WO2012136012A1 - 一种组装式泥石流拦砂坝及其施工方法 - Google Patents

一种组装式泥石流拦砂坝及其施工方法 Download PDF

Info

Publication number
WO2012136012A1
WO2012136012A1 PCT/CN2011/073391 CN2011073391W WO2012136012A1 WO 2012136012 A1 WO2012136012 A1 WO 2012136012A1 CN 2011073391 W CN2011073391 W CN 2011073391W WO 2012136012 A1 WO2012136012 A1 WO 2012136012A1
Authority
WO
WIPO (PCT)
Prior art keywords
dam
rectangular box
debris flow
concrete
foundation
Prior art date
Application number
PCT/CN2011/073391
Other languages
English (en)
French (fr)
Inventor
陈晓清
李德基
游勇
崔鹏
Original Assignee
中国科学院水利部成都山地灾害与环境研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院水利部成都山地灾害与环境研究所 filed Critical 中国科学院水利部成都山地灾害与环境研究所
Priority to US14/007,068 priority Critical patent/US20140154012A1/en
Publication of WO2012136012A1 publication Critical patent/WO2012136012A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B7/00Barrages or weirs; Layout, construction, methods of, or devices for, making same
    • E02B7/02Fixed barrages
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B7/00Barrages or weirs; Layout, construction, methods of, or devices for, making same
    • E02B7/02Fixed barrages
    • E02B7/04Dams across valleys
    • E02B7/08Wall dams
    • E02B7/10Gravity dams, i.e. those in which the weight of the structure prevents overturning
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B8/00Details of barrages or weirs ; Energy dissipating devices carried by lock or dry-dock gates
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/20Securing of slopes or inclines
    • E02D17/205Securing of slopes or inclines with modular blocks, e.g. pre-fabricated

Definitions

  • the present invention relates to a debris flow prevention and control technology, and more particularly to an assembly type mud flow intercepting dam based on a rectangular box body for quickly assembling a dam body and a construction method thereof. Background technique
  • Debris flow disaster is one of the main types of geological disasters in China. With the development of the mountainous economy and the deepening of the development of the western region, the demand for debris flow engineering management is growing. As one of the main types of debris flow control projects, sand dams are widely used in the treatment of debris flow.
  • the sand dam is mainly made of masonry structure, concrete structure or reinforced concrete structure, and its construction method is still on-site construction.
  • the existing structure of the sand dam and its construction method have the following defects: First, due to foundation excavation, material stacking, concrete mixing, etc., it is easy to cause serious damage to the construction site; Second, due to construction site restrictions, often the construction period is more Long, and the construction of the sand dam is more demanding on the season. Generally, it is used in the dry season and cannot be constructed in the rainy season. It is necessary to make careful planning of the process. Otherwise, delays in one link will cause the whole project to be affected. Third, On-site construction requires high materials.
  • the object of the present invention is to provide a construction for the deficiencies of the prior art, in view of the fact that the existing sand dam is damaged during the construction of the site, the construction materials are difficult to transport, the construction period is long, and it is susceptible to the construction season. Rapid, in-situ damage to the assembled mud that can take full advantage of any existing soil material in the valley Explain the book flow bar dam and its construction method.
  • the utility model relates to an assembled debris flow sand dam, which comprises a plurality of prefabricated reinforced concrete rectangular box bodies connected vertically and horizontally (that is, each rectangular box body is connected with the front and rear, left and right, and upper and lower rectangular boxes) to form a dam.
  • the main body of the body, the top surface of the rectangular box is open, the other five sides are closed, and the inner part is filled with soil;
  • the main body of the dam body is arranged on the foundation of the dam body, and the dam abutment foundation and the inner side of the dam body of the assembled debris flow intercepting dam
  • the slope is filled with masonry or concrete, and the top of the dam is a masonry or concrete closed top.
  • the rectangular box that forms the main body of the dam is prefabricated in advance, which not only shortens the construction period of the sand dam, but also reduces the impact on the surrounding environment of the sand dam.
  • the rectangular box has a structure in which the top surface is open and the other five sides are closed, which not only facilitates the vertical and horizontal connection between the rectangular boxes, but also fills the soil inside the rectangular box, and uses the rectangular structure of the structure.
  • the sand trap dam assembled by the box can withstand the two-way force from the horizontal and vertical directions at the same time, has high compressive strength and high stability, and can effectively resist the impact of debris flow.
  • the geometrical dimensions of the rectangular box are planned according to the spatial size of the sand dam, and the spatial size of the sand dam is planned according to the actual situation of the debris flow area.
  • the geometrical dimensions of the rectangular box can be taken as follows: 1
  • the rectangular box In order to fill the dam space as much as possible by using the rectangular box, the rectangular box can be criss-crossed on the plane to enhance the plane stability. Therefore, the long side length a of the rectangular box can be considered in three sizes, and the rectangular box is taken.
  • the specification is limited to the compressive strength of the rectangular box in the vertical direction.
  • the height dam H of the dam body overflow to the dam foundation of the assembled debris flow intercepting dam of the rectangular box is less than or equal to 10.0 m.
  • the height h of the rectangular box is generally 0.5-1.0 m to ensure the stability of the rectangular box.
  • the weight of the rectangular box is controlled within 2000KG, that is, less than or equal to 2000KG.
  • one hoisting hook can be reserved on the inner side walls of both ends of the rectangular box.
  • the prefabricated rectangular box body is an open thin wall rectangular parallelepiped which is not capped.
  • the long side length a of the rectangular box body is equal to 2 times the short side length b of the rectangular box body, one body is added in the rectangular box body parallel to the short side of the rectangular box diaphragm; when the length of the long edge of a rectangular box is equal to 3 times the length b of the short edge of the rectangular box, the two rectangular cabinets increase, respectively the short side of the rectangular box Parallel cross-section; the purpose of adding a cross-section is to increase the strength of the rectangular box.
  • the thickness tl of the side wall of the rectangular box is designed according to the impact force of the rectangular box pressure and the debris flow above it, generally 0.08-0.12 m ; the thickness of the bottom plate of the rectangular box and the thickness t 2 of the transverse partition are generally 0.06 m.
  • the rectangular box body adopts a reinforced concrete structure
  • the side wall of the rectangular box body is a single-sided or double-sided reinforcement
  • the bottom plate and the horizontal partition of the rectangular box are single-sided reinforcement
  • the overall volume reinforcement ratio is generally 0.5-2.0. %
  • the diameter of the steel bar is 0.006-0.012m
  • the concrete is generally C35, C30, C25.
  • the height h of the same rectangular box constituting the main body of the dam body is equal. Therefore, in order to ensure the planar integrity between the rectangular boxes of the same layer, a length is provided on the side wall of the rectangular box during prefabrication. a horizontal connecting hole laterally connected between the square boxes, wherein the horizontal connecting holes can be connected by bolts; the horizontal connecting holes on the short side wall of the rectangular box are 2-4, and the long side of the rectangular box.
  • the horizontal connecting holes on the side walls are added in multiples, that is, 2-12; the horizontal connecting holes are arranged to facilitate the front and rear connection of the rectangular box, and the diameter of the horizontal connecting holes is generally 0.02-0.03 m.
  • the rectangular bottom plate and the rectangular box are prefabricated.
  • the side wall is provided with a drainage hole to fully drain the water in the rectangular box; the drainage holes on the short side wall of the rectangular box are 2-4, and the drainage holes on the long side wall of the rectangular box are increased by a multiple
  • the description is 2-12, and the drainage holes on the bottom plate of the rectangular box are 2-4; the drainage holes are round holes, and the diameter is generally 0.03-0.06m.
  • the vertical connection holes for the longitudinal connection between the rectangular boxes are respectively arranged at the four corners of the bottom plate of the rectangular box when prefabricating (when the rectangular box is provided When there is a horizontal partition, the rectangular box is divided into two or three small boxes, and the four corners of each of the separated small box bottoms may be respectively provided with vertical connecting holes), and the connection manner may be
  • the steel bars are welded through the vertical connecting holes to the steel bars protruding from the side walls of the upper and lower rectangular boxes; the vertical connecting holes have a size of 0.03 x 0.03 m 2 - 0.04 x 0.04 m 2 .
  • the inside of the rectangular box is filled with soil, and the soil material is accumulated in the channel as much as possible.
  • the maximum particle size of the soil inside the rectangular box needs to be determined according to the length b of the short side of the rectangular box, which is generally one-half of the length b of the short side of the rectangular box (ie b/2), ie Screen the soil particles above the maximum particle size and refill. In order to ensure the strength of the dam, the loaded soil is compacted or vibrated.
  • the construction method of the assembled debris flow sand dam is as follows:
  • the geometric dimensions of the prefabricated rectangular box including the height of the rectangular box h, the length b of the short side of the rectangular box and the length of the long side of the rectangular box a) are planned.
  • the prefabricated reinforced concrete rectangular box is hoisted from the bottom of the dam foundation from bottom to top, and then the rectangular box is connected in the vertical and horizontal directions (ie, each rectangular box is front and rear, left and right , the upper and lower rectangular boxes are connected), and each time a lifting layer is installed in the rectangular box to fill the foundation Explain the soil inside the channel dug out of the book, and compact or vibrate the soil to form the main body of the dam.
  • Fill the dam abutment foundation with masonry or concrete that is, the gap between the rectangular box and the clear baseline that cannot be filled with the rectangular box is filled with masonry or concrete to form the abutment foundation.
  • in the inner side of the dam body of the sand dam that is, the part that cannot be filled with the rectangular box is filled with masonry or concrete to form a design dam type.
  • the top surface of the dam is sealed with masonry or concrete to form an assembled debris flow sand dam.
  • the beneficial effects of the invention are: fully utilizing the rapid assembly characteristics of the rectangular box, the preparation of the rectangular box can be simultaneously carried out with the construction of the dam foundation of the sand dam, and the construction period is greatly shortened.
  • the rectangular box can be pre-prepared at the site away from the sand-blocking dam, which reduces the impact on the surrounding environment of the sand-blocking dam.
  • the rectangular box can be used to directly fill the existing soil in the trench.
  • Body thus solving the problem of large-scale transportation of construction materials; compared with the traditional sand-blocking dam, it can save 20-50% of engineering investment and save 20 ⁇ 80% of construction period.
  • BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view of a rectangular box when the long side length a of the rectangular box is equal to the short side length b of the rectangular box.
  • Fig. 2 is a schematic view of the rectangular box when the long side length a of the rectangular box is equal to 2 times the short side length b of the rectangular box.
  • Fig. 3 is a schematic view of the rectangular box when the long side length a of the rectangular box is equal to 3 times the short side length b of the rectangular box.
  • Figure 4 is a schematic view of the structure of an assembled debris flow sand dam.
  • Figure 5 is a left side view of the assembled debris flow sand dam.
  • the net height H of the sand dam overflow to the dam foundation 2 is 6.0m
  • the width B of the dam roof is 2.0m
  • the ratio of the inner slope of the dam is 1: m. 1 : 0.67. Since the net dam height H 10.0 m of the dam is intended to be the use of the assembled debris flow intercepting dam of the present invention.
  • the assembled debris flow sand dam comprises a plurality of prefabricated reinforced concrete rectangular box bodies 1 vertically and horizontally connected to form a dam body, and the rectangular box body 1 has an open top surface and the other five sides are closed.
  • plan the geometric dimensions of the prefabricated rectangular box 1 1
  • the foundation of the sand dam is excavated according to the designed foundation of the sand dam, and the foundation of the dam body is formed by the base of the C20 concrete treatment.
  • the foundation is removed from the sand dam while excavating and treating the foundation.
  • the site is pre-prepared for the three sizes of rectangular box 1 planned in the first step.
  • 1 is divided into two horizontal partitions 5 respectively parallel to the short sides of the rectangular box 1.
  • the thickness of the side wall of the rectangular box 1 is 0.08 m; the thickness of the bottom plate of the rectangular box 1 and the thickness t 2 of the transverse partition 5 are respectively 0.06 m.
  • the three dimensions of the rectangular box 1 are all made of reinforced concrete structure.
  • the side wall, the bottom plate and the diaphragm 5 of the rectangular box are all unilaterally reinforced, the overall volume reinforcement ratio is 0.5%, and the steel bar diameter is 0.006m.
  • the concrete is C30.
  • the weights of the three types of rectangular box 1 are not more than 2000KG, which is convenient for transporting by small tractors through the in-groove machine and convenient for lifting equipment.
  • a horizontal connecting hole 6 is formed on the side wall of the rectangular box 1 for the lateral connection between the rectangular boxes 1 by means of bolts, and the horizontal connecting hole 6 on the short side wall of the rectangular box 1 is 2
  • the horizontal connecting holes 6 on the long side walls of the three-size rectangular box 1 are respectively 2, 4, and 6, and the horizontal connecting holes 6 have a diameter of 0.02 m.
  • the bottom plate of the rectangular box body 1 and the side wall of the rectangular box body 1 are provided with drainage holes 7, and the short side walls of the rectangular box body 1 and the drainage holes 7 on the bottom plate are respectively two, three sizes of rectangular boxes 1
  • the drainage holes 7 on the side walls of the long sides are 2, 4, and 6, respectively, and the drainage holes 7 are circular holes having a diameter of 0.03 m.
  • the four corners of the bottom plate of the rectangular box 1 are respectively provided with vertical connecting holes 8 for longitudinally connecting the rectangular boxes 1 (the rectangular box 1 having the transverse partition 5 therein is provided, and the rectangular box 1 is Separated into 2 or 3 small boxes, separated by each small box
  • the four corners of the body bottom plate of the specification have vertical connecting holes 8), and the connecting manner is to weld the steel bars through the vertical connecting holes 8 to the steel bars protruding from the side walls of the upper and lower rectangular boxes 1 , and the vertical connecting holes 8
  • the size is 0.03x0.03 m 2 .
  • the prefabricated reinforced concrete rectangular box 1 in the second step is hoisted from the bottom to the top from the bottom of the dam foundation 2, and then the rectangular is made through the horizontal connecting hole 6 and the vertical connecting hole 8.
  • the box body 1 is connected in the longitudinal and lateral directions, and at the same time, each time the hoisting layer is installed, the soil inside the channel excavated when the foundation is excavated is filled in the rectangular box body 1, and the soil body is compacted or vibrated to form a body of the dam body.
  • the maximum particle size of the inner part of the rectangular box 1 is 0.5m.
  • the foundation stone of the sand dam dam is filled with C20 concrete, and the inner side slope of the dam body of the sand dam is filled with C20 concrete to form a design dam type.
  • C20 concrete is used to close the top surface of the dam crest 4, and finally an assembled debris flow sand dam is formed.
  • the structure is a prefabricated reinforced concrete rectangular box 1 which is vertically and horizontally connected to form a main body of the dam body, the top surface of the rectangular box 1 is open, the other five sides are closed, and the inner body is filled; the main body of the dam body is set on the foundation of the dam body 2, the assembled debris flow sand dam abutment foundation 9 and the inner dam side slope 3 are filled with concrete, and the dam crest 4 is a concrete closed top surface.
  • the net height H of the planned dam dam overflow to the dam foundation 2 is 10.0m, and the dam crest 4 width B is 3.0m, and the dam body inner slope ratio is lower.
  • l: m is 1: 0.7. Since the net dam height H ⁇ 10.0 m of the dam is intended to use the assembled debris flow intercepting dam of the present invention.
  • plan the geometric dimensions of the prefabricated rectangular box 1 1
  • 2 according to the ratio of the inner slope of the dam is l: m is 2 times the height of the rectangular box 1
  • the base of the dam is formed by the treatment of the base of the dam.
  • the thickness of the side wall of the rectangular box 1 is 0.12 m.
  • the rectangular box 1 of the two sizes is made of reinforced concrete structure, the side wall of the rectangular box 1 is double-sided reinforcement, the bottom plate of the rectangular box 1 and the partition 5 are all single-sided reinforcement, and the overall volume ratio is It is 2.0%, the diameter of the steel bar is 0.012m, and the concrete is C35.
  • the weight of the rectangular box 1 of the two specifications is not more than 2000KG, which is convenient for transporting by means of a small tractor through the in-groove machine and facilitating lifting of the artificial simple equipment.
  • the horizontal connecting holes 6 on the short side wall of the rectangular box 1 are four, and the horizontal connecting holes 6 on the long side walls of the two sizes of the rectangular box 1 are respectively 4 or 8, horizontally connected.
  • the diameter of the hole 6 is 0.03 m.
  • the short side wall of the rectangular box 1 and the drainage hole 7 on the bottom plate are respectively four, and the drainage holes 7 on the side walls of the long side of the two sizes of the rectangular box 1 are respectively 4 or 8, and the drainage hole 7 is A circular hole with a diameter of 0.06 m.
  • the size of the vertical connecting hole 8 is 0.04 x 0.04 m 2 .
  • the maximum particle size of the internal filling body of the rectangular box 1 is 0.7 m.
  • the foundation of the dam abutment of the sand dam is filled with masonry stone, and the inner side slope of the dam body of the sand dam is filled with masonry stones to form a design dam body type.
  • the top surface of the dam crest 4 is closed with masonry stones, and finally an assembled debris flow intercepting dam is formed.
  • the structure is a prefabricated reinforced concrete rectangular box 1 which is vertically and horizontally connected to form a main body of the dam body, the top surface of the rectangular box 1 is open, the other five sides are closed, and the inner body is filled; the main body of the dam body is set on the foundation of the dam body 2, the assembled debris flow sand dam abutment foundation 9 and the inner dam side slope 3 are filled with masonry stones, and the dam crest 4 is a masonry closed top surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Revetment (AREA)

Description

说 明 书
一种组装式泥石流拦砂坝及其施工方法 技术领域 本发明涉及一种泥石流防治技术, 特别是涉及一种基于长方箱体快速装配 坝体的组装式泥石流拦^眇坝及其施工方法。 背景技术
泥石流灾害是我国地质灾害的主要类型之一。 随着山区经济的发展、 西部 大开发的深化, 泥石流工程治理需求越来越旺盛。 拦砂坝作为泥石流防治工程 的主要类型之一, 在泥石流治理中大量使用。
目前, 拦砂坝主要采用浆砌石结构、 或混凝土结构、 或钢筋混凝土结构, 其施工方法还是现场施工。 现有结构的拦砂坝及其施工方法存在如下缺陷: 第 一, 由于地基开挖、 材料堆放、 混凝土拌和等, 易于造成施工现场环境破坏严 重; 第二, 受施工场地限制, 往往施工周期较长, 而拦砂坝的施工对季节要求 较高, 一般在旱季施工、 不能在雨季施工, 需要对工序作周密的规划, 否则某 一环节出现拖延, 则将导致整个工程受影响; 第三, 现场施工对材料要求较高, 一般的粘性含量太高、 石强度偏低的土体不能用做浆砌石和混凝土材料, 如 果沟内缺乏浆砌石的石料和混凝土的骨料而需要从外面运入, 则将导致工程投 资大幅度增加。 发明内容 本发明的目的就是针对现有技术的不足,针对现有拦砂坝施工时对现场环境 破坏较大、 施工材料运输难、 施工期长且易受施工季节影响的情况, 提供一种 施工快速、 对现场破坏较小、 可充分利用任何沟谷现存土体材料的组装式泥石 说 明 书 流拦砂坝及其施工方法。
为实现上述目的, 本发明的技术方案是:
本发明提出的一种组装式泥石流拦砂坝, 包括若干预制好的钢筋混凝土长方 箱体纵横相连 (即每个长方箱体与其前后、 左右、 上下的长方箱体均相连)构 成坝体主体, 长方箱体顶面开敞、 其余五面封闭、 内部装填土体; 所述坝体主 体设于坝体基础之上, 所述组装式泥石流拦砂坝坝肩基础和坝体内侧边坡为浆 砌石或混凝土填充, 坝顶为浆砌石或混凝土封闭顶面。 构成坝体主体的长方箱 体为事先预制, 不仅能缩短拦砂坝的施工周期, 而且能减小对拦砂坝周边环境 的影响。 所述长方箱体为顶面开敞、 其余五面封闭的结构, 不仅便于长方箱体 之间的纵横相连, 以及往长方箱体内部装填土体, 而且利用这种结构的长方箱 体组装的拦砂坝能够同时承受来自水平和垂直方向的双向作用力, 具有较高抗 压强度和较高稳定性, 也才能有效抵抗泥石流冲击。
所述长方箱体的几何尺寸根据拦砂坝的空间尺寸进行规划,而拦砂坝的空间 尺寸根据泥石流区域的实际情况进行规划。 所述长方箱体的几何尺寸可以如下 原则取值: ①坝体溢流口至坝体基础的净坝高 H是长方箱体高度 h的整数倍, 即 h = H/nl , 其中 nl为倍数。 ②长方箱体短边边长 b由坝顶宽度 B或坝体内侧 边坡比降 l:m来确定; 当根据坝顶宽度 B确定时, 坝顶宽度 B是长方箱体短边 边长 b的整数倍, 即 b=B/n2, n2为倍数; 当根据坝体内侧边坡比降 l:m确定时, 坝体内侧边坡比降 l:m是 2倍长方箱体高度 h与长方箱体短边边长 b之比, 即 2h b=l:m, 得出 b=2mh。 ③为了利用长方箱体尽量填充坝体空间, 长方箱体在 平面上可以纵横交错以加强平面稳定性, 因此长方箱体长边边长 a可以考虑三 种尺寸, 取长方箱体长边边长 a等于长方箱体短边边长 b, 或等于 2倍长方箱体 短边边长 b, 或等于 3倍长方箱体短边边长 b, 即取 a=b、 2b、 3b。 说 明 书 限于长方箱体垂直方向的抗压强度,采用长方箱体的组装式泥石流拦砂坝的 坝体溢流口至坝体基础的净坝高 H小于等于 10.0m。 所述长方箱体高度 h—般 为 0.5-1.0m, 以保证长方箱体的稳定性。 为了单体吊装方便, 长方箱体的重量尽 量控制在 2000KG以内, 即小于等于 2000KG。 为了吊装方便, 在长方箱体的两 端内侧壁上可预留吊装挂钩各 1个。
所述的预制长方箱体为不封顶的敞口薄壁长方体, 当长方箱体长边边长 a等 于 2倍长方箱体短边边长 b时,长方箱体内增加 1个与长方箱体短边平行的横隔; 当长方箱体长边边长 a等于 3倍长方箱体短边边长 b时, 长方箱体内增加 2个分 别与长方箱体短边平行的横隔; 增加横隔的目的是增加长方箱体的强度。 长方 箱体侧壁厚度 tl按照能够承受其上方长方箱体压力和泥石流的冲击力设计, 一般 取 0.08-0.12m; 长方箱体底板厚度、 横隔厚度 t2—般取 0.06m。
所述长方箱体采用钢筋混凝土结构, 长方箱体侧壁为单面或双面配筋, 长方 箱体底板和横隔为单面配筋, 总体体积配筋率一般为 0.5-2.0% , 钢筋直径为 0.006-0.012m, 混凝土一般为 C35、 C30、 C25。
一般来说, 构成坝体主体的同一层长方箱体高度 h相等, 因此为了保证在同 一层长方箱体之间的平面整体性, 预制时在长方箱体侧壁上设有供长方箱体间 横向相连的水平向连接孔, 所述水平向连接孔可采用螺栓进行连接; 长方箱体 短边侧壁上的水平向连接孔为 2-4个,长方箱体长边侧壁上的水平向连接孔按倍 数增设, 即为 2-12个; 水平向连接孔的位置要便于长方箱体前后、 左右连接, 水平向连接孔的直径一般为 0.02-0.03m。为了减小水重量对长方箱体的压力以及 通过排泄坝体库内泥石流体所含水份来减小泥石流对坝体的水平向推力, 预制 时在长方箱体底板和长方箱体侧壁上设有排水孔, 充分排泄长方箱体内的水; 长方箱体短边侧壁上的排水孔为 2-4个,长方箱体长边侧壁上的排水孔按倍数增 说 明 书 设, 即为 2-12个, 长方箱体底板上的排水孔为 2-4个; 排水孔为圓孔, 直径一 般为 0.03-0.06m。 为了增加长方箱体上下两层之间的连接,预制时在长方箱体底 板的四个角分别设有供长方箱体间纵向相连的竖向连接孔(当长方箱体内设有 横隔时, 长方箱体被分隔成 2个或 3个小箱体, 分隔后的每个小箱体底板的四 个角均可分别设有竖向连接孔), 连接方式可以是将钢筋穿过竖向连接孔焊接在 上下层长方箱体侧壁伸出的钢筋上; 竖向连接孔的大小为 0.03x0.03 m2 -0.04x0.04m2
所述长方箱体内部装填土体, 尽量利用沟道内堆积土体材料。 长方箱体内部 装填土体的最大粒径需要根据长方箱体短边边长 b 来确定, 一般为长方箱体短 边边长 b的二分之一 (即 b/2 ), 即筛除最大粒径以上土体颗粒再装填。 为了保 证坝体强度, 对装填的土体进行夯实或振捣密实。
所述组装式泥石流拦砂坝的施工方法, 具体步驟如下:
A. 根据泥石流区域的实际情况规划设计拦砂坝的空间尺寸(包括坝体溢流口至 坝体基础的净坝高 H、 坝顶宽度 ^ 坝体内侧边坡比降 l:m等), 根据拦砂 坝的空间尺寸规划预制长方箱体的几何尺寸 (包括长方箱体高度 h、 长方箱 体短边边长 b和长方箱体长边边长 a )。从立面上规划预制长方箱体在拦砂坝 中的充填空间位置, 即规划每一个长方箱体在拦砂坝中的位置等。
B. 按照设计基础开挖线开挖拦砂坝的地基, 利用钢筋混凝土或混凝土或浆砌石 处理地基底部形成坝体基础, 同时将上述规划的长方箱体在远离拦砂坝的场 地预先制备。
C. 将预制好的钢筋混凝土长方箱体从坝体基础开始从下往上逐层依次吊装, 然 后将长方箱体进行纵横方向的连接处理 (即每个长方箱体与其前后、 左右、 上下的长方箱体均相连), 同时每吊装一层就在长方箱体内装填开挖地基时 说 明 书 挖出的沟道内土体, 并将土体夯实或振捣密实, 形成坝体主体。
D. 在拦砂坝坝肩基础用浆砌石或混凝土填充(即长方箱体与清基线之间的无法 用长方箱体填充的空隙部分用浆砌石或混凝土填充, 形成坝肩基础), 在拦 砂坝坝体内侧边坡(即无法用长方箱体填充部分)用浆砌石或混凝土填充, 形成设计坝体型式。
E. 对坝顶采用浆砌石或混凝土封闭顶面, 最终形成组装式泥石流拉砂坝。
与现有技术相比,本发明的有益效果是:充分利用长方箱体的快速组装特点, 可将长方箱体的制备与拦砂坝坝体基础的施工同时进行, 大大缩短了施工周期; 长方箱体可在远离拦砂坝的场地预先制备, 减小了对拦砂坝现场周边环境的影 响; 对于沟道内缺乏建筑材料的场地, 利用长方箱体可直接装填沟内现存土体, 从而解决施工材料大量运输的问题; 与传统拦砂坝相比, 可节省工程投资 20 ~ 50% , 节省施工期 20~80%。 附图说明 图 1是当长方箱体长边边长 a等于长方箱体短边边长 b时的长方箱体示意 图。
图 2是当长方箱体长边边长 a等于 2倍长方箱体短边边长 b时的长方箱体 示意图。
图 3是当长方箱体长边边长 a等于 3倍长方箱体短边边长 b时的长方箱体 示意图。
图 4是组装式泥石流拉砂坝的结构示意图。
图 5是组装式泥石流拦砂坝的左视图。
图中标号如下: 说 明 书
1 长方箱体 2 坝体基础
3 内侧边坡 4 坝顶
5 横隔 6 水平向连接孔
7 排水孔 8 竖向连接孔
9 坝肩基础
a 长方箱体长边边长 b 长方箱体短边边长
h 长方箱体高度 H 溢流口至坝体基础的净坝高
B 坝顶宽度 l:m 坝体内侧边坡比降
I, 长方箱体侧壁厚度 t2 横隔厚度 具体实施方式 下面结合附图, 对本发明的优选实施例作进一步的描述。
实施例一
如图 1、 图 2、 图 3、 图 4、 图 5所示。 某泥石流沟流域面积 5.6km2, 为了 控制泥石流灾害, 规划在流域中部设置谷坊 5座、 拦砂坝 1座、 排导槽 700m。 针对拦砂坝, 采用如下施工方法进行:
第一步,根据泥石流沟流域情况规划拦砂坝溢流口至坝体基础 2的净坝高 H 为 6.0m, 坝顶 4宽度 B为 2.0m, 坝体内侧边坡比降 l :m为 1 : 0.67。 由于该坝的 净坝高 H 10.0m, 拟采用本发明的组装式泥石流拦砂坝。 所述组装式泥石流拦 砂坝包括若干预制好的钢筋混凝土长方箱体 1 纵横相连构成坝体主体, 长方箱 体 1 顶面开敞、 其余五面封闭。 根据规划的拦砂坝空间尺寸, 规划预制长方箱 体 1的几何尺寸: ①按照坝体溢流口至坝体基础 2的净坝高 H是长方箱体 1高 度 h的整数倍 nl, 初步拟定 nl取 12, 得长方箱体 1高度 h = 6.0/12 = 0. 5m; ② 说 明 书 按照坝顶 4宽度 B是长方箱体 1短边边长 b的整数倍 n2, 初步拟定 n2取 2, 得 长方箱体 1短边边长 b=2.0/2=1.0m; ③长方箱体 1长边边长 a分别取三种尺寸, 取长方箱体 1长边边长 a=1.0m、 2.0m, 3.0m (分别如图 1、 图 2、 图 3所示)。
从规划的拦砂坝立面上, 规划上述三种规格的长方箱体 1 每一个在拦砂坝 中的充填空间位置, 如图 4、 图 5所示。
第二步,按照规划的拦砂坝的设计基础开挖线开挖拉砂坝的地基,利用 C20 混凝土处理地基底部形成坝体基础 2, 在开挖、 处理地基的同时在远离拦砂坝的 场地进行第一步中规划的三种规格长方箱体 1的预先制备。
预制时, 对长边边长 a = 2.0m的长方箱体 1内增加 1个与长方箱体 1短边平 行的横隔 5, 对长边边长 a = 3.0m的长方箱体 1内增加 2个分别与长方箱体 1短 边平行的横隔 5。 长方箱体 1侧壁厚度 ^为 0.08m; 长方箱体 1底板厚度、横隔 5 厚度 t2分别为 0.06m。 三种尺寸的长方箱体 1均采用钢筋混凝土结构, 长方箱体 1 侧壁、 底板和横隔 5 均为单面配筋, 总体体积配筋率为 0.5% , 钢筋直径为 0.006m, 混凝土为 C30。 这样三种规格的长方箱体 1重量均不超过 2000KG, 便 于利用小型拖拉机通过沟内机耕道运输且便于人工简易设备吊装。
预制时在长方箱体 1侧壁上设有供长方箱体 1 间采用螺栓进行横向相连的 水平向连接孔 6, 长方箱体 1短边侧壁上的水平向连接孔 6为 2个, 三种尺寸的 长方箱体 1长边侧壁上的水平向连接孔 6分别为 2、 4、 6个, 水平向连接孔 6 的直径为 0.02m。 长方箱体 1底板和长方箱体 1侧壁上设有排水孔 7, 长方箱体 1短边侧壁和底板上的排水孔 7分别为 2个,三种尺寸的长方箱体 1长边侧壁上 的排水孔 7分別为 2、 4、 6个, 排水孔 7是直径为 0.03 m的圓孔。 长方箱体 1 底板的四个角分别设有供长方箱体 1间纵向相连的竖向连接孔 8 (对其内设有横 隔 5的长方箱体 1 , 长方箱体 1被分隔成 2个或 3个小箱体, 分隔后的每个小箱 说 明 书 体底板的四个角均有竖向连接孔 8 ), 连接方式是将钢筋穿过竖向连接孔 8焊接 在上下层长方箱体 1侧壁伸出的钢筋上, 竖向连接孔 8的大小为 0.03x0.03 m2
第三步, 将第二步中预制好的钢筋混凝土长方箱体 1从坝体基础 2开始从 下往上逐层依次吊装, 然后通过水平向连接孔 6和竖向连接孔 8将长方箱体 1 进行纵横方向的连接处理, 同时每吊装一层就在长方箱体 1 内装填开挖地基时 挖出的沟道内土体, 并将土体夯实或振捣密实, 形成坝体主体。 长方箱体 1 内 部装填土体的最大粒径为 0.5m。
第四步,在拦砂坝坝肩基石出 9用 C20混凝土填充,在拦砂坝坝体内侧边坡 3 用 C20混凝土填充, 形成设计坝体型式。
第五步, 对坝顶 4采用 C20混凝土封闭顶面, 最终形成组装式泥石流拦砂 坝。 其结构为预制好的钢筋混凝土长方箱体 1 纵横相连构成坝体主体, 长方箱 体 1 顶面开敞、 其余五面封闭、 内部装填土体; 所述坝体主体设于坝体基础 2 之上, 所述组装式泥石流拦砂坝坝肩基础 9和坝体内侧边坡 3为混凝土填充, 坝顶 4为混凝土封闭顶面。
实施例二
如图 1、 图 2、 图 4、 图 5所示。 与实施例一相同之处不在赞述, 不同之处 在于:
第一步, 针对泥石流沟流域面积 10.0km2, 规划拦砂坝溢流口至坝体基础 2 的净坝高 H为 10.0m, 坝顶 4宽度 B为 3.0m, 坝体内侧边坡比降 l:m为 1: 0.7。 由 于该坝的净坝高 H < 10.0m, 拟釆用本发明的组装式泥石流拦砂坝。 根据规划的 拦砂坝空间尺寸, 规划预制长方箱体 1 的几何尺寸: ①按照坝体溢流口至坝体 基础 2的净坝高 H是长方箱体 1高度 h的整数倍 nl, 初步拟定 nl取 10, 得长方箱 体 1高度 h = 10.0/10 = 1.0m; ②按照坝体内侧边坡比降 l:m是 2倍长方箱体 1高 说 明 书 度 h与长方箱体 1短边边长 b之比, 得长方箱体 1短边边长 b=2xl.0x0.7=1.4m; ③ 长方箱体 1长边边长 a分别取两种尺寸,取长方箱体 1长边边长 a=1.4m、 2.8m(分 别如图 1、 图 2所示)。
第二步, 利用浆 ?石处理地基底部形成坝体基础 2。
长方箱体 1侧壁厚度 ^为 0.12m。 两种尺寸的长方箱体 1均采用钢筋混凝土 结构, 长方箱体 1侧壁为双面配筋, 长方箱体 1底板和横隔 5均为单面配筋, 总体体积配筋率为 2.0%, 钢筋直径为 0.012m, 混凝土为 C35。 这样两种规格的 长方箱体 1重量均不超过 2000KG,便于利用小型拖拉机通过沟内机耕道运输且 便于人工简易设备吊装。 长方箱体 1短边侧壁上的水平向连接孔 6为 4个, 两 种尺寸的长方箱体 1长边侧壁上的水平向连接孔 6分别为 4、 8个, 水平向连接 孔 6的直径为 0.03m。 长方箱体 1短边侧壁和底板上的排水孔 7分别为 4个, 两 种尺寸的长方箱体 1长边侧壁上的排水孔 7分别为 4、 8个, 排水孔 7是直径为 0.06 m的圓孔。 竖向连接孔 8的大小为 0.04x0.04 m2
第三步, 长方箱体 1内部装填土体的最大粒径为 0.7m。
第四步, 在拦砂坝坝肩基础 9用浆砌石填充, 在拦砂坝坝体内侧边坡 3用 浆砌石填充, 形成设计坝体型式。
第五步, 对坝顶 4采用浆砌石封闭顶面, 最终形成组装式泥石流拦砂坝。 其结构为预制好的钢筋混凝土长方箱体 1 纵横相连构成坝体主体, 长方箱体 1 顶面开敞、 其余五面封闭、 内部装填土体; 所述坝体主体设于坝体基础 2之上, 所述组装式泥石流拦砂坝坝肩基础 9和坝体内侧边坡 3 为浆砌石填充, 坝顶 4 为浆砌石封闭顶面。

Claims

权 利 要 求 书
1. 一种组装式泥石流拉砂坝, 其特征在于: 所述组装式泥石流拦砂坝包括若干 预制好的钢筋混凝土长方箱体( 1 ) 纵横相连构成坝体主体, 长方箱体 ( 1 ) 顶面开敞、 其余五面封闭、 内部装填土体; 所述坝体主体设于坝体基出 (2) 之上, 所述组装式泥石流拦砂坝坝肩基础(9)和坝体内侧边坡 (3) 为浆砌 石或混凝土填充, 坝顶 (4) 为浆砌石或混凝土封闭顶面。
2. 根据权利要求 1所述的组装式泥石流拉砂坝, 其特征在于: 坝体溢流口至坝 体基础 (2) 的净坝高 H是长方箱体(1) 高度 h的整数倍; 坝顶 (4) 宽度 B是长方箱体( 1 )短边边长 b的整数倍, 或坝体内侧边坡比降 l:m是 2倍 长方箱体( 1 ) 高度 h与长方箱体( 1 )短边边长 b之比; 长方箱体( 1 ) 长 边边长 a等于长方箱体( 1 )短边边长 b, 或等于 2倍长方箱体( 1 )短边边 长 b, 或等于 3倍长方箱体(1)短边边长!)。
3. 根据权利要求 2所述的组装式泥石流拦砂坝, 其特征在于: 坝体溢流口至坝 体基础(2)的净坝高 H小于等于 10.0m, 长方箱体(1)高度 h为 0.5-1.0m; 长方箱体( 1 ) 重量小于等于 2000KG。
4. 根据权利要求 2所述的组装式泥石流拦砂坝, 其特征在于: 当长方箱体(1) 长边边长 a等于 2倍长方箱体(1)短边边长 b时, 长方箱体(1) 内增加 1 个与长方箱体(1)短边平行的横隔 (5); 当长方箱体(1)长边边长 a等于 3倍长方箱体(1)短边边长 b时, 长方箱体(1) 内增加 2个分别与长方箱 体 ( 1 )短边平行的横隔 ( 5 )。
5. 根据权利要求 4所述的组装式泥石流拦砂坝, 其特征在于: 长方箱体(1) 侧壁厚度 ^为 0.08-0.12m,长方箱体( 1 )底板厚度、横隔( 5 )厚度 t2为 0.06m。
6. 根据权利要求 4所述的组装式泥石流拦砂坝, 其特征在于: 长方箱体(1) 侧壁为单面或双面配筋, 长方箱体(1)底板和横隔(5)为单面配筋, 总体 权 利 要 求 书
体积配筋率为 0.5-2.0%, 钢筋直径为 0.006-0.012m。
7. 根据权利要求 1至 6任一所述的组装式泥石流拦砂坝, 其特征在于: 长方箱 体( 1 )侧壁上设有供长方箱体( 1 ) 间横向相连的水平向连接孔( 6 ), 长方 箱体 ( 1 )底板和长方箱体 ( 1 ) 侧壁上设有排水孔 (7 ), 长方箱体( 1 )底 板的四个角分别设有供长方箱体(1) 间纵向相连的竖向连接孔(8)。
8. 根据权利要求 7所述的组装式泥石流拉砂坝, 其特征在于: 长方箱体(1) 短边侧壁上的水平向连接孔( 6 )和排水孔( 7 )分别为 2-4个, 长方箱体( 1 ) 长边侧壁上的水平向连接孔 (6) 和排水孔(7) 分别为 2-12 个, 水平向连 接孔 (6) 的直径为 0.02-0.03m, 排水孔 (7) 直径为 0.03-0.06m; 竖向连接 孔 ( 8 ) 的大小为 0.03x0.03 m2 -0.04x0.04m2
9. 根据权利要求 2所述的组装式泥石流拦砂坝, 其特征在于: 长方箱体(1) 内部装填土体的最大粒径为长方箱体 (1)短边边长 b的二分之一。
10. 如权利要求 1 所述的组装式泥石流拦砂坝的施工方法, 其特征在于: 所 述组装式泥石流拉砂坝的施工方法, 具体步骤如下:
A. 根据实际情况规划设计拦砂坝的空间尺寸, 根据拦砂坝的空间尺寸规划预制 长方箱体(1) 的几何尺寸; 从立面上规划预制长方箱体(1)在拦砂坝中的 充填空间位置;
B. 按照设计基础开挖线开挖拦砂坝的地基, 利用钢筋混凝土或混凝土或浆砌石 处理地基底部形成坝体基础 (2), 同时将规划的长方箱体 (1)在远离拦砂 坝的场地预先制备;
C. 将预制好的钢筋混凝土长方箱体(1)从坝体基础 (2)开始从下往上逐层依 次吊装, 然后将长方箱体(1) 进行纵横方向的连接处理, 同时每吊装一层 就在长方箱体(1) 内装填开挖地基时挖出的沟道内土体, 并将土体夯实或 权 利 要 求 书
振捣密实, 形成坝体主体;
D. 在拦砂坝坝肩基础( 9 )用浆砌石或混凝土填充, 在拦砂坝坝体内侧边坡 ( 3 ) 用浆砌石或混凝土填充, 形成设计坝体型式;
E. 对坝顶 ( 4 )采用浆砌石或混凝土封闭顶面, 最终形成组装式泥石流拉砂坝。
PCT/CN2011/073391 2011-04-02 2011-04-27 一种组装式泥石流拦砂坝及其施工方法 WO2012136012A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/007,068 US20140154012A1 (en) 2011-04-02 2011-04-27 Assembled mud-rock flow debris dam and construction method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110082348.6 2011-04-02
CN201110082348A CN102182163B (zh) 2011-04-02 2011-04-02 一种组装式泥石流拦砂坝及其施工方法

Publications (1)

Publication Number Publication Date
WO2012136012A1 true WO2012136012A1 (zh) 2012-10-11

Family

ID=44568441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073391 WO2012136012A1 (zh) 2011-04-02 2011-04-27 一种组装式泥石流拦砂坝及其施工方法

Country Status (3)

Country Link
US (1) US20140154012A1 (zh)
CN (1) CN102182163B (zh)
WO (1) WO2012136012A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106087866A (zh) * 2016-08-05 2016-11-09 肖广汇 一种滚动机械杆支撑液压坝
CN113255046A (zh) * 2021-06-16 2021-08-13 中国科学院、水利部成都山地灾害与环境研究所 泥石流拦砂坝护坦设计方法、应用
CN115142388A (zh) * 2022-07-14 2022-10-04 浙江省围海建设集团股份有限公司 一种渡槽混凝土复合路模施工工法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102535408B (zh) * 2012-02-10 2014-02-26 中国科学院水利部成都山地灾害与环境研究所 一种半组装式生态型泥石流拦砂坝及其施工方法
CN103088791B (zh) * 2013-02-27 2014-11-05 中国科学院、水利部成都山地灾害与环境研究所 一种消能式排导拦挡结合的泥石流拦砂坝
JP6068244B2 (ja) * 2013-04-22 2017-01-25 日鐵住金建材株式会社 砂防堰堤及び鋼管壁の取付方法
JP6392582B2 (ja) * 2014-08-21 2018-09-19 Jfe建材株式会社 砂防堰堤
JP6546399B2 (ja) * 2015-02-05 2019-07-17 日鉄建材株式会社 砂防堰堤
CN105696528A (zh) * 2015-06-26 2016-06-22 孙孝仁 一种自动排洪排水淤泥坝的建筑方法
JP6637305B2 (ja) * 2015-12-11 2020-01-29 Jfe建材株式会社 砂防堰堤
JP6661361B2 (ja) * 2015-12-11 2020-03-11 Jfe建材株式会社 砂防堰堤の施工方法
JP6636837B2 (ja) * 2016-03-28 2020-01-29 日鉄建材株式会社 砂防堰堤の閉塞防止構造および閉塞防止工法
CN106869081A (zh) * 2017-04-20 2017-06-20 成都新途科技有限公司 钢制水石分离拦挡坝及其安装方法
CN107740381A (zh) * 2017-10-26 2018-02-27 合肥学院 一种基于废旧集装箱改造的开放式泥石流拦挡坝组
CN109371862A (zh) * 2018-11-03 2019-02-22 浙江杭博生态环境建设有限公司 一种泥石流防治装置及方法
CN115217078A (zh) * 2021-04-19 2022-10-21 王立久 一种采用箱式网模堆叠的淤地坝及其施工方法
CN113235529B (zh) * 2021-05-07 2023-03-10 三峡大学 一种主动促进泥石流分级滑落的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168886A (ja) * 1996-12-09 1998-06-23 Nippon Steel Metal Prod Co Ltd 鋼製自在枠による石詰め構造物とその根入れ方法
CN2323012Y (zh) * 1997-12-08 1999-06-09 黄永吉 一种拖网式漏斗沉箱
JP2004044278A (ja) * 2002-07-12 2004-02-12 Nippon Steel Metal Prod Co Ltd 間伐材による緩衝構造を有する鋼製枠構造体
CN101285302A (zh) * 2008-06-06 2008-10-15 清华大学 一种混凝土大坝沉箱加固方法
CN201520954U (zh) * 2009-06-01 2010-07-07 王锦文 建码头用的沉箱平台

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US422901A (en) * 1889-07-12 1890-03-11 Territory
US1075128A (en) * 1910-03-08 1913-10-07 Theodore H Skinner Dam.
US994666A (en) * 1910-07-12 1911-06-06 George J Bancroft Dam construction.
US2017899A (en) * 1933-06-13 1935-10-22 Gibson Josiah Building structure
JPS60246911A (ja) * 1984-05-22 1985-12-06 Hazama Gumi Ltd コンクリ−ト堤体の構築工法
GB2197370A (en) * 1986-09-03 1988-05-18 Juei Jse Lin Wave dissipation device
IT1247892B (it) * 1990-10-10 1995-01-05 Sicep Ind S R L Elementi prefabbricati, per la costruzione di briglie utilizzate nelle sistemazioni fluviali
JP2824468B2 (ja) * 1996-01-17 1998-11-11 株式会社テトラ コンクリートブロック
AU2002249676A1 (en) * 2002-04-19 2003-11-03 Keun-Hee Lee Method for constructing check dam or fire prevention dam using gear-type block
US20100284747A1 (en) * 2009-05-05 2010-11-11 Peterson Galen L Water-filled building block for temporary levee

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168886A (ja) * 1996-12-09 1998-06-23 Nippon Steel Metal Prod Co Ltd 鋼製自在枠による石詰め構造物とその根入れ方法
CN2323012Y (zh) * 1997-12-08 1999-06-09 黄永吉 一种拖网式漏斗沉箱
JP2004044278A (ja) * 2002-07-12 2004-02-12 Nippon Steel Metal Prod Co Ltd 間伐材による緩衝構造を有する鋼製枠構造体
CN101285302A (zh) * 2008-06-06 2008-10-15 清华大学 一种混凝土大坝沉箱加固方法
CN201520954U (zh) * 2009-06-01 2010-07-07 王锦文 建码头用的沉箱平台

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106087866A (zh) * 2016-08-05 2016-11-09 肖广汇 一种滚动机械杆支撑液压坝
CN113255046A (zh) * 2021-06-16 2021-08-13 中国科学院、水利部成都山地灾害与环境研究所 泥石流拦砂坝护坦设计方法、应用
CN113255046B (zh) * 2021-06-16 2022-09-20 中国科学院、水利部成都山地灾害与环境研究所 泥石流拦砂坝护坦设计方法、应用
CN115142388A (zh) * 2022-07-14 2022-10-04 浙江省围海建设集团股份有限公司 一种渡槽混凝土复合路模施工工法

Also Published As

Publication number Publication date
CN102182163B (zh) 2012-09-05
CN102182163A (zh) 2011-09-14
US20140154012A1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
WO2012136012A1 (zh) 一种组装式泥石流拦砂坝及其施工方法
CN105862916A (zh) 叠合装配式地下管廊体系及施工制作工艺
WO2013117089A1 (zh) 一种半组装式生态型泥石流拦砂坝及其施工方法
CN111576431A (zh) 四层地铁站基坑开挖方法
WO2013075407A1 (zh) 一种箱体衬砌式泥石流排导槽及其应用和施工方法
CN102277874A (zh) 一种组装式挡土墙及其施工方法
CN110158641B (zh) 一种锚杆加筋复合挡土墙及施工方法
CN109972638B (zh) 预制装配式薄壁模壳格构梁生态护坡的施工方法
CN206362675U (zh) 渗透变形试验的现场原状样结构
CN105625441B (zh) 一种排水式菱形网格的生态护坡及施工方法
CN102174803B (zh) 一种组装式泥石流排导槽及其施工方法
CN111622234A (zh) 一种斜竖向组合钢管桩承托的卸荷式薄壁箱型挡墙及施工工艺
CN115961647A (zh) 地下室顶板后浇带超前封闭结构、施工结构及施工方法
CN103374915B (zh) 一种锚喷倒挂连续封闭支护体系及其施工方法
CN204875690U (zh) 河堤砖和河堤防护墙
CN115198806A (zh) 地下墙体后浇带模板加固及安装施工方法
CN210737589U (zh) 重力式挡墙的墙身单元及重力式挡墙
CN207143843U (zh) 一种预制拼装式防爆土堤
CN109137887B (zh) 一种穿越溶洞的地下连续墙结构、施工方法以及支护装置
CN208328982U (zh) 一种装配式挡墙结构
CN207032254U (zh) 一种取消地下室外墙回填的操作架体
CN206457847U (zh) 现浇与预制相结合的综合管廊结构
CN205636755U (zh) 一种排水式菱形网格的生态护坡
CN204780965U (zh) 复杂地质及环境接入地铁既有支护体系施工结构
CN109469103A (zh) 一种环保型预制装配整体式综合管廊及其装配方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14007068

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11863115

Country of ref document: EP

Kind code of ref document: A1