラインバンク上面と水との接触角は80°以上が好ましく、より好ましくは90°以上である。ラインバンク上面とアニソール、中間層インクは又は有機発光層インクとの接触角は、30~70°であることが好ましい。一方、ラインバンク壁面とアニソール、中間層インク又は有機発光層インクとの接触角は、3~30°であることが好ましい。接触角が高いほど濡れ性は低い。
 前記絶縁層は、有機発光層上に配置され、前記互いに隣り合う二以上の画素電極の、互いに対向する縁を覆う。前記画素電極の中央部上に位置する有機発光層の部分は、前記絶縁層によって覆われない。本発明は、画素電極の縁を覆う絶縁層が、有機発光層の上側(対向電極側)に配置され、有機発光層よりも下側(画素電極側)には配置されないことを特徴とする。絶縁層は、有機発光層上に直接配置されてもよいし、電子輸送層などの他の層を介して有機発光層上に配置されてもよい。
 前記絶縁層は、通常、画素電極の長手方向と短手方向との両方向に沿って配置される。有機ELデバイスがラインバンクを含む場合は、ラインバンクは、通常、画素電極の長手方向に沿って画素電極の縁を覆うように形成される。よって、絶縁層は、有機発光層上に、ラインバンクと直交する方向に沿って配置される。絶縁層は、ラインバンク上に配置されてもよいが、対向電極をより平らにする観点から、ラインバンク間に位置する画素電極の縁上のみに配置されることが好ましい。
 前記絶縁層は、紫外光と熱によって硬化する遅延硬化型樹脂組成物の硬化樹脂で構成されていることが好ましい。有機発光層上に配置した樹脂層に紫外光を照射すると、有機発光層材料が劣化する可能性がある。絶縁層を遅延硬化型樹脂組成物の硬化樹脂で構成することは、紫外線の照射による有機発光層の劣化を防止する観点から好ましい。このような樹脂組成物の遅延硬化によって形成される樹脂の例には、エポキシ樹脂が含まれる。絶縁層の厚さは1~3μm程度が望ましい。
 前記対向電極は、有機発光層上及び絶縁層上に配置される。前記対向電極の材料は、前記有機ELデバイスがボトムエミッション型か、トップエミッション型かによって異なる。前記有機ELデバイスがトップエミッション型の場合、前記対向電極には光透過性が求められる。よって、前記対向電極の材料の例には、ITOやIZOなどが含まれる。一方、前記有機ELデバイスがボトムエミッション型の場合、前記対向電極の材料は導電体であれば任意である。
 本発明の有機ELディスプレイパネルは、前記有機ELデバイスを同一平面上にマトリクス状に配置して構成することができる。或いは、本発明の有機ELディスプレイパネルは、前記有機ELデバイスを同一平面上にライン状に配置して構成することができる。本発明の有機ELディスプレイパネルは、後述する製造方法によって製造することができる。
 以上のように、ラインバンクで形成された領域に有機発光層を塗布法によって形成する場合であっても、画素電極の縁での対向電極との短絡を防止でき、かつ有機発光層が均一に形成することが可能となる。よって、有機ELディスプレイパネルの輝度ムラや発光色ムラの発生を抑制し、表示品質が良好な有機ELディスプレイパネルを低コストで提供することができる。
 2.本発明の有機ELディスプレイパネルの製造方法
 本発明の有機ELディスプレイパネルは、基板上に複数の画素電極を形成するステップと、互いに隣り合う二以上の前記画素電極を連続して覆う有機発光層を形成するステップと、前記有機発光層上に、前記画素電極の縁を覆うように絶縁層を形成するステップと、前記有機発光層上及び前記絶縁層上に対向電極を形成するステップとを含む。本発明の有機ELディスプレイパネルの製造方法は、本発明の効果が得られる範囲において、他の工程をさらに含んでもよい。本発明の有機ELディスプレイパネルの製造方法の例は、例えば前記有機ELデバイスを製造する方法を含む。
 前記有機ELデバイスの製造方法は、例えば、1)基板上にTFTを形成する第1ステップと、2)TFT上に平坦化膜を形成する第2ステップと、3)平坦化膜上に画素電極を形成する第3ステップと、4)画素電極上に正孔注入層を形成する第4ステップと、5)正孔注入層の一部を覆うように配置され、2つ以上の画素領域をライン状に規定するラインバンクを形成する第5ステップと、6)ラインバンクによりライン状に規定された画素領域内の正孔注入層上に、中間層インクを塗布、乾燥、ベークして中間層を形成する第6ステップと、7)中間層上に有機発光層インクを塗布、乾燥、ベークして有機発光層を形成する第7ステップと、8)有機発光層上であってラインバンクと直交する方向に、画素電極と正孔注入層の積層膜の縁を覆うように絶縁層を形成する第8ステップと、9)有機発光層を覆うように対向電極を形成する第9ステップと、を有する。
 1)第1ステップでは、基板上にTFTを形成する。TFTはシリコン系TFTでも、有機TFTでもよい。
 2)第2ステップでは、TFT上に平坦化膜を形成する。平坦化膜は例えば、感光性樹脂を用いてフォトリソグラフィ法で形成する。平坦化膜にはTFTの電極と画素電極を接続するためのコンタクトホールを形成する。
 3)第3ステップでは、平坦化膜上に画素電極を形成する。画素電極は、例えば、スパッタリング法などによって導電体薄膜を成膜して、エッチングによりパターニングすることで形成すればよい。画素電極の作製方法は限定されない。
 4)第4ステップでは、画素電極上に正孔注入層を形成する。正孔注入層の材料は、遷移金属の酸化物や、PEDOT及びその他、塗布法で塗膜が形成される材料である。正孔注入層は、例えば、酸化タングステンを材料として、スパッタリング法によって画素電極上に形成される。
 5)第5ステップでは、正孔注入層の一部を覆うようにして、2つ以上の画素領域をライン状に規定するラインバンクを形成する。ラインバンクの材料は、ポリイミドや、アクリル樹脂などの感光性材料から合成された樹脂である。前記樹脂中にフッ素が含有されていてもよい。バンクはフォトリソグラフィプロセス(塗布、ベーク、露光、現像、焼成)で形成する。前記ラインバンクは、通常、前記画素電極の長手方向に沿って、正孔注入層を介して画素電極の縁を覆うように作製される。
 6)第6ステップでは、正孔注入層上に、中間層材料および溶媒を含む中間層インクを塗布する。溶媒は、中間層材料の種類に応じて決定される。溶媒の例には、アニソールなどの芳香族系の溶媒が含まれる。塗布する方法は特に限定されない。塗布する方法の例には、インクジェット法、ディスペンス法、ノズルコート法、スピンコート法、ダイコート法、凹版印刷法、凸版印刷法などが含まれる。好ましい塗布方法は、インクジェット法である。塗布されてなる膜を乾燥、ベークすることで中間層を形成する。
 7)第7ステップでは、前記ラインバンクで規定されたライン状の領域に、有機発光層材料および溶媒を含む有機発光層インクを塗布する。塗布される有機発光層インクは、所望の発光材料および溶媒を含む。溶媒は、発光材料の種類に応じて決定される。溶媒の例には、アニソールなどの芳香族系の溶媒が含まれる。塗布する方法は特に限定されない。塗布する方法の例には、インクジェット法、ディスペンス法、ノズルコート法、スピンコート法、ダイコート法、凹版印刷法、凸版印刷法などが含まれる。好ましい塗布方法はインクジェット法である。塗布されてなる膜を乾燥、ベークすることで、前記基板及び前記画素電極を連続して覆う有機発光層を形成する。
 8)第8ステップでは、有機発光層上に、前記画素電極の長手方向と直交する方向に、画素電極の縁を覆う絶縁層を作製する。絶縁層は、絶縁層材料を、スクリーン印刷法やディスペンス法やダイコート法などで塗布することによって形成する。ラインバンクがない場合、或いは、ラインバンクが画素電極の縁から離れて作製され、画素電極の縁がラインバンクによって覆われない場合には、画素電極の長手方向に沿って、画素電極の縁を覆う絶縁層をさらに作製する。
 前記絶縁層を前記遅延硬化型樹脂で構成する場合は、遅延硬化型樹脂組成物を含有する前記絶縁層材料を有機発光層上に塗布する前に、前記絶縁層材料に紫外光を照射する。そして、紫外線が照射された前記絶縁層材料を、前記画素電極の縁を覆うように前記有機発光層上に塗布する。そして、塗布された前記絶縁層材料を熱処理することで硬化させて絶縁層を作製する。前記遅延硬化型樹脂組成物の例には、例えば特開2011-38090号公報に記載されている、エポキシ樹脂、エポキシ基および水酸基を有する脂肪族化合物、及びカチオン重合開始材を含有する組成物が含まれる。
 9)第9ステップでは、有機発光層及び絶縁層を覆うように対向電極を形成する。対向電極は例えば、ITOなどの透明導電材料などをスパッタリング法で形成する。
 なお、前記の有機ELデバイスの製造方法は、前述の方法に限定されない。例えば、前記製造方法では、平坦化膜を形成せずに画素電極を基板上に配置してもよい。この場合、第2ステップを省略することができる。また、前記製造方法では、中間層を形成せずに有機発光層を画素電極上及び基板上に形成してもよい。この場合、第6ステップを省略することができる。或いは、前記製造方法は、中間層を画素電極間の基板の表面から除去する工程をさらに含んでもよい。この場合、第6ステップと第7ステップとの間に、中間層インクの塗膜を基板の表面から除去する工程がさらに含まれ得る。さらに、前記製造方法は、画素電極間以外の基板の表面を画素規制層で覆ってもよい。この場合、第3ステップと第4ステップとの間に、画素規制層を形成する工程がさらに含まれ得る。
 以下、本発明の実施の形態を、図面を参照しながら説明する。
 (実施の形態1)
 実施の形態1では、トップエミッション型の有機ELデバイスを説明する。
 図1(A)は、本発明の実施の形態1の有機ELデバイス20の平面図を示している。図1(B)は、図1(A)中の有機ELデバイスのAA’断面図を示している。図1(C)は、図1(A)中の有機ELデバイスのBB’断面図を示している。なお、図1(A)、図2(A)、図3(A)、及び図4(A)では、透明陰極900を省略する。
 図1(B)及び(C)における有機ELデバイス20は、基板500、画素電極600、正孔注入層610、有機発光層700、絶縁層800、ラインバンク400、透明陰極900を有する。基板500は、例えば、ガラス板である。
 画素電極600は、基板500上に配置された導電層である。画素電極600は例えば、APC合金からなる。好ましい画素電極600の厚さは100~200nmである。
 正孔注入層610は画素電極600上に配置される。正孔注入層610は、タングステンオキサイド(WO)からなる。正孔注入層610の好ましい厚さは5~30nmである。
 ラインバンク400は、有機発光層700の領域を規定する。具体的には2つ以上の画素電極600をライン状に規定するようにライン状に形成される。また、正孔注入層610の少なくとも一部を覆うように配置される。例えば、ラインバンク400は、正孔注入層610を介して画素電極600の長手方向に沿う縁を覆うように配置される。ラインバンク400は、例えば、フッ素化アクリル樹脂からなる。好ましいラインバンク400の基板上の正孔注入層610からの高さは、0.1~3μmである。また、正孔注入層610が露出されるようにラインバンク400が形成される。
 有機発光層700は、正孔注入層610上に配置される。有機発光層700は、画素電極600間に位置する基板500上、及び正孔注入層610上を覆う一連の層である。画素電極600の縁は、正孔注入層610を介して有機発光層700に覆われている(例えば図1(B)の符号710)。有機発光層700の好ましい厚さは、50~150nmである。有機発光層700は、ポリフルオレンの誘導体からなる層である。
 絶縁層800は、有機発光層700上でラインバンク400と直交する方向に形成される。絶縁層800は、有機発光層700及び正孔注入層610を介して画素電極600の縁を覆うように形成される。画素電極600及び正孔注入層610上に形成される有機発光層700膜厚は、これらの層の縁で薄くなることがある。このため、画素電極600と透明陰極900が短絡することがあり得る。しかしながら、有機発光層700上に絶縁層800が形成されることで、この短絡が抑制される。絶縁層800の膜厚は0.5~3μm程度が望ましい。絶縁層800は、ラインバンク400に沿って隣接する二つの画素電極600の一方の画素電極610の縁から基板500上を通って他方の画素電極610の縁までを連続して覆うように形成されている。
 透明陰極900は、有機発光層700上及び絶縁層800上に配置される光透過性の導電層である。透明陰極900の材料は、例えばITOである。
 画素電極600と透明陰極900との間に電圧を印加すると、画素電極600から正孔が、透明陰極900から電子が有機発光層700に注入される。注入された正孔および電子は、有機発光層700の内部で結合し、励起子が発生する。この励起子によって有機発光層700が発光し、透明陰極900を通して光が発せられる。
 次に、有機ELデバイス20の製造プロセスを説明する。有機ELデバイス20の製造方法は、1)基板500上に画素電極600および正孔注入層610を形成する第1ステップ、2)正孔注入層610の少なくとも一部を覆い、2つ以上の画素電極600をライン状に規定するラインバンク400を形成する第2ステップ、3)正孔注入層610上に有機発光層700を形成する第3ステップ、4)有機発光層700上にラインバンク400と直交する方向に絶縁層800を形成する第4ステップ、5)透明陰極900を形成する第5ステップを有する。
 1)第1ステップは、基板500上に、を蒸着法やスパッタリング法などにより画素電極600の材料膜を成膜するステップ、及び、材料膜をエッチングして、画素電極600をパターニングするステップを含む。さらに、画素電極600上に正孔注入層610を形成する。製造方法は画素電極600と同様であり、スパッタリング法などにより成膜し、エッチングによりパターニングする。
 2)第2ステップでは、正孔注入層610上であって、その一部が露出するように、ラインバンク400を形成する。ラインバンク400は、例えばフォトリソグラフィ法によって形成される。具体的には材料塗布、プリベーク、露光、現像、ポストベークの工程である。特に限定されることはないが、例えばプリベークは、100℃で2分間の条件で行う。露光は、365nmがメインピークであるi線を露光量200mJ/cmの条件で行う。現像は、0.2%のTMAHで60秒間、リンスを純水で60秒間、の条件で行う。ポストベークは、クリーンオーブンで220℃60分間の条件で行う。
 3)第3ステップでは、正孔注入層610上に有機発光層700を例えば、インクジェット法で形成する。インクジェット法で有機発光層インクを、ラインバンク400で規定された画素領域の全域に塗布した後、得られたインクの塗膜を乾燥、ベークさせる。乾燥は例えば、基板を真空チャンバに投入し、減圧することで行なう。減圧は、到達圧力5Pa程度まで真空ポンプで排気することで行なう。温度は25℃である。ベークは例えばホットプレートで130℃にて10分間行なう。
 4)第4ステップでは、絶縁層800を例えばスクリーン印刷法で形成する。膜厚を1μmで画素電極600及び正孔注入層610の縁を覆うように、かつラインバンク400と直交するようにして絶縁層800を形成する。絶縁層800は、ラインバンク400上にも連続して形成する。材料には、遅延硬化型の感光性樹脂組成物を用いる。前記材料を塗布後に紫外光によって照射すると、有機発光層700が劣化することがある。このため、あらかじめ紫外光を照射した前記材料をスクリーン印刷法で塗布し、絶縁層800を形成する。紫外光の照射は、例えば波長365nmの光を露光量1J/cmの条件で行う。前記材料の塗膜を80℃で1時間加熱し、硬化させる。
 5)第5ステップでは、透明陰極900は、例えば、有機発光層700上及び絶縁層800上に、蒸着法により形成される。
 以上のような形態により、ラインバンク400で形成された領域に有機発光層700を塗布により形成する場合であっても、画素電極600の縁で画素電極600と透明陰極900とが短絡することを抑制できる。また、有機発光層700を均一に形成することが可能となる。
 また、ラインバンク400を形成することにより、Red(赤色有機発光層710)、Green(緑色有機発光層720)、Blue(青色有機発光層730)の3色の有機発光層を塗り分けることができる。よって、フルカラーの有機ELディスプレイパネルの提供が可能となる。もちろん3色の塗り分けをせず、白色の単色有機ELデバイスにRed、Green、Blueの3色のカラーフィルタを重ねることでフルカラーの有機ELディスプレイパネルを提供することもできる。この場合、有機ELデバイスの寿命は、カラーフィルタにより輝度が減衰し、駆動電圧を高くすることが必要になることから、短くなることがある。
 (実施の形態2)
 図2(A)は本発明の実施の形態2の有機ELデバイス30の平面図である。図2(B)は、図2(A)における有機ELデバイスのCC’断面図である。
 絶縁層800は、ラインバンク400に沿って隣接する画素電極600同士を跨ぐように形成されるのではなく、画素電極600の短手方向の縁のそれぞれを独立して覆うように形成されている。それ以外の構成は実施の形態1と同様である。
 以上のような形態により、ラインバンク400で形成された領域に有機発光層700を塗布により形成する場合であっても、画素電極600の縁での画素電極600と透明陰極900との短絡を防止でき、かつ有機発光層700が均一に形成することが可能となる。
 また、有機発光層700の上部に形成する絶縁層800の体積がより小さくなる。このため、絶縁層800からの出ガスをより少なくすることができ、有機発光層700の劣化をより抑制することができる。
 (実施の形態3)
 図3は、本発明の実施の形態3の有機ELデバイス40の平面図である。絶縁層800はラインバンク400上には形成されない。ラインバンク400で規定された画素領域内のみに絶縁層材料を間欠的に塗布することで、絶縁層800を、画素電極及び正孔注入層の縁を覆うように形成する。それ以外の構成は、実施の形態2と同様である。
 以上のような形態により、ラインバンク400で形成された領域に有機発光層700を塗布により形成する場合であっても、画素電極の縁での画素電極と透明陰極との短絡を防止でき、かつ有機発光層700が均一に形成することが可能となる。また、ラインバンク400の上面に絶縁層800を形成しないことにより、有機ELデバイスの上面の凹凸はより小さくなる。有機ELデバイスの発光特性は、環境中の酸素や水により劣化していく。このため、樹脂や薄膜で封止層を形成することが一般的である。封止層には被覆性が求められる。被覆対象物の凹凸が大きいと、被覆性が悪くなることは明らかである。よって、デバイスの凹凸を小さく出来る実施の形態3の有機ELデバイスでは、封止層の被覆性がより向上する。このため、発光特性の劣化がより少ない有機ELデバイスを提供することが可能となる。
 (実施の形態4)
 図4(A)は、本発明の実施の形態4の有機ELデバイス50の平面図である。図4(B)は、図4(A)中の有機ELデバイスのDD’断面図である。実施の形態4ではバンクは形成していない。スピンコート法やスリットコート法で、画素電極600を有する基板500の表面の全域に拡がる白色有機発光層750を形成する。白色有機発光層750を介して画素電極600の縁を覆うように、白色有機発光層750上に絶縁層800を井桁状に形成する。白色有機発光層750及び絶縁層800を覆うように透明陰極900を形成する。以上により、白色の有機ELデバイスが形成される。
 以上のような構成により、画素電極の縁で有機発光層の膜厚が薄くなることによる画素電極と対向電極との間の短絡を抑制することが可能となる。よって、発光特性に優れた有機ELデバイスを提供することができる。
 実施例では、有機発光層を塗布する面に反射電極のみ配置されている場合と、反射電極と絶縁層が配置されている場合とで有機発光層の膜形状が異なることに関して、実験データを用いて説明する。
 (実施例)
 旭硝子株式会社製ガラス基板AN100(370mm×470mm×0.7mm)上に画素電極として銀-パラジウム-銅(APC)膜を150nmの厚さでスパッタリング法により形成した。
 APC膜を形成したガラス基板上に、ラインバンクをフォトリソグラフィ法により形成した。ラインバンクの材料は旭硝子製のアクリル樹脂材料を用いた。スピンコート法によりアクリル樹脂材料の塗膜を形成し、温度100℃、2分間でプリベークを行なった。次に、フォトマスクを介して紫外光を照射した。今回用いたバンク材料はネガ型材料であり、露光された部分が架橋反応し硬化する。紫外光の波長は365nmをメインピークとするブロードである。露光照度は20mW/cmで、露光時間は10秒間である。次に0.2%のTMAH水溶液(東京応化製NMD-3)を用いて現像した。純水にて現像液の洗浄を行なった後、ポストベークをクリーンオーブンにて温度220℃、60分間行なった。
 次に有機発光層材料を含む有機発光層インクを、インクジェット法により、ラインバンクによって規定された領域内に印刷した。有機発光層インクの溶媒にはシクロヘキシルベンゼンを用いた。印刷したインクを減圧乾燥により乾燥させた。減圧乾燥は、基板を真空チャンバに収容し、真空ポンプでチャンバ内を排気することで行なった。排気速度は、大気圧から10Paまで30秒間でチャンバ内を排気する速度である。乾燥温度は25℃である。その後、ホットプレートにて130℃10分間のベークを行なった。
 以上の方法で作製した有機発光層の膜形状を、原子間力顕微鏡(タカノ株式会社製 AS-7B)にて測定した。画素電極の短手方向(図1(A)のBB’線に沿う方向)における膜のプロファイルと膜厚均一性を図6(A)に示した。測定領域は並列する二つのラインバンクの間とした(図6(B))。また、画素電極の長手方向(図1(A)のAA’線に沿う方向)における膜のプロファイルを図7(A)に示した。測定領域は、並列する二つの絶縁層の間とした(図7(B))。
 (比較例)
 旭硝子株式会社製ガラス基板AN100(370mm×470mm×0.7mm)上に画素電極として銀-パラジウム-銅(APC)膜を150nmの厚さでスパッタリング法により形成した。
 形成したAPC膜の縁を覆うように絶縁層を形成した。絶縁層は、スパッタリング法により形成した厚さ100nmのシリコン酸化(SiO)膜である。その上に、ラインバンクをフォトリソグラフィ法により形成した。ラインバンクの形成条件は実施例と同様である。
 次に、ラインバンクで規定された領域に有機発光層を形成して、膜形状を評価した。有機発光層の形成条件及び評価方法は実施例と同様である。
 (実施例および比較例の評価)
 図6には実施例および比較例での有機発光層の膜プロファイルと、膜形状の指標である膜厚均一性を示している。膜厚均一性は(式1)で表わされる値である。
 (式1)
 膜厚均一性(%)={(膜厚最大値-膜厚最小値)/(2×平均膜厚)}×100
 膜のプロファイルは、実施例より比較例の方がいびつな形状になっていることがわかる。画素電極の短手方向における膜厚均一性は、実施例では14.8%であり、比較例では33.4%であった。有機発光層を印刷する下地が、実施例ではガラスとAPC膜であるが、比較例ではガラスとAPC膜とSiO膜である。このように、下地の表面に部分的に分布する材料の種類が、比較例の方が実施例より種類が多くなっている。材料ごとに濡れ性が異なるため、下地の前記材料の種類が多いほど塗布ムラが発生しやすくなる。
 以上より、有機発光層を印刷する下地の前記材料の種類はより少ない方が、より均一な膜厚の有機発光層を形成できることがわかる。有機ELディスプレイパネルにおいては、有機発光層の膜厚が不均一だと輝度ムラや発光色ムラが発生し、表示品質が低下してしまう。よって、本発明の有機ELディスプレイパネルは、有機発光層の膜厚が均一になり、表示品質に優れる。
 本出願は、2011年4月22日出願の特願2011-095748に基づく優先権を主張する。当該出願明細書に記載された内容は、すべて本願明細書に援用される。
 本発明の有機ELディスプレイパネルは、ラインバンクで形成された領域に有機発光層を塗布により形成する場合であっても、画素電極の縁での画素電極と対向電極との短絡を防止でき、かつ均一に発光することが可能となる、よって、表示品質が良好な有機ELディスプレイパネルを低コストで提供することができる。これは、例えば有機ELテレビへの利用に止まらず、ワープロ、パソコン等の携帯型情報処理装置、腕時計型電子機器など、各種の電子機器における表示部に好適である。
 10、20、30、40、50 有機ELデバイス
 100、500 基板
 210、600 画素電極
 220、800 絶縁層
 230、400 ラインバンク
 240 第2バンク
 300 画素領域
 610 正孔注入層
 700 有機発光層
 710 赤色有機発光層
 720 緑色有機発光層
 730 青色有機発光層
 750 白色有機発光層
 900 透明陰極

Claims (9)

  1.  基板上に配置された複数の画素電極と、
     前記画素電極上に配置され、隣り合う二以上の画素電極を覆う有機発光層と、
     前記有機発光層上に配置され、隣り合う画素電極のうち対向する互いの縁を覆う絶縁層と、
     前記有機発光層上及び前記絶縁層上に配置される対向電極と、を有する有機ELディスプレイパネル。
  2.  前記有機発光層が、前記基板及び前記画素電極を連続して覆う、請求項1に記載の有機ELディスプレイパネル。
  3.  前記基板上に、複数の前記画素電極をライン状に規定する第2の絶縁層をさらに有する、請求項1に記載の有機ELディスプレイパネル。
  4.  前記絶縁層は、前記第2の絶縁層の上面には配置されない、請求項3に記載の有機ELディスプレイパネル。
  5.  前記絶縁層は、紫外光を照射すると一定時間経過後に硬化する遅延硬化型樹脂組成物を硬化させてなる樹脂で構成されている、請求項1に記載の有機ELディスプレイパネル。
  6.  基板上に複数の画素電極を形成するステップと、
     互いに隣り合う二以上の前記画素電極を連続して覆う有機発光層を形成するステップと、
     前記有機発光層上に、前記画素電極の縁を覆うように絶縁層を形成するステップと、
     前記有機発光層上及び前記絶縁層上に対向電極を形成するステップと、を有することを特徴とする有機ELディスプレイパネルの製造方法。
  7.  前記有機発光層を形成するステップが、前記基板及び前記画素電極を連続して覆うように前記基板上及び前記画素電極上に有機発光層を形成するステップである、請求項6に記載の有機ELディスプレイパネルの製造方法。
  8.  前記画素電極をライン状に規定する第2の絶縁層を形成するステップをさらに有し、
     前記第2の絶縁層で規定されたライン状の領域に、前記有機発光層が、前記基板及び前記画素電極を連続して覆うように前記基板上及び前記画素電極上に形成されること、を特徴とする請求項6に記載の有機ELディスプレイパネルの製造方法。
  9.  前記絶縁層を形成するステップは、
     遅延硬化型樹脂組成物を含有する絶縁層材料に紫外光を照射し、
     紫外線が照射された前記絶縁層材料を、前記画素電極の縁を覆うように前記有機発光層上に塗布し、
     塗布された前記絶縁層材料を熱処理して硬化させる、請求項6に記載の有機ELディスプレイパネルの製造方法。
PCT/JP2012/002459 2011-04-22 2012-04-09 有機elディスプレイパネル及びその製造方法 WO2012144156A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/881,725 US8829509B2 (en) 2011-04-22 2012-04-09 Organic EL display panel and method for manufacturing same
JP2012534472A JP5096648B1 (ja) 2011-04-22 2012-04-09 有機elディスプレイパネル及びその製造方法
EP12774563.6A EP2618638A4 (en) 2011-04-22 2012-04-09 ORGANIC ELECTROLUMINESCENT DISPLAY PANEL AND METHOD FOR MANUFACTURING THE SAME
CN201280001748.2A CN102960068B (zh) 2011-04-22 2012-04-09 有机电致发光显示面板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011095748 2011-04-22
JP2011-095748 2011-04-22

Publications (1)

Publication Number Publication Date
WO2012144156A1 true WO2012144156A1 (ja) 2012-10-26

Family

ID=47041290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002459 WO2012144156A1 (ja) 2011-04-22 2012-04-09 有機elディスプレイパネル及びその製造方法

Country Status (5)

Country Link
US (1) US8829509B2 (ja)
EP (1) EP2618638A4 (ja)
JP (1) JP5096648B1 (ja)
CN (1) CN102960068B (ja)
WO (1) WO2012144156A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080706A1 (ja) * 2012-11-21 2014-05-30 ソニー株式会社 有機電界発光装置および有機電界発光装置の製造方法ならびに電子機器
WO2022189908A1 (ja) * 2021-03-11 2022-09-15 株式会社半導体エネルギー研究所 表示装置
WO2022259077A1 (ja) * 2021-06-08 2022-12-15 株式会社半導体エネルギー研究所 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108783A1 (ja) * 2012-01-19 2013-07-25 シャープ株式会社 カラーフィルタ基板、表示素子、及びカラーフィルタ基板の製造方法
KR20130108027A (ko) * 2012-03-23 2013-10-02 주식회사 엘지화학 유기전자소자용 기판의 제조방법
JP6124584B2 (ja) * 2012-12-21 2017-05-10 株式会社半導体エネルギー研究所 発光装置及びその製造方法
KR102048952B1 (ko) * 2013-02-06 2019-11-27 삼성디스플레이 주식회사 유기 발광 표시 장치 및 이의 제조 방법
KR20140139328A (ko) * 2013-05-27 2014-12-05 삼성디스플레이 주식회사 유기 발광 표시 장치의 제조 방법
KR102280777B1 (ko) * 2013-12-20 2021-07-23 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
JPWO2015141176A1 (ja) * 2014-03-20 2017-04-06 株式会社Joled 有機発光パネルおよび有機発光装置
JP6685675B2 (ja) * 2015-09-07 2020-04-22 株式会社Joled 有機el素子、それを用いた有機el表示パネル、及び有機el表示パネルの製造方法
CN106876437B (zh) 2017-03-06 2020-03-31 京东方科技集团股份有限公司 一种显示基板、显示面板及显示基板的制作方法
CN107068884B (zh) * 2017-04-05 2019-07-05 桂林电子科技大学 一种高效率紫外有机电致发光器件及其制备方法
CN109671738B (zh) * 2017-10-13 2021-02-05 京东方科技集团股份有限公司 阵列基板、显示面板及其制作方法和显示装置
CN108448004A (zh) * 2018-05-21 2018-08-24 武汉华星光电半导体显示技术有限公司 一种显示面板及制作方法
CN109148538A (zh) * 2018-08-27 2019-01-04 京东方科技集团股份有限公司 显示基板、显示装置及显示基板的制造方法
KR102625413B1 (ko) * 2018-10-29 2024-01-17 삼성디스플레이 주식회사 유기 발광 표시 장치 및 이의 제조 방법
CN110376781B (zh) * 2019-07-23 2022-05-20 京东方科技集团股份有限公司 一种基板及其制备方法、显示面板
CN111192905A (zh) * 2020-01-08 2020-05-22 武汉华星光电半导体显示技术有限公司 有机发光二极体显示器件及其制造方法
CN111200004A (zh) * 2020-02-27 2020-05-26 深圳市华星光电半导体显示技术有限公司 一种像素结构及其制备方法、显示面板
CN111509015A (zh) * 2020-04-27 2020-08-07 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
US11424270B2 (en) * 2020-06-02 2022-08-23 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Flexible display device and manufacturing method thereof
CN115474443A (zh) * 2021-03-24 2022-12-13 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
DE112021001033T5 (de) * 2021-03-30 2022-11-24 Boe Technology Group Co., Ltd. Anzeigeträger und Anzeigeeinrichtung

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6364291A (ja) * 1986-09-05 1988-03-22 株式会社日立製作所 薄膜エレクトロルミネセンス素子
JPH10172761A (ja) * 1996-12-10 1998-06-26 Tdk Corp 有機エレクトロルミネッセンス素子およびその製造方法と有機エレクトロルミネッセンス表示装置およびその製造方法
JP2001210469A (ja) * 2000-01-28 2001-08-03 Sharp Corp 有機エレクトロルミネッセンス素子の製造方法
JP2004234901A (ja) * 2003-01-28 2004-08-19 Seiko Epson Corp ディスプレイ基板、有機el表示装置、ディスプレイ基板の製造方法および電子機器
US20050112341A1 (en) 2003-11-11 2005-05-26 Seiko Epson Corporation Electro-optical device and electronic apparatus
JP2006086128A (ja) 1998-03-17 2006-03-30 Seiko Epson Corp 表示装置の製造方法
JP2006243171A (ja) 2005-03-01 2006-09-14 Sharp Corp 表示装置用基板
US20070075618A1 (en) 2005-09-30 2007-04-05 Seiko Epson Corporation Organic electroluminescent device and optical device
JP2008243650A (ja) 2007-03-28 2008-10-09 Seiko Epson Corp 有機エレクトロルミネッセンス装置
JP2008305580A (ja) * 2007-06-05 2008-12-18 Sekisui Chem Co Ltd 光後硬化性組成物、有機エレクトロルミネッセンス素子用封止剤、有機エレクトロルミネッセンス表示装置の製造方法、及び、有機エレクトロルミネッセンス表示装置
JP2009070704A (ja) 2007-09-13 2009-04-02 Casio Comput Co Ltd 表示装置及びその製造方法
US20090160322A1 (en) 2007-05-28 2009-06-25 Panasonic Corporation Organic el device and display
WO2009087966A1 (ja) * 2008-01-07 2009-07-16 Panasonic Corporation 有機エレクトロルミネッセンス装置およびその製造方法
JP2010033972A (ja) 2008-07-30 2010-02-12 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法
JP2011038090A (ja) 2009-07-15 2011-02-24 Three Bond Co Ltd 遅延硬化性樹脂組成物

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999053726A1 (fr) 1996-12-10 1999-10-21 Tdk Corporation Element organique electroluminescent et son procede de fabrication
JP2008170756A (ja) * 2007-01-12 2008-07-24 Sony Corp 表示装置
ATE523897T1 (de) * 2007-05-31 2011-09-15 Panasonic Corp Organisches el-element und herstellungsverfahren dafür
US8017422B2 (en) * 2007-06-19 2011-09-13 Semiconductor Energy Laboratory Co., Ltd. Method for forming pattern, method for manufacturing light emitting device, and light emitting device
KR100932937B1 (ko) * 2008-04-01 2009-12-21 삼성모바일디스플레이주식회사 유기 발광 표시 장치 및 그 제조 방법
WO2009147838A1 (ja) * 2008-06-06 2009-12-10 パナソニック株式会社 有機elディスプレイパネルおよびその製造方法
JP5195593B2 (ja) * 2009-04-01 2013-05-08 セイコーエプソン株式会社 有機el装置および有機el装置の製造方法、ならびに電子機器

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6364291A (ja) * 1986-09-05 1988-03-22 株式会社日立製作所 薄膜エレクトロルミネセンス素子
JPH10172761A (ja) * 1996-12-10 1998-06-26 Tdk Corp 有機エレクトロルミネッセンス素子およびその製造方法と有機エレクトロルミネッセンス表示装置およびその製造方法
JP2006086128A (ja) 1998-03-17 2006-03-30 Seiko Epson Corp 表示装置の製造方法
JP2001210469A (ja) * 2000-01-28 2001-08-03 Sharp Corp 有機エレクトロルミネッセンス素子の製造方法
JP2004234901A (ja) * 2003-01-28 2004-08-19 Seiko Epson Corp ディスプレイ基板、有機el表示装置、ディスプレイ基板の製造方法および電子機器
US20050112341A1 (en) 2003-11-11 2005-05-26 Seiko Epson Corporation Electro-optical device and electronic apparatus
JP2006243171A (ja) 2005-03-01 2006-09-14 Sharp Corp 表示装置用基板
US20070075618A1 (en) 2005-09-30 2007-04-05 Seiko Epson Corporation Organic electroluminescent device and optical device
JP2008243650A (ja) 2007-03-28 2008-10-09 Seiko Epson Corp 有機エレクトロルミネッセンス装置
US20090160322A1 (en) 2007-05-28 2009-06-25 Panasonic Corporation Organic el device and display
JP2009200049A (ja) 2007-05-28 2009-09-03 Panasonic Corp 有機elデバイス
JP2008305580A (ja) * 2007-06-05 2008-12-18 Sekisui Chem Co Ltd 光後硬化性組成物、有機エレクトロルミネッセンス素子用封止剤、有機エレクトロルミネッセンス表示装置の製造方法、及び、有機エレクトロルミネッセンス表示装置
JP2009070704A (ja) 2007-09-13 2009-04-02 Casio Comput Co Ltd 表示装置及びその製造方法
WO2009087966A1 (ja) * 2008-01-07 2009-07-16 Panasonic Corporation 有機エレクトロルミネッセンス装置およびその製造方法
JP2010033972A (ja) 2008-07-30 2010-02-12 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法
JP2011038090A (ja) 2009-07-15 2011-02-24 Three Bond Co Ltd 遅延硬化性樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2618638A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080706A1 (ja) * 2012-11-21 2014-05-30 ソニー株式会社 有機電界発光装置および有機電界発光装置の製造方法ならびに電子機器
WO2022189908A1 (ja) * 2021-03-11 2022-09-15 株式会社半導体エネルギー研究所 表示装置
WO2022259077A1 (ja) * 2021-06-08 2022-12-15 株式会社半導体エネルギー研究所 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法

Also Published As

Publication number Publication date
CN102960068B (zh) 2015-12-23
EP2618638A1 (en) 2013-07-24
CN102960068A (zh) 2013-03-06
US8829509B2 (en) 2014-09-09
JPWO2012144156A1 (ja) 2014-07-28
US20130234126A1 (en) 2013-09-12
EP2618638A4 (en) 2013-08-14
JP5096648B1 (ja) 2012-12-12

Similar Documents

Publication Publication Date Title
JP5096648B1 (ja) 有機elディスプレイパネル及びその製造方法
JP4664447B2 (ja) 有機elディスプレイパネル
JP4621818B1 (ja) 有機elディスプレイパネルおよびその製造方法
JP4540747B2 (ja) 有機elデバイスおよび有機elディスプレイパネル
US8901594B2 (en) Organic EL display panel and method for manufacturing same
JP4526595B2 (ja) 有機elディスプレイパネル
JP6594859B2 (ja) 有機発光デバイスおよびその製造方法
JP4647708B2 (ja) 有機elデバイスおよびその製造方法
US10714549B2 (en) Organic EL display panel manufacturing method and organic EL display panel
US10861910B2 (en) Organic EL display panel and method for manufacturing organic EL display panel
US20200227661A1 (en) Organic el display panel and method for manufacturing organic el display panel
JP2007134327A (ja) 表示装置とその製造方法
JP5573616B2 (ja) 表示装置
TWI544572B (zh) 顯示裝置
JP2010282903A (ja) 有機elディスプレイパネル
WO2013168546A1 (ja) 表示装置の製造方法
JP2020030933A (ja) 有機el表示パネル、及び有機el表示パネルの製造方法
JP2010009753A (ja) 有機el表示装置及びその製造方法
WO2011122461A1 (ja) 発光装置の製造方法
JP2011249035A (ja) 有機elディスプレイパネルおよびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280001748.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012534472

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774563

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012774563

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012774563

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13881725

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE