WO2012133874A1 - 芳香族ポリマーの製造方法 - Google Patents

芳香族ポリマーの製造方法 Download PDF

Info

Publication number
WO2012133874A1
WO2012133874A1 PCT/JP2012/058782 JP2012058782W WO2012133874A1 WO 2012133874 A1 WO2012133874 A1 WO 2012133874A1 JP 2012058782 W JP2012058782 W JP 2012058782W WO 2012133874 A1 WO2012133874 A1 WO 2012133874A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
carbon atoms
atom
phosphine
Prior art date
Application number
PCT/JP2012/058782
Other languages
English (en)
French (fr)
Inventor
精二 小田
神川 卓
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012133874A1 publication Critical patent/WO2012133874A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/316Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain bridged by heteroatoms, e.g. N, P, Si or B
    • C08G2261/3162Arylamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions

Definitions

  • the present invention relates to a method for producing an aromatic polymer.
  • An aromatic polymer having a structure in which two or more aromatic rings are ⁇ -conjugated is useful, for example, for an organic electronic material.
  • a method for producing an aromatic polymer a method for producing an aromatic monomer by a Suzuki coupling reaction is known.
  • JP-A-2007-126652 discloses 9,9-di-n-octylfluorene-2 in the presence of palladium acetate, tris (2-methoxyphenyl) phosphine, aqueous tetraethylammonium hydroxide and toluene.
  • each X 1 independently represents the formula (1), (2), (3), (4), (5) or (6)
  • Ar 1 represents a divalent aromatic hydrocarbon group having 6 to 36 carbon atoms.
  • the carbon atom contained in the aromatic hydrocarbon group may be replaced with a hetero atom or a carbonyl group
  • the hydrogen atom contained in the aromatic hydrocarbon group is a fluorine atom, an alkyl group, an alkoxy group, an alkylthio group, An aryl group, an aryloxy group, an arylthio group, an arylalkylthio group, an arylalkenyl group, an arylalkynyl group, a heterocyclic group that may have a substituent, an amino group that may have a substituent, and a substituent It may be substituted with a silyl group, an acyl group, a group having a carbon atom-nitrogen atom double bond as a partial structure, an acid imide
  • each X 2 independently represents a chlorine atom, a bromine atom or an iodine atom
  • Ar 2 represents a divalent aromatic hydrocarbon group having 6 to 36 carbon atoms.
  • the aromatic hydrocarbon group The carbon atom contained in may be replaced with a hetero atom or a carbonyl group, and the hydrogen atom contained in the aromatic hydrocarbon group may be a fluorine atom, an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group.
  • the aromatic monomer used in the production method of the present invention has the formula (A): An aromatic monomer (hereinafter, sometimes referred to as an aromatic monomer (A)), and a formula (B): It is an aromatic monomer (Hereinafter, it may be described as an aromatic monomer (B).).
  • Ar 1 And Ar 2 Each independently represents a divalent aromatic hydrocarbon group having 6 to 36 carbon atoms.
  • the divalent aromatic hydrocarbon group is a divalent monocyclic aromatic hydrocarbon group, a divalent condensed aromatic hydrocarbon group or two or more monocyclic aromatic hydrocarbon groups, a single bond, a heteroatom ( An oxygen atom, a nitrogen atom, a sulfur atom, etc.) or a divalent group formed by linking with a carbonyl group (—CO—).
  • bivalent monocyclic aromatic hydrocarbon group such as phenylene group, divalent condensed aromatic hydrocarbon group such as naphthalenediyl group, anthracenediyl group, fluorenediyl group, biphenylene group, etc.
  • Examples thereof include a divalent group formed by connecting the above monocyclic aromatic hydrocarbon group with a single bond, a hetero atom (oxygen atom, nitrogen atom, sulfur atom, etc.) or a carbonyl group.
  • the carbon atom contained in the aromatic hydrocarbon group may be substituted with a hetero atom such as an oxygen atom, a nitrogen atom or a sulfur atom or a carbonyl group.
  • the hydrogen atom contained in the aromatic hydrocarbon group may be substituted with a substituent.
  • substituents examples include a fluorine atom, an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkylthio group, an arylalkenyl group, an arylalkynyl group, and a heterocyclic group which may have a substituent.
  • the hydrogen atom contained in the substituent is a fluorine atom, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, an acyl group having 2 to 20 carbon atoms, or It may be substituted with a cyano group.
  • alkyl group examples include an alkyl group having 1 to 20 carbon atoms, which may be linear, branched, or cyclic. Specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, 2,2-dimethylpropyl group, Cyclopentyl group, n-hexyl group, cyclohexyl group, n-heptyl group, 2-methylpentyl group, n-octyl group, 2-ethylhexyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group Group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-p
  • alkoxy group examples include an alkoxy group having 1 to 20 carbon atoms, which may be linear, branched, or cyclic. Specifically, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group, n-pentyloxy group, 2,2-dimethylpropoxy group, n -Hexyloxy group, cyclohexyloxy group, n-heptyloxy group, n-octyloxy group, n-nonyloxy group, n-decyloxy group, n-undecyloxy group, n-dodecyloxy group, n-tridecyloxy group N-tetradecyloxy group, n-pentadecyloxy group, n-hexadecyloxy group, n-heptadecyloxy group, n-oc
  • alkylthio group examples include alkylthio groups having 1 to 20 carbon atoms, which may be linear, branched, or cyclic. Specifically, methylthio group, ethylthio group, n-propylthio group, isopropylthio group, n-butylthio group, isobutylthio group, sec-butylthio group, tert-butylthio group, n-pentylthio group, n-hexylthio group, cyclohexyl Examples include thio group, n-heptylthio group, n-octylthio group, 2-ethylhexylthio group, n-nonylthio group, n-decylthio group, 3,7-dimethyloctylthio group, n-dodecylthio group and trifluoromethylthio group.
  • aryl group examples include aryl groups having 6 to 20 carbon atoms. Specific examples include a phenyl group, a 4-methylphenyl group, a 2-methylphenyl group, a 1-naphthyl group, a 2-naphthyl group, a 3-phenanthryl group, and a 2-anthryl group.
  • aryloxy group examples include groups formed by bonding an oxygen atom to the aryl group having 6 to 20 carbon atoms. Specific examples include a phenoxy group, a naphthyloxy group, a phenanthryloxy group, and an anthryloxy group.
  • Examples of the “arylthio group” include a group formed by bonding a sulfur atom to the aryl group having 6 to 20 carbon atoms. Specific examples include a phenylthio group and a naphthylthio group.
  • Examples of the “arylalkylthio group” include a group formed by bonding a sulfur atom to the alkyl group having 1 to 20 carbon atoms substituted with the aryl group having 6 to 20 carbon atoms. Specific examples include a phenylmethylthio group and a naphthylmethylthio group.
  • Examples of the “arylalkenyl group” include a phenylalkenyl group and a naphthylalkenyl group.
  • alkenyl group vinyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 2-butenyl group, 1-pentenyl group, 2-pentenyl group, 1-hexenyl group, 2-hexenyl group, Examples thereof include alkenyl groups having 2 to 8 carbon atoms such as 1-octenyl group.
  • arylalkynyl group include phenylalkynyl group and naphthylalkynyl group.
  • alkynyl group examples include ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 1-pentynyl group, 2-pentynyl group, 1-hexynyl group, 2-hexynyl group, Examples include alkynyl groups having 2 to 8 carbon atoms such as 1-octynyl group.
  • a heterocyclic group which may have a substituent means a group in which one hydrogen atom in a heterocyclic compound which may have a substituent becomes a bond.
  • heterocyclic group examples include thienyl group, alkylthienyl group, pyrrolyl group, furyl group, pyridyl group, alkylpyridyl group, pyridazinyl group, pyrimidyl group, pyrazinyl group, triazinyl group, pyrrolidyl group, piperidyl group, quinolyl group and isoquinolyl group.
  • substituent that the heterocyclic group has include an alkyl group, specifically, an alkyl group having 1 to 20 carbon atoms.
  • “Amino group optionally having substituent (s)” means —N (R ′) 2 And two R ′ each independently represents a substituent.
  • R ′ examples include a hydrocarbon group having 1 to 20 carbon atoms such as an alkyl group and an aryl group, a heterocyclic group which may have a substituent, and a hydrogen atom.
  • it is an amino group having a substituent, that is, an amino group in which at least one R ′ is a substituent other than a hydrogen atom.
  • Specific examples of the “amino group optionally having a substituent” include a methylamino group, a dimethylamino group, an ethylamino group, a diethylamino group, an n-propylamino group, a di-n-propylamino group, and an isopropylamino group.
  • a silyl group optionally having substituent (s) means —Si (R ′) 3
  • each of the three R's independently represents a substituent.
  • R ′ include a hydrocarbon group having 1 to 20 carbon atoms such as an alkyl group and an aryl group, a heterocyclic group which may have a substituent, and a hydrogen atom.
  • it is a silyl group having a substituent, that is, a silyl group in which at least one R ′ is a substituent other than a hydrogen atom.
  • optionally substituted silyl group include trimethylsilyl group, triethylsilyl group, tri-n-propylsilyl group, triisopropylsilyl group, dimethylisopropylsilyl group, diethylisopropylsilyl group, tert- Butylsilyldimethylsilyl group, n-pentyldimethylsilyl group, n-hexyldimethylsilyl group, n-heptyldimethylsilyl group, n-octyldimethylsilyl group, 2-ethylhexyldimethylsilyl group, n-nonyldimethylsilyl group, n- Decyldimethylsilyl group, 3,7-dimethyloctyldimethylsilyl group, n-dodecyldimethylsilyl group, phenylalkylsilyl group, alk
  • acyl group examples include aliphatic acyl groups such as acetyl group, propionyl group, butyryl group and isobutyryl group, and aromatic acyl groups such as benzoyl group and naphthoyl group.
  • group having a carbon atom-nitrogen atom double bond as a partial structure refers to a moiety from an imine compound having a partial structure represented by at least one of the formula: H—N ⁇ C ⁇ and the formula: —N ⁇ CH—. This means a group formed by removing a hydrogen atom in the structure (hereinafter sometimes referred to as an imine residue) and does not form a ring based on the aforementioned “carbon atom-nitrogen atom double bond”.
  • the “imine compound” include a compound in which a hydrogen atom bonded to a nitrogen atom in aldimine, ketimine and aldimine is substituted with a substituent such as an alkyl group, aryl group, arylalkyl group, arylalkenyl group, arylalkynyl group or the like. It is done.
  • the carbon number of the imine residue is usually 2 to 20, preferably 2 to 18, and more preferably 2 to 16.
  • R ′′ represents a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, an arylalkenyl group or an arylalkynyl group
  • R ′ ′′ independently represents an alkyl group, an aryl group, an arylalkyl group.
  • “imine residue” means a residue in which a hydrogen atom bonded to a nitrogen atom contained in an acid imide is a bond.
  • the number of carbon atoms in the acid imide group is preferably 4-20, more preferably 4-18, and still more preferably 4-16.
  • Specific examples of the “acid imide group” include the following groups.
  • Examples of the “alkoxycarbonyl group” include a group formed by bonding a carbonyl group to the alkoxy group.
  • Examples of the aromatic hydrocarbon group include divalent groups represented by the formulas (a) to (e).
  • R represents a substituent, and n represents an integer of 0 to 4.
  • Ar 1 And Ar 2 And the same groups as those exemplified as the substituents of.
  • Examples of the aromatic hydrocarbon group in which the carbon atom contained in the aromatic hydrocarbon group is substituted with a hetero atom or a carbonyl group include divalent groups represented by formulas (f) to (z).
  • R represents a substituent, n represents an integer of 0 to 2
  • Ar 1 And Ar 2 And the same groups as those exemplified as the substituents of.
  • Examples of the divalent group formed by connecting two or more monocyclic aromatic hydrocarbon groups with a single bond, heteroatom or carbonyl group include divalent groups represented by the formulas (aa) to (ae). Groups. (In the formula, R represents a substituent, and n represents an integer of 0 to 4.) As the substituent, Ar 1 And Ar 2 And the same groups as those exemplified as the substituents of. Ar in the aromatic monomer (A) 1 And Ar in the aromatic monomer (B) 2 May be the same or different from each other.
  • Preferred Ar 1 And Ar 2 Is represented by the formula (a), (b), (c), (d), (e), (m) (Y in (m) is preferably S), (y) or (aa) It is a group.
  • X of aromatic monomer (A) 1 are each independently the formula (1), (2), (3), (4), (5) or (6) Represents a group represented by Two X in the aromatic monomer (A) 1 May be the same or different from each other, but in terms of easy preparation of the aromatic monomer (A), the two X 1 Are preferably the same.
  • Preferred X 1 Is a group represented by formula (3).
  • aromatic monomer (A) 2,2 ′-(9,9-dihexyl-9H-fluorene-2,7-diyl) bis (1,3,2-dioxaborolane), 2,2 ′-(9, 9-dihexyl-9H-fluorene-2,7-diyl) bis (1,3,2-dioxaborinane), 2,2 ′-(9,9-dihexyl-9H-fluorene-2,7-diyl) bis (4 , 4,5,5-tetramethyl-1,3,2-dioxaborolane), 2,2 ′-(9,9-dihexyl-9H-fluorene-2,7-diyl) bis (5,5-dimethyl-1) , 3,2-dioxaborinane), 2,2 ′-(9,9-dioctyl-9H-fluorene-2,7-diyl) bis (1,3,2-dioxa
  • 2,2 ′-(9,9-dihexyl-9H-fluorene-2,7-diyl) bis (4,4,5,5-tetramethyl-1,3,2-dioxaborolane), 2,2 '-(9,9-Dioctyl-9H-fluorene-2,7-diyl) bis (4,4,5,5-tetramethyl-1,3,2-dioxaborolane), 2,2'-(9,9 -Didodecyl-9H-fluorene-2,7-diyl) bis (4,4,5,5-tetramethyl-1,3,2-dioxaborolane), 2,2 '-(3,5-dimethoxy-9,9 -Dihexyl-9H-fluorene-2,7-diyl) bis (4,4,5,5-tetramethyl-1,3,2-dioxaborolane), 2,2 '-(2-methyl-5-octyl-1) , 4-
  • aromatic monomers (A) may be used in combination.
  • X of aromatic monomer (B) 2 Each independently represents a chlorine atom, a bromine atom or an iodine atom.
  • Two X in the aromatic monomer (B) 2 May be the same or different from each other, but the same X in that the aromatic polymer (B) can be easily prepared. 2 It is preferable that Preferred X 2 Is a bromine atom.
  • aromatic monomer (B) 2,7-dibromo-9,9-dihexyl-9H-fluorene, 2,7-dibromo-9,9-dioctyl-9H-fluorene, 2,7-dibromo-9,9 -Didodecyl-9H-fluorene, 2,7-dichloro-9,9-dihexyl-9H-fluorene, 2,7-dichloro-9,9-dioctyl-9H-fluorene, 2,7-dichloro-9,9-didodecyl -9H-fluorene, 2-bromo-7-chloro-9,9-dihexyl-9H-fluorene, 2-bromo-7-chloro-9,9-dioctyl-9H-fluorene, 2-bromo-7-chloro-9 , 9-didodecyl-9H-fluorene, 1,4-di
  • 2,7-dibromo-9,9-dihexyl-9H-fluorene, 2,7-dibromo-9,9-dioctyl-9H-fluorene, 2,7-dibromo-9,9-didodecyl-9H-fluorene 1,4-dibromobenzene, 1,3-dibromobenzene, 2,5-dibromo-3-hexylthiophene, and bis (4-bromophenyl) -4-benzeneamine.
  • Two or more aromatic monomers (B) may be used in the production method of the present invention.
  • the amount of the aromatic monomer (B) used in the production method of the present invention is usually in the range of 0.8 mol to 1.2 mol, preferably 0.9 mol, relative to 1 mol of the aromatic monomer (A).
  • the range is from mol to 1.1 mol.
  • Examples of the base include inorganic bases and organic bases.
  • Inorganic bases include alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal carboxylates, alkaline earth metal carboxylates, alkali metal carbonates, alkaline earth metal carbonates, alkali metal bicarbonates , Alkaline earth metal hydrogencarbonate, alkali metal phosphate, and alkaline earth metal phosphate, and alkali metal carbonate and alkali metal phosphate are preferable.
  • the inorganic base include lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, calcium hydroxide, barium hydroxide, sodium formate, potassium formate, calcium formate, sodium acetate, potassium acetate, sodium carbonate, Examples thereof include potassium carbonate, cesium carbonate, calcium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium phosphate and potassium phosphate. Sodium carbonate, potassium carbonate, cesium carbonate, sodium phosphate and potassium phosphate are preferred.
  • organic base examples include alkylammonium hydroxide, alkylammonium carbonate, alkylammonium bicarbonate, alkylammonium boronate, 1,5-diazabicyclo [4.3.0] non-5-ene (DBN), 1 , 8-diazabicyclo [5.4.0] undec-7-ene (DBU), 1,4-diazabicyclo [2.2.2] octane (DABCO), dimethylaminopyridine (DMAP), pyridine, trialkylamine, And alkylammonium fluorides such as tetraalkylammonium fluoride.
  • DBN non-5-ene
  • DBU 1,4-diazabicyclo [2.2.2] octane
  • DMAP dimethylaminopyridine
  • pyridine trialkylamine
  • alkylammonium fluorides such as tetraalkylammonium fluoride.
  • tetraalkylammonium hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, and tetra-n-propylammonium hydroxide.
  • the amount of the base used is usually 0.5 to 20 equivalents (here, the equivalent is X contained in the aromatic monomer (B)). 2 X contained in the aromatic monomer (B) in the theoretical amount of base necessary to neutralize hydrogen ions equal to the total amount of 2 Represents a ratio to the total amount of substances), and a range of 0.5 equivalents to 6 equivalents is preferable.
  • phase transfer catalyst In the production method of the present invention, when an inorganic base is used as the base, a phase transfer catalyst may be used in combination.
  • the phase transfer catalyst include tetraalkyl ammonium halide, tetraalkyl ammonium hydrogen sulfate, and tetraalkyl ammonium hydroxide.
  • a tetraalkylammonium halide such as tricaprylylmethyl ammonium chloride (available as Aliquat® 336 from Sigma-Aldrich).
  • the amount of the phase transfer catalyst used is usually from 0.001 equivalent to 1 equivalent (here, the equivalent is X contained in the aromatic monomer (B)).
  • aprotic organic solvent does not have a group having an active hydrogen such as a hydroxyl group, an amino group, or a carboxyl group in the molecule, and dissolves the aromatic monomer (A) and the aromatic monomer (B). Mean organic solvent to be obtained.
  • the aprotic organic solvent include ether solvents such as acyclic ether solvents and cyclic ether solvents, aprotic polar solvents, aromatic hydrocarbon solvents and aliphatic hydrocarbon solvents.
  • Aprotic polar solvents include N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide and acetonitrile.
  • Acyclic ether solvents include diethyl ether, diisopropyl ether, ethylene glycol dimethyl ether and diethylene glycol dimethyl ether.
  • Cyclic ether solvents include 1,4-dioxane and tetrahydrofuran.
  • Aromatic hydrocarbon solvents include benzene, toluene, xylene and mesitylene.
  • Aliphatic hydrocarbon solvents include hexane, heptane and cyclohexane.
  • toluene, xylene, mesitylene, diethyl ether, diisopropyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, 1,4-dioxane and tetrahydrofuran are preferred.
  • two or more kinds of aprotic organic solvents may be mixed and used. Specific examples include a mixed solvent of tetrahydrofuran and toluene and a mixed solvent of ethylene glycol dimethyl ether and toluene.
  • Examples of palladium compounds include palladium (0) complexes and palladium (II) complexes.
  • the palladium (0) complex include a complex in which dibenzylideneacetone is coordinated to zerovalent palladium, a so-called dibenzylideneacetone-palladium (0) complex.
  • Specific examples include tris (dibenzylideneacetone) dipalladium (0), tris (dibenzylideneacetone) dipalladium (0) chloroform adduct and bis (dibenzylideneacetone) palladium (0).
  • Examples of the palladium (II) complex include palladium carboxylates such as palladium (II) acetate, palladium (II) trifluoroacetate, palladium (II) acetylacetonate, palladium (II) chloride, palladium (II) bromide, iodine Palladium halides such as palladium (II) halide, and allyl palladium (II) chloride dimer, bis (2-methylallyl) palladium (II) chloride dimer, dichloro (1,5-cyclooctadiene) palladium (II), dichlorobis
  • Examples thereof include palladium halide complexes such as (acetonitrile) palladium (II) and dichlorobis (benzonitrile) palladium (II).
  • tris (dibenzylideneacetone) dipalladium (0), bis (dibenzylideneacetone) palladium (0), palladium (II) chloride, palladium (II) bromide and palladium (II) acetate are preferred.
  • the amount of the palladium compound used is usually in the range of 0.0001 mol to 0.8 mol, preferably in the range of 0.001 mol to 0.2 mol, per 1 mol of the aromatic monomer (B).
  • phosphine represented by formula (C) is represented by the formula (C): Indicated by In formula (C), R 1 , R 2 , R 3 , R 4 And R 5 Each independently represents a hydrogen atom, a fluoroalkyl group having 1 to 20 carbon atoms or a dialkylamino group having 1 to 20 carbon atoms, and A represents an alkyl group having 1 to 20 carbon atoms.
  • fluoroalkyl group having 1 to 20 carbon atoms examples include monofluoromethyl group, difluoromethyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group, pentafluoroethyl group, perfluoro-n-propyl group, and A perfluoroisopropyl group is mentioned, a C1-C4 fluoroalkyl group is preferable, and a trifluoromethyl group is more preferable.
  • the dialkylamino group having 1 to 20 carbon atoms is an amino group substituted with two alkyl groups having 1 to 20 carbon atoms, specifically, a dimethylamino group, a diethylamino group, a di-n-propylamino group, Examples include diisopropylamino group, di-n-butylamino group, di-sec-butylamino group and di-tert-butylamino group, preferably a dialkylamino group having 1 to 8 carbon atoms, and a dialkyl having 1 to 4 carbon atoms.
  • An amino group is more preferable, and a dimethylamino group is more preferable.
  • the alkyl group having 1 to 20 carbon atoms represented by A may be linear, branched, or cyclic. Specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, 2,2-dimethylpropyl group, Cyclopentyl group, n-hexyl group, cyclohexyl group, n-heptyl group, 2-methylpentyl group, n-octyl group, 2-ethylhexyl group, n-nonyl group, n-decyl group, 1-adamantyl group, n-undecyl Group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n
  • a phosphine represented by the formula (C) As the phosphine represented by the formula (C), A phosphine represented by the formula (C), wherein A is an alkyl group having 1 to 8 carbon atoms; A phosphine of formula (C) wherein A is a tert-butyl group, A phosphine of the formula (C) in which A is a cyclopentyl group, A phosphine of formula (C) wherein A is a cyclohexyl group; R 1 , R 2 , R 4 And R 5 Is a hydrogen atom and R 3 Phosphine represented by the formula (C), wherein is a dialkylamino group having 1 to 4 carbon atoms, R 2 , R 3 , R 4 And R 5 Is a hydrogen atom and R 1 Phosphine represented by the formula (C), wherein is a dialkylamino group having 1 to 4 carbon atoms, A is an alkyl group having 1 to
  • phosphine represented by the formula (C) include dicyclohexylphenylphosphine, dicyclohexyl [4- (N, N-dimethylamino) phenyl] phosphine, dicyclohexyl [2- (N, N-dimethylamino) phenyl] phosphine, Dicyclohexyl (4-trifluoromethylphenyl) phosphine, dicyclohexyl (2-trifluoromethylphenyl) phosphine, di-tert-butylphenylphosphine, [4- (N, N-dimethylamino) phenyl] di-tert-butylphosphine, [2- (N, N-dimethylamino) phenyl] di-tert-butylphosphine, di (tert-butyl) (4-trifluoromethylphenyl) phosphine, di (tert-but
  • phosphine represented by formula (D) is represented by formula (D): Indicated by In formula (D), R 6 , R 7 , R 8 , R 9 And R 10 Each independently represents a hydrogen atom, a fluoroalkyl group having 1 to 20 carbon atoms or a dialkylamino group having 1 to 20 carbon atoms. However, R 6 ⁇ R 10 Are not all hydrogen atoms.
  • fluoroalkyl group having 1 to 20 carbon atoms examples include monofluoromethyl group, difluoromethyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group, pentafluoroethyl group, perfluoro-n-propyl group, and A perfluoroisopropyl group is mentioned, a C1-C4 fluoroalkyl group is preferable, and a trifluoromethyl group is more preferable.
  • the dialkylamino group having 1 to 20 carbon atoms is an amino group substituted with two alkyl groups having 1 to 20 carbon atoms, specifically, a dimethylamino group, a diethylamino group, a di-n-propylamino group, Examples include diisopropylamino group, di-n-butylamino group, di-sec-butylamino group and di-tert-butylamino group, preferably a dialkylamino group having 1 to 8 carbon atoms, and a dialkyl having 1 to 4 carbon atoms.
  • An amino group is more preferable, and a dimethylamino group is more preferable.
  • R 6 , R 7 , R 9 And R 10 Is a hydrogen atom and R 8 Phosphine represented by the formula (D), wherein is a dialkylamino group having 1 to 4 carbon atoms
  • R 7 , R 8 , R 9 And R 10 Is a hydrogen atom and R 6 Phosphine represented by the formula (D), wherein is a dialkylamino group having 1 to 4 carbon atoms
  • R 6 , R 7 , R 9 And R 10 Is a hydrogen atom and R 8 Phosphine represented by the formula (D), wherein is a fluoroalkyl group having 1 to 4 carbon atoms
  • R 7 , R 8 , R 9 And R 10 Is a hydrogen atom and R 6 Is a phosphine represented by the formula (D), wherein is a fluoroalkyl group having 1 to 4 carbon atoms.
  • phosphine represented by the formula (D) include dicyclopentylphenylphosphine, dicyclopentyl [4- (N, N-dimethylamino) phenyl] phosphine, dicyclopentyl [2- (N, N-dimethylamino) phenyl. Phosphine, dicyclopentyl (4-trifluoromethylphenyl) phosphine and dicyclopentyl (2-trifluoromethylphenyl) phosphine.
  • the phosphine represented by the formula (C) is preferably a phosphine represented by the formula (D).
  • the amount of the phosphine represented by the formula (C) used in the production method of the present invention is usually in the range of 0.1 mol to 10 mol, preferably 0.5 mol to 5 mol, relative to 1 mol of the palladium compound. It is a range.
  • the phosphine represented by the formula (C) is Journal of Molecular Catalysis A: Chemical 2003, 200, 81-94. It can synthesize
  • a transition metal complex can be prepared by contacting a phosphine represented by formula (C) or a phosphine represented by formula (D) with a Group 10 transition metal compound.
  • Group 10 transition metal compounds include nickel compounds, palladium compounds, and platinum compounds, with palladium compounds being preferred.
  • a palladium compound the palladium compound described in the column of the above ⁇ palladium compound> is mentioned.
  • the transition metal complex obtained by bringing the phosphine represented by the formula (C) or the phosphine represented by the formula (D) and the palladium compound into contact with each other is, for example, the 5th edition Experimental Chemistry Course (edited by the Chemical Society of Japan, Maruzen ( Issued) 21) organic transition metal complex, supramolecular complex p308-327 (9.2 organic palladium complex) can be prepared according to known methods.
  • the polymerization step is a step of mixing the aromatic monomer (A) and the aromatic monomer (B) in the presence of a base, a palladium compound, a phosphine represented by the formula (C) and an aprotic organic solvent,
  • the mixing order is not limited, for example, (i) palladium compound, phosphine represented by formula (C), base, aromatic monomer (A), aromatic monomer (B) and aprotic organic solvent are mixed together (Ii) after mixing the base, aromatic monomer (A), aromatic monomer (B) and aprotic organic solvent, the palladium compound and the phosphine represented by formula (C), or palladium
  • a step of polymerizing a complex prepared in advance from a compound and a phosphine represented by the formula (C) and an aprotic organic solvent may be mentioned.
  • the polymerization temperature in the polymerization step is usually in the range of 0 ° C to 180 ° C, preferably in the range of 30 ° C to 100 ° C.
  • the polymerization time in the polymerization step is usually in the range of 1 hour to 96 hours, preferably in the range of 3 hours to 48 hours.
  • the target aromatic polymer may be precipitated by a method of adding a poor solvent to the reaction mixture containing the aromatic polymer obtained by the polymerization step, and the aromatic polymer may be taken out by a normal separation means such as filtration. Good.
  • the target aromatic polymer may be taken out by the above-mentioned method after the reaction mixture is washed with an acidic solution such as hydrochloric acid.
  • the obtained aromatic polymer may be subjected to purification treatment such as fractionation by chromatography.
  • the molecular weight of the obtained aromatic polymer was subjected to gel permeation chromatography (hereinafter sometimes referred to as GPC), and the weight average molecular weight (Mw) in terms of polystyrene was calculated and evaluated from the analysis result.
  • GPC analysis conditions are as follows.
  • GPC measuring device CTO-20A (Shimadzu Corporation column oven), SPD-20A (Shimadzu Corporation detector) Column: PLgel 10 ⁇ m MIXED-B 300 ⁇ 7.5 mm (manufactured by Polymer Laboratories) -Column temperature: 40 ° C ⁇ Mobile phase: Tetrahydrofuran ⁇ Flow rate: 2 mL / min ⁇ Detection: UV detection (wavelength: 228 nm)
  • Example 2 Example 1 except that bis (di-tert-butylphenylphosphine) dichloropalladium (II) was used instead of bis (di-tert-butyl (4-dimethylaminophenyl) phosphine) dichloropalladium (II) Polymerization was carried out in the same manner. As a result of analyzing the molecular weight of the obtained aromatic polymer by the GPC measurement, it was confirmed that the molecular weight (Mw) was 5.2 ⁇ 10 5 .
  • Example 3 Instead of bis (di-tert-butyl (4-dimethylaminophenyl) phosphine) dichloropalladium (II), bis (di-tert-butyl (4-trifluoromethylphenyl) phosphine) dichloropalladium (II) was used. Polymerization was carried out in the same manner as in Example 1 except that. As a result of analyzing the molecular weight of the obtained aromatic polymer by the GPC measurement, it was confirmed that the molecular weight (Mw) was 4.9 ⁇ 10 5 .
  • Example 4 Polymerization was conducted in the same manner as in Example 1 except that bis (dicyclohexylphenylphosphine) dichloropalladium (II) was used instead of bis (di-tert-butyl (4-dimethylaminophenyl) phosphine) dichloropalladium (II). Carried out. As a result of analyzing the molecular weight of the obtained aromatic polymer by the above GPC measurement, it was confirmed that the molecular weight (Mw) was 2.4 ⁇ 10 5 .
  • Example 5 Instead of bis (di-tert-butyl (4-dimethylaminophenyl) phosphine) dichloropalladium (II), bis (dicyclohexyl (4- (N, N-dimethylamino) phenyl) phosphine) dichloropalladium (II) is used. Polymerization was carried out in the same manner as in Example 1 except that. As a result of analyzing the molecular weight of the obtained aromatic polymer by the above GPC measurement, it was confirmed that the molecular weight (Mw) was 2.5 ⁇ 10 5 .
  • Example 6 Polymerization was conducted in the same manner as in Example 1 except that bis (dicyclopentylphenylphosphine) dichloropalladium (II) was used instead of bis (di-tert-butyl (4-dimethylaminophenyl) phosphine) dichloropalladium (II). Carried out. As a result of analyzing the molecular weight of the obtained aromatic polymer by the GPC measurement, it was confirmed that the molecular weight (Mw) was 3.7 ⁇ 10 5 .
  • Example 7 Except for using bis (dicyclopentyl (4-trifluoromethylphenyl) phosphine) dichloropalladium (II) instead of bis (di-tert-butyl (4-dimethylaminophenyl) phosphine) dichloropalladium (II) Polymerization was carried out in the same manner as in Example 1. As a result of analyzing the molecular weight of the obtained aromatic polymer by the above GPC measurement, it was confirmed that the molecular weight (Mw) was 3.2 ⁇ 10 5 .
  • Example 8 Boronate ester (6.0 mmol) formed from 9,9-di-n-octylfluorene-2,7-diboronic acid and pinacol in a glass reaction vessel equipped with a cooling device at room temperature under a nitrogen atmosphere 9,9-di-n-octyl-2,7-dibromofluorene (5.9 mmol), 20 wt% aqueous tetraethylammonium hydroxide (20 ml) and toluene (110 ml) were added. The resulting mixture was heated with stirring (bath temperature 100 ° C.).
  • Example 9 Under a nitrogen atmosphere, 0.77 g of bromobenzene and 20 ml of tetrahydrofuran were added to a reaction vessel equipped with a dropping funnel. The obtained solution was cooled to ⁇ 78 ° C., and then 3.0 ml of n-butyllithium (1.62 M / hexane solution) was added dropwise. The resulting mixture was stirred at the same temperature for 2 hours. Thereafter, a solution obtained by dissolving 1.00 g of chlorodicyclopentylphosphine in 13 ml of tetrahydrofuran was added dropwise to the obtained mixture at ⁇ 78 ° C. The resulting mixture was stirred at room temperature for 5 hours.
  • Example 10 Under a nitrogen atmosphere, 1.55 g of dicyclopentylphenylphosphine synthesized in Example 9, 0.50 g of dichlorobis (acetonitrile) palladium (II) and 20 ml of ethanol were added to the reaction vessel. The resulting mixture was stirred at room temperature for 16 hours. After stirring, the precipitated solid was removed by filtration and washed 3 times with 12 ml of ethanol. The obtained solid was dried under reduced pressure at 50 ° C.
  • Example 11 The same operation as in Example 9 was carried out except that 1.10 g of 4-bromobenzotrifluoride was used instead of 0.77 g of bromobenzene, and dicyclopentyl (4-trifluoro) was used as a concentrate (crude product). 1.78 g (viscous liquid) of methylphenyl) phosphine was obtained.
  • Example 12 Under a nitrogen atmosphere, 1.78 g of dicyclopentyl (4-trifluoromethylphenyl) phosphine synthesized in Example 11, 0.50 g of dichlorobis (acetonitrile) palladium (II) and 35 ml of ethanol were added to the reaction vessel. The resulting mixture was stirred at room temperature for 14 hours. After stirring, the precipitated solid was removed by filtration and washed 3 times with 12 ml of ethanol. The obtained solid was dried under reduced pressure at 50 ° C.
  • a high molecular weight aromatic polymer can be produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

芳香族モノマーを、塩基、パラジウム化合物、式(C)(式中、R、R、R、R及びRは、それぞれ独立に、水素原子等を表し、Aは、炭素数1~20のアルキル基を表す。) で表されるホスフィン及び非プロトン性有機溶媒の存在下に混合する工程を含むことを特徴とする芳香族ポリマーの製造方法。

Description

芳香族ポリマーの製造方法
 本発明は、芳香族ポリマーの製造方法に関する。
 2以上の芳香環がπ共役している構造を有する芳香族ポリマーは、例えば、有機エレクトロニクス材料に有用である。芳香族ポリマーの製造方法として、芳香族モノマーを鈴木カップリング反応によって製造する方法が知られている。
 具体的には、特開2007−126652号公報に、酢酸パラジウム、トリス(2−メトキシフェニル)ホスフィン、水酸化テトラエチルアンモニウム水溶液およびトルエンの存在下、9,9−ジ−n−オクチルフルオレン−2,7−ジボロン酸とピナコール(テトラメチルエチレングリコール)とから形成されるボロン酸エステルと、ビス(4−ブロモフェニル)[4−(2−ブチル)フェニル]アミンとを重合することにより、対応する芳香族ポリマーを分子量(Mw)3.0×10で製造する方法が記載されている。
 本発明は、
[1] 式(A):
Figure JPOXMLDOC01-appb-I000006
(式中、Xはそれぞれ独立して、式(1)、(2)、(3)、(4)、(5)または(6)
Figure JPOXMLDOC01-appb-I000007
で示される基を表わし、Arは、炭素数6~36の2価の芳香族炭化水素基を表わす。当該芳香族炭化水素基に含まれる炭素原子は、ヘテロ原子またはカルボニル基で置き換わっていてもよく、当該芳香族炭化水素基に含まれる水素原子は、フッ素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、置換基を有してもよい複素環基、置換基を有してもよいアミノ基、置換基を有してもよいシリル基、アシル基、炭素原子−窒素原子二重結合を部分構造として有する基、酸イミド基、アルコキシカルボニル基、カルボキシル基、シアノ基またはニトロ基で置換されていてもよい。)
で示される芳香族モノマーと、
式(B):
Figure JPOXMLDOC01-appb-I000008
(式中、Xはそれぞれ独立して、塩素原子、臭素原子またはヨウ素原子を表わし、Arは、炭素数6~36の2価の芳香族炭化水素基を表わす。当該芳香族炭化水素基に含まれる炭素原子は、ヘテロ原子またはカルボニル基で置き換わっていてもよく、当該芳香族炭化水素基に含まれる水素原子は、フッ素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、置換基を有してもよい複素環基、置換基を有してもよいアミノ基、置換基を有してもよいシリル基、アシル基、炭素原子−窒素原子二重結合を部分構造として有する基、酸イミド基、アルコキシカルボニル基、カルボキシル基、シアノ基またはニトロ基で置換されていてもよい。)
で示される芳香族モノマーとを、
塩基、パラジウム化合物、式(C):
Figure JPOXMLDOC01-appb-I000009
(式中、R、R、R、RおよびRはそれぞれ独立に、水素原子、炭素数1~20のフルオロアルキル基または炭素数1~20のジアルキルアミノ基を表わし、Aは、炭素数1~20のアルキル基を表わす。)
で示されるホスフィンおよび非プロトン性有機溶媒の存在下に混合する工程を含むことを特徴とする芳香族ポリマーの製造方法;
[2] 非プロトン性有機溶媒が、エーテル溶媒、芳香族炭化水素溶媒および脂肪族炭化水素溶媒からなる群から選ばれる少なくとも1種である[1]に記載の製造方法;
[3] パラジウム化合物が、パラジウム(0)錯体またはパラジウム(II)錯体である[1]または[2]に記載の製造方法;
[4] 式(D):
Figure JPOXMLDOC01-appb-I000010
(式中、R、R、R、RおよびR10はそれぞれ独立に、水素原子、炭素数1~20のフルオロアルキル基または炭素数1~20のジアルキルアミノ基を表わす。ただし、R~R10がすべて水素原子であることはない。)
で示されるホスフィン;
[5] [4]に記載のホスフィンと第10族遷移金属化合物とを接触させることにより得られる遷移金属錯体;等を提供するものである。
 本発明の製造方法に用いられる芳香族モノマーは、式(A):
Figure JPOXMLDOC01-appb-I000011
で示される芳香族モノマー(以下、芳香族モノマー(A)と記すことがある)と、式(B):
Figure JPOXMLDOC01-appb-I000012
で示される芳香族モノマー(以下、芳香族モノマー(B)と記すことがある)とである。
 ArおよびArはそれぞれ独立に、炭素数6~36の2価の芳香族炭化水素基を表わす。2価の芳香族炭化水素基は、2価の単環の芳香族炭化水素基、2価の縮合芳香族炭化水素基および2以上の単環の芳香族炭化水素基が単結合、ヘテロ原子(酸素原子、窒素原子、硫黄原子等)またはカルボニル基(−CO−)で連結されることにより形成される2価の基を含む。具体的には、フェニレン基等の2価の単環の芳香族炭化水素基、ナフタレンジイル基、アントラセンジイル基、フルオレンジイル基等の2価の縮合芳香族炭化水素基、ビフェニレン基等の2以上の単環の芳香族炭化水素基が単結合、ヘテロ原子(酸素原子、窒素原子、硫黄原子等)またはカルボニル基で連結されることにより形成される2価の基が挙げられる。当該芳香族炭化水素基に含まれる炭素原子は、酸素原子、窒素原子、硫黄原子等のヘテロ原子またはカルボニル基で置換されていてもよい。
 芳香族炭化水素基に含まれる水素原子は、置換基で置換されていてもよい。置換基としては、フッ素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、置換基を有してもよい複素環基、置換基を有してもよいアミノ基、置換基を有してもよいシリル基、アシル基、炭素原子−窒素原子二重結合を部分構造として有する基、酸イミド基、アルコキシカルボニル基、カルボキシル基(−COOH)、シアノ基(−CN)およびニトロ基(−NO)が挙げられる。前記置換基に含まれる水素原子は、フッ素原子、炭素数1~20のアルコキシ基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、炭素数2~20のアシル基またはシアノ基で置換されていてもよい。
 ”アルキル基”としては、炭素数1~20のアルキル基が挙げられ、直鎖状であってもよいし、分枝鎖状であってもよいし、環状であってもよい。具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、2,2−ジメチルプロピル基、シクロペンチル基、n−ヘキシル基、シクロヘキシル基、n−ヘプチル基、2−メチルペンチル基、n−オクチル基、2−エチルヘキシル基、n−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−ペンタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、n−ノナデシル基およびn−イコシル基が挙げられる。
 ”アルコキシ基”としては、炭素数1~20のアルコキシ基が挙げられ、直鎖状であってもよいし、分枝鎖状であってもよいし、環状であってもよい。具体的には、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、sec−ブトキシ基、tert−ブトキシ基、n−ペンチルオキシ基、2,2−ジメチルプロポキシ基、n−ヘキシルオキシ基、シクロヘキシルオキシ基、n−ヘプチルオキシ基、n−オクチルオキシ基、n−ノニルオキシ基、n−デシルオキシ基、n−ウンデシルオキシ基、n−ドデシルオキシ基、n−トリデシルオキシ基、n−テトラデシルオキシ基、n−ペンタデシルオキシ基、n−ヘキサデシルオキシ基、n−ヘプタデシルオキシ基、n−オクタデシルオキシ基、n−ノナデシルオキシ基およびn−イコシルオキシ基が挙げられる。
 ”アルキルチオ基”としては、炭素数1~20のアルキルチオ基が挙げられ、直鎖状であってもよいし、分枝鎖状であってもよいし、環状であってもよい。具体的には、メチルチオ基、エチルチオ基、n−プロピルチオ基、イソプロピルチオ基、n−ブチルチオ基、イソブチルチオ基、sec−ブチルチオ基、tert−ブチルチオ基、n−ペンチルチオ基、n−ヘキシルチオ基、シクロヘキシルチオ基、n−ヘプチルチオ基、n−オクチルチオ基、2−エチルヘキシルチオ基、n−ノニルチオ基、n−デシルチオ基、3,7−ジメチルオクチルチオ基、n−ドデシルチオ基およびトリフルオロメチルチオ基が挙げられる。
 ”アリール基”としては、炭素数6~20のアリール基が挙げられる。具体的には、フェニル基、4−メチルフェニル基、2−メチルフェニル基、1−ナフチル基、2−ナフチル基、3−フェナントリル基および2−アントリル基が挙げられる。
 ”アリールオキシ基”としては、前記炭素数6~20のアリール基に酸素原子が結合することにより形成される基が挙げられる。具体的には、フェノキシ基、ナフチルオキシ基、フェナントリルオキシ基およびアントリルオキシ基が挙げられる。
 ”アリールチオ基”としては、前記炭素数6~20のアリール基に硫黄原子が結合することにより形成される基が挙げられる。具体的には、フェニルチオ基およびナフチルチオ基が挙げられる。
 ”アリールアルキルチオ基”としては、前記炭素数6~20のアリール基で置換された前記炭素数1~20のアルキル基に硫黄原子が結合することにより形成される基が挙げられる。具体的には、フェニルメチルチオ基およびナフチルメチルチオ基が挙げられる。
 ”アリールアルケニル基”としては、フェニルアルケニル基およびナフチルアルケニル基が挙げられる。”アルケニル基”としては、ビニル基、1−プロペニル基、2−プロペニル基、1−ブテニル基、2−ブテニル基、1−ペンテニル基、2−ペンテニル基、1−ヘキセニル基、2−ヘキセニル基、1−オクテニル基等の炭素数2~8のアルケニル基が挙げられる。
 ”アリールアルキニル基”としては、フェニルアルキニル基およびナフチルアルキニル基が挙げられる。”アルキニル基”としては、エチニル基、1−プロピニル基、2−プロピニル基、1−ブチニル基、2−ブチニル基、1−ペンチニル基、2−ペンチニル基、1−ヘキシニル基、2−ヘキシニル基、1−オクチニル基等の炭素数2~8のアルキニル基が挙げられる。
 ”置換基を有してもよい複素環基”は、置換基を有していてもよい複素環式化合物中の一つの水素原子が結合手となった基を意味する。複素環基としては、チエニル基、アルキルチエニル基、ピロリル基、フリル基、ピリジル基、アルキルピリジル基、ピリダジニル基、ピリミジル基、ピラジニル基、トリアジニル基、ピロリジル基、ピペリジル基、キノリル基およびイソキノリル基が挙げられる。前記複素環基が有する置換基としては、アルキル基、具体的には前記炭素数1~20のアルキル基、が挙げられる。
 ”置換基を有してもよいアミノ基”は、−N(R’)で示される基を意味し、2つのR’はそれぞれ独立して、置換基を表わす。R’としては、アルキル基、アリール基等の炭素数1~20の炭化水素基、置換基を有してもよい複素環基および水素原子が挙げられる。好ましくは、置換基を有するアミノ基、すなわち、少なくとも一つのR’が水素原子以外の置換基であるアミノ基である。”置換基を有してもよいアミノ基”の具体例としては、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、n−プロピルアミノ基、ジ−n−プロピルアミノ基、イソプロピルアミノ基、ジイソプロピルアミノ基、n−ブチルアミノ基、イソブチルアミノ基、sec−ブチルアミノ基、tert−ブチルアミノ基、n−ペンチルアミノ基、n−ヘキシルアミノ基、n−ヘプチルアミノ基、n−オクチルアミノ基、2−エチルヘキシルアミノ基、n−ノニルアミノ基、n−デシルアミノ基、3,7−ジメチルオクチルアミノ基、n−ドデシルアミノ基、シクロペンチルアミノ基、ジシクロペンチルアミノ基、シクロヘキシルアミノ基、ジシクロヘキシルアミノ基、ビス(トリフルオロメチル)アミノ基、フェニルアミノ基、ジフェニルアミノ基、ナフチルアミノ基、ピリジルアミノ基、ピリダジニルアミノ基、ピリミジニルアミノ基、ピラジニルアミノ基およびトリアジニルアミノ基が挙げられる。
 ”置換基を有してもよいシリル基”は、−Si(R’)で示される基を意味し、3つのR’はそれぞれ独立して、置換基を表わす。R’としては、アルキル基、アリール基等の炭素数1~20の炭化水素基、置換基を有してもよい複素環基および水素原子が挙げられる。好ましくは、置換基を有するシリル基、すなわち、少なくとも一つのR’が水素原子以外の置換基であるシリル基である。”置換基を有してもよいシリル基”の具体例としては、トリメチルシリル基、トリエチルシリル基、トリ−n−プロピルシリル基、トリイソプロピルシリル基、ジメチルイソプロピルシリル基、ジエチルイソプロピルシリル基、tert−ブチルシリルジメチルシリル基、n−ペンチルジメチルシリル基、n−ヘキシルジメチルシリル基、n−ヘプチルジメチルシリル基、n−オクチルジメチルシリル基、2−エチルヘキシルジメチルシリル基、n−ノニルジメチルシリル基、n−デシルジメチルシリル基、3,7−ジメチルオクチルジメチルシリル基、n−ドデシルジメチルシリル基、フェニルアルキルシリル基、アルコキシフェニルアルキルシリル基、アルキルフェニルアルキルシリル基、ナフチルアルキルシリル基、フェニルアリルジメチルシリル基、トリフェニルシリル基、トリ−p−キシリルシリル基、トリベンジルシリル基、ジフェニルメチルシリル基、tert−ブチルジフェニルシリル基およびジメチルフェニルシリル基が挙げられる。
 ”アシル基”としては、アセチル基、プロピオニル基、ブチリル基、イソブチリル基等の脂肪族アシル基およびベンゾイル基、ナフトイル基等の芳香族アシル基が挙げられる。
 ”炭素原子−窒素原子二重結合を部分構造として有する基”は、式:H−N=C<および式:−N=CH−の少なくとも一方で示される部分構造を有するイミン化合物から、当該部分構造中の水素原子を除くことにより形成される基(以下、イミン残基と記すこともある。)を意味し、前記の「炭素原子−窒素原子二重結合」に基づき環を形成していないものを挙げることができる。”イミン化合物”としては、アルジミン、ケチミンおよびアルジミン中の窒素原子に結合した水素原子がアルキル基、アリール基、アリールアルキル基、アリールアルケニル基、アリールアルキニル基等の置換基で置換された化合物が挙げられる。イミン残基の炭素数は、通常2~20、好ましくは2~18、より好ましくは2~16である。
 ”イミン残基”としては、式:−CR’’=N−R’’’、および、式:−N=C(R’’’)(式中、R’’は、水素原子、アルキル基、アリール基、アリールアルキル基、アリールアルケニル基またはアリールアルキニル基を表わし、R’’’はそれぞれ独立に、アルキル基、アリール基、アリールアルキル基、アリールアルケニル基またはアリールアルキニル基を表わす。ただし、R’’’が2個存在する場合、2個のR’’’は互いに結合して2価の基、具体的には、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等の炭素数2~18のアルキレン基を形成する。)で示される基が挙げられる。
 ”イミン残基”の具体例としては、以下に示す基が挙げられる。
Figure JPOXMLDOC01-appb-I000013
 ”酸イミド基”は、酸イミドに含まれる窒素原子と結合する水素原子が結合手となった残基を意味する。酸イミド基の炭素数としては、4~20が好ましく、4~18が寄り好ましく、4~16がさらに好ましい。”酸イミド基”の具体例としては、以下に示す基が挙げられる。
Figure JPOXMLDOC01-appb-I000014
 ”アルコキシカルボニル基”としては、前記アルコキシ基にカルボニル基が結合することにより形成される基が挙げられる。具体的には、メトキシカルボニル基、エトキシカルボニル基、n−プロポキシカルボニル基、イソプロポキシカルボニル基、n−ブトキシカルボニル基、イソブトキシカルボニル基、sec−ブトキシカルボニル基、tert−ブトキシカルボニル基、n−ペンチルオキシカルボニル基、n−ヘキシルオキシカルボニル基、シクロヘキシルオキシカルボニル基、n−ヘプチルオキシカルボニル基、n−オクチルオキシカルボニル基、2−エチルヘキシルオキシカルボニル基、n−ノニルオキシカルボニル基、n−デシルオキシカルボニル基、3,7−ジメチルオクチルオキシカルボニル基、n−ドデシルオキシカルボニル基、トリフルオロメトキシカルボニル基、ペンタフルオロエトキシカルボニル基、パーフルオロブトキシカルボニル基、パーフルオロヘキシルオキシカルボニル基、パーフルオロオクチルオキシカルボニル基、フェノキシカルボニル基、ナフトキシカルボニル基およびピリジルオキシカルボニル基が挙げられる。
 芳香族炭化水素基としては、式(a)~(e)で示される2価の基が挙げられる。
Figure JPOXMLDOC01-appb-I000015
(式中、Rは置換基を表わし、nは0~4の整数を表わす。)
 上記置換基としては、ArおよびArの置換基として例示したものと同様の基が挙げられる。
 芳香族炭化水素基に含まれる炭素原子がヘテロ原子またはカルボニル基で置換された芳香族炭化水素基としては、式(f)~(z)で示される2価の基が挙げられる。
Figure JPOXMLDOC01-appb-I000016
(式中、Rは置換基を表わし、nは0~2の整数を表わし、YはN、S、C=Oを表わす。)
 上記置換基としては、ArおよびArの置換基として例示したものと同様の基が挙げられる。
 2以上の単環の芳香族炭化水素基が単結合、ヘテロ原子またはカルボニル基で連結されることにより形成される2価の基としては、式(aa)~(ae)で示される2価の基が挙げられる。
Figure JPOXMLDOC01-appb-I000017
(式中、Rは置換基を表わし、nは0~4の整数を表わす。)
 上記置換基としては、ArおよびArの置換基として例示したものと同様の基が挙げられる。
 芳香族モノマー(A)におけるArと、芳香族モノマー(B)におけるArとは、同一であってもよいし、互いに異なっていてもよい。
 好ましいArおよびArとしては、式(a)、(b)、(c)、(d)、(e)、(m)((m)中のYはSが好ましい)、(y)または(aa)で表される基である。
 芳香族モノマー(A)のXはそれぞれ独立して、式(1)、(2)、(3)、(4)、(5)または(6)
Figure JPOXMLDOC01-appb-I000018
で示される基を表わす。
 芳香族モノマー(A)における2つのXは、同一であってもよいし、互いに異なっていてもよいが、芳香族モノマー(A)の調製が容易であるという点で、2つのXが同一であることが好ましい。好ましいXは、式(3)で示される基である。
 芳香族モノマー(A)としては、2,2’−(9,9−ジヘキシル−9H−フルオレン−2,7−ジイル)ビス(1,3,2−ジオキサボロラン)、2,2’−(9,9−ジヘキシル−9H−フルオレン−2,7−ジイル)ビス(1,3,2−ジオキサボリナン)、2,2’−(9,9−ジヘキシル−9H−フルオレン−2,7−ジイル)ビス(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン)、2,2’−(9,9−ジヘキシル−9H−フルオレン−2,7−ジイル)ビス(5,5−ジメチル−1,3,2−ジオキサボリナン)、2,2’−(9,9−ジオクチル−9H−フルオレン−2,7−ジイル)ビス(1,3,2−ジオキサボロラン)、2,2’−(9,9−ジオクチル−9H−フルオレン−2,7−ジイル)ビス(1,3,2−ジオキサボリナン)、2,2’−(9,9−ジオクチル−9H−フルオレン−2,7−ジイル)ビス(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン)、2,2’−(9,9−ジオクチル−9H−フルオレン−2,7−ジイル)ビス(5,5−ジメチル−1,3,2−ジオキサボリナン)、2,2’−(9,9−ジドデシル−9H−フルオレン−2,7−ジイル)ビス(1,3,2−ジオキサボロラン)、2,2’−(9,9−ジドデシル−9H−フルオレン−2,7−ジイル)ビス(1,3,2−ジオキサボリナン)、2,2’−(9,9−ジドデシル−9H−フルオレン−2,7−ジイル)ビス(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン)、2,2’−(9,9−ジドデシル−9H−フルオレン−2,7−ジイル)ビス(5,5−ジメチル−1,3,2−ジオキサボリナン)、2,2’−(3,5−ジメトキシ−9,9−ジヘキシル−9H−フルオレン−2,7−ジイル)ビス(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン)、2,2’−(9−オクチル−9H−カルバゾール−3,6−ジイル)ビス(1,3,2−ジオキサボロラン)、2,2’−(1,4−フェニレン)ビス(5,5−ジメチル−1,3,2−ジオキサボリナン)、2,2’−(2,5−ジメチル−1,4−フェニレン)ビス(1,3,2−ジオキサボロラン)、2,2’−(2−メチル−5−オクチル−1,4−フェニレン)ビス(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン)、2,2’−(2,5−ジブチル−1,4−フェニレン)ビス(5,5−ジメチル−1,3,2−ジオキサボリナン)、2,2’−[2,5−ビス(ヘキシルオキシ)−1,4−フェニレン]ビス(5,5−ジメチル−1,3,2−ジオキサボリナン)、2,5−ビス(1,3,2−ジオキサボロラン−2−イル)チオフェン、2,5−ビス(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)チオフェン、2,5−ビス(1,3,2−ジオキサボリナン−2−イル)チオフェン、2,5−ビス(5,5−ジメチル−1,3,2−ジオキサボリナン−2−イル)チオフェン、1,1’−ビス(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)−4,4’−ビフェニル、1,1’−ビス(1,3,2−ジオキサボロラン−2−イル)−4,4’−ビフェニル、1,1’−ビス(1,3,2−ジオキサボリナン−2−イル)−4,4’−ビフェニル、1,1’−ビス(5,5−ジメチル−1,3,2−ジオキサボリナン−2−イル)−4,4’−ビフェニル、および、5,5’−ビス(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)−2,2’−バイチオフェンが挙げられる。好ましくは、2,2’−(9,9−ジヘキシル−9H−フルオレン−2,7−ジイル)ビス(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン)、2,2’−(9,9−ジオクチル−9H−フルオレン−2,7−ジイル)ビス(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン)、2,2’−(9,9−ジドデシル−9H−フルオレン−2,7−ジイル)ビス(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン)、2,2’−(3,5−ジメトキシ−9,9−ジヘキシル−9H−フルオレン−2,7−ジイル)ビス(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン)、2,2’−(2−メチル−5−オクチル−1,4−フェニレン)ビス(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン)、2,5−ビス(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)チオフェン、1,1’−ビス(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)−4,4’−ビフェニル、および、5,5’−ビス(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)−2,2’−バイチオフェンである。
 本発明の製造方法には、二種以上の芳香族モノマー(A)を組み合わせて用いてもよい。
 芳香族モノマー(B)のXはそれぞれ独立して、塩素原子、臭素原子またはヨウ素原子を表わす。
 芳香族モノマー(B)における2つのXは、同一であってもよいし、互いに異なっていてもよいが、芳香族ポリマー(B)の調製が容易であるという点で、同一のXであることが好ましい。好ましいXは、臭素原子である。
 芳香族モノマー(B)としては、2,7−ジブロモ−9,9−ジヘキシル−9H−フルオレン、2,7−ジブロモ−9,9−ジオクチル−9H−フルオレン、2,7−ジブロモ−9,9−ジドデシル−9H−フルオレン、2,7−ジクロロ−9,9−ジヘキシル−9H−フルオレン、2,7−ジクロロ−9,9−ジオクチル−9H−フルオレン、2,7−ジクロロ−9,9−ジドデシル−9H−フルオレン、2−ブロモ−7−クロロ−9,9−ジヘキシル−9H−フルオレン、2−ブロモ−7−クロロ−9,9−ジオクチル−9H−フルオレン、2−ブロモ−7−クロロ−9,9−ジドデシル−9H−フルオレン、1,4−ジブロモベンゼン、1,3−ジブロモベンゼン、1,4−ジブロモ−2−エチルベンゼン、1,4−ジブロモ−2−メトキシベンゼン、ジメチル 2,5−ジブロモテレフタレート、1,4−ジブロモナフタレン、3,5−ジブロモピリジン、1,1’−ジブロモ−4,4’−ビフェニル、2,5−ジブロモピリジン、1,4−ジブロモ−2,5−ジヘキシルオキシベンゼン、1−ブロモ−4−クロロベンゼン、1−ブロモ−4−クロロトルエン、1−ブロモ−4−クロロ−2−プロピルベンゼン、2,5−ジブロモ−4’−フェノキシベンゾフェノン、2,5−ジブロモ−3−ヘキシルチオフェン、2,5−ジブロモ−3、2,5−ジブロモ−3−オクチルチオフェン−ドデシルチオフェン、2,5−ジクロロ−3−ヘキシルチオフェン、5,5’−ジブロモ−2,2’−バイチオフェン、5,5’−ジブロモ−3,3’−ジヘキシル−2,2’−バイチオフェン、ビス(4−ブロモフェニル)−4−(4−tert−ブチル)ベンゼンアミン、ビス(4−ブロモフェニル)−4−(1−メチルプロピル)ベンゼンアミン、ビス(4−ブロモフェニル)−4−ベンゼンアミン、N,N’−ビス(4−ブロモフェニル)−N,N’−ビス(4−n−ブチルフェニル)−1,4−ベンゼンジアミン、N,N’−ビス(4−ブロモフェニル)−ビシクロ[4.2.0]オクタ−1,3,5−トリエン−3−アミン、N,N’−ビス(4−ブロモフェニル)−N,N’−ビス(4−ブチルフェニル)−1,4−ベンゼンジアミン、N,N’−ビス(4−ブロモフェニル)−N,N’−ビス[4−(1,1−ジメチルエチル)−2,6−ジメチルフェニル]−1,4−ベンゼンジアミン、4,7−ジブロモ−2,1,3−ベンゾチアジアゾール、4,7−ジブロモ−2,1,3−ベンゾセレナジアゾール、4,7−ビス(5−ブロモ−2−チエニル)−2,1,3−ベンゾチアジアゾール、4,7−ビス(5−ブロモ−4−メチル−2−チエニル)−2,1,3−ベンゾチアジアゾール、4,7−ビス(5−ブロモ−3−メチル−2−チエニル)−2,1,3−ベンゾチアジアゾール、3,7−ジブロモ−10−(4−n−ブチルフェニル)−10H−フェノチアジン、3,7−ジブロモ−10−(4−n−ブチルフェニル)−10H−フェノキシアジン、3,3’−[1,1’−ビフェニル−4,4’−ジイルビス[(4−ブロモフェニル)イミノ]]ビスベンゾイックアシッド ジエチルエステル、および、4,4’−ビス[(4−ブロモフェニル)フェニルアミノ]ビフェニルが挙げられる。好ましくは、2,7−ジブロモ−9,9−ジヘキシル−9H−フルオレン、2,7−ジブロモ−9,9−ジオクチル−9H−フルオレン、2,7−ジブロモ−9,9−ジドデシル−9H−フルオレン、1,4−ジブロモベンゼン、1,3−ジブロモベンゼン、2,5−ジブロモ−3−ヘキシルチオフェン、および、ビス(4−ブロモフェニル)−4−ベンゼンアミンである。
 本発明の製造方法には、二種以上の芳香族モノマー(B)を用いてもよい。
 本発明の製造方法における芳香族モノマー(B)の使用量は、芳香族モノマー(A)1モルに対して、通常0.8モル~1.2モルの範囲であり、好ましくは、0.9モル~1.1モルの範囲である。
<塩基>
 塩基としては、無機塩基および有機塩基が挙げられる。
 無機塩基としては、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属カルボン酸塩、アルカリ土類金属カルボン酸塩、アルカリ金属炭酸塩、アルカリ土類金属炭酸塩、アルカリ金属炭酸水素塩、アルカリ土類金属炭酸水素塩、アルカリ金属リン酸塩、およびアルカリ土類金属リン酸塩が挙げられ、好ましくは、アルカリ金属炭酸塩およびアルカリ金属リン酸塩である。
 無機塩基の具体例としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化カルシウム、水酸化バリウム、ギ酸ナトリウム、ギ酸カリウム、ギ酸カルシウム、酢酸ナトリウム、酢酸カリウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸カルシウム、炭酸水素ナトリウム、炭酸水素カリウム、リン酸ナトリウムおよびリン酸カリウムが挙げられ、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、リン酸ナトリウムおよびリン酸カリウムが好ましい。
 有機塩基としては、アルキルアンモニウム水酸化物、アルキルアンモニウム炭酸塩、アルキルアンモニウム重炭酸塩、アルキルアンモニウムボロン酸塩、1,5−ジアザビシクロ[4.3.0]ノナ−5−エン(DBN)、1,8−ジアザビシクロ[5.4.0]ウンデセ−7−エン(DBU)、1,4−ジアザビシクロ[2.2.2]オクタン(DABCO)、ジメチルアミノピリジン(DMAP)、ピリジン、トリアルキルアミン、および、テトラアルキルアンモニウムフルオライド等のアルキルアンモニウムフルオライドが挙げられる。好ましくは、テトラメチルアンモニウム水酸化物、テトラエチルアンモニウム水酸化物、テトラ−n−プロピルアンモニウム水酸化物等のテトラアルキルアンモニウム水酸化物である。
 塩基の使用量は、通常、0.5当量~20当量(ここで、当量とは、芳香族モノマー(B)に含まれるXの合計物質量と等しい水素イオンを中和するのに必要な塩基の理論物質量の、芳香族モノマー(B)に含まれるXの合計物質量に対する比を表わす)の範囲が挙げられ、0.5当量~6当量の範囲が好ましい。
<相関移動触媒>
 本発明の製造方法において、塩基として無機塩基を用いる場合、相関移動触媒を併用してもよい。相関移動触媒としては、テトラアルキルハロゲン化アンモニウム、テトラアルキル硫酸水素アンモニウム、および、テトラアルキル水酸化アンモニウムが挙げられる。好ましくは、トリカプリリルメチル塩化アンモニウム(Sigma−Aldrich社からAliquat(登録商標)336として入手可能)等のテトラアルキルハロゲン化アンモニウムである。
 相関移動触媒の使用量は、通常、0.001当量~1当量(ここで、当量とは、芳香族モノマー(B)に含まれるXの合計物質量と等しい水素イオンを中和するのに必要な塩基の理論物質量の、芳香族モノマー(B)に含まれるXの合計物質量に対する比を表わす。)の範囲であり、0.01当量~0.5当量の範囲が好ましい。
 <非プロトン性有機溶媒>
 ”非プロトン性有機溶媒”は、分子内に、水酸基、アミノ基、カルボキシル基等の活性水素を有する基を有さず、かつ、芳香族モノマー(A)および芳香族モノマー(B)を溶解し得る有機溶媒を意味する。
 非プロトン性有機溶媒としては、非環状エーテル溶媒、環状エーテル溶媒等のエーテル溶媒、非プロトン性極性溶媒、芳香族炭化水素溶媒および脂肪族炭化水素溶媒が挙げられる。非プロトン性極性溶媒としては、N−メチルピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシドおよびアセトニトリルが挙げられる。非環状エーテル溶媒としては、ジエチルエーテル、ジイソプロピルエーテル、エチレングリコールジメチルエーテルおよびジエチレングリコールジメチルエーテルが挙げられる。環状エーテル溶媒としては、1,4−ジオキサンおよびテトラヒドロフランが挙げられる。芳香族炭化水素溶媒としては、ベンゼン、トルエン、キシレンおよびメシチレンが挙げられる。脂肪族炭化水素溶媒としては、ヘキサン、ヘプタンおよびシクロヘキサンが挙げられる。
 芳香族モノマー(A)および芳香族モノマー(B)の溶解度の観点から、トルエン、キシレン、メシチレン、ジエチルエーテル、ジイソプロピルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、1,4−ジオキサンおよびテトラヒドロフランが好ましい。
 必要に応じて、2種以上の非プロトン性有機溶媒を混合して用いてよく、具体的には、テトラヒドロフランとトルエンとの混合溶媒およびエチレングリコールジメチルエーテルとトルエンとの混合溶媒が挙げられる。
<パラジウム化合物>
 パラジウム化合物としては、パラジウム(0)錯体およびパラジウム(II)錯体が挙げられる。
 パラジウム(0)錯体としては、ジベンジリデンアセトンが0価パラジウムに配位した錯体、いわゆる、ジベンジリデンアセトン−パラジウム(0)錯体が挙げられる。具体的には、トリス(ジベンジリデンアセトン)ジパラジウム(0)、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体およびビス(ジベンジリデンアセトン)パラジウム(0)が挙げられる。
 パラジウム(II)錯体としては、酢酸パラジウム(II)、トリフルオロ酢酸パラジウム(II)、パラジウム(II)アセチルアセトナート等のパラジウムカルボン酸塩、塩化パラジウム(II)、臭化パラジウム(II)、ヨウ化パラジウム(II)等のハロゲン化パラジウム、および、アリルパラジウム(II)クロライドダイマー、ビス(2−メチルアリル)パラジウム(II)クロライドダイマー、ジクロロ(1,5−シクロオクタジエン)パラジウム(II)、ジクロロビス(アセトニトリル)パラジウム(II)、ジクロロビス(ベンゾニトリル)パラジウム(II)等のハロゲン化パラジウム錯体が挙げられる。なかでも、トリス(ジベンジリデンアセトン)ジパラジウム(0)、ビス(ジベンジリデンアセトン)パラジウム(0)、塩化パラジウム(II)、臭化パラジウム(II)および酢酸パラジウム(II)が好ましい。
 パラジウム化合物の使用量は、芳香族モノマー(B)1モルに対して、通常0.0001モル~0.8モルの範囲であり、好ましくは0.001モル~0.2モルの範囲である。
<式(C)で示されるホスフィン>
 式(C)で示されるホスフィンは、式(C):
Figure JPOXMLDOC01-appb-I000019
で示される。
 式(C)中、R、R、R、RおよびRはそれぞれ独立に、水素原子、炭素数1~20のフルオロアルキル基または炭素数1~20のジアルキルアミノ基を表わし、Aは、炭素数1~20のアルキル基を表わす。
 炭素数1~20のフルオロアルキル基としては、モノフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2−トリフルオロエチル基、ペンタフルオロエチル基、パーフルオロ−n−プロピル基およびパーフルオロイソプロピル基が挙げられ、炭素数1~4のフルオロアルキル基が好ましく、トリフルオロメチル基がより好ましい。
 炭素数1~20のジアルキルアミノ基は、2つの炭素数1~20のアルキル基で置換されたアミノ基であり、具体的には、ジメチルアミノ基、ジエチルアミノ基、ジ−n−プロピルアミノ基、ジイソプロピルアミノ基、ジ−n−ブチルアミノ基、ジ−sec−ブチルアミノ基およびジ−tert−ブチルアミノ基が挙げられ、炭素数1~8のジアルキルアミノ基が好ましく、炭素数1~4のジアルキルアミノ基がより好ましく、ジメチルアミノ基がさらに好ましい。
 Aで示される炭素数1~20のアルキル基は、直鎖状であってもよいし、分枝鎖状であってもよいし、環状であってもよい。具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、2,2−ジメチルプロピル基、シクロペンチル基、n−ヘキシル基、シクロヘキシル基、n−ヘプチル基、2−メチルペンチル基、n−オクチル基、2−エチルヘキシル基、n−ノニル基、n−デシル基、1−アダマンチル基、n−ウンデシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−ペンタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、n−ノナデシル基およびn−イコシル基が挙げられ、炭素数1~8のアルキル基が好ましく、tert−ブチル基、シクロペンチル基およびシクロヘキシル基がより好ましい。
 式(C)で示されるホスフィンとしては、
Aが、炭素数1~8のアルキル基である式(C)で示されるホスフィン、
Aが、tert−ブチル基である式(C)で示されるホスフィン、
Aが、シクロペンチル基である式(C)で示されるホスフィン、
Aが、シクロヘキシル基である式(C)で示されるホスフィン、
、R、RおよびRが水素原子であり、Rが炭素数1~4のジアルキルアミノ基である式(C)で示されるホスフィン、
、R、RおよびRが水素原子であり、Rが炭素数1~4のジアルキルアミノ基である式(C)で示されるホスフィン、
Aが、炭素数1~8のアルキル基であり、R、R、RおよびRが水素原子であり、Rが炭素数1~4のジアルキルアミノ基である式(C)で示されるホスフィン、
Aが、tert−ブチル基であり、R、R、RおよびRが水素原子であり、Rが炭素数1~4のジアルキルアミノ基である式(C)で示されるホスフィン、
Aが、シクロペンチル基であり、R、R、RおよびRが水素原子であり、Rが炭素数1~4のジアルキルアミノ基である式(C)で示されるホスフィン、
Aが、シクロヘキシル基であり、R、R、RおよびRが水素原子であり、Rが炭素数1~4のジアルキルアミノ基である式(C)で示されるホスフィン、
Aが、炭素数1~8のアルキル基であり、R、R、RおよびRが水素原子であり、Rが炭素数1~4のジアルキルアミノ基である式(C)で示されるホスフィン、
Aが、tert−ブチル基であり、R、R、RおよびRが水素原子であり、Rが炭素数1~4のジアルキルアミノ基である式(C)で示されるホスフィン、
Aが、シクロペンチル基であり、R、R、RおよびRが水素原子であり、Rが炭素数1~4のジアルキルアミノ基である式(C)で示されるホスフィン、
Aが、シクロヘキシル基であり、R、R、RおよびRが水素原子であり、Rが炭素数1~4のジアルキルアミノ基である式(C)で示されるホスフィン、
、R、RおよびRが水素原子であり、Rが炭素数1~4のフルオロアルキル基である式(C)で示されるホスフィン、
、R、RおよびRが水素原子であり、Rが炭素数1~4のフルオロアルキル基である式(C)で示されるホスフィン、
Aが、炭素数1~8のアルキル基であり、R、R、RおよびRが水素原子であり、Rが炭素数1~4のフルオロアルキル基である式(C)で示されるホスフィン、
Aが、tert−ブチル基であり、R、R、RおよびRが水素原子であり、Rが炭素数1~4のフルオロアルキル基である式(C)で示されるホスフィン、
Aが、シクロペンチル基であり、R、R、RおよびRが水素原子であり、Rが炭素数1~4のフルオロアルキル基である式(C)で示されるホスフィン、
Aが、シクロヘキシル基であり、R、R、RおよびRが水素原子であり、Rが炭素数1~4のフルオロアルキル基である式(C)で示されるホスフィン、
Aが、炭素数1~8のアルキル基であり、R、R、RおよびRが水素原子であり、Rが炭素数1~4のフルオロアルキル基である式(C)で示されるホスフィン、
Aが、tert−ブチル基であり、R、R、RおよびRが水素原子であり、Rが炭素数1~4のフルオロアルキル基である式(C)で示されるホスフィン、
Aが、シクロペンチル基であり、R、R、RおよびRが水素原子であり、Rが炭素数1~4のフルオロアルキル基である式(C)で示されるホスフィン、および、
Aが、シクロヘキシル基であり、R、R、RおよびRが水素原子であり、Rが炭素数1~4のフルオロアルキル基である式(C)で示されるホスフィンが挙げられる。
 式(C)で示されるホスフィンの具体例としては、ジシクロヘキシルフェニルホスフィン、ジシクロヘキシル[4−(N,N−ジメチルアミノ)フェニル]ホスフィン、ジシクロヘキシル[2−(N,N−ジメチルアミノ)フェニル]ホスフィン、ジシクロヘキシル(4−トリフルオロメチルフェニル)ホスフィン、ジシクロヘキシル(2−トリフルオロメチルフェニル)ホスフィン、ジ−tert−ブチルフェニルホスフィン、[4−(N,N−ジメチルアミノ)フェニル]ジ−tert−ブチルホスフィン、[2−(N,N−ジメチルアミノ)フェニル]ジ−tert−ブチルホスフィン、ジ(tert−ブチル)(4−トリフルオロメチルフェニル)ホスフィン、ジ(tert−ブチル)(2−トリフルオロメチルフェニル)ホスフィン、ジシクロペンチルフェニルホスフィン、ジシクロペンチル[4−(N,N−ジメチルアミノ)フェニル]ホスフィン、ジシクロペンチル[2−(N,N−ジメチルアミノ)フェニル]ホスフィン、ジシクロペンチル(4−トリフルオロメチルフェニル)ホスフィンおよびジシクロペンチル(2−トリフルオロメチルフェニル)ホスフィンが挙げられる。
<式(D)で示されるホスフィン>
 式(D)で示されるホスフィンは、式(D):
Figure JPOXMLDOC01-appb-I000020
で示される。
 式(D)中、R、R、R、RおよびR10はそれぞれ独立に、水素原子、炭素数1~20のフルオロアルキル基または炭素数1~20のジアルキルアミノ基を表わす。ただし、R~R10がすべて水素原子であることはない。
 炭素数1~20のフルオロアルキル基としては、モノフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2−トリフルオロエチル基、ペンタフルオロエチル基、パーフルオロ−n−プロピル基およびパーフルオロイソプロピル基が挙げられ、炭素数1~4のフルオロアルキル基が好ましく、トリフルオロメチル基がより好ましい。
 炭素数1~20のジアルキルアミノ基は、2つの炭素数1~20のアルキル基で置換されたアミノ基であり、具体的には、ジメチルアミノ基、ジエチルアミノ基、ジ−n−プロピルアミノ基、ジイソプロピルアミノ基、ジ−n−ブチルアミノ基、ジ−sec−ブチルアミノ基およびジ−tert−ブチルアミノ基が挙げられ、炭素数1~8のジアルキルアミノ基が好ましく、炭素数1~4のジアルキルアミノ基がより好ましく、ジメチルアミノ基がさらに好ましい。
 式(D)で示されるホスフィンとしては、
、R、RおよびR10が水素原子であり、Rが炭素数1~4のジアルキルアミノ基である式(D)で示されるホスフィン、
、R、RおよびR10が水素原子であり、Rが炭素数1~4のジアルキルアミノ基である式(D)で示されるホスフィン、
、R、RおよびR10が水素原子であり、Rが炭素数1~4のフルオロアルキル基である式(D)で示されるホスフィン、および、
、R、RおよびR10が水素原子であり、Rが炭素数1~4のフルオロアルキル基である式(D)で示されるホスフィンが挙げられる。
 式(D)で示されるホスフィンの具体例としては、ジシクロペンチルフェニルホスフィン、ジシクロペンチル[4−(N,N−ジメチルアミノ)フェニル]ホスフィン、ジシクロペンチル[2−(N,N−ジメチルアミノ)フェニル]ホスフィン、ジシクロペンチル(4−トリフルオロメチルフェニル)ホスフィンおよびジシクロペンチル(2−トリフルオロメチルフェニル)ホスフィンが挙げられる。
 式(C)で示されるホスフィンは、式(D)で示されるホスフィンであることが好ましい。
 本発明の製造方法における式(C)で示されるホスフィンの使用量は、パラジウム化合物1モルに対して、通常0.1モル~10モルの範囲であり、好ましくは0.5モル~5モルの範囲である。
 式(C)で示されるホスフィンは、Journal of Molecular Catalysis A: Chemical 2003,200,81−94.等の公知の方法に準じて合成することができる。また、市販の式(C)で示されるホスフィンを用いることもできる。
<遷移金属錯体>
 式(C)で示されるホスフィンまたは式(D)で示されるホスフィンと、第10族遷移金属化合物とを接触させることにより、遷移金属錯体を調製することができる。第10族遷移金属化合物としては、ニッケル化合物、パラジウム化合物および白金化合物が挙げられ、好ましくは、パラジウム化合物である。パラジウム化合物としては、前記の<パラジウム化合物>の欄に記載されたパラジウム化合物が挙げられる。
 式(C)で示されるホスフィンまたは式(D)で示されるホスフィンと、パラジウム化合物とを接触させることにより得られる遷移金属錯体は、例えば、第5版実験化学講座(日本化学会編纂、丸善(株)発行)21有機遷移金属錯体・超分子錯体p308−327(9.2有機パラジウム錯体)等の公知の方法に準じて調製することができる。
<重合工程>
 重合工程は、芳香族モノマー(A)と芳香族モノマー(B)とを、塩基、パラジウム化合物、式(C)で示されるホスフィンおよび非プロトン性有機溶媒の存在下に混合する工程であり、その混合順序は、限定されないが、例えば、(i)パラジウム化合物、式(C)で示されるホスフィン、塩基、芳香族モノマー(A)、芳香族モノマー(B)および非プロトン性有機溶媒を一緒に混合して重合する工程、(ii)塩基、芳香族モノマー(A)、芳香族モノマー(B)および非プロトン性有機溶媒を混合した後、パラジウム化合物および式(C)で示されるホスフィン、あるいは、パラジウム化合物と式(C)で示されるホスフィンとから予め調製される錯体、ならびに、非プロトン性有機溶媒を混合して重合する工程が挙げられる。
 重合工程における重合温度は、通常0℃~180℃の範囲であり、好ましくは30℃~100℃の範囲である。
 重合工程における重合時間としては、通常1時間~96時間の範囲であり、好ましくは3時間~48時間の範囲である。
 例えば、重合工程によって得られた芳香族ポリマーを含む反応混合物に貧溶媒を加える方法等により、目的とする芳香族ポリマーを析出させ、濾過等の通常の分離手段により、芳香族ポリマーを取り出してもよい。
 金属等の不純物を取り除くために、塩酸等の酸性溶液で当該反応混合物を洗浄した後、目的とする芳香族ポリマーを上記の方法で取り出してもよい。
 得られた芳香族ポリマーは、クロマトグラフィによる分別等の精製処理をしてもよい。
 以下に、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 得られた芳香族ポリマーの分子量は、ゲル浸透クロマトグラフィ(以下、GPCと記すことがある。)を行い、その分析結果からポリスチレン換算の重量平均分子量(Mw)を算出し、評価した。なお、GPCの分析条件は以下のとおりである。
<GPCの分析条件>
・GPC測定装置:CTO−20A(株式会社島津製作所製カラムオーブン)、SPD−20A(株式会社島津製作所製検出器)
・カラム:PLgel 10μm MIXED−B 300×7.5mm(ポリマーラボラトリーズ株式会社製)
・カラム温度:40℃
・移動相:テトラヒドロフラン
・流量:2mL/分
・検出:UV検出(波長:228nm)
実施例1
 窒素雰囲気下、室温で、冷却装置を備えたガラス製反応容器に、9,9−ジ−n−オクチルフルオレン−2,7−ジボロン酸とピナコールとから形成されるボロン酸エステル体(6.0mmol)、ビス(4−ブロモフェニル)[4−(メチルプロピル)フェニル]アミン(6.0mmol)、20重量%水酸化テトラエチルアンモニウム水溶液(20ml)およびトルエン(110ml)を加えた。得られた混合物を攪拌しながら、昇温した(バス温度100℃)。昇温後、ビス(ジ−tert−ブチル(4−ジメチルアミノフェニル)ホスフィン)ジクロロパラジウム(II)(3μmol)と、トルエン(12ml)とを加えた。得られた混合物を攪拌しながら、バス温度100℃で4時間重合を行った。重合後、得られた芳香族ポリマーが有する分子量を、上記のGPC測定により分析した結果、分子量(Mw)が6.4×10であることが確認された。
実施例2
 ビス(ジ−tert−ブチル(4−ジメチルアミノフェニル)ホスフィン)ジクロロパラジウム(II)の代わりに、ビス(ジ−tert−ブチルフェニルホスフィン)ジクロロパラジウム(II)を用いたこと以外は実施例1と同様に重合を実施した。得られた芳香族ポリマーが有する分子量を、上記のGPC測定により分析した結果、分子量(Mw)が5.2×10であることが確認された。
実施例3
 ビス(ジ−tert−ブチル(4−ジメチルアミノフェニル)ホスフィン)ジクロロパラジウム(II)の代わりに、ビス(ジ−tert−ブチル(4−トリフルオロメチルフェニル)ホスフィン)ジクロロパラジウム(II)を用いたこと以外は実施例1と同様に重合を実施した。得られた芳香族ポリマーが有する分子量を、上記のGPC測定により分析した結果、分子量(Mw)が4.9×10であることが確認された。
実施例4
 ビス(ジ−tert−ブチル(4−ジメチルアミノフェニル)ホスフィン)ジクロロパラジウム(II)の代わりに、ビス(ジシクロヘキシルフェニルホスフィン)ジクロロパラジウム(II)を用いたこと以外は実施例1と同様に重合を実施した。得られた芳香族ポリマーが有する分子量を、上記のGPC測定により分析した結果、分子量(Mw)が2.4×10であることが確認された。
実施例5
 ビス(ジ−tert−ブチル(4−ジメチルアミノフェニル)ホスフィン)ジクロロパラジウム(II)の代わりに、ビス(ジシクロヘキシル(4−(N,N−ジメチルアミノ)フェニル)ホスフィン)ジクロロパラジウム(II)を用いたこと以外は実施例1と同様に重合を実施した。得られた芳香族ポリマーが有する分子量を、上記のGPC測定により分析した結果、分子量(Mw)が2.5×10であることが確認された。
実施例6
 ビス(ジ−tert−ブチル(4−ジメチルアミノフェニル)ホスフィン)ジクロロパラジウム(II)の代わりに、ビス(ジシクロペンチルフェニルホスフィン)ジクロロパラジウム(II)を用いたこと以外は実施例1と同様に重合を実施した。得られた芳香族ポリマーが有する分子量を、上記のGPC測定により分析した結果、分子量(Mw)が3.7×10であることが確認された。
実施例7
 ビス(ジ−tert−ブチル(4−ジメチルアミノフェニル)ホスフィン)ジクロロパラジウム(II)の代わりに、ビス(ジシクロペンチル(4−トリフルオロメチルフェニル)ホスフィン)ジクロロパラジウム(II)を用いたこと以外は実施例1と同様に重合を実施した。得られた芳香族ポリマーが有する分子量を、上記のGPC測定により分析した結果、分子量(Mw)が3.2×10であることが確認された。
実施例8
 窒素雰囲気下、室温で、冷却装置を備えたガラス製反応容器に、9,9−ジ−n−オクチルフルオレン−2,7−ジボロン酸とピナコールとから形成されるボロン酸エステル(6.0mmol)、9,9−ジ−n−オクチル−2,7−ジブロモフルオレン(5.9mmol)、20重量%水酸化テトラエチルアンモニウム水溶液(20ml)およびトルエン(110ml)を加えた。得られた混合物を撹拌しながら昇温した(バス温度100℃)。昇温後、ビス(ジシクロヘキシル(4−(N,N−ジメチルアミノ)フェニル)ホスフィン)ジクロロパラジウム(II)(3μmol)と、トルエン(12ml)とを加えた。得られた混合物を撹拌しながら、バス温度100℃で4時間重合を行った。重合後、得られた芳香族ポリマーが有する分子量を、上記のGPC測定により分析した結果、分子量(Mw)が3.5×10であることが確認された。
実施例9
 窒素雰囲気下、滴下ロートを取り付けた反応容器に、ブロモベンゼン0.77gおよびテトラヒドロフラン20mlを加えた。得られた溶液を−78℃に冷却した後、n−ブチルリチウム(1.62M/ヘキサン溶液)3.0mlを滴下した。得られた混合物を同温度で2時間攪拌した。その後、得られた混合物に、クロロジシクロペンチルホスフィン1.00gをテトラヒドロフラン13mlに溶解させることにより得られた溶液を、−78℃で滴下した。得られた混合物を室温で5時間攪拌した。得られた反応混合物を濃縮することにより、濃縮物(粗生成物)として、ジシクロペンチルフェニルホスフィン1.55g(粘性液体)を得た。
実施例10
 窒素雰囲気下、反応容器に、実施例9で合成されたジシクロペンチルフェニルホスフィン1.55g、ジクロロビス(アセトニトリル)パラジウム(II)0.50gおよびエタノール20mlを加えた。得られた混合物を室温で16時間撹拌した。撹拌後、析出した固体を濾過により取り出し、エタノール12mlで3回洗浄した。得られた固体を50℃で3時間減圧乾燥を行うことにより、所望の遷移金属錯体であるビス(ジシクロペンチルフェニルホスフィン)ジクロロパラジウム(II)1.12gを、黄色固体として得た。
H−NMR(δ:ppm,CDCl溶媒、TMS基準)
7.7(m,2H),7.4(m,3H),2.8−2.9(quin,2H),2.0−2.2(m,2H),1.5−2.0(m,14H)
31P−NMR(δ:ppm,CDCl溶媒)29.0
実施例11
 ブロモベンゼン0.77gの代わりに、4−ブロモベンゾトリフルオリド1.10gを用いたこと以外は実施例9と同様の操作を実施し、濃縮物(粗生成物)としてジシクロペンチル(4−トリフルオロメチルフェニル)ホスフィン1.78g(粘性液体)を得た。
実施例12
 窒素雰囲気下、反応容器に、実施例11で合成されたジシクロペンチル(4−トリフルオロメチルフェニル)ホスフィン1.78g、ジクロロビス(アセトニトリル)パラジウム(II)0.50gおよびエタノール35mlを加えた。得られた混合物を室温で14時間撹拌した。撹拌後、析出した固体を濾過により取り出し、エタノール12mlで3回洗浄した。得られた固体を50℃で3時間減圧乾燥を行うことにより、所望の遷移金属錯体であるビス(ジシクロペンチル(4−トリフルオロメチルフェニル)ホスフィン)ジクロロパラジウム(II)1.34gを、淡黄色固体として得た。
H−NMR(δ:ppm,CDCl溶媒、TMS基準)
7.8(m,2H),7.6(m,2H),2.8−2.9(quin,2H),2.1−2.2(m,2H),1.8−2.0(m,4H),1.5−2.8(m,10H)
31P−NMR(δ:ppm,CDCl溶媒)30.0
 本発明の製造方法によれば、高分子量の芳香族ポリマーを製造することができる。

Claims (5)

  1.  式(A):
    Figure JPOXMLDOC01-appb-I000001
    (式中、Xはそれぞれ独立して、式(1)、(2)、(3)、(4)、(5)または(6)
    Figure JPOXMLDOC01-appb-I000002
    で示される基を表わし、Arは、炭素数6~36の2価の芳香族炭化水素基を表わす。当該芳香族炭化水素基に含まれる炭素原子は、ヘテロ原子またはカルボニル基で置き換わっていてもよく、当該芳香族炭化水素基に含まれる水素原子は、フッ素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、置換基を有してもよい複素環基、置換基を有してもよいアミノ基、置換基を有してもよいシリル基、アシル基、炭素原子−窒素原子二重結合を部分構造として有する基、酸イミド基、アルコキシカルボニル基、カルボキシル基、シアノ基またはニトロ基で置換されていてもよい。)
    で示される芳香族モノマーと、
    式(B):
    Figure JPOXMLDOC01-appb-I000003
    (式中、Xはそれぞれ独立して、塩素原子、臭素原子またはヨウ素原子を表わし、Arは、炭素数6~36の2価の芳香族炭化水素基を表わす。当該芳香族炭化水素基に含まれる炭素原子は、ヘテロ原子またはカルボニル基で置き換わっていてもよく、当該芳香族炭化水素基に含まれる水素原子は、フッ素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、置換基を有してもよい複素環基、置換基を有してもよいアミノ基、置換基を有してもよいシリル基、アシル基、炭素原子−窒素原子二重結合を部分構造として有する基、酸イミド基、アルコキシカルボニル基、カルボキシル基、シアノ基またはニトロ基で置換されていてもよい。)
    で示される芳香族モノマーとを、
    塩基、パラジウム化合物、式(C):
    Figure JPOXMLDOC01-appb-I000004
    (式中、R、R、R、RおよびRはそれぞれ独立に、水素原子、炭素数1~20のフルオロアルキル基または炭素数1~20のジアルキルアミノ基を表わし、Aは、炭素数1~20のアルキル基を表わす。)
    で示されるホスフィンおよび非プロトン性有機溶媒の存在下に混合する工程を含むことを特徴とする芳香族ポリマーの製造方法。
  2.  非プロトン性有機溶媒が、エーテル溶媒、芳香族炭化水素溶媒および脂肪族炭化水素溶媒からなる群から選ばれる少なくとも1種である請求項1に記載の製造方法。
  3.  パラジウム化合物が、パラジウム(0)錯体またはパラジウム(II)錯体である請求項1または2に記載の製造方法。
  4.  式(D):
    Figure JPOXMLDOC01-appb-I000005
    (式中、R、R、R、RおよびR10はそれぞれ独立に、水素原子、炭素数1~20のフルオロアルキル基または炭素数1~20のジアルキルアミノ基を表わす。ただし、R~R10がすべて水素原子であることはない。)
    で示されるホスフィン。
  5.  請求項4に記載のホスフィンと第10族遷移金属化合物とを接触させることにより得られる遷移金属錯体。
PCT/JP2012/058782 2011-03-29 2012-03-27 芳香族ポリマーの製造方法 WO2012133874A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011071891 2011-03-29
JP2011-071891 2011-03-29

Publications (1)

Publication Number Publication Date
WO2012133874A1 true WO2012133874A1 (ja) 2012-10-04

Family

ID=46931561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058782 WO2012133874A1 (ja) 2011-03-29 2012-03-27 芳香族ポリマーの製造方法

Country Status (3)

Country Link
JP (1) JP2012214707A (ja)
TW (1) TW201245262A (ja)
WO (1) WO2012133874A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112656A1 (ja) * 2013-01-21 2014-07-24 住友化学株式会社 反応性化合物
KR20150035822A (ko) * 2012-07-06 2015-04-07 스미또모 가가꾸 가부시키가이샤 방향족 화합물의 제조 방법
KR20150035823A (ko) * 2012-07-06 2015-04-07 스미또모 가가꾸 가부시키가이샤 방향족 화합물의 제조 방법
EP3225610A4 (en) * 2014-11-26 2018-07-25 Sumitomo Chemical Company, Limited Method for manufacturing compound

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6368317B2 (ja) 2012-11-30 2018-08-01 ケンブリッジ ディスプレイ テクノロジー リミテッド 高分子を形成する方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005511807A (ja) * 2001-12-06 2005-04-28 コヴィオン・オーガニック・セミコンダクターズ・ゲーエムベーハー アリール−アリールカップリング化合物の製造方法
JP2007106829A (ja) * 2005-10-12 2007-04-26 Jsr Corp 水素化触媒および水素化重合体の製造方法
JP2007119709A (ja) * 2005-02-16 2007-05-17 Sumitomo Chemical Co Ltd 芳香族ポリマーの製造方法
JP2007277534A (ja) * 2006-03-13 2007-10-25 Sumitomo Chemical Co Ltd 共役ポリマーの製造方法
JP2011073977A (ja) * 2009-09-29 2011-04-14 Sumitomo Chemical Co Ltd 共役芳香族化合物の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005511807A (ja) * 2001-12-06 2005-04-28 コヴィオン・オーガニック・セミコンダクターズ・ゲーエムベーハー アリール−アリールカップリング化合物の製造方法
JP2007119709A (ja) * 2005-02-16 2007-05-17 Sumitomo Chemical Co Ltd 芳香族ポリマーの製造方法
JP2007106829A (ja) * 2005-10-12 2007-04-26 Jsr Corp 水素化触媒および水素化重合体の製造方法
JP2007277534A (ja) * 2006-03-13 2007-10-25 Sumitomo Chemical Co Ltd 共役ポリマーの製造方法
JP2011073977A (ja) * 2009-09-29 2011-04-14 Sumitomo Chemical Co Ltd 共役芳香族化合物の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ARNALD GRABULOSA ET AL.: "Palladium complexes of bulky ortho-trifluoromethylphenyl-substituted phosphines:Unusually regioselective catalysts for the hydroxycarbonylation and alkoxycarbonylation of alkenes", J MOL CATAL A CHEM, vol. 330, 1 September 2010 (2010-09-01), pages 18 - 25, XP027263073 *
BO LU ET AL.: "Application of dicyclohexyl-(S)- trimethoxyphenyl phosphine-HBF4 salt for the highly selective suzuki coupling of the C-Cl bond in p-chlorobutenolides over the more reactive allylic C-0 bond", CHEM EUR J, vol. 16, no. 22, 2010, pages 6434 - 6437 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150035822A (ko) * 2012-07-06 2015-04-07 스미또모 가가꾸 가부시키가이샤 방향족 화합물의 제조 방법
KR20150035823A (ko) * 2012-07-06 2015-04-07 스미또모 가가꾸 가부시키가이샤 방향족 화합물의 제조 방법
EP2871199A4 (en) * 2012-07-06 2016-01-06 Sumitomo Chemical Co PROCESS FOR PRODUCING AROMATIC COMPOUND
US9238665B2 (en) * 2012-07-06 2016-01-19 Sumitomo Chemical Company, Limited Method for producing aromatic compound
US9453103B2 (en) 2012-07-06 2016-09-27 Sumitomo Chemical Company, Limited Method for producing aromatic compound
KR102029524B1 (ko) 2012-07-06 2019-10-07 스미또모 가가꾸 가부시키가이샤 방향족 화합물의 제조 방법
KR102045595B1 (ko) 2012-07-06 2019-11-15 스미또모 가가꾸 가부시키가이샤 방향족 화합물의 제조 방법
WO2014112656A1 (ja) * 2013-01-21 2014-07-24 住友化学株式会社 反応性化合物
US9512149B2 (en) 2013-01-21 2016-12-06 Sumitomo Chemical Company, Limited Reactive compound
JPWO2014112656A1 (ja) * 2013-01-21 2017-01-19 住友化学株式会社 反応性化合物
EP3225610A4 (en) * 2014-11-26 2018-07-25 Sumitomo Chemical Company, Limited Method for manufacturing compound

Also Published As

Publication number Publication date
JP2012214707A (ja) 2012-11-08
TW201245262A (en) 2012-11-16

Similar Documents

Publication Publication Date Title
WO2012133874A1 (ja) 芳香族ポリマーの製造方法
JP6791166B2 (ja) 芳香族化合物の製造方法およびパラジウム錯体
KR102266665B1 (ko) 고분자 화합물의 제조 방법
JP6191605B2 (ja) 芳香族化合物の製造方法
JP5210525B2 (ja) メタロール共重合体
WO2012165128A1 (ja) 高分子化合物及び有機光電変換素子
JP2007119709A (ja) 芳香族ポリマーの製造方法
WO2012133875A1 (ja) 芳香族ポリマーの製造方法
JP6905057B2 (ja) 高分子化合物の製造方法
JP6142874B2 (ja) 芳香族化合物の製造方法
JP5884433B2 (ja) 高分子化合物及びそれを用いた有機光電変換素子
JP2013159728A (ja) 芳香族ポリマーの製造方法
JP2013159729A (ja) 芳香族ポリマーの製造方法
CA2597532A1 (en) Method for producing aromatic polymer
JP2011099069A (ja) 芳香族ポリマーの製造方法
JP2013112762A (ja) 芳香族ポリマーの製造方法
JP2009215538A (ja) 芳香族ポリマーの製造方法
JP2011190244A (ja) 芳香族ホウ酸エステルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765031

Country of ref document: EP

Kind code of ref document: A1