WO2012133209A1 - 有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2012133209A1
WO2012133209A1 PCT/JP2012/057560 JP2012057560W WO2012133209A1 WO 2012133209 A1 WO2012133209 A1 WO 2012133209A1 JP 2012057560 W JP2012057560 W JP 2012057560W WO 2012133209 A1 WO2012133209 A1 WO 2012133209A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
layer
compound
light emitting
Prior art date
Application number
PCT/JP2012/057560
Other languages
English (en)
French (fr)
Inventor
起範 金
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012133209A1 publication Critical patent/WO2012133209A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/54Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings
    • C07C13/547Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings at least one ring not being six-membered, the other rings being at the most six-membered
    • C07C13/567Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings at least one ring not being six-membered, the other rings being at the most six-membered with a fluorene or hydrogenated fluorene ring system
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values

Definitions

  • the present invention relates to an organic electroluminescence element.
  • an organic electroluminescence element having an organic layer between a light emitting layer and an electrode has been studied.
  • an organic electroluminescence device having an organic layer containing a perfluorophenylene dendrimer between a light emitting layer and a cathode has been proposed.
  • the organic electroluminescence device has insufficient external quantum efficiency.
  • an object of the present invention is to provide an organic electroluminescence device having excellent external quantum efficiency.
  • the present invention provides the following [1] to [6].
  • An organic electroluminescence device comprising: an organic layer provided between the light emitting layer and the cathode and containing a compound represented by the formula (A).
  • Ar 1 represents an arylene group which may have a substituent.
  • n represents an integer of 2 to 5.
  • the plurality of Ar 1 may be the same or different.
  • at least one Ar 1 is a fluorenediyl group which may have a substituent.
  • X and Y each independently represent a hydrogen atom or a group represented by the formula (B). When X and Y are hydrogen atoms, at least one Ar 1 has a group represented by the formula (B) as a substituent.
  • the organic electroluminescence device according to any one of [1] to [4], wherein the energy gap of the compound represented by the formula (A) is larger than the energy gap of the light emitting material.
  • the compound represented by the above formula (A) is selected from the group consisting of trifluoromethylbenzene, 1,3-bis (trifluoromethyl) benzene, and 1,4-bis (trifluoromethyl) benzene.
  • the organic electroluminescence device of the present invention has excellent external quantum efficiency.
  • 3 is a graph showing voltage-current characteristics of organic electroluminescence elements 1 and C1.
  • 3 is a graph showing voltage-efficiency characteristics of organic electroluminescence elements 1 and C1.
  • the organic electroluminescence device of this embodiment is provided between a cathode, an anode, the cathode and the anode, and is provided between a light emitting layer containing a light emitting material, the light emitting layer and the cathode, and a formula ( It is an organic electroluminescent element which has an organic layer containing the compound represented by A).
  • the arylene group represented by Ar 1 is an atomic group obtained by removing two hydrogen atoms from an aromatic hydrocarbon, a group containing a benzene ring; a group containing a condensed ring; A group containing a structure in which two or more of a benzene ring or a condensed ring are bonded directly or via a vinylene group.
  • the arylene group may have a substituent.
  • substituents examples include an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkoxy group, an arylalkylthio group, an arylalkenyl group, an arylalkynyl group, an amino group, and a silyl group.
  • the number of carbon atoms in the portion excluding the substituent is usually 6 to 60, preferably 6 to 20.
  • the number of carbon atoms of the arylene group including the substituent is usually 6 to 100.
  • Examples of the arylene group represented by Ar 1 include a phenylene group (the following formulas 1 to 3), a naphthalenediyl group (the following formulas 4 to 13), an anthracene-diyl group (the following formulas 14 to 19), and a biphenyl-diyl group.
  • the organic electroluminescence device of this embodiment has excellent durability, the phenylene group, naphthalenediyl group, anthracene-diyl group, biphenyl-diyl group, fluorene-diyl group and benzofluorene- Diyl groups are preferred and include naphthalenediyl groups, anthracene-diyl groups, biphenyl-diyl groups, fluorene-diyl groups, and benzenes.
  • a zofluorene-diyl group is more preferable, a naphthalenediyl group, an anthracene-diyl group, a fluorene-diyl group and a benzofluorene-diyl group are more preferable, a fluorene-diyl group and a benzofluorene-diyl group are particularly preferable, and a fluorene-diyl group is Especially preferred.
  • the following groups may have a substituent.
  • the alkyl group that the arylene group represented by Ar 1 may have as a substituent may be either linear or branched, and may be a cycloalkyl group.
  • the alkyl group may have a substituent.
  • the number of carbon atoms of the alkyl group is usually 1-20.
  • Examples of the alkyl group which may have a substituent include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, a hexyl group, a cyclohexyl group, and a heptyl group.
  • Octyl group 2-ethylhexyl group, nonyl group, decyl group, 3,7-dimethyloctyl group, lauryl group, trifluoromethyl group, pentafluoroethyl group, perfluorobutyl group, perfluorohexyl group and perfluorooctyl group Is mentioned.
  • the alkoxy group that the arylene group represented by Ar 1 may have as a substituent may be either linear or branched, and may be a cycloalkyloxy group.
  • the alkoxy group may have a substituent.
  • the number of carbon atoms of the alkoxy group is usually 1-20.
  • Examples of the alkoxy group which may have a substituent include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, a tert-butoxy group, a pentyloxy group, a hexyloxy group, and a cyclohexyloxy group.
  • the alkylthio group that the arylene group represented by Ar 1 may have as a substituent may be either linear or branched, and may be a cycloalkylthio group.
  • the alkylthio group may have a substituent.
  • the alkylthio group usually has 1 to 20 carbon atoms.
  • Heptylthio group Heptylthio group, octylthio group, 2-ethylhexylthio group, nonylthio group, decylthio group, 3,7-dimethyloctylthio group, laurylthio group and trifluoromethylthio group.
  • the aryl group which the arylene group represented by Ar 1 may have as a substituent is an atomic group obtained by removing one hydrogen atom from an aromatic hydrocarbon, a group containing a benzene ring; a group containing a condensed ring And a group including a structure in which two or more of independent benzene rings or condensed rings are bonded directly or via a vinylene group or the like.
  • the aryl group usually has 6 to 60 carbon atoms, preferably 7 to 48 carbon atoms.
  • the aryl group may have a substituent, and examples of the aryl group which may have a substituent include a phenyl group, a C 1 -C 12 alkoxyphenyl group (C 1 -C 12 alkoxy is A C 1 to C 12 alkylphenyl group (C 1 to C 12 alkyl is an alkyl having 1 to 12 carbon atoms).
  • Examples of the C 1 -C 12 alkoxyphenyl group include a methoxyphenyl group, an ethoxyphenyl group, a propoxyphenyl group, an isopropoxyphenyl group, a butoxyphenyl group, an isobutoxyphenyl group, a tert-butoxyphenyl group, a pentyloxyphenyl group, Hexyloxyphenyl group, cyclohexyloxyphenyl group, heptyloxyphenyl group, octyloxyphenyl group, 2-ethylhexyloxyphenyl group, nonyloxyphenyl group, decyloxyphenyl group, 3,7-dimethyloctyloxyphenyl group and lauryloxyphenyl Groups.
  • Examples of the C 1 -C 12 alkylphenyl group include methylphenyl group, ethylphenyl group, dimethylphenyl group, propylphenyl group, mesityl group, methylethylphenyl group, isopropylphenyl group, butylphenyl group, isobutylphenyl group, tert -Butylphenyl group, pentylphenyl group, isoamylphenyl group, hexylphenyl group, heptylphenyl group, octylphenyl group, nonylphenyl group, decylphenyl group and dodecylphenyl group.
  • the aryloxy group that the arylene group represented by Ar 1 may have as a substituent usually has 6 to 60 carbon atoms, preferably 7 to 48 carbon atoms.
  • the aryloxy group may have a substituent, and examples of the aryloxy group which may have a substituent include a phenoxy group, a C 1 to C 12 alkoxyphenoxy group, and a C 1 to C 12 alkyl. Examples thereof include a phenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, and a pentafluorophenyloxy group, and a C 1 to C 12 alkoxyphenoxy group and a C 1 to C 12 alkylphenoxy group are preferable.
  • Examples of the C 1 -C 12 alkoxyphenoxy group include a methoxyphenoxy group, an ethoxyphenoxy group, a propoxyphenoxy group, an isopropoxyphenoxy group, a butoxyphenoxy group, an isobutoxyphenoxy group, a tert-butoxyphenoxy group, a pentyloxyphenoxy group, Hexyloxyphenoxy group, cyclohexyloxyphenoxy group, heptyloxyphenoxy group, octyloxyphenoxy group, 2-ethylhexyloxyphenoxy group, nonyloxyphenoxy group, decyloxyphenoxy group, 3,7-dimethyloctyloxyphenoxy group and lauryloxyphenoxy group Groups.
  • Examples of the C 1 -C 12 alkylphenoxy group include a methylphenoxy group, an ethylphenoxy group, a dimethylphenoxy group, a propylphenoxy group, a 1,3,5-trimethylphenoxy group, a methylethylphenoxy group, an isopropylphenoxy group, and a butylphenoxy group.
  • the arylthio group that the arylene group represented by Ar 1 may have as a substituent may have a substituent.
  • the arylthio group usually has 3 to 60 carbon atoms.
  • Examples of the arylthio group which may have a substituent include a phenylthio group, a C 1 to C 12 alkoxyphenylthio group, a C 1 to C 12 alkylphenylthio group, a 1-naphthylthio group, a 2-naphthylthio group, and a penta
  • a fluorophenylthio group is mentioned.
  • the arylalkyl group that the arylene group represented by Ar 1 may have as a substituent may have a substituent.
  • the arylalkyl group usually has 7 to 60 carbon atoms.
  • Examples of the arylalkyl group which may have a substituent include a phenyl-C 1 -C 12 alkyl group, a C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkyl group, and a C 1 -C 12 alkylphenyl.
  • the arylalkoxy group that the arylene group represented by Ar 1 may have as a substituent may have a substituent.
  • the arylalkoxy group usually has 7 to 60 carbon atoms.
  • Examples of the arylalkoxy group which may have a substituent include a phenyl-C 1 -C 12 alkoxy group, a C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkoxy group, and a C 1 -C 12 alkylphenyl.
  • -C 1 -C 12 alkoxy group, 1-naphthyl-C 1 -C 12 alkoxy group and 2-naphthyl-C 1 -C 12 alkoxy group may be mentioned.
  • the arylalkylthio group that the arylene group represented by Ar 1 may have as a substituent may have a substituent.
  • the arylalkylthio group usually has 7 to 60 carbon atoms.
  • Examples of the arylalkylthio group which may have a substituent include a phenyl-C 1 -C 12 alkylthio group, a C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkylthio group, and a C 1 -C 12 alkylphenyl group.
  • -C 1 -C 12 alkylthio group, 1-naphthyl-C 1 -C 12 alkylthio group and 2-naphthyl-C 1 -C 12 alkylthio group can be mentioned.
  • the arylalkenyl group that the arylene group represented by Ar 1 may have as a substituent may have a substituent.
  • the arylalkenyl group usually has 8 to 60 carbon atoms.
  • Examples of the arylalkenyl group which may have a substituent include a phenyl-C 2 -C 12 alkenyl group, a C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkenyl group, and a C 1 -C 12 alkylphenyl.
  • the arylalkynyl group that the arylene group represented by Ar 1 may have as a substituent may have a substituent.
  • the arylalkynyl group usually has 8 to 60 carbon atoms.
  • Examples of the arylalkynyl group which may have a substituent include a phenyl-C 2 -C 12 alkynyl group, a C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkynyl group, and a C 1 -C 12 alkylphenyl group.
  • the amino group that the arylene group represented by Ar 1 may have as a substituent may be an unsubstituted amino group or a substituted amino group.
  • a substituted amino group is a group in which one or two hydrogen atoms in an amino group are substituted with one or two groups selected from the group consisting of alkyl groups, aryl groups, arylalkyl groups, and monovalent heterocyclic groups. Amino group.
  • the alkyl group, the aryl group, the arylalkyl group and the monovalent heterocyclic group may further have a substituent.
  • the number of carbon atoms of the substituted amino group is usually 1 to 60, preferably 2 to 48, not including the number of carbon atoms of the substituent.
  • substituted amino group examples include methylamino group, dimethylamino group, ethylamino group, diethylamino group, propylamino group, dipropylamino group, isopropylamino group, diisopropylamino group, butylamino group, and s-butylamino group.
  • the silyl group that the arylene group represented by Ar 1 may have as a substituent may be an unsubstituted silyl group or a substituted silyl group.
  • the substituted silyl group is one, two or three hydrogen atoms in the silyl group selected from the group consisting of an alkyl group, an aryl group, an arylalkyl group and a monovalent heterocyclic group.
  • the alkyl group, the aryl group, the arylalkyl group and the monovalent heterocyclic group may further have a substituent.
  • the number of carbon atoms of the substituted silyl group is usually 1 to 60, preferably 3 to 48.
  • substituted silyl group examples include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, tri-isopropylsilyl group, dimethyl-isopropylsilyl group, diethyl-isopropylsilyl group, tert-butyldimethylsilyl group, pentyldimethylsilyl group.
  • the acyl group that the arylene group represented by Ar 1 may have as a substituent has usually 2 to 20 carbon atoms, preferably 2 to 18 carbon atoms.
  • Examples of the acyl group that may have a substituent include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a benzoyl group, a trifluoroacetyl group, and a pentafluorobenzoyl group.
  • the acyloxy group that the arylene group represented by Ar 1 may have as a substituent has usually 2 to 20 carbon atoms, preferably 2 to 18 carbon atoms.
  • Examples of the acyloxy group which may have a substituent include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, a benzoyloxy group, a trifluoroacetyloxy group, and a pentafluorobenzoyloxy group. Is mentioned.
  • the imine residue that the arylene group represented by Ar 1 may have as a substituent is a residue obtained by removing one hydrogen atom from an imine compound.
  • the imine compound means an organic compound containing —N ⁇ C— group in the molecule.
  • the imine compound include aldimine, ketimine, and compounds in which the hydrogen atom of the nitrogen atom of these compounds is substituted with an alkyl group or the like.
  • the number of carbon atoms of the imine residue is usually 2 to 20, and preferably 2 to 18.
  • Examples of the imine residue include groups represented by the following structural formulas.
  • the carbamoyl group that the arylene group represented by Ar 1 may have as a substituent has usually 1 to 20 carbon atoms, and preferably 1 to 18 carbon atoms.
  • Examples of the carbamoyl group which may have a substituent include, for example, formamide group, acetamide group, propioamide group, butyroamide group, benzamide group, trifluoroacetamide group, pentafluorobenzamide group, diformamide group, diacetamide group, dipropioamide Group, dibutyroamide group, dibenzamide group, ditrifluoroacetamide group and dipentafluorobenzamide group.
  • the acid imide group which the arylene group represented by Ar 1 may have as a substituent is a residue obtained by removing a hydrogen atom bonded to the nitrogen atom from the acid imide.
  • the number of carbon atoms in the acid imide group is usually 4-20.
  • Examples of the acid imide group include the following groups.
  • the monovalent heterocyclic group that the arylene group represented by Ar 1 may have as a substituent refers to the remaining atomic group obtained by removing one hydrogen atom from a heterocyclic compound, and the number of carbon atoms is Usually, it is 4 to 60, preferably 4 to 20. Of the monovalent heterocyclic groups, monovalent aromatic heterocyclic groups are preferred. The number of carbon atoms in the monovalent heterocyclic group does not include the number of carbon atoms in the substituent.
  • a heterocyclic compound is an organic compound having a cyclic structure in which not only carbon atoms but also hetero atoms such as oxygen atoms, sulfur atoms, nitrogen atoms, phosphorus atoms and boron atoms are contained in the ring.
  • Examples of the monovalent heterocyclic group include thienyl group, C 1 to C 12 alkyl thienyl group, pyrrolyl group, furyl group, pyridyl group, C 1 to C 12 alkyl pyridyl group, piperidyl group, quinolyl group and isoquinolyl group. And a thienyl group, a C 1 -C 12 alkyl thienyl group, a pyridyl group and a C 1 -C 12 alkyl pyridyl group are preferred.
  • the carboxyl group that the arylene group represented by Ar 1 may have as a substituent may be an unsubstituted carboxyl group or a substituted carboxyl group.
  • the substituted carboxyl group refers to a carboxyl group in which a hydrogen atom in the carboxyl group is substituted with an alkyl group, an aryl group, an arylalkyl group or a monovalent heterocyclic group.
  • the alkyl group, the aryl group, the arylalkyl group and the monovalent heterocyclic group may further have a substituent.
  • the number of carbon atoms of the substituted carboxyl group is usually 2 to 60, preferably 2 to 48.
  • Examples of the substituted carboxyl group include a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, an isopropoxycarbonyl group, a butoxycarbonyl group, an isobutoxycarbonyl group, a tert-butoxycarbonyl group, a pentyloxycarbonyl group, a hexyloxycarbonyl group, Cyclohexyloxycarbonyl group, heptyloxycarbonyl group, octyloxycarbonyl group, 2-ethylhexyloxycarbonyl group, nonyloxycarbonyl group, decyloxycarbonyl group, 3,7-dimethyloctyloxycarbonyl group, dodecyloxycarbonyl group, trifluoro Methoxycarbonyl group, pentafluoroethoxycarbonyl group, perfluorobutoxycarbonyl group, perfluorohexyloxycarbonyl group,
  • Examples of the compound represented by the formula (A) include a compound represented by the formula (A-1).
  • Ar 2 , Ar 3 , Ar 4 , Ar 5 and Ar 6 each independently represent an arylene group which may have a substituent.
  • n2, n3, n4, n5 and n6 each independently represents 0 or 1.
  • n2 + n3 + n4 + n5 + n6 is 2-5.
  • at least one of Ar 2 , Ar 3 , Ar 4 , Ar 5 and Ar 6 is a fluorenediyl group which may have a substituent, and corresponding n2, n3, n4, n5 And n6 is 1.
  • Z represents a group represented by the formula (B).
  • C2, C3, C4, C5 and C6 each independently represents an integer of 0 to 2. When there are a plurality of Z, they may be the same or different.
  • X and Y represent the same meaning as described above. When X and Y are hydrogen atoms, C2 + C3 + C4 + C5 + C6 is 1-10. ]
  • the definition and examples of the arylene group represented by Ar 2 , Ar 3 , Ar 4 , Ar 5 and Ar 6 are the same as the definition and examples of the arylene group represented by Ar 1 described above.
  • Ar 2 , Ar 3 , Ar 4 , Ar 5 and Ar 6 are all fluorene-diyl groups which may have a substituent.
  • a 2,7-fluorene-diyl group which may have a substituent is more preferable.
  • N2 and n6 are 0, and n3, n4 and n5 are more preferably 1.
  • C2, C3, C4, C5 and C6 are each preferably 0 or 2 because synthesis of the compound represented by the formula (A-1) is easy.
  • the compound represented by the formula (A-1) when both X and Y are hydrogen atoms, the compound represented by the formula (A-1) is excellent in solubility in an organic solvent, and therefore C4 may be 1 or 2. It is preferably 2, more preferably 2, C4 is 2, and C2, C3, C5 and C6 are more preferably 0.
  • examples of the group represented by the formula (B) represented by Z include groups represented by the following formulas (F1) to (F32).
  • the groups represented by formulas (F1) to (F14) are preferred.
  • z is preferably 0 because the stability of the compounds represented by the formulas (A) and (A-1) is excellent.
  • Examples of the compound represented by the formula (A) include the following compounds.
  • the compound represented by the formula (A) may be contained alone or in combination of two or more in the organic layer. Further, the compound represented by the formula (A) contained in the organic layer is at least one material selected from the group consisting of a hole transport material, an electron transport material, and a light emitting material even if only the compound is contained. And may be included as a composition.
  • the ratio of the hole transport material in the composition is usually 1% by weight to 80% by weight, preferably 5% by weight to 60% by weight.
  • the ratio of the electron transport material in the composition is usually 1% by weight to 80% by weight, preferably 5% by weight to 60% by weight.
  • the ratio of the light emitting material in the composition is usually 1% by weight to 80% by weight, preferably 5% by weight to 60% by weight.
  • Examples of the organic layer containing the compound represented by the formula (A) include an electron transport layer, an electron injection layer, and a hole blocking layer, and the hole blocking layer is preferable because the device can be easily manufactured.
  • Examples of the structure of the organic electroluminescence element of the present embodiment include the following structures a) to l).
  • / indicates that each layer is laminated adjacently, and the same applies hereinafter.
  • the organic electroluminescent device of this embodiment has an electron transport layer, an electron injection layer, a hole blocking layer, and the like in addition to the organic layer containing the compound represented by the formula (A) between the cathode and the light emitting layer. You may do it.
  • Examples of the structure of the element include the following structures c) to n).
  • Anode / light emitting layer / organic layer / electron transport layer / cathode b) Anode / hole transport layer / light emitting layer / organic layer / electron transport layer / cathode c) Anode / light emitting layer / organic layer / electron injection layer / cathode d) Anode / hole transport layer / light emitting layer / organic layer / electron injection layer / cathode e) Anode / light emitting layer / organic layer / electron transport layer / electron injection layer / cathode f) Anode / hole transport layer / light emitting layer / Organic layer / electron transport layer / electron injection layer / cathode g) anode / light emitting layer / hole blocking layer / organic layer / cathode h) anode / hole transport layer / light emitting layer / hole blocking layer / organic layer / cathode i) Anode / light emitting
  • the light emitting layer is a layer having a function of emitting light and includes a light emitting material.
  • the hole transport layer is a layer having a function of transporting holes.
  • the electron transport layer is a layer having a function of transporting electrons.
  • the electron injection layer is a layer having a function of injecting electrons from the cathode to the adjacent organic layer.
  • the hole blocking layer is a layer having a function of retaining holes that have not been recombined from the light emitting layer within the light emitting layer without passing through.
  • the electron transport layer and the hole transport layer may be collectively referred to as a charge transport layer.
  • the hole transport layer adjacent to the light emitting layer may be referred to as an interlayer layer. Each layer may have two or more layers.
  • the hole blocking layer can exhibit more functions in the organic electroluminescence element of the present embodiment. It is preferable that the energy of the highest occupied orbital level of the compound represented by the formula (1) and the energy of the highest occupied orbital level of the light emitting material satisfy the formula (1).
  • the light emitting layer contains two or more kinds of light emitting materials, it is preferable that the conditions of the formula (1) are satisfied for all the light emitting materials.
  • the light emitting layer includes a phosphorescent compound and a host compound, both the phosphorescent compound and the host compound are used as a light emitting material.
  • the light emitting region inside the device is controlled and uniform light emission can be obtained, so that the organic layer containing the compound represented by the formula (A) may be non-light emitting.
  • the non-luminous property of the organic layer means that no light emission of the organic layer is observed from the electroluminescence spectrum.
  • the energy of the lowest unoccupied orbital level of the compound represented by the formula (A) and the lowest unoccupied orbital level of the light emitting material since electrons are smoothly injected into the light emitting material, the energy of the lowest unoccupied orbital level of the compound represented by the formula (A) and the lowest unoccupied orbital level of the light emitting material. It is preferable that the energy of the position satisfies the formula (2).
  • the organic electroluminescence device of the present embodiment it is possible to more effectively avoid the excitons in the light emitting layer from diffusing or moving to the cathode interface, so that the energy gap of the compound represented by the formula (A) Is preferably larger than the energy gap of the luminescent material.
  • the compound represented by the formula (A) is trifluoromethylbenzene, 1,3-bis (trifluoromethyl) benzene, and 1,4-bis (trifluoromethyl). It is preferable to dissolve at least 0.1% by weight (w / o) in at least one fluorine solvent selected from the group consisting of benzene.
  • each layer including the light emitting layer and the organic layer is not limited, but film formation from a solution is preferable.
  • spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, slit coating method, cap coating method, capillary Coating methods such as a coating method, a spray coating method, a screen printing method, a flexographic printing method, an offset printing method, an ink jet printing method, and a nozzle coating method can be used.
  • the thicknesses of the light emitting layer and the organic layer differ depending on the materials used, and may be selected so that the driving voltage and the light emission efficiency are appropriate values.
  • each is independently 1 nm to 1 ⁇ m, preferably Is 2 nm to 500 nm, more preferably 5 nm to 200 nm.
  • the light emitting material contained in the light emitting layer can be classified into a low molecular compound and a high molecular compound, and a known material can be used for each.
  • the low molecular weight compound include naphthalene derivatives, anthracene and derivatives thereof, perylene and derivatives thereof, dyes such as polymethine, xanthene, coumarin, and cyanine, metal complexes of 8-hydroxyquinoline and derivatives thereof, aromatic amines, and the like.
  • Tetraphenylcyclopentadiene and derivatives thereof, and tetraphenylbutadiene and derivatives thereof can be used.
  • the hole transport material used includes polyvinyl carbazole and its derivatives, polysilane and its derivatives, poly having an aromatic amine in the side chain or main chain.
  • Polyvinylcarbazole and derivatives thereof, polysilane And their derivatives, and polysiloxane derivatives having an aromatic amine in the side chain or main chain are more preferred.
  • a low molecular hole transport material it is preferably used by dispersing in a polymer binder.
  • Polyvinylcarbazole and its derivatives can be obtained, for example, from a vinyl monomer by cation polymerization or radical polymerization.
  • polysilanes and derivatives thereof examples include compounds described in Chem. Rev., 89, 1359 (1989), and GB 2300196 published specification. As the synthesis method, the methods described in these can be used, but the Kipping method is preferably used.
  • polysiloxane derivative those having the structure of the low molecular hole transport material in the side chain or main chain are preferable, and those having a hole transporting aromatic amine in the side chain or main chain are more preferable.
  • the method for forming the hole transport layer is not limited, but for the low molecular hole transport material, a method by film formation from a mixed solution with a polymer binder is exemplified, and for the polymer hole transport material, from the solution, A method by film formation is exemplified.
  • the solvent used for film formation from a solution is not particularly limited as long as it can dissolve the hole transporting material.
  • Chlorine solvents such as chloroform, dichloromethane and dichloroethane
  • Ether solvents such as tetrahydrofuran
  • Aromatic carbonization such as toluene and xylene.
  • Examples include hydrogen solvents; ketone solvents such as acetone and methyl ethyl ketone; and ester solvents such as ethyl acetate, butyl acetate, and ethyl cellosolve acetate.
  • slit coating method For film formation from solution, spin coating from solution, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, slit coating method, cap coating Coating methods such as a method, a capillary coating method, a spray coating method, a screen printing method, a flexographic printing method, an offset printing method, an ink jet printing method, and a nozzle coating method can be used.
  • polystyrene polystyrene
  • polyvinyl chloride polysiloxane
  • the thickness of the hole transport layer varies depending on the material used, and may be selected so that the drive voltage and the light emission efficiency are appropriate.
  • the thickness is 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm. More preferably, it is 5 nm to 200 nm.
  • the organic electroluminescent element of this embodiment has an electron transport layer in addition to the organic layer containing the compound represented by Formula (A) between the cathode and the light emitting layer, it is used for the electron transport layer.
  • a known material can be used as the electron transport material.
  • Electron transport materials include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone derivatives, diphenyldicyanoethylene And derivatives thereof, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof, and polyfluorene and derivatives thereof, such as oxadiazole derivatives, benzoquinones and derivatives thereof, Anthraquinone and its derivatives, metal complexes of 8-hydroxyquinoline and its derivatives, polyquinoline and its derivatives, polyquinoxaline and its derivatives, and polyfluorine And 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1
  • the method for forming the electron transport layer is not limited, but for the low molecular electron transport material, a vacuum deposition method from powder and a method by film formation from a solution or a molten state are exemplified. A method by film formation from a solution or a molten state is exemplified. When forming a film from a solution or a molten state, a polymer binder may be used in combination.
  • any solvent that dissolves an electron transport material and / or a polymer binder may be used.
  • the solvent include chlorine solvents such as chloroform, dichloromethane and dichloroethane; ether solvents such as tetrahydrofuran; aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as acetone and methyl ethyl ketone; ethyl acetate, butyl acetate and ethyl cellosolve acetate
  • the ester solvent is exemplified.
  • spin coating method For film formation from solution or molten state, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, slit coating method, cap coating Coating methods such as a method, a capillary coating method, a spray coating method, a screen printing method, a flexographic printing method, an offset printing method, an inkjet printing method, and a nozzle coating method are used.
  • polymer binder that can be used in combination with the low molecular electron transport material, those that do not extremely inhibit charge transport and those that do not strongly absorb visible light are preferable.
  • the polymer binder include poly (N-vinylcarbazole), polyaniline and derivatives thereof, polythiophene and derivatives thereof, poly (p-phenylene vinylene) and derivatives thereof, poly (2,5-thienylene vinylene) and derivatives thereof, Examples include polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, and polysiloxane.
  • the thickness of the electron transport layer varies depending on the material used, and may be selected so that the drive voltage and the light emission efficiency are appropriate.
  • the thickness is 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm. More preferably, it is 5 nm to 200 nm.
  • charge injection layer the one having the function of improving the charge injection efficiency from the electrodes and having the effect of lowering the driving voltage of the element is sometimes called a “charge injection layer”.
  • the organic electroluminescent element of this embodiment has an electron injection layer in addition to the organic layer containing the compound represented by Formula (A) between the cathode and the light emitting layer, it is used for the electron injection layer.
  • the electron injection material include the above-described electron transport materials.
  • the electron injection layer may be doped with cations in the layer. Examples of cations include lithium ions, sodium ions, potassium ions, and tetrabutylammonium ions.
  • the method for forming the electron injection layer is not limited, but for the low molecular electron injection material, a vacuum deposition method from a powder and a method by film formation from a solution or a molten state are exemplified. The method by the film-forming from a molten state is illustrated.
  • a polymer binder may be used in combination.
  • the thickness of the electron injection layer is, for example, 1 nm to 100 nm, and preferably 2 nm to 50 nm.
  • the adhesion with the electrode is improved and the charge injection property from the electrode is further improved, so that an insulating layer can be provided adjacent to the electrode.
  • the adhesion at the interface is improved and mixing of the layers forming the interface can be prevented, so that a buffer layer can be provided at the interface of the charge transport layer or the light emitting layer.
  • the order and number of layers to be stacked, and the thickness of each layer may be appropriately selected in consideration of light emission efficiency or element lifetime.
  • examples of the structure of the organic electroluminescence device provided with the hole injection layer include the following structures o) to p). o) Anode / charge injection layer / light emitting layer / organic layer / cathode p) Anode / charge injection layer / hole transport layer / light emitting layer / organic layer / cathode
  • the hole injection layer include a layer containing a conductive polymer, a hole transport material provided between the anode and the hole transport layer, and included in the anode material and the hole transport layer. And a layer containing a material having an ionization potential having an intermediate value of.
  • the electrical conductivity of the conductive polymer is preferably 10 ⁇ 5 S / cm or more and 10 3 S / cm or less.
  • 10 ⁇ 5 S / cm to 10 2 S / cm is more preferable, and 10 ⁇ 5 S / cm to 10 1 S / cm is more preferable.
  • the conductive polymer is doped with an appropriate amount of ions.
  • the kind of ion to be doped is an anion.
  • anions include polystyrene sulfonate ions, alkylbenzene sulfonate ions, camphor sulfonate ions, and the like.
  • the thickness of the hole injection layer is, for example, 1 nm to 100 nm, preferably 2 nm to 50 nm.
  • the material used for the charge injection layer may be appropriately selected in relation to the material of the electrode and the adjacent layer.
  • the insulating layer has a function of facilitating charge injection.
  • the average thickness of this insulating layer is usually 0.1 to 20 nm, preferably 0.5 to 10 nm, and more preferably 1 to 5 nm.
  • Examples of the material for the insulating layer include metal fluorides, metal oxides, and organic insulating materials.
  • Examples of the organic electroluminescent element provided with an insulating layer include an organic electroluminescent element provided with an insulating layer adjacent to the cathode and an organic electroluminescent element provided with an insulating layer adjacent to the anode.
  • the substrate on which the organic electroluminescence element of this embodiment is formed is not limited as long as it forms electrodes and does not change chemically when each layer is formed.
  • the substrate include glass, plastic, polymer film, and silicon. Is done.
  • the opposite electrode is preferably transparent or translucent.
  • at least one of an electrode composed of an anode and a cathode is transparent or translucent, but the anode side is preferably transparent or translucent.
  • Examples of the material of the anode include a conductive metal oxide film and a translucent metal thin film. Indium oxide, zinc oxide, tin oxide, indium tin oxide (ITO) and indium. Films made using conductive glass made of zinc oxide, etc .; Films made using metals such as NESA, gold, platinum, silver and copper; etc. are preferred, ITO, indium zinc oxide and oxide Tin is more preferred.
  • examples of the material for the anode include polyaniline and derivatives thereof, and polythiophene and derivatives thereof.
  • a vacuum deposition method For the production of the anode, a vacuum deposition method, a sputtering method, an ion plating method, a plating method, or the like is used.
  • the thickness of the anode can be appropriately selected in consideration of light transmittance and electrical conductivity. For example, it is 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm. It is.
  • a layer made of a phthalocyanine derivative, a conductive polymer and carbon, or a layer made of a metal oxide, a metal fluoride, an organic insulating material, or the like may be provided on the anode.
  • the material of the cathode is preferably a material having a low work function, such as lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, Metals such as samarium, europium, terbium and ytterbium; two or more of these metals; one or more of these metals and gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten and Alloys with one or more of tin; graphite; graphite intercalation compounds; Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy and calcium-aluminum alloy.
  • the cathode may have a laminated structure of two or more layers.
  • the thickness of the cathode can be appropriately selected in consideration of electric conductivity and durability.
  • the thickness is 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm.
  • a vacuum deposition method, a sputtering method, a laminating method in which a metal thin film is thermocompression bonded, or the like is used as a method for producing the cathode.
  • a layer made of a conductive polymer or a layer made of a metal oxide, a metal fluoride and an organic insulating material may be provided between the cathode and the organic material layer, and the organic electroluminescence element is protected after the cathode is manufactured.
  • a protective layer may be attached. In order to use the organic electroluminescence element stably for a long period of time, it is preferable to attach a protective layer and / or a protective cover in order to protect the element from the outside.
  • the protective layer resins, metal oxides, metal fluorides, metal borides and the like can be used.
  • a glass plate and a plastic plate having a low water permeability treatment on the surface can be used. It is preferable to seal the protective cover by attaching it to the substrate with a thermosetting resin or a photo-curing resin. If the space is maintained using the spacer, it is easy to prevent the element from being damaged. Oxidation of the cathode can be prevented by sealing inert gas such as nitrogen gas and argon gas in the space. In addition, by installing a desiccant such as barium oxide in the space, even if moisture is adsorbed to the element in the manufacturing process, the moisture can be prevented from damaging the element. Among these, it is preferable to take any one or more measures.
  • the organic electroluminescence element of the present embodiment can be used for display devices such as planar light sources, segment display devices, dot matrix display devices, and liquid crystal display devices (for example, backlights).
  • display devices such as planar light sources, segment display devices, dot matrix display devices, and liquid crystal display devices (for example, backlights).
  • the planar anode and cathode may be arranged so as to overlap each other.
  • a method of installing a mask provided with a pattern-like window on the surface of the planar organic electroluminescence element an organic material layer of a non-light-emitting part is formed extremely thick and substantially non-light-emitting.
  • a segment display device capable of displaying numbers, letters, simple symbols, etc.
  • both the anode and the cathode may be formed in stripes and arranged orthogonally. Partial color display or multicolor display is possible by a method of separately coating a plurality of types of polymer compounds having different emission colors or a method using a color filter or a fluorescence conversion filter.
  • the dot matrix display device can be driven passively or may be driven actively in combination with a TFT or the like. These display devices can be used in computers, televisions, mobile terminals, mobile phones, car navigation systems, video camera viewfinders, and the like.
  • the planar organic electroluminescence element is self-luminous and thin, and is suitable as a planar light source for a backlight of a liquid crystal display device or a planar illumination light source.
  • Examples of the emission color of the illumination light source include white, red, green, and blue. If a flexible substrate is used, it can also be used as a curved light source or display device.
  • reaction solution was filtered through Celite and then passed through a silica gel filtration column.
  • Solution B was added dropwise to solution A so that the temperature of solution A was kept at ⁇ 70 ° C. or lower and stirred.
  • the reaction was stirred at room temperature for 15 hours.
  • 150 mL of water was added to the reaction solution at 0 ° C. and stirred.
  • the solvent was distilled off by concentration under reduced pressure, hexane and water were added to the residue, and the mixture was stirred and allowed to stand to remove the aqueous layer, thereby obtaining an organic layer.
  • the organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to obtain an intermediate.
  • the obtained solid was recrystallized three times to obtain 2.4 g of compound (M-18).
  • a polymer compound (P-1) represented by the formula: In the formula, the number attached outside the parentheses represents the mole fraction of each repeating unit.
  • the polymer compound (P-1) had a polystyrene-equivalent number average molecular weight of 5.1 ⁇ 10 4 and a polystyrene-equivalent weight average molecular weight of 1.4 ⁇ 10 5 .
  • MM-4 21 mg of bistriphenylphosphine palladium dichloride, trioctylmethylammonium chloride (trade name: Aliquat 336 (registered trademark), manufactured by Aldrich), 4.5 mg of palladium acetate, 28 mg Of o-trimethoxyphenylphosphine and 100 mL of toluene were mixed and heated to 105 ° C.
  • 35 mL of a 20 wt% tetraethylammonium hydroxide aqueous solution was added dropwise and refluxed for 2 hours. After the reaction, 61 mg of phenylboric acid was added, and the mixture was further refluxed for 4 hours.
  • the polymer compound (P-2) represented by the formula: In the formula, the number attached outside the parentheses represents the mole fraction of each repeating unit.
  • the polymer compound (P-2) had a polystyrene-equivalent number average molecular weight of 9.7 ⁇ 10 4 and a polystyrene-equivalent weight average molecular weight of 3.0 ⁇ 10 5 .
  • Example 1> (Preparation and evaluation of organic electroluminescence element 1) A hole injection layer was formed by attaching a molybdenum trioxide film having a thickness of 5 nm by a vacuum deposition method on a glass substrate having an ITO film as an anode having a thickness of 45 nm by a sputtering method. Next, using the xylene solution (S-2) obtained above, a film was formed by spin coating at a rotation speed of 1600 rpm, and the thin film was cured by heating on a hot plate at 180 ° C. for 60 minutes. The thickness after film formation was about 20 nm.
  • a film was formed by spin coating at a rotational speed of 1600 rpm, and heated on a hot plate at 130 ° C. for 10 minutes. The thickness after film formation was about 60 nm.
  • a film was formed at a rotational speed of 1600 rpm by spin coating. The thickness after film formation was about 10 nm. This was dried at 130 ° C. for 10 minutes to form an organic layer as a hole blocking layer. Thereafter, barium was vapor-deposited with a thickness of about 5 nm as a cathode, and then aluminum was vapor-deposited with a thickness of about 100 nm. The metal deposition was started after the degree of vacuum reached 1 ⁇ 10 ⁇ 4 Pa or less.
  • FIG. 2 shows voltage-efficiency characteristics of the organic electroluminescence elements 1 and C1.
  • the organic electroluminescence device 1 (a) exhibited an external quantum efficiency of 1% at about 8.5V, whereas the organic electroluminescence device C1 (b) exhibited an external quantum efficiency of 0.2% at 10V. Indicated. From this result, in the organic electroluminescent element 1, the effect that the external quantum efficiency was excellent was confirmed.

Abstract

陰極と、陽極と、該陰極及び該陽極の間に設けられ発光材料を含む発光層と、該発光層及び該陰極の間に設けられ式(A)で表される化合物を含む有機層とを有する、有機エレクトロルミネッセンス素子。〔式中、Ar1は、置換基を有していてもよいアリーレン基を表す。nは、2~5の整数を表す。複数個あるAr1は、それぞれ同一であっても異なってもよい。但し、少なくとも1つのAr1は、置換基を有していてもよいフルオレンジイル基である。X及びYは、それぞれ独立に、水素原子又は式(B)で表される基を表す。X及びYが水素原子である場合、少なくとも1つのAr1が、置換基として式(B)で表される基を有する。 -Cwxyz (B) (式中、wは、0~10の整数を表し、xは、1~2w+1の整数を表し、yは、0~2wの整数を表し、zは0又は1を表す。)〕

Description

有機エレクトロルミネッセンス素子
 本発明は、有機エレクトロルミネッセンス素子に関する。
 有機エレクトロルミネッセンス素子の特性を高めるため、発光層と電極との間に、有機層を有する有機エレクトロルミネッセンス素子が検討されている。例えば、発光層と陰極との間に、パーフルオロフェニレンデンドリマーを含む有機層を有する有機エレクトロルミネッセンス素子が提案されている。
ジャーナル・オブ・ジ・アメリカン・ケミカル・ソサイエティ(Journal of the American Chemical Society)、第122巻、p.1832-1833
 しかし、上記有機エレクトロルミネッセンス素子は、外部量子効率が十分でない。
 そこで、本発明の目的は、外部量子効率が優れた有機エレクトロルミネッセンス素子を提供することにある。
 本発明は、以下の[1]~[6]を提供する。
[1]陰極と、
 陽極と、
 該陰極及び該陽極の間に設けられ、発光材料を含む発光層と、
 該発光層及び該陰極の間に設けられ、式(A)で表される化合物を含む有機層と
を有する、有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000002
〔式(A)中、Arは、置換基を有していてもよいアリーレン基を表す。nは、2~5の整数を表す。複数個あるArは、それぞれ同一であっても異なってもよい。但し、少なくとも1つのArは、置換基を有していてもよいフルオレンジイル基である。X及びYは、それぞれ独立に、水素原子又は式(B)で表される基を表す。X及びYが水素原子である場合、少なくとも1つのArが、置換基として式(B)で表される基を有する。
-C     (B)
(式(B)中、wは、0~10の整数を表し、xは、1~2w+1の整数を表し、yは、0~2wの整数を表し、zは0又は1を表す。)〕
[2]上記式(A)で表される化合物の最高占有軌道準位のエネルギーと、上記発光材料の最高占有軌道準位のエネルギーとが、式(1)を満たす、[1]に記載の有機エレクトロルミネッセンス素子。
(式(A)で表される化合物の最高占有軌道準位のエネルギー) > (発光材料の最高占有軌道準位のエネルギー)     (1)
[3]上記有機層が、非発光性である、[1]又は[2]に記載の有機エレクトロルミネッセンス素子。
[4]上記式(A)で表される化合物の最低非占有軌道準位のエネルギーと、上記発光材料の最低非占有軌道準位のエネルギーとが、式(2)を満たす[1]~[3]のいずれか一項に記載の有機エレクトロルミネッセンス素子。
(式(A)で表される化合物の最低非占有軌道準位のエネルギー) < (発光材料の最低非占有軌道準位のエネルギー)+0.5eV     (2)
[5]上記式(A)で表される化合物のエネルギーギャップが、上記発光材料のエネルギーギャップより大きい、[1]~[4]のいずれか一項に記載の有機エレクトロルミネッセンス素子。
[6]上記式(A)で表される化合物が、トリフルオロメチルベンゼン、1,3-ビス(トリフルオロメチル)ベンゼン、及び、1,4-ビス(トリフルオロメチル)ベンゼンからなる群から選ばれる少なくとも1種のフッ素溶媒に対して、0.1重量%(w/o)以上溶解する化合物である、[1]~[5]のいずれか一項に記載の有機エレクトロルミネッセンス素子。
 本発明の有機エレクトロルミネッセンス素子は、外部量子効率が優れる。
有機エレクトロルミネッセンス素子1、C1の電圧-電流特性を示すグラフである。 有機エレクトロルミネッセンス素子1、C1の電圧-効率特性を示すグラフである。
 本実施形態の有機エレクトロルミネッセンス素子は、陰極と、陽極と、該陰極及び該陽極との間に設けられ、発光材料を含む発光層と、該発光層及び該陰極の間に設けられ、式(A)で表される化合物を含む有機層とを有する、有機エレクトロルミネッセンス素子である。
 式(A)中、Arで表されるアリーレン基は、芳香族炭化水素から、水素原子2個を除いた原子団であり、ベンゼン環を含む基;縮合環を含む基;並びに、独立したベンゼン環又は縮合環のうち2個以上の環が直接又はビニレン基等を介して結合した構造を含む基;を含む。
 アリーレン基は置換基を有していてもよい。該置換基としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、シリル基、アシル基、アシルオキシ基、イミン残基、カルバモイル基、酸イミド基、1価の複素環基、カルボキシル基、シアノ基及びニトロ基が挙げられ、式(A)で表される化合物の有機溶媒に対する溶解性が優れ、合成が容易であり、かつ、本実施形態の有機エレクトロルミネッセンス素子の特性が優れるので、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基及びシアノ基が好ましい。
 Arで表されるアリーレン基において、置換基を除いた部分の炭素原子数は、通常、6~60であり、好ましくは6~20である。置換基を含めたアリーレン基の炭素原子数は、通常、6~100である。
 Arで表されるアリーレン基としては、例えば、フェニレン基(下式1~3)、ナフタレンジイル基(下式4~13)、アントラセン-ジイル基(下式14~19)、ビフェニル-ジイル基(下式20~25)、ターフェニル-ジイル基(下式26~28)、縮合環化合物基(下式29~35)、フルオレン-ジイル基(下式36~38)及びベンゾフルオレン-ジイル(下式39~46)が挙げられ、本実施形態の有機エレクトロルミネッセンス素子の耐久性が優れるので、フェニレン基、ナフタレンジイル基、アントラセン-ジイル基、ビフェニル-ジイル基、フルオレン-ジイル基及びベンゾフルオレン-ジイル基が好ましく、ナフタレンジイル基、アントラセン-ジイル基、ビフェニル-ジイル基、フルオレン-ジイル基及びベンゾフルオレン-ジイル基がより好ましく、ナフタレンジイル基、アントラセン-ジイル基、フルオレン-ジイル基及びベンゾフルオレン-ジイル基が更に好ましく、フルオレン-ジイル基及びベンゾフルオレン-ジイル基が特に好ましく、フルオレン-ジイル基がとりわけ好ましい。なお、以下の基は、置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 Arで表されるアリーレン基が置換基として有していてもよいアルキル基は、直鎖及び分岐のいずれでもよく、シクロアルキル基であってもよい。該アルキル基は、置換基を有していてもよい。アルキル基の炭素原子数は、通常、1~20である。置換基を有していてもよいアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、3,7-ジメチルオクチル基、ラウリル基、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基及びパーフルオロオクチル基が挙げられる。
 Arで表されるアリーレン基が置換基として有していてもよいアルコキシ基は、直鎖及び分岐のいずれでもよく、シクロアルキルオキシ基であってもよい。該アルコキシ基は、置換基を有していてもよい。アルコキシ基の炭素原子数は、通常、1~20である。置換基を有していてもよいアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシルオキシ基、パーフルオロオクチルオキシ基、メトキシメチルオキシ基及び2-メトキシエチルオキシ基が挙げられる。
 Arで表されるアリーレン基が置換基として有していてもよいアルキルチオ基は、直鎖及び分岐のいずれでもよく、シクロアルキルチオ基であってもよい。該アルキルチオ基は、置換基を有していてもよい。アルキルチオ基の炭素原子数は、通常、1~20である。置換基を有していてもよいアルキルチオ基としては、例えば、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、tert-ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、2-エチルヘキシルチオ基、ノニルチオ基、デシルチオ基、3,7-ジメチルオクチルチオ基、ラウリルチオ基及びトリフルオロメチルチオ基が挙げられる。
 Arで表されるアリーレン基が置換基として有していてもよいアリール基は、芳香族炭化水素から水素原子1個を除いた原子団であり、ベンゼン環を含む基;縮合環を含む基;並びに、独立したベンゼン環又は縮合環のうち2個以上の環が直接又はビニレン基等を介して結合した構造を含む基;を含む。該アリール基の炭素原子数は、通常、6~60であり、好ましくは7~48である。該アリール基は置換基を有していてもよく、置換基を有していてもよいアリール基としては、例えば、フェニル基、C~C12アルコキシフェニル基(C~C12アルコキシは、炭素原子数が1~12のアルコキシであることを示す。以下、同様である。)、C~C12アルキルフェニル基(C~C12アルキルは、炭素原子数1~12のアルキルであることを示す。以下、同様である。)、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基及びペンタフルオロフェニル基が挙げられ、C~C12アルコキシフェニル基及びC~C12アルキルフェニル基が好ましい。
 C~C12アルコキシフェニル基としては、例えば、メトキシフェニル基、エトキシフェニル基、プロポキシフェニル基、イソプロポキシフェニル基、ブトキシフェニル基、イソブトキシフェニル基、tert-ブトキシフェニル基、ペンチルオキシフェニル基、ヘキシルオキシフェニル基、シクロヘキシルオキシフェニル基、ヘプチルオキシフェニル基、オクチルオキシフェニル基、2-エチルヘキシルオキシフェニル基、ノニルオキシフェニル基、デシルオキシフェニル基、3,7-ジメチルオクチルオキシフェニル基及びラウリルオキシフェニル基が挙げられる。
 C~C12アルキルフェニル基としては、例えば、メチルフェニル基、エチルフェニル基、ジメチルフェニル基、プロピルフェニル基、メシチル基、メチルエチルフェニル基、イソプロピルフェニル基、ブチルフェニル基、イソブチルフェニル基、tert-ブチルフェニル基、ペンチルフェニル基、イソアミルフェニル基、ヘキシルフェニル基、ヘプチルフェニル基、オクチルフェニル基、ノニルフェニル基、デシルフェニル基及びドデシルフェニル基が挙げられる。
 Arで表されるアリーレン基が置換基として有していてもよいアリールオキシ基は、その炭素原子数が、通常、6~60であり、好ましくは7~48である。該アリールオキシ基は置換基を有していてもよく、置換基を有していてもよいアリールオキシ基としては、例えば、フェノキシ基、C~C12アルコキシフェノキシ基、C~C12アルキルフェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、ペンタフルオロフェニルオキシ基が挙げられ、C~C12アルコキシフェノキシ基及びC~C12アルキルフェノキシ基が好ましい。
 C~C12アルコキシフェノキシ基としては、例えば、メトキシフェノキシ基、エトキシフェノキシ基、プロポキシフェノキシ基、イソプロポキシフェノキシ基、ブトキシフェノキシ基、イソブトキシフェノキシ基、tert-ブトキシフェノキシ基、ペンチルオキシフェノキシ基、ヘキシルオキシフェノキシ基、シクロヘキシルオキシフェノキシ基、ヘプチルオキシフェノキシ基、オクチルオキシフェノキシ基、2-エチルヘキシルオキシフェノキシ基、ノニルオキシフェノキシ基、デシルオキシフェノキシ基、3,7-ジメチルオクチルオキシフェノキシ基及びラウリルオキシフェノキシ基が挙げられる。
 C~C12アルキルフェノキシ基としては、例えば、メチルフェノキシ基、エチルフェノキシ基、ジメチルフェノキシ基、プロピルフェノキシ基、1,3,5-トリメチルフェノキシ基、メチルエチルフェノキシ基、イソプロピルフェノキシ基、ブチルフェノキシ基、イソブチルフェノキシ基、tert-ブチルフェノキシ基、ペンチルフェノキシ基、イソアミルフェノキシ基、ヘキシルフェノキシ基、ヘプチルフェノキシ基、オクチルフェノキシ基、ノニルフェノキシ基、デシルフェノキシ基及びドデシルフェノキシ基が挙げられる。
 Arで表されるアリーレン基が置換基として有していてもよいアリールチオ基は、置換基を有していてもよい。該アリールチオ基の炭素原子数は、通常、3~60である。置換基を有していてもよいアリールチオ基としては、例えば、フェニルチオ基、C~C12アルコキシフェニルチオ基、C~C12アルキルフェニルチオ基、1-ナフチルチオ基、2-ナフチルチオ基及びペンタフルオロフェニルチオ基が挙げられる。
 Arで表されるアリーレン基が置換基として有していてもよいアリールアルキル基は、置換基を有していてもよい。該アリールアルキル基の炭素原子数は、通常、7~60である。置換基を有していてもよいアリールアルキル基としては、例えば、フェニル-C~C12アルキル基、C~C12アルコキシフェニル-C~C12アルキル基、C~C12アルキルフェニル-C~C12アルキル基、1-ナフチル-C~C12アルキル基及び2-ナフチル-C~C12アルキル基が挙げられる。
 Arで表されるアリーレン基が置換基として有していてもよいアリールアルコキシ基は、置換基を有していてもよい。該アリールアルコキシ基の炭素原子数は、通常、7~60である。置換基を有していてもよいアリールアルコキシ基としては、例えば、フェニル-C~C12アルコキシ基、C~C12アルコキシフェニル-C~C12アルコキシ基、C~C12アルキルフェニル-C~C12アルコキシ基、1-ナフチル-C~C12アルコキシ基及び2-ナフチル-C~C12アルコキシ基が挙げられる。
 Arで表されるアリーレン基が置換基として有していてもよいアリールアルキルチオ基は、置換基を有していてもよい。該アリールアルキルチオ基の炭素原子数は、通常、7~60である。置換基を有していてもよいアリールアルキルチオ基としては、例えば、フェニル-C~C12アルキルチオ基、C~C12アルコキシフェニル-C~C12アルキルチオ基、C~C12アルキルフェニル-C~C12アルキルチオ基、1-ナフチル-C~C12アルキルチオ基及び2-ナフチル-C~C12アルキルチオ基が挙げられる。
 Arで表されるアリーレン基が置換基として有していてもよいアリールアルケニル基は、置換基を有していてもよい。該アリールアルケニル基の炭素原子数は、通常、8~60である。置換基を有していてもよいアリールアルケニル基としては、例えば、フェニル-C~C12アルケニル基、C~C12アルコキシフェニル-C~C12アルケニル基、C~C12アルキルフェニル-C~C12アルケニル基、1-ナフチル-C~C12アルケニル基、2-ナフチル-C~C12アルケニル基が挙げられ、C~C12アルコキシフェニル-C~C12アルケニル基及びC~C12アルキルフェニル-C~C12アルケニル基が好ましい。
 Arで表されるアリーレン基が置換基として有していてもよいアリールアルキニル基は置換基を有していてもよい。該アリールアルキニル基の炭素原子数は、通常、8~60である。置換基を有していてもよいアリールアルキニル基としては、例えば、フェニル-C~C12アルキニル基、C~C12アルコキシフェニル-C~C12アルキニル基、C~C12アルキルフェニル-C~C12アルキニル基、1-ナフチル-C~C12アルキニル基及び2-ナフチル-C~C12アルキニル基が挙げられ、C~C12アルコキシフェニル-C~C12アルキニル基及びC~C12アルキルフェニル-C~C12アルキニル基が好ましい。
 Arで表されるアリーレン基が置換基として有していてもよいアミノ基は、無置換のアミノ基であっても、置換アミノ基であってもよい。
 置換アミノ基とは、アミノ基における1個又は2個の水素原子が、アルキル基、アリール基、アリールアルキル基及び1価の複素環基からなる群から選ばれる1個又は2個の基で置換されたアミノ基である。該アルキル基、該アリール基、該アリールアルキル基及び該1価の複素環基は、更に、置換基を有していてもよい。置換アミノ基の炭素原子数は、置換基の炭素原子数を含めないで、通常、1~60であり、好ましくは2~48である。
 該置換アミノ基としては、例えば、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ジプロピルアミノ基、イソプロピルアミノ基、ジイソプロピルアミノ基、ブチルアミノ基、s-ブチルアミノ基、イソブチルアミノ基、tert-ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、シクロヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、2-エチルヘキシルアミノ基、ノニルアミノ基、デシルアミノ基、3,7-ジメチルオクチルアミノ基、ラウリルアミノ基、シクロペンチルアミノ基、ジシクロペンチルアミノ基、ジシクロヘキシルアミノ基、ピロリジル基、ピペリジル基、ジトリフルオロメチルアミノ基、フェニルアミノ基、ジフェニルアミノ基、C~C12アルコキシフェニルアミノ基、ジ(C~C12アルコキシフェニル)アミノ基、ジ(C~C12アルキルフェニル)アミノ基、1-ナフチルアミノ基、2-ナフチルアミノ基、ペンタフルオロフェニルアミノ基、ピリジルアミノ基、ピリダジニルアミノ基、ピリミジルアミノ基、ピラジルアミノ基、トリアジルアミノ基、フェニル-C~C12アルキルアミノ基、C~C12アルコキシフェニル-C~C12アルキルアミノ基、C~C12アルキルフェニル-C~C12アルキルアミノ基、ジ(C~C12アルコキシフェニル-C~C12アルキル)アミノ基、ジ(C~C12アルキルフェニル-C~C12アルキル)アミノ基、1-ナフチル-C~C12アルキルアミノ基及び2-ナフチル-C~C12アルキルアミノ基が挙げられる。
 Arで表されるアリーレン基が置換基として有していてもよいシリル基は、無置換のシリル基であっても、置換シリル基であってもよい。
 置換シリル基とは、シリル基における1個、2個又は3個の水素原子が、アルキル基、アリール基、アリールアルキル基及び1価の複素環基からなる群から選ばれる1個、2個又は3個の基で置換されたシリル基である。該アルキル基、該アリール基、該アリールアルキル基及び該1価の複素環基は、更に、置換基を有していてもよい。置換シリル基の炭素原子数は、通常、1~60であり、好ましくは3~48である。
 該置換シリル基としては、例えば、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリ-イソプロピルシリル基、ジメチル-イソプロピルシリル基、ジエチル-イソプロピルシリル基、tert-ブチルジメチルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、ヘプチルジメチルシリル基、オクチルジメチルシリル基、2-エチルヘキシル-ジメチルシリル基、ノニルジメチルシリル基、デシルジメチルシリル基、3,7-ジメチルオクチル-ジメチルシリル基、ラウリルジメチルシリル基、フェニル-C~C12アキルシリル基、C~C12アルコキシフェニル-C~C12アルキルシリル基、C~C12アルキルフェニル-C~C12アルキルシリル基、1-ナフチル-C~C12アルキルシリル基、2-ナフチル-C~C12アルキルシリル基、フェニル-C~C12アルキルジメチルシリル基、トリフェニルシリル基、トリ-p-キシリルシリル基、トリベンジルシリル基、ジフェニルメチルシリル基、tert-ブチルジフェニルシリル基及びジメチルフェニルシリル基が挙げられる。
 Arで表されるアリーレン基が置換基として有していてもよいアシル基は、炭素原子数が、通常、2~20であり、好ましくは2~18である。置換基を有していてもよいアシル基としては、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ベンゾイル基、トリフルオロアセチル基及びペンタフルオロベンゾイル基が挙げられる。
 Arで表されるアリーレン基が置換基として有していてもよいアシルオキシ基は、炭素原子数が、通常、2~20であり、好ましくは2~18である。置換基を有していてもよいアシルオキシ基としては、例えば、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基、トリフルオロアセチルオキシ基及びペンタフルオロベンゾイルオキシ基が挙げられる。
 Arで表されるアリーレン基が置換基として有していてもよいイミン残基は、イミン化合物から水素原子1個を除いた残基である。ここで、イミン化合物とは、分子内に、-N=C-基を含む有機化合物を意味する。イミン化合物の例としては、アルジミン、ケチミン、及び、これらの化合物の窒素原子が有する水素原子がアルキル基等で置換された化合物が挙げられる。イミン残基の炭素原子数は、通常、2~20であり、2~18が好ましい。該イミン残基としては、例えば、以下の構造式で示される基が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 Arで表されるアリーレン基が置換基として有していてもよいカルバモイル基は、炭素原子数が、通常、1~20であり、好ましくは炭素原子数1~18である。置換基を有していてもよいカルバモイル基としては、例えば、ホルムアミド基、アセトアミド基、プロピオアミド基、ブチロアミド基、ベンズアミド基、トリフルオロアセトアミド基、ペンタフルオロベンズアミド基、ジホルムアミド基、ジアセトアミド基、ジプロピオアミド基、ジブチロアミド基、ジベンズアミド基、ジトリフルオロアセトアミド基及びジペンタフルオロベンズアミド基が挙げられる。
 Arで表されるアリーレン基が置換基として有していてもよい酸イミド基は、酸イミドからその窒素原子に結合した水素原子を除いて得られる残基である。酸イミド基の炭素原子数は、通常、4~20である。該酸イミド基としては、例えば、以下に示す基が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 Arで表されるアリーレン基が置換基として有していてもよい1価の複素環基は、複素環式化合物から水素原子1個を除いた残りの原子団をいい、炭素原子数は、通常、4~60であり、好ましくは4~20である。1価の複素環基の中では、1価の芳香族複素環基が好ましい。なお、1価の複素環基の炭素原子数には、置換基の炭素原子数は含まれない。複素環式化合物とは、環式構造をもつ有機化合物のうち、環を構成する元素が炭素原子だけでなく、酸素原子、硫黄原子、窒素原子、リン原子及びホウ素原子等のヘテロ原子を環内に含む化合物をいう。1価の複素環基としては、例えば、チエニル基、C~C12アルキルチエニル基、ピロリル基、フリル基、ピリジル基、C~C12アルキルピリジル基、ピペリジル基、キノリル基及びイソキノリル基が挙げられ、チエニル基、C~C12アルキルチエニル基、ピリジル基及びC~C12アルキルピリジル基が好ましい。
 Arで表されるアリーレン基が置換基として有していてもよいカルボキシル基は、無置換のカルボキシル基であっても、置換カルボキシル基であってもよい。
 置換カルボキシル基は、カルボキシル基における水素原子が、アルキル基、アリール基、アリールアルキル基又は1価の複素環基で置換されたカルボキシル基をいう。該アルキル基、該アリール基、該アリールアルキル基及び該1価の複素環基は、更に、置換基を有していてもよい。置換カルボキシル基の炭素原子数は、通常、2~60であり、好ましくは2~48である。置換カルボキシル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、tert-ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシロキシカルボニル基、シクロヘキシロキシカルボニル基、ヘプチルオキシカルボニル基、オクチルオキシカルボニル基、2-エチルヘキシロキシカルボニル基、ノニルオキシカルボニル基、デシロキシカルボニル基、3,7-ジメチルオクチルオキシカルボニル基、ドデシルオキシカルボニル基、トリフルオロメトキシカルボニル基、ペンタフルオロエトキシカルボニル基、パーフルオロブトキシカルボニル基、パーフルオロヘキシルオキシカルボニル基、パーフルオロオクチルオキシカルボニル基、フェノキシカルボニル基、ナフトキシカルボニル基及びピリジルオキシカルボニル基が挙げられる。
 式(A)で表される化合物としては、例えば、式(A-1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000008
〔式(A-1)中、Ar、Ar、Ar、Ar及びArは、それぞれ独立に、置換基を有していてもよいアリーレン基を表す。n2、n3、n4、n5及びn6は、それぞれ独立に、0又は1を表す。但し、n2+n3+n4+n5+n6は、2~5である。但し、Ar、Ar、Ar、Ar及びArのうちの少なくとも1つは、置換基を有していてもよいフルオレンジイル基であり、それに対応するn2、n3、n4、n5及びn6は、1である。Zは、式(B)で表される基を表す。C2、C3、C4、C5及びC6は、それぞれ独立に、0~2の整数を表す。Zが複数個ある場合、それらは同一であっても異なってもよい。X及びYは、前記と同じ意味を表す。X及びYが水素原子である場合、C2+C3+C4+C5+C6は、1~10である。〕
 式(A-1)中、Ar、Ar、Ar、Ar及びArで表されるアリーレン基の定義、例は、前述のArで表されるアリーレン基の定義、例と同じであるが、有機エレクトロルミネッセンス素子の耐久性が優れるので、Ar、Ar、Ar、Ar及びArが、いずれも、置換基を有していてもよいフルオレン-ジイル基であることが好ましく、置換基を有していてもよい2,7-フルオレン-ジイル基であることがより好ましい。
 n2、n3、n4、n5及びn6は、式(A-1)で表される化合物の合成が容易であるので、2≦n2+n3+n4+n5+n6≦3を満たすことが好ましく、n2+n3+n4+n5+n6=3を満たすことがより好ましく、n2及びn6が0であり、かつ、n3、n4及びn5が1であることが更に好ましい。
 式(A-1)中、C2、C3、C4、C5及びC6は、式(A-1)で表される化合物の合成が容易であるので、各々、0又は2であることが好ましい。
 式(A)、(A-1)中、X及びYは、式(A-1)で表される化合物の合成が容易であるので、いずれも水素原子であること、又は、いずれも式(B)で表される基であることが好ましい。
 式(A-1)中、X及びYがいずれも水素原子である場合、式(A-1)で表される化合物の有機溶媒に対する溶解性が優れるので、C4が1又は2であることが好ましく、2であることがより好ましく、C4が2であり、かつ、C2、C3、C5及びC6が0であることが更に好ましい。
 式(A-1)中、X及びYがいずれも式(B)で表される基である場合、式(A-1)で表される化合物の有機溶媒に対する溶解性が優れるので、C2、C3、C5及びC6が0であることが好ましい。
 式(A)、(A-1)中、Zで表される式(B)で表される基としては、以下の式(F1)~式(F32)で表される基が例示され、以下の式(F1)~式(F14)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 式(A)、(A-1)で表される化合物の安定性が優れるので、式(B)中、zは0であることが好ましい。
 式(A)で表される化合物としては、例えば、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 本実施形態の有機エレクトロルミネッセンス素子において、式(A)で表される化合物は、有機層中に一種単独で含まれていても二種以上を組み合わせて含まれていてもよい。また、有機層中に含まれる式(A)で表される化合物は、それのみが含まれていても、正孔輸送材料、電子輸送材料及び発光材料からなる群から選ばれる少なくとも1種類の材料と組み合わせて組成物として含まれていてもよい。
 前記組成物が正孔輸送材料を含有する場合は、組成物中の正孔輸送材料の割合は、通常、1重量%~80重量%であり、好ましくは5重量%~60重量%である。
 前記組成物が電子輸送材料を含有する場合は、組成物中の電子輸送材料の割合は、通常、1重量%~80重量%であり、好ましくは5重量%~60重量%である。
 前記組成物が発光材料を含有する場合には、組成物中の発光材料の割合は、通常、1重量%~80重量%であり、好ましくは5重量%~60重量%である。
 次に、本実施形態の有機エレクトロルミネッセンス素子の構成について説明する。
 式(A)で表される化合物を含む有機層としては、電子輸送層、電子注入層及び正孔阻止層が挙げられ、該素子の作製が容易であるので、正孔阻止層が好ましい。
 本実施形態の有機エレクトロルミネッセンス素子の構造としては、以下のa)~l)の構造が例示される。ここで、/は各層が隣接して積層されていることを示し、以下、同じである。
 本実施形態の有機エレクトロルミネッセンス素子は、陰極と発光層との間に、式(A)で表される化合物を含む有機層以外に、電子輸送層、電子注入層及び正孔阻止層等を有していてもよい。該素子の構造は、以下のc)~n)の構造が例示される。
a)陽極/発光層/有機層/電子輸送層/陰極
b)陽極/正孔輸送層/発光層/有機層/電子輸送層/陰極
c)陽極/発光層/有機層/電子注入層/陰極
d)陽極/正孔輸送層/発光層/有機層/電子注入層/陰極
e)陽極/発光層/有機層/電子輸送層/電子注入層/陰極
f)陽極/正孔輸送層/発光層/有機層/電子輸送層/電子注入層/陰極
g)陽極/発光層/正孔阻止層/有機層/陰極
h)陽極/正孔輸送層/発光層/正孔阻止層/有機層/陰極
i)陽極/発光層/正孔阻止層/有機層/電子注入層/陰極
j)陽極/正孔輸送層/発光層/正孔阻止層/有機層/電子注入層/陰極
k)陽極/発光層/正孔阻止層/電子輸送層/有機層/陰極
l)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/有機層/陰極
 発光層とは、発光する機能を有する層であり、発光材料を含む。
 正孔輸送層とは、正孔を輸送する機能を有する層である。
 電子輸送層とは、電子を輸送する機能を有する層である。
 電子注入層とは、陰極から隣接する有機層に電子を注入する機能を有する層である。
 正孔阻止層とは、発光層から再結合されなかった正孔をすり抜けさせずに発光層の内に留める機能を有する層である。
 電子輸送層と正孔輸送層とを総称して電荷輸送層と呼ぶ場合がある。
 発光層に隣接した正孔輸送層をインターレイヤー層と呼ぶ場合もある。
 各層は、2層以上ずつ有していてもよい。
 本実施形態の有機エレクトロルミネッセンス素子は、式(A)で表される化合物が含まれる有機層が正孔素子層である場合、該正孔阻止層がより機能を発揮できるので、式(A)で表される化合物の最高占有軌道準位のエネルギーと、発光材料の最高占有軌道準位のエネルギーとが、式(1)を満たすことが好ましい。
 発光層が2種以上の発光材料を含む場合、全ての発光材料について式(1)の条件を満たすことが好ましい。発光層が燐光を発光する化合物とホスト化合物とを含む場合、燐光を発光する化合物とホスト化合物との両方を発光材料とする。
 本実施形態の有機エレクトロルミネッセンス素子において、素子内部での発光領域をコントロールし、均一な発光が得られるので、式(A)で表される化合物が含まれる有機層が非発光性であることが好ましい。有機層が非発光性であるとは、エレクトロルミネッセンススペクトルから該有機層の発光が観測されないことを意味する。
 本実施形態の有機エレクトロルミネッセンス素子において、発光材料への電子注入が円滑になるので、式(A)で表される化合物の最低非占有軌道準位のエネルギーと、発光材料の最低非占有軌道準位のエネルギーとが、式(2)を満たすことが好ましい。
 本実施形態の有機エレクトロルミネッセンス素子において、発光層内部の励起子が拡散したり、陰極界面に移動したりすることをより効果的に回避できるので、式(A)で表される化合物のエネルギーギャップが、発光材料のエネルギーギャップより大きいことが好ましい。
 本実施形態の有機エレクトロルミネッセンス素子において、式(A)で表される化合物が、トリフルオロメチルベンゼン、1,3-ビス(トリフルオロメチル)ベンゼン、及び、1,4-ビス(トリフルオロメチル)ベンゼンからなる群から選ばれる少なくとも1種のフッ素溶媒に対して、0.1重量%(w/o)以上溶解することが好ましい。
 発光層及び有機層を含む各層の成膜方法は、制限されないが、溶液からの成膜が好ましい。
 溶液からの成膜には、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スリットコート法、キャップコート法、キャピラリコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法及びノズルコート法等の塗布法を用いることができる。
 有機層作製の際に、式(A)で表される化合物を含む溶液から成膜する場合、該溶液を発光層等の上に塗布した後、乾燥により溶媒を除去するだけでよい。また、式(A)で表される化合物に電荷輸送材料や発光材料を混合した場合においても、同様の手法が適用でき、製造上有利である。
 発光層及び有機層の厚さは、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよいが、それぞれ独立に、例えば、1nm~1μmであり、好ましくは2nm~500nmであり、更に好ましくは5nm~200nmである。
 発光層に含まれる発光材料としては、低分子化合物及び高分子化合物に分類でき、各々、公知の材料が使用できる。低分子化合物では、例えば、ナフタレン誘導体、アントラセン及びその誘導体、ペリレン及びその誘導体、ポリメチン系、キサンテン系、クマリン系、シアニン系等の色素類、8-ヒドロキシキノリン及びその誘導体の金属錯体、芳香族アミン、テトラフェニルシクロペンタジエン及びその誘導体、並びに、テトラフェニルブタジエン及びその誘導体を用いることができる。
 本実施形態の有機エレクトロルミネッセンス素子が正孔輸送層を有する場合、使用される正孔輸送材料としては、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリ(p-フェニレンビニレン)及びその誘導体、並びに、ポリ(2,5-チエニレンビニレン)及びその誘導体が例示され、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミン化合物基を有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリ(p-フェニレンビニレン)及びその誘導体、並びに、ポリ(2,5-チエニレンビニレン)及びその誘導体等の高分子正孔輸送材料が好ましく、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、並びに、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体がより好ましい。低分子正孔輸送材料の場合には、高分子バインダーに分散させて用いることが好ましい。
 ポリビニルカルバゾール及びその誘導体は、例えば、ビニルモノマーからカチオン重合又はラジカル重合によって得られる。
 ポリシラン及びその誘導体としては、ケミカル・レビュー(Chem.Rev.)第89巻、1359頁(1989年)、英国特許GB2300196号公開明細書に記載の化合物等が例示される。合成方法もこれらに記載の方法を用いることができるが、キッピング法が好適に用いられる。
 ポリシロキサン誘導体としては、側鎖又は主鎖に上記低分子正孔輸送材料の構造を有するものが好ましく、正孔輸送性の芳香族アミンを側鎖又は主鎖に有するものがより好ましい。
 正孔輸送層の成膜の方法は制限されないが、低分子正孔輸送材料では、高分子バインダーとの混合溶液からの成膜による方法が例示され、高分子正孔輸送材料では、溶液からの成膜による方法が例示される。
 溶液からの成膜に用いる溶媒としては、正孔輸送材料を溶解させるものであればよく、クロロホルム、ジクロロメタン及びジクロロエタン等の塩素系溶媒;テトラヒドロフラン等のエーテル系溶媒;トルエン及びキシレン等の芳香族炭化水素系溶媒;アセトン及びメチルエチルケトン等のケトン系溶媒;酢酸エチル、酢酸ブチル及びエチルセルソルブアセテート等のエステル系溶媒が例示される。
 溶液からの成膜には、溶液からのスピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スリットコート法、キャップコート法、キャピラリコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法及びノズルコート法等の塗布法を用いることができる。
 低分子正孔輸送材料と併用し得る高分子バインダーとしては、電荷輸送を極度に阻害しないもの、及び、可視光に対する吸収が強くないものが好ましく、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル及びポリシロキサンが例示される。
 正孔輸送層の厚さは、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよく、例えば、1nm~1μmであり、好ましくは2nm~500nmであり、更に好ましくは5nm~200nmである。
 本実施形態の有機エレクトロルミネッセンス素子が、陰極と発光層との間に、式(A)で表される化合物を含む有機層に加えて電子輸送層を有する場合、該電子輸送層に使用される電子輸送材料としては、公知の材料が使用できる。電子輸送材料としては、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、並びに、ポリフルオレン及びその誘導体が例示され、オキサジアゾール誘導体、ベンゾキノン及びその誘導体、アントラキノン及びその誘導体、8-ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、並びに、ポリフルオレン及びその誘導体が好ましく、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール、ベンゾキノン、アントラキノン、トリス(8-キノリノール)アルミニウム及びポリキノリンがより好ましい。
 電子輸送層の成膜の方法は制限されないが、低分子電子輸送材料では、粉末からの真空蒸着法、並びに、溶液又は溶融状態からの成膜による方法が例示され、高分子電子輸送材料では、溶液又は溶融状態からの成膜による方法が例示される。溶液又は溶融状態からの成膜時には、高分子バインダーを併用してもよい。
 溶液からの成膜に用いる溶媒としては、電子輸送材料及び/又は高分子バインダーを溶解させるものであればよい。該溶媒として、クロロホルム、ジクロロメタン及びジクロロエタン等の塩素溶媒;テトラヒドロフラン等のエーテル溶媒;トルエン及びキシレン等の芳香族炭化水素溶媒;アセトン及びメチルエチルケトン等のケトン溶媒;酢酸エチル、酢酸ブチル及びエチルセルソルブアセテート等のエステル溶媒が例示される。
 溶液又は溶融状態からの成膜には、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スリットコート法、キャップコート法、キャピラリコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法及びノズルコート法等の塗布法が用いられる。
 低分子電子輸送材料と併用し得る高分子バインダーとしては、電荷輸送を極度に阻害しないもの、及び、可視光に対する吸収が強くないものが好ましい。該高分子バインダーとしては、ポリ(N-ビニルカルバゾール)、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリ(p-フェニレンビニレン)及びその誘導体、ポリ(2,5-チエニレンビニレン)及びその誘導体、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、並びに、ポリシロキサンが例示される。
 電子輸送層の厚さは、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよく、例えば、1nm~1μmであり、好ましくは2nm~500nmであり、更に好ましくは5nm~200nmである。
 電極に隣接して設けた電荷輸送層のうち、電極からの電荷注入効率を改善する機能を有し、素子の駆動電圧を下げる効果を有するものは、「電荷注入層」と呼ばれることがある。
 本実施形態の有機エレクトロルミネッセンス素子が、陰極と発光層との間に、式(A)で表される化合物を含む有機層に加えて電子注入層を有する場合、該電子注入層に使用される電子注入材料としては、前述の電子輸送材料が挙げられる。電子注入層は、層中にカチオンがドープされていてもよい。カチオンの例としては、リチウムイオン、ナトリウムイオン、カリウムイオン及びテトラブチルアンモニウムイオンが挙げられる。
 電子注入層の成膜方法は制限されないが、低分子電子注入材料では、粉末からの真空蒸着法、並びに、溶液又は溶融状態からの成膜による方法が例示され、高分子電子注入材料では溶液又は溶融状態からの成膜による方法が例示される。溶液又は溶融状態からの成膜時には、高分子バインダーを併用してもよい。
 電子注入層の厚さは、例えば、1nm~100nmであり、2nm~50nmが好ましい。
 本実施形態の有機エレクトロルミネッセンス素子において、電極との密着性が向上し、かつ、電極からの電荷注入性がより向上するので、電極に隣接して絶縁層を設けることができる。
 本実施形態の有機エレクトロルミネッセンス素子において、界面の密着性が向上し、界面を形成する層同士の混合が防止できるので、電荷輸送層又は発光層の界面にバッファー層を設けることができる。
 積層する層の順番及び数、並びに各層の厚さについては、発光効率又は素子寿命を勘案して適宜選択すればよい。
 本発明において、正孔注入層を設けた有機エレクトロルミネッセンス素子の構造としては、例えば、以下のo)~p)の構造が挙げられる。
o)陽極/電荷注入層/発光層/有機層/陰極
p)陽極/電荷注入層/正孔輸送層/発光層/有機層/陰極
 正孔注入層の具体的な例としては、導電性高分子を含む層、及び、陽極と正孔輸送層との間に設けられ、陽極材料と正孔輸送層に含まれる正孔輸送材料との中間の値のイオン化ポテンシャルを有する材料を含む層が挙げられる。
 上記正孔注入層が導電性高分子を含む層の場合、該導電性高分子の電気伝導度は、10-5S/cm以上10S/cm以下であることが好ましく、発光画素間のリーク電流を小さくするためには、10-5S/cm以上10S/cm以下がより好ましく、10-5S/cm以上10S/cm以下が更に好ましい。通常は該導電性高分子の電気伝導度を10-5S/cm以上10S/cm以下とするために、該導電性高分子に適量のイオンをドープする。
 ドープするイオンの種類は、アニオンである。アニオンの例としては、ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン及び樟脳スルホン酸イオン等が挙げられる。
 正孔注入層の厚さは、例えば、1nm~100nmであり、2nm~50nmが好ましい。
 電荷注入層に用いる材料は、電極や隣接する層の材料との関係で適宜選択すればよく、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、芳香族アミン構造を主鎖又は側鎖に含む重合体等の導電性高分子、金属フタロシアニン(銅フタロシアニン等)、並びに、カーボンが例示される。
 絶縁層は、電荷注入を容易にする機能を有するものである。この絶縁層の平均厚さは、通常、0.1~20nmであり、好ましくは0.5~10nm、より好ましくは1~5nmである。絶縁層の材料としては、金属フッ化物、金属酸化物及び有機絶縁材料等が挙げられる。絶縁層を設けた有機エレクトロルミネッセンス素子としては、陰極に隣接して絶縁層を設けた有機エレクトロルミネッセンス素子、陽極に隣接して絶縁層を設けた有機エレクトロルミネッセンス素子が挙げられる。
 具体的には、例えば、以下のq)~ab)の構造が挙げられる。
q)陽極/絶縁層/発光層/有機層/陰極
r)陽極/発光層/有機層/絶縁層/陰極
s)陽極/絶縁層/発光層/有機層/絶縁層/陰極
t)陽極/絶縁層/正孔輸送層/発光層/有機層/陰極
u)陽極/正孔輸送層/発光層/有機層/絶縁層/陰極
v)陽極/絶縁層/正孔輸送層/発光層/有機層/絶縁層/陰極
w)陽極/絶縁層/発光層/有機層/電子輸送層/陰極
x)陽極/発光層/有機層/電子輸送層/絶縁層/陰極
y)陽極/絶縁層/発光層/有機層/電子輸送層/絶縁層/陰極
z)陽極/絶縁層/正孔輸送層/発光層/有機層/電子輸送層/陰極
aa)陽極/正孔輸送層/発光層/有機層/電子輸送層/絶縁層/陰極
ab)陽極/絶縁層/正孔輸送層/発光層/有機層/電子輸送層/絶縁層/陰極
 本実施形態の有機エレクトロルミネッセンス素子を形成する基板は、電極を形成し、各層を形成する際に化学的に変化しないものであればよく、ガラス、プラスチック、高分子フィルム及びシリコン等の基板が例示される。不透明な基板の場合には、反対の電極が透明又は半透明であることが好ましい。この基板は、通常、陽極及び陰極からなる電極の少なくとも一方が透明又は半透明であるが、陽極側が透明又は半透明であることが好ましい。
 陽極の材料としては、導電性の金属酸化物膜及び半透明の金属薄膜等が挙げられ、酸化インジウム、酸化亜鉛、酸化スズ、これらの複合体であるインジウム・スズ・オキサイド(ITO)及びインジウム・亜鉛・オキサイド等からなる導電性ガラスを用いて作製された膜;NESA、金、白金、銀及び銅等の金属を用いて作製された膜;等が好ましく、ITO、インジウム・亜鉛・オキサイド及び酸化スズがより好ましい。その他にも、陽極の材料としては、ポリアニリン及びその誘導体、並びに、ポリチオフェン及びその誘導体が挙げられる。
 陽極の作製には、真空蒸着法、スパッタリング法、イオンプレーティング法及びメッキ法等が用いられる。
 陽極の厚さは、光の透過性と電気伝導度とを考慮して、適宜選択することができるが、例えば、10nm~10μmであり、好ましくは20nm~1μmであり、更に好ましくは50nm~500nmである。
 陽極上に、電荷注入を容易にするために、フタロシアニン誘導体、導電性高分子及びカーボン等からなる層、又は、金属酸化物、金属フッ化物及び有機絶縁材料等からなる層を設けてもよい。
 陰極の材料としては、仕事関数の小さい材料が好ましく、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム及びイッテルビウム等の金属;これらの金属のうち2つ以上の合金;これらの金属のうち1つ以上と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン及び錫のうち1つ以上との合金;グラファイト;グラファイト層間化合物;等が用いられる。合金の例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金及びカルシウム-アルミニウム合金等が挙げられる。陰極を2層以上の積層構造としてもよい。
 陰極の厚さは、電気伝導度や耐久性を考慮して、適宜選択することができるが、例えば、10nm~10μmであり、好ましくは20nm~1μmであり、更に好ましくは50nm~500nmである。
 陰極の作製方法としては、真空蒸着法、スパッタリング法及び金属薄膜を熱圧着するラミネート法等が用いられる。陰極と有機物層との間に、導電性高分子からなる層、又は、金属酸化物、金属フッ化物及び有機絶縁材料等からなる層を設けてもよく、陰極作製後、有機エレクトロルミネッセンス素子を保護する保護層を装着していてもよい。有機エレクトロルミネッセンス素子を長期安定的に用いるためには、素子を外部から保護するために、保護層及び/又は保護カバーを装着することが好ましい。
 保護層としては、樹脂、金属酸化物、金属フッ化物及び金属ホウ化物等を用いることができる。保護カバーとしては、ガラス板及び表面に低透水率処理を施したプラスチック板等を用いることができる。保護カバーを熱硬化樹脂又は光硬化樹脂で基板と貼り合わせて密閉することが好ましい。スペーサーを用いて空間を維持すれば、素子が傷つくことを防ぐことが容易である。該空間に窒素ガス及びアルゴンガス等の不活性ガスを封入することにより、陰極の酸化を防止することができる。また、酸化バリウム等の乾燥剤を該空間内に設置することにより、製造工程で素子に水分が吸着した場合であっても、その水分が素子にダメージを与えるのを抑制することができる。これらのうち、いずれか1つ以上の方策をとることが好ましい。
 本実施形態の有機エレクトロルミネッセンス素子は、面状光源、セグメント表示装置、ドットマトリックス表示装置及び液晶表示装置(例えば、バックライト)等の表示装置等に用いることができる。
 本実施形態の有機エレクトロルミネッセンス素子を用いて面状の発光を得るためには、面状の陽極と陰極が重なり合うように配置すればよい。パターン状の発光を得るためには、前記面状の有機エレクトロルミネッセンス素子の表面にパターン状の窓を設けたマスクを設置する方法、非発光部の有機物層を極端に厚く形成し実質的に非発光とする方法、並びに、陽極若しくは陰極のいずれか一方、又は両方の電極をパターン状に形成する方法がある。これらのいずれかの方法でパターンを形成し、いくつかの電極を独立にON/OFFできるように配置することにより、数字や文字、簡単な記号等を表示できるセグメント表示装置が得られる。ドットマトリックス表示装置とするためには、陽極と陰極をともにストライプ状に形成して直交するように配置すればよい。複数の種類の発光色の異なる高分子化合物を塗り分ける方法、又は、カラーフィルター又は蛍光変換フィルターを用いる方法により、部分カラー表示又はマルチカラー表示が可能となる。ドットマトリックス表示装置は、パッシブ駆動も可能であるし、TFT等と組み合わせてアクティブ駆動してもよい。これらの表示装置は、コンピュータ、テレビ、携帯端末、携帯電話、カーナビゲーション及びビデオカメラのビューファインダー等に用いることができる。
 面状の有機エレクトロルミネッセンス素子は、自発光薄型であり、液晶表示装置のバックライト用の面状光源、又は面状の照明用光源として好適である。照明用光源の発光色としては、白色、赤色、緑色及び青色等が挙げられる。フレキシブルな基板を用いれば、曲面状の光源又は表示装置としても使用できる。
 以下、本発明を更に詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。
 <合成例1>(化合物(M-2)の合成)
Figure JPOXMLDOC01-appb-C000015
 アルゴン雰囲気下、500mLの4つ口フラスコ中に、2,7-ジブロモ-9,9-ジ(p-オクチルフェニル)フルオレン(化合物(M-1))を21.02g、テトラヒドロフラン(THF)を390mL入れて混合し、-78℃に冷却した。反応液へ、1.6Mのn-BuLiのへキサン溶液20mLを10分かけて滴下し、1時間攪拌した。トリメチルシランクロライドを4.9g滴下した後、室温に昇温し、2時間攪拌した。反応の進行を確認し、水を加え有機層を洗浄した後、有機層を濃縮した。得られたオイルを、ヘキサンを展開溶媒に用いたシリカゲルカラムクロマトグラフィーにより精製し、化合物(M-2)を得た。
LC-MS(APPI-MS(posi)):693[M+H]
 <合成例2>(化合物(M-3)の合成)
Figure JPOXMLDOC01-appb-C000016
 アルゴン雰囲気下、17.35gの化合物(M-2)と、330mLのTHFと、4.29gの2,2’-ビピリジル(bpy)とを混合し、60℃に加熱した。ここへ、ビス(シクロオクタジエン)ニッケル(0)(Ni(COD))を7.56g加え、3時間攪拌した。反応の進行を確認し、反応液を室温まで冷却した後、反応液をセライトろ過した。得られた溶液を濃縮した後、シリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン/トルエン=10/1(容積比))で精製し、化合物(M-3)を12.4g得た。
H-NMR;δ 0.22(18H,s),0.86(12H,t),1.25(40H,m),1.53(8H,m),2.53(8H,t),7.01(8H,d),7.11(8H,d),7.50(8H,m),7.71(2H,d),7.74(2H,d)ppm.
LC-MS(APPI-MS(posi)):1228[M+H]
 <合成例3>(化合物(M-4)の合成)
Figure JPOXMLDOC01-appb-C000017
 アルゴン雰囲気下、100mLの4つ口フラスコ中に、化合物(M-3)を5.53g、ジクロロメタンを30mL入れて混合し、0℃に冷却した。ここへ、1規定の一塩化ヨウ素(ICl)を含むジクロロメタン溶液を10mL滴下し、1時間攪拌した。反応終了後、反応液を室温まで昇温し、水で洗浄後、反応液の有機層を濃縮した。得られたオイルを、シリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン/トルエン=10/1(容積比))で精製し、化合物(M-4)を得た。
H-NMR;δ 0.86(12H,t),1.27(40H,m),1.55(8H,m),2.53(8H,t),7.07(16H,m),7.49(6H,m),7.70(6H,m).
LC-MS(APPI-MS(posi)):1335[M+H]
 <合成例4>(化合物(M-5)の合成)
Figure JPOXMLDOC01-appb-C000018
 アルゴン雰囲気下、100mLの4つ口フラスコ中に、化合物(M-4)を1.34g、ペンタフルオロフェニルボランを0.85g、フッ化セシウムを0.61g、酸化銀を0.56g、N,N-ジメチルホルムアミド(DMF)を20mL入れ混合した。反応液に、トリス(ジベンジリデンアセトン)ジパラジウム(Pd(dba))を92mg、トリ-tert-ブチルホスフィンを51mg加え、100℃で3時間攪拌した。反応の進行を確認した後、反応液をセライトろ過し、次いでシリカゲルろ過カラムに通した。得られたオイルを、シリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン/トルエン=10/1(容積比))で精製し、化合物(M-5)を420mg得た。
H-NMR;δ 0.86(12H,t),1.25(40H,m),1.54(8H,m),2.53(8H,t),7.05(8H,d),7.13(8H,d),7.42(4H,dd),7.59(4H,dd),7.84(4H,dd)ppm.
19F-NMR;δ 14.7,-138.4,-156.0 ppm.
 <合成例5>(化合物(M-6)の合成)
Figure JPOXMLDOC01-appb-C000019
 アルゴン雰囲気下、70mLのTHFと1.6Mのn-BuLiのへキサン溶液(15mL)とを混合し、-20℃に冷却した。ここへ、4.01gの化合物(M-4)を70mLのTHFに溶かした溶液を30分かけて滴下した。滴下してから2時間経過後より、60gのDMFを1時間かけて滴下した。滴下終了後、室温に昇温し、2時間攪拌した。
反応終了後、反応液に、水を加え、その後、酢酸エチルを加えて分液し、有機層を無水硫酸ナトリウムで乾燥させた。得られたオイルをアルミナカラムクロマトグラフィー(展開溶媒 酢酸エチル/へキサン=1/10(容積比))で精製し、化合物(M-6)を2.1g得た。
LC-MS(ESI-MS):1177[M+K]
 <合成例6>(化合物(M-7)の合成)
Figure JPOXMLDOC01-appb-C000020
 アルゴン雰囲気下、2.05gの化合物(M-6)と、20gのトリデカフルオロへキシルヨージドと、290mLのTHFとを混合し、-78℃に冷却した。ここへ、3規定のフェニルマグネシウムブロマイドのエーテル溶液(12mL)を30分かけて滴下した。その後、反応液の温度を-78℃に維持しながら3時間攪拌した。反応液へ、3規定の塩化水素水溶液を20mL加え、室温に昇温しながら攪拌した。反応終了後、反応液を分液し、有機層をイオン交換水で3回洗浄した後、無水硫酸ナトリウムで乾燥させ、濃縮した。得られたオイルをシリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン/酢酸エチル=20/1(容積比))で4回精製することにより、化合物(M-7)を1.2g得た。
LC-MS(ESI-MS):1817[M+K]
H-NMR;δ 0.87(12H,t),1.25(40H,m),1.54(8H,m),2.38(2H,s),2.53(8H,t),5.18(2H,m),7.01(8H,d),7.10(8H,d),7.50(4H,dd),7.57(4H,dd),7.77(4H,m)ppm.
 <合成例7>(化合物(M-8)の合成)
Figure JPOXMLDOC01-appb-C000021
 アルゴン雰囲気下、2.8gのデス・マーチン パーヨージナンを15mLのジクロロメタンと混合し、溶解させた。ここへ、1.8gの化合物(M-7)を15mLのジクロロメタンに溶かした溶液を、10分かけて室温で滴下した。滴下終了後、室温で2時間攪拌した。反応液に、チオ硫酸ナトリウム飽和水溶液を20mL加えることにより、反応を停止し、反応液を分液した。有機層を濃縮し、硫酸ナトリウムで乾燥させた後、シリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン/酢酸エチル=20/1(容積比))で精製し、精製物を濃縮して得られた固体をメタノールで洗浄することで、化合物(M-8)を1.2g得た。
LC-MS(ESI-MS):1815[M+K]
H-NMR;δ 0.85(12H,t),1.22(40H,m),1.54(8H,m),2.54(8H,t),7.03(8H,d),7.15(8H,d),7.58(4H,dd),7.67(4H,dd),7.85(4H,m)ppm.
 <合成例8>(化合物(M-9)の合成)
Figure JPOXMLDOC01-appb-C000022
 アルゴン雰囲気下、15.0mLのTHF中に、3,5-ビス(トリフルオロメチル)フェニルボロン酸を1.50g、化合物(M-4)を0.777g、トリオクチルメチルアンモニウムクロライド(商品名Aliquat336(登録商標)、アルドリッチ製)を0.045g、テトラキス(トリフェニルホスフィン)パラジウムを0.054g加えて攪拌した。反応液に、炭酸ナトリウムを0.370g含む水溶液(7.5mL)を滴下し、40℃で16時間撹拌した。室温に戻した後、テトラキス(トリフェニルホスフィン)パラジウムを0.055g加えて6日間、40℃で攪拌した。冷却後、反応液を濃縮し、クロロホルムを加えて水層を取り除き、有機層を水で洗浄した。洗浄液をクロロホルムで抽出して有機層と混ぜた。得られた溶液に硫酸マグネシウムを加えて乾燥させて、ろ過により吸湿した硫酸マグネシウムを取り除き、濃縮して、カラムクロマトグラフィー(展開溶媒 シリカゲル/ヘキサン)で精製した。精製後の溶液からヘキサンをエバポレーターで取り除き、メタノールを加えると結晶化した。結晶を取り出してクロロホルムに溶かし、メタノールに滴下して沈殿を生成させた。沈殿をろ過によって取り出し、メタノールで洗浄し、乾燥させることによって化合物(M-9)を0.607g得た。
H-NMR(ppm/300MHz,CDCl): 0.86(12H,t),1.2~1.3(40H,m),1.6(8H,m),2.55(8H,t),7.1(8H,d),7.2(8H,d),7.57(2H,m),7.60(6H,m),7.8~7.9(6H,m),7.94(4H)ppm.
 <合成例9>(化合物(M-11)の合成)
Figure JPOXMLDOC01-appb-C000023
 アルゴン雰囲気下、5.83gの化合物(M-2)と、3.18gの化合物(M-10)と、40mLのトルエンと、45mgの酢酸パラジウムと、282mgのトリ(2-メトキシフェニル)ホスフィンとを混合し、80℃に加温した。反応液に、10mLの水酸化テトラエチルアンモニウムを10分かけて滴下し、105℃で2時間加温した。反応終了後、反応液の有機層を水で洗浄後、有機層を濃縮した。得られたオイルをシリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン/トルエン=5/1(容積比))で精製し、化合物(M-11)を6.5g得た。
LC-MS(APPI-MS(posi)):1768[M+H]
 <合成例10>(化合物(M-12)の合成)
Figure JPOXMLDOC01-appb-C000024
 アルゴン雰囲気下、100mLの4つ口フラスコ中に、化合物(M-11)を6.52g、ジクロロメタンを25mL入れて混合し、0℃に冷却した。ここへ、1規定のIClのジクロロメタン溶液を8.4mL滴下し、1時間攪拌した。反応終了後、反応液を室温まで昇温し、水で洗浄後、有機層を濃縮した。得られたオイルをシリカゲルカラムクロマトグラフィー(展開溶媒 へキサン/トルエン=5/1(容積比))で精製することにより目的物である化合物(M-12)を3.91g得た。
LC-MS(APPI-MS(posi)):1877[M+H]
 <合成例11>(化合物(M-13)の合成)
Figure JPOXMLDOC01-appb-C000025
 アルゴン雰囲気下、100mLの4つ口フラスコ中に、化合物(M-12)を2.81g、ペンタフルオロフェニルボランを1.27g、フッ化セシウムを0.91g、酸化銀を0.83g、DMFを30mL入れて混合した。反応液に、Pd(dba)を140mg、トリ-tert-ブチルホスフィンを75mg加え、100℃で3時間攪拌した。
反応の進行を確認した後、反応液をセライトろ過し、次いでシリカゲルろ過カラムを通した。得られたオイルをシリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン/トルエン=1/1(容積比))で精製し、化合物(M-13)を2.4g得た。
LC-MS(ESI-MS):1994[M+K]
 <合成例12>(化合物(M-14)の合成)
Figure JPOXMLDOC01-appb-C000026
 アルゴン雰囲気下、25.0gの3,5-ビス(トリフルオロメチル)ブロモベンゼンと、250mLのTHFとを混合し、-78℃に冷却した。この反応液へ、1.6Mのn-BuLiのへキサン溶液(50mL)を2時間かけて滴下し、更に30分攪拌した。反応液の温度を-78℃に保ったまま、13.2gの4,4’-ジブロモビフェニル-2-メチルエステルを30mLのTHFに溶かした溶液を、1時間かけて滴下した。滴下終了後、昇温し、6時間かけて-20℃とした。この反応液に、水を加えることで、反応を停止した。反応液に、酢酸エチルを加え、食塩の飽和水溶液で2回洗浄し、有機層を無水硫酸ナトリウムで乾燥させた。得られた溶液を、シリカゲルを用いた濾過カラムに通し、得られた溶液を濃縮することにより黄色のオイルを33.9g得た。
 アルゴン雰囲気下、33.9gの得られた黄色のオイルと、80mLのトルエンとを混合し、0℃に冷却した。ここへ、17.6mLの三フッ化ホウ素のジエチルエーテル錯体を30分かけて滴下し、室温に昇温し、1時間攪拌した。反応液にクロロホルムを加え、イオン交換水で4回洗浄した。得られた懸濁液を濃縮し、析出した固体をろ取し、減圧乾燥した。得られた白色固体をトルエンから再結晶することで、化合物(M-14)を得た。化合物(M-14)の収率は、21.74%であった。
H-NMR(300MHz,CDCl);δ7.34(2H,s),7.52(4H,s),7.62(2H,d),7.70(2H,d),7.87(2H,s)ppm.
19F-NMR(300MHz,CDCl);δ-63.2ppm.
LC-MS(APPI-MS(posi)):747[M]
 <合成例13>(化合物(M-15)の合成)
Figure JPOXMLDOC01-appb-C000027
 アルゴン雰囲気下、3Lの三口フラスコに、3-n-ヘキシル-5-メチルブロモベンゼンを262g、及び、無水テトラヒドロフランを1.5L加え、均一溶液とし、-78℃に冷却した。得られた溶液に、2.5Mのn-ブチルリチウムのヘキサン溶液(380mL)を、溶液の温度が-70℃以下に保たれるように滴下し、4時間撹拌し、溶液Aを得た。
 別途、1Lの二口フラスコに、2-メトキシカルボニル-4,4’-ジブロモビフェニルを160g、及び、無水テトラヒドロフランを500mL加え、均一溶液である溶液Bを調製した。
 溶液Aに溶液Bを、溶液Aの温度が-70℃以下に保たれるように滴下し、撹拌した。
反応液を室温にて15時間撹拌した。次いで、反応液に水を150mL、0℃にて加え、撹拌した。次いで、減圧下、濃縮操作により溶媒を留去し、残留物にヘキサン及び水を加え、撹拌し、静置して生成した水層を除去し、有機層を得た。この有機層を飽和食塩水にて洗浄し、無水硫酸マグネシウムにて乾燥させた後、減圧下で濃縮することにより、中間体を得た。
 アルゴン雰囲気下、3Lの三口フラスコに、上記で得られた中間体を299g、無水ジクロロメタンを900mL加え、5℃に冷却した。得られた混合物に、温度が0~5℃の範囲内に保たれるように、224mLの三フッ化ホウ素ジエチルエーテル錯体を滴下した後、室温にて撹拌した。反応液を、氷水に注ぎ、30分撹拌し、静置して分液した水層を有機層から除去した。この有機層に10重量%リン酸カリウム水溶液を加え、2時間撹拌した後、静置して生成した水層を有機層から除去した。得られた有機層を水で洗浄し、無水硫酸マグネシウムにて乾燥させた後、濃縮することにより溶媒を留去し、オイル状の液体を得た。このオイル状の液体にメタノールを加え、固体を得た。この固体をn-ブチルアセテート及びメタノールから再結晶を行うことにより、化合物(M-15)を240g得た。
 <合成例14>(化合物(M-16)の合成)
Figure JPOXMLDOC01-appb-C000028
 アルゴン雰囲気下、51.1gの化合物(M-15)と、800mLのTHFとを混合し、-78℃に冷却した。この反応液に、1.6Mのn-BuLiのへキサン溶液(50mL)を、1時間かけて滴下し、更に1.5時間撹拌を行った。ここへ、12.4gのクロロトリメチルシランを0.5時間かけて滴下した。滴下終了後、反応液を室温まで昇温し、イオン交換水を加え、反応を停止した。反応液に酢酸エチルを加え、反応液の分液を行った後、食塩の飽和水溶液で3回洗浄した。その後、得られた溶液を濃縮し、乾燥することにより、化合物(M-16)を49.2g得た。
LC-MS(APPI-MS(posi)):695[M]
 <合成例15>(化合物(M-17)の合成)
Figure JPOXMLDOC01-appb-C000029
 アルゴン雰囲気下、30.0gの化合物(M-16)と、12.2gのピナコレートジボランと、26.5gの酢酸カリウムと、190mLのジオキサンと、1.1gの(ジフェニルホスフィノフェロセン)パラジウムジクロライドと、0.75gのジフェニルホスフィノフェロセンとを混合し、110℃で4時間加熱した。反応終了後、反応液を室温に冷却させた後、セライトろ過を行い、得られた溶液を濃縮した。得られたオイルを、シリカゲルろ過カラム(展開溶媒 トルエン/ヘキサン=1/1(容積比))に通した。更に、シリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル/ヘキサン=1/20(容積比))で2回精製することにより、化合物(M-17)を22.1g得た。
LC-MS(APPI-MS(posi)):713[M]
 <合成例16>(化合物(M-18)の合成)
Figure JPOXMLDOC01-appb-C000030
 アルゴン雰囲気下、2.24gの化合物(M-14)と、4.71gの化合物(M-17)と、30mlのトルエンと、3.4mgの酢酸パラジウムと、211mgのトリ(2-メトキシフェニル)ホスフィンとを混合し、80℃に加熱した。ここへ、20重量%の水酸化テトラエチルアンモニウム水溶液を10mL滴下し、3時間還流させた。反応液を室温まで冷却した後、酢酸エチルを加え、イオン交換水で4回洗浄し、得られた有機層を濃縮した。濃縮した溶液を、シリカゲルろ過カラム(展開溶媒 酢酸エチル/ヘキサン=1/10(容積比))に通し、濃縮乾固することで白色固体を得た。得られた固体を3回再結晶することにより、化合物(M-18)を2.4g得た。
H-NMR(300MHz,CDCl);δ0.22(18H,s),0.82(12H,t),1.23(24H,m),1.53(8H,m),2.15(12H,s),2.44(8H,t),6.71(4H,s)6.83(4H,s),6.92(4H,s),7.38-7.42(4H,m),7.50-7.63(12H,m),7.72-7.85(8H,m)ppm.
19F-NMR(300MHz,CDCl);δ-63.1ppm.
 <合成例17>(化合物(M-19)の合成)
Figure JPOXMLDOC01-appb-C000031
 アルゴン雰囲気下、2.11gの化合物(M-18)と、80mlのDMFと、20mlの酢酸とを混合した。ここへ、N-ブロモスクシンイミド(NBS)を0.47g混合し、80℃で4時間加熱した。反応終了後、反応液をイオン交換水に注ぎ、析出した固体をろ取し、乾燥させた。得られた固体を、ヘキサンと酢酸エチルとエタノールとを9:1:30の容積比で混合した混合溶液により、3回再沈殿を行い、化合物(M-19)を2.01g得た。
LC-MS(APPI-MS(posi)):1770[M+K]
 <合成例18>(化合物(M-20)の合成)
Figure JPOXMLDOC01-appb-C000032
 アルゴン雰囲気下、0.49gの化合物(M-19)と、0.25gのペンタフルオロフェニルホウ酸と、0.18gのフッ化セシウムと、0.17gの酸化銀と、6mLのDMFとを混合し、30℃に加温した。反応液に、Pd(dba)を27mg、トリ-tert-ブチルホスフィンを15mg混合し、100℃で7時間反応させた。反応の進行を確認後、反応液に、酢酸エチル及び水を加え、分液した。有機層をセライトでろ過し、無水硫酸ナトリウムで乾燥させた後、濃縮乾固させた。得られた固体をシリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン)で精製することにより、化合物(M-20)を81mg得た。
H-NMR(300MHz,CDCl);δ0.82(12H,t),1.25(24H,m),1.50(8H,m),2.17(12H,s),2.44(8H,t),6.74(4H,s)6.85(4H,s),6.90(4H,s),7.40-7.47(8H,m),7.60-7.64(8H,m),7.78-7.89(8H,m)ppm.
19F-NMR(300MHz,CDCl);δ-63.1,-143.3,-156.2,-162.7ppm.
LC-MS(APPI-MS(posi)):1946[M+K]
 <合成例19>(化合物(M-21)の合成)
Figure JPOXMLDOC01-appb-C000033
 アルゴン雰囲気下、1.99gの化合物(M-19)と、0.42gのフェニルホウ酸と、0.19gのテトラブチルアンモニウムブロマイドと、0.20gの水酸化カリウムと、35mLのトルエンと、10mLの水とを混合し、100℃に加温した。反応液に、テトラキス(トリフェニルホスフィン)パラジウム(0)を67mg混合し、105℃で7時間反応させた。反応の進行を確認後、反応液を分液し、有機層を、イオン交換水で2回洗浄した。有機層を濃縮した後、濃縮した溶液をシリカゲルを用いたろ過カラムに通した(展開溶媒 ヘキサン/酢酸エチル=3/1(容積比))。得られた有機層に、活性炭を0.2g加え、1時間還流させた後、セライトを用いてろ過を行い、有機層を濃縮した。得られたオイルを、ODSカラムクロマトグラフィー(展開溶媒 THF/メタノール=1/1(容積比))で精製することにより、化合物(M-21)を1.2g得た。
H-NMR(300MHz,CDCl);δ0.81(12H,t),1.21(24H,m),1.50(8H,m),2.45(8H,t),6.76(4H,s)6.85(4H,s),6.96(4H,s),7.25-7.42(12H,m),7.54-7.65(18H,m),7.83(8H,m)ppm.
19F-NMR(300MHz,CDCl);δ-62.4ppm.
 <合成例20>(高分子化合物(P-1)の合成)
 不活性雰囲気下、国際公開第2008/111658号に記載の方法で合成した7.28gの下記式:
Figure JPOXMLDOC01-appb-C000034
で表される化合物(MM-1)と、4.94gの2,7-ジブロモ-9,9-ジオクチルフルオレンと、欧州特許出願公開第1394188号明細書に記載の方法で合成した0.74gの下記式:
Figure JPOXMLDOC01-appb-C000035
で表される化合物(MM-2)と、7.0mgのビストリフェニルホスフィンパラジウムジクロライドと、1.30gのトリオクチルメチルアンモニウムクロライド(商品名:Aliquat336(登録商標)、アルドリッチ製)と、100mLのトルエンとを混合し、105℃に加熱した。反応液に、2Mの炭酸ナトリウム水溶液を27mL滴下し、2時間還流させた。反応後、フェニルホウ酸を120mg加え、更に4時間還流させた。次いで、1.8Mのジエチルジチアカルバミン酸ナトリウム水溶液(60mL)を加え、80℃で4時間撹拌した。反応液を室温まで冷却後、水で3回、3重量%の酢酸水溶液で3回、水で3回洗浄し、アルミナカラム、シリカゲルカラムに通すことにより精製した。得られたトルエン溶液を1.5Lのメタノールに滴下し、1時間撹拌した後、得られた固体をろ取し、乾燥させたところ、下記式:
Figure JPOXMLDOC01-appb-C000036
で表される高分子化合物(P-1)を8.0g得た。式中、括弧の外に添えた数字は、各繰り返し単位のモル分率を表す。高分子化合物(P-1)は、ポリスチレン換算の数平均分子量が5.1×10であり、ポリスチレン換算の重量平均分子量が1.4×10であった。
 <合成例21>(高分子化合物(P-2)の合成)
 不活性雰囲気下、6.40gの2,7-ビス(1,3,2-ジオキサボロラン-2-イル)-9,9-ジオクチルフルオレンと、1.37gの2,7-ジブロモ-9,9-ジオクチルフルオレンと、米国特許出願公開第2004/035221号明細書に記載の方法で合成した。具体的には、0.64gの下記式:
Figure JPOXMLDOC01-appb-C000037
で示される化合物(MM-3)と、特開2003-226744号公報に記載の方法で合成した4.10gの下記式:
Figure JPOXMLDOC01-appb-C000038
で表される化合物(MM-4)と、21mgのビストリフェニルホスフィンパラジウムジクロライドと、トリオクチルメチルアンモニウムクロライド(商品名:Aliquat336(登録商標)、アルドリッチ製)と、4.5mgの酢酸パラジウムと、28mgのo-トリメトキシフェニルホスフィンと、100mLのトルエンとを混合し、105℃に加熱した。反応液に20重量%水酸化テトラエチルアンモニウム水溶液を35mL滴下し、2時間還流させた。反応後、フェニルホウ酸を61mg加え、更に4時間還流させた。次いで、1.8Mのジエチルジチアカルバミン酸ナトリウム水溶液を100mL加え、80℃で4時間撹拌した。反応液を室温まで冷却後、水で3回、3重量%の酢酸水溶液で3回、水で3回洗浄し、アルミナカラム、シリカゲルカラムを通すことにより精製した。得られたトルエン溶液をメタノールに滴下し、1時間撹拌した後、得られた固体をろ取し、乾燥させたところ、下記式:
Figure JPOXMLDOC01-appb-C000039
で表される高分子化合物(P-2)を6.2g得た。式中、括弧の外に添えた数字は、各繰り返し単位のモル分率を表す。高分子化合物(P-2)は、ポリスチレン換算の数平均分子量が9.7×10であり、ポリスチレン換算の重量平均分子量が3.0×10であった。
 <溶液の調製>
(キシレン溶液(S-1)の調製)
 高分子化合物(P-1)をキシレンに溶解させ、ポリマー濃度が1.3重量%のキシレン溶液(S-1)を調製した。
(キシレン溶液(S-2)の調製)
 高分子化合物(P-2)をキシレンに溶解させ、ポリマー濃度が0.7重量%のキシレン溶液(S-2)を調製した。
(トリフルオロメチルベンゼン溶液(S-3)の調製)
 化合物(M-5)をトリフルオロメチルベンゼンに溶解させ、化合物(M-5)の濃度が0.2重量%のトリフルオロメチルベンゼン溶液(S-3)を調製した。
 <実施例1>(有機エレクトロルミネッセンス素子1の作製及び評価)
 スパッタ法により45nmの厚さで陽極であるITO膜を付けたガラス基板上に、真空蒸着法による5nmの厚みの3酸化モリブデン膜を付けて正孔注入層を形成した。次に、上記で得たキシレン溶液(S-2)を用いて、スピンコートにより1600rpmの回転速度で成膜し、ホットプレート上で180℃、60分間加熱することにより薄膜を硬化させた。成膜後の厚さは約20nmであった。更に、上記で得たキシレン溶液(S-1)を用いて、スピンコートにより1600rpmの回転速度で成膜し、ホットプレート上で130℃、10分間加熱した。成膜後の厚さは約60nmであった。更に、上記で得たトリフルオロメチルベンゼン溶液(S-3)を用いて、スピンコートにより1600rpmの回転速度で成膜した。成膜後の厚さは約10nmであった。これを130℃で10分間乾燥させ、正孔阻止層である有機層を形成した。その後、陰極としてバリウムを約5nm蒸着し、次いでアルミニウムを約100nm蒸着して有機エレクトロルミネッセンス素子1を作製した。なお、真空度が1×10-4Pa以下に到達した後に金属の蒸着を開始した。
 <比較例1>(有機エレクトロルミネッセンス素子C1の作製)
 正孔阻止層である有機層を形成しなかった以外は、実施例1と同様にして、有機エレクトロルミネッセンス素子C1を作製した。
 有機エレクトロルミネッセンス素子1、C1に電圧を印加することにより、流れる電流と発生する光の強度を測定した。
 [電圧-電流特性の評価]
 有機エレクトロルミネッセンス素子1、C1の電圧-電流特性を図1に示す。10Vの電圧を印加した場合、有機エレクトロルミネッセンス素子C1(b)には約65mA/cmの電流が流れたのに対して、有機エレクトロルミネッセンス素子1(a)には約18mA/cmの電流しか流れない。この結果から、有機エレクトロルミネッセンス素子1において、正孔阻止層により正孔電流を遮断する効果が確認された。
 [電圧-効率特性の評価]
 有機エレクトロルミネッセンス素子1、C1の電圧-効率特性を図2に示す。有機エレクトロルミネッセンス素子1(a)は、約8.5Vで1%の外部量子効率を示したのに対して、有機エレクトロルミネッセンス素子C1(b)は、10Vで0.2%の外部量子効率を示した。この結果から、有機エレクトロルミネッセンス素子1において、外部量子効率が優れる効果が確認された。

Claims (6)

  1.  陰極と、
     陽極と、
     該陰極及び該陽極の間に設けられ、発光材料を含む発光層と、
     該発光層及び該陰極の間に設けられ、式(A)で表される化合物を含む有機層と、
    を有する、有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001
    〔式(A)中、Arは、置換基を有していてもよいアリーレン基を表す。nは、2~5の整数を表す。複数個あるArは、それぞれ同一であっても異なってもよい。但し、少なくとも1つのArは、置換基を有していてもよいフルオレンジイル基である。X及びYは、それぞれ独立に、水素原子又は式(B)で表される基を表す。X及びYが水素原子である場合、少なくとも1つのArが、置換基として式(B)で表される基を有する。
    -C     (B)
    (式(B)中、wは、0~10の整数を表し、xは、1~2w+1の整数を表し、yは、0~2wの整数を表し、zは0又は1を表す。)〕
  2.  前記式(A)で表される化合物の最高占有軌道準位のエネルギーと、前記発光材料の最高占有軌道準位のエネルギーとが、式(1)を満たす、請求項1に記載の有機エレクトロルミネッセンス素子。
    (式(A)で表される化合物の最高占有軌道準位のエネルギー) > (発光材料の最高占有軌道準位のエネルギー)     (1)
  3.  前記有機層が、非発光性である、請求項1又は2に記載の有機エレクトロルミネッセンス素子。
  4.  前記式(A)で表される化合物の最低非占有軌道準位のエネルギーと、前記発光材料の最低非占有軌道準位のエネルギーとが、式(2)を満たす請求項1~3のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    (式(A)で表される化合物の最低非占有軌道準位のエネルギー) < (発光材料の最低非占有軌道準位のエネルギー)+0.5eV     (2)
  5.  前記式(A)で表される化合物のエネルギーギャップが、前記発光材料のエネルギーギャップより大きい、請求項1~4のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  6.  前記式(A)で表される化合物が、トリフルオロメチルベンゼン、1,3-ビス(トリフルオロメチル)ベンゼン、及び、1,4-ビス(トリフルオロメチル)ベンゼンからなる群から選ばれる少なくとも1種のフッ素溶媒に対して、0.1重量%(w/o)以上溶解する化合物である、請求項1~5のいずれか一項に記載の有機エレクトロルミネッセンス素子。
PCT/JP2012/057560 2011-03-30 2012-03-23 有機エレクトロルミネッセンス素子 WO2012133209A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011074572A JP2012209452A (ja) 2011-03-30 2011-03-30 有機エレクトロルミネッセンス素子
JP2011-074572 2011-03-30

Publications (1)

Publication Number Publication Date
WO2012133209A1 true WO2012133209A1 (ja) 2012-10-04

Family

ID=46930932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057560 WO2012133209A1 (ja) 2011-03-30 2012-03-23 有機エレクトロルミネッセンス素子

Country Status (3)

Country Link
JP (1) JP2012209452A (ja)
TW (1) TW201249958A (ja)
WO (1) WO2012133209A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162156A1 (ja) * 2019-02-08 2020-08-13 住友化学株式会社 化合物およびそれを用いた発光素子

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5962844B2 (ja) * 2013-09-11 2016-08-03 住友化学株式会社 高分子化合物およびそれを用いた発光素子

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083483A (ja) * 2002-08-27 2004-03-18 Canon Inc スピロ化合物及びそれを用いた有機発光素子
JP2004083481A (ja) * 2002-08-27 2004-03-18 Canon Inc フルオレン化合物及びそれを用いた有機発光素子
JP2004107326A (ja) * 2002-08-27 2004-04-08 Canon Inc 縮合多環化合物及びそれを用いた有機発光素子
JP2005026210A (ja) * 2003-06-10 2005-01-27 Fujitsu Ltd 有機el素子
JP2006523611A (ja) * 2003-04-15 2006-10-19 スリーエム イノベイティブ プロパティズ カンパニー 有機電子デバイスのための電子輸送剤
JP2006332668A (ja) * 2005-05-26 2006-12-07 Au Optronics Corp 有機エレクトロルミネッセンス素子
JP2007217312A (ja) * 2006-02-15 2007-08-30 Canon Inc ナフトジチオフェン化合物、ナフトジチオフェンオリゴマー化合物、および有機発光素子
JP2008290991A (ja) * 2007-05-28 2008-12-04 Canon Inc フルオレン化合物及びそれを用いた有機発光素子並びに表示装置
JP2009514217A (ja) * 2005-10-26 2009-04-02 イーストマン コダック カンパニー 低電圧エレクトロルミネッセンス・デバイスのための有機素子
JP2009170812A (ja) * 2008-01-18 2009-07-30 Mitsui Chemicals Inc 有機電界発光素子
JP2010037279A (ja) * 2008-08-06 2010-02-18 Canon Inc フルオレン化合物及びこれを用いた有機el素子

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083483A (ja) * 2002-08-27 2004-03-18 Canon Inc スピロ化合物及びそれを用いた有機発光素子
JP2004083481A (ja) * 2002-08-27 2004-03-18 Canon Inc フルオレン化合物及びそれを用いた有機発光素子
JP2004107326A (ja) * 2002-08-27 2004-04-08 Canon Inc 縮合多環化合物及びそれを用いた有機発光素子
JP2006523611A (ja) * 2003-04-15 2006-10-19 スリーエム イノベイティブ プロパティズ カンパニー 有機電子デバイスのための電子輸送剤
JP2005026210A (ja) * 2003-06-10 2005-01-27 Fujitsu Ltd 有機el素子
JP2006332668A (ja) * 2005-05-26 2006-12-07 Au Optronics Corp 有機エレクトロルミネッセンス素子
JP2009514217A (ja) * 2005-10-26 2009-04-02 イーストマン コダック カンパニー 低電圧エレクトロルミネッセンス・デバイスのための有機素子
JP2007217312A (ja) * 2006-02-15 2007-08-30 Canon Inc ナフトジチオフェン化合物、ナフトジチオフェンオリゴマー化合物、および有機発光素子
JP2008290991A (ja) * 2007-05-28 2008-12-04 Canon Inc フルオレン化合物及びそれを用いた有機発光素子並びに表示装置
JP2009170812A (ja) * 2008-01-18 2009-07-30 Mitsui Chemicals Inc 有機電界発光素子
JP2010037279A (ja) * 2008-08-06 2010-02-18 Canon Inc フルオレン化合物及びこれを用いた有機el素子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162156A1 (ja) * 2019-02-08 2020-08-13 住友化学株式会社 化合物およびそれを用いた発光素子
CN113365971A (zh) * 2019-02-08 2021-09-07 住友化学株式会社 化合物以及使用该化合物的发光元件
CN113365971B (zh) * 2019-02-08 2024-04-30 住友化学株式会社 化合物以及使用该化合物的发光元件

Also Published As

Publication number Publication date
JP2012209452A (ja) 2012-10-25
TW201249958A (en) 2012-12-16

Similar Documents

Publication Publication Date Title
JP5446079B2 (ja) 高分子化合物及びそれを用いた高分子発光素子
JP5913959B2 (ja) 組成物及びブロック型共重合体
JP5875852B2 (ja) 高分子化合物及びそれを用いた有機el素子
JP5625272B2 (ja) 1,3−ジエンを含む化合物及びその製造方法
JP5640730B2 (ja) 組成物及び該組成物を用いてなる発光素子
JP4788334B2 (ja) 高分子化合物およびそれを用いた素子
JP4321110B2 (ja) 高分子化合物およびそれを用いた高分子発光素子
WO2010013723A1 (ja) 高分子化合物及びそれを用いた発光素子
JP5274754B2 (ja) 高分子材料及び高分子発光素子
JP5714347B2 (ja) 発光材料、インク組成物、薄膜、発光素子及び発光素子の製造方法
WO2008038747A1 (fr) composé polymère et dispositif électroluminescent polymère l'utilisant
JP2007119763A (ja) 高分子材料及び高分子発光素子
JP5251043B2 (ja) 高分子化合物および高分子発光素子
JP5162868B2 (ja) 高分子発光素子及び有機トランジスタ並びにそれらに有用な組成物
JP6046389B2 (ja) 有機エレクトロルミネッセンス素子
JP6064433B2 (ja) 高分子化合物およびそれを用いた発光素子
JP5124942B2 (ja) 金属錯体および素子
JP5604804B2 (ja) 含窒素複素環式化合物を含む組成物
JP5162856B2 (ja) 高分子発光素子及び有機トランジスタ並びにそれらに有用な組成物
JP4062958B2 (ja) ブロック共重合体および高分子発光素子
JP5274755B2 (ja) 高分子材料及び高分子発光素子
WO2012133209A1 (ja) 有機エレクトロルミネッセンス素子
JP2010260879A (ja) 含窒素複素環式化合物の残基を有する高分子化合物
WO2012133207A1 (ja) フッ素含有化合物並びにそれを含有する組成物及び薄膜
WO2011149056A1 (ja) 新規化合物及びそれを用いた発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763625

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12763625

Country of ref document: EP

Kind code of ref document: A1