WO2012140887A1 - 不揮発性記憶素子およびその製造方法 - Google Patents

不揮発性記憶素子およびその製造方法 Download PDF

Info

Publication number
WO2012140887A1
WO2012140887A1 PCT/JP2012/002521 JP2012002521W WO2012140887A1 WO 2012140887 A1 WO2012140887 A1 WO 2012140887A1 JP 2012002521 W JP2012002521 W JP 2012002521W WO 2012140887 A1 WO2012140887 A1 WO 2012140887A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resistance change
memory element
resistance
nonvolatile memory
Prior art date
Application number
PCT/JP2012/002521
Other languages
English (en)
French (fr)
Inventor
川島 良男
三河 巧
今井 伸一
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013509796A priority Critical patent/JP5636092B2/ja
Priority to CN201280016903.8A priority patent/CN103460383B/zh
Priority to US14/110,163 priority patent/US8921200B2/en
Publication of WO2012140887A1 publication Critical patent/WO2012140887A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/063Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx

Definitions

  • the present invention relates to a variable resistance nonvolatile memory element and a manufacturing method thereof.
  • a resistance variable nonvolatile memory element using a resistance variable material composed of a transition metal oxide having a shortage of oxygen with respect to a stoichiometric transition metal oxide has been proposed as a memory material.
  • Such a nonvolatile memory element includes an upper electrode layer, a lower electrode layer, and a resistance change layer sandwiched between the upper electrode layer and the lower electrode layer, and is provided between the upper electrode layer and the lower electrode layer.
  • the resistance value of the variable resistance layer reversibly changes. Therefore, by associating information with this resistance value, the information can be stored without volatilization (for example, Patent Document 1).
  • Such a variable resistance nonvolatile memory element is expected to be finer, faster, and consume less power than a flash memory using a floating gate.
  • variable resistance nonvolatile memory element the film thickness and film composition of the variable resistance layer, the electrode, etc., and the photoresist mask dimensions and the photoresist mask shape after lithography or the variable resistance layer after dry etching
  • the actual characteristic variation is larger than the characteristic variation expected based on the shape of the electrode and the like. Therefore, when the capacity is increased, there is a problem that a malfunction occurs in the retention or resistance change operation in several bits (tail bit) having the worst characteristics due to variations among the nonvolatile memory elements.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a variable resistance nonvolatile memory element capable of suppressing variation in characteristics and a manufacturing method thereof.
  • a method for manufacturing a nonvolatile memory element includes a step of forming a lower electrode layer on a substrate, and an oxygen-deficient transition metal oxide on the lower electrode layer. Forming the variable resistance layer, forming the upper electrode layer on the variable resistance layer, forming a mask pattern on the upper electrode layer, and using the mask pattern as a mask, the upper electrode layer Etching the resistance change layer and the lower electrode layer.
  • an etching gas containing bromine is used as an etching gas for etching at least the resistance change layer.
  • the present invention it is possible to realize a resistance change type nonvolatile memory element capable of suppressing variation in characteristics between nonvolatile memory elements and a manufacturing method thereof.
  • FIG. 1A is a cross-sectional view showing a configuration of a nonvolatile memory element according to an embodiment of the present invention.
  • FIG. 1B is an enlarged cross-sectional view showing the configuration of the variable resistance element according to the embodiment of the present invention.
  • FIG. 2A is a cross-sectional view showing a process of the method for manufacturing the nonvolatile memory element according to the embodiment of the present invention.
  • FIG. 2B is a cross-sectional view showing a process of the method for manufacturing the nonvolatile memory element according to the embodiment of the present invention.
  • FIG. 2C is a cross-sectional view showing a process in the method for manufacturing the nonvolatile memory element according to the embodiment of the present invention.
  • FIG. 1A is a cross-sectional view showing a configuration of a nonvolatile memory element according to an embodiment of the present invention.
  • FIG. 1B is an enlarged cross-sectional view showing the configuration of the variable resistance element according to the embodiment of the present invention.
  • FIG. 2D is a cross-sectional view illustrating a process of the method for manufacturing the nonvolatile memory element according to the embodiment of the present invention.
  • FIG. 2E is a cross-sectional view showing a process of the method for manufacturing the nonvolatile memory element according to the embodiment of the present invention.
  • FIG. 2F is a cross-sectional view showing a process in the method for manufacturing the nonvolatile memory element according to the embodiment of the present invention.
  • FIG. 2G is a cross-sectional view showing a process of the method for manufacturing the nonvolatile memory element according to the embodiment of the present invention.
  • FIG. 2H is a cross-sectional view showing a process in the method for manufacturing the nonvolatile memory element according to the embodiment of the present invention.
  • FIG. 3A is a diagram for explaining the effect of the nonvolatile memory element according to the embodiment of the present invention.
  • FIG. 3B is a diagram for explaining the effect of the nonvolatile memory element according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing analysis conditions used for the XPS analysis shown in FIGS. 3A and 3B.
  • FIG. 5A is a diagram for explaining the effect of the nonvolatile memory element according to the embodiment of the present invention.
  • FIG. 5B is a diagram for explaining the effect of the nonvolatile memory element according to the embodiment of the present invention.
  • FIG. 6 is a diagram for explaining the effect of the nonvolatile memory element according to the embodiment of the present invention.
  • FIG. 7 is a diagram for explaining a state in which the nonvolatile memory element is stuck in a high resistance state.
  • FIG. 8 shows the result of examining the fluorine concentration distribution in the depth direction of the TaO x thin film before and after dry etching using a mixed gas of C 5 F 8 , O 2 , and Ar using SIMS.
  • FIG. 9 shows the results of examining the concentration distribution of oxygen in the depth direction of the TaO x thin film before and after dry etching using a mixed gas of C 5 F 8 , O 2 , and Ar using SIMS.
  • FIG. 10 shows the results of examining the concentration distribution of carbon in the depth direction of the TaO x thin film before and after performing dry etching using a mixed gas of C 5 F 8 , O 2 , and Ar using SIMS.
  • FIG. FIG. 11 is a diagram illustrating an example of resistance change characteristics of a resistance change element manufactured by using the manufacturing method according to the embodiment of the present invention.
  • a method for manufacturing a nonvolatile memory element includes a step of forming a lower electrode layer on a substrate, and a variable resistance layer formed of an oxygen-deficient transition metal oxide on the lower electrode layer.
  • an etching gas containing hydrogen bromide may be used as the etching gas.
  • variable resistance nonvolatile memory element manufacturing method capable of suppressing characteristic variation.
  • bromine compound products formed by reaction with bromine decomposed in the etching plasma adhere to the etching end face of the resistance change layer, thereby suppressing oxygen desorption and impurity implantation by the etching gas. can do. Therefore, etching damage to the resistance change layer can be reduced. As a result, variation in characteristics of the nonvolatile memory element can be reduced, and a high-quality nonvolatile memory element in which there is no variation in initial operation and characteristics of the resistance value can be realized.
  • hydrogen bromide is a relatively stable gas, has low reactivity with oxides, and has a slow etching rate. Therefore, without etching the resistance change layer which is a metal oxide, that is, the hydrogen bromide gas serves only to protect the etching end face without causing etching damage.
  • Hydrogen bromide gas is a gas that is very often used in general semiconductor processes.
  • the present invention is based on the fact that the cause of the variation in characteristics in the conventional manufacturing method was determined by the etching damage by intensive studies by the present inventors.
  • etching damage enters an etching end face of a dry etched object.
  • the etching damage means that, for example, in dry etching of an oxide, oxygen is desorbed from the oxide due to a reducing action by an etching gas, and the resistance value of the oxide etching end face varies.
  • Etching damage means that when a mixed gas containing a fluorine-based gas is used as an etching gas for dry etching, fluorine that is an impurity for the oxide is implanted from the etching end face during etching, and the etching end face of the oxide is It means that the resistance value fluctuates.
  • the above is the cause of the malfunction of the retention or resistance change operation in the tail bit when the capacity is increased in the above-described conventional resistance change type nonvolatile memory element.
  • the present invention has been made based on such findings.
  • the resistance change layer in the step of forming the resistance change layer, has a resistance value that varies depending on an oxygen amount, and Alternatively, it may be formed of a transition metal oxide whose resistance value increases when impurities are mixed.
  • the resistance change layer may be formed of a transition metal oxide whose resistance value increases when fluorine is mixed.
  • the etching gas may further contain fluorine.
  • the resistance change layer may be etched while attaching a bromine compound to at least an etching end face of the resistance change layer.
  • the step of forming the resistance change layer includes a step of forming a first resistance change layer made of a transition metal oxide on the lower electrode layer, and a step of forming the resistance change layer on the first resistance change layer. And a step of forming a second resistance change layer made of a transition metal oxide having a lower degree of oxygen deficiency than the first resistance change layer.
  • a conductive path (filament) for causing a resistance change is formed in the second resistance change layer in contact with the upper electrode layer. Therefore, by using a mixed gas containing a bromine compound as an etching gas and protecting the etching end face of the resistance change layer with a bromine compound product, etching damage that varies the resistance value due to oxygen desorption or implantation of impurities at the etching end face is prevented. Can be reduced. As a result, resistance value fluctuations can be suppressed, and a stable operation can be performed even if the filament is formed near the etching end face.
  • the resistance change layer may be formed of a transition metal oxide whose resistance value increases as the degree of oxygen deficiency decreases. It may be formed of a metal oxide of tantalum oxide TaO x (0 ⁇ x ⁇ 2.5).
  • nonvolatile memory element having reversibly stable rewriting characteristics including tail bits and good retention characteristics can be realized.
  • the upper electrode layer may be formed of platinum, iridium, or palladium.
  • a nonvolatile memory element of one embodiment of the present invention includes a lower electrode layer formed over a substrate, and an oxygen-deficient transition metal oxide formed over the lower electrode layer.
  • a resistance change layer composed of a material and an upper electrode layer formed on the resistance change layer, and a bromine compound is attached to a side surface of the resistance change layer.
  • the side surface of the resistance change layer may have a sidewall protective film containing the bromine compound.
  • variable resistance nonvolatile memory element capable of suppressing variation in characteristics between nonvolatile memory elements and a method for manufacturing the variable resistance nonvolatile memory element.
  • the bromine compound product adheres to the etching end face of the resistance change layer to protect the etching end face, thereby suppressing oxygen desorption and impurity implantation by the etching gas. can do. Therefore, etching damage to the resistance change layer can be reduced, and variation in characteristics of the nonvolatile memory element can be reduced. Thereby, even when the capacity is increased, the initial operation and operation characteristics of the resistance value are not varied, and a high-quality nonvolatile memory element having good retention characteristics can be realized.
  • variable resistance nonvolatile memory element can be applied as a semiconductor integrated circuit (LSI) having a part or all of its functions.
  • LSI semiconductor integrated circuit
  • FIG. 1A is a cross-sectional view showing a configuration of a nonvolatile memory element according to an embodiment of the present invention.
  • FIG. 1A shows an example in which the nonvolatile memory element 100 is composed of one.
  • FIG. 1B is a cross-sectional view illustrating a configuration of a side surface of the variable resistance element according to the embodiment of the present invention.
  • the nonvolatile memory element 100 shown in FIG. 1A includes a resistance change element 1, a substrate 11, a source and drain layer 12, a gate 13, a first interlayer insulating layer 14, a first contact 15, and a second contact.
  • the resistance change element 1 includes a lower electrode layer 2, a resistance change layer 3 including a first resistance change layer 31 and a second resistance change layer 32, and an upper electrode layer 4.
  • the gate 13 is formed on the substrate 11, and a gate insulating film is formed between the gate 13 and the substrate 11.
  • the source and drain layers 12 are formed on the substrate 11.
  • the first interlayer insulating layer 14 is formed on the substrate 11 with a plasma TEOS film, SiO 2 or the like so as to cover the gate 13 and the source and drain layers 12.
  • the substrate 11, the gate 13 and the gate insulating film, and the source / drain layer 12 constitute a transistor 20.
  • the first contact 15 is formed through the first interlayer insulating layer 14 so as to connect either the source or drain layer 12 and the lower electrode layer 2 of the resistance change element 1.
  • the first contact 15 is formed using, for example, tungsten or copper.
  • the resistance change element 1 is formed on the first interlayer insulating layer 14 and the first contact 15.
  • the lower electrode layer 2 is formed on the first contact 15 so as to be connected to the first contact 15.
  • the first resistance change layer 31 is formed on the lower electrode layer 2 and is composed of a first transition metal oxide.
  • the second resistance change layer 32 is formed on the first resistance change layer 31 and is composed of a second transition metal oxide having a lower oxygen deficiency than the first resistance change layer 31.
  • the laminated structure of the first variable resistance layer 31 and the second variable resistance layer 32 is formed as the variable resistance layer 3 of the variable resistance element 1.
  • the upper electrode layer 4 is formed on the second resistance change layer 32.
  • the film thickness of the first resistance change layer 31 is, for example, about 20 nm to 100 nm
  • the film thickness of the second resistance change layer 32 is, for example, about 1 nm to 10 nm.
  • the resistance change element 1 has the side wall protective film 33a formed by the bromine compound adhering to the side surface (etching end surface 33) of the resistance change layer 3, as shown in FIG. 1B.
  • each of the first resistance change layer 31 and the second resistance change layer 32 includes a first transition metal oxide layer composed of an oxygen-deficient transition metal oxide, and a first transition metal oxide. It is comprised with the 2nd transition metal oxide layer comprised with the transition metal oxide whose oxygen deficiency is smaller than a physical layer.
  • the same kind of transition metal is used for the first transition metal constituting the first transition metal oxide layer and the second transition metal constituting the second transition metal oxide layer. Is used. That is, the first resistance change layer 31 is composed of an oxygen-deficient first tantalum oxide layer (TaO x ), and the second resistance change layer 32 is composed of a second tantalum oxide layer (TaO y ). Has been.
  • the first tantalum oxide layer TaO x is 0 ⁇ x ⁇ 2.5
  • the second tantalum oxide layer TaO x is x ⁇ y.
  • the second tantalum oxide layer TaO y satisfies 2.1 ⁇ y.
  • the oxygen-deficient transition metal oxide refers to a transition metal oxide in which oxygen is insufficient from the stoichiometric composition.
  • the degree of oxygen deficiency refers to the proportion of oxygen that is deficient with respect to the amount of oxygen constituting the oxide of the stoichiometric composition in each transition metal.
  • an oxide having a stoichiometric composition often exhibits insulating properties, and an oxygen-deficient transition metal oxide often exhibits conductivity properties.
  • the second resistance change layer 32 has a higher resistance by reducing the degree of oxygen deficiency than the first resistance change layer 31.
  • the voltage applied between the upper electrode layer 4 and the lower electrode layer 2 at the time of resistance change is distributed more to the second resistance change layer 32, and the second The oxidation-reduction reaction generated in the resistance change layer 32 can be more easily caused.
  • the first transition metal constituting the first resistance change layer 31 and the second transition metal constituting the second resistance change layer 32 may be made of the same material or different materials. It may be used.
  • transition metal tantalum (Ta), titanium (Ti), hafnium (Hf), zirconium (Zr), niobium (Nb), tungsten (W), or the like can be used. Since transition metals can take a plurality of oxidation states, different resistance states can be realized by oxidation-reduction reactions. In the case where a material in which the first transition metal and the second transition metal are different from each other is used, it is preferable that the standard electrode potential of the second transition metal is smaller than the standard electrode potential of the first transition metal. This is because the resistance change phenomenon is considered to occur due to an oxidation-reduction reaction occurring in a minute filament formed in the second resistance change layer 32 having a high resistance, resulting in a change in the resistance value. This is because the standard electrode potential has a characteristic that a higher value indicates that the standard electrode potential is less likely to be oxidized, and a stable operation can be expected when more redox reaction occurs in the second transition metal.
  • the thickness of the first resistance change layer 31 is preferably 45 nm. is there.
  • the thickness of the second variable resistance layer 32 is preferably 5 nm.
  • the effect of this invention is not expressed only in the case of a tantalum oxide, and this invention is not limited to this.
  • a stacked structure of hafnium (Hf) oxide or a stacked structure of zirconium (Zr) oxide may be used.
  • y is preferably 1.8 ⁇ y.
  • the composition of the first zirconium oxide is ZrO x and the composition of the second zirconium oxide is ZrO y , 0.9 ⁇ x ⁇ 1. 4 and y is preferably 1.9 ⁇ y.
  • the film thickness of the upper electrode layer 4 is preferably about 50 nm.
  • the upper electrode layer 4 includes a single metal or an alloy having a standard electrode potential higher than that of the transition metal constituting the resistance change layer 3, and may be a single layer structure or a multilayer structure.
  • the metal having a higher standard electrode potential than the transition metal constituting the resistance change layer 3 is preferably a noble metal such as platinum (Pt), iridium (Ir), or palladium (Pd).
  • the upper electrode layer 4 When the material of the resistance change layer 3 is composed of an oxygen-deficient transition metal oxide, the upper electrode layer 4 has a standard electrode potential higher than the standard electrode potential of the transition metal of the oxygen-deficient transition metal oxide.
  • the material is selected so that the standard electrode potential of the lower electrode layer 2 is smaller than the standard electrode potential of the upper electrode layer 4.
  • an oxidation-reduction reaction of the resistance change layer 3 occurs preferentially at the interface between the electrode having the higher standard electrode potential (upper electrode layer 4) and the resistance change layer 3 according to the applied voltage. Since a resistance change layer having a concentration or low oxygen concentration can be formed, stable operation can be obtained.
  • an electrode material for example, Pt
  • Pt an electrode material having a higher standard electrode potential
  • an electrode material having a lower standard electrode potential for example, tantalum (Ta), tantalum nitride (TaN), titanium
  • the second interlayer insulating layer 19 is formed so as to cover the side surfaces of the lower electrode layer 2, the first resistance change layer 31 and the second resistance change layer 32, and the side surfaces and the upper surface of the upper electrode layer 4. .
  • the second contact 16 is formed through the second interlayer insulating layer 19 so as to reach the upper electrode layer 4.
  • the third contact 7 is formed through the second interlayer insulating layer 19 and the first interlayer insulating layer 14 so as to reach one of the source and drain layers 12.
  • the second contact 16 and the third contact 7 are formed using, for example, tungsten or copper.
  • the wiring pattern 18 is formed on the upper surface of the second interlayer insulating layer 19, and includes a first wiring pattern 181 and a second wiring pattern 182 that are connected to the second contact 16 and the third contact 7, respectively. ing. Specifically, the upper electrode layer 4 of the resistance change element 1 is connected to the first wiring pattern 181 by the second contact 16, and one of the source and drain layers 12 is connected to the second wiring pattern by the third contact 7. 182.
  • the wiring pattern 18 is formed using copper, aluminum alloy, or the like.
  • the nonvolatile memory element 100 is configured.
  • the resistance change characteristic may deteriorate as shown in FIG. FIG. 7 shows that although the high-resistance pulse and the low-resistance pulse are alternately applied, the resistance cannot be lowered in the high-resistance state.
  • the present inventors examined the cause, and when patterning the resistance change layer, the resistance change layer was exposed to a dry etching process using an etching gas containing a fluorine compound gas, so that the resistance change layer was exposed to the resistance change layer. We thought that the radical fluorine contained in the etching gas plasma was mixed, the composition changed, and the resistance change characteristic deteriorated. The same can be said for the oxygen-deficient transition metal oxide exhibiting resistance change characteristics.
  • the present inventors conducted the following experiment in order to investigate the influence of the etching gas containing the fluorine compound gas on the film quality.
  • tantalum oxide TiO x
  • SIMS secondary ion mass spectrometry
  • FIG. 8 shows the depth direction of fluorine in the TaO x thin film before and after dry etching using a mixed gas of C 5 F 8 , O 2 and Ar using secondary ion mass spectrometry (SIMS). The result of having investigated about density distribution of is shown.
  • the vertical axis represents the fluorine ion count (cps), and the horizontal axis represents the depth (nm) from the surface of the TaO x film.
  • White circles represent data before dry etching, and black circles represent data after dry etching. From this result, it became clear that fluorine was mixed in the surface layer of the TaO x thin film by the dry etching process using the fluorine-based gas. Further, when estimated from the half width, it was found that fluorine was mixed in a depth region of less than 5 nm from the surface layer of the TaO x film. Similar results were obtained when other fluorine compound etching gases such as CF 4 , CHF 3 , and SF 6 were used. Note that fluorine ions are observed in the vicinity of the surface even before the dry etching process. This may be because fluorine is mixed into the surface layer of the TaO x film before the dry etching for some reason.
  • FIGS. 9 and 10 show the concentration distribution in the depth direction of oxygen and carbon in the TaO x thin film before and after performing dry etching using the above-mentioned mixed gas of C 5 F 8 , O 2 and Ar, respectively. The results are shown. From this result, it can be seen that oxygen and carbon are hardly mixed in the surface layer of the TaO x thin film.
  • the present invention provides a method for manufacturing a nonvolatile memory element that can prevent fluorine from being mixed into the resistance change layer and a decrease in the amount of oxygen in the resistance change layer.
  • FIGS. 2A to 2H are cross-sectional views showing steps of the method for manufacturing the nonvolatile memory element 100 according to the embodiment of the present invention.
  • a large number of nonvolatile memory elements are formed on the substrate 11, but only one nonvolatile memory element is shown here for the sake of simplification of the drawing.
  • a part of the diagram is enlarged for easy understanding.
  • the source and drain layers 12 are formed on the substrate 11, the gate 13 is formed on the substrate 11, and then the first interlayer insulating layer 14 composed of a plasma TEOS film, SiO 2 or the like is formed. Form. Next, a first contact 15 that penetrates through the first interlayer insulating layer 14 and is connected to one of the source and drain layers 12 is formed.
  • the lower electrode layer 2, the first resistance change layer 31, and the second electrode layer are formed on the first interlayer insulating layer 14 so as to cover the exposed upper surface of the first contact 15.
  • the resistance change layer 32 and the upper electrode layer 4 are formed in this order, and the hard mask layer 5 is formed so as to cover the upper surface of the formed upper electrode layer 4.
  • the lower electrode layer 2, the resistance change layer 3, the first resistance change layer 31, and the second resistance change layer 32 include not only the state etched into the pattern shape but also the formed film state. These are called the upper electrode layer 4 and the hard mask layer 5.
  • TaN is formed as the lower electrode layer 2 on the first interlayer insulating layer 14.
  • 80 nm of iridium (Ir) is formed as the upper electrode layer 4 on the second resistance change layer 32, and then 100 nm of TiAlN is formed as the hard mask layer 5 on the upper surface of the upper electrode layer 4.
  • the first resistance change layer 31 is deposited by a reactive sputtering method using a metal tantalum target and sputtering in an argon atmosphere containing oxygen. After that, the upper surface of the first resistance change layer 31 is oxidized by plasma oxidation in an oxygen atmosphere, so that the oxygen deficiency is smaller on the first resistance change layer 31 than on the first resistance change layer 31.
  • Two resistance change layers 32 are formed. More specifically, after depositing 35 nm of TaO x as the first variable resistance layer 31, the upper surface of TaO x is oxidized by plasma oxidation in an oxygen atmosphere, and the first variable resistance layer composed of TaO x is formed.
  • a second variable resistance layer 32 made of TaO y having a lower degree of oxygen deficiency than TaO x is formed on 31 nm.
  • the oxidation treatment method is not limited to plasma oxidation, and for example, treatment having an effect of oxidizing the surface such as heat treatment in an oxygen atmosphere may be performed.
  • the TaO y may be 5nm deposited by reactive sputtering as the second variable resistance layer 32.
  • the oxygen deficiency contained in the film can be adjusted by changing the oxygen concentration in the sputtering atmosphere or using a transition metal oxide target as the target.
  • metal tantalum may be used, or a tantalum oxide target (for example, Ta 2 O 5 ) may be used.
  • a photoresist mask 60 is patterned by an exposure process and a development process.
  • a hard mask layer 5 made of, for example, TiAlN is patterned by a dry etching process.
  • the upper electrode layer 4, the resistance change layer 3 and the lower electrode layer 2 are formed in a predetermined pattern by a dry etching process using a mixed gas containing bromine, and the hard mask layer 5 is removed. To do.
  • the variable resistance element 1 including the upper electrode layer 4, the variable resistance layer 3 including the second variable resistance layer 32 and the first variable resistance layer 31, and the lower electrode layer 2 is formed.
  • the upper electrode layer 4 made of Ir contains, for example, Cl 2 and Ar using the hard mask layer 5 made of TiAlN having a thickness of 100 nm formed in the step shown in FIG. 2D as a mask.
  • Etching is performed by a dry etching process using a mixed gas.
  • the resistance change layer 3 made of tantalum oxide is etched by a dry etching process using a mixed gas containing SF 6 and HBr (hydrogen bromide).
  • the lower electrode layer 2 made of tantalum nitride is etched by a dry etching process using a mixed gas containing Cl 2 and Ar. Thereafter, the hard mask layer 5 is removed by etching, and the resistance change element 1 is formed.
  • the etching gas for patterning at least the resistance change layer 3 contains a bromine compound, and preferably contains hydrogen bromide. Therefore, on the etching end face 33 of the resistance change layer 3, a sidewall protective film 33 a composed of a bromine compound product is formed by reacting with bromine contained in the etching gas. This bromine compound product protects the resistance change layer 3 from etching damage due to oxygen desorption or impurity implantation due to reaction with the etching gas.
  • the side wall protective film 33a By forming the side wall protective film 33a in this way, it is possible to form the resistance change element 1 in which the etching end face 33 of the resistance change layer 3 is not damaged by etching and the characteristic deterioration and variation are suppressed.
  • a mixed gas containing a bromine compound may be used as an etching gas. In that case, it is possible to reliably suppress the etching damage to the etching end face 33 of the resistance change layer 3 exposed when the upper electrode layer 4 is overetched.
  • a mixed gas containing a bromine compound may be used as an etching gas. In that case, it is possible to suppress the etching damage when the lower electrode layer 2 is dry-etched from entering the etching end face 33 of the resistance change layer 3.
  • the hard mask layer 5 is removed.
  • the hard mask layer 5 may be left without being removed.
  • the hard mask layer 5 may be formed so as to penetrate and connect to the upper electrode layer 4 in the step of forming the second contact 16 described later.
  • the second contact 16 may be formed so as to be connected to the hard mask layer 5 without penetrating.
  • a second interlayer insulating layer 19 is formed so as to cover the first interlayer insulating layer 14, the upper electrode layer 4, the resistance change layer 3, and the lower electrode layer 2.
  • the second interlayer insulating layer 19 is penetrated to a predetermined position where the second contact 16 connected to the upper electrode layer 4 of the resistance change element 1 is formed in a later step.
  • a second contact opening 16A is formed so as to reach the upper electrode layer 4.
  • the second contact 16 is formed in the second contact opening 16A.
  • a third contact 7 that penetrates through the second interlayer insulating layer 19 and the first interlayer insulating layer 14 and is connected to the other of the source and drain layers 12 is formed.
  • a first wiring pattern 181 connected to the second contact 16 and a second wiring pattern 182 connected to the third contact 7 are formed on the upper surface of the second interlayer insulating layer 19.
  • the nonvolatile memory element 100 shown in FIG. 1 is manufactured.
  • the nonvolatile memory element 100 if the resistance change layer is etched using the above-described mixed gas containing bromine, a nonvolatile memory element with suppressed characteristic variation can be manufactured. Therefore, if a nonvolatile memory element composed of, for example, one transistor / 1 nonvolatile memory unit is manufactured using the resistance change element 1, the nonvolatile memory element 100 with stable operation can be realized. .
  • 3A and 3B are diagrams for explaining the effect of the nonvolatile memory element according to the embodiment of the present invention.
  • 3A and 3B show the element amounts obtained by analyzing the surface of TaO x used for the first resistance change layer 31 by XPS analysis.
  • a mixed gas containing a bromine compound, for example, HBr and TaO x gas flow ratio of SF 6 was etched with the analysis of the etched TaO x surface with a mixed gas of 1-to-1, Comparative example 1 and Comparative example 2 respectively mixed gas 1 and gas mixture 2 contains no bromine compounds as a The analysis result of the surface is shown.
  • an analysis result in an initial state before etching the surface of TaO x used for the first resistance change layer 31 is also shown.
  • the mixed gas 1 is a mixed gas having a gas flow ratio of Ar, Cl 2 and CHF 3 of 20 to 10 to 1, and the mixed gas 2 has a gas flow ratio of BCl 3 and Cl 2 of 1: 1. It is a mixed gas composed of
  • FIG. 3A shows the result of analyzing the amount of oxygen on the surface of TaO x
  • FIG. 3B shows the result of analyzing the amount of impurities on the surface of TaO x (fluorine amount; described as F amount in FIG. 3B).
  • the impurity amount (fluorine amount) is the amount of fluorine among elements (impurities) other than tantalum and oxygen detected during XPS analysis. That is, the impurity amount (fluorine amount) means the amount of fluorine implanted.
  • the oxygen amount shown in FIG. 3A decreases from the initial state, the oxygen desorption etching damage in the TaO x film is included.
  • the larger the impurity amount (fluorine amount) shown in FIG. 3B the more the etching damage is caused by the implantation of the impurity.
  • This XPS analysis is performed under the conditions shown in FIG.
  • FIG. 4 is a diagram showing analysis conditions used for the XPS analysis shown in FIGS. 3A and 3B.
  • the above XPS analysis is performed under the conditions that the beam diameter is 100 ⁇ m, the detector angle is 45 degrees, the pass energy is 23.5 V, the reference element peak is C1s (285.2 eV), and the X-ray source is AlK ⁇ (1486.6 eV). Is going. Further, X-ray irradiation was spotted, Step Size was 0.100 eV, Irradiation Energy was HP mode, and the degree of vacuum was 3.4 ⁇ 10 ⁇ 9 Torr. The neutralization gun is not used. This XPS analysis was performed using Quantum 2000 manufactured by ULVAC-PHI.
  • Comparative Example 1 shows that the amount of impurities (F amount) is greatly increased, although the decrease in the amount of oxygen is suppressed compared to the initial state. Therefore, in the dry etching using the mixed gas 1, it is considered that the resistance change layer is subjected to etching damage due to the implantation of impurities.
  • Comparative Example 2 shows that the amount of impurities (F amount) is almost the same as that in the initial state, but the amount of oxygen is greatly reduced. Therefore, in dry etching using the mixed gas 2, it is considered that the resistance change layer is subjected to etching damage that desorbs oxygen.
  • a mixed gas containing a bromine compound (particularly hydrogen bromide) is used, and as shown in FIGS. 3A and 3B, the oxygen amount is slightly reduced as compared with the initial state. It can be seen that, although a slight increase in the amount of impurities is observed, the reduction in the amount of oxygen is suppressed from Comparative Example 2, and the amount of impurities is suppressed from Comparative Example 1.
  • a mixed gas containing a bromine compound an increase in the amount of impurities can be suppressed while suppressing a decrease in the amount of oxygen, so that etching damage is reduced at the end face of the etched resistance change layer. It is thought that.
  • 5A, 5B, and 6 are diagrams for explaining the effect of the nonvolatile memory element according to the embodiment of the present invention.
  • FIG. 5A and FIG. 5B show the characteristics of the nonvolatile memory element 100 manufactured by the manufacturing method of the present embodiment and the characteristics of the nonvolatile memory element manufactured by the above-described manufacturing method of Comparative Example 1 and Comparative Example 2, respectively. It shows.
  • FIG. 5A shows the number of malfunction bits in 256 k bits
  • FIG. 5B shows the retention characteristics of tail bits at 85 ° C.
  • the evaluation method of the retention characteristic is as follows.
  • the current value at the time of low resistance and the current value at the time of high resistance of the nonvolatile memory element are set to reference values (for example, each current value is 50% from the initial current value). % Time) is calculated.
  • the activation energy is calculated by the Arrhenius plot, and the time for reaching the reference value in the environment of 85 ° C. is calculated.
  • the life prediction time (retention characteristic) is determined using these calculation results.
  • the number of malfunction bits in 256 k bits is 103 bits, and in Comparative Example 2, the number of malfunction bits in 256 k bits is 193 bits.
  • the number of malfunction bits in 256 k bits is 0, and it can be seen that there is no malfunction bit even if the capacity is increased.
  • the retention characteristics of tail bits at 85 ° C. are about 400 hours in Comparative Example 1 and about 1.5 years (about 13,000 hours) in Comparative Example 2.
  • the tail bit retention characteristic at 85 ° C. is about 17 years (about 150,000 hours), and it can be seen that there is an effect of greatly improving the characteristic.
  • the etching damage is reduced. Thereby, the occurrence of malfunction of the nonvolatile memory element 100 according to the present embodiment can be suppressed, and there is an effect of improving the tail bit characteristics.
  • FIG. 6 shows an element amount obtained by analyzing the TaO x surface used for the resistance change element 1 by XPS analysis.
  • the XPS analysis conditions here are an incident energy of 150 eV, a pass energy of 100 eV, an energy step of 0.1 eV, an acquisition time of 0.2 ms / step, and an integration count of 25.
  • VG Scienta R4000WAL was used as a detector.
  • bromine compound products (IrBr x ) are detected at 62 eV and 65 eV on the TaO x surface used in the resistance change element 1.
  • no bromine compound product was detected on the TaO x surface used for the resistance change element.
  • the bromine compound product (the side wall protective film 33a described above) is formed on the etching end face 33, whereby oxygen It can be seen that etching damage due to desorption and impurity implantation is suppressed.
  • FIG. 11 shows an example of resistance change characteristics of a resistance change element manufactured by using the manufacturing method of the present embodiment. As shown in FIG. 11, it can be seen that stable resistance change characteristics are obtained.
  • variable resistance nonvolatile memory element and the method of manufacturing the variable resistance nonvolatile memory element that can suppress the variation in characteristics by etching the variable resistance layer 3 of the variable resistance element 1 using the mixed gas of the present embodiment. realizable.
  • the bromine compound product adheres to the etching end face of the resistance change layer to form a sidewall protective film, so that oxygen desorption and impurity implantation due to the etching gas can be suppressed. it can. Therefore, etching damage to the resistance change layer can be reduced. As a result, variations in characteristics of nonvolatile memory elements can be reduced, and even when the capacity is increased, there is no variation in initial operation and operating characteristics of resistance values, and high-quality nonvolatile memory elements having good retention characteristics are realized. can do.
  • Br bromine
  • the bromine compound product becomes the side wall protective film 33a and can prevent implantation of other impurities, oxygen desorption, and the like.
  • impurities such as to vary the inhibiting resistance to movement of the oxygen ions contained in TaO x etc. (Fluorine etc.) and lowering the resistance by reducing the oxygen content of the resistance change layer, that is, the effect of preventing oxygen desorption that may cause leakage.
  • the nonvolatile memory element 100 with stable operation can be realized. .
  • the non-volatile memory element of this invention and its manufacturing method were demonstrated based on embodiment, this invention is not limited to this embodiment.
  • the resistance change element having a laminated structure composed of transition metal oxides having different degrees of oxygen deficiency as shown in this embodiment, at least the side wall of the resistance change layer inhibits the movement of oxygen ions contained in the resistance change layer.
  • a protective layer is formed which can prevent implantation of impurities that change the resistance value (fluorine or the like), lower resistance due to a decrease in the oxygen content of the resistance change layer, that is, oxygen desorption that may cause leakage.
  • variable resistance layer is etched with a mixed gas containing hydrogen bromide. It may be other than hydrogen bromide, and if etching is performed using a mixed gas containing bromine, the same effect as that of this embodiment can be expected, so that it is included in the scope of the present invention.
  • any gas can be expected to have the same effect, and it is included in the scope of the present invention. That is, for an oxide, it is a mixed gas containing an element that satisfies the following conditions: 1) the atomic radius is larger than that of fluorine as an impurity, 2) is not substituted with oxygen, and 3) is not reactive with oxygen. Any function and effect that can be expected are included in the scope of the present invention.
  • the present invention can be used for a nonvolatile memory element and a manufacturing method thereof, and in particular, a nonvolatile memory element used for various electronic devices such as digital home appliances, memory cards, portable telephones, and personal computers, and a manufacturing method thereof. Can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

 本発明の抵抗変化型の不揮発性記憶素子の製造方法は、基板(11)上に下部電極層(2)を形成する工程と、下部電極層(2)上に酸素不足型の金属酸化物で構成される抵抗変化層(3)を形成する工程と、抵抗変化層(3)上に上部電極層(4)を形成する工程と、上部電極層(4)上にマスクパターンを形成し、マスクパターンをマスクとして、上部電極層(4)、抵抗変化層(3)および下部電極層(2)をエッチングしてパターン形成する工程と、を含み、エッチングする工程において、少なくとも抵抗変化層(3)をエッチングするためのエッチングガスに、臭素を含むガスを用いる。

Description

不揮発性記憶素子およびその製造方法
 本発明は、抵抗変化型の不揮発性記憶素子およびその製造方法に関する。
 近年、記憶材料として、化学量論的組成の遷移金属酸化物に対して酸素数が不足した遷移金属酸化物で構成される抵抗変化材料を用いた抵抗変化型の不揮発性記憶素子が提案されている。このような不揮発性記憶素子は、上部電極層と、下部電極層と、上部電極層および下部電極層に挟まれた抵抗変化層と、を備えていて、上部電極層および下部電極層の間に電気パルスを印加することによって抵抗変化層の抵抗値が可逆的に変化する。それ故、この抵抗値に情報を対応させることにより、その情報を揮発しないようにして記憶することができる(例えば、特許文献1)。このような抵抗変化型の不揮発性記憶素子は、フローティングゲートを用いたフラッシュメモリに比べて、微細化、高速化、低消費電力化を図ることができると期待されている。
特開2007-235139号公報
 しかしながら、上記従来の抵抗変化型の不揮発性記憶素子では、抵抗変化層、電極等の膜厚および膜組成、並びに、リソグラフィー後のフォトレジストマスク寸法およびフォトレジストマスク形状若しくはドライエッチング後の抵抗変化層や電極等の形状に基づき予想される特性ばらつき以上に実際の特性ばらつきが大きいという問題がある。そのため、大容量化したとき、不揮発性記憶素子間にばらつきにより最も特性が悪い数ビット(tail bit)において、リテンションや抵抗変化動作に動作不良が発生するという問題がある。
 本発明は、このような課題を解決するためになされたものであり、特性ばらつきを抑制することが可能な抵抗変化型の不揮発性記憶素子およびその製造方法を提供することを目的としている。
 上記目的を達成するために、本発明の一形態の不揮発性記憶素子の製造方法は、基板上に下部電極層を形成する工程と、前記下部電極層上に酸素不足型の遷移金属酸化物で構成される抵抗変化層を形成する工程と、前記抵抗変化層上に上部電極層を形成する工程と、前記上部電極層上にマスクパターンを形成し、前記マスクパターンをマスクとして、前記上部電極層、前記抵抗変化層および前記下部電極層をエッチングする工程とを含み、前記エッチングする工程において、少なくとも前記抵抗変化層をエッチングするためのエッチングガスに、臭素を含むエッチングガスを用いる。
 本発明によれば、不揮発性記憶素子間の特性ばらつきを抑制することが可能な抵抗変化型の不揮発性記憶素子およびその製造方法を実現できる。
図1Aは、本発明の実施の形態に係る不揮発性記憶素子の構成を示す断面図である。 図1Bは、本発明の実施の形態に係る抵抗変化素子の構成を示す拡大断面図である。 図2Aは、本発明の実施の形態に係る不揮発性記憶素子の製造方法の工程を示す断面図である。 図2Bは、本発明の実施の形態に係る不揮発性記憶素子の製造方法の工程を示す断面図である。 図2Cは、本発明の実施の形態に係る不揮発性記憶素子の製造方法の工程を示す断面図である。 図2Dは、本発明の実施の形態に係る不揮発性記憶素子の製造方法の工程を示す断面図である。 図2Eは、本発明の実施の形態に係る不揮発性記憶素子の製造方法の工程を示す断面図である。 図2Fは、本発明の実施の形態に係る不揮発性記憶素子の製造方法の工程を示す断面図である。 図2Gは、本発明の実施の形態に係る不揮発性記憶素子の製造方法の工程を示す断面図である。 図2Hは、本発明の実施の形態に係る不揮発性記憶素子の製造方法の工程を示す断面図である。 図3Aは、本発明の実施の形態に係る不揮発性記憶素子の効果を説明するための図である。 図3Bは、本発明の実施の形態に係る不揮発性記憶素子の効果を説明するための図である。 図4は、図3Aおよび図3Bに示すXPS分析に用いた分析条件を示す図である。 図5Aは、本発明の実施の形態に係る不揮発性記憶素子の効果を説明するための図である。 図5Bは、本発明の実施の形態に係る不揮発性記憶素子の効果を説明するための図である。 図6は、本発明の実施の形態に係る不揮発性記憶素子の効果を説明するための図である。 図7は、不揮発性記憶素子が高抵抗状態に張り付いた状態を説明するための図である。 図8は、SIMSを用いて、C、O、Arの混合ガスを用いてドライエッチング処理を施す前と後におけるTaO薄膜のフッ素の深さ方向濃度分布について調べた結果を示す図である。 図9は、SIMSを用いて、C、O、Arの混合ガスを用いてドライエッチング処理を施す前と後におけるTaO薄膜の酸素の深さ方向濃度分布について調べた結果を示す図である。 図10は、SIMSを用いて、C、O、Arの混合ガスを用いてドライエッチング処理を施す前と後におけるTaO薄膜の炭素の深さ方向濃度分布について調べた結果を示す図である。 図11は、本発明の実施の形態に係る製造方法を用いて作製した抵抗変化素子の抵抗変化特性の一例を示す図である。
 本発明の一形態の不揮発性記憶素子の製造方法は、基板上に下部電極層を形成する工程と、前記下部電極層上に酸素不足型の遷移金属酸化物で構成される抵抗変化層を形成する工程と、前記抵抗変化層上に上部電極層を形成する工程と、前記上部電極層上にマスクパターンを形成し、前記マスクパターンをマスクとして、前記上部電極層、前記抵抗変化層および前記下部電極層をエッチングする工程とを含み、前記エッチングする工程において、少なくとも前記抵抗変化層をエッチングするためのエッチングガスに、臭素を含むエッチングガスを用いる。
 ここで、例えば、前記エッチングする工程において、前記エッチングガスとして臭化水素を含むエッチングガスを前記エッチングガスに用いるとしてもよい。
 この製造方法により、特性ばらつきを抑制することが可能な抵抗変化型の不揮発性記憶素子の製造方法を実現できる。具体的には、抵抗変化層のエッチング端面にはエッチングプラズマ中で分解された臭素と反応して形成された臭素化合物生成物が付着することにより、エッチングガスによる酸素脱離や不純物の打込みを抑制することができる。そのため、抵抗変化層へのエッチングダメージを低減させることができる。それにより、不揮発性記憶素子の特性ばらつきを低減することができ、抵抗値の初期動作、特性にばらつきのない高品質の不揮発性記憶素子を実現することができる。
 さらに、臭化水素は比較的安定したガスであり、酸化物に対して反応性が乏しくエッチングレートが遅い。そのため、金属酸化物である抵抗変化層をエッチングすることなく、つまり、臭化水素ガスは、エッチングダメージが入らずにエッチング端面を保護する役割のみを果たす。また、臭化水素ガスは、一般的な半導体プロセスに非常によく使用されているガスである。
 したがって、従来のCMOSプロセス等を用いる半導体プロセスで作製することができる。つまり、微細化が進む半導体プロセスとも親和性がよい。
 本発明は、本発明者等の鋭意検討により、従来の製造方法において特性がばらつく原因がエッチングダメージによることを究明したことによる。
 具体的には、従来の製造方法における抵抗変化素子を形成するためのドライエッチング工程では、ドライエッチングされた被エッチング体のエッチング端面にエッチングダメージが入る。ここで、エッチングダメージとは、例えば酸化物のドライエッチングではエッチングガスによる還元作用により酸化物から酸素が脱離し、酸化物のエッチング端面の抵抗値が変動することを意味する。またエッチングダメージとは、ドライエッチングに用いるエッチングガスにフッ素系ガスを含む混合ガスを用いた場合に、エッチング中にエッチング端面から酸化物にとっては不純物となるフッ素が打ち込まれ、酸化物のエッチング端面の抵抗値が変動することを意味する。
 そのため、金属酸化物で構成される抵抗変化層をドライエッチングによりパターン形成する場合には、エッチング端面には抵抗値を変動させる酸素の脱離または不純物の打込みなどによるエッチングダメージが入る。そして、抵抗変化する動作領域にエッチングダメージの入ったエッチング端面付近を含む場合には、酸素量の変動や不純物により動作不良が発生してしまい、動作不良となる。
 以上が、上述の従来の抵抗変化型の不揮発性記憶素子において大容量化したときのtail bitにおける、リテンションや抵抗変化動作の動作不良原因である。本発明はこのような知見に基づいてなされたものである。
 また、上記目的を達成するために、本発明の一形態の不揮発性記憶素子の製造方法において、前記抵抗変化層を形成する工程において、前記抵抗変化層は酸素量により抵抗値が変動し、かつ、不純物が混入することで抵抗値が増加する遷移金属酸化物で形成されるとしてもよい。
 ここで、例えば、前記抵抗変化層を形成する工程において、前記抵抗変化層はフッ素が混入することで抵抗値が増加する遷移金属酸化物で形成されるとしてもよい。
 また、例えば、前記エッチングする工程において、前記エッチングガスはさらにフッ素を含むとしてもよい。
 また、例えば、前記エッチングする工程において、少なくとも前記抵抗変化層のエッチング端面に臭素化合物を付着させながら前記抵抗変化層をエッチングするとしてもよい。
 また、例えば、前記抵抗変化層を形成する工程は、前記下部電極層上に遷移金属酸化物で構成される第1の抵抗変化層を形成する工程と、前記第1の抵抗変化層上に前記第1の抵抗変化層より酸素不足度が小さい遷移金属酸化物で構成される第2の抵抗変化層を形成する工程と、を含むとしてもよい。
 この製造方法により、上部電極層と接する第2の抵抗変化層に、抵抗変化を起こすための導電パス(フィラメント)が形成される。そのため、エッチングガスに臭素化合物を含む混合ガスを用いて抵抗変化層のエッチング端面を臭素化合物生成物で保護することで、エッチング端面の酸素脱離や不純物の打込みによる抵抗値を変動させるエッチングダメージを低減させることができる。それによって、抵抗値変動を抑制することができるので、フィラメントがエッチング端面付近に形成されても安定した動作ができる。
 また、例えば、前記抵抗変化層を形成する工程において、前記抵抗変化層は、酸素不足度が小さくなるに従い抵抗値が増加する遷移金属酸化物で形成されるとしてもよく、前記抵抗変化層は、タンタル酸化物TaO(0<x<2.5)の金属酸化物で形成されるとしてもよい。
 これにより、動作の高速性に加えてtail bitまで含めた可逆的に安定した書き換え特性と良好なリテンション特性を有する不揮発性記憶素子を実現することができる。
 また、例えば、前記抵抗変化層を形成する工程において、前記上部電極層は、白金、イリジウムまたはパラジウムで形成されるとしてもよい。
 この構成により、特性ばらつきを抑制することが可能な抵抗変化型の不揮発性記憶素子を実現できる。また、上記目的を達成するために、本発明の一形態の不揮発性記憶素子は、基板上に形成された下部電極層と、前記下部電極層上に形成された、酸素不足型の遷移金属酸化物で構成される抵抗変化層と、前記抵抗変化層上に形成された上部電極層とを備え、前記抵抗変化層の側面には、臭素化合物が付着している。
 ここで、例えば、前記抵抗変化層の側面は、前記臭素化合物を含む側壁保護膜を有するとしてもよい。
 以上、上記形態によれば、不揮発性記憶素子間の特性ばらつきを抑制することが可能な抵抗変化型の不揮発性記憶素子およびその製造方法を実現できる。
 例えば、本発明の不揮発性記憶素子の製造方法では、抵抗変化層のエッチング端面に臭素化合物生成物が付着することにより、エッチング端面を保護するので、エッチングガスによる酸素脱離や不純物の打込みを抑制することができる。そのため、抵抗変化層へのエッチングダメージを低減させることができ、不揮発性記憶素子の特性ばらつきを低減することができる。それにより、大容量化しても抵抗値の初期動作、動作特性にばらつきのなく、良好なリテンション特性を有する高品質の不揮発性記憶素子を実現することができる。
 なお、このような抵抗変化型の不揮発性記憶素子は、その機能の一部または全てを有する半導体集積回路(LSI)として応用することができる。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、より好ましい形態を構成する構成要素として説明される。
 以下、本発明の実施の形態にかかる不揮発性記憶素子の製造方法について、図面を参照しながら説明する。なお、図面において、同じ符号が付いたものは、説明を省略する場合がある。また、図面は理解しやすくするために、それぞれの構成要素を模式的に示したもので、形状などについては正確な表示ではなく、その個数等についても図示しやすい個数としている。
 (実施の形態)
 図1Aは、本発明の実施の形態に係る不揮発性記憶素子の構成を示す断面図である。図1Aは不揮発性記憶素子100が1つで構成される場合の例を示している。図1Bは、本発明の実施の形態に係る抵抗変化素子の側面の構成を示す断面図である。
 図1Aに示す不揮発性記憶素子100は、抵抗変化素子1と、基板11と、ソースおよびドレイン層12と、ゲート13と、第1の層間絶縁層14と、第1のコンタクト15と、第2のコンタクト16と、第3のコンタクト7と、配線パターン18と、第2の層間絶縁層19とを備える。抵抗変化素子1は、下部電極層2と、第1の抵抗変化層31および第2の抵抗変化層32で構成される抵抗変化層3と、上部電極層4とを備える。
 ゲート13は、基板11上に形成され、ゲート13と基板11間には、ゲート絶縁膜が形成されている。
 ソースおよびドレイン層12は、基板11に形成されている。
 第1の層間絶縁層14は、基板11上に、ゲート13、ソースおよびドレイン層12を覆うように、プラズマTEOS膜やSiOなどで形成されている。
 なお、基板11と、ゲート13及びゲート絶縁膜と、ソースおよびドレイン層12と、でトランジスタ20を構成している。
 第1のコンタクト15は、ソースおよびドレイン層12のいずれか一方と、抵抗変化素子1の下部電極層2と接続するよう、第1の層間絶縁層14を貫通して形成されている。第1のコンタクト15は、例えばタングステンや銅などを用いて形成される。
 抵抗変化素子1は、第1の層間絶縁層14および第1のコンタクト15上に形成されている。具体的には、下部電極層2は、第1のコンタクト15上に第1のコンタクト15と接続するように形成される。第1の抵抗変化層31は、下部電極層2上に形成され、第1の遷移金属酸化物で構成される。第2の抵抗変化層32は、第1の抵抗変化層31上に形成され、第1の抵抗変化層31より酸素不足度が小さい第2の遷移金属酸化物で構成される。なお、第1の抵抗変化層31と第2の抵抗変化層32との積層構造は、抵抗変化素子1の抵抗変化層3として形成される。また、上部電極層4は、第2の抵抗変化層32の上に形成されている。第1の抵抗変化層31の膜厚は例えば20nm以上100nm以下程度であり、第2の抵抗変化層32の膜厚は例えば1nm以上10nm以下程度である。
 なお、抵抗変化素子1は、図1Bに示すように、抵抗変化層3の側面(エッチング端面33)には、臭素化合物が付着して形成された側壁保護膜33aを有している。
 ここで、第1の抵抗変化層31と第2の抵抗変化層32とはそれぞれ、酸素不足型の遷移金属酸化物で構成された第1の遷移金属酸化物層と、第1の遷移金属酸化物層よりも酸素不足度が小さい遷移金属酸化物で構成された第2の遷移金属酸化物層とで構成されている。本実施の形態においては、その一例として、第1の遷移金属酸化物層を構成する第1の遷移金属と第2の遷移金属酸化物層を構成する第2の遷移金属とに同種の遷移金属を用いる。つまり、第1の抵抗変化層31は酸素不足型の第1のタンタル酸化物層(TaO)で構成され、第2の抵抗変化層32は第2のタンタル酸化物層(TaO)で構成されている。ここで、第1のタンタル酸化物層TaOは0<x<2.5、第2のタンタル酸化物層TaOはx<yである。さらに、第1のタンタル酸化物層TaOは0.8≦x≦1.9、第2のタンタル酸化物層TaOは2.1≦yであることが好ましい。
 また、酸素不足型の遷移金属酸化物とは、酸素が化学量論組成から不足した遷移金属酸化物をいう。TaO(0.8≦x≦1.9)およびTaO(2.1≦y)の積層構造であれば、不揮発性記憶素子の動作の高速化を図ることができ、可逆的に安定した書き換え特性等が得られるからである。酸素不足度とは、それぞれの遷移金属において、その化学量論的組成の酸化物を構成する酸素の量に対し、不足している酸素の割合をいう。通常、化学量論的組成の酸化物は、絶縁体的な特性を示すことが多く、酸素不足型の遷移金属酸化物は導電性を有する特性を示すことが多い。
 第2の抵抗変化層32は、第1の抵抗変化層31よりも酸素不足度を小さくして抵抗が高い方が好ましい。このような構成とすることにより、抵抗変化時に上部電極層4及び下部電極層2の間に印加された電圧は、第2の抵抗変化層32に、より多くの電圧が分配され、第2の抵抗変化層32中で発生する酸化還元反応をより起こしやすくすることができる。ここで、第1の抵抗変化層31を構成する第1の遷移金属と、第2の抵抗変化層32を構成する第2の遷移金属とは、同じ材料を用いてもよいし、異なる材料を用いてもよい。遷移金属としては、タンタル(Ta)、チタン(Ti)、ハフニウム(Hf)、ジルコニウム(Zr)、ニオブ(Nb)、タングステン(W)等を用いることができる。遷移金属は複数の酸化状態をとることができるため、異なる抵抗状態を酸化還元反応により実現することが可能である。第1の遷移金属と第2の遷移金属とが互いに異なる材料を用いる場合、第2の遷移金属の標準電極電位は、第1の遷移金属の標準電極電位より小さい方が好ましい。なぜなら、抵抗変化現象は、抵抗が高い第2の抵抗変化層32中に形成された微小なフィラメント中で酸化還元反応が起こってその抵抗値が変化し、発生すると考えられるからである。標準電極電位は、その値が高い方が酸化されにくいという特性を表し、第2の遷移金属中でより多くの酸化還元反応が起こる方が、安定な動作を期待できるからである。
 例えば、第1の抵抗変化層31として第1のタンタル酸化物層TaO(0.8≦x≦1.9)を用いた場合、好ましくは第1の抵抗変化層31の膜厚は45nmである。第2の抵抗変化層32として第2のタンタル酸化物層TaO(2.1≦y)を用いた場合、好ましくは第2の抵抗変化層32の膜厚は5nmである。
 なお、本発明の作用効果は、タンタル酸化物の場合に限って発現されるものではなく、本発明はこれに限定されない。例えば、ハフニウム(Hf)酸化物の積層構造やジルコニウム(Zr)酸化物の積層構造などであってもよい。
 例えばハフニウム酸化物の積層構造を採用する場合は、第1のハフニウム酸化物の組成をHfOとし、第2のハフニウム酸化物の組成をHfOとすると、0.9≦x≦1.6であって、yが1.8<yであることが好ましい。また、例えばジルコニウム酸化物の積層構造を採用する場合は、第1のジルコニウム酸化物の組成をZrOとし、第2のジルコニウム酸化物の組成をZrOとすると、0.9≦x≦1.4であって、yが1.9<yであることが好ましい。
 上部電極層4の膜厚は、50nm程度が好ましい。また、上部電極層4は、抵抗変化層3を構成する遷移金属より標準電極電位が高い金属単体または合金を含んでおり、単層構造でも複数層の積層構造で構成されるとしてもよい。ここで、抵抗変化層3を構成する遷移金属より標準電極電位が高い金属は、白金(Pt)、イリジウム(Ir)、パラジウム(Pd)等の貴金属類が好ましい。
 抵抗変化層3の材料が酸素不足型の遷移金属酸化物で構成される場合には、上部電極層4が、酸素不足型の遷移金属酸化物の当該遷移金属の標準電極電位より高い標準電極電位を有していて、下部電極層2の標準電極電位が上部電極層4の標準電極電位より小さくなるような材料を選ぶ。それにより、標準電極電位が高い方の電極(上部電極層4)と抵抗変化層3の界面において、印加される電圧に応じて抵抗変化層3の酸化還元反応が優先的に発生し、高酸素濃度あるいは低酸素濃度の抵抗変化層を形成できるため、安定動作が得られる。特に、酸素不足型の遷移金属酸化物がタンタル酸化物である場合には、酸素不足度が小さい第2のタンタル酸化物層に接する電極に上記標準電極電位が高い方の電極材料(例えば、Pt,Ir,Pd等)を用い、酸素不足度が大きい第1のタンタル酸化物層に接する電極に上記標準電極電位が低い方の電極材料(例えば、タンタル(Ta)、窒化タンタル(TaN)、チタン(Ti)等)を用いればよい。
 第2の層間絶縁層19は、下部電極層2、第1の抵抗変化層31および第2の抵抗変化層32の側面、並びに、上部電極層4の側面および上面を覆うように形成されている。
 第2のコンタクト16は、上部電極層4に至るように、第2の層間絶縁層19を貫通して形成されている。第3のコンタクト7は、ソースおよびドレイン層12の一方に至るように、第2の層間絶縁層19および第1の層間絶縁層14を貫通して形成されている。ここで、第2のコンタクト16および第3のコンタクト7は、第1のコンタクト15と同様に例えばタングステンや銅などを用いて形成される。
 配線パターン18は、第2の層間絶縁層19の上面に形成され、第2のコンタクト16と第3のコンタクト7にそれぞれ接続する第1の配線パターン181と第2の配線パターン182とで構成されている。具体的には、第2のコンタクト16によって抵抗変化素子1の上部電極層4が第1の配線パターン181に接続され、第3のコンタクト7によってソースおよびドレイン層12の一方が第2の配線パターン182に接続されている。なお、配線パターン18は銅やアルミニウム合金などを用いて形成される。
 以上のように、不揮発性記憶素子100は構成されている。
 しかしながら、図1Aに示す不揮発性記憶素子100において、図7に示すように抵抗変化特性が劣化することがある。図7では、高抵抗化パルスと低抵抗化パルスを交互に印加しているにもかかわらず、高抵抗状態のままで低抵抗化できていないことを示している。本発明者らはその原因を検討したところ、抵抗変化層をパターンニングする際に、抵抗変化層がフッ素化合物ガスを含むエッチングガスを用いたドライエッチング工程に曝されることによって、抵抗変化層にエッチングガスプラズマ中に含まれるラジカルなフッ素が混入し、その組成が変化し、抵抗変化特性が劣化したのではないかと考えた。これは、抵抗変化特性を示す酸素不足型の遷移金属酸化物について同様のことが言えると考えられる。
 本発明者らはフッ素化合物ガスを含むエッチングガスによる膜質に与える影響を調べるため、以下の実験を行った。
 まず、基板上にタンタル酸化物(TaO)を堆積したサンプルを用意して、タンタル酸化物の表面を、二次イオン質量分析法(SIMS)を用いて測定した。
 次に、C、O、Arの混合ガスを用いてタンタル酸化物表面にドライエッチング処理を施した後、タンタル酸化物の表面を、二次イオン質量分析法(SIMS)を用いて分析した。図8に、二次イオン質量分析法(SIMS)を用いて、C、O、Arの混合ガスを用いてドライエッチング処理を施す前と後におけるTaO薄膜のフッ素の深さ方向の濃度分布について調べた結果を示す。
 縦軸にフッ素イオンカウント数(cps)、横軸にTaO膜の表面からの深さ(nm)を示す。また白丸がドライエッチング前、黒丸印がドライエッチング後のデータを表す。この結果から、フッ素系ガスを用いたドライエッチング処理により、TaO薄膜の表層にフッ素が混入することが明らかになった。また、半値幅から見積もると、TaO膜の表層から5nm未満の深さ領域にフッ素が混入していることが分かった。また、他のフッ素化合物エッチングガス、例えば、CFやCHF、SFを用いた場合にも同様の結果が得られた。なお、ドライエッチング処理前にも表面付近にフッ素イオンが観測されるが、これは、何等かの原因でドライエッチング前にTaO膜の表層にフッ素が混入したことが考えられる。
 また、図9、図10は、各々、上述したC、O、Arの混合ガスを用いてドライエッチングを施す前後におけるTaO薄膜の酸素、炭素の深さ方向の濃度分布について調べた結果を示す。この結果から、TaO薄膜の表層に酸素及び炭素はほとんど混入していないことが分かる。
 以上の結果より、抵抗変化層の表面付近にフッ素を混入させないためには、抵抗変化層がフッ素化合物エッチングガスに曝されない製造方法や、抵抗変化層がフッ素化合物エッチングガスに曝されない素子構造、もしくは抵抗変化層がフッ素系エッチングガスに曝されて抵抗変化層の組成が変質してもその後に抵抗変化層の組成を元の状態に戻す追加処理が必要となる。
 BClおよびClを含むエッチングガスを用いた場合、抵抗変化膜へのフッ素の混入は回避できるが、抵抗変化膜中の酸素量が減少し、抵抗変化膜の初期抵抗値が減少すると共に抵抗値がばらつく現象も確認されている。
 本発明は、以上の問題に鑑みて、抵抗変化層へのフッ素の混入や、抵抗変化層の酸素量の減少を防止可能な不揮発性記憶素子の製造方法を提供するものである。
 以下に、本発明に係る不揮発性記憶素子100の製造方法について説明する。
 図2Aから図2Hは、本発明の実施の形態に係る不揮発性記憶素子100の製造方法の工程を示す断面図である。なお、通常の場合、基板11上には多数の不揮発性記憶素子が形成されるが、図面の簡略化のため、ここでは1個の不揮発性記憶素子のみを図示している。また、理解しやすいように、一部を拡大して示している。
 まず、図2Aに示す工程において、基板11にソースおよびドレイン層12を形成し、基板11上にゲート13を形成後、プラズマTEOS膜やSiOなどで構成される第1の層間絶縁層14を形成する。次いで、第1の層間絶縁層14を貫通してソースおよびドレイン層12の一方と接続する第1のコンタクト15を形成する。
 次に、図2Bに示す工程において、第1のコンタクト15の露出した上面を被覆するように第1の層間絶縁層14上に、下部電極層2、第1の抵抗変化層31、第2の抵抗変化層32および上部電極層4をこの順に形成し、形成した上部電極層4の上面を覆うようにハードマスク層5を形成する。
 なお、以下では、パターン形状にエッチングされた状態だけではなく、成膜した状態をも含めて、下部電極層2、抵抗変化層3、第1の抵抗変化層31、第2の抵抗変化層32、上部電極層4およびハードマスク層5と呼ぶ。
 具体的には、第1の層間絶縁層14上に、下部電極層2としてTaNを30nm形成する。続いて、下部電極層2上に、第1の抵抗変化層31として酸素不足型のタンタル酸化物TaO(ここでは、x=1.56)を30nm形成し、第1の抵抗変化層31上にTaOより酸素不足度が小さいTaO(ここでは、y=2.48)で構成される第2の抵抗変化層32を5nm形成する。続いて、第2の抵抗変化層32上に、上部電極層4としてイリジウム(Ir)を80nm形成し、その後、上部電極層4の上面にハードマスク層5としてTiAlNを100nm形成する。
 ここで、第1の抵抗変化層31は、金属タンタルターゲットを用い、酸素を含むアルゴン雰囲気中でスパッタする反応性スパッタ法により堆積される。その後に、第1の抵抗変化層31の上面を酸素雰囲気中のプラズマ酸化で酸化処理することで、第1の抵抗変化層31の上に第1の抵抗変化層31より酸素不足度が小さい第2の抵抗変化層32を形成する。さらに具体的には、第1の抵抗変化層31としてTaOを35nm堆積した後に、TaOの上面を酸素雰囲気中のプラズマ酸化により酸化処理し、TaOで構成される第1の抵抗変化層31の上にTaOより酸素不足度が小さいTaOで構成される第2の抵抗変化層32を5nm形成する。なお、酸化処理方法はプラズマ酸化に限られることはなく、例えば、酸素雰囲気中の熱処理などの表面を酸化させる効果のある処理を行うとしてもよい。また、TaOを30nm堆積した後に、酸化処理の代わりに、反応性スパッタにより第2の抵抗変化層32としてTaOを5nm堆積するとしてもよい。反応性スパッタは、スパッタ雰囲気中の酸素濃度を変えたり、ターゲットに遷移金属酸化物ターゲットを用いたりすることにより、膜中に含まれる酸素不足度を調整することができる。TaOを形成するためのターゲットは金属タンタルを用いてもよいし、タンタル酸化物ターゲット(例えば、Ta)を用いてもよい。
 次に、図2Cに示す工程において、露光プロセス及び現像プロセスによりフォトレジストマスク60をパターン形成する。
 次に、図2Dに示す工程において、ドライエッチングプロセスにより例えばTiAlNで構成されるハードマスク層5をパターン形成する。
 次に、図2Eに示す工程において、臭素を含む混合ガスを用いたドライエッチングプロセスにより上部電極層4、抵抗変化層3および下部電極層2を所定のパターンに形成し、ハードマスク層5を除去する。このようにして、上部電極層4と、第2の抵抗変化層32および第1の抵抗変化層31で構成される抵抗変化層3と、下部電極層2とを備える抵抗変化素子1が形成される。
 具体的には、まず、図2Dに示す工程で形成された膜厚100nmのTiAlNで構成されるハードマスク層5をマスクとして、Irで構成される上部電極層4を例えばClおよびArを含む混合ガスを用いたドライエッチングプロセスによりエッチングを行う。次いで、タンタル酸化物で構成される抵抗変化層3を、SF、HBr(臭化水素)を含む混合ガスを用いたドライエッチングプロセスによりエッチングする。次いで、窒化タンタルで構成される下部電極層2をCl、Arを含む混合ガスを用いたドライエッチングプロセスによりエッチングする。その後に、ハードマスク層5をエッチング除去し、抵抗変化素子1を形成する。
 ここで、ドライエッチングプロセスにおいて、少なくとも抵抗変化層3をパターン形成するエッチングガスには臭素化合物が含まれ、好ましくは臭化水素が含まれている。そのため、抵抗変化層3のエッチング端面33には、エッチングガスに含まれる臭素と反応して、臭素化合物生成物で構成される側壁保護膜33aが形成される。この臭素化合物生成物は、エッチングガスとの反応による酸素脱離や不純物の打込みなどによるエッチングダメージから抵抗変化層3を保護する。
 このように側壁保護膜33aを形成することにより、抵抗変化層3のエッチング端面33にはエッチングダメージが入らず、特性劣化、ばらつきが抑制された抵抗変化素子1を形成することができる。
 なお、上部電極層4をパターン形成するドライエッチングプロセスにおいても、エッチングガスに臭素化合物を含む混合ガスを用いてもよい。その場合には、上部電極層4をオーバーエッチング時に露出する抵抗変化層3のエッチング端面33にエッチングダメージが入ることを確実に抑制することができる。
 また、下部電極層2をパターン形成するドライエッチングプロセスにおいても同様にエッチングガスに臭素化合物を含む混合ガスを用いてもよい。その場合には下部電極層2をドライエッチングするときのエッチングダメージが抵抗変化層3のエッチング端面33に入ることを抑制することができる。
 また、上記では、ハードマスク層5を除去するとして説明したが、それに限らない。ハードマスク層5は除去せずに残してもよい。その場合、後述する第2のコンタクト16を形成する工程においてハードマスク層5も貫通して上部電極層4に接続するように形成すればよい。また、ハードマスク層5が導電体で構成されている場合には、貫通せずに第2のコンタクト16をハードマスク層5に接続させるよう形成すればよい。
 次に、図2Fに示す工程において、第1の層間絶縁層14と、上部電極層4、抵抗変化層3および下部電極層2を被覆するように第2の層間絶縁層19を形成する。
 次に、図2Gに示す工程において、後の工程で抵抗変化素子1の上部電極層4と接続する第2のコンタクト16を形成する所定の位置に、第2の層間絶縁層19を貫通して上部電極層4に至るように第2のコンタクト開口部16Aを形成する。
 次に、図2Hに示す工程において、第2のコンタクト開口部16Aには第2のコンタクト16を形成する。また、第2の層間絶縁層19および第1の層間絶縁層14を貫通し、ソースおよびドレイン層12の他方と接続する第3のコンタクト7を形成する。次いで、第2の層間絶縁層19の上面に第2のコンタクト16に接続される第1の配線パターン181と、第3のコンタクト7に接続される第2の配線パターン182とを形成する。
 以上のようにして、図1に示す不揮発性記憶素子100が製造される。
 このように、不揮発性記憶素子100では、上記の臭素を含む混合ガスを用いて抵抗変化層のエッチングを行えば、特性ばらつきを抑えた不揮発性記憶素子を作製することができる。したがって、上記の抵抗変化素子1を用いて、例えば、1トランジスタ/1不揮発性記憶部で構成された不揮発性記憶素子を作製すれば、動作が安定した不揮発性記憶素子100を実現することができる。
 次に、以上のように製造された不揮発性記憶素子100の効果について説明する。
 図3Aおよび図3Bは、本発明の実施の形態に係る不揮発性記憶素子の効果を説明するための図である。
 図3Aおよび図3Bでは、第1の抵抗変化層31に用いたTaOの表面をXPS分析によって分析した元素量を示しており、本実施の形態として、臭素化合物を含む混合ガス、例えばHBrとSFのガス流量比が1対1の混合ガスでエッチングしたTaO表面の分析結果と、比較例1および比較例2として臭素化合物を含まない混合ガス1および混合ガス2それぞれでエッチングしたTaO表面の分析結果とを示している。また、第1の抵抗変化層31に用いたTaOの表面をエッチングする前である初期状態の分析結果も合わせて示している。
 ここで、混合ガス1はArおよびClおよびCHFのガス流量比が20対10対1で構成された混合ガスであり、混合ガス2はBClおよびClのガス流量比が1対1で構成された混合ガスである。
 図3AはTaO表面の酸素量を分析した結果を示しており、図3BはTaO表面の不純物量(フッ素量。図3Bでは、F量と記載)を分析した結果を示している。ここで、不純物量(フッ素量)は、XPS分析のときに検出されたタンタルと酸素以外の元素(不純物)のうちのフッ素の量である。つまり、不純物量(フッ素量)とは、フッ素の打ち込み量を意味する。図3Aに示す酸素量は、初期状態から少なくなればなるほど、TaO膜中の酸素脱離のエッチングダメージが入っていることを示す。同様に、図3Bに示す不純物量(フッ素量)は、多ければ多いほど、不純物が打込まれることによるエッチングダメージが入っていることを示している。なお、このXPS分析は、図4に示す条件で行っている。
 図4は、図3Aおよび図3Bに示すXPS分析に用いた分析条件を示す図である。つまり、上記XPS分析は、ビーム径を100μm、検出器角度を45度、PassEnergyを23.5V、基準元素ピークをC1s(285.2eV)、X線源をAlKα(1486.6eV)とした条件で行っている。また、X線照射をスポット、Step Sizeを0.100eV、照射EnergyをHPモード、真空度を3.4×10-9Torr.、中和銃は不使用とした条件で行っている。なお、このXPS分析は、ULVAC-PHI社製Quantum2000を用いて行った。
 比較例1は、図3Aおよび図3Bに示すように、初期状態と比較して、酸素量の減少は抑制されているが、不純物量(F量)が非常に増加していることがわかる。したがって、混合ガス1を用いたドライエッチングでは、抵抗変化層は、不純物が打込まれることによってエッチングダメージを受けていると考えられる。
 また、比較例2は、図3Aおよび図3Bに示すように、初期状態と比較して、不純物量(F量)はほぼ同等であるが、酸素量が非常に減少していることがわかる。したがって、混合ガス2を用いたドライエッチングでは、抵抗変化層は、酸素を脱離させるエッチングダメージを受けていると考えられる。
 これに対して、本実施の形態では、臭素化合物(特に臭化水素)を含む混合ガスを用いており、図3Aおよび図3Bに示すように、初期状態と比較すると、酸素量の若干の減少や不純物量の若干の増加は見られるものの、比較例2より酸素量の低減は抑制され、比較例1より不純物量は抑制されていることがわかる。つまり、本実施の形態では、臭素化合物を含む混合ガスを用いることにより、酸素量の低減を抑えつつ、不純物量の増加を抑えることができるため、エッチングした抵抗変化層の端面はエッチングダメージが低減されていると考えられる。
 また、図5A、図5Bおよび図6は、本発明の実施の形態に係る不揮発性記憶素子の効果を説明するための図である。
 まず、図5Aおよび図5Bは、本実施の形態の製造方法で製造した不揮発性記憶素子100の特性と、上述した比較例1および比較例2の製造方法によりそれぞれ製造した不揮発性記憶素子の特性とを示している。図5Aでは、256kビット中の動作不良ビット数を示しており、図5Bでは、85℃におけるtail bitのリテンション特性を示している。ここで、リテンション特性(寿命予測)の評価方法は、次の通りである。まず、例えば180℃、150℃および125℃の環境下において、不揮発性記憶素子の低抵抗時の電流値および高抵抗時の電流値が基準値(例えば、各電流値が初期の電流値から50%変動した値)に到達する時間を算出する。次に、アレニウスプロットにて、活性化エネルギーを算出し、85℃の環境下における基準値に到達する時間を算出する。これらの算出結果を用いて、寿命予測時間(リテンション特性)を決定する。
 図5Aに示すように、比較例1において、256kビット中の動作不良ビット数は103ビットであり、比較例2においては、256kビット中の動作不良ビット数は193ビットである。それに対し、本実施の形態では、256kビット中の動作不良ビット数は0ビットであり、大容量化しても動作不良ビットがないことがわかる。
 また、図5Bに示すように、85℃におけるtail bitのリテンション特性は、比較例1では約400時間、比較例2では約1.5年(約13000時間)である。それに対し、本実施の形態では85℃におけるtail bitのリテンション特性は約17年(約150000時間)となり、非常に特性を改善する効果があることがわかる。
 このように、本実施の形態において用いられる臭素化合物を含む混合ガスでは、フィラメントがエッチング端面付近に形成されたとしても、エッチングダメージが低減される。それにより、本実施の形態に係る不揮発性記憶素子100の動作不良の発現を抑えることができ、tail bitの特性を改善する効果がある。
 次に、図6は、抵抗変化素子1に用いたTaO表面をXPS分析によって分析した元素量を示しており、本実施の形態の臭素化合物を含む混合ガスで、エッチングしたTaO表面のIr4fスペクトル分析結果と、比較例2として臭素化合物を含まない混合ガス2でエッチングしたTaO表面のIr4fスペクトル分析結果とを示している。なお、ここでのXPS分析の条件は、入射エネルギーを150eV、PassEnergyを100eV、エネルギーステップを0.1eV、取込時間を、0.2ms/step、積算回数を25回としている。検出器としては、VG Scienta R4000WALを用いた。
 本実施の形態では、抵抗変化素子1に用いたTaO表面には臭素化合物生成物(IrBr)が62eVおよび65eVに検出されている。一方、比較例2では、抵抗変化素子に用いたTaO表面には臭素化合物生成物が検出されていない。
 これにより、本実施の形態の混合ガスを用いて、抵抗変化素子1のエッチングを行う場合には、臭素化合物生成物(上述の側壁保護膜33a)がエッチング端面33に形成されることによって、酸素脱離や不純物打込みのエッチングダメージが入るのを抑制していることがわかる。
 図11は、本実施の形態の製造方法を用いて作製した抵抗変化素子の抵抗変化特性の一例を示す。図11に示すように、安定した抵抗変化特性が得られていることがわかる。
 以上により、本実施の形態の混合ガスを用いて抵抗変化素子1の抵抗変化層3のエッチングを行えば、特性ばらつきを抑制することが可能な抵抗変化型の不揮発性記憶素子およびその製造方法を実現できる。
 本発明の不揮発性記憶素子の製造方法では、抵抗変化層のエッチング端面に臭素化合物生成物が付着して側壁保護膜を形成するので、エッチングガスによる酸素脱離や不純物の打込みを抑制することができる。そのため、抵抗変化層へのエッチングダメージを低減させることができる。それにより、不揮発性記憶素子の特性ばらつきを低減することができ、大容量化しても抵抗値の初期動作、動作特性にばらつきのなく、良好なリテンション特性を有する高品質の不揮発性記憶素子を実現することができる。
 Br(臭素)は被エッチング物と結合し、副生成物を形成しやすく、側壁に付着しやすい。そのため、上述したように、臭素化合物生成物は側壁保護膜33aとなって、他の不純物の打込みや酸素脱離等を防止することができる。これにより、TaOのような、含まれる酸素含有量の変化により抵抗値が変動する材料に対して、TaO等に含まれる酸素イオンの動きを阻害し抵抗値を変動させるような不純物の打込み(フッ素等)や、抵抗変化層の酸素含有量低下による低抵抗化、つまりリークを発生させるような酸素脱離を防止できるという効果を奏する。
 したがって、本発明の抵抗変化素子1を用いて、例えば1トランジスタ/1不揮発性記憶部で構成された不揮発性記憶素子を作製すれば、動作が安定した不揮発性記憶素子100を実現することができる。
 以上、本発明の不揮発性記憶素子およびその製造方法について、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本実施の形態に示すような、酸素不足度が異なる遷移金属酸化物で構成される積層構造を有する抵抗変化素子において、少なくとも抵抗変化層の側壁に抵抗変化層に含まれる酸素イオンの動きを阻害し抵抗値を変動させるような不純物の打込み(フッ素等)や、抵抗変化層の酸素含有量低下による低抵抗化、つまりリークを発生させるような酸素脱離を防止できる保護層を形成する。それにより、抵抗変化層へのエッチングダメージを低減させて、不揮発性記憶素子の特性ばらつきを低減することができ、大容量化しても抵抗値の初期動作、動作特性にばらつきのなく、良好なリテンション特性を有する高品質の不揮発性記憶素子を実現することができる。
 つまり、本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。
 例えば、上記では、臭化水素を含む混合ガスにて抵抗変化層をエッチングする場合について説明したが、それに限らない。臭化水素以外であってもよく、臭素を含む混合ガスを用いてエッチングを行えば、本実施の形態と同様の作用効果が期待できるので、本発明の範囲内に含まれる。
 また、臭化水素以外であっても、臭化水素と同様に以下を満たす元素を含む混合ガスであり、同様の作用効果が期待できるものならば、本発明の範囲内に含まれる。すなわち、1)酸化物にとっては不純物となるフッ素よりも原子半径が大きいこと、2)酸素と置換されないこと、3)酸素と反応性がないこと、を満たす元素を含む混合ガスであり、同様の作用効果が期待できるものなら、本発明の範囲内に含まれる。
 本発明は、不揮発性記憶素子およびその製造方法に利用でき、特に、デジタル家電、メモリカード、携帯型電話機、及びパーソナルコンピュータなどの種々の電子機器の用途に用いられる不揮発性記憶素子およびその製造方法に利用することができる。
 1  抵抗変化素子
 2  下部電極層
 3  抵抗変化層
 4  上部電極層
 5  ハードマスク層
 7  第3のコンタクト
 11  基板
 12  ソースおよびドレイン層
 13  ゲート
 14  第1の層間絶縁層
 15  第1のコンタクト
 16  第2のコンタクト
 16A  第2のコンタクト開口部
 18  配線パターン
 19  第2の層間絶縁層
 31  第1の抵抗変化層
 32  第2の抵抗変化層
 33  エッチング端面
 33a  側壁保護膜
 60  フォトレジストマスク
 100  不揮発性記憶素子
 181  第1の配線パターン
 182  第2の配線パターン

Claims (12)

  1.  基板上に下部電極層を形成する工程と、
     前記下部電極層上に酸素不足型の遷移金属酸化物で構成される抵抗変化層を形成する工程と、
     前記抵抗変化層上に上部電極層を形成する工程と、
     前記上部電極層上にマスクパターンを形成し、前記マスクパターンをマスクとして、前記上部電極層、前記抵抗変化層および前記下部電極層をエッチングする工程と、を含み、
     前記エッチングする工程において、少なくとも前記抵抗変化層をエッチングするためのエッチングガスに、臭素を含むエッチングガスを用いる
     不揮発性記憶素子の製造方法。
  2.  前記エッチングする工程において、前記エッチングガスとして臭化水素を含むエッチングガスを用いる
     請求項1に記載の不揮発性記憶素子の製造方法。
  3.  前記抵抗変化層を形成する工程において、
     前記抵抗変化層を、酸素量により抵抗値が変動し、かつ、不純物が混入することで抵抗値が増加する遷移金属酸化物で形成する
     請求項1または2に記載の不揮発性記憶素子の製造方法。
  4.  前記抵抗変化層を形成する工程において、
     前記抵抗変化層を、フッ素が混入することで抵抗値が増加する遷移金属酸化物で形成する
     請求項3に記載の不揮発性記憶素子の製造方法。
  5.  前記エッチングする工程において、前記エッチングガスはさらにフッ素を含む
     請求項1~4のいずれか1項に記載の不揮発性記憶素子の製造方法。
  6.  前記エッチングする工程において、
     少なくとも前記抵抗変化層のエッチング端面に、臭素化合物を付着させながら前記抵抗変化層をエッチングする
     請求項1~5のいずれか1項に記載の不揮発性記憶素子の製造方法。
  7.  前記抵抗変化層を形成する工程は、
     前記下部電極層上に遷移金属酸化物で構成される第1の抵抗変化層を形成する工程と、
     前記第1の抵抗変化層上に前記第1の抵抗変化層より酸素不足度が小さい遷移金属酸化物で構成される第2の抵抗変化層を形成する工程と、を含む
     請求項1~6のいずれか1項に記載の不揮発性記憶素子の製造方法。
  8.  前記抵抗変化層を形成する工程において、
     前記抵抗変化層は、酸素不足度が小さくなるに従い抵抗値が増加する遷移金属酸化物で形成される
     請求項1~6のいずれか1項に記載の不揮発性記憶素子の製造方法。
  9.  前記抵抗変化層を形成する工程において、
     前記抵抗変化層は、タンタル酸化物TaO(0<x<2.5)の金属酸化物で形成される
     請求項1~6のいずれか1項に記載の不揮発性記憶素子の製造方法。
  10.  前記上部電極層を形成する工程において、
     前記上部電極層を、白金、イリジウムまたはパラジウムで形成する
     請求項1~9のいずれか1項に記載の不揮発性記憶素子の製造方法。
  11.  基板上に形成された下部電極層と、
     前記下部電極層上に形成された、酸素不足型の遷移金属酸化物で構成される抵抗変化層と、
     前記抵抗変化層上に形成された上部電極層とを備え、
     前記抵抗変化層の側面には、臭素化合物が付着している
     不揮発性記憶素子。
  12.  前記抵抗変化層の側面は、前記臭素化合物を含む側壁保護膜を有する
     請求項11に記載の不揮発性記憶素子。
     
PCT/JP2012/002521 2011-04-14 2012-04-11 不揮発性記憶素子およびその製造方法 WO2012140887A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013509796A JP5636092B2 (ja) 2011-04-14 2012-04-11 不揮発性記憶素子およびその製造方法
CN201280016903.8A CN103460383B (zh) 2011-04-14 2012-04-11 非易失性存储元件及其制造方法
US14/110,163 US8921200B2 (en) 2011-04-14 2012-04-11 Nonvolatile storage element and method of manufacturing thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011090058 2011-04-14
JP2011-090058 2011-04-14

Publications (1)

Publication Number Publication Date
WO2012140887A1 true WO2012140887A1 (ja) 2012-10-18

Family

ID=47009078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002521 WO2012140887A1 (ja) 2011-04-14 2012-04-11 不揮発性記憶素子およびその製造方法

Country Status (4)

Country Link
US (1) US8921200B2 (ja)
JP (1) JP5636092B2 (ja)
CN (1) CN103460383B (ja)
WO (1) WO2012140887A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110718569A (zh) * 2019-09-02 2020-01-21 北京大学 一种基于阻变存储器的1t2r存储单元及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10043971B2 (en) * 2014-11-18 2018-08-07 Intel Corporation Non-volatile register file including memory cells having conductive oxide memory element
CN105679932B (zh) * 2014-11-21 2018-10-16 中芯国际集成电路制造(上海)有限公司 电阻式随机存储器的形成方法
US20160218286A1 (en) 2015-01-23 2016-07-28 Macronix International Co., Ltd. Capped contact structure with variable adhesion layer thickness
US10141507B2 (en) * 2015-05-27 2018-11-27 Macronix International Co., Ltd. Biased plasma oxidation method for rounding structure
KR20160144187A (ko) * 2015-06-08 2016-12-16 에스케이하이닉스 주식회사 저항 메모리층 갖는 반도체 장치 및 그 제조방법
CN106654004B (zh) 2015-10-29 2019-03-19 华邦电子股份有限公司 电阻式存储器及其制造方法
US11011702B2 (en) 2019-08-07 2021-05-18 Winbond Electronics Corp. Memory devices and methods for forming the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10340893A (ja) * 1997-06-09 1998-12-22 Sony Corp 電子薄膜材料のエッチング方法
JP2004296477A (ja) * 2003-03-25 2004-10-21 Semiconductor Leading Edge Technologies Inc 半導体装置の製造方法
JP2004356575A (ja) * 2003-05-30 2004-12-16 Semiconductor Leading Edge Technologies Inc 半導体装置の製造方法
JP2008199030A (ja) * 2007-02-15 2008-08-28 Samsung Electronics Co Ltd 金属酸化膜パターン形成方法及びこれを利用した半導体素子の形成方法
JP2009226660A (ja) * 2008-03-21 2009-10-08 Fujifilm Corp ドライエッチングによるパターニング方法及びそれに用いるモールド並びにインクジェットヘッドの製造方法
JP2009545117A (ja) * 2006-07-25 2009-12-17 エルジー・ケム・リミテッド 有機発光素子の製造方法およびこれによって製造された有機発光素子
WO2011030559A1 (ja) * 2009-09-14 2011-03-17 パナソニック株式会社 不揮発性記憶装置及びその製造方法
WO2012001978A1 (ja) * 2010-07-01 2012-01-05 パナソニック株式会社 不揮発性記憶素子及びその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3115715B2 (ja) 1992-11-12 2000-12-11 三菱電機株式会社 高誘電率を有する多元系酸化物膜のエッチング方法、高融点金属含有膜のエッチング方法および薄膜キャパシタ素子の製造方法
US6303486B1 (en) 2000-01-28 2001-10-16 Advanced Micro Devices, Inc. Method of fabricating copper-based semiconductor devices using a sacrificial dielectric layer and an unconstrained copper anneal
US6794279B1 (en) 2000-05-23 2004-09-21 Advanced Micro Devices, Inc. Passivating inorganic bottom anti-reflective coating (BARC) using rapid thermal anneal (RTA) with oxidizing gas
JP3816494B2 (ja) 2004-01-16 2006-08-30 松下電器産業株式会社 ドライエッチング方法および半導体装置の製造方法
US20060019451A1 (en) * 2004-07-22 2006-01-26 Jeng-Huey Hwang Method for patterning hfo2-containing dielectric
KR100718155B1 (ko) 2006-02-27 2007-05-14 삼성전자주식회사 두 개의 산화층을 이용한 비휘발성 메모리 소자
US7682979B2 (en) 2006-06-29 2010-03-23 Lam Research Corporation Phase change alloy etch
KR100859084B1 (ko) * 2006-07-25 2008-09-17 주식회사 엘지화학 유기발광소자 및 그의 제조방법
WO2008058264A2 (en) 2006-11-08 2008-05-15 Symetrix Corporation Correlated electron memory
JP2009004725A (ja) 2007-09-25 2009-01-08 Panasonic Corp 抵抗変化型不揮発性記憶装置
CN101796640A (zh) 2008-05-08 2010-08-04 松下电器产业株式会社 非易失性存储元件、非易失性存储装置、以及其制造方法
JP5385553B2 (ja) 2008-06-13 2014-01-08 セイコーエプソン株式会社 半導体装置の製造方法
JP2010009669A (ja) * 2008-06-26 2010-01-14 Toshiba Corp 半導体記憶装置
CN102067314A (zh) * 2009-04-14 2011-05-18 松下电器产业株式会社 电阻变化元件及其制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10340893A (ja) * 1997-06-09 1998-12-22 Sony Corp 電子薄膜材料のエッチング方法
JP2004296477A (ja) * 2003-03-25 2004-10-21 Semiconductor Leading Edge Technologies Inc 半導体装置の製造方法
JP2004356575A (ja) * 2003-05-30 2004-12-16 Semiconductor Leading Edge Technologies Inc 半導体装置の製造方法
JP2009545117A (ja) * 2006-07-25 2009-12-17 エルジー・ケム・リミテッド 有機発光素子の製造方法およびこれによって製造された有機発光素子
JP2008199030A (ja) * 2007-02-15 2008-08-28 Samsung Electronics Co Ltd 金属酸化膜パターン形成方法及びこれを利用した半導体素子の形成方法
JP2009226660A (ja) * 2008-03-21 2009-10-08 Fujifilm Corp ドライエッチングによるパターニング方法及びそれに用いるモールド並びにインクジェットヘッドの製造方法
WO2011030559A1 (ja) * 2009-09-14 2011-03-17 パナソニック株式会社 不揮発性記憶装置及びその製造方法
WO2012001978A1 (ja) * 2010-07-01 2012-01-05 パナソニック株式会社 不揮発性記憶素子及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110718569A (zh) * 2019-09-02 2020-01-21 北京大学 一种基于阻变存储器的1t2r存储单元及其制备方法

Also Published As

Publication number Publication date
JP5636092B2 (ja) 2014-12-03
CN103460383A (zh) 2013-12-18
CN103460383B (zh) 2016-01-06
JPWO2012140887A1 (ja) 2014-07-28
US8921200B2 (en) 2014-12-30
US20140024197A1 (en) 2014-01-23

Similar Documents

Publication Publication Date Title
JP5636092B2 (ja) 不揮発性記憶素子およびその製造方法
US9214628B2 (en) Nonvolatile memory element, nonvolatile memory device, and manufacturing method for the same
US9570682B2 (en) Semiconductor memory device and method of manufacturing the same
JP4975887B2 (ja) 不揮発性記憶素子およびその製造方法
JP5873981B2 (ja) 抵抗変化型不揮発性記憶装置の製造方法及び抵抗変化型不揮発性記憶装置
JP5340508B1 (ja) 抵抗変化型不揮発性記憶装置及びその製造方法
WO2012066787A1 (ja) 不揮発性記憶素子および不揮発性記憶素子の製造方法
US8889478B2 (en) Method for manufacturing nonvolatile semiconductor memory element, and nonvolatile semiconductor memory element
JP5572749B2 (ja) 不揮発性記憶素子及びその製造方法
JP6410095B2 (ja) 不揮発性記憶装置およびその製造方法
WO2013054506A1 (ja) 半導体記憶素子の製造方法
US8574957B2 (en) Method for manufacturing nonvolatile semiconductor memory element
JP2014082478A (ja) 不揮発性記憶装置およびその製造方法
US20140264225A1 (en) Resistance-variable memory device
JP5282176B1 (ja) 不揮発性半導体記憶装置およびその製造方法
US20140138599A1 (en) Nonvolatile memory element and method for manufacturing the same
US9142773B2 (en) Variable resistance nonvolatile memory element and method of manufacturing the same
US20210175418A1 (en) Resistive random access memory

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12771415

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013509796

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14110163

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12771415

Country of ref document: EP

Kind code of ref document: A1