WO2012139409A1 - 一种防止合金烧制后粘连和氧化的钒氮合金制备方法 - Google Patents

一种防止合金烧制后粘连和氧化的钒氮合金制备方法 Download PDF

Info

Publication number
WO2012139409A1
WO2012139409A1 PCT/CN2012/000148 CN2012000148W WO2012139409A1 WO 2012139409 A1 WO2012139409 A1 WO 2012139409A1 CN 2012000148 W CN2012000148 W CN 2012000148W WO 2012139409 A1 WO2012139409 A1 WO 2012139409A1
Authority
WO
WIPO (PCT)
Prior art keywords
vanadium
reducing agent
alloy
carbon reducing
oxidation
Prior art date
Application number
PCT/CN2012/000148
Other languages
English (en)
French (fr)
Inventor
郑建伟
应忠芳
Original Assignee
Zheng Jianwei
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zheng Jianwei filed Critical Zheng Jianwei
Priority to EP12771388.1A priority Critical patent/EP2698344B1/en
Priority to CA2833058A priority patent/CA2833058C/en
Priority to AU2012243313A priority patent/AU2012243313C1/en
Priority to JP2014504144A priority patent/JP5905569B2/ja
Publication of WO2012139409A1 publication Critical patent/WO2012139409A1/zh
Priority to US14/049,242 priority patent/US9227847B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0615Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium
    • C01B21/0617Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium with vanadium, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/16Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on nitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to the technical field of steel metallurgy, and relates to a preparation method of a vanadium nitrogen alloy for preventing adhesion and oxidation of an alloy after firing.
  • Vanadium-nitrogen alloy is a new type of alloy additive that can replace ferrovanadium for the production of microalloyed steel.
  • the addition of vanadium nitride to steel improves the comprehensive mechanical properties of steel such as strength, toughness, ductility and thermal fatigue resistance, and provides good ductility for steel.
  • the addition of vanadium nitride saves 30-40% of the vanadium addition, which in turn reduces the cost.
  • Another method is a vertical kiln for medium frequency induction heating, such as a method and a device for preparing a vanadium-nitrogen alloy disclosed in the Chinese invention patent application (Application No.: 200710071142.7, application date: 2007-09-20), which is pentoxide Vanadium or vanadium pentoxide and carbonaceous catalyst or graphite as raw materials, made into spherical material, added to medium frequency induction furnace, in nitrogen atmosphere 10M 3 /1H, temperature rise 1350 ° C ⁇ 100 ° C, reduction 2.5-3.5H,
  • the vanadium-nitrogen alloy produced in fact, this method has not been able to achieve continuous production, because all the materials of the vanadium-nitrogen alloy product are stuck together after sintering, so that the material can not automatically go down to the storage chamber, which leads to production.
  • the process can not be continuous, and only one furnace can be produced intermittently. When feeding once, the process of heating and cooling is repeated, the production cost is high, the energy consumption is high
  • an object of the present invention is to provide a method for preparing a vanadium-nitrogen alloy which prevents adhesion and oxidation of an alloy after firing, which can continuously feed and discharge, greatly reducing production cost and improving production. effectiveness.
  • a method for preparing a vanadium-nitrogen alloy for preventing adhesion and oxidation of an alloy after firing comprising the steps of:
  • the vanadium compound, the binder and the premixed carbon reducing agent are mixed and pressed into a raw material ball having a diameter of 30 to 60 mm, and the vanadium compound, the binder and the premixed carbon reducing agent are expressed as the weight of the vanadium compound as follows: 100 parts of vanadium compound, 15 ⁇ 30 parts of premixed carbon reducing agent, 3 ⁇ 12 parts of binder, natural ball is naturally dried; the vanadium compound is vanadium pentoxide or vanadium pentoxide;
  • the raw ball and the granular carbon reducing agent are mixed and continuously put into the vertical kiln of the medium frequency induction furnace.
  • the granular carbon reducing agent is 30 ⁇ 100 parts, and the high purity nitrogen gas is introduced, and the furnace maintains a micro positive pressure of 0.01 ⁇ 0.03MPa, once every 6 ⁇ 8 hours, once, three stages, dry, carbonitrile, cooling, drying section temperature is 100 ⁇ 600°C, and carbonitrile stage temperature is 900 ⁇ 1350 ° C, the cooling section is cooled to below 100 ° C to discharge.
  • the premixed carbon reducing agent is one or more selected from the group consisting of graphite powder and carbon powder.
  • the above particulate carbon reducing agent is one or more selected from the group consisting of granular activated carbon, waste carbon rod, and high quality graphite recarburizing agent.
  • the particle diameter of the above granular activated carbon is 2 ⁇
  • the invention adopts the above technical scheme, and adopts adding a granular carbon reducing agent at the time of feeding, so that one raw ball is separated by a granular carbon reducing agent, on the one hand, the heat transfer property is increased, The temperature is increased faster, and the electricity cost is saved. Since the balls are separated one by one, the continuous feeding and discharging can be achieved, the production cost is greatly reduced, and the production efficiency is improved.
  • a coarse block having a diameter of 50 mm ⁇ 0.5 mm was prepared by a high-pressure ball press, and naturally dried for 3-5 days.
  • the dried raw ball is mixed with 80kg of granular activated carbon with a particle size of 2 ⁇ 4mm, and then added to the medium frequency induction furnace through the automatic feeding system, and then heated into the middle end medium induction furnace through the upper end furnace body, and simultaneously The cooling end is fed with 99.999% nitrogen at 14M 3 /h.
  • the temperature of the middle end furnace material is displayed at 1200 °C ⁇ 100 °C by infrared thermometer.
  • a coarse block having a diameter of 50 mm ⁇ 0.5 mm was prepared by a high-pressure ball press, and naturally dried for 3-5 days. Firstly, the dried raw pellets are mixed with 50kg of granular activated carbon with a particle size of 4 ⁇ 8 mm, and then added to the intermediate frequency induction furnace through the automatic feeding system, and then heated into the middle-end medium frequency induction furnace through the upper end furnace body, and simultaneously 99.999% nitrogen gas is introduced into the cooling end at 8M 3 /h.
  • the temperature of the middle end furnace material is displayed at 1200 °C ⁇ 100 °C by infrared thermometer, and the reaction is carried out for 3.5 hours, so that the material is automatically discharged to the storage cooling chamber.
  • the cooling chamber is jacketed with water and cooled. Finally, the material is discharged through the automatic discharge system.
  • the raw balls and granular activated carbon were added from the automatic feed system at intervals of 3.5 hours.
  • the temperature of the upper end of the second feed is 600 ⁇ 750 ° C. Continuous production, product V: 78.8%, N: 16.5%, C: 1.4%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

一种防止合金烧制后粘连和氧化的钒氮合金制备方法 技术领域
本发明涉及钢铁冶金技术领域, 涉及一种防止合金烧制后粘连和氧化 的钒氮合金制备方法。
背景技术
钒氮合金是一种新型合金添加剂, 可以替代钒铁用于微合金化钢的生 产。 氮化钒添加于钢中能提高钢的强度、 韧性、 延展性及抗热疲劳性等综 合机械性能, 并使钢具有良好的可悍性。 在达到相同强度下, 添加氮化钒 节约钒加入量 30-40%, 进而降低了成本。
现在市场上的钒氮合金生产方法和设备主要有两种, 一种是采用推板 窑连续生产钒氮合金的方法, 此种方法设备投资大, 电能损耗大, 不能即 停即开, 一停下来降温一个月, 维修要一个多月时间, 一开始生产升温也 要一个月时间 , 差不多一年只能开 8个月时间, 效率低下。 另一种采用的 是中频感应加热的立窑, 如中国发明专利申请(申请号: 200710071142.7 , 申请日: 2007-09-20)公开的一种钒氮合金制备方法及设备, 该方法以五氧 化二钒或三氧化二钒与碳质催化剂或石墨为原料, 制成球状物料, 加入中 频感应炉中, 在氮气氛 10M3/1H, 升温 1350°C±100°C, 还原 2.5-3.5H, 制 取的钒氮合金, 而事实上这种方法一直不能做到连续生产, 由于在烧结后 钒氮合金产品所有的料全部粘连在一起, 使得料没办法自动下到储料室, 这样导致生产过程不能连续化, 只能一炉出一炉间歇式生产, 投料一次就 要重复升温降温的过程, 生产成本高, 能耗高, 效率低下。 发明内容
为了解决上述的技术问题, 本发明的目的是提供一种防止合金烧制后 粘连和氧化的钒氮合金制备方法, 该方法能够做到连续进料出料, 大大降 低了生产成本, 提高了生产效率。
为了实现上述的目的, 本发明采用了以下的技术方案:
一种防止合金烧制后粘连和氧化的钒氮合金制备方法, 该方法包括以 下的步骤:
( 1 ) 将钒化合物、 粘接剂及预混碳还原剂混合后压制成直径为 30〜 60mm生料球,钒化合物、粘接剂和预混碳还原剂按钒化合物重量份数计如 下: 钒化合物 100份, 预混碳还原剂 15〜30份, 粘接剂 3〜 1 2份, 生料 球自然凉干; 上述的钒化合物选用五氧化二钒或三氧化二钒;
(2) 生料球和颗粒状碳还原剂混合后连续投入到中频感应炉的立窑 中,颗粒状碳还原剂为 30〜100份,通入高纯氮气,炉内保持微正压 0.01〜 0.03MPa, 过 6~8小时投料一次, 出料一次, 分三个阶段, 分别为干燥、 碳 化氮化、 冷却, 干燥段温度为 100~600°C, 碳化氮化阶段温度为 900〜 1350 °C, 冷却段冷却至 100°C以下出料。
作为优选, 上述的预混碳还原剂选用石墨粉、 碳粉中的一种或多种。 作为优选, 上述的颗粒状碳还原剂选用颗粒活性碳、 废炭棒, 优质石 墨增碳剂中的一种或多种。 作为再优选, 上述的颗粒活性碳的粒径为 2〜
10mm。
本发明由于采用了上述的技术方案, 采用在投料时添加颗粒状碳还原 剂, 使一个一个的生料球用颗粒状碳还原剂隔开, 一方面增加了传热性, 使升温更快, 节省电费, 由于烧好的球一个个分开, 能够做到连续进料出 料, 大大降低了生产成本, 提高了生产效率。
具体实施方式
下面对本发明的具体实施方式做进一步说明。
实施例 1
将 100kg98%粉状五氧化二钒与 100目的石墨粉 22kg再加 6kg粘接料 混合均匀后,用高压压球机制成直径 50mm± 0.5mm左右的粗块, 自然干燥 3-5天后投料。首先将凉干后的生料球与 80kg粒径为 2〜4mm颗粒活性碳 混合后通过自动进系统加到中频感应炉中, 经上端炉体预热后进入中端中 频感应炉加热, 同时从冷却端以 14M3/h通入 99.999%的氮气, 中端炉体物 料温度通过红外测温仪显示在 1200°C ± 100°C, 反应 4小时, 使物料自动下 到贮料冷却室, 冷却室带夹套用水冷却。 最后通过自动出料系统出料。 相 隔 4小时, 从自动进料系统加进生料球和颗粒活性碳。 第二次进料上端炉 体温度在 400〜650°C.连续生产,可以得到产品 V:77.8%, N:14.5%, C:2.4%。 实施例 2
将 100kg98%粉状三氧化二钒与 100目的石墨粉 20kg再加 4kg粘接料 混合均匀后,用高压压球机制成直径 50mm±0.5mm左右的粗块, 自然干燥 3-5天后投料。首先将凉干后的生料球与 50kg粒径为 4〜 8 mm颗粒活性 碳混合后通过自动进系统加到中频感应炉中, 经上端炉体预热后进入中端 中频感应炉加热, 同时从冷却端以 8M3/h通入 99.999%的氮气, 中端炉体物 料温度通过红外测温仪显示在 1200 °C ± 100 °C, 反应 3.5小时, 使物料自动 下到贮料冷却室, 冷却室带夹套用水冷却。 最后通过自动出料系统出料。 相隔 3.5小时, 从自动进料系统加进生料球和颗粒活性碳。第二次进料上端 炉体温度在 600〜750°C .连续生产, 可以得到产品 V:78.8%, N:16.5%, C: 1.4%。

Claims

权利要求书
1. 一种防止合金烧制后粘连和氧化的钒氮合金制备方法, 其特征在于该方 法包括以下的步骤:
( 1 ) 将钒化合物、 粘接剂及预混碳还原剂混合后压制成直径为 30〜 60mm生料球,钒化合物、粘接剂和预混碳还原剂按钒化合物重量 份数计如下: 钒化合物 100份, 预混碳还原剂 15〜30份, 粘接剂 3〜8份, 生料球自然凉干; 钒化合物选用五氧化二钒或三氧化二 钒;
(2) 生料球和颗粒状碳还原剂混合后连续投入到中频感应炉的立窑 中, 颗粒状碳还原剂为 30〜100份, 通入高纯氮气, 炉内保持微 正压 0.01〜0.03MPa, 过 6~8小时投料一次, 出料一次, 分三个阶 段, 分别为干燥、 碳化氮化、 冷却, 干燥段温度为 100~600°C,碳 化氮化阶段温度为 900〜1350°C, 冷却段冷却至 100°C以下出料。
2. 根据权利要求 1所述的一种防止合金烧制后粘连和氧化的钒氮合金制备 方法, 其特征在于: 预混碳还原剂选用石墨粉、 碳粉中的一种或多种。
3. 根据权利要求 1所述的一种防止合金烧制后粘连和氧化的钒氮合金制备 方法, 其特征在于: 颗粒状碳还原剂选用颗粒活性碳、 废炭棒、 优质石 墨增碳剂的一种或多种。
4. 根据权利要求 1或 3所述的一种防止合金烧制后粘连和氧化的钒氮合金 制备方法, 其特征在于: 颗粒状碳还原剂的粒径为 2〜10mm。
PCT/CN2012/000148 2011-04-12 2012-02-06 一种防止合金烧制后粘连和氧化的钒氮合金制备方法 WO2012139409A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12771388.1A EP2698344B1 (en) 2011-04-12 2012-02-06 Post-sinter conglutination and oxidation-preventative vanadium-nitrogen alloy preparation method
CA2833058A CA2833058C (en) 2011-04-12 2012-02-06 Post-sinter conglutination and oxidation-preventative vanadium-nitrogen alloy preparation method
AU2012243313A AU2012243313C1 (en) 2011-04-12 2012-02-06 Post-sinter conglutination and oxidation-preventative vanadium-nitrogen alloy preparation method
JP2014504144A JP5905569B2 (ja) 2011-04-12 2012-02-06 バナジウム窒素合金の調製方法
US14/049,242 US9227847B2 (en) 2011-04-12 2013-10-09 Method for preparing vanadium-nitrogen alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110090241.6 2011-04-12
CN2011100902416A CN102168191B (zh) 2011-04-12 2011-04-12 一种防止合金烧制后粘连和氧化的钒氮合金制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/049,242 Continuation-In-Part US9227847B2 (en) 2011-04-12 2013-10-09 Method for preparing vanadium-nitrogen alloy

Publications (1)

Publication Number Publication Date
WO2012139409A1 true WO2012139409A1 (zh) 2012-10-18

Family

ID=44489504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000148 WO2012139409A1 (zh) 2011-04-12 2012-02-06 一种防止合金烧制后粘连和氧化的钒氮合金制备方法

Country Status (7)

Country Link
US (1) US9227847B2 (zh)
EP (1) EP2698344B1 (zh)
JP (1) JP5905569B2 (zh)
CN (1) CN102168191B (zh)
AU (1) AU2012243313C1 (zh)
CA (1) CA2833058C (zh)
WO (1) WO2012139409A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105043110A (zh) * 2015-08-25 2015-11-11 浙江欣万飞科技有限公司 立式进出料机及带有该立式进出料机的烧制设备
CN113684363A (zh) * 2021-08-05 2021-11-23 攀钢集团攀枝花钢铁研究院有限公司 一种生产预定硫含量的钒氮合金的方法
CN113718105A (zh) * 2021-08-30 2021-11-30 攀钢集团钒钛资源股份有限公司 一种以v2o5为增热剂高效制备钒氮合金的方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102168191B (zh) * 2011-04-12 2012-07-04 郑建伟 一种防止合金烧制后粘连和氧化的钒氮合金制备方法
CN102534219A (zh) * 2012-02-22 2012-07-04 浙江欣万飞科技有限公司 一种防止合金烧制后粘结的氮化钒铁合金的制备方法
CN103388096A (zh) * 2012-05-07 2013-11-13 简刚 钒氮合金的生产方法
CN104004934A (zh) * 2014-04-30 2014-08-27 四川展祥特种合金科技有限公司 一种快速制备钒氮合金的方法
CN104004958B (zh) * 2014-06-16 2015-12-02 四川展祥特种合金科技有限公司 一种连续制备钒氮合金的方法及设备
CN104726758A (zh) * 2015-03-12 2015-06-24 四川展祥特种合金科技有限公司 一种利用偏钒酸铵和五氧化二钒搭配制备钒氮合金的方法
CN104762488B (zh) * 2015-04-30 2016-09-07 安徽工业大学 一种在电渣重熔过程中直接钒合金化的方法
CN108842107B (zh) * 2018-06-25 2020-06-26 江苏渝鑫科技股份有限公司 一种通过分段控温提高钒氮合金含氮量的方法
CN110306106B (zh) * 2019-06-14 2023-10-31 四川展祥特种合金科技有限公司 一种逆向循环双推钒氮合金生产装置及工艺
CN110184521B (zh) * 2019-06-17 2021-04-23 承德燕北冶金材料有限公司 一种复合型增密剂及采用其制备钒氮合金的方法
CN110923557A (zh) * 2019-10-30 2020-03-27 中色(宁夏)东方集团有限公司 高致密氮化钒铁制备方法
CN112705716B (zh) * 2020-12-10 2023-04-18 九江市钒宇新材料股份有限公司 一种钒氮合金加工设备的卸料机构
CN113430402B (zh) * 2021-06-07 2022-02-01 湖南众鑫新材料科技股份有限公司 一种钒氮合金生产过程中原料成型方法
CN113621792A (zh) * 2021-08-05 2021-11-09 陕西中钒昌盛新材料科技有限公司 一种处理氧化钒氮合金的方法
CN113604696B (zh) * 2021-08-09 2022-05-10 宁夏中宏氮化制品有限公司 真空电阻法制备氮化硅钒铁的方法
CN113774218B (zh) * 2021-08-31 2023-04-07 湖南众鑫新材料科技股份有限公司 一种高效低成本钒氮合金的制备方法
CN114231781B (zh) * 2021-11-12 2022-07-19 攀钢集团攀枝花钢铁研究院有限公司 一种高氮钒氮合金的制备方法
CN116334466A (zh) * 2021-12-15 2023-06-27 陕西五洲矿业股份有限公司 一种基于粉状五氧化二钒制备钒氮合金的加工工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4394161A (en) * 1982-06-28 1983-07-19 Union Carbide Corporation Method of producing a vanadium- and nitrogen-containing material for use as an addition to steel
CN1422800A (zh) * 2001-12-04 2003-06-11 攀枝花钢铁(集团)公司 氮化钒的生产方法
CN101392333A (zh) * 2007-09-20 2009-03-25 杭州天港生物科技有限公司 一种钒氮合金制备方法及设备
CN101603132A (zh) * 2009-07-16 2009-12-16 钢铁研究总院 一种生产钒氮合金的方法和装置
CN101948977A (zh) * 2010-09-30 2011-01-19 江阴市长兴钒氮新材料有限公司 一种氮化钒的生产方法
CN102115046A (zh) * 2011-01-26 2011-07-06 河北钢铁股份有限公司承德分公司 一种保障竖炉装置能够连续生产氮化钒的方法
CN102140587A (zh) * 2011-01-26 2011-08-03 河北钢铁股份有限公司承德分公司 一种氮化钒生产过程中防粘结增氮的方法
CN102168191A (zh) * 2011-04-12 2011-08-31 浙江欣万飞科技有限公司 一种防止合金烧制后粘连和氧化的钒氮合金制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1562736A (zh) * 1967-05-29 1969-04-04
US4040814A (en) * 1975-12-23 1977-08-09 Union Carbide Corporation Method of producing a composition containing a large amount of vanadium and nitrogen
JPS62256767A (ja) * 1986-04-30 1987-11-09 松下電器産業株式会社 炭窒化物と酸化物からなる複合焼結体の製造方法
JP2005046975A (ja) * 2003-07-31 2005-02-24 Nachi Fujikoshi Corp バナジウム系被覆工具
JP2007118155A (ja) * 2005-10-31 2007-05-17 Mitsubishi Materials Corp 硬質被覆層が高速切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップ
CN101289713B (zh) * 2007-04-20 2010-10-27 郸城财鑫特种金属有限责任公司 一种钒氮合金的生产方法
CN101225495A (zh) * 2008-01-29 2008-07-23 刘先松 钒氮合金的生产方法
CN101314830A (zh) * 2008-06-19 2008-12-03 淮安鼎宇科技有限公司 钒氮合金
EP2228854B1 (en) * 2009-03-12 2014-03-05 Belenos Clean Power Holding AG Nitride and carbide anode materials
CN101693975B (zh) * 2009-10-28 2011-06-29 攀钢集团攀枝花钢钒有限公司 一种提高钒氮合金氮含量的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4394161A (en) * 1982-06-28 1983-07-19 Union Carbide Corporation Method of producing a vanadium- and nitrogen-containing material for use as an addition to steel
CN1422800A (zh) * 2001-12-04 2003-06-11 攀枝花钢铁(集团)公司 氮化钒的生产方法
CN101392333A (zh) * 2007-09-20 2009-03-25 杭州天港生物科技有限公司 一种钒氮合金制备方法及设备
CN101603132A (zh) * 2009-07-16 2009-12-16 钢铁研究总院 一种生产钒氮合金的方法和装置
CN101948977A (zh) * 2010-09-30 2011-01-19 江阴市长兴钒氮新材料有限公司 一种氮化钒的生产方法
CN102115046A (zh) * 2011-01-26 2011-07-06 河北钢铁股份有限公司承德分公司 一种保障竖炉装置能够连续生产氮化钒的方法
CN102140587A (zh) * 2011-01-26 2011-08-03 河北钢铁股份有限公司承德分公司 一种氮化钒生产过程中防粘结增氮的方法
CN102168191A (zh) * 2011-04-12 2011-08-31 浙江欣万飞科技有限公司 一种防止合金烧制后粘连和氧化的钒氮合金制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2698344A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105043110A (zh) * 2015-08-25 2015-11-11 浙江欣万飞科技有限公司 立式进出料机及带有该立式进出料机的烧制设备
CN105043110B (zh) * 2015-08-25 2017-06-06 浙江欣万飞科技有限公司 立式进出料机及带有该立式进出料机的烧制设备
CN113684363A (zh) * 2021-08-05 2021-11-23 攀钢集团攀枝花钢铁研究院有限公司 一种生产预定硫含量的钒氮合金的方法
CN113684363B (zh) * 2021-08-05 2022-09-27 攀钢集团攀枝花钢铁研究院有限公司 一种生产预定硫含量的钒氮合金的方法
CN113718105A (zh) * 2021-08-30 2021-11-30 攀钢集团钒钛资源股份有限公司 一种以v2o5为增热剂高效制备钒氮合金的方法

Also Published As

Publication number Publication date
CN102168191A (zh) 2011-08-31
JP2014518829A (ja) 2014-08-07
AU2012243313A1 (en) 2013-11-28
US20140037530A1 (en) 2014-02-06
AU2012243313C1 (en) 2015-12-10
JP5905569B2 (ja) 2016-04-20
EP2698344A1 (en) 2014-02-19
AU2012243313B2 (en) 2015-07-02
EP2698344B1 (en) 2016-01-20
CA2833058A1 (en) 2012-10-18
CA2833058C (en) 2016-06-28
CN102168191B (zh) 2012-07-04
EP2698344A4 (en) 2014-10-29
US9227847B2 (en) 2016-01-05

Similar Documents

Publication Publication Date Title
WO2012139409A1 (zh) 一种防止合金烧制后粘连和氧化的钒氮合金制备方法
CN102644015A (zh) 一种氮化钒铁合金的生产方法
CN108706973B (zh) 一种高强度高导热石墨材料的制备方法
CN101638733B (zh) 一种钒氮合金生产方法
CN101289713A (zh) 一种钒氮合金的生产方法
CN102477510A (zh) 一种氮化钒铁的制备方法
CN103305739A (zh) 一种高氮钒氮合金vn18及其生产方法
CN101082089A (zh) 氮化钒合金的制备方法
CN103952512A (zh) 一种制备钒氮合金的方法
CN111440976A (zh) 钒氮合金及其生产方法
CN102173395B (zh) 一种简易的氮化钒生产方法
CN103602814B (zh) 一种氮化钒合金的制备方法
CN104531999A (zh) 一种钒氮合金的制备方法
CN104404333B (zh) 一种用于制备超高氮化钒的原料组合物及采用该原料制备超高氮化钒的方法
CN111570784A (zh) 一种铁铜合金扩散粉的制备方法
CN102534219A (zh) 一种防止合金烧制后粘结的氮化钒铁合金的制备方法
CN110184521B (zh) 一种复合型增密剂及采用其制备钒氮合金的方法
CN103243254A (zh) 一种钒氮合金的生产方法
CN114873600A (zh) 一种高纯二硼化钛陶瓷粉末的制备方法
CN114560451A (zh) 一种连续化生产氮化锰产品的方法
CN102758093A (zh) 一种氧化镍矿熔炼方法
CN112795794A (zh) 一种采用湿法混合金属粉末制备高纯度金属铬块的方法
CN102465226B (zh) 一种利用碳氮氧钒制备钒氮合金的方法
CN115821140B (zh) 一种冶金用含钛合金及其低成本生产方法
CN103938007A (zh) 一种合成致密TiC陶瓷基Al金属复合物的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12771388

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2833058

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2014504144

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012771388

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012243313

Country of ref document: AU

Date of ref document: 20120206

Kind code of ref document: A