WO2012133207A1 - フッ素含有化合物並びにそれを含有する組成物及び薄膜 - Google Patents

フッ素含有化合物並びにそれを含有する組成物及び薄膜 Download PDF

Info

Publication number
WO2012133207A1
WO2012133207A1 PCT/JP2012/057558 JP2012057558W WO2012133207A1 WO 2012133207 A1 WO2012133207 A1 WO 2012133207A1 JP 2012057558 W JP2012057558 W JP 2012057558W WO 2012133207 A1 WO2012133207 A1 WO 2012133207A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituent
compound
layer
examples
Prior art date
Application number
PCT/JP2012/057558
Other languages
English (en)
French (fr)
Inventor
智也 中谷
健太 田中
ジェレミー バロウズ
Original Assignee
住友化学株式会社
ケンブリッジ ディスプレイ テクノロジー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, ケンブリッジ ディスプレイ テクノロジー リミテッド filed Critical 住友化学株式会社
Publication of WO2012133207A1 publication Critical patent/WO2012133207A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C22/00Cyclic compounds containing halogen atoms bound to an acyclic carbon atom
    • C07C22/02Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings
    • C07C22/04Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings containing six-membered aromatic rings
    • C07C22/08Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings containing six-membered aromatic rings containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/80Ketones containing a keto group bound to a six-membered aromatic ring containing halogen
    • C07C49/813Ketones containing a keto group bound to a six-membered aromatic ring containing halogen polycyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/18Luminescent screens
    • H01J29/20Luminescent screens characterised by the luminescent material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/146Side-chains containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/52Luminescence
    • C08G2261/522Luminescence fluorescent
    • C08G2261/5222Luminescence fluorescent electrofluorescent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems

Definitions

  • the present invention relates to a fluorine-containing compound, a composition containing the same, and a thin film.
  • Patent Document 1 Conventionally, it has been studied to form a light emitting element by forming a layer structure containing a low molecular compound such as tris (8-quinolinol) aluminum by a vacuum deposition method (for example, Patent Document 1).
  • the light emitting element using the conventional low molecular weight compound does not necessarily have sufficient luminous efficiency.
  • this invention provides the fluorine-containing compound represented by Formula (1).
  • Ar 1 , Ar 2 , Ar 3 , Ar 4 and Ar 5 each independently represent an arylene group which may have a substituent
  • n 1 , n 2 and n 3 each independently represent 0 or 1
  • Z 1 and Z 2 are each independently a hydrogen atom, an alkyl group which may have a substituent, an alkoxy group which may have a substituent, or an aryl which may have a substituent
  • At least one of Ar 1 , Ar 2 , Ar 3 , Ar 4 and Ar 5 is a fluorenediyl group which may have a substituent, and the substitution of Z 1 , Z 2 and the above arylene group At least one of the groups is a group represented by —C p F q H r O s . ]
  • the polymer compound of the present invention may be a fluorenediyl group in which Ar 1 , Ar 2 , Ar 3 , Ar 4 and Ar 5 may all have a substituent.
  • s in the formula (1) may be 0.
  • the present invention also provides a composition containing at least one selected from the group consisting of a hole transport material, an electron transport material, and a light emitting material, and the fluorine-containing compound.
  • the present invention further provides a thin film containing the fluorine-containing compound of the present invention.
  • a compound useful for production of a light emitting device having excellent luminous efficiency is provided.
  • the composition and thin film containing the said compound are provided.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Ph represents a phenyl group
  • t-Bu represents a tert-butyl group
  • C x to C y (x and y are positive integers satisfying x ⁇ y) is the number of carbon atoms in the partial structure corresponding to the functional group name described immediately after this term.
  • C 1 -C 12 alkyl group means an alkyl group having 1 to 12 carbon atoms
  • C 1 -C 12 alkoxyphenyl group means “1 to 12 carbon atoms”. It means a phenyl group having an “alkoxy group”.
  • the fluorine-containing compound according to this embodiment is represented by the formula (1).
  • Ar 1 , Ar 2 , Ar 3 , Ar 4 and Ar 5 each independently represent an arylene group which may have a substituent
  • n 1 , n 2 and n 3 each independently represents 0 or 1
  • Z 1 and Z 2 are each independently a hydrogen atom, an alkyl group which may have a substituent, an alkoxy group which may have a substituent, or an aryloxy which may have a substituent.
  • At least one of Ar 1 , Ar 2 , Ar 3 , Ar 4 and Ar 5 is a fluorenediyl group which may have a substituent, and the substitution of Z 1 , Z 2 and the above arylene group At least one of the groups is a group represented by —C p F q H r O s .
  • the arylene group is a remaining atomic group obtained by removing two hydrogen atoms from an aromatic hydrocarbon.
  • the arylene group includes a group having a benzene ring, a group having a condensed ring, and the like.
  • the number of carbon atoms of the arylene group is usually 6 to 60, preferably 6 to 20.
  • the aromatic hydrocarbon include benzene, naphthalene, anthracene, phenanthrene, naphthacene, fluorene, benzofluorene, pyrene, and perylene.
  • arylene group examples include a phenylene group, a naphthalenediyl group, an anthracenediyl group, a fluorenediyl group, a benzofluorenediyl group, and a divalent condensed ring group.
  • the arylene group is preferably a phenylene group, a naphthalenediyl group, an anthracenediyl group, a fluorenediyl group, and a benzofluorenediyl group because the durability of the light emitting device is further improved, and a naphthalenediyl group, an anthracenediyl group, a fully orange group
  • An yl group and a benzofluorenediyl group are more preferable, a fluorenediyl group and a benzofluorenediyl group are more preferable, and a fluorenediyl group is particularly preferable.
  • the fluorenediyl group is preferably a 2,7-fluorenediyl group.
  • Examples of the arylene group include a phenylene group represented by the formula (A-1), (A-2), or (A-3); a formula (A-4), (A-5), or (A-6) A naphthalenediyl group represented by (A-7), (A-8), (A-9), (A-10), (A-11), (A-12) or (A-13); An anthracenediyl group represented by formula (A-14), (A-15), (A-16), (A-17), (A-18) or (A-19); formula (A-20) A divalent fused ring group represented by formula (A-21), (A-22), (A-23), (A-24), (A-25) or (A-26); -27), (A-28) or (A-29) fluorenediyl group; and formulas (A-30), (A-31), (A-32), (A-33) , (A-34), (A-35), ( -36) or (include benzo fluorenediyl group represented by A-37).
  • the arylene group may have a substituent.
  • substituents include an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an alkenyl group, an alkynyl group, an amino group, and a silyl group.
  • the arylene group may have a group represented by —C p F q H r O s as a substituent.
  • the alkyl group may be any of a linear alkyl group, a branched alkyl group, and a cyclic alkyl group (cycloalkyl group).
  • the number of carbon atoms of the alkyl group is preferably 1 to 20, more preferably 1 to 15, and further preferably 1 to 12, not including the number of carbon atoms of the substituent.
  • alkyl group examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isoamyl group, hexyl group, cyclohexyl group, heptyl group, Examples include octyl group, 2-ethylhexyl group, nonyl group, decyl group, 3,7-dimethyloctyl group and dodecyl group.
  • the above alkyl group may have a substituent.
  • substituents include a halogen atom, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, and an arylthio group. That is, examples of the alkyl group having a substituent include a halogenated alkyl group, an alkoxyalkyl group, an alkylthioalkyl group, an arylalkyl group, an aryloxyalkyl group, and an arylthioalkyl group.
  • examples of the halogenated alkyl group include a trifluoromethyl group, a pentafluoroethyl group, a perfluorobutyl group, a perfluorohexyl group, and a perfluorooctyl group.
  • the arylalkyl group may further have a substituent, and the arylalkyl group usually has 7 to 60 carbon atoms.
  • the arylalkyl group include a phenyl-C 1 -C 12 alkyl group, a C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkyl group, a C 1 -C 12 alkylphenyl-C 1 -C 12 alkyl group, naphthyl -C 1 ⁇ C 12 alkyl group and 2-naphthyl -C 1 ⁇ C 12 alkyl group.
  • the alkoxy group may be any of a linear alkoxy group, a branched alkoxy group, and a cyclic alkoxy group (cycloalkoxy group).
  • the number of carbon atoms of the alkoxy group is preferably 1 to 20, more preferably 1 to 15, and further preferably 1 to 12, not including the number of carbon atoms of the substituent.
  • alkoxy group examples include a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, a butoxy group, an isobutoxy group, a tert-butoxy group, a pentyloxy group, a hexyloxy group, a cyclohexyloxy group, a heptyloxy group, and an octyloxy group.
  • the alkoxy group may have a substituent.
  • substituents include a halogen atom, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, and an arylthio group. That is, examples of the alkoxy group having a substituent include a halogenated alkoxy group, an alkoxyalkyloxy group, an alkylthioalkoxy group, an arylalkoxy group, an aryloxyalkoxy group, and an arylthioalkoxy group.
  • examples of the halogenated alkoxy group include a trifluoromethoxy group, a pentafluoroethoxy group, a perfluorobutoxy group, a perfluorohexyloxy group, and a perfluorooctyloxy group.
  • examples of the alkoxyalkoxy group include a methoxymethyloxy group and a 2-methoxyethyloxy group.
  • the arylalkoxy group may further have a substituent, and the arylalkoxy group usually has 7 to 60 carbon atoms.
  • the arylalkoxy group include a phenyl-C 1 -C 12 alkoxy group, a C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkoxy group, a C 1 -C 12 alkylphenyl-C 1 -C 12 alkoxy group, naphthyl -C 1 ⁇ C 12 alkoxy group and 2-naphthyl -C 1 ⁇ C 12 alkoxy group.
  • the alkylthio group may be any of a linear alkylthio group, a branched alkylthio group, and a cyclic alkylthio group (cycloalkylthio group). Unless otherwise specified, the number of carbon atoms of the alkylthio group is preferably 1 to 20, more preferably 1 to 15, and still more preferably 1 to 12, not including the number of carbon atoms of the substituent.
  • alkylthio group examples include methylthio group, ethylthio group, propylthio group, isopropylthio group, butylthio group, isobutylthio group, tert-butylthio group, pentylthio group, hexylthio group, cyclohexylthio group, heptylthio group, octylthio group, 2- Examples include an ethylhexylthio group, a nonylthio group, a decylthio group, a 3,7-dimethyloctylthio group, and a laurylthio group.
  • the alkylthio group may have a substituent.
  • substituents include a halogen atom, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, and an arylthio group. That is, examples of the alkylthio group having a substituent include a halogenated alkylthio group, an alkoxyalkylthio group, an alkylthioalkylthio group, an arylalkylthio group, an aryloxyalkylthio group, and an arylthioalkylthio group.
  • examples of the halogenated alkylthio group include a trifluoromethylthio group.
  • the arylalkylthio group may further have a substituent, and the arylalkylthio group usually has 7 to 60 carbon atoms.
  • the arylalkylthio group include a phenyl-C 1 -C 12 alkylthio group, a C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkylthio group, a C 1 -C 12 alkylphenyl-C 1 -C 12 alkylthio group, naphthyl -C 1 ⁇ C 12 alkylthio group and a 2-naphthyl -C 1 ⁇ C 12 alkylthio group.
  • the aryl group is a remaining atomic group obtained by removing one hydrogen atom from an aromatic hydrocarbon.
  • the aryl group includes a group having a benzene ring, a group having a condensed ring, and a group in which two or more of independent benzene rings and condensed rings are bonded directly or via a vinylene group.
  • the number of carbon atoms of the aryl group is usually 6 to 60, preferably 6 to 48, and more preferably 6 to 30.
  • the aromatic hydrocarbon include benzene, biphenyl, naphthalene, anthracene, phenanthrene, naphthacene, fluorene, benzofluorene, pyrene, and perylene.
  • the aryl group may have a substituent.
  • substituents include a halogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryloxy group, and an arylthio group. That is, examples of the aryl group having a substituent include a halogenated aryl group, an alkylaryl group, an alkoxyaryl group, an alkylthioaryl group, an aryloxyaryl group, and an arylthioaryl group.
  • aryl group examples include phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, pentafluorophenyl group, C 1 to C 12 alkoxyphenyl group, and C 1. preferably ⁇ C 12 alkylphenyl group, C 1 ⁇ C 12 alkoxyphenyl groups and C 1 ⁇ C 12 alkylphenyl group are more preferable.
  • Examples of the C 1 to C 12 alkoxyphenyl group include a methoxyphenyl group, an ethoxyphenyl group, a propyloxyphenyl group, an isopropyloxyphenyl group, a butoxyphenyl group, an isobutoxyphenyl group, a tert-butoxyphenyl group, and a pentyloxyphenyl group.
  • Examples of the C 1 -C 12 alkylphenyl group include methylphenyl group, ethylphenyl group, dimethylphenyl group, propylphenyl group, mesityl group, methylethylphenyl group, isopropylphenyl group, butylphenyl group, isobutylphenyl group, tert -Butylphenyl group, pentylphenyl group, isoamylphenyl group, hexylphenyl group, heptylphenyl group, octylphenyl group, nonylphenyl group, decylphenyl group and dodecylphenyl group.
  • the aryloxy group is a group represented by —O—Ar 11 (Ar 11 represents the aryl group), and the aryl group in Ar 11 may have a substituent.
  • the number of carbon atoms of the aryloxy group (that is, the number of carbon atoms of the aryl group in Ar 11 ) is preferably 6 to 60, more preferably 6 to 48, still more preferably 6 to 48, not including the number of carbon atoms of the substituent. 30.
  • aryloxy group examples include phenoxy group, 1-naphthyloxy group, 2-naphthyloxy group, a pentafluorophenyl group, C 1 ⁇ C 12 alkoxyphenoxy groups and C 1 ⁇ C 12 alkylphenoxy groups are preferable, C 1 A -C 12 alkoxyphenoxy group and a C 1 -C 12 alkylphenoxy group are more preferred.
  • Examples of the C 1 -C 12 alkoxyphenoxy group include a methoxyphenoxy group, an ethoxyphenoxy group, a propyloxyphenoxy group, an isopropyloxyphenoxy group, a butoxyphenoxy group, an isobutoxyphenoxy group, a tert-butoxyphenoxy group, and a pentyloxyphenoxy group.
  • Examples of the C 1 -C 12 alkylphenoxy group include a methylphenoxy group, an ethylphenoxy group, a dimethylphenoxy group, a propylphenoxy group, a 1,3,5-trimethylphenoxy group, a methylethylphenoxy group, an isopropylphenoxy group, and a butylphenoxy group.
  • the arylthio group is a group represented by —S—Ar 12 (Ar 12 represents the aryl group), and the aryl group in Ar 12 may have a substituent.
  • the number of carbon atoms of the arylthio group (that is, the number of carbon atoms of the aryl group in Ar 12 ) is preferably 6 to 60, more preferably 6 to 48, and even more preferably 6 to 30 without including the number of carbon atoms of the substituent. It is.
  • the arylthio group is preferably a phenylthio group, a C 1 -C 12 alkoxyphenylthio group, a C 1 -C 12 alkylphenylthio group, a 1-naphthylthio group, a 2-naphthylthio group, or a pentafluorophenylthio group.
  • the alkenyl group is a remaining atomic group obtained by removing one hydrogen atom bonded to the sp 2 carbon of the alkene.
  • the alkenyl group may be any of a linear alkenyl group, a branched alkenyl group, and a cyclic alkenyl group.
  • the number of carbon atoms of the alkenyl group is preferably 2 to 20, more preferably 2 to 15, and further preferably 2 to 10, excluding the number of carbon atoms of the substituent.
  • alkenyl group examples include a vinyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 2-butenyl group, 1-pentenyl group, 2-pentenyl group, 1-hexenyl group, 2-hexenyl group and A 1-octenyl group may be mentioned.
  • the alkenyl group may have a substituent.
  • substituents include a halogen atom, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, and an arylthio group. That is, examples of the alkenyl group having a substituent include a halogenated alkenyl group, an alkoxyalkenyl group, an alkylthioalkenyl group, an arylalkenyl group, an aryloxyalkenyl group, and an arylthioalkenyl group.
  • the arylalkenyl group may further have a substituent, and the arylalkenyl group usually has 8 to 60 carbon atoms.
  • the arylalkenyl group for example, a phenyl-C 2 -C 12 alkenyl group, a C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkenyl group, a C 1 -C 12 alkylphenyl-C 2 -C 12 alkenyl group, Examples include 1-naphthyl-C 2 -C 12 alkenyl group and 2-naphthyl-C 2 -C 12 alkenyl group, C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkenyl group and C 1 -C 12 alkylphenyl.
  • a —C 2 -C 12 alkenyl group is preferred.
  • the alkynyl group is a remaining atomic group obtained by removing one hydrogen atom bonded to the sp 1 carbon of alkyne.
  • the alkynyl group may be any of a linear alkynyl group, a branched alkynyl group, and a cyclic alkynyl group. Unless otherwise specified, the number of carbon atoms of the alkynyl group is preferably 2 to 20, more preferably 2 to 15, and further preferably 2 to 10, not including the carbon atoms of the substituent.
  • alkynyl group examples include ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 1-pentynyl group, 2-pentynyl group, 1-hexynyl group, 2-hexynyl group and A 1-octynyl group may be mentioned.
  • the above alkynyl group may have a substituent.
  • substituents include a halogen atom, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, and an arylthio group. That is, examples of the alkynyl group having a substituent include a halogenated alkynyl group, an alkoxyalkynyl group, an alkylthioalkynyl group, an arylalkynyl group, an aryloxyalkynyl group, and an arylthioalkynyl group.
  • the arylalkynyl group may further have a substituent, and the arylalkynyl group usually has 8 to 60 carbon atoms.
  • the arylalkynyl group for example, a phenyl-C 2 -C 12 alkynyl group, a C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkynyl group, a C 1 -C 12 alkylphenyl-C 2 -C 12 alkynyl group, Examples include 1-naphthyl-C 2 -C 12 alkynyl group, 2-naphthyl-C 2 -C 12 alkynyl group, C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkynyl group and C 1 -C 12 alkylphenyl.
  • a —C 2 -C 12 alkynyl group is preferred.
  • the amino group is an unsubstituted amino group
  • one or two hydrogen atoms in the amino group are selected from the group consisting of an alkyl group, an aryl group, an arylalkyl group, and a monovalent heterocyclic group. It may be an amino group substituted with a group (hereinafter referred to as “substituted amino group”).
  • the substituted amino group may have a substituent, and the number of carbon atoms of the substituted amino group is usually 1 to 60, preferably 2 to 48.
  • substituted amino group examples include methylamino group, dimethylamino group, ethylamino group, diethylamino group, propylamino group, dipropylamino group, isopropylamino group, diisopropylamino group, butylamino group, sec-butylamino group, Isobutylamino group, tert-butylamino group, pentylamino group, hexylamino group, cyclohexylamino group, heptylamino group, octylamino group, 2-ethylhexylamino group, nonylamino group, decylamino group, 3,7-dimethyloctylamino group , lauryl group, a cyclopentylamino group, dicyclopentylamino group, dicyclohexylamino group, pyrrolidyl group, piperidyl group, di
  • the silyl group is an unsubstituted silyl group
  • 1 to 3 hydrogen atoms in the silyl group are selected from the group consisting of alkyl groups, aryl groups, arylalkyl groups, and monovalent heterocyclic groups. It may be a silyl group substituted with a group (hereinafter referred to as “substituted silyl group”).
  • the substituted silyl group may have a substituent, and the number of carbon atoms of the substituted silyl group is usually 1 to 60, preferably 3 to 48.
  • substituted silyl group examples include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, tri-isopropylsilyl group, dimethyl-isopropylsilyl group, diethyl-isopropylsilyl group, tert-butyldimethylsilyl group, pentyldimethylsilyl group, Hexyldimethylsilyl group, heptyldimethylsilyl group, octyldimethylsilyl group, 2-ethylhexyl-dimethylsilyl group, nonyldimethylsilyl group, decyldimethylsilyl group, 3,7-dimethyloctyl-dimethylsilyl group, lauryldimethylsilyl group, phenyl -C 1 -C 12 alkylsilyl group, C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkyl
  • acyl group examples include a group represented by —C ( ⁇ O) —R 11 (R 11 represents the alkyl group, the aryl group, or a monovalent heterocyclic group described later).
  • R 11 represents the alkyl group, the aryl group, or a monovalent heterocyclic group described later).
  • the alkyl group, aryl group and monovalent heterocyclic group in R 11 may have a substituent.
  • the number of carbon atoms of the acyl group is preferably 2 to 20, more preferably 2 to 18, excluding the number of carbon atoms of the substituent.
  • acyl group examples include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a benzoyl group, a trifluoroacetyl group, and a pentafluorobenzoyl group.
  • acyloxy group examples include a group represented by —O—C ( ⁇ O) —R 12 (wherein R 12 represents the alkyl group, the aryl group, or a monovalent heterocyclic group described later). Can be mentioned.
  • the alkyl group, aryl group and monovalent heterocyclic group in R 12 may have a substituent.
  • the number of carbon atoms of the acyloxy group is preferably 2 to 20, more preferably 2 to 18, excluding the number of carbon atoms of the substituent.
  • acyloxy group examples include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, a benzoyloxy group, a trifluoroacetyloxy group, and a pentafluorobenzoyloxy group.
  • the imine residue is derived from an imine compound having a structure represented by at least one of formula A: H—N ⁇ C (R 13 ) 2 or formula B: H—C (R 14 ) ⁇ N—R 15 It means a residue excluding “H” in the formula.
  • R ⁇ 13> , R ⁇ 14> and R ⁇ 15> show the said alkyl group, the said aryl group, the said alkenyl group, the said alkynyl group, or the monovalent
  • the alkyl group, aryl group, alkenyl group, alkynyl group and monovalent heterocyclic group in R 13 , R 14 and R 15 may have a substituent.
  • a plurality of R 13 may be the same as or different from each other, and may be linked to each other to form a ring structure.
  • Examples of the imine residue include groups represented by the following structural formulas.
  • the number of carbon atoms in the carbamoyl group is usually 1-20, preferably 1-18.
  • the carbamoyl group include a formamide group, an acetamide group, a propioamide group, a butyroamide group, a benzamide group, a trifluoroacetamide group, a pentafluorobenzamide group, a diformamide group, a diacetamide group, a dipropioamide group, a dibutyroamide group, a dibenzamide group, Examples include a ditrifluoroacetamide group and a dipentafluorobenzamide group.
  • the acid imide group means a residue obtained by removing one hydrogen atom bonded to the nitrogen atom from the acid imide.
  • the number of carbon atoms of the acid imide group is preferably 4 to 20, more preferably 4 to 18.
  • Examples of the acid imide residue include groups represented by the following structural formulas.
  • the monovalent heterocyclic group is a remaining atomic group obtained by removing one hydrogen atom from a heterocyclic compound.
  • the monovalent heterocyclic group may have a substituent, and examples of the monovalent heterocyclic group include a monocyclic group and a group having a condensed ring.
  • the number of carbon atoms of the monovalent heterocyclic group is usually 4 to 60, preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • Heterocyclic compounds are not only carbon atoms but also oxygen atoms, sulfur atoms, nitrogen atoms, phosphorus atoms, boron atoms, silicon atoms, selenium atoms as elements constituting the ring among organic compounds having a cyclic structure. And those containing heteroatoms such as tellurium atoms and arsenic atoms.
  • the monovalent heterocyclic group is preferably a monovalent aromatic heterocyclic group.
  • the monovalent aromatic heterocyclic group is a remaining atomic group obtained by removing one hydrogen atom from an aromatic heterocyclic compound.
  • aromatic heterocyclic compounds include oxadiazole, thiadiazole, thiazole, oxazole, thiophene, pyrrole, phosphole, furan, pyridine, pyrazine, pyrimidine, triazine, pyridazine, quinoline, isoquinoline, carbazole, dibenzophosphole, dibenzofuran.
  • heterocycles containing heteroatoms such as dibenzothiophene that exhibit aromaticity, and heterocycles containing heteroatoms such as phenoxazine, phenothiazine, dibenzoborol, dibenzosilol, and benzopyran themselves are aromatic. Even if not shown, a compound in which an aromatic ring is condensed to the heterocyclic ring can be mentioned.
  • Examples of the monovalent heterocyclic group include thienyl group, C 1 -C 12 alkyl thienyl group, pyrrolyl group, furyl group, pyridyl group, C 1 -C 12 alkyl pyridyl group, piperidyl group, quinolyl group and isoquinolyl group.
  • a thienyl group, a C 1 -C 12 alkylthienyl group, a pyridyl group and a C 1 -C 12 alkylpyridyl group are preferred.
  • Examples of the oxycarbonyl group include groups represented by —C ( ⁇ O) —O—R 16 (wherein R 16 represents the alkyl group, the aryl group, or the monovalent heterocyclic group). .
  • the alkyl group, aryl group and monovalent heterocyclic group in R 16 may have a substituent.
  • the number of carbon atoms of the oxycarbonyl group is preferably 2 to 60, more preferably 2 to 48, not including the number of carbon atoms of the substituent.
  • Examples of the oxycarbonyl group include a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, an isopropoxycarbonyl group, a butoxycarbonyl group, an isobutoxycarbonyl group, a tert-butoxycarbonyl group, a pentyloxycarbonyl group, and a hexyloxycarbonyl group.
  • fluorine-containing group examples include, for example, a fluorinated alkyl group, a fluorinated aryl group, a fluorinated alkylaryl group, and a fluorinated alkyloxy.
  • fluorinated aryloxy groups, fluorinated alkylaryloxy groups and fluorinated acyl groups examples include, for example, a fluorinated alkyl group, a fluorinated aryl group, a fluorinated alkylaryl group, and a fluorinated alkyloxy.
  • fluorinated means that the functional group described immediately after this word has at least one fluorine atom as a substituent.
  • fluorine-containing group examples include a fluorinated alkyl group represented by the formula (F-1), (F-2), (F-3), or (F-4); the formula (F-5), (F -6), (F-7), (F-8) or fluorinated aryl group represented by (F-9); formula (F-10), (F-11), (F-12) or ( A fluorinated alkylaryl group represented by F-13); a fluorinated alkoxy group represented by formula (F-14), (F-15), (F-16) or (F-17); -18) or (F-19); a fluorinated aryloxy group represented by formula (F-20), (F-21) or (F-22); and Formula (F-23), (F-24), (F-25), (F-26), (F-27), (F-28), (F-29), (F-30) or Fluorinated acyl group represented by F-31); and the like.
  • F-1 fluorinated alkyl group represented by the formula (F-1), (F-2), (F-3),
  • fluorine-containing group a group in which s is 0, that is, a group represented by —C p F q H r is preferable because chemical stability of the fluorine-containing compound is improved.
  • the groups represented by 1) to (F-13) are preferred.
  • an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a cyano group, and a group represented by —C p F q H r O s are preferable, and these groups may further have a substituent.
  • the substituent that the arylene group has includes, for example, an alkyl group that may have a substituent, an alkoxy group that may have a substituent, an aryl group that may have a substituent, and a substituent. It may be an aryloxy group, a cyano group or a fluorine-containing group that may be present.
  • the alkyl group which may have a substituent is preferably an unsubstituted alkyl group, an arylalkyl group or an alkylarylalkyl group, a C 1 -C 12 alkyl group, a phenyl-C 1 -C 12 alkyl group.
  • alkoxy group which may have a substituent group
  • an unsubstituted alkoxy group, arylalkoxy group and an alkyl arylalkoxy group are preferable, phenyl -C 1 ⁇ C 12 alkoxy group, C 1 ⁇ C 12 alkoxyphenyl -C 1 -C 12 alkoxy group, C 1 -C 12 alkylphenyl-C 1 -C 12 alkoxy group, 1-naphthyl-C 1 -C 12 alkoxy group and 2-naphthyl-C 1 -C 12 alkoxy group preferable.
  • aryl group which may have a substituent
  • an unsubstituted aryl group, a halogenated aryl group, an alkoxyaryl group and an alkylaryl group are preferable, and a phenyl group, a 1-naphthyl group, a 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, pentafluorophenyl group, C 1 -C 12 alkoxyphenyl group and C 1 -C 12 alkylphenyl group are more preferred, C 1 -C 12 alkoxyphenyl group and More preferred is a C 1 -C 12 alkylphenyl group.
  • the aryloxy group which may have a substituent is preferably an unsubstituted aryloxy group, a halogenated aryloxy group, an alkoxyaryloxy group or an alkylaryloxy group, a phenoxy group, a 1-naphthyloxy group. 2-naphthyloxy group, pentafluorophenyloxy group, C 1 -C 12 alkoxyphenoxy group and C 1 -C 12 alkylphenoxy group are more preferable, C 1 -C 12 alkoxyphenoxy group and C 1 -C 12 alkylphenoxy group Groups are more preferred.
  • the fluorine-containing compound preferably has one or two fluorine-containing groups, and more preferably has two.
  • the fluorine-containing compound when n 1 + n 2 + n 3 is an integer of 1 to 3, the fluorine-containing compound preferably has a fluorine-containing group as a substituent for Ar 3 , Ar 4 or Ar 5 .
  • n 1 + n 2 + n 3 is preferably 0 or 1, and more preferably 1.
  • Examples of the alkyl group in Z 1 and Z 2 include the alkyl groups exemplified as the substituent for the arylene group.
  • the alkyl group may have a substituent as described above.
  • an unsubstituted alkyl group, an arylalkyl group and an alkylarylalkyl group are preferable, and a C 1 -C 12 alkyl group, a phenyl-C 1 -C 12 alkyl group, and a C 1 -C 12 alkoxyphenyl -C 1 ⁇ C 12 alkyl group, C 1 ⁇ C 12 alkylphenyl -C 1 ⁇ C 12 alkyl group, 1-naphthyl -C 1 ⁇ C 12 alkyl group and 2-naphthyl -C 1 ⁇ C 12 alkyl Groups are more preferred.
  • Examples of the alkoxy group for Z 1 and Z 2 include the alkoxy groups exemplified as the substituent for the arylene group.
  • the alkoxy group may have a substituent as described above.
  • an unsubstituted alkoxy group, an arylalkoxy group and an alkylarylalkoxy group are preferable, and a phenyl-C 1 -C 12 alkoxy group, a C 1 -C 12 alkoxyphenyl-C 1 -C More preferred are 12 alkoxy groups, C 1 -C 12 alkylphenyl-C 1 -C 12 alkoxy groups, 1-naphthyl-C 1 -C 12 alkoxy groups and 2-naphthyl-C 1 -C 12 alkoxy groups.
  • Examples of the aryloxy group in Z 1 and Z 2 include the aryloxy groups exemplified as the substituent for the arylene group.
  • the aryloxy group may have a substituent as described above.
  • an unsubstituted aryloxy group, a halogenated aryloxy group, an alkoxyaryloxy group and an alkylaryloxy group are preferable, and a phenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group Group, pentafluorophenyloxy group, C 1 -C 12 alkoxyphenoxy group and C 1 -C 12 alkylphenoxy group are preferred, and C 1 -C 12 alkoxyphenoxy group and C 1 -C 12 alkylphenoxy group are more preferred.
  • the fluorine-containing compound may be a group in which at least one of Ar 1 , Ar 2 , Ar 3 , Ar 4 and Ar 5 in the formula (1) is a group represented by the formula (B-1) or (B-2).
  • Ar 1 , Ar 2 , Ar 3 , Ar 4 and Ar 5 may all be groups represented by the formula (B-1) or (B-2).
  • R 1 and R 2 each independently represent an alkyl group which may have a substituent, an aryl group which may have a substituent, or a fluorine-containing group.
  • the plurality of R 1 and R 2 may be the same or different.
  • Examples of the alkyl group for R 1 and R 2 include the alkyl groups exemplified as the substituent for the arylene group.
  • the alkyl group may have a substituent as described above.
  • an unsubstituted alkyl group, an arylalkyl group and an alkylarylalkyl group are preferable, and a C 1 -C 12 alkyl group, a phenyl-C 1 -C 12 alkyl group, and a C 1 -C 12 alkoxyphenyl -C 1 ⁇ C 12 alkyl group, C 1 ⁇ C 12 alkylphenyl -C 1 ⁇ C 12 alkyl group, 1-naphthyl -C 1 ⁇ C 12 alkyl group and 2-naphthyl -C 1 ⁇ C 12 alkyl Groups are more preferred.
  • Examples of the aryl group for R 1 and R 2 include the aryl groups exemplified as the substituent for the arylene group.
  • the alkyl group may have a substituent as described above.
  • an unsubstituted alkoxy group, an arylalkoxy group, and an alkylarylalkoxy group are preferable, and a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthracenyl group, and a 2-anthracenyl group , 9-anthracenyl group, pentafluorophenyl group, C 1 -C 12 alkoxyphenyl group and C 1 -C 12 alkylphenyl group are preferred, and C 1 -C 12 alkoxyphenyl group and C 1 -C 12 alkylphenyl group are more preferred preferable.
  • the fluorine-containing compound may also be a compound represented by the formula (2).
  • Z 1 , Z 2 , R 1 and R 2 are as defined above, and R 3 , R 4 , R 5 , R 6 , R 7 and R 8 each independently have a hydrogen atom or a substituent. And an optionally substituted alkyl group or an optionally substituted aryl group, and n 4 represents an integer of 2 to 5.
  • a plurality of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 may be the same or different from each other. However, at least one of Z 1 and Z 2 and a plurality of R 1 and R 2 is a fluorine-containing group.
  • Examples of the alkyl group in R 3 , R 4 , R 5 , R 6 , R 7 and R 8 include the alkyl groups exemplified as the substituent for the arylene group.
  • an unsubstituted alkyl group, an arylalkyl group and an alkylarylalkyl group are preferable, and a C 1 -C 12 alkyl group, phenyl- C 1 ⁇ C 12 alkyl group, C 1 ⁇ C 12 alkoxyphenyl -C 1 ⁇ C 12 alkyl group, C 1 ⁇ C 12 alkylphenyl -C 1 ⁇ C 12 alkyl group, 1-naphthyl -C 1 ⁇ C 12 alkyl More preferred are groups and 2-naphthyl-C 1 -C 12 alkyl groups.
  • Examples of the aryl group in R 3 , R 4 , R 5 , R 6 , R 7 and R 8 include the aryl groups exemplified as the substituent for the arylene group.
  • the aryl group in R 3 , R 4 , R 5 , R 6 , R 7 and R 8 an unsubstituted aryl group, a halogenated aryl group, an alkoxyaryl group and an alkylaryl group are preferable, and a phenyl group, 1-naphthyl group Group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, pentafluorophenyl group, C 1 -C 12 alkoxyphenyl group and C 1 -C 12 alkylphenyl group are more preferable, and C 1 ⁇ C 12 alkoxyphenyl groups and C 1 ⁇ C 12 alkylphenyl group are more preferable
  • R 1 and R 2 present in plural is a fluorine-containing group.
  • fluorine-containing compound examples include compounds represented by the following structural formula.
  • composition of the present embodiment contains the above fluorine-containing compound and at least one selected from the group consisting of a hole transport material, an electron transport material, and a light emitting material.
  • the composition of the present embodiment may contain two or more of the fluorine-containing compounds.
  • the composition of this embodiment is useful for production of a light-emitting device or an organic transistor.
  • hole transport materials include polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having aromatic amines in the side chain or main chain, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, polyaniline and derivatives thereof, polythiophene and Examples thereof include polypyrrole and derivatives thereof, poly (p-phenylene vinylene) and derivatives thereof, and poly (2,5-thienylene vinylene) and derivatives thereof.
  • the content of the hole transport material is preferably 1 to 80% by mass with respect to the total amount of the composition, and is 5 to 60% by mass. More preferably.
  • Electron transport materials include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone derivatives, diphenyldicyanoethylene And derivatives thereof, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof, polyfluorene and derivatives thereof, anthracene and derivatives thereof, and copolymers of anthracene and fluorene, etc. Is mentioned.
  • the content of the electron transport material is preferably 1 to 80% by mass, and preferably 5 to 60% by mass with respect to the total amount of the composition. Is more preferable.
  • Examples of the light emitting material include a low molecular fluorescent light emitting material and a phosphorescent light emitting material.
  • Examples of luminescent materials include naphthalene derivatives; anthracene and derivatives thereof; copolymers of anthracene and fluorene; perylene and derivatives thereof; dyes such as polymethine dyes, xanthene dyes, coumarin dyes, and cyanine dyes; 8 Metal complexes having hydroxyquinoline as a ligand; metal complexes having 8-hydroxyquinoline derivative as a ligand; other fluorescent metal complexes; aromatic amines; tetraphenylcyclopentadiene and its derivatives; tetraphenylbutadiene and its derivatives Derivatives; Fluorescent materials of low molecular weight compounds such as stilbene, silicon-containing aromatic, oxazole, furoxan, thiazole, tetraarylmethane, thiadiazole, pyr
  • the content of the luminescent material is preferably 1 to 80% by mass and more preferably 5 to 60% by mass with respect to the total amount of the composition. preferable.
  • composition of the present embodiment may further contain a stabilizer, an additive for adjusting the viscosity and / or surface tension, and the like.
  • these components are preferably selected from those that do not inhibit light emission or charge transport.
  • examples of the stabilizer include an antioxidant, and examples of the antioxidant include a phenol-based antioxidant and a phosphorus-based antioxidant. By containing such an antioxidant, the storage stability of the composition is improved.
  • the additive for adjusting the viscosity and / or the surface tension examples include a high molecular weight compound (thickener) for increasing the viscosity, a low molecular weight compound for decreasing the viscosity, and an interface for decreasing the surface tension.
  • Activators can be used in appropriate combinations.
  • the thickener for example, high molecular weight polystyrene, high molecular weight polymethyl methacrylate, or the like can be used.
  • the polystyrene equivalent weight average molecular weight of the thickener is preferably 500,000 or more, and more preferably 1,000,000 or more.
  • a poor solvent for a fluorine-containing compound can be used as an additive for increasing the viscosity.
  • the liquid composition of the present embodiment contains the fluorine-containing compound and a solvent.
  • the “liquid composition” may be liquid at least at the time of manufacturing a light-emitting element to be described later, and typically may be liquid at normal pressure (that is, 1 atm) of 25 ° C.
  • the liquid composition can be referred to as ink or ink composition, or can be simply referred to as a solution.
  • the liquid composition of the present embodiment is useful for producing a light emitting device and an organic transistor.
  • the liquid composition of the present embodiment may further contain a light emitting material, a hole transport material, an electron transport material, a stabilizer, an additive for adjusting viscosity and / or surface tension, and the like. Each of these components may be used alone or in combination of two or more.
  • Examples of the light emitting material, the hole transport material, the electron transport material, the stabilizer, and the additive for adjusting the viscosity and / or the surface tension are the same as described above. Moreover, it is preferable that these components are soluble in the said solvent.
  • the content thereof is preferably 1 to 80% by mass, and preferably 5 to 60% by mass with respect to the total amount of the liquid composition. Is more preferable.
  • the content thereof is preferably 1 to 80% by mass, and more preferably 5 to 60% by mass with respect to the total amount of the liquid composition.
  • the content of the hole transport material is preferably 1 to 80% by mass, and more preferably 5 to 60% by mass with respect to the total amount of the liquid composition.
  • the solvent is preferably a solvent that can dissolve or disperse the fluorine-containing compound.
  • the solvent include chlorine solvents such as chloroform, methylene chloride, 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene and o-dichlorobenzene; ether solvents such as tetrahydrofuran and dioxane; toluene, xylene, Aromatic hydrocarbon solvents such as trimethylbenzene and mesitylene; aliphatic hydrocarbon solvents such as cyclohexane, methylcyclohexane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane and n-decane Ketone solvents such as acetone, methyl ethyl ketone and cyclohexanone; ester solvents such as ethyl acetate, butyl
  • solvents may be used alone or in combination of two or more.
  • the solvent examples include aromatic hydrocarbon solvents, aliphatic hydrocarbon solvents, ester solvents from the viewpoint of solubility of components other than the solvent in the liquid composition, uniformity during film formation, and viscosity characteristics.
  • ketone-based solvents including toluene, xylene, ethylbenzene, diethylbenzene, trimethylbenzene, mesitylene, n-propylbenzene, isopropylbenzene, n-butylbenzene, isobutylbenzene, sec-butylbenzene, anisole, Ethoxybenzene, 1-methylnaphthalene, cyclohexane, cyclohexanone, cyclohexylbenzene, bicyclohexyl, cyclohexenylcyclohexanone, n-heptylcyclohexane, n-hexylcyclohexane, methylbenzo
  • the liquid composition preferably contains two or more solvents, and more preferably contains two or three solvents, because the film formability and device characteristics are improved.
  • one of them may be a compound having a melting point higher than 25 ° C.
  • one boiling point is 180 degreeC or more among two types of solvents, and the other boiling point is less than 180 degreeC.
  • one boiling point is 200 degreeC or more among 2 or more types of solvents, and the other boiling point is less than 180 degreeC.
  • the liquid composition contains three kinds of solvents
  • one or two of them may be a compound having a melting point higher than 25 ° C.
  • at least one of the three kinds of solvents has a boiling point of 180 ° C. or higher and at least one of the boiling points is less than 180 ° C.
  • at least 1 type of boiling point is 200 degreeC or more and 300 degrees C or less among 3 types of solvents, and at least 1 type of boiling point is less than 180 degreeC.
  • the liquid composition contains two or more solvents, from the viewpoint of viscosity and film formability, at least one of the solvents has a concentration of components other than the solvent of the liquid composition at 60 ° C. at a concentration of 0.2% by mass or more. It is preferable that components other than the solvent of the liquid composition can be dissolved at a concentration of 0.2% by mass or more at 25 ° C.
  • the content of the solvent having the highest boiling point is 40 to 90% by mass with respect to the total amount of all the solvents from the viewpoint of viscosity and film formability.
  • the content is 50 to 90% by mass, and more preferably 65 to 85% by mass.
  • the content of the solvent in the liquid composition is usually 1 to 99.9% by mass, preferably 60 to 99.9% by mass, and more preferably 90 to 99.8%, based on the total amount of the liquid composition. % By mass.
  • the suitable viscosity of the liquid composition varies depending on the printing method, but is preferably in the range of 0.5 to 500 mPa ⁇ s at 25 ° C.
  • the viscosity of the liquid composition is 0.5 to 20 mPa ⁇ s at 25 ° C. in order to prevent clogging and flight bending at the time of discharge. A range is preferable.
  • a thin film containing the fluorine-containing compound can be easily formed by removing the solvent by drying after applying the liquid composition.
  • the removal of the solvent can be carried out by changing the conditions depending on the solvent used, for example, by heating at about 50 to 150 ° C. or by reducing the pressure at about 10 ⁇ 3 Pa.
  • the film formation method using the liquid composition includes spin coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, slit coating, and cap.
  • Coating methods such as a coating method, a capillary coating method, a spray coating method, a screen printing method, a flexographic printing method, an offset printing method, an ink jet printing method, and a nozzle coating method can be used.
  • the thin film of this embodiment contains the said fluorine-containing compound or the said composition.
  • the thin film of this embodiment can be easily produced from the liquid composition as described above.
  • the thin film of the present embodiment can be suitably used for a light emitting layer or the like in a light emitting element to be described later. Since the thin film of this embodiment contains the said fluorine-containing compound or the said composition, when it uses as a light emitting layer of a light emitting element, the light emitting efficiency of the said light emitting element becomes excellent.
  • Examples of the type of thin film in this embodiment include a light-emitting thin film, a conductive thin film, and an organic semiconductor thin film.
  • the light-emitting thin film preferably has a quantum yield of light emission of 50% or more, more preferably 60% or more, and further preferably 70% or more from the viewpoint of the brightness of the device, the light emission voltage, and the like. .
  • the conductive thin film preferably has a surface resistance of 1 K ⁇ / ⁇ or less.
  • the surface resistance is more preferably 100 ⁇ / ⁇ or less, and further preferably 10 ⁇ / ⁇ or less.
  • the organic semiconductor thin film has a higher electron mobility or hole mobility, preferably 10 ⁇ 5 cm 2 / V / second or more, more preferably 10 ⁇ 3 cm 2 / V / second or more, More preferably, it is 10 ⁇ 1 cm 2 / V / second or more.
  • an organic transistor can be manufactured using an organic semiconductor thin film. Specifically, an organic transistor can be formed by forming an organic semiconductor thin film on a Si substrate on which an insulating film such as SiO 2 and a gate electrode are formed, and forming a source electrode and a drain electrode with Au or the like. .
  • the fluorine compound of this embodiment can be used for organic semiconductor materials, organic transistors, optical materials, solar cells, and the like. It can also be used as a conductive material by doping.
  • the fluorine-containing compound of the present embodiment can be suitably used as a material for a field effect transistor, particularly as an active layer.
  • a source electrode and a drain electrode are usually provided in contact with an active layer, and a gate electrode may be provided with an insulating layer in contact with the active layer interposed therebetween.
  • the field effect transistor is usually formed on a support substrate.
  • the material of the supporting substrate is not particularly limited as long as the characteristics as a field effect transistor are not impaired, and a glass substrate, a flexible film substrate, a plastic substrate, or the like can be used.
  • the field effect transistor can be manufactured by a known method, for example, a method described in JP-A-5-110069.
  • an organic solvent-soluble compound In forming the active layer, it is very advantageous and preferable to use an organic solvent-soluble compound.
  • a film-forming method from a solution obtained by dissolving an organic solvent-soluble compound in a solvent a spin coating method, a casting method, a micro gravure coating method, a gravure coating method, a bar coating method, a roll coating method, a wire bar coating method, Coating methods such as dip coating, slit coating, cap coating, capillary coating, spray coating, screen printing, flexographic printing, offset printing, ink jet printing, and nozzle coating can be used.
  • a sealed field effect transistor obtained by sealing a field effect transistor after production is preferable. Thereby, the field effect transistor is cut off from the atmosphere, and the deterioration of the characteristics of the field effect transistor can be suppressed.
  • Examples of the sealing method include a method of covering with an ultraviolet (UV) curable resin, a thermosetting resin or an inorganic SiONx film; and a method of bonding a glass plate or film with a UV curable resin or a thermosetting resin. Can be mentioned.
  • UV ultraviolet
  • thermosetting resin thermosetting resin
  • inorganic SiONx film a method of bonding a glass plate or film with a UV curable resin or a thermosetting resin.
  • an organic solar cell will be described by taking, as an example, a solid photoelectric conversion element that uses the photovoltaic effect as an organic photoelectric conversion element that is an embodiment of the organic solar battery.
  • the fluorine-containing compound of the present embodiment is used as a material for an organic photoelectric conversion element, particularly as an organic semiconductor layer of a Schottky barrier type element utilizing an interface between an organic semiconductor and a metal, and between an organic semiconductor and an inorganic semiconductor or between organic semiconductors. It can be suitably used as an organic semiconductor layer of a pn heterojunction element utilizing the interface.
  • the fluorine-containing compound of this embodiment can also be suitably used as an electron-donating compound or an electron-accepting compound in a bulk heterojunction device with an increased donor / acceptor contact area.
  • a p-type semiconductor layer is formed on ITO, an n-type semiconductor layer is further stacked, and an ohmic electrode is provided thereon. It only has to be.
  • the organic photoelectric conversion element is usually formed on a support substrate.
  • the material of the support substrate is not limited as long as the characteristics as the organic photoelectric conversion element are not impaired.
  • a glass substrate, a flexible film substrate, a plastic substrate, or the like can be used.
  • Organic photoelectric conversion elements can be obtained by a known method such as Synth. Met. , 102, 982 (1999) or the method described in Science, 270, 1789 (1995).
  • the light-emitting element has an electrode composed of an anode and a cathode, and an organic layer containing the fluorine-containing compound provided between the electrodes.
  • the organic layer means a light emitting layer, a hole transport layer or an electron transport layer. Among these, it is preferable from the viewpoint of device fabrication to use the fluorine-containing compound of the present embodiment as an electron transport layer.
  • the light emitting element includes (1) a light emitting element in which an electron transport layer is provided between the cathode and the light emitting layer, (2) a light emitting element in which a hole transport layer is provided between the anode and the light emitting layer, and (3) A light emitting device in which an electron transport layer is provided between the cathode and the light emitting layer and a hole transport layer is provided between the anode and the light emitting layer, and the like.
  • the light emitting layer is a layer having a function of emitting light
  • the hole transporting layer is a layer having a function of transporting holes
  • the electron transporting layer is a layer having a function of transporting electrons. It is.
  • the electron transport layer and the hole transport layer are collectively referred to as a charge transport layer. Two or more light emitting layers, hole transport layers, and electron transport layers may be used independently.
  • the hole transport layer adjacent to the light emitting layer may be referred to as an interlayer layer.
  • film formation from a solution is preferable.
  • spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, slit coating method, cap coating method, capillary Coating methods such as a coating method, a spray coating method, a screen printing method, a flexographic printing method, an offset printing method, an ink jet printing method, and a nozzle coating method can be used.
  • the thickness of the light emitting layer varies depending on the material used, and may be selected so that the driving voltage and the light emission efficiency are appropriate.
  • the thickness is 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm. More preferably, it is 5 nm to 200 nm.
  • a light emitting material other than the above fluorine-containing compound may be mixed and used in the organic layer.
  • a light-emitting layer containing a light-emitting material other than the fluorine-containing compound may be stacked with an organic layer containing the fluorine-containing compound.
  • the light emitting material other than the fluorine-containing compound known materials can be used, and examples thereof include the same materials as described above.
  • a light emitting element has a positive hole transport layer, as a positive hole transport material used, the thing similar to the above can be illustrated.
  • the hole transport material used for the hole transport layer polyvinyl carbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having an aromatic amine compound group in the side chain or main chain, polyaniline and its Preferred are polymer hole transport materials such as derivatives, polythiophene and derivatives thereof, poly (p-phenylene vinylene) and derivatives thereof, and poly (2,5-thienylene vinylene) and derivatives thereof, more preferably polyvinyl carbazole and A derivative thereof, a polysilane and a derivative thereof, and a polysiloxane derivative having an aromatic amine in a side chain or a main chain.
  • a low-molecular hole transport material it is preferably used by being dispersed in a polymer binder.
  • Polyvinylcarbazole and its derivatives can be obtained, for example, from a vinyl monomer by cation polymerization or radical polymerization.
  • polysilanes and derivatives thereof examples include compounds described in Chem. Rev., 89, 1359 (1989), and GB 2300196 published specification. As the synthesis method, the methods described in these can be used, but the Kipping method is particularly preferably used.
  • the siloxane derivative since the siloxane skeleton structure has almost no hole transporting property, those having the structure of the low molecular hole transporting material in the side chain or main chain are preferably used. Particularly, those having a hole transporting aromatic amine in the side chain or main chain are exemplified.
  • the method for forming the hole transport layer is not limited, but for a low molecular hole transport material, a method of forming a film from a mixed solution with a polymer binder is exemplified. In the case of a polymer hole transport material, a method of film formation from a solution is exemplified.
  • the solvent used for film formation from a solution is not particularly limited as long as it can dissolve a hole transport material.
  • the solvent include chlorine solvents such as chloroform, methylene chloride and dichloroethane; ether solvents such as tetrahydrofuran; aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as acetone and methyl ethyl ketone; ethyl acetate, butyl acetate and An ester solvent such as ethyl cellosolve acetate is exemplified.
  • film formation methods from solution include spin coating from solution, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, slit coating method, cap Coating methods such as a coating method, a capillary coating method, a spray coating method, a screen printing method, a flexographic printing method, an offset printing method, an ink jet printing method, and a nozzle coating method can be used.
  • polymer binder to be mixed those not extremely disturbing charge transport are preferable, and those that do not strongly absorb visible light are suitably used.
  • the polymer binder include polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, and polysiloxane.
  • the thickness of the hole transport layer varies depending on the material used, and may be selected so that the drive voltage and the light emission efficiency are appropriate.
  • the thickness is 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm. More preferably, it is 5 nm to 200 nm.
  • the light-emitting element has an electron transport layer
  • a known material can be used as the electron transport material used, and the same materials as those described above can be exemplified.
  • oxadiazole derivatives benzoquinone and its derivatives, anthraquinone and its derivatives, metal complexes of 8-hydroxyquinoline and its derivatives, polyquinoline and its derivatives, polyquinoxaline and its derivatives, and polyfluorene and its derivatives 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole, benzoquinone, anthraquinone, tris (8-quinolinol) aluminum and polyquinoline are more preferred.
  • an electron transport layer in the case of a low molecular weight electron transport material, a vacuum deposition method from a powder or a method by film formation from a solution or a molten state is used.
  • a polymer electron transport material a film is formed from a solution or a molten state. Each of the methods is illustrated.
  • a polymer binder may be used in combination.
  • any solvent that dissolves an electron transport material and / or a polymer binder may be used.
  • the solvent include chlorine solvents such as chloroform, methylene chloride and dichloroethane; ether solvents such as tetrahydrofuran; aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as acetone and methyl ethyl ketone; ethyl acetate, butyl acetate and An ester solvent such as ethyl cellosolve acetate is exemplified.
  • spin coating method For film formation from solution or molten state, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, slit coating method, cap coating Coating methods such as a method, a capillary coating method, a spray coating method, a screen printing method, a flexographic printing method, an offset printing method, an ink jet printing method, and a nozzle coating method can be used.
  • polymer binder examples include poly (N-vinylcarbazole), polyaniline and derivatives thereof, polythiophene and derivatives thereof, poly (p-phenylene vinylene) and derivatives thereof, poly (2,5-thienylene vinylene) and derivatives thereof, Examples include polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, and polysiloxane.
  • the thickness of the electron transport layer varies depending on the material used, and may be selected so that the drive voltage and the light emission efficiency are appropriate.
  • the thickness is 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm. More preferably, it is 5 nm to 200 nm.
  • charge injection layers those having a function of improving the charge injection efficiency from the electrodes and having the effect of lowering the driving voltage of the element are particularly charge injection layers (hole injection layers). , An electron injection layer).
  • the charge injection layer or the insulating layer may be provided adjacent to the electrode in order to improve adhesion with the electrode or charge injection from the electrode. Therefore, a thin buffer layer may be inserted at the interface between the charge transport layer and the light emitting layer.
  • the order and number of layers to be stacked, and the thickness of each layer may be appropriately selected in consideration of light emission efficiency and element lifetime.
  • Examples of the light emitting element provided with the charge injection layer include a light emitting element provided with the charge injection layer adjacent to the cathode and a light emitting element provided with the charge injection layer adjacent to the anode. It is done.
  • a specific example of the charge injection layer is a layer containing a conductive polymer; provided between the anode and the hole transport layer, and intermediate between the anode material and the hole transport material contained in the hole transport layer.
  • a layer containing a material having an ionization potential of a value; and a material provided between the cathode and the electron transport layer and having an electron affinity of a value intermediate between the cathode material and the electron transport material contained in the electron transport layer Layers are illustrated.
  • the electrical conductivity of the conductive polymer is preferably 10 ⁇ 5 S / cm or more and 10 3 S / cm or less. in order to reduce the current, more preferably less 10 -5 S / cm or more and 10 2 S / cm, more preferably less 10 -5 S / cm or more and 10 1 S / cm.
  • the conductive polymer is doped with an appropriate amount of ions.
  • the kind of ions to be doped is an anion for the hole injection layer and a cation for the electron injection layer.
  • anions include polystyrene sulfonate ions, alkylbenzene sulfonate ions, camphor sulfonate ions, and the like
  • cations include lithium ions, sodium ions, potassium ions, and tetrabutylammonium ions.
  • the thickness of the charge injection layer is, for example, 1 nm to 100 nm, preferably 2 nm to 50 nm.
  • the material used for the charge injection layer may be appropriately selected in relation to the material of the electrode and the adjacent layer.
  • the insulating layer has a function of facilitating charge injection.
  • the average thickness of this insulating layer is usually 0.1 to 20 nm, preferably 0.5 to 10 nm, and more preferably 1 to 5 nm.
  • Examples of the material for the insulating layer include metal fluorides, metal oxides, and organic insulating materials.
  • Examples of the light emitting element provided with an insulating layer include a light emitting element provided with an insulating layer adjacent to the cathode and a light emitting element provided with an insulating layer adjacent to the anode.
  • the substrate on which the light-emitting element is formed may be any substrate that does not change chemically when the electrode is formed and the organic layer is formed, and examples thereof include substrates such as glass, plastic, polymer film, and silicon. .
  • the opposite electrode is preferably transparent or translucent.
  • at least one of the electrode composed of the anode and the cathode is preferably transparent or translucent, and the anode side is more preferably transparent or translucent.
  • a conductive metal oxide film, a translucent metal thin film, or the like is used as the anode material.
  • a film made using indium oxide, zinc oxide, tin oxide, a conductive glass such as indium tin oxide (ITO) and indium zinc oxide which are composites thereof; NESA, gold , Etc. are used, and ITO, indium / zinc / oxide, and tin oxide are preferable.
  • the manufacturing method include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method.
  • the thickness of the anode can be appropriately selected in consideration of light transmittance and electrical conductivity.
  • the thickness is 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm. It is.
  • a layer made of a phthalocyanine derivative, a conductive polymer, carbon, or the like, or a layer made of a metal oxide, a metal fluoride, an organic insulating material, or the like may be provided on the anode to facilitate charge injection.
  • a material having a small work function is preferable.
  • metals such as lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium and ytterbium; these metals Two or more alloys; alloys of one or more of these metals with one or more of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten and tin; graphite; Compound; etc. are used.
  • alloys include magnesium-silver alloys, magnesium-indium alloys, magnesium-aluminum alloys, indium-silver alloys, lithium-aluminum alloys, lithium-magnesium alloys, lithium-indium alloys, and calcium-aluminum alloys.
  • the cathode may have a laminated structure of two or more layers.
  • the thickness of the cathode can be appropriately selected in consideration of electric conductivity and durability, but is, for example, 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm.
  • a vacuum deposition method, a sputtering method, a laminating method in which a metal thin film is thermocompression bonded, or the like is used.
  • a layer made of a conductive polymer or a layer made of a metal oxide, a metal fluoride, an organic insulating material, or the like may be provided between the cathode and the organic material layer.
  • a protective layer for protection may be attached. In order to use the light emitting element stably for a long period of time, it is preferable to attach a protective layer and / or a protective cover in order to protect the element from the outside.
  • the protective layer resins, metal oxides, metal fluorides, metal borides and the like can be used.
  • a glass plate, a plastic plate having a low water permeability treatment on the surface, or the like can be used, and the cover is bonded to the element substrate with a thermosetting resin or a photocurable resin and sealed.
  • a space is maintained using a spacer, it is easy to prevent the element from being damaged. If an inert gas such as nitrogen and argon is enclosed in the space, the oxidation of the cathode can be prevented, and moisture adsorbed in the manufacturing process by installing a desiccant such as barium oxide in the space. It becomes easy to suppress giving an image to an element. Among these, it is preferable to take any one or more measures.
  • the light emitting element can be used for a display device such as a planar light source, a segment display device, a dot matrix display device, and a liquid crystal display device (for example, a backlight).
  • a display device such as a planar light source, a segment display device, a dot matrix display device, and a liquid crystal display device (for example, a backlight).
  • the planar anode and cathode may be arranged so as to overlap each other.
  • a method of forming either or both of the anode and the cathode in a pattern By forming a pattern by any of these methods and arranging several electrodes so that they can be turned on and off independently, a segment display device capable of displaying numbers, characters, simple symbols, and the like can be obtained.
  • both the anode and the cathode may be formed in a stripe shape and arranged so as to be orthogonal to each other. Partial color display and multicolor display are possible by a method of separately coating a plurality of types of polymer compounds having different emission colors or a method using a color filter or a fluorescence conversion filter.
  • the dot matrix display device can be driven passively or may be driven actively in combination with a TFT or the like. These display devices can be used in computers, televisions, mobile terminals, mobile phones, car navigation systems, video camera viewfinders, and the like.
  • the planar light emitting element is thin and self-luminous, and can be suitably used as a planar light source for backlight of a liquid crystal display device or a planar illumination light source.
  • the light source for illumination includes light emission colors such as white light emission, red light emission, green light emission, and blue light emission.
  • a flexible substrate is used, it can be used as a curved light source or display device.
  • compound M-2 (5.83 g), compound M-10 (3.18 g), toluene (40 mL), palladium acetate (45 mg), tri (2-methoxyphenyl) phosphine (282 mg) were mixed, Warmed to 80 ° C. Tetraethylammonium hydroxide (10 mL) was added dropwise to the reaction solution over 10 minutes, and the mixture was heated to 105 ° C. for 2 hours. After completion of the reaction, the organic layer was washed with water, and the washed organic layer was concentrated.
  • Solution B was added dropwise to Solution A so that the temperature of Solution A was kept at ⁇ 70 ° C. or lower and stirred. The reaction was then stirred at room temperature for 15 hours. Next, water (150 mL) was added to the reaction solution at 0 ° C. and stirred. Subsequently, the solvent was distilled off by concentration under reduced pressure, hexane (1 L) and water (200 mL) were added to the residue, and the mixture was stirred and allowed to stand to remove the generated aqueous layer to obtain an organic layer. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to obtain an intermediate.
  • the obtained solid was recrystallized three times from a mixed solution of hexane and ethanol to obtain Compound M-18 (2.4 g).
  • Example 10 Compound M-5 was dissolved in hexane to prepare a hexane solution having a compound concentration of 0.5% by mass.
  • a thin film was prepared by forming a film on a glass substrate using the prepared hexane solution at a rotational speed of 2000 rpm by spin coating. The thickness of this thin film was 20 nm. In addition, the thickness of the thin film was measured using Dektak 10 manufactured by Veeco.
  • the obtained toluene solution was dropped into methanol and stirred for 1 hour, and then the obtained solid was collected by filtration and dried.
  • the number attached outside the parenthesis represents the molar ratio of each repeating unit.
  • the polymer compound P-1 had a polystyrene-equivalent number average molecular weight of 5.1 ⁇ 10 4 and a polystyrene-equivalent weight average molecular weight of 1.4 ⁇ 10 5 .
  • Compound MM-1 was synthesized by the method described in WO2008 / 111658, and compound MM-2 was synthesized by the method described in EP1394188.
  • the obtained toluene solution was dropped into methanol and stirred for 1 hour, and then the obtained solid was collected by filtration and dried.
  • the number attached outside the parenthesis represents the molar ratio of each repeating unit.
  • the polymer compound P-2 had a polystyrene-equivalent number average molecular weight of 9.7 ⁇ 10 4 and a polystyrene-equivalent weight average molecular weight of 3.0 ⁇ 10 5 .
  • Compound MM-3 was synthesized by the method described in US2004 / 035221, and compound MM-4 was synthesized by the method described in JP-A-2003-226744.
  • xylene solution S-1 (polymer compound P-1 solution) Polymer compound P-1 was dissolved in xylene to prepare a xylene solution S-1 having a polymer concentration of 1.3% by mass.
  • xylene solution S-2 (polymer compound P-2 solution) Polymer compound P-2 was dissolved in xylene to prepare xylene solution S-2 having a polymer concentration of 0.7% by mass.
  • a suspension of poly (3,4) ethylenedioxythiophene / polystyrene sulfonic acid (manufactured by Bayer, trade name: BaytronP AI4083) is 0.2 ⁇ m on a glass substrate having an ITO film with a thickness of 150 nm formed by sputtering.
  • a thin film having a thickness of 70 nm was formed by spin coating using the liquid filtered through a membrane filter, and dried on a hot plate at 200 ° C. for 10 minutes.
  • a film was formed by spin coating at a rotational speed of 1600 rpm, and the thin film was cured by heating on a hot plate at 180 ° C. for 60 minutes.
  • the thickness after film formation was about 20 nm.
  • a film was formed by spin coating at a rotational speed of 1600 rpm, and heated on a hot plate at 130 ° C. for 10 minutes.
  • the thickness after film formation was about 60 nm.
  • using the trifluoromethylbenzene solution S-3 obtained above a film was formed by spin coating at a rotational speed of 1600 rpm. The thickness after film formation was about 10 nm. After drying this at 130 ° C.
  • barium was deposited as a cathode at about 5 nm, and then aluminum was deposited at about 100 nm to produce an electroluminescence device.
  • the metal deposition was started after the degree of vacuum reached 1 ⁇ 10 ⁇ 4 Pa or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

式(1)で表されるフッ素含有化合物。[式中、Ar、Ar、Ar、Ar及びArはそれぞれ独立に置換基を有していてもよいアリーレン基を示し、n、n及びnはそれぞれ独立に0又は1を示し、Z及びZはそれぞれ独立に水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアリールオキシ基、シアノ基又は-Cで表される基(pは1以上10以下の整数を示し、qは1以上2p+1以下の整数を示し、rは0以上2p+1-q以下の整数を示し、sは0又は1を示す。)を示す。但し、Ar、Ar、Ar、Ar及びArのうち少なくとも一つは、置換基を有していてもよいフルオレンジイル基であり、Z、Z及び前記アリーレン基の置換基のうち少なくとも一つは、-Cで表される基である。]

Description

フッ素含有化合物並びにそれを含有する組成物及び薄膜
 本発明は、フッ素含有化合物並びにそれを含有する組成物及び薄膜に関する。
 従来、真空蒸着法によりトリス(8-キノリノール)アルミニウム等の低分子化合物を含む層構造を形成して、発光素子を作製することが検討されている(例えば、特許文献1)。
特開平5-320633号公報
 しかしながら、従来の低分子化合物を用いた発光素子は、その発光効率が必ずしも十分ではない。
 そこで、本発明は、発光効率に優れる発光素子の製造に有用な化合物を提供することを目的とする。本発明はまた、当該化合物を含む組成物及び薄膜を提供することを目的とする。
 すなわち本発明は、式(1)で表されるフッ素含有化合物を提供する。
Figure JPOXMLDOC01-appb-C000002
[式中、Ar、Ar、Ar、Ar及びArはそれぞれ独立に置換基を有していてもよいアリーレン基を示し、n、n及びnはそれぞれ独立に0又は1を示し、Z及びZはそれぞれ独立に水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアリールオキシ基、シアノ基又は-Cで表される基(pは1以上10以下の整数を示し、qは1以上2p+1以下の整数を示し、rは0以上2p+1-q以下の整数を示し、sは0又は1を示す。)を示す。但し、Ar、Ar、Ar、Ar及びArのうち少なくとも一つは、置換基を有していてもよいフルオレンジイル基であり、Z、Z及び上記アリーレン基の置換基のうち少なくとも一つは、-Cで表される基である。]
 本発明の高分子化合物は、Ar、Ar、Ar、Ar及びArが全て置換基を有していてもよいフルオレンジイル基であってもよい。
 また、本発明の高分子化合物において、式(1)中のsは0であってもよい。
 本発明はまた、正孔輸送材料、電子輸送材料及び発光材料からなる群より選ばれる少なくとも一種と、上記フッ素含有化合物と、を含有する組成物を提供する。
 本発明はさらに、上記本発明のフッ素含有化合物を含有する薄膜を提供する。
 本発明によれば、発光効率に優れる発光素子の製造に有用な化合物が提供される。また本発明によれば、当該化合物を含む組成物及び薄膜が提供される。
 本発明のフッ素含有化合物、組成物及び薄膜の好適な実施形態について、以下に説明する。
 なお、本明細書中、「Me」はメチル基を示し、「Et」はエチル基を示し、「Ph」はフェニル基を示し、「t-Bu」はtert-ブチル基を示す。
 また、「C~C」(x、yはx<yを満たす正の整数である。)という用語は、この用語の直後に記載された官能基名に該当する部分構造の炭素原子数が、x~y個であることを意味する。すなわち、「C~C」の直後に記載された有機基が、複数の官能基名を組み合わせて命名された有機基(例えば、C~Cアルコキシフェニル基)である場合、複数の官能基名のうち「C~C」の直後に記載された官能基名(例えば、アルコキシ)に該当する部分構造の炭素原子数が、x~y個であることを意味する。例えば、「C~C12アルキル基」は炭素原子数が1~12個であるアルキル基を意味し、「C~C12アルコキシフェニル基」は「炭素原子数が1~12個であるアルコキシ基」を有するフェニル基を意味する。
(フッ素含有化合物)
 本実施形態に係るフッ素含有化合物は、式(1)で表される。
Figure JPOXMLDOC01-appb-C000003
 式中、Ar、Ar、Ar、Ar及びArはそれぞれ独立に置換基を有していてもよいアリーレン基を示し、n、n及びnはそれぞれ独立に0又は1を示し、Z及びZはそれぞれ独立に水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアリールオキシ基、シアノ基又は-Cで表される基(pは1以上10以下の整数を示し、qは1以上2p+1以下の整数を示し、rは0以上2p+1-q以下の整数を示し、sは0又は1を示す。)を示す。但し、Ar、Ar、Ar、Ar及びArのうち少なくとも一つは、置換基を有していてもよいフルオレンジイル基であり、Z、Z及び上記アリーレン基の置換基のうち少なくとも一つは、-Cで表される基である。
 アリーレン基は、芳香族炭化水素から水素原子2個を除いた残りの原子団である。アリーレン基には、ベンゼン環を有する基、縮合環を有する基等が含まれる。アリーレン基の炭素原子数は、通常、6~60であり、好ましくは6~20である。上記芳香族炭化水素としては、例えば、ベンゼン、ナフタレン、アントラセン、フェナントレン、ナフタセン、フルオレン、ベンゾフルオレン、ピレン及びペリレンが挙げられる。
 アリーレン基としては、例えば、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フルオレンジイル基、ベンゾフルオレンジイル基及び二価の縮合環基が挙げられる。アリーレン基としては、発光素子の耐久性が一層向上するので、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フルオレンジイル基及びベンゾフルオレンジイル基が好ましく、ナフタレンジイル基、アントラセンジイル基、フルオレンジイル基及びベンゾフルオレンジイル基がより好ましく、フルオレンジイル基及びベンゾフルオレンジイル基がさらに好ましく、フルオレンジイル基が特に好ましい。また、フルオレンジイル基としては、2,7-フルオレンジイル基が好ましい。
 アリーレン基としては、例えば、式(A-1)、(A-2)又は(A-3)で表されるフェニレン基;式(A-4)、(A-5)、(A-6)、(A-7)、(A-8)、(A-9)、(A-10)、(A-11)、(A-12)又は(A-13)で表されるナフタレンジイル基;式(A-14)、(A-15)、(A-16)、(A-17)、(A-18)又は(A-19)で表されるアントラセンジイル基;式(A-20)、(A-21)、(A-22)、(A-23)、(A-24)、(A-25)又は(A-26)で表される二価の縮合環基;式(A-27)、(A-28)又は(A-29)で表されるフルオレンジイル基;及び、式(A-30)、(A-31)、(A-32)、(A-33)、(A-34)、(A-35)、(A-36)又は(A-37)で表されるベンゾフルオレンジイル基が挙げられる。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 アリーレン基は置換基を有していてもよく、該置換基としては、例えば、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アルケニル基、アルキニル基、アミノ基、シリル基、アシル基、アシルオキシ基、イミン残基、カルバモイル基、酸イミド基、1価の複素環基、カルボキシル基、オキシカルボニル基、シアノ基及びニトロ基が挙げられ、これらの基はさらに置換基を有していてもよい。また、アリーレン基は、置換基として-Cで表される基を有していてもよい。
 上記アルキル基は、直鎖状アルキル基、分岐状アルキル基及び環状アルキル基(シクロアルキル基)のいずれであってもよい。アルキル基の炭素原子数は、置換基の炭素原子数を含めずに好ましくは1~20、より好ましくは1~15、さらに好ましくは1~12である。アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソアミル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、3,7-ジメチルオクチル基及びドデシル基が挙げられる。
 上記アルキル基は置換基を有していてもよい。アルキル基が置換基を有するとき、該置換基としては、ハロゲン原子、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基及びアリールチオ基等が挙げられる。すなわち、置換基を有するアルキル基としては、ハロゲン化アルキル基、アルコキシアルキル基、アルキルチオアルキル基、アリールアルキル基、アリールオキシアルキル基及びアリールチオアルキル基等が挙げられる。
 これらのうち、ハロゲン化アルキル基としては、例えば、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基及びパーフルオロオクチル基が挙げられる。
 また、アリールアルキル基はさらに置換基を有してもよく、アリールアルキル基の炭素原子数は、通常7~60である。アリールアルキル基としては、例えば、フェニル-C~C12アルキル基、C~C12アルコキシフェニル-C~C12アルキル基、C~C12アルキルフェニル-C~C12アルキル基、1-ナフチル-C~C12アルキル基及び2-ナフチル-C~C12アルキル基が挙げられる。
 上記アルコキシ基は、直鎖状アルコキシ基、分岐状アルコキシ基及び環状アルコキシ基(シクロアルコキシ基)のいずれであってもよい。アルコキシ基の炭素原子数は、置換基の炭素原子数を含めずに好ましくは1~20、より好ましくは1~15、さらに好ましくは1~12である。アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基及びラウリルオキシ基が挙げられる。
 上記アルコキシ基は置換基を有していてもよい。アルコキシ基が置換基を有するとき、該置換基としては、ハロゲン原子、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基及びアリールチオ基等が挙げられる。すなわち、置換基を有するアルコキシ基としては、ハロゲン化アルコキシ基、アルコキシアルキルオキシ基、アルキルチオアルコキシ基、アリールアルコキシ基、アリールオキシアルコキシ基及びアリールチオアルコキシ基等が挙げられる。
 これらのうち、ハロゲン化アルコキシ基としては、例えば、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシルオキシ基及びパーフルオロオクチルオキシ基が挙げられる。また、アルコキシアルコキシ基としては、例えば、メトキシメチルオキシ基及び2-メトキシエチルオキシ基が挙げられる。
 また、アリールアルコキシ基はさらに置換基を有していてもよく、アリールアルコキシ基の炭素原子数は、通常7~60である。アリールアルコキシ基としては、例えば、フェニル-C~C12アルコキシ基、C~C12アルコキシフェニル-C~C12アルコキシ基、C~C12アルキルフェニル-C~C12アルコキシ基、1-ナフチル-C~C12アルコキシ基及び2-ナフチル-C~C12アルコキシ基が挙げられる。
 上記アルキルチオ基は、直鎖状アルキルチオ基、分岐鎖状アルキルチオ基及び環状アルキルチオ基(シクロアルキルチオ基)のいずれであってもよい。アルキルチオ基の炭素原子数は、特記しない限り、置換基の炭素原子数を含めずに好ましくは1~20、より好ましくは1~15、さらに好ましくは1~12である。アルキルチオ基としては、例えば、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、tert-ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、2-エチルヘキシルチオ基、ノニルチオ基、デシルチオ基、3,7-ジメチルオクチルチオ基及びラウリルチオ基が挙げられる。
 上記アルキルチオ基は置換基を有していてもよい。アルキルチオ基が置換基を有するとき、該置換基としては、ハロゲン原子、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基及びアリールチオ基等が挙げられる。すなわち、置換基を有するアルキルチオ基としては、ハロゲン化アルキルチオ基、アルコキシアルキルチオ基、アルキルチオアルキルチオ基、アリールアルキルチオ基、アリールオキシアルキルチオ基及びアリールチオアルキルチオ基等が挙げられる。
 これらのうち、ハロゲン化アルキルチオ基としては、例えば、トリフルオロメチルチオ基が挙げられる。
 また、アリールアルキルチオ基はさらに置換基を有していてもよく、アリールアルキルチオ基の炭素原子数は、通常7~60である。アリールアルキルチオ基としては、例えば、フェニル-C~C12アルキルチオ基、C~C12アルコキシフェニル-C~C12アルキルチオ基、C~C12アルキルフェニル-C~C12アルキルチオ基、1-ナフチル-C~C12アルキルチオ基及び2-ナフチル-C~C12アルキルチオ基が挙げられる。
 上記アリール基は、芳香族炭化水素から水素原子1個を除いた残りの原子団である。アリール基には、ベンゼン環を有する基、縮合環を有する基、並びに、独立したベンゼン環及び縮合環のうち2個以上が直接又はビニレン基等を介して結合した基等が含まれる。アリール基の炭素原子数は、通常、6~60であり、好ましくは6~48、さらに好ましくは6~30である。上記芳香族炭化水素としては、例えば、ベンゼン、ビフェニル、ナフタレン、アントラセン、フェナントレン、ナフタセン、フルオレン、ベンゾフルオレン、ピレン及びペリレンが挙げられる。
 上記アリール基は置換基を有していてもよい。アリール基が置換基を有するとき、該置換基としては、ハロゲン原子、アルキル基、アルコキシ基、アルキルチオ基、アリールオキシ基及びアリールチオ基等が挙げられる。すなわち、置換基を有するアリール基としては、ハロゲン化アリール基、アルキルアリール基、アルコキシアリール基、アルキルチオアリール基、アリールオキシアリール基及びアリールチオアリール基等が挙げられる。
 上記アリール基としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、ペンタフルオロフェニル基、C~C12アルコキシフェニル基及びC~C12アルキルフェニル基が好ましく、C~C12アルコキシフェニル基及びC~C12アルキルフェニル基がより好ましい。
 C~C12アルコキシフェニル基としては、例えば、メトキシフェニル基、エトキシフェニル基、プロピルオキシフェニル基、イソプロピルオキシフェニル基、ブトキシフェニル基、イソブトキシフェニル基、tert-ブトキシフェニル基、ペンチルオキシフェニル基、ヘキシルオキシフェニル基、シクロヘキシルオキシフェニル基、ヘプチルオキシフェニル基、オクチルオキシフェニル基、2-エチルヘキシルオキシフェニル基、ノニルオキシフェニル基、デシルオキシフェニル基、3,7-ジメチルオクチルオキシフェニル基及びラウリルオキシフェニル基が挙げられる。
 C~C12アルキルフェニル基としては、例えば、メチルフェニル基、エチルフェニル基、ジメチルフェニル基、プロピルフェニル基、メシチル基、メチルエチルフェニル基、イソプロピルフェニル基、ブチルフェニル基、イソブチルフェニル基、tert-ブチルフェニル基、ペンチルフェニル基、イソアミルフェニル基、ヘキシルフェニル基、ヘプチルフェニル基、オクチルフェニル基、ノニルフェニル基、デシルフェニル基及びドデシルフェニル基が挙げられる。
 上記アリールオキシ基は、-O-Ar11で表される基(Ar11は、上記アリール基を示す。)であり、Ar11におけるアリール基は置換基を有していてもよい。アリールオキシ基の炭素原子数(すなわち、Ar11におけるアリール基の炭素原子数)は、置換基の炭素原子数を含めずに好ましくは6~60、より好ましくは6~48、さらに好ましくは6~30である。
 上記アリールオキシ基としては、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、ペンタフルオロフェニルオキシ基、C~C12アルコキシフェノキシ基及びC~C12アルキルフェノキシ基が好ましく、C~C12アルコキシフェノキシ基及びC~C12アルキルフェノキシ基がより好ましい。
 C~C12アルコキシフェノキシ基としては、例えば、メトキシフェノキシ基、エトキシフェノキシ基、プロピルオキシフェノキシ基、イソプロピルオキシフェノキシ基、ブトキシフェノキシ基、イソブトキシフェノキシ基、tert-ブトキシフェノキシ基、ペンチルオキシフェノキシ基、ヘキシルオキシフェノキシ基、シクロヘキシルオキシフェノキシ基、ヘプチルオキシフェノキシ基、オクチルオキシフェノキシ基、2-エチルヘキシルオキシフェノキシ基、ノニルオキシフェノキシ基、デシルオキシフェノキシ基、3,7-ジメチルオクチルオキシフェノキシ基及びラウリルオキシフェノキシ基が挙げられる。
 C~C12アルキルフェノキシ基としては、例えば、メチルフェノキシ基、エチルフェノキシ基、ジメチルフェノキシ基、プロピルフェノキシ基、1,3,5-トリメチルフェノキシ基、メチルエチルフェノキシ基、イソプロピルフェノキシ基、ブチルフェノキシ基、イソブチルフェノキシ基、tert-ブチルフェノキシ基、ペンチルフェノキシ基、イソアミルフェノキシ基、ヘキシルフェノキシ基、ヘプチルフェノキシ基、オクチルフェノキシ基、ノニルフェノキシ基、デシルフェノキシ基及びドデシルフェノキシ基が挙げられる。
 上記アリールチオ基は、-S-Ar12で表される基(Ar12は、上記アリール基を示す。)であり、Ar12におけるアリール基は置換基を有していてもよい。アリールチオ基の炭素原子数(すなわち、Ar12におけるアリール基の炭素原子数)は、置換基の炭素原子数を含めずに好ましくは6~60、より好ましくは6~48、さらに好ましくは6~30である。
 上記アリールチオ基としては、フェニルチオ基、C~C12アルコキシフェニルチオ基、C~C12アルキルフェニルチオ基、1-ナフチルチオ基、2-ナフチルチオ基及びペンタフルオロフェニルチオ基が好ましい。
 上記アルケニル基は、アルケンのsp炭素に結合する水素原子を1個除いた残りの原子団である。アルケニル基は、直鎖状アルケニル基、分岐状アルケニル基及び環状アルケニル基のいずれであってもよい。アルケニル基の炭素原子数は、置換基の炭素原子数を含めずに好ましくは2~20、より好ましくは2~15、さらに好ましくは2~10である。アルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、1-ペンテニル基、2-ペンテニル基、1-ヘキセニル基、2-ヘキセニル基及び1-オクテニル基が挙げられる。
 上記アルケニル基は置換基を有していてもよい。アルケニル基が置換基を有するとき、該置換基としては、ハロゲン原子、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基及びアリールチオ基等が挙げられる。すなわち、置換基を有するアルケニル基としては、ハロゲン化アルケニル基、アルコキシアルケニル基、アルキルチオアルケニル基、アリールアルケニル基、アリールオキシアルケニル基及びアリールチオアルケニル基等が挙げられる。
 これらのうち、アリールアルケニル基はさらに置換基を有していてもよく、アリールアルケニル基の炭素原子数は、通常、8~60である。アリールアルケニル基としては、例えば、フェニル-C~C12アルケニル基、C~C12アルコキシフェニル-C~C12アルケニル基、C~C12アルキルフェニル-C~C12アルケニル基、1-ナフチル-C~C12アルケニル基及び2-ナフチル-C~C12アルケニル基が挙げられ、C~C12アルコキシフェニル-C~C12アルケニル基及びC~C12アルキルフェニル-C~C12アルケニル基が好ましい。
 上記アルキニル基は、アルキンのsp炭素に結合する水素原子を1個除いた残りの原子団である。アルキニル基は、直鎖状アルキニル基、分岐状アルキニル基及び環状アルキニル基のいずれであってもよい。アルキニル基の炭素原子数は、特記しない限り、置換基の炭素原子数を含めずに好ましくは2~20、より好ましくは2~15、さらに好ましくは2~10である。アルキニル基としては、例えば、エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、1-ペンチニル基、2-ペンチニル基、1-ヘキシニル基、2-ヘキシニル基及び1-オクチニル基が挙げられる。
 上記アルキニル基は置換基を有していてもよい。アルキニル基が置換基を有するとき、該置換基としては、ハロゲン原子、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基等が挙げられる。すなわち、置換基を有するアルキニル基としては、ハロゲン化アルキニル基、アルコキシアルキニル基、アルキルチオアルキニル基、アリールアルキニル基、アリールオキシアルキニル基及びアリールチオアルキニル基等が挙げられる。
 これらのうち、アリールアルキニル基はさらに置換基を有していてもよく、アリールアルキニル基の炭素原子数は、通常、8~60である。アリールアルキニル基としては、例えば、フェニル-C~C12アルキニル基、C~C12アルコキシフェニル-C~C12アルキニル基、C~C12アルキルフェニル-C~C12アルキニル基、1-ナフチル-C~C12アルキニル基、2-ナフチル-C~C12アルキニル基が挙げられ、C~C12アルコキシフェニル-C~C12アルキニル基及びC~C12アルキルフェニル-C~C12アルキニル基が好ましい。
 上記アミノ基は、無置換のアミノ基であっても、該アミノ基における水素原子が、アルキル基、アリール基、アリールアルキル基及び1価の複素環基からなる群より選ばれる1又は2個の基で置換されたアミノ基(以下、「置換アミノ基」という。)であってもよい。置換アミノ基は、置換基を有していてもよく、置換アミノ基の炭素原子数は、通常、1~60であり、好ましくは2~48である。
 置換アミノ基としては、例えば、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ジプロピルアミノ基、イソプロピルアミノ基、ジイソプロピルアミノ基、ブチルアミノ基、sec-ブチルアミノ基、イソブチルアミノ基、tert-ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、シクロヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、2-エチルヘキシルアミノ基、ノニルアミノ基、デシルアミノ基、3,7-ジメチルオクチルアミノ基、ラウリルアミノ基、シクロペンチルアミノ基、ジシクロペンチルアミノ基、ジシクロヘキシルアミノ基、ピロリジル基、ピペリジル基、ジトリフルオロメチルアミノ基、フェニルアミノ基、ジフェニルアミノ基、C~C12アルコキシフェニルアミノ基、ジ(C~C12アルコキシフェニル)アミノ基、C~C12アルキルフェニルアミノ基、ジ(C~C12アルキルフェニル)アミノ基、1-ナフチルアミノ基、2-ナフチルアミノ基、ペンタフルオロフェニルアミノ基、ピリジルアミノ基、ピリダジニルアミノ基、ピリミジルアミノ基、ピラジルアミノ基、トリアジルアミノ基、フェニル-C~C12アルキルアミノ基、C~C12アルコキシフェニル-C~C12アルキルアミノ基、C~C12アルキルフェニル-C~C12アルキルアミノ基、ジ(C~C12アルコキシフェニル-C~C12アルキル)アミノ基、ジ(C~C12アルキルフェニル-C~C12アルキル)アミノ基、1-ナフチル-C~C12アルキルアミノ基及び2-ナフチル-C~C12アルキルアミノ基が挙げられる。
 上記シリル基は、無置換のシリル基であっても、該シリル基における水素原子が、アルキル基、アリール基、アリールアルキル基及び1価の複素環基からなる群より選ばれる1~3個の基で置換されたシリル基(以下、「置換シリル基」という。)であってもよい。置換シリル基は、置換基を有していてもよく、置換シリル基の炭素原子数は、通常、1~60であり、好ましくは3~48である。
 置換シリル基としては、例えば、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリ-イソプロピルシリル基、ジメチル-イソプロピルシリル基、ジエチル-イソプロピルシリル基、tert-ブチルジメチルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、ヘプチルジメチルシリル基、オクチルジメチルシリル基、2-エチルヘキシル-ジメチルシリル基、ノニルジメチルシリル基、デシルジメチルシリル基、3,7-ジメチルオクチル-ジメチルシリル基、ラウリルジメチルシリル基、フェニル-C~C12アキルシリル基、C~C12アルコキシフェニル-C~C12アルキルシリル基、C~C12アルキルフェニル-C~C12アルキルシリル基、1-ナフチル-C~C12アルキルシリル基、2-ナフチル-C~C12アルキルシリル基、フェニル-C~C12アルキルジメチルシリル基、トリフェニルシリル基、トリ-p-キシリルシリル基、トリベンジルシリル基、ジフェニルメチルシリル基、tert-ブチルジフェニルシリル基及びジメチルフェニルシリル基が挙げられる。
 上記アシル基としては、例えば、-C(=O)-R11(R11は、上記アルキル基、上記アリール基又は後述する1価の複素環基を示す。)で表される基が挙げられる。R11におけるアルキル基、アリール基及び1価の複素環基は置換基を有していてもよい。アシル基の炭素原子数は、置換基の炭素原子数を含めずに好ましくは2~20、より好ましくは2~18である。アシル基としては、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ベンゾイル基、トリフルオロアセチル基及びペンタフルオロベンゾイル基が挙げられる。
 上記アシルオキシ基としては、例えば、-O-C(=O)-R12(R12は、上記アルキル基、上記アリール基又は後述する1価の複素環基を示す。)で表される基が挙げられる。R12におけるアルキル基、アリール基及び1価の複素環基は置換基を有していてもよい。アシルオキシ基の炭素原子数は、置換基の炭素原子数を含めずに好ましくは2~20、より好ましくは2~18である。アシルオキシ基としては、例えば、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基、トリフルオロアセチルオキシ基、ペンタフルオロベンゾイルオキシ基が挙げられる。
 上記イミン残基は、式A:H-N=C(R13又は式B:H-C(R14)=N-R15の少なくとも一方で表される構造を有するイミン化合物から、該式中の「H」を除いた残基を意味する。式中、R13、R14及びR15はそれぞれ独立に、上記アルキル基、上記アリール基、上記アルケニル基、上記アルキニル基又は後述する1価の複素環基を示す。R13、R14及びR15におけるアルキル基、アリール基、アルケニル基、アルキニル基及び1価の複素環基は、置換基を有していてもよい。複数存在するR13は互いに同一でも異なっていてもよく、互いに連結して環構造を形成してもよい。イミン残基としては、例えば、以下の構造式で示される基が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 上記カルバモイル基の炭素原子数は、通常、1~20であり、好ましくは1~18である。カルバモイル基としては、例えば、ホルムアミド基、アセトアミド基、プロピオアミド基、ブチロアミド基、ベンズアミド基、トリフルオロアセトアミド基、ペンタフルオロベンズアミド基、ジホルムアミド基、ジアセトアミド基、ジプロピオアミド基、ジブチロアミド基、ジベンズアミド基、ジトリフルオロアセトアミド基及びジペンタフルオロベンズアミド基が挙げられる。
 上記酸イミド基は、酸イミドからその窒素原子に結合した水素原子1個を除いて得られる残基を意味する。酸イミド基の炭素原子数は、好ましくは4~20、より好ましくは4~18である。酸イミド残基としては、例えば以下の構造式で示される基が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 上記1価の複素環基は、複素環式化合物から水素原子1個を除いた残りの原子団である。1価の複素環基は、置換基を有していてもよく、1価の複素環基としては単環の基及び縮合環を有する基等が含まれる。1価の複素環基の炭素原子数は、置換基の炭素原子数を含めずに、通常、4~60であり、好ましくは4~20である。
 複素環式化合物とは、環式構造をもつ有機化合物のうち、環を構成する元素として、炭素原子だけでなく、酸素原子、硫黄原子、窒素原子、リン原子、ホウ素原子、ケイ素原子、セレン原子、テルル原子及びヒ素原子等のヘテロ原子を含むものをいう。
 上記1価の複素環基としては、1価の芳香族複素環基が好ましい。1価の芳香族複素環基は、芳香族複素環式化合物から水素原子1個を除いた残りの原子団である。芳香族複素環式化合物としては、例えば、オキサジアゾール、チアジアゾール、チアゾール、オキサゾール、チオフェン、ピロール、ホスホール、フラン、ピリジン、ピラジン、ピリミジン、トリアジン、ピリダジン、キノリン、イソキノリン、カルバゾール、ジベンゾホスホール、ジベンゾフラン及びジベンゾチオフェン等のヘテロ原子を含む複素環自体が芳香族性を示す化合物、並びに、フェノキサジン、フェノチアジン、ジベンゾボロール、ジベンゾシロール及びベンゾピラン等のヘテロ原子を含む複素環それ自体は芳香族性を示さなくとも、該複素環に芳香環が縮環されている化合物が挙げられる。
 上記1価の複素環基としては、例えば、チエニル基、C~C12アルキルチエニル基、ピロリル基、フリル基、ピリジル基、C~C12アルキルピリジル基、ピペリジル基、キノリル基及びイソキノリル基が挙げられ、これらのうち、チエニル基、C~C12アルキルチエニル基、ピリジル基及びC~C12アルキルピリジル基が好ましい。
 上記オキシカルボニル基としては、-C(=O)-O-R16(R16は、上記アルキル基、上記アリール基又は上記1価の複素環基を示す。)で表される基が挙げられる。R16におけるアルキル基、アリール基及び1価の複素環基は置換基を有していてもよい。オキシカルボニル基の炭素原子数は、置換基の炭素原子数を含めずに好ましくは2~60、より好ましくは2~48である。
 上記オキシカルボニル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、tert-ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシロキシカルボニル基、シクロヘキシロキシカルボニル基、ヘプチルオキシカルボニル基、オクチルオキシカルボニル基、2-エチルヘキシロキシカルボニル基、ノニルオキシカルボニル基、デシロキシカルボニル基、3,7-ジメチルオクチルオキシカルボニル基、ドデシルオキシカルボニル基、トリフルオロメトキシカルボニル基、ペンタフルオロエトキシカルボニル基、パーフルオロブトキシカルボニル基、パーフルオロヘキシルオキシカルボニル基、パーフルオロオクチルオキシカルボニル基、フェノキシカルボニル基、ナフトキシカルボニル基及びピリジルオキシカルボニル基が挙げられる。
 -Cで表される基(以下、「フッ素含有基」という。)としては、例えば、フッ素化アルキル基、フッ素化アリール基、フッ素化アルキルアリール基、フッ素化アルキルオキシ基、フッ素化アリールオキシ基、フッ素化アルキルアリールオキシ基及びフッ素化アシル基が挙げられる。ここで、「フッ素化」とは、この語の直後に記載された官能基が置換基として少なくとも1つのフッ素原子を有することを意味する。
 フッ素含有基としては、例えば、式(F-1)、(F-2)、(F-3)又は(F-4)で表されるフッ素化アルキル基;式(F-5)、(F-6)、(F-7)、(F-8)又は(F-9)で表されるフッ素化アリール基;式(F-10)、(F-11)、(F-12)又は(F-13)で表されるフッ素化アルキルアリール基;式(F-14)、(F-15)、(F-16)又は(F-17)で表されるフッ素化アルコキシ基;式(F-18)又は(F-19)で表されるフッ素化アリールオキシ基;式(F-20)、(F-21)又は(F-22)で表されるフッ素化アルキルアリールオキシ基;及び、式(F-23)、(F-24)、(F-25)、(F-26)、(F-27)、(F-28)、(F-29)、(F-30)又は(F-31)で表されるフッ素化アシル基;が挙げられる。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 フッ素含有基としては、フッ素含有化合物の化学的安定性が良好になるため、sが0である基、すなわち-Cで表される基が好ましく、上記のうち式(F-1)~(F-13)で表される基が好ましい。
 上記のうち、アリーレン基が有する置換基としては、フッ素含有化合物の溶解性が良好となる、蛍光特性が良好となる、合成が容易となる、得られる発光素子の特性が良好となる等の理由から、アルキル基、アルコキシ基、アリール基、アリールオキシ基、シアノ基及び-Cで表される基が好ましく、これらの基はさらに置換基を有していてもよい。
 アリーレン基が有する置換基は、例えば、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアリール基、置換基を有していてもよいアリールオキシ基、シアノ基又はフッ素含有基とすることができる。
 ここで置換基を有していてもよいアルキル基としては、無置換のアルキル基、アリールアルキル基及びアルキルアリールアルキル基が好ましく、C~C12アルキル基、フェニル-C~C12アルキル基、C~C12アルコキシフェニル-C~C12アルキル基、C~C12アルキルフェニル-C~C12アルキル基、1-ナフチル-C~C12アルキル基及び2-ナフチル-C~C12アルキル基がより好ましい。
 また、置換基を有していてもよいアルコキシ基としては、無置換のアルコキシ基、アリールアルコキシ基及びアルキルアリールアルコキシ基が好ましく、フェニル-C~C12アルコキシ基、C~C12アルコキシフェニル-C~C12アルコキシ基、C~C12アルキルフェニル-C~C12アルコキシ基、1-ナフチル-C~C12アルコキシ基及び2-ナフチル-C~C12アルコキシ基がより好ましい。
 また、置換基を有していてもよいアリール基としては、無置換のアリール基、ハロゲン化アリール基、アルコキシアリール基及びアルキルアリール基が好ましく、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、ペンタフルオロフェニル基、C~C12アルコキシフェニル基及びC~C12アルキルフェニル基がより好ましく、C~C12アルコキシフェニル基及びC~C12アルキルフェニル基がさらに好ましい。
 さらに、置換基を有していてもよいアリールオキシ基としては、無置換のアリールオキシ基、ハロゲン化アリールオキシ基、アルコキシアリールオキシ基及びアルキルアリールオキシ基が好ましく、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、ペンタフルオロフェニルオキシ基、C~C12アルコキシフェノキシ基及びC~C12アルキルフェノキシ基がより好ましく、C~C12アルコキシフェノキシ基及びC~C12アルキルフェノキシ基が更に好ましい。
 フッ素含有化合物は、フッ素含有基を1つ又は2つすることが好ましく、2つ有することがより好ましい。
 式(1)においてn+n+nが1~3の整数であるとき、フッ素含有化合物は、Ar、Ar又はArの置換基としてフッ素含有基を有することが好ましい。
 式(1)においてn+n+nは0又は1であることが好ましく、1であることがより好ましい。
 Z及びZにおけるアルキル基としては、上記アリーレン基の置換基として例示したアルキル基が挙げられる。該アルキル基は上述したとおり置換基を有していてもよい。Z及びZにおけるアルキル基としては、無置換のアルキル基、アリールアルキル基及びアルキルアリールアルキル基が好ましく、C~C12アルキル基、フェニル-C~C12アルキル基、C~C12アルコキシフェニル-C~C12アルキル基、C~C12アルキルフェニル-C~C12アルキル基、1-ナフチル-C~C12アルキル基及び2-ナフチル-C~C12アルキル基がより好ましい。
 Z及びZにおけるアルコキシ基としては、上記アリーレン基の置換基として例示したアルコキシ基が挙げられる。該アルコキシ基は上述したとおり置換基を有していてもよい。Z及びZにおけるアルコキシ基としては、無置換のアルコキシ基、アリールアルコキシ基及びアルキルアリールアルコキシ基が好ましく、フェニル-C~C12アルコキシ基、C~C12アルコキシフェニル-C~C12アルコキシ基、C~C12アルキルフェニル-C~C12アルコキシ基、1-ナフチル-C~C12アルコキシ基及び2-ナフチル-C~C12アルコキシ基がより好ましい。
 Z及びZにおけるアリールオキシ基としては、上記アリーレン基の置換基として例示したアリールオキシ基が挙げられる。該アリールオキシ基は上述したとおり置換基を有していてもよい。Z及びZにおけるアリールオキシ基としては、無置換のアリールオキシ基、ハロゲン化アリールオキシ基、アルコキシアリールオキシ基及びアルキルアリールオキシ基が好ましく、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、ペンタフルオロフェニルオキシ基、C~C12アルコキシフェノキシ基及びC~C12アルキルフェノキシ基が好ましく、C~C12アルコキシフェノキシ基及びC~C12アルキルフェノキシ基がより好ましい。
 フッ素含有化合物は、式(1)におけるAr、Ar、Ar、Ar及びArのうち少なくとも一つが式(B-1)又は(B-2)で表される基であってもよく、Ar、Ar、Ar、Ar及びArがいずれも式(B-1)又は(B-2)で表される基であってもよい。
Figure JPOXMLDOC01-appb-C000017
 式中、R及びRはそれぞれ独立に、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基又はフッ素含有基を示す。式(1)中にR及びRが複数存在するとき、複数存在するR及びRはそれぞれ同一でも異なっていてもよい。
 R及びRにおけるアルキル基としては、上記アリーレン基の置換基として例示したアルキル基が挙げられる。該アルキル基は上述したとおり置換基を有していてもよい。R及びRにおけるアルキル基としては、無置換のアルキル基、アリールアルキル基及びアルキルアリールアルキル基が好ましく、C~C12アルキル基、フェニル-C~C12アルキル基、C~C12アルコキシフェニル-C~C12アルキル基、C~C12アルキルフェニル-C~C12アルキル基、1-ナフチル-C~C12アルキル基及び2-ナフチル-C~C12アルキル基がより好ましい。
 R及びRにおけるアリール基としては、上記アリーレン基の置換基として例示したアリール基が挙げられる。該アルキル基は上述したとおり置換基を有していてもよい。R及びRにおけるアリール基としては、無置換のアルコキシ基、アリールアルコキシ基、アルキルアリールアルコキシ基が好ましく、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、ペンタフルオロフェニル基、C~C12アルコキシフェニル基及びC~C12アルキルフェニル基が好ましく、C~C12アルコキシフェニル基及びC~C12アルキルフェニル基がより好ましい。
 フッ素含有化合物はまた、式(2)で表される化合物であってもよい。
Figure JPOXMLDOC01-appb-C000018
 式中、Z、Z、R及びRは上記と同義であり、R、R、R、R、R及びRはそれぞれ独立に、水素原子、置換基を有していてもよいアルキル基又は置換基を有していてもよいアリール基を示し、nは2~5の整数を示す。複数存在するR、R、R、R、R、R、R及びRはそれぞれ互いに同一でも異なっていてもよい。但し、Z及びZ並びに複数存在するR及びRのうち、少なくとも一つは、フッ素含有基である。
 R、R、R、R、R及びRにおけるアルキル基としては、上記アリーレン基の置換基として例示したアルキル基が挙げられる。R、R、R、R、R及びRにおけるアルキル基としては、無置換のアルキル基、アリールアルキル基及びアルキルアリールアルキル基が好ましく、C~C12アルキル基、フェニル-C~C12アルキル基、C~C12アルコキシフェニル-C~C12アルキル基、C~C12アルキルフェニル-C~C12アルキル基、1-ナフチル-C~C12アルキル基及び2-ナフチル-C~C12アルキル基がより好ましい。
 R、R、R、R、R及びRにおけるアリール基としては、上記アリーレン基の置換基として例示したアリール基が挙げられる。R、R、R、R、R及びRにおけるアリール基としては、無置換のアリール基、ハロゲン化アリール基、アルコキシアリール基及びアルキルアリール基が好ましく、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、ペンタフルオロフェニル基、C~C12アルコキシフェニル基及びC~C12アルキルフェニル基がより好ましく、C~C12アルコキシフェニル基及びC~C12アルキルフェニル基がさらに好ましい。
 式(2)で表される化合物において、複数存在するR及びRのうち少なくとも一つが、フッ素含有基であることが好ましい。
 フッ素含有化合物としては、例えば、下記構造式で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
(組成物)
 本実施形態の組成物は、上記フッ素含有化合物と、正孔輸送材料、電子輸送材料及び発光材料からなる群より選ばれる少なくとも一種と、を含有する。本実施形態の組成物は、上記フッ素含有化合物を二種以上含有していてもよい。本実施形態の組成物は、発光素子や有機トランジスタの作製に有用である。
 正孔輸送材料としては、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリ(p-フェニレンビニレン)及びその誘導体、並びに、ポリ(2,5-チエニレンビニレン)及びその誘導体等が挙げられる。その他にも、特開昭63-70257号公報、特開昭63-175860号公報、特開平2-135359号公報、特開平2-135361号公報、特開平2-209988号公報、特開平3-37992号公報又は特開平3-152184号公報に記載された正孔輸送材料が挙げられる。
 本実施形態の組成物が正孔輸送材料を含有するとき、正孔輸送材料の含有量は、組成物の全量に対して、1~80質量%であることが好ましく、5~60質量%であることがより好ましい。
 電子輸送材料としては、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアンスラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、アントラセン及びその誘導体、並びに、アントラセンとフルオレンの共重合体等が挙げられる。その他にも、特開昭63-70257号公報、特開昭63-175860号公報、特開平2-135359号公報、特開平2-135361号公報、特開平2-209988号公報、特開平3-37992号公報又は特開平3-152184号公報に記載された電子輸送材料が挙げられる。
 本実施形態の組成物が電子輸送材料を含有するとき、電子輸送材料の含有量は、組成物の全量に対して、1~80質量%であることが好ましく、5~60質量%であることがより好ましい。
 発光材料としては、低分子蛍光発光材料及び燐光発光材料等が挙げられる。発光材料の例としては、ナフタレン誘導体;アントラセン及びその誘導体;アントラセンとフルオレンとの共重合体;ペリレン及びその誘導体;ポリメチン系色素、キサンテン系色素、クマリン系色素及びシアニン系色素等の色素類;8-ヒドロキシキノリンを配位子として有する金属錯体;8-ヒドロキシキノリン誘導体を配位子として有する金属錯体;その他の蛍光性金属錯体;芳香族アミン;テトラフェニルシクロペンタジエン及びその誘導体;テトラフェニルブタジエン及びその誘導体;スチルベン系、含ケイ素芳香族系、オキサゾール系、フロキサン系、チアゾール系、テトラアリールメタン系、チアジアゾール系、ピラゾール系、メタシクロファン系及びアセチレン系等の低分子化合物の蛍光性材料;イリジウム錯体及び白金錯体等の金属錯体;並びに三重項発光錯体、等が挙げられる。その他にも、特開昭57-51781号公報又は特開昭59-194393号公報に記載された発光材料等が挙げられる。
 本実施形態の組成物が発光材料を含有するとき、発光材料の含有量は、組成物の全量に対して、1~80質量%であることが好ましく、5~60質量%であることがより好ましい。
 本実施形態の組成物は、安定剤、粘度及び/又は表面張力を調節するための添加剤等をさらに含有していてもよい。本実施形態の組成物が発光素子又は有機トランジスタの作製等に用いられる場合、これらの成分は、発光又は電荷輸送を阻害しないものから選択されることが好ましい。
 安定剤としては、例えば、酸化防止剤が挙げられ、酸化防止剤としてはフェノール系酸化防止剤及びリン系酸化防止剤等が挙げられる。このような酸化防止剤を含有することで、組成物の保存安定性が良好になる。
 粘度及び/又は表面張力を調製するための添加剤としては、例えば、粘度を高めるための高分子量の化合物(増粘剤)、粘度を下げるための低分子量の化合物及び表面張力を下げるための界面活性剤、を適宜組合せて用いることができる。増粘剤としては、例えば、高分子量のポリスチレン及び高分子量のポリメチルメタクリレート等を用いることができる。増粘剤のポリスチレン換算の重量平均分子量は、50万以上であることが好ましく、100万以上であることがより好ましい。また、粘度を高めるための添加剤としては、フッ素含有化合物の貧溶媒を用いることもできる。
(液状組成物)
 本実施形態の液状組成物は、上記フッ素含有化合物と溶媒とを含有する。ここで、「液状組成物」は、少なくとも後述する発光素子の作製時に液状であればよく、典型的には、常圧(即ち、1気圧)25℃において液状であればよい。液状組成物は、インク又はインク組成物等と呼ぶこともでき、単に溶液と呼ぶこともできる。本実施形態の液状組成物は、発光素子及び有機トランジスタの作製に有用である。
 本実施形態の液状組成物は、発光材料、正孔輸送材料、電子輸送材料、安定剤、並びに、粘度及び/又は表面張力を調節するための添加剤、等をさらに含有していてもよい。これらの成分は、各々、単独で用いても二種以上を併用してもよい。
 発光材料、正孔輸送材料、電子輸送材料、安定剤、並びに、粘度及び/又は表面張力を調製するための添加剤としては、上記と同様のものが例示できる。また、これらの成分は、上記溶媒に可溶性のものであることが好ましい。
 本実施形態の液状組成物が正孔輸送材料を含有するとき、その含有量は、液状組成物の全量に対して、1~80質量%であることが好ましく、5~60質量%であることがより好ましい。また、電子輸送材料を含有するとき、その含有量は、液状組成物の全量に対して、1~80質量%であることが好ましく、5~60質量%であることがより好ましい。また、発光材料を含有するとき、正孔輸送材料の含有量は、液状組成物の全量に対して、1~80質量%であることが好ましく、5~60質量%であることがより好ましい。
 上記溶媒としては、上記フッ素含有化合物を溶解又は分散できるものが好ましい。溶媒としては、例えば、クロロホルム、塩化メチレン、1,2-ジクロロエタン、1,1,2-トリクロロエタン、クロロベンゼン及びo-ジクロロベンゼン等の塩素系溶媒;テトラヒドロフラン及びジオキサン等のエーテル系溶媒;トルエン、キシレン、トリメチルベンゼン及びメシチレン等の芳香族炭化水素系溶媒;シクロヘキサン、メチルシクロヘキサン、n-ペンタン、n-ヘキサン、n-へプタン、n-オクタン、n-ノナン及びn-デカン等の脂肪族炭化水素系溶媒;アセトン、メチルエチルケトン及びシクロヘキサノン等のケトン系溶媒;酢酸エチル、酢酸ブチル、メチルベンゾエート及びエチルセルソルブアセテート等のエステル系溶媒;エチレングリコール、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、ジメトキシエタン、プロピレングリコール、ジエトキシメタン、トリエチレングリコールモノエチルエーテル、グリセリン及び1,2-ヘキサンジオール等の多価アルコール及びその誘導体;メタノール、エタノール、プロパノール、イソプロパノール及びシクロヘキサノール等のアルコール系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;並びに、N-メチル-2-ピロリドン及びN,N-ジメチルホルムアミド等のアミド系溶媒;が挙げられる。これらの溶媒は、一種単独で用いても二種以上を併用してもよい。これらの溶媒のうち、ベンゼン環を含む構造を有し、融点が0℃以下であり、且つ沸点が100℃以上である溶媒を含むことが、粘度、成膜性等の観点から好ましい。
 上記溶媒としては、液状組成物中の溶媒以外の成分の溶解性、成膜時の均一性、及び、粘度特性の観点から、芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒、エステル系溶媒及びケトン系溶媒のうち少なくとも一種を含むことが好ましく、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、トリメチルベンゼン、メシチレン、n-プロピルベンゼン、イソプロピルベンゼン、n-ブチルベンゼン、イソブチルベンゼン、sec-ブチルベンゼン、アニソール、エトキシベンゼン、1-メチルナフタレン、シクロヘキサン、シクロヘキサノン、シクロヘキシルベンゼン、ビシクロヘキシル、シクロヘキセニルシクロヘキサノン、n-ヘプチルシクロヘキサン、n-ヘキシルシクロヘキサン、メチルベンゾエート、2-プロピルシクロヘキサノン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、2-オクタノン、2-ノナノン、2-デカノン及びジシクロヘキシルケトンのうち少なくとも一種を含むことがより好ましく、キシレン、アニソール、メシチレン、シクロヘキシルベンゼン及びビシクロヘキシルメチルベンゾエートのうち少なくとも一種を含むことがさらに好ましい。
 液状組成物は、成膜性及び素子特性が良好となるため、二種以上の溶媒を含有することが好ましく、二又は三種の溶媒を含有することより好ましい。
 液状組成物に二種の溶媒が含まれるとき、そのうちの一種は融点が25℃より高い化合物であってもよい。また、成膜性が良好となるため、二種の溶媒のうち、一方の沸点が180℃以上であり、他方の沸点が180℃未満であることが好ましい。また、二種以上の溶媒のうち、一方の沸点が200℃以上であり、他方の沸点が180℃未満であることがより好ましい。
 液状組成物に三種の溶媒が含まれるとき、そのうちの一種又は二種は融点が25℃より高い化合物であってもよい。また、成膜性が良好となるため、三種の溶媒のうち、少なくとも一種の沸点が180℃以上であり、且つ、少なくとも一種の沸点が180℃未満であることが好ましい。また、三種の溶媒のうち、少なくとも一種の沸点が200℃以上300℃以下であり、且つ、少なくとも一種の沸点が180℃未満であることが好ましい。
 液状組成物が二種以上の溶媒を含有するとき、粘度及び成膜性の観点から、溶媒のうち少なくとも一種は、60℃において液状組成物の溶媒以外の成分を0.2質量%以上の濃度で溶解できるものであることが好ましく、25℃において液状組成物の溶媒以外の成分を0.2質量%以上の濃度で溶解できるものであることがより好ましい。
 液状組成物が二種以上の溶媒を含有するとき、粘度及び成膜性の観点から、最も沸点が高い溶媒の含有量が、全溶媒の総量に対して、40~90質量%であることが好ましく、50~90質量%であることがより好ましく、65~85質量%であることがさらに好ましい。
 液状組成物中の溶媒の含有量は、液状組成物の全量に対して、通常1~99.9質量%であり、好ましくは60~99.9質量%であり、さらに好ましく90~99.8質量%である。液状組成物の好適な粘度は印刷法によって異なるが、25℃において0.5~500mPa・sの範囲であることが好ましい。また、インクジェットプリント法等、液状組成物が吐出装置を経由する場合、吐出時の目づまりや飛行曲がりを防止するために、液状組成物の粘度は、25℃において0.5~20mPa・sの範囲であることが好ましい。
 発光素子の作製に際し、本実施形態の液状組成物を用いれば、液状組成物を塗布した後に乾燥により溶媒を除去することで、上記フッ素含有化合物を含む薄膜を容易に成膜することができる。溶媒の除去は、使用される溶媒に応じて条件を変更して行うことができ、例えば、50~150℃程度の加熱又は10-3Pa程度の減圧により行うことができる。
 液状組成物を用いた成膜方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スリットコート法、キャップコート法、キャピラリコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法及びノズルコート法等の塗布法を用いることができる。
(薄膜)
 本実施形態の薄膜は、上記フッ素含有化合物又は上記組成物を含有する。本実施形態の薄膜は、上述のように上記液状組成物から容易に作製することができる。
 本実施形態の薄膜は、後述する発光素子における発光層等に好適に使用することができる。本実施形態の薄膜は、上記フッ素含有化合物又は上記組成物を含有するため、発光素子の発光層として使用した場合に当該発光素子の発光効率が優れたものとなる。
 本実施形態の薄膜の種類としては、発光性薄膜、導電性薄膜及び有機半導体薄膜等が例示される。
 発光性薄膜は、素子の輝度及び発光電圧等の観点から、発光の量子収率が50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることがさらに好ましい。
 導電性薄膜は、表面抵抗が1KΩ/□以下であることが好ましい。薄膜に、ルイス酸又はイオン性化合物等をドープすることにより、電気伝導度を高めることができる。表面抵抗は、100Ω/□以下であることがより好ましく、10Ω/□以下であることがさらに好ましい。
 有機半導体薄膜は、電子移動度又は正孔移動度のいずれか大きいほうが、好ましくは10-5cm/V/秒以上であり、より好ましくは10-3cm/V/秒以上であり、さらに好ましくは10-1cm/V/秒以上である。また、有機半導体薄膜を用いて、有機トランジスタを作製することができる。具体的には、SiO等の絶縁膜とゲート電極とを形成したSi基板上に有機半導体薄膜を形成し、Au等でソース電極とドレイン電極を形成することにより、有機トランジスタとすることができる。
(フッ素含有化合物の用途)
 本実施形態のフッ素化合物は、有機半導体材料、有機トランジスタ、光学材料及び太陽電池等に用いることができる。また、ドーピングにより導電性材料として用いることもできる。
 まず、有機トランジスタの一態様である電界効果トランジスタについて説明する。
 本実施形態のフッ素含有化合物は、電界効果トランジスタの材料として、中でも活性層として好適に用いることができる。電界効果トランジスタの構造としては、通常は、ソース電極及びドレイン電極が活性層に接して設けられており、さらに活性層に接した絶縁層を挟んでゲート電極が設けられていればよい。
 電界効果トランジスタは、通常は支持基板上に形成される。支持基板としては電界効果トランジスタとしての特性を阻害しなければ材質は特に制限されず、ガラス基板、フレキシブルなフィルム基板及びプラスチック基板等を用いることができる。
 電界効果トランジスタは、公知の方法、例えば、特開平5-110069号公報に記載の方法により製造することができる。
 活性層を形成する際に、有機溶媒可溶性の化合物を用いることが製造上非常に有利であり好ましい。有機溶媒可溶性の化合物を溶媒に溶解させてなる溶液からの成膜方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スリットコート法、キャップコート法、キャピラリコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法及びノズルコート法等の塗布法を用いることができる。
 電界効果トランジスタを作製後、封止してなる封止電界効果トランジスタが好ましい。これにより、電界効果トランジスタが、大気から遮断され、電界効果トランジスタの特性の低下を抑えることができる。
 封止する方法としては、紫外線(UV)硬化樹脂、熱硬化樹脂又は無機のSiONx膜等でカバーする方法;並びに、ガラス板又はフィルムをUV硬化樹脂又は熱硬化樹脂等で張り合わせる方法;等が挙げられる。大気との遮断を効果的に行うため電界効果トランジスタを作製後、封止するまでの工程を大気に曝すことなく(例えば、乾燥した窒素雰囲気中、真空中で)行うことが好ましい。
 次に、有機太陽電池について、有機太陽電池の一態様である有機光電変換素子で、光起電力効果を利用する固体光電変換素子を例にとり、説明する。
 本実施形態のフッ素含有化合物は、有機光電変換素子の材料として、中でも有機半導体と金属との界面を利用するショットキー障壁型素子の有機半導体層として、また、有機半導体と無機半導体あるいは有機半導体どうしの界面を利用するpnへテロ接合型素子の有機半導体層として、好適に用いることができる。
 さらに、本実施形態のフッ素含有化合物は、ドナー・アクセプターの接触面積を増大させたバルクヘテロ接合型素子における電子供与性化合物又は電子受容性化合物としても好適に用いることができる。
 有機光電変換素子の構造としては、例えば、pnへテロ接合型素子では、ITO上に、p型半導体層を形成し、さらに、n型半導体層を積層し、その上にオーム性電極が設けられていればよい。
 有機光電変換素子は、通常は支持基板上に形成される。支持基板としては有機光電変換素子としての特性を阻害しなければ材質は制限されず、例えば、ガラス基板、フレキシブルなフィルム基板及びプラスチック基板等を用いることができる。
 有機光電変換素子は、公知の方法、例えば、Synth.Met.,102,982(1999)に記載の方法又はScience,270,1789(1995)に記載の方法により製造することができる。
 次に、発光素子について説明する。
 発光素子は、陽極及び陰極からなる電極と、該電極間に設けられた上記フッ素含有化合物を含む有機層とを有するものである。
 上記有機層とは、発光層、正孔輸送層又は電子輸送層を意味する。中でも本実施形態のフッ素含有化合物を電子輸送層として用いることが、素子作製の観点から好ましい。
 また、発光素子としては、(1)陰極と発光層との間に電子輸送層を設けた発光素子、(2)陽極と発光層との間に正孔輸送層を設けた発光素子、並びに、(3)陰極と発光層との間に電子輸送層を設け、かつ陽極と発光層との間に正孔輸送層を設けた発光素子、等が挙げられる。
 より具体的には、以下のa)~d)の構造が例示される。
a)陽極/発光層/陰極
b)陽極/正孔輸送層/発光層/陰極
c)陽極/発光層/電子輸送層/陰極
d)陽極/正孔輸送層/発光層/電子輸送層/陰極
(ここで、/は各層が隣接して積層されていることを示す。以下同じ。)
 ここで、発光層とは、発光する機能を有する層であり、正孔輸送層とは、正孔を輸送する機能を有する層であり、電子輸送層とは、電子を輸送する機能を有する層である。なお、電子輸送層と正孔輸送層を総称して電荷輸送層と呼ぶ。発光層、正孔輸送層及び電子輸送層は、それぞれ独立に2層以上用いてもよい。また、発光層に隣接した正孔輸送層をインターレイヤー層と呼ぶ場合もある。
 発光層の成膜方法としては、溶液からの成膜が好ましい。溶液からの成膜には、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スリットコート法、キャップコート法、キャピラリコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法及びノズルコート法等の塗布法を用いることができる。
 発光素子作製の際に、本実施形態のフッ素含有化合物を用いることにより、溶液から成膜する場合、この溶液を塗布後乾燥により溶媒を除去するだけでよく、また電荷輸送材料や発光材料を混合した場合においても同様な手法が適用でき、製造上非常に有利である。
 発光層の厚さとしては、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよいが、例えば、1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。
 発光素子においては、有機層に上記フッ素含有化合物以外の発光材料を混合して使用してもよい。また、発光素子においては、上記フッ素含有化合物以外の発光材料を含む発光層が、上記フッ素含有化合物を含む有機層と積層されていてもよい。
 上記フッ素含有化合物以外の発光材料としては、公知のものが使用でき、例えば上記と同様のものが例示できる。また、発光素子が正孔輸送層を有する場合、使用される正孔輸送材料としては、上記と同様のものが例示できる。
 上記例示の中で、正孔輸送層に用いる正孔輸送材料としては、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミン化合物基を有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリ(p-フェニレンビニレン)及びその誘導体、並びに、ポリ(2,5-チエニレンビニレン)及びその誘導体等の高分子正孔輸送材料が好ましく、さらに好ましくはポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、並びに、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体である。低分子の正孔輸送材料の場合には、高分子バインダーに分散させて用いることが好ましい。
 ポリビニルカルバゾール及びその誘導体は、例えば、ビニルモノマーからカチオン重合又はラジカル重合によって得られる。
 ポリシラン及びその誘導体としては、ケミカル・レビュー(Chem.Rev.)第89巻、1359頁(1989年)、英国特許GB2300196号公開明細書に記載の化合物等が例示される。合成方法もこれらに記載の方法を用いることができるが、特にキッピング法が好適に用いられる。
 ポリシロキサン誘導体は、シロキサン骨格構造には正孔輸送性がほとんどないので、側鎖又は主鎖に上記低分子正孔輸送材料の構造を有するものが好適に用いられる。特に正孔輸送性の芳香族アミンを側鎖又は主鎖に有するものが例示される。
 正孔輸送層の成膜の方法に制限はないが、低分子正孔輸送材料では、高分子バインダーとの混合溶液からの成膜による方法が例示される。また、高分子正孔輸送材料では、溶液からの成膜による方法が例示される。
 溶液からの成膜に用いる溶媒としては、正孔輸送材料を溶解させるものであれば特に制限はない。該溶媒として、クロロホルム、塩化メチレン及びジクロロエタン等の塩素系溶媒;テトラヒドロフラン等のエーテル系溶媒;トルエン及びキシレン等の芳香族炭化水素系溶媒;アセトン及びメチルエチルケトン等のケトン系溶媒;酢酸エチル、酢酸ブチル及びエチルセルソルブアセテート等のエステル系溶媒が例示される。
 溶液からの成膜方法としては、溶液からのスピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スリットコート法、キャップコート法、キャピラリコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法及びノズルコート法等の塗布法を用いることができる。
 混合する高分子バインダーとしては、電荷輸送を極度に阻害しないものが好ましく、また可視光に対する吸収が強くないものが好適に用いられる。該高分子バインダーとして、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル及びポリシロキサンが例示される。
 正孔輸送層の厚さは、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよく、例えば、1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。
 発光素子が電子輸送層を有する場合、使用される電子輸送材料としては公知のものが使用でき、上記と同様のものが例示できる。
 上記例示の中で、オキサジアゾール誘導体、ベンゾキノン及びその誘導体、アントラキノン及びその誘導体、8-ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、並びに、ポリフルオレン及びその誘導体が好ましく、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール、ベンゾキノン、アントラキノン、トリス(8-キノリノール)アルミニウム及びポリキノリンがさらに好ましい。
 電子輸送層の成膜法としては、低分子電子輸送材料では、粉末からの真空蒸着法、溶液又は溶融状態からの成膜による方法が、高分子電子輸送材料では溶液又は溶融状態からの成膜による方法がそれぞれ例示される。溶液又は溶融状態からの成膜時には、高分子バインダーを併用してもよい。
 溶液からの成膜に用いる溶媒としては、電子輸送材料及び/又は高分子バインダーを溶解させるものであればよい。該溶媒として、クロロホルム、塩化メチレン及びジクロロエタン等の塩素系溶媒;テトラヒドロフラン等のエーテル系溶媒;トルエン及びキシレン等の芳香族炭化水素系溶媒;アセトン及びメチルエチルケトン等のケトン系溶媒;酢酸エチル、酢酸ブチル及びエチルセルソルブアセテート等のエステル系溶媒が例示される。
 溶液又は溶融状態からの成膜には、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スリットコート法、キャップコート法、キャピラリコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法及びノズルコート法等の塗布法を用いることができる。
 混合する高分子バインダーとしては、電荷輸送を極度に阻害しないものが好ましく、また、可視光に対する吸収が強くないものが好適に用いられる。該高分子バインダーとしては、ポリ(N-ビニルカルバゾール)、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリ(p-フェニレンビニレン)及びその誘導体、ポリ(2,5-チエニレンビニレン)及びその誘導体、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、並びに、ポリシロキサン等が例示される。
 電子輸送層の厚さは、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよく、例えば、1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。
 また、電極に隣接して設けた電荷輸送層のうち、電極からの電荷注入効率を改善する機能を有し、素子の駆動電圧を下げる効果を有するものは、特に電荷注入層(正孔注入層、電子注入層)と一般に呼ばれることがある。
 さらに電極との密着性向上や電極からの電荷注入の改善のために、電極に隣接して前記の電荷注入層又は絶縁層を設けてもよく、また、界面の密着性向上や混合の防止のために電荷輸送層や発光層の界面に薄いバッファー層を挿入してもよい。
 積層する層の順番や数、及び各層の厚さについては、発光効率や素子寿命を勘案して適宜選択すればよい。
 電荷注入層(電子注入層、正孔注入層)を設けた発光素子としては、陰極に隣接して電荷注入層を設けた発光素子、陽極に隣接して電荷注入層を設けた発光素子が挙げられる。
 例えば、具体的には、以下のe)~p)の構造が挙げられる。
e)陽極/電荷注入層/発光層/陰極
f)陽極/発光層/電荷注入層/陰極
g)陽極/電荷注入層/発光層/電荷注入層/陰極
h)陽極/電荷注入層/正孔輸送層/発光層/陰極
i)陽極/正孔輸送層/発光層/電荷注入層/陰極
j)陽極/電荷注入層/正孔輸送層/発光層/電荷注入層/陰極
k)陽極/電荷注入層/発光層/電荷輸送層/陰極
l)陽極/発光層/電子輸送層/電荷注入層/陰極
m)陽極/電荷注入層/発光層/電子輸送層/電荷注入層/陰極
n)陽極/電荷注入層/正孔輸送層/発光層/電荷輸送層/陰極
o)陽極/正孔輸送層/発光層/電子輸送層/電荷注入層/陰極
p)陽極/電荷注入層/正孔輸送層/発光層/電子輸送層/電荷注入層/陰極
 電荷注入層の具体的な例としては、導電性高分子を含む層;陽極と正孔輸送層との間に設けられ、陽極材料と正孔輸送層に含まれる正孔輸送材料との中間の値のイオン化ポテンシャルを有する材料を含む層;及び、陰極と電子輸送層との間に設けられ、陰極材料と電子輸送層に含まれる電子輸送材料との中間の値の電子親和力を有する材料を含む層が例示される。
 上記電荷注入層が導電性高分子を含む層の場合、該導電性高分子の電気伝導度は、10-5S/cm以上10S/cm以下であることが好ましく、発光画素間のリーク電流を小さくするためには、10-5S/cm以上10S/cm以下がより好ましく、10-5S/cm以上10S/cm以下がさらに好ましい。通常は該導電性高分子の電気伝導度を10-5S/cm以上10S/cm以下とするために、該導電性高分子に適量のイオンをドープする。
 ドープするイオンの種類は、正孔注入層であればアニオン、電子注入層であればカチオンである。アニオンの例としては、ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン及び樟脳スルホン酸イオン等が挙げられ、カチオンの例としては、リチウムイオン、ナトリウムイオン、カリウムイオン及びテトラブチルアンモニウムイオン等が挙げられる。
 電荷注入層の厚さは、例えば、1nm~100nmであり、2nm~50nmが好ましい。
 電荷注入層に用いる材料は、電極や隣接する層の材料との関係で適宜選択すればよく、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、芳香族アミン構造を主鎖又は側鎖に含む重合体等の導電性高分子、金属フタロシアニン(銅フタロシアニン等)、並びに、カーボンが例示される。
 絶縁層は、電荷注入を容易にする機能を有するものである。この絶縁層の平均厚さは、通常、0.1~20nmであり、好ましくは0.5~10nm、より好ましくは1~5nmである。絶縁層の材料としては、金属フッ化物、金属酸化物及び有機絶縁材料等が挙げられる。絶縁層を設けた発光素子としては、陰極に隣接して絶縁層を設けた発光素子及び陽極に隣接して絶縁層を設けた発光素子が挙げられる。
 具体的には、例えば、以下のq)~ab)の構造が挙げられる。
q)陽極/絶縁層/発光層/陰極
r)陽極/発光層/絶縁層/陰極
s)陽極/絶縁層/発光層/絶縁層/陰極
t)陽極/絶縁層/正孔輸送層/発光層/陰極
u)陽極/正孔輸送層/発光層/絶縁層/陰極
v)陽極/絶縁層/正孔輸送層/発光層/絶縁層/陰極
w)陽極/絶縁層/発光層/電子輸送層/陰極
x)陽極/発光層/電子輸送層/絶縁層/陰極
y)陽極/絶縁層/発光層/電子輸送層/絶縁層/陰極
z)陽極/絶縁層/正孔輸送層/発光層/電子輸送層/陰極
aa)陽極/正孔輸送層/発光層/電子輸送層/絶縁層/陰極
ab)陽極/絶縁層/正孔輸送層/発光層/電子輸送層/絶縁層/陰極
 発光素子を形成する基板は、電極を形成し、有機物の層を形成する際に化学的に変化しないものであればよく、例えば、ガラス、プラスチック、高分子フィルム及びシリコン等の基板が例示される。不透明な基板の場合には、反対の電極が透明又は半透明であることが好ましい。通常は、陽極及び陰極からなる電極の少なくとも一方が透明又は半透明であることが好ましく、陽極側が透明又は半透明であることがより好ましい。
 陽極の材料としては、導電性の金属酸化物膜及び半透明の金属薄膜等が用いられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、これらの複合体であるインジウム・スズ・オキサイド(ITO)及びインジウム・亜鉛・オキサイド等の導電性ガラスを用いて作製された膜;NESA、金、白金、銀及び銅等の金属を用いて作製された膜;等が用いられ、ITO、インジウム・亜鉛・オキサイド及び酸化スズが好ましい。作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法及びメッキ法等が挙げられる。また、該陽極として、ポリアニリン及びその誘導体並びにポリチオフェン及びその誘導体等の有機の透明導電膜を用いてもよい。
 陽極の厚さは、光の透過性と電気伝導度とを考慮して、適宜選択することができるが、例えば、10nm~10μmであり、好ましくは20nm~1μmであり、さらに好ましくは50nm~500nmである。
 また、陽極上に、電荷注入を容易にするために、フタロシアニン誘導体、導電性高分子及びカーボン等からなる層、あるいは金属酸化物、金属フッ化物及び有機絶縁材料等からなる層を設けてもよい。
 陰極の材料としては、仕事関数の小さい材料が好ましい。例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム及びイッテルビウム等の金属;これらの金属のうち2つ以上の合金;これらの金属のうち1つ以上と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン及び錫のうち1つ以上との合金;グラファイト;グラファイト層間化合物;等が用いられる。合金の例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金及びカルシウム-アルミニウム合金が挙げられる。陰極を2層以上の積層構造としてもよい。
 陰極の厚さは、電気伝導度や耐久性を考慮して、適宜選択することができるが、例えば、10nm~10μmであり、好ましくは20nm~1μmであり、さらに好ましくは50nm~500nmである。
 陰極の作製方法としては、真空蒸着法、スパッタリング法及び金属薄膜を熱圧着するラミネート法等が用いられる。また、陰極と有機物層との間に、導電性高分子からなる層、又は、金属酸化物、金属フッ化物及び有機絶縁材料等のからなる層を設けてもよく、陰極作製後、発光素子を保護する保護層を装着していてもよい。発光素子を長期安定的に用いるためには、素子を外部から保護するために、保護層及び/又は保護カバーを装着することが好ましい。
 保護層としては、樹脂、金属酸化物、金属フッ化物及び金属ホウ化物等を用いることができる。また、保護カバーとしては、ガラス板、及び、表面に低透水率処理を施したプラスチック板等を用いることができ、該カバーを熱硬化樹脂又は光硬化樹脂で素子基板と貼り合わせて密閉する方法が好適に用いられる。スペーサーを用いて空間を維持すれば、素子がキズつくのを防ぐことが容易である。該空間に窒素及びアルゴンのような不活性なガスを封入すれば、陰極の酸化を防止することができ、さらに酸化バリウム等の乾燥剤を該空間内に設置することにより製造工程で吸着した水分が素子にタメージを与えるのを抑制することが容易となる。これらのうち、いずれか1つ以上の方策をとることが好ましい。
 発光素子は、面状光源、セグメント表示装置、ドットマトリックス表示装置及び液晶表示装置(例えば、バックライト等)等の表示装置等に用いることができる。
 発光素子を用いて面状の発光を得るためには、面状の陽極と陰極が重なり合うように配置すればよい。また、パターン状の発光を得るためには、面状の発光素子の表面にパターン状の窓を設けたマスクを設置する方法、非発光部の有機物層を極端に厚く形成し実質的に非発光とする方法、並びに、陽極若しくは陰極のいずれか一方又は両方の電極をパターン状に形成する方法がある。これらのいずれかの方法でパターンを形成し、いくつかの電極を独立にON/OFFできるように配置することにより、数字、文字及び簡単な記号等を表示できるセグメント表示装置が得られる。更に、ドットマトリックス表示装置とするためには、陽極と陰極をともにストライプ状に形成して直交するように配置すればよい。複数の種類の発光色の異なる高分子化合物を塗り分ける方法、又は、カラーフィルター又は蛍光変換フィルターを用いる方法により、部分カラー表示及びマルチカラー表示が可能となる。ドットマトリックス表示装置は、パッシブ駆動も可能であるし、TFT等と組み合わせてアクティブ駆動してもよい。これらの表示装置は、コンピュータ、テレビ、携帯端末、携帯電話、カーナビゲーション及びビデオカメラのビューファインダー等に用いることができる。
 さらに、面状の発光素子は、自発光薄型であり、液晶表示装置のバックライト用の面状光源、又は面状の照明用光源として好適に用いることができる。例えば照明用光源には白色発光、赤色発光、緑色発光及び青色発光等の発光色があげられる。また、フレキシブルな基板を用いれば、曲面状の光源又は表示装置としても使用できる。
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。
 以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。
 <合成例1>
 下記のとおり、化合物M-1から化合物M-2を合成した。
Figure JPOXMLDOC01-appb-C000022
 アルゴン雰囲気下、500mLの4つ口フラスコ中で、2,7-ジブロモ-9,9-ジ(p-オクチルフェニル)フルオレン(化合物M-1、21.02g)、及び、THF(390mL)を混合し-78℃に冷却した。反応液へ1.6Mのn-ブチルリチウム・へキサン溶液(20mL)を10分かけて滴下し、1時間攪拌した。トリメチルシリルクロライド(4.9g)を滴下した後、室温に昇温し、2時間攪拌した。反応の進行を確認し、反応液に水を加え、反応を停止させた。有機層を水で洗浄した後、有機層を濃縮した。得られたオイルをシリカゲルカラムクロマトグラフィー(展開溶媒:へキサン)により精製することで化合物M-2を得た。なお、式中、「TMS」はトリメチルシリル基を示す。
 LC-MS(APPI-MS(posi)):693[M+H]
 <合成例2>
 下記のとおり、化合物M-2から化合物M-3を合成した。
Figure JPOXMLDOC01-appb-C000023
 アルゴン雰囲気下、化合物M-2(17.35g)、THF(330mL)、及び、2,2’-ビピリジル(4.29g)を混合し、60℃に加熱した。ここへビス(シクロオクタジエン)ニッケル(0)(Ni(COD)、7.56g)を加え、3時間攪拌した。反応の進行を確認し、反応液を室温まで冷却した後、反応液をセライトろ過した。得られた溶液を濃縮した後、シリカゲルカラムクロマトグラフィー(展開溶媒:へキサン/トルエン=10/1(体積比))により精製を行うことにより、化合物M-3を得た(12.4g)。
H-NMR;δ 0.22(18H,s),0.86(12H,t),1.25(40H,m),1.53(8H,m),2.53(8H,t),7.01(8H,d),7.11(8H,d),7.50(8H,m),7.71(2H,d),7.74(2H,d)ppm.
LC-MS(APPI-MS(posi)):1228[M+H]
 <合成例3>
 下記のとおり、化合物M-3から化合物M-4を合成した。
Figure JPOXMLDOC01-appb-C000024
 アルゴン雰囲気下、100mLの4つ口フラスコ中で化合物M-3(5.53g)、及び、塩化メチレン(30mL)を混合し、0℃に冷却した。ここへ1規定のICl/塩化メチレン溶液(10mL)を滴下し、1時間攪拌した。反応終了後、反応液を室温まで昇温し、水で洗浄後、有機層を濃縮した。得られたオイルをシリカゲルカラムクロマトグラフィー(展開溶媒:へキサン/トルエン=10/1(体積比))で精製することにより、化合物M-4を得た。
H-NMR;δ 0.86(12H,t),1.27(40H,m),1.55(8H,m),2.53(8H,t),7.07(16H,m),7.49(6H,m),7.70(6H,m)ppm.
LC-MS(APPI-MS(posi)):1335[M+H]
 <実施例1>
 下記のとおり、化合物M-4から化合物M-5を合成した。
Figure JPOXMLDOC01-appb-C000025
 アルゴン雰囲気下、100mLの4つ口フラスコ中で、化合物M-4(1.34g)、ペンタフルオロフェニルホウ酸(0.85g)、フッ化セシウム(0.61g)、酸化銀(0.56g)、及び、DMF(20mL)を混合した。この反応液にPd(dba)(92mg)、トリ-tert-ブチルホスフィン(51mg)を加え、100℃で3時間攪拌した。反応進行を確認した後、セライトろ過を行い、次いでシリカゲルろ過を行った。得られたオイルをシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/トルエン=10/1(体積比))で精製することにより、化合物M-5(420mg)を得た。
H-NMR;δ 0.86(12H,t),1.25(40H,m),1.54(8H,m),2.53(8H,t),7.05(8H,d),7.13(8H,d),7.42(4H,dd),7.59(4H,dd),7.84(4H,dd)ppm.
19F-NMR;δ 14.7,-138.4,-156.0 ppm.
 <合成例4>
 下記のとおり、化合物M-4から化合物M-6を合成した。
Figure JPOXMLDOC01-appb-C000026
 アルゴン雰囲気下、THF(70mL)、及び、1.6Mのn-ブチルリチウム・へキサン溶液(15mL)を混合し、-78℃に冷却した。ここへ化合物M-4(4.01g)をTHF(70mL)に溶かした溶液を30分かけて滴下した。滴下2時間後よりDMF(60g)を1時間かけて滴下し、滴下終了後、室温に昇温し、2時間攪拌した。反応終了後、水を加え、酢酸エチルを用いて分液し、有機層を無水硫酸ナトリウムで乾燥させた。得られたオイルをアルミナカラムクロマトグラフィー(酢酸エチル/へキサン=1/10(体積比))で精製することにより、化合物M-6を得た(2.1g)。
LC-MS(ESI-MS):1177[M+K]
 <実施例2>
 下記のとおり、化合物M-6から化合物M-7を合成した。
Figure JPOXMLDOC01-appb-C000027
 アルゴン雰囲気下、化合物M-6(2.05g)、トリデカフルオロへキシルヨージド(20g)、及び、THF(290mL)を混合し、-78℃に冷却した。ここへ3規定のフェニルマグネシウムブロマイド/エーテル溶液(12mL)を30分かけて滴下した後、-78℃を維持しながら3時間攪拌した。反応液へ3規定のHCl水溶液(20mL)を加え、室温に昇温しながら攪拌した。反応終了後、分液し、有機層をイオン交換水で3回洗浄した後、無水硫酸ナトリウムで乾燥させ、濃縮した。得られたオイルをシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=20:1(体積比))で4回精製することにより、化合物M-7(1.2g)を得た。
LC-MS(ESI-MS):1817[M+K]
H-NMR;δ 0.87(12H,t),1.25(40H,m),1.54(8H,m),2.38(2H,s),2.53(8H,t),5.18(2H,m),7.01(8H,d),7.10(8H,d),7.50(4H,dd),7.57(4H,dd),7.77(4H,m)ppm.
 <実施例3>
 下記のとおり、化合物M-7から化合物M-8を合成した。
Figure JPOXMLDOC01-appb-C000028
 アルゴン雰囲気下、デス・マーチン パーヨージナン(2.8g)と塩化メチレン(15mL)を混合し、溶解させた。ここへ化合物M-7(1.8g)を塩化メチレン(15mL)に溶かした溶液を10分かけて室温で滴下した。滴下終了後、室温で2時間攪拌した。反応液にチオ硫酸ナトリウム飽和水溶液を加えることにより、反応を停止させた後、分液した。有機層を濃縮後、硫酸ナトリウムで乾燥させた後、シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=20/1(体積比))で精製し、得られた固体をメタノールで洗浄することで、化合物M-8(1.2g)を得た。
LC-MS(ESI-MS):1815[M+K]
H-NMR;δ 0.85(12H,t),1.22(40H,m),1.54(8H,m),2.54(8H,t),7.03(8H,d),7.15(8H,d),7.58(4H,dd),7.67(4H,dd),7.85(4H,m)ppm.
 <実施例4>
 下記のとおり、化合物M-4から化合物M-9を合成した。
Figure JPOXMLDOC01-appb-C000029
 アルゴン雰囲気下、3,5-ビス(トリフルオロメチル)フェニルボロン酸(1.50g)、化合物M-4(0.777g)、Aliquat336(0.045g)、及び、テトラキス(トリフェニルホスフィン)パラジウム(0)(0.054g)を、テトラヒドロフラン(15.0mL)中で攪拌した。この反応液に、炭酸ナトリウム(0.370g)の水溶液(7.5mL)を滴下し、16時間、40℃で撹拌した。室温に戻した後、テトラキス(トリフェニルホスフィン)パラジウム(0)(0.055g)を加えて6日間、40℃で攪拌した。冷却後、反応液を濃縮しクロロホルムを加えて水層を取り除き、有機層を水で洗浄した。洗浄液はクロロホルムで抽出して有機層と混ぜた。これに硫酸マグネシウムを加えて乾燥させて、ろ過で吸湿した硫酸マグネシウムを取り除き、濃縮して、カラムクロマトグラフィー(シリカゲル/展開溶媒:ヘキサン)で精製した。ヘキサンをエバポレーターで取り除き、メタノールを加えると結晶化した。結晶を取り出してクロロホルムに溶かし、メタノールに滴下して沈殿を生成させた。沈殿をろ過によって取り出し、メタノールで洗浄し、乾燥させることによって、化合物M-9(0.607g)を得た。
H-NMR(ppm/300MHz,CDCl):δ 0.86(12H,t),1.2~1.3(40H,m),1.6(8H,m),2.55(8H,t),7.1(8H,d),7.2(8H,d),7.57(2H,m),7.60(6H,m),7.8~7.9(6H,m),7.94(4H)ppm.
 <合成例5>
 下記のとおり、化合物M-2及び化合物M-10から、化合物M-11を合成した。
Figure JPOXMLDOC01-appb-C000030
 アルゴン雰囲気下、化合物M-2(5.83g)、化合物M-10(3.18g)、トルエン(40mL)、酢酸パラジウム(45mg)、トリ(2-メトキシフェニル)ホスフィン(282mg)を混合し、80℃に加温した。反応液に、水酸化テトラエチルアンモニウム(10mL)を10分かけて滴下し、105℃に2時間加温した。反応終了後、有機層を水で洗浄し、洗浄した有機層を濃縮した。得られたオイルをシリカゲルカラムクロマトグラフィー(展開溶媒:へキサン/トルエン=5/1(体積比))で精製することにより、化合物M-11を得た(6.5g)。
LC-MS(APPI-MS(posi)):1768[M+H]
 <合成例6>
 下記のとおり、化合物M-11から化合物M-12を合成した。
Figure JPOXMLDOC01-appb-C000031
 アルゴン雰囲気下、100mLの4つ口フラスコ中で化合物M-11(6.52g)、及び、塩化メチレン(25mL)を混合し、0℃に冷却した。ここへ1規定のICl/塩化メチレン溶液(8.4mL)を滴下し、1時間攪拌した。反応終了後、反応液を室温まで昇温し、有機層を水で洗浄し、洗浄した有機層を濃縮した。得られたオイルをシリカゲルカラムクロマトグラフィー(展開溶媒:へキサン/トルエン=5/1(体積比))で精製することにより、化合物M-12を得た(3.91g)。
LC-MS(APPI-MS(posi)):1877[M+H]
 <実施例5>
 下記のとおり、化合物M-12から化合物M-13を合成した。
Figure JPOXMLDOC01-appb-C000032
 アルゴン雰囲気下、100mLの4つ口フラスコ中で、化合物M-12(2.81g)、ペンタフルオロフェニルホウ酸(1.27g)、フッ化セシウム(0.91g)、酸化銀(0.83g)、及び、DMF(30mL)を混合した。反応液にPd(dba)(140mg)、及び、トリ-tert-ブチルホスフィン(75mg)を加え、100℃で3時間攪拌した。反応進行を確認した後、セライトろ過を行い、次いでシリカゲルろ過を行った。得られたオイルをシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/トルエン=1/1(体積比))で精製することにより、化合物M-13(2.4g)を得た。
LC-MS(ESI-MS):1994[M+K]
 <合成例7>
 下記のとおり、化合物M-14を合成した。
Figure JPOXMLDOC01-appb-C000033
 アルゴン雰囲気下、3,5-ビス(トリフルオロメチル)ブロモベンゼン(25.0g)とTHF(250mL)を混合し、-78℃に冷却した。反応液へ1.6Mのn-ブチルリチウム・へキサン溶液(50mL)を2時間かけて滴下し、さらに30分攪拌した。-78℃を保ったまま、4,4’-ジブロモビフェニル-2-メチルエステル(13.2g)をTHF(30mL)に溶かした溶液を1時間かけて滴下した。滴下終了後、昇温し、6時間かけて-20℃とした。反応液に水を加えることで、反応を停止させた。得られた溶液に酢酸エチルを加え、食塩の飽和水溶液で2回洗浄し、有機層を無水硫酸ナトリウムで乾燥させた。溶液をシリカゲルで濾過カラムを行い、得られた溶液を濃縮することにより黄色オイル(33.9g)を得た。
 アルゴン雰囲気下、得られた黄色オイル(33.9g)とトルエン(80mL)を混合し、0℃に冷却した。ここへ三フッ化ホウ素のジエチルエーテル錯体(17.6mL)を30分かけて滴下し、室温に昇温し1時間攪拌した。反応液にクロロホルムを加え、イオン交換水で4回洗浄した。得られた懸濁液を濃縮し、析出した固体をろ取し、減圧乾燥させた。得られた白色固体をトルエンから再結晶することで化合物M-14(収率:21.74%)を得た。
H-NMR(300MHz,CDCl);δ7.34(2H,s),7.52(4H,s),7.62(2H,d),7.70(2H,d),7.87(2H,s)ppm.
19F-NMR(300MHz,CDCl);δ-63.2ppm.
LC-MS(APPI-MS(posi)):747[M]
 <合成例8>
 下記のとおり、化合物M-15を合成した。
Figure JPOXMLDOC01-appb-C000034
 アルゴン雰囲気下、3Lの三つ口フラスコに、3-n-ヘキシル-5-メチルブロモベンゼン(262g)、及び、無水テトラヒドロフラン(1.5L)を加え均一溶液とし、-78℃に冷却した。得られた溶液に、2.5Mのn-ブチルリチウム・ヘキサン溶液(380mL)を、溶液の温度が-70℃以下に保たれるように滴下し、4時間撹拌し、溶液Aを得た。別途、1Lの二口フラスコに、2-メトキシカルボニル-4,4’-ジブロモビフェニル(160g)、及び、無水テトラヒドロフラン(500mL)を加え、均一溶液を調製した(溶液B)。
 溶液Aに溶液Bを、溶液Aの温度が-70℃以下に保たれるように滴下し、撹拌した。次いで、反応液を室温にて15時間撹拌した。次いで、反応液に水(150mL)を0℃にて加え、撹拌した。次いで、減圧下で濃縮操作により溶媒を留去し、残留物にヘキサン(1L)及び水(200mL)を加え、撹拌し、静置して生成した水層を除去し有機層を得た。この有機層を飽和食塩水にて洗浄し、無水硫酸マグネシウムにて乾燥させた後、減圧下で濃縮することにより、中間体を得た。
 アルゴン雰囲気下、3Lの三つ口フラスコに、上記で得られた中間体(299g)、及び、塩化メチレン(900mL)を加え、5℃に冷却した。得られた混合物に、温度が0~5℃の範囲内に保たれるように、三フッ化ホウ素ジエチルエーテル錯体(224mL)を滴下した後、室温にて終夜撹拌した。反応液を、2Lの氷水に注意深く注ぎ、30分撹拌し、静置して分液した水層を有機層から除去した。この有機層に10質量%リン酸カリウム水溶液(1L)を加え、2時間撹拌した後、静置して生成した水層を有機層から除去した。得られた有機層を水で洗浄し、無水硫酸マグネシウムにて乾燥させた後、濃縮することにより溶媒を留去し、オイル状の液体を得た。このオイル状の液体にメタノールを加え、固体を得た。この固体をn-ブチルアセテート及びメタノールから再結晶を行うことにより、化合物M-15(240g)を得た。
 <合成例9>
 下記のとおり、化合物M-15から化合物M-16を合成した。
Figure JPOXMLDOC01-appb-C000035
 アルゴン雰囲気下、化合物M-15(51.1g)とTHF(800mL)を混合し、-78℃に冷却した。この反応液に1.6Mのn-ブチルリチウム・へキサン溶液(50mL)を1時間かけて滴下し、さらに1.5時間撹拌を行った。ここへトリメチルシリルクロライド(12.4g)を0.5時間かけて滴下した。滴下終了後、反応液を室温まで昇温し、イオン交換水を加え、反応を停止させた。酢酸エチルを加え、分液を行った後、食塩の飽和水溶液で3回洗浄した後、濃縮、乾燥させることにより、化合物M-16(49.2g)を得た。
LC-MS(APPI-MS(posi)):695[M]
 <合成例10>
 下記のとおり、化合物M-16から化合物M-17を合成した。
Figure JPOXMLDOC01-appb-C000036
 アルゴン雰囲気下、化合物M-16(30.0g)、ピナコレートジボラン(12.2g)、酢酸カリウム(26.5g)、ジオキサン(190mL)、(ジフェニルホスフィノフェロセン)パラジウムジクロライド(1.1g)、及び、ジフェニルホスフィノフェロセン(0.75g)を混合し、4時間、110℃に加熱した。反応終了後、室温に冷却させた後、セライトろ過を行い、濃縮を行った。得られたオイルをシリカゲルろ過(展開溶媒:トルエン/ヘキサン=1/1(体積比))を行った。さらにシリカゲルカラムクロマトグラフィー(展開溶媒:酢酸エチル/ヘキサン=1/20(体積比))で2回精製することにより化合物M-17(22.1g)を得た。
LC-MS(APPI-MS(posi)):713[M]
 <実施例6>
 下記のとおり、化合物M-14及び化合物M-17から化合物M-18を合成した。
Figure JPOXMLDOC01-appb-C000037
 アルゴン雰囲気下、化合物M-14(2.24g)、化合物M-17(4,71g)、トルエン(30mL)、酢酸パラジウム(3.4mg)、及び、トリ(2-メトキシフェニル)ホスフィン(211mg)を混合し、80℃に加熱した。ここへ、20質量%水酸化テトラエチルアンモニウム水溶液(10mL)を滴下し、3時間還流させた。反応を室温まで冷却した後、酢酸エチルを加え、イオン交換水で4回洗浄し、得られた有機層を濃縮した。シリカゲルろ過カラム(展開溶媒:酢酸エチル/ヘキサン=1/10(体積比))を行い、濃縮乾固させることで白色固体を得た。得られた固体をヘキサンとエタノールとの混合溶液から3回再結晶することにより、化合物M-18(2.4g)を得た。
H-NMR(300MHz,CDCl);δ0.22(18H,s),0.82(12H,t),1.23(24H,m),1.53(8H,m),2.15(12H,s),2.44(8H,t),6.71(4H,s)6.83(4H,s),6.92(4H,s),7.38-7.42(4H,m),7.50-7.63(12H,m),7.72-7.85(8H,m)ppm.
19F-NMR(300MHz,CDCl);δ-63.1ppm.
 <実施例7>
 下記のとおり、化合物M-18から化合物M-19を合成した。
Figure JPOXMLDOC01-appb-C000038
 アルゴン雰囲気下、化合物M-18(2.11g)、DMF(80mL)、及び、酢酸(20mL)を混合した。ここへ、NBS(0.47g)を混合し、4時間、80℃に加熱した。反応終了後、反応液をイオン交換水(300mL)に注ぎ込み、析出した固体をろ取し、乾燥させた。得られた固体をヘキサン、酢酸エチル、及び、エタノールの混合溶液より3回再沈殿を行うことにより、化合物M-19(2.01g)を得た。
LC-MS(APPI-MS(posi)):1770[M+K]
 <実施例8>
 下記のとおり、化合物M-19から化合物M-20を合成した。
Figure JPOXMLDOC01-appb-C000039
 アルゴン雰囲気下、化合物M-19(0.49g)、ペンタフルオロフェニルホウ酸(0.25g)、フッ化セシウム(0.18g)、酸化銀(0.17g)、及び、DMF(6mL)を混合し、30℃に加温した。反応液にPd(dba)(27mg)、及び、トリ-tert-ブチルホスフィン(15mg)を混合し、100℃で7時間反応させた。反応進行を確認後、酢酸エチル、及び、水を加え、分液を行った。有機層をセライトでろ過し、無水硫酸ナトリウムで乾燥させた後、濃縮乾固させた。得られた固体をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン)で精製することにより、化合物M-20(81mg)を得た。
H-NMR(300MHz,CDCl);δ0.82(12H,t),1.25(24H,m),1.50(8H,m),2.17(12H,s),2.44(8H,t),6.74(4H,s)6.85(4H,s),6.90(4H,s),7.40-7.47(8H,m),7.60-7.64(8H,m),7.78-7.89(8H,m)ppm.
19F-NMR(300MHz,CDCl);δ-63.1,-143.3,-156.2,-162.7ppm.
LC-MS(APPI-MS(posi)):1946[M+K]
 <実施例9>
 下記のとおり、化合物M-19から化合物M-21を合成した。
Figure JPOXMLDOC01-appb-C000040
 アルゴン雰囲気下、化合物M-19(1.99g)、フェニルホウ酸(0.42g)、テトラブチルアンモニウムブロマイド(0.19g)、水酸化カリウム(0.20g)、トルエン(35mL)、及び、水(10mL)を混合し、100℃に加温した。反応液にテトラキス(トリフェニルホスフィン)パラジウム(0)(67mg)を混合し、105℃で7時間反応させた。反応進行を確認後、分液し、有機層を、イオン交換水で2回洗浄した。有機層を濃縮した後、シリカゲルろ過を行った(展開溶媒:ヘキサン/酢酸エチル=3/1(体積比))。得られた有機層に活性炭を加え1時間還流させた後、セライトを用いてろ過を行い、有機層を濃縮した。得られたオイルをODSカラムクロマトグラフィー(展開溶媒:THF/メタノール=1/1(体積比))で精製することにより、化合物M-21(1.2g)を得た。
H-NMR(300MHz,CDCl);δ0.81(12H,t),1.21(24H,m),1.50(8H,m),2.45(8H,t),6.76(4H,s)6.85(4H,s),6.96(4H,s),7.25-7.42(12H,m),7.54-7.65(18H,m),7.83(8H,m)ppm.
19F-NMR(300MHz,CDCl);δ-62.4ppm.
 <実施例10>
 化合物M-5をヘキサンに溶解させ、化合物濃度0.5質量%のヘキサン溶液を調製した。調製したヘキサン溶液を用いてガラス基板上に、スピンコートにより2000rpmの回転速度で成膜することにより、薄膜を作製した。この薄膜の厚さは20nmであった。なお、薄膜の厚さはVeeco社製Dektak10を用いて測定した。
 <合成例14:高分子化合物P-1の合成>
 不活性雰囲気下、下記式:
Figure JPOXMLDOC01-appb-C000041
で表される化合物MM-1(7.28g)、2,7-ジブロモ-9,9-ジオクチルフルオレン(4.94g)、下記式:
Figure JPOXMLDOC01-appb-C000042
で表される化合物MM-2(0.74g)、ビストリフェニルホスフィンパラジウムジクロライド(7.0mg)、トリオクチルメチルアンモニウムクロライド(商品名:Aliquat336、アルドリッチ製)(1.30g)、及びトルエン(100mL)を混合し、105℃に加熱した。反応液に2Mの炭酸ナトリウム水溶液(27mL)を滴下し、2時間還流させた。反応後、フェニルホウ酸(120mg)を加え、さらに4時間還流させた。次いで、1.8Mのジエチルジチアカルバミン酸ナトリウム水溶液(60mL)を加え、80℃で4時間撹拌した。室温まで冷却後、水で3回、3質量%の酢酸水溶液で3回、水で3回洗浄し、アルミナカラム、シリカゲルカラムを順番に通すことにより精製した。得られたトルエン溶液をメタノールに滴下し、1時間撹拌した後、得られた固体をろ取し乾燥させたところ、下記式:
Figure JPOXMLDOC01-appb-C000043
(式中、括弧の外に添えた数字は、各繰り返し単位のモル比を表す。)
で表される高分子化合物P-1を8.0g得た。高分子化合物P-1は、ポリスチレン換算の数平均分子量が5.1×10であり、ポリスチレン換算の重量平均分子量が1.4×10であった。なお、化合物MM-1は、WO2008/111658に記載の方法で合成し、化合物MM-2は、EP1394188に記載の方法で合成した。
 <合成例15:高分子化合物P-2の合成>
 不活性雰囲気下、2,7-ビス(1,3,2-ジオキサボロラン-2-イル)-9,9-ジオクチルフルオレン(6.40g)、2,7-ジブロモ-9,9-ジオクチルフルオレン(1.37g)、下記式:
Figure JPOXMLDOC01-appb-C000044
で示される化合物MM-3(0.64g)、下記式:
Figure JPOXMLDOC01-appb-C000045
で表される化合物MM-4(4.10g)、ビストリフェニルホスフィンパラジウムジクロライド(21mg)、トリオクチルメチルアンモニウムクロライド、酢酸パラジウム(4.5mg)、o-トリメトキシフェニルホスフィン(28mg)及びトルエン(100mL)を混合し、105℃に加熱した。反応液に20質量%水酸化テトラエチルアンモニウム水溶液(35mL)を滴下し、2時間還流させた。反応後、フェニルホウ酸(61mg)を加え、さらに4時間還流させた。次いで、1.8Mのジエチルジチアカルバミン酸ナトリウム水溶液(100mL)を加え、80℃で4時間撹拌した。室温まで冷却後、水で3回、3質量%の酢酸水溶液で3回、水で3回洗浄し、アルミナカラム、シリカゲルカラムを順番に通すことにより精製した。得られたトルエン溶液をメタノールに滴下し、1時間撹拌した後、得られた固体をろ取し乾燥させたところ、下記式:
Figure JPOXMLDOC01-appb-C000046
(式中、括弧の外に添えた数字は、各繰り返し単位のモル比を表す。)
で表される高分子化合物P-2を6.2g得た。高分子化合物P-2は、ポリスチレン換算の数平均分子量が9.7×10であり、ポリスチレン換算の重量平均分子量が3.0×10であった。なお、化合物MM-3は、US2004/035221に記載の方法で合成し、化合物MM-4は、特開2003-226744号公報に記載の方法で合成した。
 <溶液の調製例>
 ・キシレン溶液S-1(高分子化合物P-1溶液)の調製
 高分子化合物P-1をキシレンに溶解させ、ポリマー濃度1.3質量%のキシレン溶液S-1を調製した。
 ・キシレン溶液S-2(高分子化合物P-2溶液)の調製
 高分子化合物P-2をキシレンに溶解させ、ポリマー濃度0.7質量%のキシレン溶液S-2を調製した。
 ・トリフルオロメチルベンゼン溶液S-3(化合物M-5溶液)の調製
 化合物M-5をトリフルオロメチルベンゼンに溶解させ、化合物濃度0.2質量%のトリフルオロメチルベンゼン溶液S-3を調製した。
 <エレクトロルミネッセンス素子の作製例>
 スパッタ法により150nmの厚さでITO膜を付けたガラス基板上に、ポリ(3,4)エチレンジオキシチオフェン/ポリスチレンスルホン酸(Bayer製、商品名:BaytronP AI4083)の懸濁液を0.2μmメンブランフィルターで濾過した液を用いて、スピンコートにより70nmの厚さで薄膜を形成し、ホットプレート上で200℃、10分間乾燥させた。次に、上記で得たキシレン溶液S-2を用いて、スピンコートにより1600rpmの回転速度で成膜し、ホットプレート上で180℃、60分間加熱することにより薄膜を硬化させた。成膜後の厚さは約20nmであった。さらに、上記で得たキシレン溶液S-1を用いて、スピンコートにより1600rpmの回転速度で成膜し、ホットプレート上で130℃、10分間加熱した。成膜後の厚さは約60nmであった。さらに、上記で得たトリフルオロメチルベンゼン溶液S-3を用いて、スピンコートにより1600rpmの回転速度で成膜した。成膜後の厚さは約10nmであった。これを減圧下130℃で10分間乾燥させた後、陰極としてバリウムを約5nm蒸着し、次いでアルミニウムを約100nm蒸着してエレクトロルミネッセンス素子を作製した。なお真空度が1×10-4Pa以下に到達した後に金属の蒸着を開始した。
 <エレクトロルミネッセンス素子の性能評価例>
 得られたエレクトロルミネッセンス素子に電圧を印加することにより、この素子から460nmにピークを有するEL発光が得られた。また、最大発光効率は5.4cd/Aであった。

Claims (6)

  1.  式(1)で表されるフッ素含有化合物。
    Figure JPOXMLDOC01-appb-C000001
    [式中、
     Ar、Ar、Ar、Ar及びArはそれぞれ独立に置換基を有していてもよいアリーレン基を示し、
     n、n及びnはそれぞれ独立に0又は1を示し、
     Z及びZはそれぞれ独立に水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアリールオキシ基、シアノ基又は-Cで表される基(pは1以上10以下の整数を示し、qは1以上2p+1以下の整数を示し、rは0以上2p+1-q以下の整数を示し、sは0又は1を示す。)を示す。
     但し、Ar、Ar、Ar、Ar及びArのうち少なくとも一つは、置換基を有していてもよいフルオレンジイル基であり、
     Z、Z及び前記アリーレン基の置換基のうち少なくとも一つは、-Cで表される基である。]
  2.  Ar、Ar、Ar、Ar及びArがいずれも、置換基を有していてもよいフルオレンジイル基である、請求項1に記載のフッ素含有化合物。
  3.  sが0である、請求項1又は2に記載のフッ素含有化合物。
  4.  正孔輸送材料、電子輸送材料及び発光材料からなる群より選ばれる少なくとも一種と、請求項1~3のいずれか一項に記載のフッ素含有化合物と、を含有する組成物。
  5.  請求項1~3のいずれか一項に記載のフッ素含有化合物と溶媒とを含有する液状組成物。
  6.  請求項1~3のいずれか一項に記載のフッ素含有化合物を含有する薄膜。
PCT/JP2012/057558 2011-03-30 2012-03-23 フッ素含有化合物並びにそれを含有する組成物及び薄膜 WO2012133207A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011076249A JP2012211088A (ja) 2011-03-30 2011-03-30 フッ素含有化合物並びにそれを含有する組成物及び薄膜
JP2011-076249 2011-03-30

Publications (1)

Publication Number Publication Date
WO2012133207A1 true WO2012133207A1 (ja) 2012-10-04

Family

ID=46930930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057558 WO2012133207A1 (ja) 2011-03-30 2012-03-23 フッ素含有化合物並びにそれを含有する組成物及び薄膜

Country Status (3)

Country Link
JP (1) JP2012211088A (ja)
TW (1) TW201302677A (ja)
WO (1) WO2012133207A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162156A1 (ja) * 2019-02-08 2020-08-13 住友化学株式会社 化合物およびそれを用いた発光素子

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102173288B1 (ko) * 2019-04-11 2020-11-03 대구가톨릭대학교산학협력단 고내수성의 정공수송층을 갖는 페로브스카이트 태양전지 및 그 제조방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1737080A (zh) * 2005-09-08 2006-02-22 复旦大学 一类芴的寡聚物电致发光材料及其合成方法
JP2007204425A (ja) * 2006-02-02 2007-08-16 Canon Inc フルオレン化合物及びそれを用いた有機発光素子
JP2008290991A (ja) * 2007-05-28 2008-12-04 Canon Inc フルオレン化合物及びそれを用いた有機発光素子並びに表示装置
JP2008545046A (ja) * 2005-06-29 2008-12-11 ゼネラル・エレクトリック・カンパニイ 共役基を含むモノマー及びポリマー並びにその製造方法
CN101381601A (zh) * 2008-09-28 2009-03-11 南京邮电大学 一种寡聚物电致蓝光材料及其合成方法
JP2009108014A (ja) * 2007-11-01 2009-05-21 Canon Inc オリゴフルオレン化合物及びそれを用いた有機el素子
JP2009249355A (ja) * 2008-04-08 2009-10-29 Kanto Denka Kogyo Co Ltd フッ素化されたフルオレン誘導体およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7282275B2 (en) * 2002-04-19 2007-10-16 3M Innovative Properties Company Materials for organic electronic devices
US7094902B2 (en) * 2002-09-25 2006-08-22 3M Innovative Properties Company Electroactive polymers
US7271406B2 (en) * 2003-04-15 2007-09-18 3M Innovative Properties Company Electron transport agents for organic electronic devices
JP4486854B2 (ja) * 2004-06-18 2010-06-23 日東電工株式会社 位相差フィルムの製造方法
WO2008072586A1 (ja) * 2006-12-15 2008-06-19 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
US20110303909A1 (en) * 2009-02-20 2011-12-15 Agency For Science, Technology And Research Planar conjugated compounds and their applications for organic electronics

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545046A (ja) * 2005-06-29 2008-12-11 ゼネラル・エレクトリック・カンパニイ 共役基を含むモノマー及びポリマー並びにその製造方法
CN1737080A (zh) * 2005-09-08 2006-02-22 复旦大学 一类芴的寡聚物电致发光材料及其合成方法
JP2007204425A (ja) * 2006-02-02 2007-08-16 Canon Inc フルオレン化合物及びそれを用いた有機発光素子
JP2008290991A (ja) * 2007-05-28 2008-12-04 Canon Inc フルオレン化合物及びそれを用いた有機発光素子並びに表示装置
JP2009108014A (ja) * 2007-11-01 2009-05-21 Canon Inc オリゴフルオレン化合物及びそれを用いた有機el素子
JP2009249355A (ja) * 2008-04-08 2009-10-29 Kanto Denka Kogyo Co Ltd フッ素化されたフルオレン誘導体およびその製造方法
CN101381601A (zh) * 2008-09-28 2009-03-11 南京邮电大学 一种寡聚物电致蓝光材料及其合成方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BURNELL,T. ET AL.: "Synthesis and Electrooptical Properties of Copolymers Derived from Phenol- Functionalized Telechelic Oligofluorenes", MACROMOLECULES, vol. 38, no. 26, 2005, pages 10667 - 10677, XP055101177, DOI: doi:10.1021/ma0518353 *
HU,X. ET AL.: "Novel blue-light-emitting materials: synthesis and characterization of fluorinated ter(9,9-diphenylfluorenyl)", HUAXUE XUEBAO, vol. 66, no. 14, 2008, pages 1763 - 1769 *
JIANG,G. ET AL.: "Poly(aryl ether)s Containing Ter- and Pentafluorene Pendants for Efficient Blue Light Emission", MACROMOLECULES, vol. 39, no. 4, 2006, pages 1403 - 1409 *
JIANG,H. ET AL.: "A novel fluorene-containing oligomer with relative high photoluminescence quantum efficiency", JOURNAL OF FLUORINE CHEMISTRY, vol. 127, no. 7, 2006, pages 973 - 976, XP028044218, DOI: doi:10.1016/j.jfluchem.2006.03.005 *
OHKUBO,K. ET AL.: "Synthesis, structure, and transport property of perfluorinated oligofluorenes", CHEMISTRY--A EUROPEAN JOURNAL, vol. 14, no. 15, 2008, pages 4472 - 4474 *
WEI,F. ET AL.: "Pure-blue tandem OLEDs based on terfluorenes compounds", JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS, vol. 19, no. 12, 2008, pages 1202 - 1205, XP019644498 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162156A1 (ja) * 2019-02-08 2020-08-13 住友化学株式会社 化合物およびそれを用いた発光素子
CN113365971A (zh) * 2019-02-08 2021-09-07 住友化学株式会社 化合物以及使用该化合物的发光元件
CN113365971B (zh) * 2019-02-08 2024-04-30 住友化学株式会社 化合物以及使用该化合物的发光元件

Also Published As

Publication number Publication date
JP2012211088A (ja) 2012-11-01
TW201302677A (zh) 2013-01-16

Similar Documents

Publication Publication Date Title
JP5625272B2 (ja) 1,3−ジエンを含む化合物及びその製造方法
JP5625271B2 (ja) 高分子化合物及びそれを用いた発光素子
JP5446079B2 (ja) 高分子化合物及びそれを用いた高分子発光素子
EP2110400B1 (en) Block copolymer and polymer light-emitting device
JP5471048B2 (ja) 共重合体及びそれを用いた高分子発光素子
KR101320711B1 (ko) 고분자 재료 및 고분자 발광 소자
JP5281801B2 (ja) ブロック共重合体および高分子発光素子
JP5274754B2 (ja) 高分子材料及び高分子発光素子
JP5251043B2 (ja) 高分子化合物および高分子発光素子
JP2007119763A (ja) 高分子材料及び高分子発光素子
WO2011078391A1 (ja) 組成物及び該組成物を用いてなる発光素子
JP5407122B2 (ja) 高分子化合物および高分子発光素子
JP5714347B2 (ja) 発光材料、インク組成物、薄膜、発光素子及び発光素子の製造方法
JP5162868B2 (ja) 高分子発光素子及び有機トランジスタ並びにそれらに有用な組成物
EP1961780A1 (en) Polymer compound and polymer light-emitting device using same
KR20090053949A (ko) 고분자 화합물 및 고분자 발광 소자
JP6064433B2 (ja) 高分子化合物およびそれを用いた発光素子
JP2007284580A (ja) 高分子発光素子及び有機トランジスタ並びにそれらに有用な組成物
JP5162856B2 (ja) 高分子発光素子及び有機トランジスタ並びにそれらに有用な組成物
JP5274755B2 (ja) 高分子材料及び高分子発光素子
WO2012133207A1 (ja) フッ素含有化合物並びにそれを含有する組成物及び薄膜
WO2012133209A1 (ja) 有機エレクトロルミネッセンス素子
WO2011149056A1 (ja) 新規化合物及びそれを用いた発光素子
JP2008133463A (ja) 高分子化合物及びそれを用いた高分子発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12764228

Country of ref document: EP

Kind code of ref document: A1