WO2012137632A1 - 透明リサイクルシートの製造方法、および透明リサイクルシート - Google Patents

透明リサイクルシートの製造方法、および透明リサイクルシート Download PDF

Info

Publication number
WO2012137632A1
WO2012137632A1 PCT/JP2012/057970 JP2012057970W WO2012137632A1 WO 2012137632 A1 WO2012137632 A1 WO 2012137632A1 JP 2012057970 W JP2012057970 W JP 2012057970W WO 2012137632 A1 WO2012137632 A1 WO 2012137632A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
resin
transparent
recycled
cooling
Prior art date
Application number
PCT/JP2012/057970
Other languages
English (en)
French (fr)
Inventor
要 近藤
Original Assignee
出光ユニテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光ユニテック株式会社 filed Critical 出光ユニテック株式会社
Priority to US14/009,228 priority Critical patent/US20140037974A1/en
Priority to EP12768678.0A priority patent/EP2695720A4/en
Priority to KR1020137028524A priority patent/KR20140024349A/ko
Priority to CN2012800164797A priority patent/CN103459121A/zh
Publication of WO2012137632A1 publication Critical patent/WO2012137632A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/0026Recovery of plastics or other constituents of waste material containing plastics by agglomeration or compacting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/9145Endless cooling belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/915Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means
    • B29C48/9155Pressure rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/327Layered products comprising a layer of synthetic resin comprising polyolefins comprising polyolefins obtained by a metallocene or single-site catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92514Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92923Calibration, after-treatment or cooling zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/14Copolymers of polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/26Scrap or recycled material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0026Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/008Wide strips, e.g. films, webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/242All polymers belonging to those covered by group B32B27/32
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2272/00Resin or rubber layer comprising scrap, waste or recycling material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/704Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/80Medical packaging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers

Definitions

  • the present invention relates to a method for producing a transparent recycled sheet and a transparent recycled sheet.
  • a crystalline resin typified by polypropylene is opaque due to its high crystallinity (crystallinity, crystallization speed, spherulite size, etc.) in a normal film forming method.
  • an additive formulation nucleating agent
  • a polymer design method is generally adopted. Examples of other means for expressing transparency include a rapid cooling method using a belt process as described in Patent Document 2.
  • the loss product is pulverized by an appropriate method to form a fluff, which is mixed with the raw material virgin resin to produce a sheet.
  • a highly transparent sheet as in Patent Documents 1 and 2 is deteriorated in transparency when the lost product is recycled.
  • the transparency tends to be lowered.
  • the transparency of the recycled sheet after production is significantly reduced.
  • An object of the present invention is to provide a method for producing a transparent recycled sheet that can maintain transparency even when a laminated sheet in which a base material layer and a surface layer are both made of a crystalline resin is used as a recycled resin, and to provide a transparent recycled sheet To do.
  • the present invention provides the following method for producing a transparent recycled sheet and a transparent recycled sheet.
  • the recycle resin is mixed with a metallocene ethylene- ⁇ -olefin copolymer having a melt flow rate (hereinafter referred to as MFR) of 0.5 g / 10 min to 6 g / 10 min.
  • MFR melt flow rate
  • the laminated sheet is provided on at least one surface of a base material layer formed of a virgin resin made of a crystalline resin, and the base material layer.
  • Production of a transparent recycled sheet characterized by using a laminate of a surface layer formed of a virgin resin made of a crystalline resin having a large MFR and a short relaxation time compared to a crystalline resin forming a virgin resin Method.
  • the transparent recycled sheet is used as a base material layer, and a surface layer containing a crystalline resin is laminated on the base material layer.
  • Production method The method for producing a transparent recycled sheet, wherein the raw sheet is heat-treated at a temperature not lower than a crystallization temperature and not higher than a melting point.
  • the metallocene-based ethylene- ⁇ -olefin copolymer contained in the original fabric sheet is 0.1% by mass or more and 20% by mass or less based on the original fabric sheet.
  • a method for producing a transparent recycled sheet comprising: (6) In the manufacturing method of the above-mentioned transparent recycled sheet, 0.1% by mass of the crystalline resin derived from the surface layer of the laminated sheet among the recycled resins contained in the original fabric sheet is based on the original fabric sheet.
  • a method for producing a transparent recycled sheet comprising:
  • the mixed resin includes a virgin resin pellet made of the crystalline resin, a recycled resin obtained by crushing the laminated sheet into a fluff, and a metallocene ethylene- ⁇ -olefin copolymer.
  • a method for producing a transparent recycled sheet which is obtained by dry blending polymer virgin resin pellets.
  • the method for producing a transparent recycled sheet wherein the crystalline resin is a propylene resin.
  • a transparent recycled sheet including a laminated sheet including a base material layer and a surface layer both containing a crystalline resin as a recycled resin, and further comprising a virgin resin made of a crystalline resin and an MFR of 0.5 g
  • a transparent recycled sheet comprising a metallocene ethylene- ⁇ -olefin copolymer of / 10 minutes to 6 g / 10 minutes.
  • a recycled sheet when a recycled sheet is produced by mixing a laminated sheet with a virgin resin as a recycled resin (collected raw material), a specific metallocene ethylene- ⁇ -olefin copolymer produced using a metallocene catalyst is included. .
  • the recycled resin consists of a base material layer and a surface layer both containing a crystalline resin, the spherulite of the crystalline resin is enlarged by the metallocene ethylene- ⁇ -olefin copolymer. Can be prevented.
  • a laminated sheet a surface layer made of a crystalline resin having a MFR larger than that of the crystalline resin in the virgin resin forming the base material layer and having a short relaxation time is laminated, and spherulites originating from the surface layer are laminated. Even if a laminated sheet that tends to be enlarged can be recycled, the enlargement of spherulites can be effectively prevented. Therefore, since light scattering by spherulites is reduced, transparency can be maintained even with recycled sheets.
  • a propylene-based resin is described as an example of the crystalline resin forming the transparent recycled sheet.
  • the present invention is not limited to this.
  • crystalline resins other than various propylene resins can be used.
  • a manufacturing apparatus 1 includes a raw sheet forming apparatus 10 that melts and kneads a raw material resin, extrudes it into a sheet form, and rapidly cools, and an original sheet 2 manufactured by the original sheet forming apparatus 10 (FIG. 2). And a heat treatment apparatus 20 for producing the transparent recycled sheet 3 by heat treatment.
  • the raw sheet 2 has a two-type three-layer structure in which a surface layer 2B is provided on both surfaces of a sheet-like base material layer 2A as shown in FIG.
  • the raw fabric sheet 2 itself or the transparent recycled sheet 3 itself is recovered and used as a recycled resin.
  • the raw sheet forming apparatus 10 includes a T-die extrusion apparatus 100 and a cooling press apparatus 110.
  • the T die extrusion apparatus 100 includes an extruder 101 and a T die 102.
  • As the extruder 101 for example, a single-screw extruder or a multi-screw extruder is used.
  • a plurality of extruders 101 are provided, one corresponding to the base material layer 2A of the original fabric sheet 2 and one corresponding to the surface layer 2B.
  • the T die 102 is detachably attached to the tip of each extruder 101, and is molded in a state where the molten resin 2C extruded from the extruder 101 is laminated in a sheet shape.
  • Examples of the T die 102 include a coat hanger die and a slot die.
  • the T die 102 is not limited to a coat hanger die and a slot die as long as the die can form a multilayer sheet.
  • a feed block system or a multi-manifold die system can be illustrated, for example.
  • the cooling and pressing device 110 of the raw sheet forming apparatus 10 press-molds the molten resin 2C laminated and extruded into a sheet shape by the T-die 102 onto the original sheet 2 while cooling.
  • the cooling pressing device 110 includes a first cooling roll 111, a second cooling roll 112, a third cooling roll 113, a fourth cooling roll 114, a cooling endless belt 115, and cooling water spraying.
  • the nozzle 116, the water tank 117, the water absorption roll 118, and the peeling roll 119 are provided.
  • the 1st cooling roll 111, the 2nd cooling roll 112, the 3rd cooling roll 113, and the 4th cooling roll 114 are the metal rolls of the material excellent in thermal conductivity supported rotatably. And at least any one of the 1st cooling roll 111, the 3rd cooling roll 113, and the 4th cooling roll 114 is connected with the rotation drive means which is not shown in figure, and the drive of a rotation drive means Is rotated by.
  • the first cooling roll 111, the second cooling roll 112, the third cooling roll 113, and the fourth cooling roll 114 preferably have a larger diameter in terms of durability of the cooling endless belt 115, and are practically particularly diameters. Is preferably designed to be 100 to 1500 mm.
  • the circumferential surface of the first cooling roll 111 is covered with an elastic material 111A.
  • the elastic material for example, nitrile-butadiene rubber (NBR), fluorine rubber, polysiloxane rubber, EPDM (ethylene-propylene-diene copolymer) and the like are used.
  • the elastic material 111A preferably has, for example, a hardness (measured by a method based on JIS K 6301A) of 80 degrees or less and a thickness of about 10 mm in order to obtain a good surface pressure by elastic deformation.
  • the second cooling roll 112 is a metal roll (mirror surface) having a mirror surface with a surface roughness of the peripheral surface (surface roughness: Rmax based on JIS B 0601 “surface roughness—definition and indication”) of 0.3 ⁇ m or less. Cooling roll). Inside the second cooling roll 112, a cooling means such as a water-cooling type (not shown) is built in in order to allow the surface temperature to be adjusted. This is because if the surface roughness (Rmax) of the second cooling roll 112 exceeds 0.3 ⁇ m, the glossiness and transparency of the resulting raw sheet 2 may be lowered.
  • Rmax surface roughness
  • Such a second cooling roll 112 is a base material layer 2A melt-extruded from the T-die 102 between the first cooling roll 111 via a metal cooling endless belt 115 formed of stainless steel or the like. And it arrange
  • the cooling endless belt 115 is formed in an endless belt shape, for example, of stainless steel, carbon steel, titanium alloy or the like, and is wound around the first cooling roll 111, the third cooling roll 113, and the fourth cooling roll 114. Yes.
  • This cooling endless belt 115 is formed on a mirror surface having an outer peripheral surface, that is, a surface roughness (Rmax) of a surface in contact with the base material layer 2A and the surface layer 2B melt-extruded from the T die 102 is 0.3 ⁇ m or less.
  • the third cooling roll 113 and the fourth cooling roll 114 can be adjusted in the temperature of the cooling endless belt 115 by incorporating cooling means such as a water cooling type (not shown) inside.
  • the cooling water spray nozzle 116 is positioned below the second cooling roll 112 in the vertical direction, and is disposed in a state in which the cooling water 116A is sprayed on the back surface of the cooling endless belt 115.
  • the cooling water spray nozzle 116 rapidly cools the cooling endless belt 115 by spraying the cooling water 116 ⁇ / b> A, and the substrate layer 2 ⁇ / b> A and the surface layer 2 ⁇ / b> B that are press-contacted by the first cooling roll 111 and the second cooling roll 112. Also cool quickly.
  • the water tank 117 is formed in a box shape having an open upper surface, is provided so as to cover the entire lower surface of the second cooling roll 112, and collects the cooling water 116A sprayed on the back surface of the cooling endless belt 115.
  • the water tank 117 is provided with a drain port 117B through which the collected water 117A is discharged from the lower surface of the water tank 117.
  • the water absorption roll 118 is installed on the side surface portion of the second cooling roll 112 on the third cooling roll 113 side so as to be in contact with the cooling endless belt 115.
  • the water absorption roll 118 is for removing excess cooling water adhering to the back surface of the endless belt 115 for cooling.
  • the peeling roll 119 is disposed so as to guide the base material layer 2A and the surface layer 2B to the third cooling roll 113 and the cooling endless belt 115, and the cooling endless belt 115 is used to cool the raw sheet 2 after the cooling is finished. It peels from.
  • the peeling roll 119 may be disposed so that the original sheet 2 is pressed against the third cooling roll 113 side. However, as shown in FIG. It is preferable that the sheet 2 is not pressed.
  • the heat treatment apparatus 20 of the manufacturing apparatus 1 includes a preheating apparatus 210, a heat treatment apparatus main body 220, and a cooling apparatus 230.
  • the preheating device 210 heats and preheats the original fabric sheet 2 formed by the original fabric sheet forming apparatus 10. As shown in FIG. 1, the preheating device 210 includes a first preheating roll 211, a second preheating roll 212, and a third preheating roll 213.
  • the first preheating roll 211, the second preheating roll 212, and the third preheating roll 213 are made of a material having excellent thermal conductivity such as metal.
  • the first preheating roll 211, the second preheating roll 212, and the third preheating roll 213 are provided with temperature adjusting means (not shown) such as a steam heating type that enables temperature adjustment of the surface.
  • the temperature adjusting means is not limited to the configuration directly provided on each of the preheating rolls 211 to 213, and a separate preheating roll may be provided, or a preheating may be provided by a preheating device provided outside.
  • the preheating device 210 is not limited to the configuration in which these three preheating rolls 211 to 213 are disposed, and the raw sheet 2 such as a configuration in which one or a plurality of preheating rolls are provided or a configuration in which an endless belt is used. Any configuration capable of preheating is possible.
  • the heat treatment apparatus main body 220 of the heat treatment apparatus 20 travels while heating the raw fabric sheet 2 preheated by the preheating apparatus 210.
  • the heat treatment apparatus main body 220 includes a first heating roll 221, a second heating roll 222, a third heating roll 223, a fourth heating roll 224, a rubber roll 225 that is a pressure roll, a guide roll 226, A metal heating endless belt 227 and driving means (not shown) are provided.
  • the first heating roll 221, the second heating roll 222, the third heating roll 223, the fourth heating roll 224, and the guide roll 226 are made of a material having excellent thermal conductivity such as metal.
  • the first heating roll 221, the second heating roll 222, the third heating roll 223, and the fourth heating roll 224 are preferably larger in diameter in terms of durability of the metal heating endless belt 227. In particular, those designed to have a diameter of 100 to 1500 mm are preferable.
  • the first heating roll 221, the second heating roll 222, the third heating roll 223, and the fourth heating roll 224 are provided with temperature adjusting means (not shown) such as a steam heating type that enables temperature adjustment of the surface. .
  • the temperature adjusting means is not limited to the structure directly provided on each of the heating rolls 221 to 224, and a separate heating-dedicated roll may be provided, or a heating apparatus provided outside may be used.
  • the heating condition is a temperature not lower than the crystallization temperature of the raw sheet 2 and not higher than the melting point, for example, the raw sheet 2 comprises the above-described propylene resin and metallocene ethylene- ⁇ -olefin copolymer.
  • the surface temperature of the raw fabric sheet 2 is a condition that is 120 ° C. or higher and lower than the melting point.
  • the driving means is connected to at least one of the first heating roll 221, the second heating roll 222, and the third heating roll 223. And a drive means rotates at least any one of the 1st heating roll 221, the 2nd heating roll 222, and the 3rd heating roll 223 connected by the drive.
  • the heating endless belt 227 is formed in an endless belt shape, for example, of stainless steel, carbon steel, titanium alloy, or the like. In addition, although a thickness dimension can be set arbitrarily, 0.3 mm or more is preferable in strength.
  • the heating endless belt 227 is stretched over the first heating roll 221, the second heating roll 222, and the third heating roll 223, and is rotated by driving of the driving means.
  • the driving means is driven and controlled so that the moving speed of the heating endless belt 227 is substantially the same as the moving speed of the cooling endless belt 115 that is rotated by driving the driving means of the cooling pressing device 110 described above. .
  • the fourth heating roll 224 is arranged in a state where the outer circumferential surface faces the outer circumferential surface of the heating endless belt 227 and intersects the outer tangent line of the first heating roll 221 and the second heating roll 222.
  • the fourth heating roll 224 is rotatably disposed between the outer peripheral surface of the fourth heating roll 224 and the outer peripheral surface of the heating endless belt 227 so that the raw sheet 2 preheated by the preheating device 210 can be introduced. It is installed.
  • the rubber roll 225 is opposed to the outer peripheral surface of the heating endless belt 227 in a portion where the outer peripheral surface is wound around the first heating roll 221.
  • the rubber roll 225 is formed by covering a cushion material (not shown) on at least the outer peripheral surface. This cushion material is made of the same material as the second cooling roll 112 of the cooling and pressing device 110.
  • the rubber roll 225 can be formed by covering a cushion material over substantially the entire outer peripheral surface or by forming a cushion material over almost the whole. Then, the rubber roll 225 presses the raw fabric sheet 2 from the preheating device 210 against the outer peripheral surface of the heating endless belt 227 so as to be in thermal contact therewith.
  • the rubber roll 225 is disposed in contact with the first heating roll 221 through the preheated raw sheet 2 and the heating endless belt 227.
  • the raw sheet 2 travels in close contact with the heating endless belt 227, and then travels while being pressed and clamped by the fourth heating roll 224.
  • the guide roll 226 is rotatably disposed with its outer peripheral surface facing the outer peripheral surface of the heating endless belt 227 and heated and pressed between the heating endless belt 227 and the fourth heating roll 224.
  • the sheet 3 is guided. That is, the guide roll 226 is disposed on the production downstream side of the fourth heating roll 224 via the second heating roll 222 located on the production downstream side that is the downstream side in the moving direction of the transparent recycling sheet 3. Yes. Accordingly, the guide roll 226 is heated after the transparent recycled sheet 3 obtained by being heated and pressed between the heating endless belt 227 and the fourth heating roll 224 is peeled off from the outer peripheral surface of the fourth heating roll 224.
  • the endless belt 227 is guided so as to peel from the outer peripheral surface.
  • the cooling device 230 of the heat treatment apparatus 20 cools the transparent recycled sheet 3 that has been heat treated by the heat treatment apparatus main body 220.
  • the cooling device 230 includes a first cooling guide roll 231, a second cooling guide roll 232, and a pair of guide rolls 233.
  • the first cooling guide roll 231, the second cooling guide roll 232, and the pair of guide rolls 233 are made of a material having excellent thermal conductivity such as metal.
  • the first cooling guide roll 231, the second cooling guide roll 232, and the pair of guide rolls 233 are positioned on a substantially straight line in a state where the transparent recycled sheet 3 heat-treated in the heat treatment apparatus main body 220 is wound in a meandering manner. It is arranged.
  • the first cooling guide roll 231 and the second cooling guide roll 232 are provided with temperature adjusting means (not shown) such as a steam heating type that enables temperature adjustment of the surface.
  • the temperature adjusting means is not limited to the configuration directly provided on each of the cooling guide rolls 231 and 232, and a separate cooling dedicated roll may be provided, or cooling may be performed by a cooling device provided outside.
  • the pair of guide rolls 233 are disposed on the production downstream side of the second cooling guide roll 232. And these guide rolls 233 are arranged in parallel in the up-and-down direction which crosses the direction of movement of transparent recycling sheet 3 in the state which pinches transparent recycling sheet 3 which the outer peripheral surfaces countered and was cooled between outer peripheral surfaces. .
  • the cooling device 230 is not limited to the configuration in which the first cooling guide roll 231, the second cooling guide roll 232, and the pair of guide rolls 233 are provided, and a configuration in which one or a plurality of rolls are provided or an endless configuration Any configuration capable of cooling the transparent recycled sheet 3 such as a configuration using a belt can be used.
  • the raw sheet 2 has, for example, a two-type three-layer structure in which surface layers 2B are provided on both surfaces of a sheet-like base material layer 2A.
  • the base material layer 2A is formed of a mixed resin of a recycled resin, a virgin resin, and a metallocene ethylene- ⁇ -olefin copolymer.
  • the crystalline resin as the virgin resin is a propylene resin in this embodiment, and has an isotactic pentad fraction of 85% to 99% and an MFR of 0.5 g / 10 min to 5 g / 10 min. It is preferable.
  • the isotactic pentad fraction is 90% or more and 99% or less and the MFR is 2 g / 10 minutes or more and 4 g / 10 minutes or less.
  • the isotactic pentad fraction is an isotactic fraction in pentad units (one in which five propylene monomers are isotactically bonded) in the molecular chain of the resin composition. This method for measuring the fraction is described, for example, in Macromolecules, Vol. 8 (1975), p. 687, and can be measured by 13 C-NMR.
  • MFR may be measured at a measurement temperature of 230 ° C. and a load of 2.16 kg according to JIS K 7210.
  • the above-mentioned propylene-based resin has an isotactic pentad fraction lower than 85%, there is a risk that the rigidity may be insufficient when the sheet is used as a molded product.
  • the isotactic pentad fraction is higher than 99%, the transparency may be lowered.
  • it is preferable that the above-mentioned propylene-based resin has an isotactic pentad fraction set to 85% or more and 99% or less.
  • the MFR of the propylene-based resin is smaller than 0.5 g / 10 min, the shear stress at the die slip portion at the time of extrusion molding becomes strong, and the crystallization may be promoted to lower the transparency.
  • MFR is set to 0.5 g / 10min or more and 5 g / 10min or less.
  • the metallocene-based ethylene- ⁇ -olefin copolymer is produced using a metallocene catalyst and has an MFR of 0.5 g / 10 min or more and 6 g / 10 min or less. Further, those having a density of 898 kg / m 3 or more and 913 kg / m 3 or less are preferably used.
  • the MFR can be measured according to JIS K 7210 at a measurement temperature of 190 ° C. and a load of 2.16 kgf. The density can be measured at a test temperature of 23 ° C. according to JIS K 7112 “Plastics—Method of measuring density and specific gravity of non-foamed plastic”.
  • the metallocene ethylene- ⁇ -olefin copolymer is preferably a material having a refractive index substantially the same as that of the propylene resin, in particular, a linear low density polyethylene.
  • this metallocene ethylene- ⁇ -olefin copolymer has a density of less than 898 kg / m 3 or a density of more than 913 kg / m 3 , the refractive index of the matrix does not match the propylene resin, and the propylene resin There is a possibility that the refraction of light becomes large at the interface with the metallocene ethylene- ⁇ -olefin copolymer and the transparency is impaired. Therefore, when the refractive indexes of the propylene resin and the metallocene ethylene- ⁇ -olefin copolymer are substantially the same, the transparency of the manufactured transparent recycled sheet 3 is improved.
  • the metallocene ethylene- ⁇ -olefin copolymer is difficult to disperse in the molecule of the propylene resin of the matrix, and the metallocene ethylene- ⁇ -olefin copolymer is difficult to disperse. There is a possibility that the dispersion diameter of the polymer becomes large, light scattering occurs, and transparency is impaired.
  • the MFR is larger than 6 g / 10 min, the compatibility with the propylene-based resin of the matrix deteriorates, and the metallocene-based ethylene- ⁇ -olefin copolymer cannot be completely dispersed and exists as huge particles. In such a state, the metallocene ethylene- ⁇ -olefin copolymer particles cause light scattering, which may impair transparency.
  • the blending amount of the metallocene-based ethylene- ⁇ -olefin copolymer is preferably 0.1% by mass or more and 20% by mass or less, and 0.5% by mass or more and 10% by mass or less, based on the raw fabric sheet 2. It is more preferable. If the amount of the metallocene ethylene- ⁇ -olefin copolymer is too large, the rigidity of the resulting raw sheet 2 may be reduced.
  • the metallocene-based ethylene- ⁇ -olefin copolymer if the amount of the metallocene-based ethylene- ⁇ -olefin copolymer is too small, the metallocene-based ethylene- ⁇ -olefin copolymer will not be sufficiently dispersed in the propylene-based resin, and spherulite growth will not be suppressed. There is a possibility that the transparency may not be improved.
  • the base material layer 2A contains a recycled resin in addition to the virgin resin and the metallocene ethylene- ⁇ -olefin copolymer.
  • a base material layer formed of a virgin resin made of a crystalline resin, and the base material layer A laminated sheet in which a surface layer formed of a virgin resin made of a crystalline resin is provided on at least one surface and has a larger MFR and a shorter relaxation time than the crystalline resin forming the virgin resin of the base material layer The crushed and fluffed product was used.
  • the ratio of the recycled resin in the base material layer 2A can be mixed up to a concentration at which extrusion is possible, but it is more preferably 50% by mass or less. When this ratio exceeds 50 mass%, the yellowness of the raw fabric sheet 2 or the transparent recycled sheet 3 becomes strong, and the appearance may be deteriorated.
  • the recycled resin includes a low-viscosity crystalline resin (propylene-based resin) due to the surface layer 2B, and this ratio is preferably 0.1% by mass or more based on the raw fabric sheet 2. This is because when the proportion is less than 0.1% by mass, the transparency maintaining effect is lowered even when a metallocene ethylene- ⁇ -olefin copolymer is blended.
  • the surface layer 2B is formed of a crystalline resin having a larger MFR and a shorter relaxation time than a propylene-based resin as a virgin resin used for the base material layer 2A.
  • this crystalline resin is a propylene resin.
  • the MFR of the propylene-based resin used for the surface layer 2B is preferably 1.5 times or more larger than the MFR of the propylene-based resin as the virgin resin used for the base layer 2A. This is because when the MFR is less than 1.5 times, the effect of improving transparency is small.
  • the MFR of the propylene-based resin forming the surface layer 2B is larger than the MFR of the propylene-based resin as the virgin resin contained in the base material layer, and the relaxation time is short.
  • This relaxation time is preferably 80% or less of that of the propylene-based resin as the virgin resin used for the base material layer 2A. This is because if the relaxation time is greater than 80%, the effect of improving transparency is small.
  • MFR may be measured according to JIS K 7210 at a measurement temperature of 230 ° C. and a load of 2.16 kgf.
  • the relaxation time ( ⁇ ) is the angular frequency when a frequency dispersion measurement is performed at a temperature of 175 ° C. with a cone plate of 25 mm ⁇ , a cone angle of 0.1 radians (rad) in a rotational rheometer manufactured by Rheometrics.
  • the relaxation time at ⁇ 0.01 rad / sec was determined.
  • the complex elastic modulus G * (i ⁇ ) measured for the resin pellet is defined as ⁇ * / ⁇ * by stress ⁇ * and strain ⁇ * as shown in the following formula (1), and the relaxation time ⁇ is It calculated
  • ⁇ ( ⁇ ) G ′ ( ⁇ ) / ( ⁇ G ′′ ( ⁇ )) (2)
  • G ′ represents the storage elastic modulus
  • G ′′ represents the loss elastic modulus.
  • the relaxation time ( ⁇ ) will be described.
  • a relaxation phenomenon A characteristic time constant that is a measure of the time required for relaxation is called relaxation time.
  • a polymer molding process for example, extrusion molding
  • a molten polymer is flowed.
  • molecular chains are stretched in the flow direction and aligned (oriented).
  • the relaxation time is related to the ease of return of the molecular chain oriented in the extrusion direction during extrusion, and indicates that when the relaxation time is short, it returns easily.
  • the raw fabric sheet 2 was 2 types and 3 layers, it is not restricted to this, A single layer may be sufficient and it is good also as 2 layers which formed the surface layer 2B only in the single side
  • the crystalline resin is not limited to propylene resin. Further, as the recycled resin, it is not necessary to use the original fabric sheet 2 itself or the transparent recycled sheet 3 itself of the present embodiment.
  • temperature adjusting means so that the outer peripheral surface temperatures of the cooling endless belt 115 and the third cooling roll 113 of the cooling and pressing device 110 of the raw sheet forming apparatus 10 are maintained at the dew point of the molten resin 2C or more and 50 ° C. or less. Control the temperature with.
  • the temperature exceeds 50 ° C., good transparency of the raw fabric sheet 2 cannot be obtained, and there is a possibility that ⁇ -crystals increase and thermoforming becomes difficult. For this reason, it controls to 50 degrees C or less, Preferably it is 30 degrees C or less. If the dew point is lower than the dew point, condensation may occur on the surface and water droplets may occur on the sheet, making it difficult to form a uniform film.
  • temperature adjusting means is used so that the outer peripheral surface temperature of the heating endless belt 227 or the fourth heating roll 224 is maintained at the crystallization temperature of the raw sheet 2 or more and the melting point or less. Control the temperature with.
  • the temperature may be controlled so as to preheat to 50 ° C. or more and the crystallization temperature or less, which is the temperature cooled by the cooling and pressing device 110 of the raw sheet forming apparatus 10.
  • the introduced molten resin 2C which is laminated in the form of a sheet of the base material layer 2A and the surface layer 2B, is subjected to surface pressure contact and rapidly cooled.
  • the elastic material 111A is elastically deformed by the pressing force between the first cooling roll 111 and the second cooling roll 112.
  • the molten resin 2C is held together with the cooling endless belt 115 at an angle ⁇ 1 portion (see FIG. 2) from the center of the first cooling roll 111 and the second cooling roll 112 where the elastic material 111A is elastically deformed.
  • the surface is pressed by the restoring force of the elastic material 111A.
  • the surface pressure is preferably 0.1 MPa or more and 20 MPa or less.
  • the surface pressure is higher than 20 MPa, it is not preferable from the viewpoint of the life of the endless belt 115 for cooling. For this reason, the surface pressure of the planar pressing is set to 0.1 MPa or more and 20 MPa or less.
  • the base material layer 2 ⁇ / b> A and the surface layer 2 ⁇ / b> B sandwiched between the second cooling roll 112 and the cooling endless belt 115 are in the arc portion corresponding to the substantially lower half circumference of the second cooling roll 112.
  • the sheet roll is pressed by the cooling roll 112 and the cooling endless belt 115.
  • the base material layer 2A and the surface layer 2B are further rapidly cooled by spraying the cooling water 116A to the back surface side of the cooling endless belt 115 by the cooling water spray nozzle 116.
  • the temperature of the cooling water 116A is preferably set to 0 ° C.
  • the sprayed cooling water 116A is collected in the water tank 117, and the collected water 117A is discharged from the drain port 117B.
  • the surface pressure is lower than 0.01 MPa, the meandering control of the cooling endless belt 115 becomes difficult, and stable production may not be possible.
  • the surface pressure is higher than 0.5 MPa, the tension acting on the cooling endless belt 115 is increased, which is not preferable from the viewpoint of life.
  • the cooling endless belt 115 is applied to the cooling endless belt 115.
  • the base material layer 2 ⁇ / b> A and the surface layer 2 ⁇ / b> B that are in close contact with each other are moved onto the third cooling roll 113 along with the rotational movement of the cooling endless belt 115.
  • the base material layer 2 ⁇ / b> A and the surface layer 2 ⁇ / b> B guided by the peeling roll 119 are cooled by the third cooling roll 113 via the cooling endless belt 115.
  • the water adhering to the back surface of the endless belt 115 for cooling is removed by the water absorption roll 118 provided in the middle of the movement from the second cooling roll 112 to the third cooling roll 113.
  • the base material layer 2 ⁇ / b> A and the surface layer 2 ⁇ / b> B cooled on the third cooling roll 113 are peeled off from the cooling endless belt 115 by the peeling roll 119, and the raw sheet 2 is formed.
  • haze cloudiness
  • Tt total light transmittance
  • Tp parallel light transmittance
  • Td diffused light transmittance
  • the internal haze is a value obtained by measuring the haze by applying silicone to the sheet surface in order to measure the transparency inside the sheet without being affected by the sheet surface roughness.
  • the value of the internal haze is larger than 20%, the internal haze is increased and the highly transparent transparent recycled sheet 3 is obtained even if the heat treatment by the heat treatment apparatus main body 220 and the surface pressing process are performed in the subsequent stage. There is a risk of disappearing.
  • the raw sheet 2 formed by the cooling and pressing device 110 is moved over the outer peripheral surfaces of the first preheating roll 211, the second preheating roll 212, and the third preheating roll 213 of the preheating device 210, and preheated. To do. Then, the raw fabric sheet 2 preheated by the preheating device 210 is introduced between the outer peripheral surfaces of the rubber roll 225 and the heating endless belt 227 of the heat treatment device main body 220. The introduced raw sheet 2 is pressed into a sheet shape and thermally adhered to the outer peripheral surface of the heating endless belt 227 by the rubber roll 225.
  • the heat-sealed original fabric sheet 2 is moved together with the rotating endless belt 227 for rotation and introduced between the outer peripheral surfaces of the endless belt 227 for heating and the fourth heating roll 224.
  • the introduced original sheet 2 is brought into surface contact with the fourth heating roll 224 with the original sheet 2 interposed therebetween and the heating endless belt 227 to which tension is applied by the fourth heating roll 224.
  • the heating temperature in the heat treatment of the original fabric sheet 2 is not less than the crystallization temperature of the original fabric sheet 2 and not more than the melting point.
  • the transparent recycling sheet 3 thus obtained is moved and cooled so as to meander over the outer peripheral surfaces of the first cooling guide roll 231 and the second cooling guide roll 232 of the cooling device 230, and between the pair of guide rolls 233. To send out.
  • the transparent recycling sheet 3 which is the sent-out product is wound up, for example, on a winding device (not shown).
  • the total thickness of the transparent recycled sheet 3 obtained by the above manufacturing method is preferably 100 ⁇ m or more and 800 ⁇ m or less, and more preferably 160 ⁇ m or more and 500 ⁇ m or less.
  • the total thickness dimension of the transparent recycled sheet 3 is less than 100 ⁇ m, the quenching effect by the cooling rolls 111 to 114 of the cooling press device 110 is sufficiently obtained, and the transparency is obtained to the extent that there is no need to lay the layers. It is.
  • the total thickness dimension of the transparent recycled sheet 3 is thicker than 800 ⁇ m, a rapid cooling effect due to heat conduction cannot be expected, and as a result, a lamination effect cannot be exhibited.
  • Ear loss of the obtained transparent recycled sheet 3 or sheet loss at the time of production is fluffed by a pulverizer (not shown) and used as a recycled resin for the base material layer (collection layer) 2A. It is done. A part of the raw sheet 2 before heat treatment may be similarly fluffed as a recycled resin.
  • the base layer 2A is formed from a mixed resin of a virgin resin, a recycled resin, and a metallocene ethylene- ⁇ -olefin copolymer, and the crystalline resin (in the virgin resin (
  • the surface layer 2B is formed of a crystalline resin (propylene resin) having a higher melt flow rate and a shorter relaxation time than the propylene resin).
  • a laminated sheet composed of the base material layer 2A and the surface layer 2B (raw sheet 2 or transparent recycled sheet 3).
  • the raw material resins of the base layer 2A and the surface layer 2B are extruded in a molten state and cooled in a state of being laminated in a sheet shape to form an original fabric sheet 2, and the original fabric sheet 2 has a melting point higher than the crystallization temperature.
  • Heat treatment is performed at the following temperature. For this reason, there is no inconvenience that the higher-order structure in the raw sheet 2 of good crystallinity obtained by cooling is destroyed and the transparency is impaired, and it can be formed into a good sheet shape, and the transparent recycling with higher transparency Sheet 3 is obtained.
  • a preferred embodiment of the virgin resin used as the base layer 2A is a propylene resin 80 having an isotactic pentad fraction of 85% to 99% and an MFR of 0.5 g / 10 min to 5 g / 10 min. A mass% or more and 99.5 mass% or less is used.
  • the metallocene-based ethylene- ⁇ -olefin copolymer used for the base material layer 2A is manufactured using a metallocene catalyst, and has a density of 898 kg / m 3 or more and 913 kg / m 3 or less, and an MFR of 0.5 g / 10 min.
  • the metallocene ethylene- ⁇ -olefin copolymer of 6 g / 10 min or less.
  • the refractive index of the propylene resin in the base layer 2A and the metallocene ethylene- ⁇ -olefin copolymer that suppresses spherulite growth can be made substantially the same, and transparency is maintained even by recycling. it can.
  • the raw fabric sheet 2 is formed in a two-type three-layer structure in which the surface layer 2B is provided on both surfaces of the sheet-like base material layer 2A. For this reason, compared with the case where it is provided on one side, the stress applied when the base material layer 2A is extruded can be more relaxed, the residual stress can be further reduced, and the transparency can be easily maintained.
  • the raw fabric sheet 2 is manufactured by the cooling and pressing apparatus 110, and the transparent recycled sheets 3 are manufactured in series by heat treatment using the heat treatment apparatus 20 as it is. For this reason, the desired highly transparent transparent recycled sheet 3 can be manufactured efficiently.
  • the MFR of the surface layer 2B is large and the relaxation time is short with respect to the base layer 2A of the crystalline resin, such as the physical properties and blending amount of the propylene-based resin and metallocene-based ethylene- ⁇ -olefin copolymer, It can be set as appropriate according to the desired transparent recycled sheet 3.
  • the base material layer 2A may be a single layer.
  • a laminated sheet was manufactured using the raw material resins (for the base layer and the surface layer) shown in Table 1. Then, after the production of the virgin sheet was stabilized, the ear loss and the sheet loss of the laminated sheet were pulverized and fluffed, and then a predetermined amount was recycled to the base material layer (collection layer). Table 2 shows the layer structure when the production of the recycled sheet is stabilized. Specific production conditions are as follows (no heat treatment was performed).
  • haze total haze, internal haze, and external haze
  • haze was measured using a haze measuring machine (NDH-300A, manufactured by Nippon Denshoku Industries Co., Ltd.).
  • the internal haze was measured with a haze measuring machine after applying silicone oil on both sides of the sheet, sandwiching both sides of the sheet with a glass plate, eliminating the influence of the outside of the sheet.
  • Tables 3 and 4 The measurement results are shown in Tables 3 and 4.
  • Comparative Example 1 is not a recycled sheet but a virgin sheet that does not contain a metallocene-based ethylene- ⁇ -olefin copolymer in the base material layer.
  • Example 5 is a recycled sheet that contains only 0.1% by mass of the predetermined metallocene ethylene- ⁇ -olefin copolymer in the base material layer. It is remarkable that the haze is low (transparency is good).
  • the present invention can be used for various applications that require transparency in addition to packaging applications such as foods, pharmaceuticals, and cosmetics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

 ともに結晶性樹脂を含んでなる基材層と表面層とが積層された積層シートをリサイクル樹脂として用いて、透明リサイクルシートを製造する方法であって、結晶性樹脂からなるバージン樹脂と、前記リサイクル樹脂と、MFRが0.5g/10分以上6g/10分以下のメタロセン系エチレン-α-オレフィン共重合体と、を混合して溶融押出した原反シートを冷却することを特徴とする。

Description

透明リサイクルシートの製造方法、および透明リサイクルシート
 本発明は、透明リサイクルシートの製造方法、および透明リサイクルシートに関する。
 ポリプロピレンに代表される結晶性樹脂は、その結晶性の高さ(結晶化度、結晶化速度、球晶サイズ等)から通常の製膜方法では不透明である。透明な結晶性樹脂のフィルムあるいはシートを得ようとした場合、例えば特許文献1に記載のように、添加剤処方(造核剤)により、微細結晶を多量に造り、球晶の成長を抑えるといったポリマーデザインの手法が一般的に採られている。その他の透明性の発現手段として、例えば特許文献2に記載のようなベルトプロセスを用いた急冷法が挙げられる。このベルトプロセスを用いた急冷法では、ポリプロピレンを溶融状態から低温に保持したベルトおよびロールで挟圧し、急冷する製膜工程で透明性を付与している。すなわち、急冷することにより、結晶の成長が抑制され低結晶化および微細球晶化が図られ、造核剤を添加せずともそれ以上の透明性を実現している。
特許第3725955号公報 特許第4237275号公報
 一方、シート製造プロセスにおいては、製造ロスやスリットロスが大量に発生する。これらのロス品を廃棄すると製造コストが非常に高くなってしまうため、ロス品のリサイクルを行うことが多い。すなわちロス品を適当な方法で粉砕してフラフとし、それを原料であるバージン樹脂と混合してシートを製造するのである。しかしながら、特許文献1、2のような高透明なシートであっても、ロス品のリサイクルを行うと透明性が低下してしまう。また、複数の異なった層からなる積層シートをリサイクル樹脂(回収原料)として用いてリサイクルシートを製造した場合も透明性が低下しやすい。特に、基材層と表面層とがともに結晶性樹脂であるような積層シートをリサイクル樹脂として用いた場合、製造後のリサイクルシートは透明性が著しく低下する。
 本発明は、基材層と表面層とがともに結晶性樹脂からなる積層シートをリサイクル樹脂として用いても透明性を維持できる透明リサイクルシートの製造方法、および透明リサイクルシートを提供することを目的とする。
 ベルトプロセスや水冷法による押出製膜急冷プロセスを経たシートを偏光顕微鏡や位相差顕微鏡等によって確認してみると、シート表面近傍に数多くの球晶が認められる。この球晶の存在が透明性を阻害する要因のひとつであり、この球晶の生成を少なくすることで更なる透明性発現が期待できる。また、樹脂の押出時にかかる応力を制御する事で、その後の急冷によってできる結晶に変化を起こすことが分かっている。
 基材層と表面層とからなる積層シートを用いた場合、樹脂の押出時に掛かる応力を調整するには、ダイスとの接触面に基材層より低粘度の表面層を積層させる方法があるが、基材層と表面層の粘度差が原因となって、当該シートをリサイクルすると透明性が著しく低下してしまう。本発明者は、鋭意研究の結果、リサイクルを行う回収層の球晶成長を制御することで、積層シート由来の回収原料を含んだリサイクルシートであっても透明性を維持できることを見いだした。本発明はこの新たな知見にもとづくものである。
 すなわち、本発明は、以下のような透明リサイクルシートの製造方法、および透明リサイクルシートを提供するものである。
(1)ともに結晶性樹脂を含んでなる基材層と表面層とが積層された積層シートをリサイクル樹脂として用いて、透明リサイクルシートを製造する方法であって、結晶性樹脂からなるバージン樹脂と、前記リサイクル樹脂と、メルトフローレート(Melt Flow Rate:以下、MFRと称す)が0.5g/10分以上6g/10分以下のメタロセン系エチレン-α-オレフィン共重合体と、を混合してなる混合樹脂を溶融押出した原反シートを冷却することを特徴とする透明リサイクルシートの製造方法。
(2)上述の透明リサイクルシートの製造方法において、前記積層シートとして、結晶性樹脂からなるバージン樹脂により形成された基材層と、この基材層の少なくとも一面に設けられ、前記基材層のバージン樹脂をなす結晶性樹脂に比べてMFRが大きく、緩和時間が短い結晶性樹脂からなるバージン樹脂により形成された表面層と、が積層されたものを用いることを特徴とする透明リサイクルシートの製造方法。
(3)上述の透明リサイクルシートの製造方法において、当該透明リサイクルシートを基材層として用い、前記基材層に結晶性樹脂を含んでなる表面層を積層したことを特徴とする透明リサイクルシートの製造方法。
(4)上述の透明リサイクルシートの製造方法において、前記原反シートを結晶化温度以上融点以下の温度で熱処理することを特徴とする透明リサイクルシートの製造方法。
(5)上述の透明リサイクルシートの製造方法において、前記原反シートに含まれる前記メタロセン系エチレン-α-オレフィン共重合体を、前記原反シート基準で、0.1質量%以上20質量%以下含むことを特徴とする透明リサイクルシートの製造方法。
(6)上述の透明リサイクルシートの製造方法において、前記原反シートに含まれるリサイクル樹脂のうち、前記積層シートの表面層に由来する結晶性樹脂を、前記原反シート基準で、0.1質量%以上含むことを特徴とする透明リサイクルシートの製造方法。
(7)上述の透明リサイクルシートの製造方法において、前記混合樹脂が、前記結晶性樹脂からなるバージン樹脂ペレットと、前記積層シートをフラフ状に粉砕したリサイクル樹脂と、メタロセン系エチレン-α-オレフィン共重合体のバージン樹脂ペレットとをドライブレンドしたものであることを特徴とする透明リサイクルシートの製造方法。
(8)上述の透明リサイクルシートの製造方法において、前記結晶性樹脂がプロピレン系樹脂であることを特徴とする透明リサイクルシートの製造方法。
(9)上述の透明リサイクルシートの製造方法において、前記メタロセン系エチレン-α-オレフィン共重合体が直鎖状低密度ポリエチレンであることを特徴とする透明リサイクルシートの製造方法。
(10)ともに結晶性樹脂を含んでなる基材層と表面層とを含む積層シートをリサイクル樹脂として含む透明リサイクルシートであって、さらに、結晶性樹脂からなるバージン樹脂と、MFRが0.5g/10分以上6g/10分以下のメタロセン系エチレン-α-オレフィン共重合体と、を含んでなることを特徴とする透明リサイクルシート。
(11)上述の透明リサイクルシートにおいて、前記積層シートとして、結晶性樹脂からなるバージン樹脂により形成された基材層と、この基材層の少なくとも一面に設けられ、前記基材層のバージン樹脂をなす結晶性樹脂に比べてMFRが大きく、緩和時間が短い結晶性樹脂からなるバージン樹脂により形成された表面層と、が積層されたものを用いることを特徴とする透明リサイクルシート。
(12)上述の透明リサイクルシートにおいて、当該透明リサイクルシートを基材層とし、前記基材層に結晶性樹脂を含んでなる表面層が積層されていること特徴とする透明リサイクルシート。
 本発明では、積層シートをリサイクル樹脂(回収原料)としてバージン樹脂に混合してリサイクルシートを製造する際に、メタロセン触媒を用いて製造した特定のメタロセン系エチレン-α-オレフィン共重合体を含有させる。
 このため、リサイクル樹脂が、ともに結晶性樹脂を含んでなる基材層と表面層とからなるものであっても、メタロセン系エチレン-α-オレフィン共重合体によって結晶性樹脂の球晶の巨大化を防止することができる。特に、積層シートとして、基材層を形成するバージン樹脂中の結晶性樹脂よりMFRが大きく、かつ緩和時間が短い結晶性樹脂で形成された表面層が積層され、表面層に起因する球晶の巨大化が起こりやすい積層シートをリサイクルしても、球晶の巨大化を効果的に防止することができる。よって、球晶による光の散乱が減少するので、リサイクルシートであっても透明性を維持できる。
本発明の一実施形態にかかる透明リサイクルシートの製造装置を示す概略図。 上記製造装置における引き取り部を示す概略図。
 以下、本発明の一実施形態にかかる透明リサイクルシートの製造方法を、図1を参照して説明する。
 なお、本実施形態では、透明リサイクルシートを形成する結晶性樹脂として、プロピレン系樹脂を例示して説明するが、この限りではない。例えば、各種プロピレン系樹脂以外の結晶性樹脂を利用できる。
[製造装置の構成]
 図1において、製造装置1は、原料樹脂を溶融混練してシート状に押し出し、急冷する原反シート成形装置10と、この原反シート成形装置10にて製造された原反シート2(図2参照)を熱処理して透明リサイクルシート3を製造する熱処理装置20とを備えている。
 ここで、原反シート2は、詳細は後述するが、図2に示すように、シート状の基材層2Aの両面に表面層2Bが設けられた2種3層構造である。
 また、本実施形態では、原反シート2自体あるいは透明リサイクルシート3自体をリサイクル樹脂として回収使用している。
 原反シート成形装置10は、Tダイ押出装置100と、冷却押圧装置110とを備えている。Tダイ押出装置100は、押出機101と、Tダイ102とを備えている。
 押出機101としては、例えば単軸押出機や多軸押出機などが用いられる。押出機101は、原反シート2の基材層2Aに対応したものと、表面層2Bに対応したものと、複数設けられる。
 Tダイ102は、各押出機101の先端に着脱可能に取り付けられ、押出機101からそれぞれ押し出される溶融樹脂2Cをシート状に積層する状態で成形する。このTダイ102は、例えば、コートハンガーダイおよびスロットダイなどが例示できる。なお、Tダイ102は、多層シートを形成できるダイスであれば、コートハンガーダイおよびスロットダイに限られない。また、押出機から溶融した原料樹脂を積層させる構成としては、例えば、フィードブロック方式またはマルチマニホールドダイ方式が例示できる。
 原反シート成形装置10の冷却押圧装置110は、Tダイ102にてシート状に積層して押出成形された溶融樹脂2Cを、冷却しつつ原反シート2に押圧成形する。この冷却押圧装置110は、図1および図2に示すように、第一冷却ロール111、第二冷却ロール112、第三冷却ロール113、第四冷却ロール114、冷却用無端ベルト115、冷却水吹き付けノズル116、水槽117、吸水ロール118、および剥離ロール119を備えている。
 第一冷却ロール111、第二冷却ロール112、第三冷却ロール113、および第四冷却ロール114は、回転可能に軸支され、熱伝導性に優れた材質の金属製ロールである。そして、第一冷却ロール111と、第三冷却ロール113と、第四冷却ロール114とのうちの少なくともいずれか一つは、その回転軸が図示しない回転駆動手段と連結され、回転駆動手段の駆動により回転される。
 なお、第一冷却ロール111、第二冷却ロール112、第三冷却ロール113および第四冷却ロール114は、冷却用無端ベルト115の耐久性の点で径寸法が大きい方が好ましく、実用上特に直径が100~1500mmに設計されたものが好ましい。
 第一冷却ロール111の周面には、弾性材111Aが被覆されている。弾性材としては、例えばニトリル-ブタジエンゴム(NBR)、フッ素系ゴム、ポリシロキサン系ゴム、EPDM(エチレン-プロピレン-ジエン共重合体)などが用いられる。
 この弾性材111Aは、弾性変形して良好な面圧を得るために、例えば硬度(JIS K 6301Aに準拠した方法で測定)が80度以下、厚さが10mm程度であることが好ましい。
 第二冷却ロール112は、周面の表面粗さ(JIS B 0601「表面粗さ-定義および表示」に基づく表面粗さ:Rmax)が、0.3μm以下の鏡面とされた金属製ロール(鏡面冷却ロール)である。第二冷却ロール112の内部には、表面の温度調節を可能にするために、図示しない水冷式などの冷却手段が内蔵されている。第二冷却ロール112の表面粗さ(Rmax)が0.3μmを超えると、得られる原反シート2の光沢度や透明性が低下するおそれがあるためである。
 このような第二冷却ロール112は、ステンレスなどにて形成された金属製の冷却用無端ベルト115を介して第一冷却ロール111との間に、Tダイ102から溶融押出された基材層2Aおよび表面層2Bを挟むように配置されている。
 冷却用無端ベルト115は、例えばステンレス、炭素鋼、チタン合金などにて無端ベルト状に形成され、第一冷却ロール111と、第三冷却ロール113と、第四冷却ロール114とに巻装されている。この冷却用無端ベルト115は、外周面すなわちTダイ102から溶融押出された基材層2Aおよび表面層2Bと接する面の表面粗さ(Rmax)が0.3μm以下の鏡面に形成されている。
 なお、第三冷却ロール113および第四冷却ロール114は、内部に図示しない水冷式などの冷却手段を内蔵させることにより、冷却用無端ベルト115の温度調節が可能となるようにすることができる。
 冷却水吹き付けノズル116は、第二冷却ロール112の鉛直方向における下方に位置して、冷却用無端ベルト115の裏面に冷却水116Aを吹き付ける状態で配設されている。冷却水吹き付けノズル116は、冷却水116Aを吹き付けることで、冷却用無端ベルト115を急冷するとともに、第一冷却ロール111および第二冷却ロール112により面状圧接された基材層2Aおよび表面層2Bをも急冷する。
 水槽117は、上面が開口した箱状に形成され、第二冷却ロール112の下面全体を覆うように設けられ、冷却用無端ベルト115の裏面に吹き付けられた冷却水116Aを回収する。水槽117には、回収した水117Aを水槽117の下面から排出する排水口117Bが設けられている。
 吸水ロール118は、第二冷却ロール112における第三冷却ロール113側の側面部に、冷却用無端ベルト115に接するように設置されている。吸水ロール118は、冷却用無端ベルト115の裏面に付着した余分な冷却水を除去するためのものである。
 剥離ロール119は、基材層2Aおよび表面層2Bを第三冷却ロール113、および冷却用無端ベルト115にガイドするように配置されるとともに、冷却終了後の原反シート2を冷却用無端ベルト115から剥離するものである。
 なお、剥離ロール119は、原反シート2を第三冷却ロール113側に圧接するように配置してもよいが、図示するように第三冷却ロール113に対して離間して配置し、原反シート2を圧接しないようにするのが好ましい。
 製造装置1の熱処理装置20は、予熱装置210と、熱処理装置本体220と、冷却装置230とを備えている。
 予熱装置210は、原反シート成形装置10にて成形された原反シート2を加温して予熱する。この予熱装置210は、図1に示すように、第一予熱ロール211と、第二予熱ロール212と、第三予熱ロール213とを備えている。これら第一予熱ロール211、第二予熱ロール212および第三予熱ロール213は、例えば金属などの熱伝導性に優れた材質のものが用いられる。
 これら第一予熱ロール211、第二予熱ロール212および第三予熱ロール213には、表面の温度調整を可能とする蒸気加熱式などの図示しない温度調整手段が設けられている。なお、温度調整手段としては、各予熱ロール211~213に直接設ける構成に限らず、別途予熱専用のロールを設けたり、外部に設けた予熱装置により予熱する構成としたりしてもよい。
 なお、予熱装置210は、これら3つの予熱ロール211~213を配設した構成に限られるものではなく、1つあるいは複数の予熱ロールを設けた構成や無端ベルトを用いる構成など、原反シート2を予熱可能ないずれの構成でもできる。
 熱処理装置20の熱処理装置本体220は、予熱装置210にて予熱された原反シート2を加熱しつつ走行する。この熱処理装置本体220は、第一加熱ロール221と、第二加熱ロール222と、第三加熱ロール223と、第四加熱ロール224と、加圧ロールであるラバーロール225と、ガイドロール226と、金属製の加熱用無端ベルト227と、図示しない駆動手段とを備えている。
 そして、第一加熱ロール221、第二加熱ロール222、第三加熱ロール223、第四加熱ロール224およびガイドロール226は、金属などの熱伝導性に優れた材質のものが用いられる。また、第一加熱ロール221、第二加熱ロール222、第三加熱ロール223および第四加熱ロール224は、金属製の加熱用無端ベルト227の耐久性の点で径寸法が大きい方が好ましく、実用上特に直径が100~1500mmに設計されたものが好ましい。
 これら第一加熱ロール221、第二加熱ロール222、第三加熱ロール223および第四加熱ロール224には、表面の温度調整を可能とする蒸気加熱式などの図示しない温度調整手段が設けられている。なお、温度調整手段としては、各加熱ロール221~224に直接設ける構成に限らず、別途加熱専用のロールを設けたり、外部に設けた加熱装置により加熱する構成としたりしてもよい。
 そして、加熱の条件は、原反シート2の結晶化温度以上融点以下の温度、例えば原反シート2が上述したプロピレン系樹脂およびメタロセン系エチレン-α-オレフィン共重合体を含んでなるものである場合には、原反シート2の表面温度が120℃以上融点未満となる条件である。
 また、駆動手段は、第一加熱ロール221、第二加熱ロール222および第三加熱ロール223のうちの少なくともいずれか1つに連結されている。そして、駆動手段は、駆動により連結された第一加熱ロール221、第二加熱ロール222および第三加熱ロール223のうちの少なくともいずれか1つを回転させる。
 加熱用無端ベルト227は、例えばステンレス、炭素鋼、チタン合金などにて無端ベルト状に形成されている。なお、厚さ寸法は、任意に設定できるが、強度的に0.3mm以上が好ましい。
 そして、この加熱用無端ベルト227は、第一加熱ロール221、第二加熱ロール222および第三加熱ロール223に掛け渡され、駆動手段の駆動により回転移動する。なお、駆動手段は、加熱用無端ベルト227の移動速度が、上述した冷却押圧装置110の駆動手段の駆動により回転移動する冷却用無端ベルト115の移動速度と略同一となるように駆動制御される。
 第四加熱ロール224は、外周面が加熱用無端ベルト227の外周面に対向し、第一加熱ロール221および第二加熱ロール222の外側接線に交差する状態で配置されている。第四加熱ロール224は、この第四加熱ロール224の外周面と加熱用無端ベルト227の外周面との間に、予熱装置210で予熱された原反シート2を導入可能に、回転自在に配設されている。
 ラバーロール225は、外周面が第一加熱ロール221に巻き付く状態で掛け渡された部分の加熱用無端ベルト227の外周面に対向する。
 そして、ラバーロール225は、少なくとも外周面に図示しないクッション材が被覆形成されている。このクッション材は、冷却押圧装置110の第二冷却ロール112と同様の材料が用いられる。なお、ラバーロール225は、クッション材を外周面のほぼ全体に被覆形成したり、ほぼ全体がクッション材にて形成したりしたものなどでもできる。
 そして、ラバーロール225は、予熱装置210からの原反シート2を加熱用無端ベルト227の外周面に押圧して熱密着させる。すなわち、ラバーロール225は、予熱された原反シート2および加熱用無端ベルト227を介して第一加熱ロール221に接触する状態に配設されている。そして、原反シート2は、加熱用無端ベルト227に密着した状態で走行し、次いで第四加熱ロール224で押圧挟持されて走行する。
 ガイドロール226は、外周面が加熱用無端ベルト227の外周面に対向して回転自在に配設され、加熱用無端ベルト227および第四加熱ロール224間で加熱および押圧されたシート状の透明リサイクルシート3をガイドする。すなわち、ガイドロール226は、透明リサイクルシート3の移動方向の下流側である製造下流側に位置する第二加熱ロール222を介して第四加熱ロール224より製造下流側に位置して配設されている。
 このことにより、ガイドロール226は、加熱用無端ベルト227および第四加熱ロール224間で加熱および押圧されて得られた透明リサイクルシート3を、第四加熱ロール224の外周面から剥離させた後に加熱用無端ベルト227の外周面から剥離するようにガイドする。
 熱処理装置20の冷却装置230は、熱処理装置本体220にて熱処理された透明リサイクルシート3を冷却する。この冷却装置230は、第一冷却ガイドロール231と、第二冷却ガイドロール232と、一対の案内ロール233とを備えている。これら第一冷却ガイドロール231、第二冷却ガイドロール232および一対の案内ロール233は、例えば金属などの熱伝導性に優れた材質のものが用いられる。
 第一冷却ガイドロール231、第二冷却ガイドロール232および一対の案内ロール233は、熱処理装置本体220にて熱処理された透明リサイクルシート3を蛇行するように掛け渡す状態に略直線上に位置して配設されている。これら第一冷却ガイドロール231および第二冷却ガイドロール232には、表面の温度調整を可能とする蒸気加熱式などの図示しない温度調整手段が設けられている。なお、温度調整手段としては、各冷却ガイドロール231,232に直接設ける構成に限らず、別途冷却専用のロールを設けたり、外部に設けた冷却装置により冷却する構成としたりしてもよい。
 また、一対の案内ロール233は、第二冷却ガイドロール232の製造下流側に位置して配設されている。そして、これら案内ロール233は、外周面が対向し外周面間に冷却された透明リサイクルシート3を挟持する状態に、透明リサイクルシート3の移動方向に対して交差する上下方向に並設されている。
 なお、冷却装置230は、第一冷却ガイドロール231、第二冷却ガイドロール232および一対の案内ロール233を配設した構成に限られるものではなく、1つあるいは複数のロールを設けた構成や無端ベルトを用いる構成など、透明リサイクルシート3を冷却可能ないずれの構成でもできる。
[原反シートの構成]
 次に、上記製造装置1で透明リサイクルシート3を製造する原反シート2の構成を説明する。原反シート2は、例えば、シート状の基材層2Aの両面に表面層2Bが設けられた2種3層構造である。
 基材層2Aは、リサイクル樹脂と、バージン樹脂と、メタロセン系エチレン-α-オレフィン共重合体の混合樹脂により形成される。
 バージン樹脂としての結晶性樹脂は、本実施形態ではプロピレン系樹脂であり、アイソタクチックペンタッド分率が85%以上99%以下、MFRが0.5g/10分以上5g/10分以下であることが好ましい。さらに、アイソタクチックペンタッド分率が90%以上99%以下、MFRが2g/10分以上4g/10分以下であることがより好ましい。
 ここで、アイソタクチックペンタッド分率とは、樹脂組成の分子鎖中のペンタッド単位(プロピレンモノマーが5個連続してアイソタクチック結合したもの)でのアイソタクチック分率である。この分率の測定法は、例えばマクロモレキュールズ(Macromolecules)第8巻(1975年)687頁に記載されており、13C-NMRにより測定できる。
 また、MFRについては、JIS K 7210に準拠し、測定温度230℃、荷重2.16Kgで測定すればよい。
 そして、上述したプロピレン系樹脂は、アイソタクチックペンタッド分率が85%より低いと、当該シートを成形品とした場合に剛性が不足するおそれがある。一方、アイソタクチックペンタッド分率が99%より高いと、透明性が低下するおそれがある。このため、上述のプロピレン系樹脂は、アイソタクチックペンタッド分率が85%以上99%以下に設定されることが好ましい。
 また、プロピレン系樹脂は、MFRが0.5g/10分より小さいと、押出成形時のダイスリップ部でのせん断応力が強くなり、結晶化を促進して透明性が低下するおそれがある。一方、MFRが5g/10分より大きいと、熱成形時にドローダウンが大きくなって成形性が低下するおそれがある。このため、上述のプロピレン系樹脂は、MFRが0.5g/10分以上5g/10分以下に設定されることが好ましい。
 一方、メタロセン系エチレン-α-オレフィン共重合体は、メタロセン触媒を用いて製造され、MFRが0.5g/10分以上6g/10分以下である。また、密度が898kg/m以上913kg/m以下のものが好ましく用いられる。
 ここで、MFRの測定については、JIS K 7210に準拠し、測定温度190℃、荷重2.16kgfで測定できる。密度は、試験温度23℃で、JIS K 7112の「プラスチック-非発泡プラスチックの密度および比重の測定方法」に準拠して測定できる。
 そして、メタロセン系エチレン-α-オレフィン共重合体としては、プロピレン系樹脂との屈折率がほぼ同等の材料、特に、直鎖状低密度ポリエチレンが好ましい。このメタロセン系エチレン-α-オレフィン共重合体は、密度が898kg/mより小さい、もしくは密度が913kg/mより大きいと、マトリックスのプロピレン系樹脂との屈折率が合わなくなり、プロピレン系樹脂とメタロセン系エチレン-α-オレフィン共重合体との界面で光の屈折が大きくなって透明性を損なうおそれがある。それ故、プロピレン系樹脂と、メタロセン系エチレン-α-オレフィン共重合体との屈折率がほぼ同じであると、製造される透明リサイクルシート3の透明性が向上する。
 また、メタロセン系エチレン-α-オレフィン共重合体は、MFRが0.5g/10分より小さいと、マトリックスのプロピレン系樹脂の分子中への分散がしにくくなり、メタロセン系エチレン-α-オレフィン共重合体の分散径が大きくなって光の散乱が生じ、透明性が損なわれるおそれがある。一方、MFRが6g/10分より大きいと、マトリックスのプロピレン系樹脂との相溶性が悪くなり、メタロセン系エチレン-α-オレフィン共重合体が分散しきれずに巨大な粒子として存在してしまう。このような状態では、メタロセン系エチレン-α-オレフィン共重合体の粒子によって光の散乱が生じ、透明性が損なわれるおそれがある。
 メタロセン系エチレン-α-オレフィン共重合体の配合量は、原反シート2基準で、0.1質量%以上20質量%以下であることが好ましく、0.5質量%以上10質量%以下であることがより好ましい。メタロセン系エチレン-α-オレフィン共重合体の配合量が多すぎると、得られる原反シート2の剛性が低下するおそれがある。一方、メタロセン系エチレン-α-オレフィン共重合体の配合量が少なすぎると、メタロセン系エチレン-α-オレフィン共重合体がプロピレン系樹脂中に十分に分散されず、球晶の成長の抑制が不十分となって、透明性の向上が得られにくくなるおそれがある。
 また、基材層2Aには、バージン樹脂やメタロセン系エチレン-α-オレフィン共重合体の他にリサイクル樹脂が含まれる。
 なお、本実施形態では、原反シート2自体や透明リサイクルシート3自体を回収利用する結果、このリサイクル樹脂として、結晶性樹脂からなるバージン樹脂により形成された基材層と、この基材層の少なくとも一面に設けられ、前記基材層のバージン樹脂をなす結晶性樹脂に比べてMFRが大きく、緩和時間が短い結晶性樹脂からなるバージン樹脂により形成された表面層と、が積層された積層シートを粉砕してフラフ化したものを用いたことになる。
 基材層2Aに占めるリサイクル樹脂の割合は押し出しが可能な濃度まで混入することができるが、50質量%以下であることがより好ましい。この割合が50質量%を超えると原反シート2あるいは透明リサイクルシート3の黄色度が強くなり、外観が悪化するおそれがある。
 そして、リサイクル樹脂には、表面層2Bに起因する低粘度の結晶性樹脂(プロピレン系樹脂)が含まれるが、この割合は原反シート2基準で0.1質量%以上が好ましい。この割合が0.1質量%より少ないと、メタロセン系エチレン-α-オレフィン共重合体を配合しても透明性維持効果が低くなるためである。
 一方、表面層2Bは、基材層2Aに用いられるバージン樹脂としてのプロピレン系樹脂よりMFRが大きく、かつ、緩和時間が短い結晶性樹脂により形成される。本実施形態ではこの結晶性樹脂はプロピレン系樹脂である。
 具体的には、表面層2Bに用いられるプロピレン系樹脂のMFRは、基材層2Aに用いられるバージン樹脂としてのプロピレン系樹脂のMFRより1.5倍以上大きいことが好ましい。このMFRが1.5倍未満では、透明性の改善効果が小さいからである。さらに、表面層2Bを形成するプロピレン系樹脂のMFRは、基材層に含まれるバージン樹脂としてのプロピレン系樹脂のMFRに比べて大きく、緩和時間が短いものである。この緩和時間は、基材層2Aに用いられるバージン樹脂としてのプロピレン系樹脂のそれに対して80%以下であることが好ましい。この緩和時間が80%より大きいと透明性の改善効果が小さいからである。
 MFRの測定については、JIS K 7210に準拠し、測定温度230℃、荷重2.16kgfで測定すればよい。
 また、緩和時間(τ)は、レオメトリックス社製回転型レオメーターにおいて、コーンプレートを25mmφ、コーンアングルを0.1ラジアン(rad)とし、温度175℃において周波数分散測定を行った時の角周波数ω=0.01rad/秒における緩和時間を求めた。具体的には、樹脂ペレットについて測定した複素弾性率G*(iω)を下記式(1)に示すように、応力σと歪γによりσ/γで定義し、緩和時間τは下記式(2)により求めた。
   G(iω)=σ/γ=G’(ω)+IG”(ω) ・・・(1)
   τ(ω)=G’(ω)/(ωG”(ω))      ・・・(2)
(式中、G’は貯蔵弾性率を示し、G”は損失弾性率を示す。)
 ここで、緩和時間(τ)について説明する。
 平衡状態にある物質系に外力を加え、新しい平衡状態または定常状態に達した後、外力を取り去ると、その系の内部運動によって、系が初めの平衡状態に回復する現象を緩和現象といい、緩和に要する時間の目安となる特性的な時間定数を緩和時間という。高分子の成形加工(例えば押出成形)の場合、溶融した高分子を流動させるが、この時に分子鎖は流動方向に引き伸ばされて引き揃えられる(配向する)。そして、流動が終了し、冷却が始まると、分子に加わる応力がなくなり、各分子鎖は動き出し、やがて勝手な方向に向いてしまう(これを分子鎖の緩和という)。緩和時間は、押出成形時において、押出方向に配向した分子鎖の戻りやすさに関係しており、緩和時間が短い場合には、元に戻りやすいことを示している。
 なお、本実施形態では、原反シート2は、2種3層としたが、これに限らず、単層でもよく、基材層2Aの片面のみに表面層2Bを形成した2層としてもよい。結晶性樹脂としては、プロピレン系樹脂に限られない。また、リサイクル樹脂としては、本実施形態の原反シート2自体や透明リサイクルシート3自体を用いる必要はない。
[透明リサイクルシートの製造方法]
 次に、上記製造装置1によりシート状の透明リサイクルシート3を製造する動作を説明する。
 まず、原反シート成形装置10の冷却押圧装置110の冷却用無端ベルト115および第三冷却ロール113の外周面温度が、溶融樹脂2Cの露点以上50℃以下に保たれるように、温度調整手段にて温度制御する。ここで、温度が50℃を超える場合には、原反シート2の良好な透明性が得られなくなるとともに、α晶が多くなって熱成形しにくくなる可能性がある。このため、50℃以下、好ましくは30℃以下に制御する。また、露点より低い場合には、表面に結露が生じてシートに水滴斑が発生し均一な製膜が困難になる可能性があるため、露点以上に制御される。
 また、熱処理装置20の熱処理装置本体220では、加熱用無端ベルト227または第四加熱ロール224の外周面温度が、原反シート2の結晶化温度以上融点以下に保たれるように、温度調整手段にて温度制御する。なお、熱処理装置20の予熱装置210では、原反シート成形装置10の冷却押圧装置110にて冷却された温度である50℃以上結晶化温度以下に予熱するように温度制御するとよい。
 この状態で、Tダイ押出装置100のTダイ102から、基材層2Aおよび表面層2Bの溶融樹脂2Cをシート状に積層する状態で押し出し、冷却押圧装置110の回転移動する冷却用無端ベルト115および回転する第二冷却ロール112の外周面間に導入させる。
 この導入された基材層2Aおよび表面層2Bのシート状で積層する溶融樹脂2Cは、面状圧接するとともに急冷される。
 この急冷の際、第一冷却ロール111および第二冷却ロール112間の押圧力で弾性材111Aが圧縮される状態に弾性変形する。そして、溶融樹脂2Cは、弾性材111Aが弾性変形している第一冷却ロール111および第二冷却ロール112の中心からの角度θ1部分(図2参照)において、冷却用無端ベルト115とともに挾持されて弾性材111Aの復元力により面状押圧される。
 なお、この際の面圧は、0.1MPa以上20MPa以下が好ましい。ここで、面圧が0.1MPaより低くなると、冷却用無端ベルト115と第二冷却ロール112と溶融樹脂2Cとの間に空気を巻き込み、シート外観が不良となるおそれがある。一方、面圧が20MPaより高くなると、冷却用無端ベルト115の寿命の点から好ましくない。このことから、面状押圧の面圧を0.1MPa以上20MPa以下に設定する。
 続いて、第二冷却ロール112と、冷却用無端ベルト115との間に挟まれた基材層2Aおよび表面層2Bは、第二冷却ロール112の略下半周に対応する円弧部分において、第二冷却ロール112と、冷却用無端ベルト115とにより面状圧接される。また、基材層2Aおよび表面層2Bは、冷却水吹き付けノズル116による冷却用無端ベルト115の裏面側への冷却水116Aの吹き付けにより、さらに急冷される。
 なお、このときの面圧は、0.01MPa以上0.5MPa以下に設定することが好ましい。また、冷却水116Aの温度は、0℃以上30℃以下に設定することが好ましい。なお、吹き付けられた冷却水116Aは、水槽117に回収されるとともに、回収された水117Aは排水口117Bより排出される。
 ここで、面圧が0.01MPaより低くなると、冷却用無端ベルト115の蛇行制御が困難となり、安定生産できなくなるおそれがある。一方、面圧が0.5MPaより高くなると、冷却用無端ベルト115に作用する張力が高くなって寿命の点から好ましくない。
 このようにして、第二冷却ロール112と、冷却用無端ベルト115との間で、基材層2Aおよび表面層2Bに対して面状圧接と、冷却がなされた後、冷却用無端ベルト115に密着した基材層2Aおよび表面層2Bは、冷却用無端ベルト115の回転移動とともに第三冷却ロール113上に移動される。そして、剥離ロール119によりガイドされた基材層2Aおよび表面層2Bは、冷却用無端ベルト115を介して第三冷却ロール113で冷却される。
 なお、冷却用無端ベルト115の裏面に付着した水は、第二冷却ロール112から第三冷却ロール113への移動途中に設けられている吸水ロール118により除去される。
 第三冷却ロール113上で冷却された基材層2Aおよび表面層2Bは、剥離ロール119により冷却用無端ベルト115から剥離され、原反シート2が成形される。
 この得られた原反シート2は、内部ヘイズが20%以下で、かつ少なくとも片面の表面粗さがRmax=0.5μm以下となっている。すなわち、冷却押圧装置110では、内部ヘイズが20%以下で、かつ少なくとも片面の表面粗さがRmax=0.5μm以下に原反シート2が得られる条件で急冷および面状圧接することが好ましい。
 ここで、ヘイズ(曇り度)は、JIS K 7105に準拠して、原反シート2に光を照射して透過した光線の全量を表す全光線透過率(Tt)と、原反シート2によって拡散された透過した拡散光線透過率(Td)との比によって、下記式(3)で求められる。なお、全光線透過率(Tt)は、入射光と同軸のまま透過した平行光線透過率(Tp)と拡散光線透過率(Td)との和である。
   ヘイズ(H)=(Td/Tt)×100    ・・・(3)
 また、内部ヘイズとは、シート表面粗さに影響されずに、シート内部の透明性を測定するため、シート表面にシリコーンを塗布し、ヘイズを測定したものである。ここで、内部ヘイズの値が20%より大きい場合、後段での熱処理装置本体220による加熱および面状押圧の処理を施しても、内部ヘイズが高くなり、高透明な透明リサイクルシート3が得られなくなるおそれがある。一方、表面粗さがRmax=0.5μmより粗いと、後段での熱処理装置本体220における第四加熱ロール224および加熱用無端ベルト227に熱密着する際に空気を巻き込んでいわゆるブリスタを生じるおそれがある。このため、内部ヘイズが20%以下、表面粗さがRmax=0.5μm以下となるように原反シート2を成形することが好ましい。
 次に、冷却押圧装置110にて成形された原反シート2を、予熱装置210の第一予熱ロール211、第二予熱ロール212および第三予熱ロール213の外周面に掛け渡して移動させ、予熱する。
 そして、予熱装置210で予熱した原反シート2を、熱処理装置本体220のラバーロール225および加熱用無端ベルト227の外周面間に導入する。この導入された原反シート2は、ラバーロール225により加熱用無端ベルト227の外周面に面状押圧されて熱密着される。この熱密着された原反シート2を、回転移動する加熱用無端ベルト227とともに移動させ、加熱用無端ベルト227および第四加熱ロール224の外周面間に導入する。この導入された原反シート2は、原反シート2を介在する第四加熱ロール224と、この第四加熱ロール224により張力が作用する加熱用無端ベルト227とに、面状圧接される。
 この原反シート2の熱処理における加熱温度は、原反シート2の結晶化温度以上融点以下である。原反シート2が上述したプロピレン系樹脂およびメタロセン系エチレン-α-オレフィン共重合体からなるものである場合、原反シート2の表面温度が120℃以上融点未満となる条件で加熱する。また、熱処理時の面圧は、成形する形状に応じて適宜設定される。
 ここで、原反シート2の結晶化温度より低い温度では、原反シート2の熱処理が十分ではない。一方、原反シート2の融点より高い温度では、冷却押圧装置110における急冷で得られた高次構造が破壊され、白濁して透明性が得られなくなるおそれがある。
 この後、原反シート2は、第四加熱ロール224の外周面から剥離され、加熱用無端ベルト227に密着する状態で移動されつつ加熱される。そして、加熱された原反シート2は、ガイドロール226のガイドにより、加熱用無端ベルト227から剥離されて、シート状の透明リサイクルシート3として繰り出される。
 この得られた透明リサイクルシート3を、冷却装置230の第一冷却ガイドロール231および第二冷却ガイドロール232の外周面に掛け渡して蛇行するように移動して冷却し、一対の案内ロール233間から送り出す。
 なお、送り出された製品である透明リサイクルシート3は、例えば図示しない巻取装置に巻き取る。
 以上の製造方法により、得られる透明リサイクルシート3の総厚さ寸法は、100μm以上800μm以下とすることが好ましく、160μm以上500μm以下とすることがより好ましい。透明リサイクルシート3の総厚さ寸法が100μmより薄い場合、冷却押圧装置110の各冷却ロール111~114による急冷効果が十分に得られ、敢えて積層する必要性がない程度に透明性が得られるためである。一方、透明リサイクルシート3の総厚さ寸法が800μmより厚い場合、熱伝導による急冷効果が期待できず、結果として積層の効果が発現できないためである。
 得られた透明リサイクルシート3の耳ロスあるいは製造時(運転開始時や運転停止時等)のシートロスは、図示しない粉砕装置によりフラフ化され、基材層(回収層)2Aへのリサイクル樹脂として用いられる。なお、熱処理を行う前の原反シート2の一部をリサイクル樹脂として同様にフラフ化してもよい。
[実施形態の作用効果]
 上記実施形態では、バージン樹脂とリサイクル樹脂とメタロセン系エチレン-α-オレフィン共重合体の混合樹脂により基材層2Aが形成され、この基材層2Aの両面に、バージン樹脂中の結晶性樹脂(プロピレン系樹脂)よりメルトフローレートが大きく、かつ緩和時間が短い結晶性樹脂(プロピレン系樹脂)により、表面層2Bを形成する。
 ここで、基材層2A中にはメタロセン系エチレン-α-オレフィン共重合体が混合されているため、基材層2Aと表面層2Bとからなる積層シート(原反シート2あるいは透明リサイクルシート3)をリサイクルして基材層(回収層)2Aに混合使用しても、リサイクル樹脂に含まれる低粘度の表面層2Bによって引き起こされる球晶の巨大化を防止することができる。したがって、球晶による光の散乱が減少するので、積層シートをリサイクルした場合であっても透明性を維持できる。
 また、基材層2Aおよび表面層2Bのそれぞれの原料樹脂を溶融状態で押し出してシート状に積層する状態で冷却して原反シート2を形成し、この原反シート2を結晶化温度以上融点以下の温度で熱処理する。このため、冷却により得られた良好な結晶化度の原反シート2における高次構造が破壊されて透明性が損なわれる不都合がなく、良好にシート状に形成でき、より高透明性な透明リサイクルシート3が得られる。
 そして、基材層2Aとして用いられるバージン樹脂は、好ましい態様としてアイソタクチックペンタッド分率が85%以上99%以下、MFRが0.5g/10分以上5g/10分以下のプロピレン系樹脂80質量%以上99.5質量%以下が用いられる。
 また、基材層2Aに用いられるメタロセン系エチレン-α-オレフィン共重合体は、メタロセン触媒を用いて製造され、密度が898kg/m以上913kg/m以下、MFRが0.5g/10分以上6g/10分以下のメタロセン系エチレン-α-オレフィン共重合体0.5質量%以上20質量%以下であることが好ましい。この範囲とすることで、基材層2Aにおけるプロピレン系樹脂と球晶成長を抑制するメタロセン系エチレン-α-オレフィン共重合体との屈折率をほぼ同程度にでき、リサイクルによっても透明性を維持できる。
 また、シート状の基材層2Aの両面に表面層2Bを設けた2種3層構造に原反シート2を形成している。
 このため、片面に設ける場合に比して、基材層2Aの押し出し時にかかる応力をより緩和でき、残留応力をより低減でき、透明性の維持がより容易となる。
 また、本実施形態の製造装置1では、冷却押圧装置110で原反シート2を製造し、そのまま熱処理装置20で熱処理して透明リサイクルシート3を一連に製造している。このため、所望とする高透明性の透明リサイクルシート3を効率よく製造できる。
[変形例]
 なお、以上に説明した態様は、本発明の一態様を示したものであって、本発明は、前記した実施形態に限定されるものではない。本発明の目的および効果を達成できる範囲内での変形や改良は、本発明の内容に含まれるものである。
 例えば、原反シート2を製造した後に巻き取り、別体の熱処理装置20に製造した原反シート2を供給して熱処理し、透明リサイクルシート3を製造してもよく、製造装置1の構成は、上記実施形態に限られるものではない。
 その他、プロピレン系樹脂やメタロセン系エチレン-α-オレフィン共重合体の物性や配合量など、結晶性樹脂の基材層2Aに対して表面層2BのMFRが大きく緩和時間が短い条件であれば、所望とする透明リサイクルシート3に応じて適宜設定できる。
 また、原反シート2として、基材層2Aの両面に表面層2Bを設けた構成としたが、基材層2Aの片面のみに表面層2Bを設けた2層構成としてもよい。もちろん、基材層2A単層でもよい。
〔実施例1~6、比較例1~4〕
 上記実施形態において、製造装置および製造方法の具体的条件を下記の通りとした。また、各実施例並びに各比較例における原料樹脂を表1に、層構成を表2~4に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示す原料樹脂(基材層用、表面層用)を用いて、積層シートを製造した。そして、バージンシートの製造が安定した後、積層シートの耳ロスおよびシートロスを粉砕してフラフ化した後、所定量を基材層(回収層)にリサイクルした。リサイクルシートの製造が安定したときの層構成を表2に示す。具体的製造条件は、以下の通りである(熱処理は行わなかった)。
 押出機:
  ・基材層(回収層)用;直径65mm
  ・表面層用;直径50mm
 コートハンガーダイの幅寸法:900mm
  (フィードブロック方式による溶融樹脂2Cの積層(表面層/基材層/表面層からなる2種3層))
 冷却ロールの表面粗さ:Rmax=0.1μm
 冷却用無端ベルト:
 ・材質;析出硬化系ステンレススチール
 ・表面粗さ;Rmax=0.1μm
 ・幅寸法;900mm
 ・長さ寸法;4600mm
 ・厚さ寸法;0.6mm
 溶融樹脂2Cが冷却押圧装置110に導入される冷却用無端ベルト115と第三冷却ロール113の温度:20℃
 原反シート2の引き取り速度:4.5m/分
 原反シート2の幅寸法:600mm
Figure JPOXMLDOC01-appb-T000002
 そして、得られた原反シート2のヘイズ(全ヘイズ、内部ヘイズ、および外部ヘイズ)を測定した。ここで、ヘイズは、ヘイズ測定機(NDH-300A、日本電色工業株式会社製)を使用して測定した。内部ヘイズは、シートの両面にシリコーンオイルを塗布した後、ガラス板でこのシートの両面を挟み、シート外側の影響を消去してヘイズ測定機で測定した。測定結果を表3、4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
[結果]
 表3、4に示す結果から、所定のメタロセン系エチレン-α-オレフィン共重合体を基材層に添加した本発明のリサイクルシート(実施例1~6)では、リサイクルシートではない比較例1と同様に、透明性が良好であることがわかる。一方、比較例2、3は、基材層にメタロセン系エチレン-α-オレフィン共重合体を含まないので、リサイクルシートの透明性が悪い。また、比較例4は、基材層にメタロセン系エチレン-α-オレフィン共重合体を含んではいるが、MFRが高すぎるのでリサイクルシートとしたときに透明性が悪化する。
 ここで、比較例1は、リサイクルシートではなくて、基材層にメタロセン系エチレン-α-オレフィン共重合体を含まないバージンシートである。実施例5は、基材層にわずか0.1質量%の所定のメタロセン系エチレン-α-オレフィン共重合体を含むだけのリサイクルシートであるが、比較例1のバージンシートよりも外部ヘイズ、内部ヘイズともに低い(透明性がよい)ことは特筆すべきことである。
 本発明は、例えば食品、医薬品、化粧品などの包装用途の他、透明性が要求される各種用途に利用できる。
1……製造装置
2……原反シート
2A…基材層
2B…表面層
3……透明リサイクルシート
10……原反シート成形装置
20……熱処理装置

Claims (12)

  1.  ともに結晶性樹脂を含んでなる基材層と表面層とが積層された積層シートをリサイクル樹脂として用いて、透明リサイクルシートを製造する方法であって、
     結晶性樹脂からなるバージン樹脂と、前記リサイクル樹脂と、メルトフローレートが0.5g/10分以上6g/10分以下のメタロセン系エチレン-α-オレフィン共重合体と、を混合した混合樹脂を溶融押出した原反シートを冷却する
     ことを特徴とする透明リサイクルシートの製造方法。
  2.  請求項1に記載の透明リサイクルシートの製造方法において、
     前記積層シートとして、
     結晶性樹脂からなるバージン樹脂により形成された基材層と、
     この基材層の少なくとも一面に設けられ、前記基材層のバージン樹脂をなす結晶性樹脂に比べてメルトフローレートが大きく、緩和時間が短い結晶性樹脂からなるバージン樹脂により形成された表面層と、が積層されたものを用いる
     ことを特徴とする透明リサイクルシートの製造方法。
  3.  請求項1または請求項2に記載の透明リサイクルシートの製造方法において、
     当該透明リサイクルシートを基材層として用い、前記基材層に結晶性樹脂を含んでなる表面層を積層した
     ことを特徴とする透明リサイクルシートの製造方法。
  4.  請求項1から請求項3までのいずれか1項に記載の透明リサイクルシートの製造方法において、
     前記原反シートを結晶化温度以上融点以下の温度で熱処理する
     ことを特徴とする透明リサイクルシートの製造方法。
  5.  請求項1から請求項4までのいずれか1項に記載の透明リサイクルシートの製造方法において、
     前記原反シートに含まれる前記メタロセン系エチレン-α-オレフィン共重合体を、前記原反シート基準で、0.1質量%以上20質量%以下含む
     ことを特徴とする透明リサイクルシートの製造方法。
  6.  請求項2から請求項5までのいずれか1項に記載の透明リサイクルシートの製造方法において、
     前記原反シートに含まれるリサイクル樹脂のうち、前記積層シートの表面層に由来する結晶性樹脂を、前記原反シート基準で、0.1質量%以上含む
     ことを特徴とする透明リサイクルシートの製造方法。
  7.  請求項1から請求項6までのいずれか1項に記載の透明リサイクルシートの製造方法において、
     前記混合樹脂が、前記結晶性樹脂からなるバージン樹脂ペレットと、前記積層シートをフラフ状に粉砕したリサイクル樹脂と、メタロセン系エチレン-α-オレフィン共重合体のバージン樹脂ペレットとをドライブレンドしたものである
     ことを特徴とする透明リサイクルシートの製造方法。
  8.  請求項1から請求項7までのいずれか1項に記載の透明リサイクルシートの製造方法において、
     前記結晶性樹脂がプロピレン系樹脂である
     ことを特徴とする透明リサイクルシートの製造方法。
  9.  請求項1から請求項8までのいずれか1項に記載の透明リサイクルシートの製造方法において、
     前記メタロセン系エチレン-α-オレフィン共重合体が直鎖状低密度ポリエチレンである
     ことを特徴とする透明リサイクルシートの製造方法。
  10.  ともに結晶性樹脂を含んでなる基材層と表面層とを含む積層シートをリサイクル樹脂として含む透明リサイクルシートであって、
     さらに、結晶性樹脂からなるバージン樹脂と、メルトフローレートが0.5g/10分以上6g/10分以下のメタロセン系エチレン-α-オレフィン共重合体と、を含んでなる
     ことを特徴とする透明リサイクルシート。
  11.  請求項10に記載の透明リサイクルシートにおいて、
     前記積層シートとして、結晶性樹脂からなるバージン樹脂により形成された基材層と、この基材層の少なくとも一面に設けられ、前記基材層のバージン樹脂をなす結晶性樹脂に比べてメルトフローレートが大きく、緩和時間が短い結晶性樹脂からなるバージン樹脂により形成された表面層と、が積層されたものを用いる
     ことを特徴とする透明リサイクルシート。
  12.  請求項10または請求項11に記載の透明リサイクルシートにおいて、
     当該透明リサイクルシートを基材層とし、前記基材層に結晶性樹脂を含んでなる表面層が積層されている
     こと特徴とする透明リサイクルシート。
PCT/JP2012/057970 2011-04-01 2012-03-27 透明リサイクルシートの製造方法、および透明リサイクルシート WO2012137632A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/009,228 US20140037974A1 (en) 2011-04-01 2012-03-27 Method for producing transparent recycled sheet, and transparent recycled sheet
EP12768678.0A EP2695720A4 (en) 2011-04-01 2012-03-27 METHOD FOR PRODUCING A RECYCLED TRANSPARENT FILM AND RECYCLED TRANSPARENT FILM
KR1020137028524A KR20140024349A (ko) 2011-04-01 2012-03-27 투명 재생 시트의 제조 방법 및 투명 재생 시트
CN2012800164797A CN103459121A (zh) 2011-04-01 2012-03-27 透明再生片的制造方法以及透明再生片

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-082269 2011-04-01
JP2011082269A JP5878695B2 (ja) 2011-04-01 2011-04-01 透明リサイクルシートの製造方法、および透明リサイクルシート

Publications (1)

Publication Number Publication Date
WO2012137632A1 true WO2012137632A1 (ja) 2012-10-11

Family

ID=46969033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057970 WO2012137632A1 (ja) 2011-04-01 2012-03-27 透明リサイクルシートの製造方法、および透明リサイクルシート

Country Status (7)

Country Link
US (1) US20140037974A1 (ja)
EP (1) EP2695720A4 (ja)
JP (1) JP5878695B2 (ja)
KR (1) KR20140024349A (ja)
CN (1) CN103459121A (ja)
TW (1) TW201244912A (ja)
WO (1) WO2012137632A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2952337T3 (en) * 2014-06-02 2018-11-19 Siemens Ag Process for preparing a composite product
CN104139537A (zh) * 2014-06-27 2014-11-12 安徽顺彤包装材料有限公司 一种废聚乙烯塑料膜再生利用直接制膜工艺
CN104085104A (zh) * 2014-07-01 2014-10-08 上海紫华企业有限公司 薄膜生产冷却装置
WO2021012221A1 (zh) * 2019-07-24 2021-01-28 广东安德力新材料有限公司 标签膜及其制备方法
MX2023011175A (es) * 2021-03-30 2024-01-04 Ceraloc Innovation Ab Metodo y conjunto para fabricar un elemento de tablero que comprende un material reciclado.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158068A (ja) * 1999-09-22 2001-06-12 Nippon Paper Industries Co Ltd 引裂き性を改良した包装用ラッピングフィルム
JP3725955B2 (ja) 1997-01-17 2005-12-14 出光興産株式会社 ポリプロピレン樹脂シートの製造方法
JP4237275B2 (ja) 1995-11-14 2009-03-11 出光興産株式会社 ポリプロピレン樹脂シート又はフィルムの製造方法及びその製造装置
JP2009543941A (ja) * 2006-07-17 2009-12-10 エイベリィ デニスン コーポレイション 非対称の多層高分子フィルム、並びにラベルストック及びそのラベル

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07329262A (ja) * 1994-06-07 1995-12-19 Mitsubishi Chem Corp 再生樹脂積層フィルム
EP0842978B1 (en) * 1996-11-19 2002-09-25 Kuraray Co., Ltd. Resin composition and multilayered structure
KR100974492B1 (ko) * 2002-11-28 2010-08-10 토요세이깐 가부시키가이샤 다층 수지용기
KR101194620B1 (ko) * 2004-03-26 2012-10-29 이데미쓰 유니테크 가부시키가이샤 투명 폴리프로필렌계 시트의 제조 방법 및 투명폴리프로필렌계 시트
JP4549224B2 (ja) * 2005-04-25 2010-09-22 出光ユニテック株式会社 透明ポリプロピレン系樹脂シートの製造方法、透明ポリプロピレン系樹脂シート、及び成形品、並びに透明ポリプロピレン系樹脂シートからなる成形品の白化防止方法、及び温度判別方法
JP2010064369A (ja) * 2008-09-11 2010-03-25 Kohjin Co Ltd ポリプロピレン系多層シュリンクフィルム
JP5713604B2 (ja) * 2010-08-25 2015-05-07 出光ユニテック株式会社 透明性樹脂積層体の製造方法、成形体および樹脂積層体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4237275B2 (ja) 1995-11-14 2009-03-11 出光興産株式会社 ポリプロピレン樹脂シート又はフィルムの製造方法及びその製造装置
JP3725955B2 (ja) 1997-01-17 2005-12-14 出光興産株式会社 ポリプロピレン樹脂シートの製造方法
JP2001158068A (ja) * 1999-09-22 2001-06-12 Nippon Paper Industries Co Ltd 引裂き性を改良した包装用ラッピングフィルム
JP2009543941A (ja) * 2006-07-17 2009-12-10 エイベリィ デニスン コーポレイション 非対称の多層高分子フィルム、並びにラベルストック及びそのラベル

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MACROMOLECULES, vol. 8, 1975, pages 687
See also references of EP2695720A4

Also Published As

Publication number Publication date
JP5878695B2 (ja) 2016-03-08
JP2012213995A (ja) 2012-11-08
CN103459121A (zh) 2013-12-18
US20140037974A1 (en) 2014-02-06
EP2695720A4 (en) 2014-10-01
TW201244912A (en) 2012-11-16
KR20140024349A (ko) 2014-02-28
EP2695720A1 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
KR0131055B1 (ko) 열가소성수지시이트 또는 필름의 제조방법
JP5878695B2 (ja) 透明リサイクルシートの製造方法、および透明リサイクルシート
JP5865577B2 (ja) 透明性積層シートの製造方法およびその透明性積層シート
TWI465493B (zh) 雙軸拉伸聚醯胺樹脂薄膜
CN103879112A (zh) 塑料复合软包装用聚乙烯薄膜及其吹塑方法
JP2013103368A (ja) 多層フィルム
JPH04158022A (ja) ポリプロピレン樹脂シートまたはフィルムの製造方法
JP3696056B2 (ja) シングル・スクリュー押出機による三層共押出方式で得られる厚さ25〜250μm二軸延伸ポリプロピレン(BOPP)パ−ル光沢合成紙の改良製造方法
JP5713604B2 (ja) 透明性樹脂積層体の製造方法、成形体および樹脂積層体
CN110272551A (zh) 一种聚乳酸薄膜及其制备方法
CN110001165B (zh) 一种转移膜及其制备方法和应用
JP6789708B2 (ja) 樹脂フィルムの製造方法
JP2011021097A (ja) 透明耐熱フィルム
CN110387053A (zh) 抗菌防霉母粒的制备工艺、抗菌防霉型交联热收缩膜及其制备工艺
JP2009292116A (ja) 光学フィルムロール、及びその製造方法
WO2024005125A1 (ja) 二軸延伸フィルム及び保護フィルム
JP2008018731A (ja) 透明ポリプロピレンシートの製造方法および透明ポリプロピレンシート
JP2023004379A (ja) 延伸フィルム
JP4726353B2 (ja) ポリアミド系同時二軸延伸積層フィルムの製造方法
TW202306784A (zh) 雙軸配向積層聚丙烯膜以及積層體
CN117480050A (zh) 具有特定性质的超薄分层结构
JP2021157178A (ja) フィルム
JP2011190316A (ja) 空洞含有フィルム及びその製造方法並びに装置
JP2008302627A (ja) 飽和ノルボルネン系樹脂フィルム及びその製造方法
JP2008241743A (ja) 光拡散シート及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12768678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14009228

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012768678

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137028524

Country of ref document: KR

Kind code of ref document: A