WO2012133033A1 - プリプレグ及びその製造方法 - Google Patents

プリプレグ及びその製造方法 Download PDF

Info

Publication number
WO2012133033A1
WO2012133033A1 PCT/JP2012/057160 JP2012057160W WO2012133033A1 WO 2012133033 A1 WO2012133033 A1 WO 2012133033A1 JP 2012057160 W JP2012057160 W JP 2012057160W WO 2012133033 A1 WO2012133033 A1 WO 2012133033A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
prepreg
resin composition
reinforcing fiber
composition
Prior art date
Application number
PCT/JP2012/057160
Other languages
English (en)
French (fr)
Inventor
貴也 鈴木
石渡 豊明
鈴木 慶宜
博 沼田
Original Assignee
東邦テナックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東邦テナックス株式会社 filed Critical 東邦テナックス株式会社
Priority to EP12765114.9A priority Critical patent/EP2692783B1/en
Priority to CN201280007784.XA priority patent/CN103347939B/zh
Priority to US13/981,807 priority patent/US10047478B2/en
Priority to EP16205786.3A priority patent/EP3170857B1/en
Priority to ES12765114.9T priority patent/ES2661253T3/es
Priority to JP2012540969A priority patent/JP5159990B2/ja
Priority to KR1020137020356A priority patent/KR101911479B1/ko
Publication of WO2012133033A1 publication Critical patent/WO2012133033A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/504Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC] using rollers or pressure bands
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/55Epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2041Two or more non-extruded coatings or impregnations
    • Y10T442/2049Each major face of the fabric has at least one coating or impregnation

Definitions

  • the present invention relates to a prepreg having excellent storage stability and a method for producing the same.
  • Composite materials composed of carbon fiber and resin are widely used in aircraft, sports / leisure, and general industries because of their light weight, high strength, and high elastic modulus.
  • a composite material is often manufactured via a prepreg in which carbon fibers and a resin are integrated in advance.
  • thermosetting resin or a thermoplastic resin is used as the resin constituting the prepreg.
  • a prepreg using a thermosetting resin having high tackiness and draping properties and a high degree of molding freedom is widely used.
  • thermosetting resins generally have low toughness. Therefore, a composite material produced using a prepreg using a thermosetting resin generally has low impact resistance.
  • Patent Documents 1 to 5 As methods for improving the impact resistance of composite materials, methods described in Patent Documents 1 to 5 are known.
  • Patent Document 1 discloses a resin composition in which a thermoplastic resin is dissolved in a thermosetting resin to improve toughness.
  • This resin composition has improved toughness according to the amount of the thermoplastic resin to be dissolved. That is, in order to obtain a sufficiently high toughness resin composition, a large amount of thermoplastic resin must be dissolved in the thermosetting resin.
  • a thermosetting resin in which a large amount of thermoplastic resin is dissolved has a significantly high viscosity. As a result, it becomes difficult to impregnate a sufficient amount of resin into the reinforcing fiber base material in the prepreg manufacturing process.
  • a composite material produced using a prepreg in which a sufficient amount of resin is not impregnated in a reinforcing fiber base material has many defects such as voids. As a result, the compression performance and damage tolerance of the composite material are adversely affected.
  • Patent Documents 2 to 4 disclose prepregs in which fine particles of thermoplastic resin are localized on the surface of a prepreg composed of reinforcing fibers and a thermosetting resin composition. These prepregs have a low initial tackiness due to the presence of particle-shaped thermoplastic resin on the surface thereof. Further, since the curing reaction of the thermosetting resin composition proceeds with time, the tackiness and drape properties of the prepreg deteriorate with time. A composite material produced using a prepreg having undergone a curing reaction has many defects such as voids. Therefore, the mechanical properties of a composite material produced using a prepreg that has undergone a curing reaction are extremely low.
  • Patent Document 5 discloses a prepreg in which a thermoplastic resin having a particle, fiber, or film form is present in the vicinity of one or both surfaces of a prepreg.
  • a thermoplastic resin having a particle or fiber form is used, the tackiness is low or the mechanical properties of the resulting composite material are low for the same reason as in Patent Documents 2 to 4 described above.
  • the thermoplastic resin which has the form of a film tack property and drape property which are the advantages of a thermosetting resin are lost.
  • defects derived from the thermoplastic resin such as low solvent resistance are remarkably reflected in the composite material.
  • An object of the present invention is a prepreg that solves the above-mentioned problems of the prior art and is excellent in tackiness, drapeability and storage stability, and can produce a composite material having high impact resistance and interlayer toughness.
  • the manufacturing method is provided.
  • the present inventors have conceived to localize the curing agent of the thermosetting resin within the prepreg. Then, an epoxy resin composition composed of an epoxy resin and a thermoplastic resin was impregnated into the reinforcing fiber layer to produce a primary prepreg. A surface layer mainly composed of an epoxy resin was integrated with the surface of the primary prepreg.
  • the epoxy resin curing agent is blended with only one of the primary prepreg epoxy resin composition and the surface layer epoxy resin composition of the prepreg thus obtained, the epoxy resin curing agent is blended.
  • the epoxy resin composition contains a higher concentration of epoxy resin curing agent than usual, the obtained prepreg was found to be excellent in tackiness, drapeability and storage stability. Furthermore, it has been found that the prepreg can produce a composite material excellent in impact resistance and interlaminar toughness, and the present invention has been completed.
  • the prepreg according to the present invention is A primary prepreg composed of a reinforcing fiber base and an epoxy resin composition containing at least an epoxy resin and a thermoplastic resin, impregnated in a reinforcing fiber layer formed by the reinforcing fiber material; A surface layer formed of an epoxy resin composition comprising at least an epoxy resin and an epoxy resin-soluble thermoplastic resin dissolved in the epoxy resin, formed on one or both surfaces of the primary prepreg; A prepreg consisting of Only one of the epoxy resin composition of the primary prepreg and the epoxy resin composition of the surface layer contains a curing agent for the epoxy resin.
  • the prepreg which is the 1st form of this invention is A primary prepreg comprising a reinforcing fiber base and an epoxy resin composition [A] impregnated in a reinforcing fiber layer formed by the reinforcing fiber base; A surface layer composed of an epoxy resin composition [B] formed on one side or both sides of the primary prepreg;
  • the epoxy resin composition [A], [B] is a prepreg comprising: Epoxy resin composition [A]: epoxy resin composition containing at least epoxy resin, epoxy resin curing agent, and thermoplastic resin Epoxy resin composition [B]: epoxy resin soluble heat dissolved in at least epoxy resin and epoxy resin Epoxy resin composition containing a plastic resin and no epoxy resin curing agent
  • the prepreg according to the second embodiment of the present invention is A primary prepreg comprising a reinforcing fiber substrate and an epoxy resin composition [C] impregnated in a reinforcing fiber layer formed by the reinforcing fiber substrate; A surface layer composed of an epoxy resin composition [D] formed on one side or both sides of the primary prepreg;
  • the epoxy resin composition [C], [D] is a prepreg comprising: Epoxy resin composition [C]: an epoxy resin composition containing at least an epoxy resin and a thermoplastic resin and not containing an epoxy resin curing agent.
  • Epoxy resin composition [D] at least an epoxy resin, an epoxy resin curing agent, and Epoxy resin composition comprising epoxy resin-soluble thermoplastic resin dissolved in epoxy resin
  • the epoxy resin curing agent is localized in the prepreg. Therefore, it exhibits excellent tack and drape properties over a long period of time. As a result, the prepreg of the present invention can produce a composite material with few structural defects such as voids even after long-term storage.
  • a matrix resin layer mainly made of an epoxy resin is modified with a thermoplastic resin.
  • FIG. 1 is an explanatory view showing a schematic cross section of a prepreg of a first embodiment of the present invention.
  • 2 (a) to 2 (c) are explanatory views sequentially showing processes of manufacturing the prepreg of the first embodiment of the present invention.
  • FIG. 3 is an explanatory view showing a schematic cross section of a prepreg of the second embodiment of the present invention.
  • 4 (a) to 4 (c) are explanatory views sequentially showing the process of manufacturing the prepreg of the second embodiment of the present invention.
  • FIG. 5 is a conceptual diagram showing an example of the manufacturing process of the prepreg of the present invention.
  • the prepreg of the present invention is A primary prepreg comprising a reinforcing fiber base material, and an epoxy resin composition containing at least an epoxy resin and a thermoplastic resin impregnated in a reinforcing fiber layer formed by the reinforcing fiber material; A surface layer comprising an epoxy resin composition comprising at least an epoxy resin and a thermoplastic resin dissolved in the epoxy resin formed on one side or both sides of the primary prepreg;
  • a prepreg consisting of The prepreg of the present invention is a prepreg characterized in that only one of the epoxy resin composition of the primary prepreg and the epoxy resin composition of the surface layer contains an epoxy resin curing agent.
  • the prepreg of the present invention since the curing agent for the epoxy resin is localized in the prepreg, an unintended curing reaction for the epoxy resin is unlikely to proceed during storage. Therefore, the prepreg of the present invention exhibits excellent tackiness and draping properties over a long period of time. As a result, the prepreg of the present invention can produce a composite material with few structural defects such as voids even after long-term storage.
  • the epoxy resin composition containing a curing agent contains a curing agent in an amount suitable for curing all the epoxy resins contained in the prepreg. Therefore, the epoxy resin composition containing the curing agent used in the present invention contains a larger amount of the epoxy resin curing agent than that contained in a normal epoxy resin composition.
  • the epoxy resin composition containing a curing agent even if the reaction between the epoxy resin and the curing agent occurs, the curing of the resin composition due to the crosslinking reaction of the epoxy resin is suppressed because the curing agent is excessive.
  • the curing agent for the epoxy resin is localized in the prepreg, the curing reaction does not proceed in the epoxy resin composition not containing the curing agent. For this reason, the prepreg of the present invention does not deteriorate tackiness or drapeability for a long period of time.
  • the amount of the curing agent contained in the epoxy resin composition containing the curing agent is appropriately adjusted according to the type of epoxy resin and curing agent used.
  • the amount is preferably 25 to 55 parts by mass with respect to 100 parts by mass of the total epoxy resin.
  • the mass ratio of the epoxy resin composition of the primary prepreg and the epoxy resin composition of the surface layer is preferably 9: 1 to 1: 1.
  • the prepreg of the first embodiment of the present invention comprises a reinforcing fiber base and an epoxy resin composition [A] impregnated in a reinforcing fiber layer formed by the reinforcing fiber base.
  • Next prepreg It is a prepreg formed by integrating a surface layer made of an epoxy resin composition [B] formed on one side or both sides of the primary prepreg.
  • FIG. 1 is an explanatory view showing a schematic cross section of a prepreg of the first embodiment of the present invention.
  • 100 is a prepreg of the first embodiment of the present invention
  • 110 is a primary prepreg.
  • the primary prepreg 110 is composed of a reinforcing fiber layer made of carbon fibers 111 and an epoxy resin composition [A] 113 impregnated in the reinforcing fiber layer.
  • a surface layer made of the resin composition [B] 115 is formed integrally with the primary prepreg 110.
  • the mass ratio of the epoxy resin contained in the epoxy resin composition [A] and the epoxy resin contained in the epoxy resin composition [B] is 9: 1 to 1: 1. It is preferable.
  • the primary prepreg is composed of a reinforcing fiber layer at the center of the prepreg cross section and an epoxy resin composition [A] impregnated in the reinforcing fiber layer.
  • the primary prepreg is represented as a primary prepreg 110 in FIGS. 2 (b) and 2 (c).
  • the reinforcing fiber substrate used for the primary prepreg is a substrate obtained by processing reinforcing fibers into various shapes.
  • the reinforcing fiber substrate is preferably in the form of a sheet.
  • the reinforcing fiber for example, carbon fiber, glass fiber, aramid fiber, silicon carbide fiber, polyester fiber, ceramic fiber, alumina fiber, boron fiber, metal fiber, mineral fiber, rock fiber and slug fiber can be used.
  • carbon fibers, glass fibers, and aramid fibers are preferable.
  • Carbon fiber is particularly preferable, and PAN-based carbon fiber having high tensile strength is most preferable because a composite material having high specific strength and high specific modulus, light weight and high strength can be obtained.
  • the carbon fiber preferably has a tensile modulus of 170 to 600 GPa, particularly preferably 220 to 450 GPa.
  • the tensile strength of the carbon fiber is preferably 3920 MPa (400 kgf / mm 2 ) or more.
  • a sheet-like reinforcing fiber base material a sheet made by arranging a large number of reinforcing fibers in one direction, bi-directional woven fabrics such as plain weave and twill, multi-axial woven fabrics, non-woven fabrics, mats, knits, braids, and reinforcing fibers Paper.
  • the thickness of the sheet is preferably 0.01 to 3 mm, more preferably 0.1 to 1.5 mm.
  • Epoxy resin composition [A] is a composition containing at least an epoxy resin, a curing agent for the epoxy resin, and a thermoplastic resin. Hereinafter, each component used for epoxy resin composition [A] is demonstrated.
  • Epoxy resin used in the first embodiment of the present invention is a conventionally known epoxy resin.
  • an epoxy resin containing an aromatic group is preferable, and an epoxy resin containing either a glycidylamine structure or a glycidyl ether structure is particularly preferable.
  • an alicyclic epoxy resin can also be used suitably. Specifically, those exemplified below can be used.
  • Examples of the epoxy resin containing a glycidylamine structure include tetraglycidyldiaminodiphenylmethane, N, N, O-triglycidyl-p-aminophenol, N, N, O-triglycidyl-m-aminophenol, N, N, O— Examples include various isomers of triglycidyl-3-methyl-4-aminophenol and triglycidylaminocresol.
  • Examples of the epoxy resin containing a glycidyl ether structure include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, and cresol novolac type epoxy resin.
  • These epoxy resins may have a non-reactive substituent in an aromatic ring structure or the like.
  • the non-reactive substituent include alkyl groups such as methyl, ethyl and isopropyl, aromatic groups such as phenyl, alkoxyl groups, aralkyl groups, and halogen groups such as chlorine and bromine.
  • the epoxy resin composition [A] preferably uses one or more trifunctional epoxy resins.
  • the epoxy resin is crosslinked by a thermosetting reaction with the curing agent to form a network structure.
  • a trifunctional epoxy resin since the crosslink density after curing is increased, a composite material having excellent mechanical properties can be obtained.
  • total epoxy resin amount 30% by mass of trifunctional epoxy resin with respect to the total amount of epoxy resins used in epoxy resin composition [A] and epoxy resin composition [B] (hereinafter also referred to as “total epoxy resin amount”)
  • total epoxy resin amount 30% by mass of trifunctional epoxy resin with respect to the total amount of epoxy resins used in epoxy resin composition [A] and epoxy resin composition [B]
  • total epoxy resin amount 30% by mass of trifunctional epoxy resin with respect to the total amount of epoxy resins used in epoxy resin composition [A] and epoxy resin composition [B]
  • the trifunctional epoxy resin is preferably 10% by mass or more, particularly preferably 20 to 75% by mass, based on the amount of the epoxy resin contained in the epoxy resin composition [A].
  • trifunctional epoxy resin examples include N, N, O-triglycidyl-p-aminophenol and N, N, O-triglycidyl-m-aminophenol.
  • epoxy resins may be used alone or in combination of two or more.
  • the curing agent used in the present invention is a known curing agent that cures the epoxy resin.
  • Specific examples include dicyandiamide, various isomers of aromatic amine curing agents, and aminobenzoic acid esters.
  • Dicyandiamide is preferable because of excellent storage stability of the prepreg.
  • aromatic diamine compounds such as 4,4′-diaminodiphenylsulfone, 3,3′-diaminodiphenylsulfone, and 4,4′-diaminodiphenylmethane and derivatives having these non-reactive substituents have high heat resistance. It is particularly preferable because a cured product can be obtained. Furthermore, 3,3′-diaminodiphenyl sulfone is most preferable because the obtained cured product has high toughness.
  • the non-reactive substituent is as described in the above (i) epoxy resin.
  • trimethylene glycol di-p-aminobenzoate and neopentyl glycol di-p-aminobenzoate are preferably used.
  • Composite materials cured with these curing agents have lower heat resistance but higher tensile elongation than composite materials cured with various isomers of diaminodiphenylsulfone. Therefore, the curing agent is appropriately selected according to the use of the composite material.
  • the amount of the curing agent contained in the epoxy resin composition [A] is an amount suitable for curing all the epoxy resins used in the epoxy resin composition [A] and the epoxy resin composition [B]. Yes, depending on the type of epoxy resin and curing agent used.
  • the amount is preferably 25 to 55 parts by mass with respect to 100 parts by mass of the total epoxy resin.
  • the amount is preferably 30 to 100 parts by weight, particularly preferably 30 to 70 parts by weight with respect to 100 parts by weight of the epoxy resin contained in the epoxy resin composition [A]. .
  • thermoplastic resin used in the first embodiment of the present invention is a conventionally known thermoplastic resin.
  • Thermoplastic resins are roughly classified into epoxy resin-soluble thermoplastic resins and epoxy resin-insoluble thermoplastic resins.
  • the epoxy resin composition [A] contains an epoxy resin-soluble thermoplastic resin or an epoxy resin-insoluble thermoplastic resin.
  • the epoxy resin composition [A] particularly preferably contains both an epoxy resin-soluble thermoplastic resin and an epoxy resin-insoluble thermoplastic resin.
  • the epoxy resin-soluble thermoplastic resin When the epoxy resin-soluble thermoplastic resin is completely dissolved in the epoxy resin, it is preferable that the epoxy resin-soluble thermoplastic resin and the epoxy resin-insoluble thermoplastic resin are blended. On the other hand, when the epoxy resin-soluble thermoplastic resin is partially dissolved in the epoxy resin, it is preferable that only the epoxy resin-soluble thermoplastic resin or the epoxy resin-soluble thermoplastic resin and the epoxy resin-insoluble thermoplastic resin are blended.
  • the epoxy resin-soluble thermoplastic resin means a thermoplastic resin that can be partially or wholly dissolved in the epoxy resin at a temperature at which the composite material is molded or at a temperature lower than that. “Partially dissolved” means to exclude “a thermoplastic resin that does not substantially dissolve”, which will be described later.
  • Specific examples of the epoxy resin-soluble thermoplastic resin include polyethersulfone, polysulfone, polyetherimide, and polycarbonate. These may be used alone or in combination of two or more.
  • the epoxy resin-soluble thermoplastic resin is dissolved in the epoxy resin in the curing process of molding the composite material from the prepreg, and has an effect of increasing the viscosity of the epoxy resin composition and preventing the resin from flowing out of the prepreg.
  • the epoxy resin-soluble thermoplastic resin preferably has a reactive group reactive with the epoxy resin.
  • Epoxy resin-soluble thermoplastic resin having reactive groups reactive with epoxy resin has high toughness effect, chemical resistance, heat resistance, moist heat resistance, and high dissolution stability in the curing process of molding composite materials from prepreg. preferable.
  • the epoxy resin-soluble thermoplastic resin can be blended after all or a part thereof is dissolved in the epoxy resin in advance, or can be blended as dispersed particles without being dissolved in the epoxy resin.
  • the epoxy resin-soluble thermoplastic resin is preferably dissolved in the epoxy resin in the curing process of molding the composite material from the prepreg. In general, the temperature at which the composite material is molded is 100 to 190 ° C.
  • the compounding amount of the epoxy resin-soluble thermoplastic resin is preferably 5 to 50 parts by mass, more preferably 15 to 40 parts by mass with respect to 100 parts by mass of the total epoxy resin used in the prepreg of the first form.
  • the amount is less than 5 parts by mass, the impact resistance of the composite material produced using this prepreg may be insufficient.
  • it exceeds 50 mass parts a viscosity becomes remarkably high and the handleability of an epoxy resin composition [A] may deteriorate.
  • the epoxy resin-soluble thermoplastic resin is blended so as to be 5 to 60 parts by mass with respect to 100 parts by mass of the epoxy resin contained in the epoxy resin composition [A]. It is preferable.
  • the form of the epoxy resin-soluble thermoplastic resin is not particularly limited, but is preferably particulate.
  • the particulate epoxy resin-soluble thermoplastic resin can be homogeneously blended in the epoxy resin composition.
  • the moldability of the obtained prepreg is high.
  • the average particle size of the epoxy resin-soluble thermoplastic resin is preferably 1 to 50 ⁇ m, and particularly preferably 3 to 30 ⁇ m. When it is less than 1 ⁇ m, the viscosity of the epoxy resin composition is remarkably increased. Therefore, it may be difficult to add a sufficient amount of the epoxy resin-soluble thermoplastic resin to the epoxy resin composition. When exceeding 50 micrometers, when processing an epoxy resin composition into a sheet form, it may become difficult to obtain a sheet of uniform thickness.
  • the epoxy resin-insoluble thermoplastic resin refers to a thermoplastic resin that does not substantially dissolve in the epoxy resin at a temperature at which the composite material is molded or at a temperature lower than that. That is, it refers to a thermoplastic resin in which the size or shape of particles does not change when a thermoplastic resin is poured into an epoxy resin and stirred at the temperature at which the composite material is molded. In general, the temperature at which the composite material is molded is 100 to 190 ° C.
  • the epoxy resin-insoluble thermoplastic resin and a part of the above-mentioned epoxy resin-soluble thermoplastic resin are dispersed in the matrix resin of the composite material.
  • the dispersed particles are also referred to as “interlayer particles”.
  • the interlayer particles suppress the propagation of the impact received by the composite material. As a result, the impact resistance of the composite material is improved.
  • the interlayer particles are preferably present in an amount of 5 to 60 parts by mass with respect to 100 parts by mass of the total epoxy resin contained in the composite material.
  • epoxy resin insoluble thermoplastic resins include polyamide, polyacetal, polyphenylene oxide, polyphenylene sulfide, polyester, polyamideimide, polyimide, polyetherketone, polyetheretherketone, polyethylene naphthalate, polyaramid, polyethernitrile, and polybenzimidazole. Is done. Among these, polyamide, polyamideimide, and polyimide are preferable because of high toughness and heat resistance. Polyamide and polyimide are particularly excellent in improving the toughness of the composite material. These may be used alone or in combination of two or more. Moreover, these copolymers can also be used.
  • Polyamide which is also referred to as nylon which does not cause crystallization of the polymer or has a very low crystallization rate of the polymer, has a particularly high effect of improving the heat resistance of the composite material.
  • the compounding amount of the epoxy resin-insoluble thermoplastic resin is preferably 10 to 45 parts by mass, particularly 20 to 45 parts by mass with respect to 100 parts by mass of the total epoxy resin of the prepreg of the first invention. preferable.
  • the amount is less than 10 parts by mass, the resulting composite material may have insufficient impact resistance.
  • the compounding quantity of an epoxy resin insoluble thermoplastic resin exceeds 45 mass parts, the resin impregnation property, drape property, etc. of the obtained prepreg may fall.
  • the form of the epoxy resin-insoluble thermoplastic resin is not particularly limited, but is preferably particulate.
  • the particulate epoxy resin-insoluble thermoplastic resin can be homogeneously blended in the epoxy resin composition.
  • the moldability of the obtained prepreg is high.
  • the average particle size of the epoxy resin-insoluble thermoplastic resin is preferably 1 to 50 ⁇ m, and particularly preferably 3 to 30 ⁇ m. When it is less than 1 ⁇ m, the viscosity of the epoxy resin composition is remarkably increased. Therefore, it may be difficult to add a sufficient amount of the epoxy resin-insoluble thermoplastic resin to the epoxy resin composition. When exceeding 50 micrometers, when processing an epoxy resin composition into a sheet form, it may become difficult to obtain a sheet of uniform thickness.
  • Epoxy resin composition [B] comprises at least an epoxy resin and an epoxy resin-soluble thermoplastic resin dissolved in the epoxy resin.
  • the epoxy resin composition [B] does not contain a curing agent. In FIG. 2C, it is a component constituting the surface layer 115a of the prepreg of the first form. Hereinafter, each component used for epoxy resin composition [B] is demonstrated.
  • Epoxy resin The epoxy resin blended in the epoxy resin composition [B] is a conventionally known epoxy resin.
  • an epoxy resin containing an aromatic group is preferred, and an epoxy resin containing either a glycidylamine structure or a glycidyl ether structure is particularly preferred.
  • an alicyclic epoxy resin can also be used suitably. These epoxy resins may be used independently and may use 2 or more types together.
  • the epoxy resin composition [B] does not contain a compound that cures the epoxy resin.
  • Thermoplastic resin contains a thermoplastic resin dissolved in an epoxy resin.
  • the thermoplastic resin blended in the epoxy resin composition [B] is the same as the epoxy resin-soluble thermoplastic resin already described.
  • the epoxy resin-soluble thermoplastic resin blended in the epoxy resin composition [B] may be the same as or different from the epoxy resin-soluble thermoplastic resin blended in the epoxy resin composition [A]. There may be.
  • the content of the epoxy resin-soluble thermoplastic resin contained in the epoxy resin composition [B] is preferably 5 to 50 parts by mass with respect to 100 parts by mass of the epoxy resin contained in the epoxy resin composition [B]. 15 to 40 parts by mass is particularly preferable.
  • the amount is less than 5 parts by mass, the impact resistance of the composite material produced using the obtained prepreg may be insufficient. Moreover, when it exceeds 50 mass parts, the viscosity of an epoxy resin composition [B] may become remarkably high, and a handleability may deteriorate.
  • the prepreg of the 1st form of this invention can be manufactured using a conventionally well-known method.
  • the resin composition is preferably produced by a dry method in which the viscosity is lowered by heating and the reinforcing fiber layer is impregnated.
  • This dry method is preferable because the organic solvent does not remain compared to a wet method in which the resin composition is dissolved in an organic solvent and impregnated in the reinforcing fiber layer and then the organic solvent is removed.
  • a method of manufacturing the prepreg of the first form by a manufacturing method by a dry method will be described.
  • a film made of the epoxy resin composition [A] and a film made of the epoxy resin composition [B] are prepared by known methods.
  • the resin A film is laminated on one side or both sides of the reinforcing fiber layer made of carbon fiber or the like in the thickness direction, and is hot-pressed using a hot roller or the like.
  • the epoxy resin composition [A] of the resin A film is impregnated in the reinforcing fiber layer to obtain a primary prepreg.
  • a resin B film is laminated on one side or both sides in the thickness direction of the primary prepreg, and is hot-pressed using a hot roller or the like.
  • the primary prepreg and the resin B film are integrated while maintaining a laminated state, and the prepreg of the first invention is obtained.
  • FIG. 2 (a) to 2 (c) are explanatory views sequentially showing processes of manufacturing the prepreg of the first embodiment of the present invention.
  • the resin A film 113a made of the epoxy resin composition [A] is laminated on both sides in the thickness direction of the reinforcing fiber layer 112 made of the reinforcing fiber 111 (FIG. 2A).
  • the reinforcing fiber layer 112 and the resin A film 113a are hot-pressed using a hot roller or the like. By this hot pressing, the reinforcing resin layer 112 is impregnated with the epoxy resin composition [A] to obtain the primary prepreg 110 (FIG. 2B).
  • a resin B film 115a made of the epoxy resin composition [B] is laminated on both sides of the primary prepreg 110 in the thickness direction (FIG. 2C).
  • the primary prepreg 110 and the resin B film 115a are hot-pressed using a hot roller or the like. By this hot pressing, the primary prepreg 110 and the resin B film 115a are integrated to obtain the prepreg 100 of the first form (FIG. 1).
  • FIG. 5 is a conceptual diagram showing an example of a process for producing the prepreg of the first invention.
  • 21 is a reinforcing fiber layer in which fibers such as carbon fibers are aligned in one direction, and runs in the direction of arrow A.
  • a resin A film 13a with release paper 14a supplied from a film roll 23 is laminated on both sides of the reinforcing fiber layer 21 in the thickness direction.
  • the reinforcing fiber layer 21 and the resin A film 13a are hot-pressed using the heat roller 40 through the release paper 14a.
  • the primary prepreg 10 is formed by this hot pressing.
  • the release paper 14 a laminated on both surfaces of the primary prepreg is peeled off from the primary prepreg 10 and taken up by the roller 24.
  • the resin B film 15a with release paper supplied from the film roll 25 is laminated on both surfaces of the primary prepreg 10 from which the release paper has been removed.
  • the primary prepreg 10 and the resin B film 15a are hot-pressed using a heat roller 41 through a release paper. By this hot pressing, the prepreg 100 of the first invention is formed.
  • the prepreg 100 having release paper adhered to both sides thereof is taken up by a roller 101.
  • the temperature during hot pressing of the resin A film is 70 to 160 ° C., preferably 90 to 140 ° C.
  • 70 ° C. the viscosity of the epoxy resin composition [A] constituting the resin A film is not sufficiently lowered.
  • 160 degreeC an epoxy resin composition [A] tends to harden
  • the drapability of the resulting prepreg is likely to deteriorate.
  • the linear pressure during hot pressing of the resin A film is 1 to 25 kg / cm, and preferably 2 to 15 kg / cm. When it is less than 1 kg / cm, it is difficult to sufficiently impregnate the reinforcing fiber layer with the resin composition [A] constituting the resin A film. When it exceeds 25 kg / cm, it is easy to damage the reinforcing fiber.
  • the temperature of the resin B film during hot pressing is 50 to 90 ° C, preferably 60 to 80 ° C.
  • the temperature is lower than 50 ° C.
  • the tackiness of the surface is too strong, so that the releasability of the resin film is deteriorated and the prepreg manufacturing process may not be stable.
  • the epoxy resin composition [B] which comprises the resin B film, and the epoxy resin composition [A] which comprises a primary prepreg are mixed, and reaction with a hardening
  • curing agent advances.
  • the linear pressure during hot pressing of the resin B film is 0.1 to 10 kg / cm, preferably 0.5 to 6 kg / cm.
  • it is less than 0.1 kg / cm, the primary prepreg and the resin B film are not sufficiently bonded.
  • it exceeds 10 kg / cm the epoxy resin composition [B] constituting the resin B film and the epoxy resin composition [A] constituting the primary prepreg are mixed, and the reaction with the curing agent proceeds.
  • the prepreg is stored for a long period of time, tackiness and draping properties deteriorate.
  • the prepreg of the first invention manufactured by the above manufacturing method has the reinforcing fiber layer impregnated with the epoxy resin composition [A] 113 as shown in FIG.
  • the production speed of the prepreg is not particularly limited, but considering productivity and economy, it is 0.1 m / min or more, preferably 1 m / min or more, and particularly preferably 5 m / min or more.
  • the resin A film and the resin B film can be produced by known methods. For example, it can be produced by casting and casting on a support such as release paper or release film using a die coater, applicator, reverse roll coater, comma coater, knife coater or the like.
  • the resin temperature in film formation is appropriately set according to the composition and viscosity of the resin.
  • the thickness of the resin B film is preferably 2 to 30 ⁇ m, particularly preferably 5 to 20 ⁇ m. When it is less than 2 ⁇ m, the tackiness of the obtained prepreg is lowered. When it exceeds 30 ⁇ m, the handleability of the obtained prepreg and the molding accuracy of the composite material tend to be lowered.
  • the prepreg according to the first embodiment of the present invention is not limited to the above-described manufacturing method.
  • a resin A film and a resin B film are sequentially laminated on one side or both sides in the thickness direction of the reinforcing fiber layer, and heat-pressed in one step.
  • the content of the reinforcing fiber base is preferably 40 to 80% by mass, and particularly preferably 50 to 70% by mass.
  • the strength and the like of the composite material produced using this prepreg is low.
  • it exceeds 80 mass% the amount of resin impregnated in the reinforcing fiber layer is insufficient. As a result, voids and the like are generated in the composite material produced using this prepreg.
  • the prepreg of the first embodiment of the present invention may contain a stabilizer, a release agent, a filler, a colorant, and the like as long as the effects of the present invention are not hindered.
  • the curing agent contained in the epoxy resin composition [A] is diffused into the epoxy resin composition [B] by heating. . Thereby, both epoxy resin composition [A] and [B] are hardened.
  • prepreg of the 2nd form of this invention (prepreg containing a curing agent in the surface layer)
  • prepreg of the 2nd form of this invention is demonstrated.
  • the prepreg of the 2nd form of this invention consists of a reinforced fiber base material and the epoxy resin composition [C] impregnated in the reinforced fiber layer which this reinforced fiber base material forms.
  • FIG. 3 is an explanatory view showing a schematic cross section of the prepreg of the second embodiment.
  • 200 is a prepreg of the second form
  • 210 is a primary prepreg.
  • the primary prepreg 210 includes a reinforcing fiber layer made of carbon fibers 211 and an epoxy resin composition [C] 213 impregnated in the reinforcing fiber layer.
  • a surface layer made of the resin composition [D] 215 is formed integrally with the primary prepreg 210.
  • the mass ratio of the epoxy resin contained in the epoxy resin composition [C] and the epoxy resin contained in the epoxy resin composition [D] is 9: 1 to 1: 1. Preferably there is.
  • a primary prepreg consists of the reinforced fiber layer of the center part in a prepreg cross section, and the epoxy resin composition [C] impregnated in this reinforced fiber layer.
  • the primary prepreg is represented as a primary prepreg 210 in FIGS. 4 (b) and 4 (c).
  • the type and form of the reinforcing fiber base used for the primary prepreg are the same as those of the reinforcing fiber base described in the first embodiment.
  • Epoxy resin composition [C] is an epoxy resin composition containing at least an epoxy resin and a thermoplastic resin and not containing a curing agent. Hereinafter, each component used for epoxy resin composition [C] is demonstrated.
  • Epoxy resin The kind, the compounding quantity, and form of the epoxy resin used for the 2nd form of this invention are the same as that of the epoxy resin demonstrated in the 1st form except the following points.
  • total epoxy resin amount 30% by mass of the trifunctional epoxy resin with respect to the total amount of the epoxy resin used in the epoxy resin composition [C] and the epoxy resin composition [D] (hereinafter, also referred to as “total epoxy resin amount”).
  • total epoxy resin amount 30% by mass of the trifunctional epoxy resin with respect to the total amount of the epoxy resin used in the epoxy resin composition [C] and the epoxy resin composition [D] (hereinafter, also referred to as “total epoxy resin amount”).
  • the above is preferable, and 30 to 80% by mass is particularly preferable. When it exceeds 80 mass%, the handleability of the prepreg obtained may fall.
  • the trifunctional epoxy resin is preferably 10% by mass or more and particularly preferably 20 to 85% by mass with respect to the amount of the epoxy resin contained in the epoxy resin composition [C].
  • the epoxy resin composition [C] does not contain a compound that cures the epoxy resin.
  • thermoplastic resin The kind, the compounding quantity, and form of the thermoplastic resin used for the 2nd form of this invention are the same as that of the thermoplastic resin demonstrated in the 1st form except the following points.
  • the epoxy resin composition [C] contains an epoxy resin-soluble thermoplastic resin or an epoxy resin-insoluble thermoplastic resin.
  • the epoxy resin composition [C] particularly preferably contains both an epoxy resin-soluble thermoplastic resin and an epoxy resin-insoluble thermoplastic resin.
  • the amount of the epoxy resin-soluble thermoplastic resin contained in the epoxy resin composition [C] is 5 with respect to 100 parts by mass of the epoxy resin contained in the epoxy resin composition [C]. It is preferable to blend it to ⁇ 60 parts by mass.
  • Epoxy resin composition [D] comprises at least an epoxy resin, its curing agent, and an epoxy resin-soluble thermoplastic resin dissolved in the epoxy resin.
  • it is a component constituting the surface layer 215a of the prepreg of the second form.
  • each component used for epoxy resin composition [D] is demonstrated.
  • Epoxy resin The kind, the compounding quantity, and form of the epoxy resin mix
  • (Ii) Curing Agent The type of the curing agent used in the second embodiment of the present invention is the same as the curing agent described in the first embodiment.
  • the amount of the curing agent contained in the epoxy resin composition [D] is an amount suitable for curing all the epoxy resins used in both the epoxy resin composition [C] and the epoxy resin composition [D]. It is. It adjusts suitably according to the kind of epoxy resin and hardening
  • the amount is preferably 25 to 55 parts by mass with respect to 100 parts by mass of the total epoxy resin.
  • it is preferably 50 to 300 parts by mass, more preferably 100 to 200 parts by mass with respect to 100 parts by mass of the epoxy resin contained in the epoxy resin composition [D]. .
  • Thermoplastic resin contains a thermoplastic resin dissolved in an epoxy resin.
  • the thermoplastic resin blended in the epoxy resin composition [D] is an epoxy resin-soluble thermoplastic resin.
  • the kind and form of the epoxy resin-soluble thermoplastic resin are the same as those of the epoxy resin-soluble thermoplastic resin described in the first embodiment.
  • the compounding amount of the epoxy resin-soluble thermoplastic resin contained in the epoxy resin composition [D] is preferably 5 to 50 parts by mass with respect to 100 parts by mass of the epoxy resin contained in the epoxy resin composition [D]. More preferred is 40 parts by weight.
  • the blending amount is less than 5 parts by mass, the impact resistance of the composite material produced using the obtained prepreg may be insufficient.
  • it exceeds 50 mass parts the viscosity of epoxy resin composition [D] may become remarkably high, and handleability may deteriorate.
  • the manufacturing method of the prepreg in the 2nd form of this invention is the epoxy resin composition [A] in 1st form, the epoxy resin composition [B], the resin A film, and the resin B film. These are the same as the prepreg manufacturing method described in the first invention, except that they are read as epoxy resin composition [C], epoxy resin composition [D], resin C film and resin D film, respectively.
  • the prepreg of the second embodiment of the present invention produced by the above production method is impregnated with the epoxy resin composition [C] 213 in the reinforcing fiber layer as shown in FIG.
  • the prepreg of the second embodiment of the present invention may contain a stabilizer, a release agent, a filler, a colorant, and the like as long as the effects of the present invention are not hindered.
  • the curing agent contained in the epoxy resin composition [D] is diffused in the epoxy resin composition [C] by heating during the curing reaction. . Thereby, both epoxy resin composition [C] and [D] are hardened.
  • a composite material can be produced by molding and curing a laminate obtained by laminating a plurality of prepregs of the present invention by a conventional method.
  • the molding method include a press molding method, an autoclave molding method, a wrapping tape method, and an internal pressure molding method.
  • the composite material obtained by using the prepreg of the present invention is used for computer structures such as aircraft structural members, windmill blades, automobile outer plates and IC trays and notebook PC housings, and sports such as golf shafts and tennis rackets. It is preferably used for applications.
  • Araldite MY0600 (Thermosetting resin) Araldite MY0600 (trade name) (hereinafter referred to as “MY0600”): glycidylamine type epoxy resin (trifunctional group) manufactured by Huntsman Advanced Materials Araldite MY0510 (trade name) (hereinafter referred to as “MY0510”): Glycidylamine type epoxy resin (trifunctional group) manufactured by Huntsman Advanced Materials ⁇ Sumiepoxy ELM100 (trade name) (hereinafter referred to as “ELM100”): Glycidylamine type epoxy resin (trifunctional group) manufactured by Sumitomo Chemical Co., Ltd.
  • Epicoat 604 (trade name) (hereinafter referred to as “jER604”): Glycidylamine type epoxy resin (4 functional group) manufactured by Japan Epoxy Resin Co., Ltd.
  • Epicoat 828 (trade name) (hereinafter referred to as “jER828”): Glycidylamine type epoxy resin (bifunctional group) manufactured by Japan Epoxy Resin Co., Ltd.
  • thermoplastic resin PES-5003P (trade name): polyethersulfone (particle size: 3 to 40 ⁇ m) manufactured by Sumitomo Chemical Co., Ltd.
  • TR-55 (trade name): Grilled amide (particle size: 5 to 35 ⁇ m) manufactured by Ms Chemie Japan
  • 3,3′-diaminodiphenyl sulfone (Curing agent) 3,3′-diaminodiphenyl sulfone (hereinafter referred to as “3,3′-DDS”): Aromatic amine curing agent manufactured by Nippon Synthetic Processing Co., Ltd. • 4,4′-diaminodiphenyl sulfone (hereinafter referred to as “ 4,4′-DDS ”): Aromatic amine curing agent manufactured by Wakayama Seika Co., Ltd.
  • the tackiness of the prepreg was measured by the following method using a tacking test apparatus TAC-II (RHESCA CO., LTD.).
  • the prepreg was set on a test stage maintained at 27 ° C., and a tack probe (manufactured by SUS) having a diameter of 5 mm held at 27 ° C. was brought into contact with the prepreg with an initial load of 100 gf.
  • the maximum value of resistance received by the tack probe when the tack probe was detached from the prepreg at a test speed (detachment speed) of 10 mm / sec was obtained as a load value.
  • a tack probe test was performed on each of the prepregs immediately after production and the prepregs stored at a temperature of 26.7 ° C. and a humidity of 65% for 10 days.
  • the evaluation results were expressed by the following criteria ( ⁇ to ⁇ ).
  • The load value of the tack probe test measured immediately after manufacture is 200 gf or more, and the load value of the tack probe test measured after storage for 10 days is 50 to 100% (hereinafter, this ratio is also referred to as “tack retention rate”) ).
  • The load value of the tack probe test measured immediately after production is 200 gf or more, and the tack retention after 10 days storage is 25 to 50%.
  • X The load value of the tack probe test measured immediately after production is 200 gf or more, and the tack retention after storage for 10 days is 0 to 25%.
  • the prepreg drapeability was evaluated by the following test in accordance with ASTM D1388.
  • the prepreg was cut in a 90 ° direction with respect to the 0 ° fiber direction, and the draping property (flexural rigidity, mg * cm) with respect to the inclination at an inclination angle of 41.5 ° was evaluated.
  • This evaluation was performed immediately after manufacturing the prepreg and after storage for a predetermined period at a temperature of 26.7 ° C. and a humidity of 65%.
  • the evaluation results were expressed by the following criteria ( ⁇ to ⁇ ).
  • Drapability after 20 days is the same as immediately after production.
  • X The drape property after 10 days was lower than that immediately after the production, which was a problem level for use.
  • CAI Compressive strength after impact
  • Interlayer toughness (GIc) The obtained prepreg was cut to a predetermined size and then laminated to produce two laminates in which 10 layers were laminated in the 0 ° direction. In order to generate an initial crack, a release film was sandwiched between two laminates, and both were combined to obtain a prepreg laminate having a laminate configuration [0] 20 . Using a normal vacuum autoclave molding method, molding was performed for 2 hours at 180 ° C. under a pressure of 0.59 MPa. The obtained molded product (composite material) was cut into a size of 12.7 mm width ⁇ 304.8 mm length to obtain a test piece of interlaminar fracture toughness mode I (GIc). As a test method, a twin cantilever beam interlaminar fracture toughness test method (DCB method) was used, and the GIc was calculated by measuring the crack propagation length, load, and crack opening displacement.
  • DCB method twin cantilever beam interlaminar fracture toughness test method
  • test piece was placed so that the tip of the crack generated by the initial crack was positioned at 25.4 mm from the fulcrum, and the test was performed by applying a bending load at a speed of 2.54 mm / min.
  • test piece is arranged so that the tip of the crack is at a position 25.4 mm from the fulcrum, a bending load is applied at a speed of 2.54 mm / min, and the bending test is performed three times.
  • GIIc was calculated from the load-stroke of the bending test.
  • each component shown in Table 1 or Table 2 was mixed for 30 minutes at 80 ° C. using a stirrer to prepare an epoxy resin composition [A] and an epoxy resin composition [B], respectively.
  • the epoxy resin composition [A] and the epoxy resin composition [B] were each applied on a release film using a film coater to obtain a resin A film and a resin B film.
  • the carbon fiber strands are uniformly arranged in one direction (weight per unit (190 g / m 2 )) between two resin A films and supplied, and heated at 10 kg / cm at 130 ° C. using a roller.
  • a primary prepreg was obtained by pressure and heating.
  • the said primary prepreg was supplied between two resin B films, and using a roller, it pressurized and heated at 1.5 kg / cm and 70 degreeC, and obtained the prepreg.
  • the resin content relative to the entire prepreg was 33% by mass.
  • Various performances of the obtained prepreg are shown in Table 1 or Table 2.
  • Example 1 had very high CAI, GIc, and GIIc (hereinafter also referred to as “composite physical properties”), had a tack retention of 55% after storage for 10 days, and had a relatively good drape.
  • Example 2 had very high composite physical properties, a tack retention of 60% after storage for 10 days, and a relatively good drape.
  • Example 3 had high composite properties, had a tack retention of 55% after storage for 10 days, and had a relatively good drape.
  • Example 4 had high composite physical properties, had a tack retention of 65% after storage for 10 days, and had relatively good drape properties.
  • Example 5 had high composite physical properties, had a tack retention of 45% after storage for 10 days, and had a relatively good drape property.
  • Example 6 had very high composite physical properties, had a tack retention of 40% after storage for 10 days, and had good drape properties.
  • Example 7 had very high composite properties, had a tack retention of 40% after storage for 10 days, and had a relatively good drape.
  • Example 8 the tack retention after storage for 10 days was 70% and the drape was good. However, since 4,4'-DDS was used as the curing agent, the composite physical properties were slightly lowered.
  • Example 9 the tack retention after storage for 10 days was 80% and the drapability was good, but since the trifunctional glycidylamine type epoxy resin was not used, the composite physical properties slightly decreased.
  • Example 10 the tack retention after storage for 10 days was 55% and the drapability was good, but since 4,4'-DDS was used as the curing agent, the composite physical properties slightly decreased.
  • Example 11 the tack retention after storage for 10 days was 80% and the drapability was good, but since the trifunctional glycidylamine type epoxy resin was not used, the composite physical properties were slightly lowered.
  • Comparative Example 1 the tack retention after storage for 10 days was as good as 52%, but a high concentration of trifunctional glycidylamine type epoxy resin MY0600 and a curing agent 3,3′-DDS exist in the inner layer. For this reason, room temperature storage stability and drapability were significantly deteriorated.
  • Comparative Example 2 has high-concentration MY0600 and a curing agent 3,3′-DDS in the impregnation layer (inner layer) and the tack layer (surface layer), and thus has room temperature storage stability, tack retention, and drape properties. Remarkably worsened. The tack retention after storage for 10 days was a very low value of 10%.
  • each component shown in Table 3 was mixed uniformly at 80 ° C. for 30 minutes using a stirrer to obtain a resin composition.
  • the obtained resin composition was applied onto a release film using a film coater to obtain a resin film having a basis weight of 5 g / m 2 to 40 g / m 2 .
  • the carbon fiber strands are uniformly arranged in one direction (weight per unit (190 g / m 2 )) and supplied between two resin films, and are pressed at 5 kg / cm at 130 ° C. using a roller.
  • a prepreg was obtained by heating.
  • the resin content relative to the entire prepreg was 33% by mass.
  • Various performances of the obtained prepreg are shown in Table 3.
  • Comparative Examples 3 to 6 were impregnated in one step, the resin impregnation property of the prepreg was poor.
  • the trifunctional glycidylamine type epoxy resin is present in a high concentration, and due to the curing reaction with 3,3′-DDS, the room temperature storage stability, tack retention, and draping properties are extremely poor and difficult to use. Met.
  • the prepregs of Comparative Examples 3 to 6 had a tack retention of 10% or less after storage for 10 days.
  • Comparative Examples 7 to 8 were impregnated in one stage, the resin impregnation property of the prepreg was poor. Further, the surface layer resin sank with time, and the tackiness of the prepreg was remarkably deteriorated, making it difficult to use.
  • the prepregs of Comparative Examples 7 to 8 had a tack retention of 10% or less after storage for 10 days.
  • each component shown in Table 4 or Table 5 was mixed at 80 ° C. for 30 minutes using a stirrer to prepare an epoxy resin composition [C] and an epoxy resin composition [D], respectively.
  • the epoxy resin composition [C] and the epoxy resin composition [D] were each applied on a release film using a film coater to obtain a resin C film and a resin D film.
  • the carbon fiber strands are uniformly arranged in one direction (weight per unit area (190 g / m 2 )) between two resin C films and supplied, and heated at 15 kg / cm and 130 ° C. using a roller.
  • a primary prepreg was obtained by pressure and heating.
  • the said primary prepreg was supplied between two resin D films, and using a roller, it pressurized and heated at 1.5 kg / cm and 70 degreeC, and obtained the prepreg.
  • the resin content relative to the entire prepreg was 33% by mass.
  • Various performances of the obtained prepreg are shown in Table 4 or Table 5.
  • Example 12 had very high composite physical properties, had a tack retention of 65% after storage for 10 days, and had relatively good drape properties.
  • Example 13 had very high composite physical properties, had a tack retention of 60% after storage for 10 days, and had a relatively good drape.
  • Example 14 had high composite properties, had a tack retention of 55% after storage for 10 days, and had a relatively good drape property.
  • Example 15 had high composite properties, had a tack retention of 65% after 10 days of storage, and had a relatively good drape.
  • Example 16 had high composite properties, had a tack retention of 45% after storage for 10 days, and had relatively good drape properties.
  • Example 17 had high composite physical properties, a tack retention after storage for 10 days was 40%, and the drape property was good.
  • Example 18 had high composite physical properties, had a tack retention of 40% after storage for 10 days, and had a relatively good drape property.
  • Comparative Example 10 has room temperature storage stability because the impregnation layer (inner layer) and the tack layer (surface layer) contain a high concentration of trifunctional glycidylamine type epoxy resin MY0600 and a curing agent 3,3′-DDS. Tack retention and drape are extremely poor. The tack retention after storage for 10 days was a very low value of 10%.
  • each component shown in Table 6 was mixed uniformly at 80 ° C. for 30 minutes using a stirrer to obtain a resin composition.
  • the obtained resin composition was applied onto a release film using a film coater to obtain a resin film having a basis weight of 5 g / m 2 to 40 g / m 2 .
  • the carbon fiber strands are uniformly arranged in one direction (weight per unit (190 g / m 2 )) and supplied between two resin films, and are pressed at 5 kg / cm at 130 ° C. using a roller.
  • a prepreg was obtained by heating.
  • the resin content relative to the entire prepreg was 33% by mass. Table 6 shows various performances of the obtained prepreg.
  • Comparative Examples 11 to 16 were impregnated in one stage, the resin impregnation property of the prepreg was poor.
  • the trifunctional glycidylamine type epoxy resin is present in a high concentration, and due to the reaction with 3,3′-DDS, the room temperature storage stability, tack retention and draping properties are remarkably poor and difficult to use. there were.
  • the tack retention after 10 days storage in Comparative Examples 11 to 16 was 10% or less.
  • Comparative Examples 15 and 16 were impregnated in one step, the resin impregnation property of the prepreg was poor. Moreover, when the surface layer resin sinks with time, the tackiness of the prepreg is significantly deteriorated, making it difficult to use. The tack retention after 10 days storage in Comparative Examples 15 to 16 was 10% or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明により、 強化繊維基材と、該強化繊維基材が形成する強化繊維層内に含浸された、少なくともエポキシ樹脂及び熱可塑性樹脂を含むエポキシ樹脂組成物とからなる1次プリプレグと、 該1次プリプレグの片面又は両面に形成される、少なくともエポキシ樹脂及びエポキシ樹脂に溶解したエポキシ樹脂可溶性熱可塑性樹脂を含むエポキシ樹脂組成物からなる表面層と、 からなるプリプレグであって、 1次プリプレグのエポキシ樹脂組成物と表面層のエポキシ樹脂組成物のどちらか一方のみがエポキシ樹脂の硬化剤を含むことを特徴とするプリプレグ が提供される。

Description

プリプレグ及びその製造方法
 本発明は、保存安定性が優れるプリプレグ及びその製造方法に関する。
 炭素繊維と樹脂とからなる複合材料は、軽量、高強度、高弾性率である等の理由により、航空機、スポーツ・レジャー、一般産業に広く利用されている。複合材料は、炭素繊維と樹脂とが予め一体化されているプリプレグを経由して製造されることが多い。
 プリプレグを構成する樹脂には、熱硬化性樹脂又は熱可塑性樹脂が使用されている。特に、タック性及びドレープ性が高く、成形自由度が高い熱硬化性樹脂を用いたプリプレグが広く使用されている。しかし、熱硬化性樹脂は、一般に低靱性である。そのため、熱硬化性樹脂を用いるプリプレグを使用して作製される複合材料は、一般に耐衝撃性が低い。
 複合材料の耐衝撃性を改善する方法としては、特許文献1~5に記載の方法が知られている。
 特許文献1には、熱硬化性樹脂に熱可塑性樹脂を溶解して靱性を向上させた樹脂組成物が開示されている。この樹脂組成物は、溶解する熱可塑性樹脂の量に応じて靱性が向上する。即ち、十分に高い靱性の樹脂組成物を得るためには、熱硬化性樹脂に多量の熱可塑性樹脂を溶解しなければならない。しかし、多量の熱可塑性樹脂が溶解している熱硬化性樹脂は、粘度が著しく高くなる。その結果、プリプレグの製造工程において、強化繊維基材内に十分な量の樹脂を含浸させることが困難となる。強化繊維基材内に十分な量の樹脂が含浸されていないプリプレグを用いて作製される複合材料は、ボイド等の多くの欠陥を内在する。その結果、複合材料の圧縮性能及び損傷許容性などに悪影響を及ぼす。
 特許文献2~4には、強化繊維と熱硬化性樹脂組成物とからなるプリプレグの表面に、熱可塑性樹脂の微粒子を局在化させたプリプレグが開示されている。これらのプリプレグは、その表面に粒子形状の熱可塑性樹脂が存在するため、初期のタック性が低い。また、熱硬化性樹脂組成物の硬化反応が経時的に進行するため、プリプレグのタック性やドレープ性が経時的に低下する。硬化反応が進行したプリプレグを用いて作製される複合材料は、ボイド等の欠陥を多く内在する。そのため、硬化反応が進行したプリプレグを用いて作製される複合材料の機械物性は著しく低い。
 特許文献5には、粒子、繊維又はフィルムの形態を有する熱可塑性樹脂が、プリプレグの片面又は両面の表面近傍に存在するプリプレグが開示されている。粒子又は繊維の形態を有する熱可塑性樹脂を用いる場合は、前述の特許文献2~4と同様の理由により、タック性が低かったり、得られる複合材料の機械物性が低かったりする。また、フィルムの形態を有する熱可塑性樹脂を用いる場合は、熱硬化性樹脂の利点であるタック性及びドレープ性が失われる。さらには、耐溶剤性が低いなどの熱可塑性樹脂に由来する欠点が、複合材料に顕著に反映される。
特開昭60-243113 特開平07-41575 特開平07-41576 特開平07-41577 特開平08-259713
 本発明の目的は、上記従来技術の問題点を解決し、タック性、ドレープ性及び保存安定性が優れるプリプレグであって、耐衝撃性や層間靱性が高い複合材料を作製することができるプリプレグ及びその製造方法を提供することである。
 本発明者らは、熱硬化性樹脂の硬化剤をプリプレグ内で局在化させることに想到した。そして、エポキシ樹脂と熱可塑性樹脂からなるエポキシ樹脂組成物を強化繊維層内に含浸させて1次プリプレグを作製した。この1次プリプレグの表面に、主としてエポキシ樹脂からなる表面層を一体化させた。このようにして得られるプリプレグの、1次プリプレグのエポキシ樹脂組成物と表面層のエポキシ樹脂組成物のどちらか一方のみにエポキシ樹脂の硬化剤を配合すると、エポキシ樹脂の硬化剤を配合された方のエポキシ樹脂組成物が、通常より高濃度のエポキシ樹脂硬化剤を含んでいるにもかかわらず、得られるプリプレグはタック性、ドレープ性及び保存安定性が優れることを見出した。さらには、該プリプレグは耐衝撃性及び層間靱性が優れる複合材料を作製できることを見出し、本発明を完成するに至った。
 即ち、本発明にかかるプリプレグは、
 強化繊維基材と、該強化繊維機材が形成する強化繊維層内に含浸された、少なくともエポキシ樹脂及び熱可塑性樹脂を含むエポキシ樹脂組成物とからなる1次プリプレグと、
 該1次プリプレグの片面又は両面に形成される、少なくともエポキシ樹脂及びエポキシ樹脂に溶解したエポキシ樹脂可溶性熱可塑性樹脂を含むエポキシ樹脂組成物からなる表面層と、
 からなるプリプレグであって、
 1次プリプレグのエポキシ樹脂組成物と表面層のエポキシ樹脂組成物のどちらか一方のみがエポキシ樹脂の硬化剤を含むことを特徴とするプリプレグである。
 そして、本発明の第1の形態であるプリプレグは、
 強化繊維基材と、該強化繊維基材が形成する強化繊維層内に含浸されたエポキシ樹脂組成物[A]とからなる1次プリプレグと、
 該1次プリプレグの片面又は両面に形成されるエポキシ樹脂組成物[B]からなる表面層と、
からなるプリプレグであって、エポキシ樹脂組成物[A]、[B]がそれぞれ、以下に示す配合であることを特徴とするプリプレグである。
エポキシ樹脂組成物[A]:少なくともエポキシ樹脂、エポキシ樹脂の硬化剤、及び熱可塑性樹脂を含むエポキシ樹脂組成物
エポキシ樹脂組成物[B]:少なくともエポキシ樹脂、及びエポキシ樹脂に溶解したエポキシ樹脂可溶性熱可塑性樹脂を含み、かつエポキシ樹脂の硬化剤を含まないエポキシ樹脂組成物
 また、本発明の第2の形態であるプリプレグは、
 強化繊維基材と、該強化繊維基材が形成する強化繊維層内に含浸されたエポキシ樹脂組成物[C]とからなる1次プリプレグと、
 該1次プリプレグの片面又は両面に形成されるエポキシ樹脂組成物[D]からなる表面層と、
とからなるプリプレグであって、エポキシ樹脂組成物[C]、[D]がそれぞれ、以下に示す配合であることを特徴とするプリプレグである。
エポキシ樹脂組成物[C]:少なくともエポキシ樹脂及び熱可塑性樹脂を含み、かつエポキシ樹脂の硬化剤を含まないエポキシ樹脂組成物
エポキシ樹脂組成物[D]:少なくともエポキシ樹脂、エポキシ樹脂の硬化剤、及びエポキシ樹脂に溶解したエポキシ樹脂可溶性熱可塑性樹脂を含むエポキシ樹脂組成物
 本発明のプリプレグは、プリプレグ中でエポキシ樹脂の硬化剤が局在化している。そのため、長期間に亘り、優れたタック性及びドレープ性を示す。その結果、本発明のプリプレグは、長期間保管後においても、ボイドなどの構造欠陥が少ない複合材料を作製することができる。
 本発明のプリプレグが複数積層されて作製される複合材料は、主としてエポキシ樹脂からなるマトリクス樹脂層が熱可塑性樹脂により改質されている。その結果、衝撃時のクラック伝播が抑制され、耐衝撃性に優れた複合材料を作製することができる。
図1は、本発明の第1の形態のプリプレグの断面概略を示す説明図である。 図2(a)~(c)は、本発明の第1の形態のプリプレグが製造される過程を順次示す説明図である。 図3は、本発明の第2の形態のプリプレグの断面概略を示す説明図である。 図4(a)~(c)は、本発明の第2の形態のプリプレグが製造される過程を順次示す説明図である。 図5は、本発明のプリプレグの製造工程の一例を示す概念図である。
100、200・・・プリプレグ
 110、210・・・1次プリプレグ
 111、211・・・炭素繊維
 112、212・・・強化繊維層
 113・・・樹脂組成物[A]
 213・・・樹脂組成物[C]
  113a・・・樹脂Aフィルム
  213a・・・樹脂Cフィルム
 115・・・樹脂組成物[B]
 215・・・樹脂組成物[D]
  115a・・・樹脂Bフィルム
  215a・・・樹脂Dフィルム
 10・・・1次プリプレグ
 13a・・・樹脂Aフィルム
 14a・・・離型紙
 15a・・・樹脂Bフィルム
 21・・・強化繊維層
 23・・・樹脂Aフィルム又は樹脂Cフィルムのロール
 24・・・離型紙の巻き取りロール
 25・・・樹脂Bフィルム又は樹脂Dフィルムのロール
 40、41・・・熱ローラー
 101・・・プリプレグの巻き取りロール
 本発明のプリプレグは、
 強化繊維基材と、該強化繊維機材が形成する強化繊維層内に含浸された少なくともエポキシ樹脂と熱可塑性樹脂を含むエポキシ樹脂組成物とからなる1次プリプレグと、
 該1次プリプレグの片面又は両面に形成される少なくともエポキシ樹脂とエポキシ樹脂に溶解した熱可塑性樹脂を含むエポキシ樹脂組成物からなる表面層と、
 からなるプリプレグである。そして、本発明のプリプレグは、1次プリプレグのエポキシ樹脂組成物と表面層のエポキシ樹脂組成物のどちらか一方のみがエポキシ樹脂の硬化剤を含むことを特徴とするプリプレグである。
 本発明においては、プリプレグ中でエポキシ樹脂の硬化剤が局在化しているため、保管中に、意図しないエポキシ樹脂の硬化反応が進行しにくい。そのため、本発明のプリプレグは長期間に亘り、優れたタック性及びドレープ性を示す。その結果、本発明のプリプレグは、長期間保管後においても、ボイドなどの構造欠陥が少ない複合材料を作製することができる。
 本発明において、硬化剤を含むエポキシ樹脂組成物には、プリプレグに含まれる全てのエポキシ樹脂を硬化させるのに適した量の硬化剤が含まれている。そのため、本発明で用いる硬化剤を含むエポキシ樹脂組成物は、通常のエポキシ樹脂組成物に含まれるよりも多量のエポキシ樹脂硬化剤が含まれている。しかし、硬化剤を含むエポキシ樹脂組成物は、例えエポキシ樹脂と硬化剤の反応が起こったとしても、硬化剤が過剰であるためかえって、エポキシ樹脂の架橋反応による樹脂組成物の硬化が抑えられる。また、プリプレグ中でエポキシ樹脂の硬化剤が局在化しているため、硬化剤が含まれないエポキシ樹脂組成物中では硬化反応が進行しない。そのため、本発明のプリプレグは長期間に亘り、タック性やドレープ性が低下しない。
 本発明において、硬化剤を含むエポキシ樹脂組成物に含まれる硬化剤の量は、用いるエポキシ樹脂や硬化剤の種類に応じて適宜調節される。例えば、芳香族ジアミン化合物を硬化剤として用いる場合、全エポキシ樹脂量100質量部に対して25~55質量部であることが好ましい。
 本発明のプリプレグにおいて、1次プリプレグのエポキシ樹脂組成物と表面層のエポキシ樹脂組成物との質量比は9:1~1:1であることが好ましい。
 以下、本発明のプリプレグについてさらに詳しく説明する。
 [本発明の第1の形態](1次プリプレグに硬化剤を含むプリプレグ)
 以下、本発明の第1の形態のプリプレグについて説明する。
 (1)プリプレグの構造
 本発明の第1の形態のプリプレグは、強化繊維基材と、該強化繊維基材が形成する強化繊維層内に含浸されたエポキシ樹脂組成物[A]とからなる1次プリプレグと、
 該1次プリプレグの片面又は両面に形成されるエポキシ樹脂組成物[B]からなる表面層と、が一体化されてなるプリプレグである。
 図1は、本発明の第1の形態のプリプレグの断面概略を示す説明図である。図1中、100は本発明の第1の形態のプリプレグであり、110は1次プリプレグである。1次プリプレグ110は、炭素繊維111からなる強化繊維層と、この強化繊維層内に含浸しているエポキシ樹脂組成物[A]113とから構成されている。1次プリプレグ110の表面には、樹脂組成物[B]115からなる表面層が1次プリプレグ110と一体となって形成されている。
 本発明の第1の形態のプリプレグにおいて、エポキシ樹脂組成物[A]に含まれるエポキシ樹脂とエポキシ樹脂組成物[B]に含まれるエポキシ樹脂との質量比は9:1~1:1であることが好ましい。
 (2)1次プリプレグ
 本発明の第1の形態において1次プリプレグは、プリプレグ断面における中央部の強化繊維層と、該強化繊維層に含浸されたエポキシ樹脂組成物[A]とからなる。1次プリプレグは、図2(b)及び図2(c)中、1次プリプレグ110として表される。
 1次プリプレグに用いられる強化繊維基材は、強化繊維を各種形状に加工した基材である。強化繊維基材は、シート状の形態であることが好ましい。強化繊維としては、例えば、炭素繊維、ガラス繊維、アラミド繊維、炭化ケイ素繊維、ポリエステル繊維、セラミック繊維、アルミナ繊維、ボロン繊維、金属繊維、鉱物繊維、岩石繊維及びスラッグ繊維が使用できる。これらの強化繊維の中でも、炭素繊維、ガラス繊維、アラミド繊維が好ましい。比強度及び比弾性率が高く、軽量かつ高強度の複合材料が得られるため、炭素繊維が特に好ましく、引張強度が高いPAN系炭素繊維が最も好ましい。
 炭素繊維としては、引張弾性率が170~600GPaであることが好ましく、220~450GPaであることが特に好ましい。また、炭素繊維の引張強度は3920MPa(400kgf/mm)以上であることが好ましい。このような炭素繊維を用いることにより、複合材料の機械的性質を特に向上できる。
 シート状の強化繊維基材としては、多数本の強化繊維を一方向に引き揃えたシートや、平織や綾織などの二方向織物、多軸織物、不織布、マット、ニット、組紐、強化繊維を抄紙した紙などが挙げられる。シート状物の厚さは、0.01~3mmが好ましく、0.1~1.5mmがより好ましい。
 (3)エポキシ樹脂組成物[A]
 エポキシ樹脂組成物[A]は、少なくともエポキシ樹脂、エポキシ樹脂の硬化剤及び熱可塑性樹脂を含有する組成物である。以下、エポキシ樹脂組成物[A]に用いられる各成分について説明する。
 (i)エポキシ樹脂
 本発明の第1の形態に用いられるエポキシ樹脂は、従来公知のエポキシ樹脂である。これらの中でも、芳香族基を含有するエポキシ樹脂が好ましく、グリシジルアミン構造、グリシジルエーテル構造のいずれかを含有するエポキシ樹脂が特に好ましい。また、脂環族エポキシ樹脂も好適に用いることができる。具体的には、以下に例示されるものを用いることができる。
 グリシジルアミン構造を含有するエポキシ樹脂としては、テトラグリシジルジアミノジフェニルメタン、N,N,O-トリグリシジル-p-アミノフェノール、N,N,O-トリグリシジル-m-アミノフェノール、N,N,O-トリグリシジル-3-メチル-4-アミノフェノール、トリグリシジルアミノクレゾールの各種異性体が例示される。
 グリシジルエーテル構造を含有するエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂が例示される。
 これらのエポキシ樹脂は、芳香族環構造などに、非反応性置換基を有していても良い。非反応性置換基としては、メチル、エチル、イソプロピルなどのアルキル基、フェニルなどの芳香族基、アルコキシル基、アラルキル基、塩素や臭素などのようなハロゲン基が例示される。
 エポキシ樹脂組成物[A]は、3官能のエポキシ樹脂を1種類以上用いることが好ましい。エポキシ樹脂は、その硬化剤との熱硬化反応により架橋して網目構造を形成する。3官能のエポキシ樹脂を用いる場合、硬化後の架橋密度が高くなるため、優れた機械物性を有する複合材料が得られる。
 エポキシ樹脂組成物[A]とエポキシ樹脂組成物[B]とに用いられているエポキシ樹脂の総量(以下、「全エポキシ樹脂量」ともいう)に対して、3官能のエポキシ樹脂が30質量%以上であることが好ましく、30~70質量%であることが特に好ましい。70質量%を超えると、得られるプリプレグの取扱い性が低下する場合がある。
 3官能のエポキシ樹脂は、エポキシ樹脂組成物[A]に含まれるエポキシ樹脂量に対して、10質量%以上であることが好ましく、20~75質量%であることが特に好ましい。
 3官能のエポキシ樹脂としては、N,N,O-トリグリシジル-p-アミノフェノール、N,N,O-トリグリシジル-m-アミノフェノールが例示される。
 これらのエポキシ樹脂は単独で用いても良いし、2種以上を併用しても良い。
 (ii)硬化剤
 本発明に用いられる硬化剤は、エポキシ樹脂を硬化させる公知の硬化剤である。具体的には、ジシアンジアミド、芳香族アミン系硬化剤の各種異性体、アミノ安息香酸エステル類が挙げられる。ジシアンジアミドは、プリプレグの保存安定性に優れるため好ましい。また、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルメタン等の芳香族ジアミン化合物及びこれらの非反応性置換基を有する誘導体は、耐熱性が高い硬化物を得ることができるため、特に好ましい。さらに、3,3’-ジアミノジフェニルスルホンは、得られる硬化物の靭性が高いため最も好ましい。非反応性置換基とは、上記(i)エポキシ樹脂において説明した通りである。
 アミノ安息香酸エステル類としては、トリメチレングリコールジ-p-アミノベンゾエートやネオペンチルグリコールジ-p-アミノベンゾエートが好ましく用いられる。これら硬化剤を用いて硬化させた複合材料は、ジアミノジフェニルスルホンの各種異性体を用いて硬化させた複合材料と比較して、耐熱性は低いが、引張伸度が高い。そのため、複合材料の用途に応じて硬化剤は適宜選択される。
 エポキシ樹脂組成物[A]に含まれる硬化剤の量は、エポキシ樹脂組成物[A]とエポキシ樹脂組成物[B]とに用いられている全てのエポキシ樹脂を硬化させるのに適した量であり、用いるエポキシ樹脂や硬化剤の種類に応じて適宜調節される。例えば、芳香族ジアミン化合物を硬化剤として用いる場合、全エポキシ樹脂量100質量部に対して25~55質量部であることが好ましい。また、保存安定性の観点から、エポキシ樹脂組成物[A]に含まれるエポキシ樹脂100質量部に対して、30~100質量部であることが好ましく、30~70質量部であることが特に好ましい。
 (iii)熱可塑性樹脂
 本発明の第1の形態に用いられる熱可塑性樹脂は、従来公知の熱可塑性樹脂である。熱可塑性樹脂は、エポキシ樹脂可溶性熱可塑性樹脂とエポキシ樹脂不溶性熱可塑性樹脂とに大別される。
 複合材料の耐衝撃性を高くするためには、エポキシ樹脂組成物[A]は、エポキシ樹脂可溶性熱可塑性樹脂又はエポキシ樹脂不溶性熱可塑性樹脂を含有していることが必須である。エポキシ樹脂組成物[A]は、エポキシ樹脂可溶性熱可塑性樹脂及びエポキシ樹脂不溶性熱可塑性樹脂の両者を含有していることが特に好ましい。
 エポキシ樹脂可溶性熱可塑性樹脂がエポキシ樹脂に完全に溶解する場合は、エポキシ樹脂可溶性熱可塑性樹脂とエポキシ樹脂不溶性熱可塑性樹脂とが配合されることが好ましい。一方、エポキシ樹脂可溶性熱可塑性樹脂がエポキシ樹脂に一部溶解する場合は、エポキシ樹脂可溶性熱可塑性樹脂のみ、又はエポキシ樹脂可溶性熱可塑性樹脂とエポキシ樹脂不溶性熱可塑性樹脂とが配合されることが好ましい。
 本発明において、エポキシ樹脂可溶性熱可塑性樹脂とは、複合材料を成形する温度又はそれ以下の温度で、エポキシ樹脂に一部又は全部が溶解し得る熱可塑性樹脂をいう。一部が溶解するとは、後述する「実質的に溶解しない熱可塑性樹脂」を除く意味である。エポキシ樹脂可溶性熱可塑性樹脂の具体例としては、ポリエーテルスルホン、ポリスルホン、ポリエーテルイミド、ポリカーボネート等が挙げられる。これらは、単独で用いても、2種以上を併用して用いても良い。
 エポキシ樹脂可溶性熱可塑性樹脂は、プリプレグから複合材料を成形する硬化過程においてエポキシ樹脂に溶解され、エポキシ樹脂組成物の粘度を増加させてプリプレグから樹脂が流出するのを防ぐ効果もある。
 エポキシ樹脂可溶性熱可塑性樹脂は、エポキシ樹脂と反応性を有する反応基を有するものが好ましい。エポキシ樹脂と反応性を有する反応基を有するエポキシ樹脂可溶性熱可塑性樹脂は、靭性向上効果、耐薬品性、耐熱性、耐湿熱性、及びプリプレグから複合材料を成形する硬化過程における溶解安定性が高いので好ましい。
 エポキシ樹脂可溶性熱可塑性樹脂は、その全部又は一部を予めエポキシ樹脂に溶解させてから配合することもできるし、エポキシ樹脂に溶解させずに分散粒子として配合することもできる。エポキシ樹脂可溶性熱可塑性樹脂は、プリプレグから複合材料を成形する硬化過程において、エポキシ樹脂可溶性熱可塑性樹脂がエポキシ樹脂中に溶解することが好ましい。なお、一般的に複合材料を成形する際の温度は100~190℃である。
 エポキシ樹脂可溶性熱可塑性樹脂の配合量は、第1の形態のプリプレグに用いられる全エポキシ樹脂量100質量部に対して、5~50質量部が好ましく、15~40質量部がより好ましい。5質量部未満の場合、このプリプレグを用いて作製する複合材料の耐衝撃性が不十分になる場合がある。50質量部を超える場合、粘度が著しく高くなり、エポキシ樹脂組成物[A]の取扱い性が悪化する場合がある。
 また、1次プリプレグの加工性の観点から、エポキシ樹脂可溶性熱可塑性樹脂は、エポキシ樹脂組成物[A]に含まれるエポキシ樹脂100質量部に対して、5~60質量部となるように配合することが好ましい。
 エポキシ樹脂可溶性熱可塑性樹脂の形態は、特に限定されないが、粒子状であることが好ましい。粒子状のエポキシ樹脂可溶性熱可塑性樹脂は、エポキシ樹脂組成物中に均質に配合することができる。また、得られるプリプレグの成形性が高い。エポキシ樹脂可溶性熱可塑性樹脂の平均粒子径は、1~50μmであることが好ましく、3~30μmであることが特に好ましい。1μm未満である場合、エポキシ樹脂組成物の粘度が著しく増粘する。そのため、エポキシ樹脂組成物に十分な量のエポキシ樹脂可溶性熱可塑性樹脂を添加することが困難となる場合がある。50μmを超える場合、エポキシ樹脂組成物をシート状に加工する際、均質な厚みのシートが得られ難くなる場合がある。
 本発明において、エポキシ樹脂不溶性熱可塑性樹脂とは、複合材料を成形する温度又はそれ以下の温度において、エポキシ樹脂に実質的に溶解しない熱可塑性樹脂をいう。即ち、複合材料を成形する温度において、熱可塑性樹脂をエポキシ樹脂中に投入して攪拌した際に、粒子の大きさ又は形状が変化しない熱可塑性樹脂をいう。なお、一般的に複合材料を成形する際の温度は100~190℃である。
 エポキシ樹脂不溶性熱可塑性樹脂や上記エポキシ樹脂可溶性熱可塑性樹脂の一部(硬化後のマトリクス樹脂において溶解せずに残存したエポキシ樹脂可溶性熱可塑性樹脂)は、その粒子が複合材料のマトリクス樹脂中に分散する状態となる(以下、この分散している粒子を「層間粒子」ともいう)。この層間粒子は、複合材料が受ける衝撃の伝播を抑制する。その結果、複合材料の耐衝撃性が向上する。層間粒子は、複合材料に含まれる全エポキシ樹脂量100質量部に対して、5~60質量部存在することが好ましい。
 エポキシ樹脂不溶性熱可塑性樹脂としては、ポリアミド、ポリアセタール、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリエステル、ポリアミドイミド、ポリイミド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエチレンナフタレート、ポリアラミド、ポリエーテルニトリル、ポリベンズイミダゾールが例示される。これらの中でも、ポリアミド、ポリアミドイミド、ポリイミドは、靭性及び耐熱性が高いため好ましい。ポリアミドやポリイミドは、複合材料に対する靭性向上効果が特に優れている。これらは、単独で用いてもよいし、2種以上を併用しても良い。また、これらの共重合体を用いることもできる。
 非晶性ポリイミドや、ナイロン6(商標)(カプロラクタムの開環重縮合反応により得られるポリアミド)、ナイロン12(ラウリルラクタムの開環重縮合反応により得られるポリアミド)、非晶性のナイロン(透明ナイロンとも呼ばれ、ポリマーの結晶化が起こらない、又はポリマーの結晶化速度が極めて遅いナイロンをいう)のようなポリアミドは、複合材料の耐熱性を向上させる効果が特に高い。
 エポキシ樹脂不溶性熱可塑性樹脂の配合量は、第1の発明のプリプレグの全エポキシ樹脂量100質量部に対して、10~45質量部であることが好ましく、20~45質量部であることが特に好ましい。10質量部未満の場合は、得られる複合材料の耐衝撃性が不十分になる場合がある。また、エポキシ樹脂不溶性熱可塑性樹脂の配合量が45質量部を超える場合、得られるプリプレグの樹脂含浸性、ドレープ性などが低下する場合がある。
 エポキシ樹脂不溶性熱可塑性樹脂の形態は、特に限定されないが、粒子状であることが好ましい。粒子状のエポキシ樹脂不溶性熱可塑性樹脂は、エポキシ樹脂組成物中に均質に配合することができる。また、得られるプリプレグの成形性が高い。該エポキシ樹脂不溶性熱可塑性樹脂の平均粒子径は、1~50μmであることが好ましく、3~30μmであることが特に好ましい。1μm未満である場合、このエポキシ樹脂組成物の粘度が著しく増粘する。そのため、エポキシ樹脂組成物に十分な量のエポキシ樹脂不溶性熱可塑性樹脂を添加することが困難となる場合がある。50μmを超える場合、エポキシ樹脂組成物をシート状に加工する際、均質な厚みのシートが得られ難くなる場合がある。
 (4)エポキシ樹脂組成物[B]
 エポキシ樹脂組成物[B]は、少なくともエポキシ樹脂と該エポキシ樹脂に溶解したエポキシ樹脂可溶性熱可塑性樹脂とからなる。エポキシ樹脂組成物[B]は、硬化剤を含有しない。図2(c)中において、第1の形態のプリプレグの表面層115aを構成する成分である。以下、エポキシ樹脂組成物[B]に用いられる各成分について説明する。
 (i)エポキシ樹脂
 エポキシ樹脂組成物[B]に配合されるエポキシ樹脂は、従来公知のエポキシ樹脂である。得られる複合材料が優れた機械特性を発揮するためには、芳香族基を含有するエポキシ樹脂が好ましく、グリシジルアミン構造、グリシジルエーテル構造のいずれかを含有するエポキシ樹脂が特に好ましい。また、脂環族エポキシ樹脂も好適に用いることができる。これらのエポキシ樹脂は単独で用いても良いし、2種以上を併用しても良い。
 (ii)硬化剤
 エポキシ樹脂組成物[B]は、エポキシ樹脂を硬化させる化合物を含有しない。
 (iii)熱可塑性樹脂
 エポキシ樹脂組成物[B]は、エポキシ樹脂に溶解した熱可塑性樹脂を含有する。エポキシ樹脂組成物[B]に配合される熱可塑性樹脂は、既に説明したエポキシ樹脂可溶性熱可塑性樹脂と同様である。
 エポキシ樹脂組成物[B]に配合されるエポキシ樹脂可溶性熱可塑性樹脂は、エポキシ樹脂組成物[A]に配合されるエポキシ樹脂可溶性熱可塑性樹脂と同一のものであってもよいし、異なるものであってもよい。
 エポキシ樹脂組成物[B]に含まれるエポキシ樹脂可溶性熱可塑性樹脂の含有量は、エポキシ樹脂組成物[B]に含まれるエポキシ樹脂100質量部に対して、5~50質量部であることが好ましく、15~40質量部であることが特に好ましい。5質量部未満の場合は、得られるプリプレグを用いて作製する複合材料の耐衝撃性が不十分となる場合がある。また、50質量部を超える場合、エポキシ樹脂組成物[B]の粘度が著しく高くなり取扱い性が悪化する場合がある。
 (5)プリプレグの製造方法
 本発明の第1の形態のプリプレグは、従来公知の方法を利用して製造できる。特に、樹脂組成物を加熱により粘度を低下させて強化繊維層内に含浸させる乾式法によって製造されることが好ましい。かかる乾式法は、樹脂組成物を有機溶媒に溶解させて強化繊維層内に含浸させた後に該有機溶媒を除去する湿式法と比べて、有機溶媒が残存しないため好ましい。以下、乾式法による製造方法により第1の形態のプリプレグを製造する方法について説明する。
 先ず、エポキシ樹脂組成物[A]からなるフィルム及びエポキシ樹脂組成物[B]からなるフィルム(以下、それぞれ「樹脂Aフィルム」、「樹脂Bフィルム」という)が公知の方法によってそれぞれ作成される。次に、炭素繊維等からなる強化繊維層の厚さ方向片側又は両側に、樹脂Aフィルムが積層され、熱ローラー等を用いて熱プレスされる。この熱プレスにより、樹脂Aフィルムのエポキシ樹脂組成物[A]が強化繊維層内に含浸されて、1次プリプレグが得られる。その後、この1次プリプレグの厚さ方向片側又は両側に、樹脂Bフィルムが積層され、熱ローラー等を用いて熱プレスされる。この熱プレスにより、1次プリプレグと樹脂Bフィルムとが積層された状態を保ちながら一体化され、第1の発明のプリプレグが得られる。
 図2(a)~(c)は、本発明の第1の形態のプリプレグが製造される過程を順次示す説明図である。先ず、強化繊維111からなる強化繊維層112の厚さ方向両側に、エポキシ樹脂組成物[A]からなる樹脂Aフィルム113aが積層される(図2(a))。この強化繊維層112と樹脂Aフィルム113aとは、熱ローラー等を用いて熱プレスされる。この熱プレスにより、エポキシ樹脂組成物[A]が強化繊維層112に含浸され、1次プリプレグ110が得られる(図2(b))。その後、この1次プリプレグ110の厚さ方向の両側に、エポキシ樹脂組成物[B]からなる樹脂Bフィルム115aが積層される(図2(c))。この1次プリプレグ110と樹脂Bフィルム115aとは、熱ローラー等を用いて熱プレスされる。この熱プレスにより、1次プリプレグ110と樹脂Bフィルム115aとは一体化され、第1の形態のプリプレグ100が得られる(図1)。
 図5は、第1の発明のプリプレグを製造する工程の一例を示す概念図である。図5中、21は炭素繊維等の繊維が一方向に引き揃えられた強化繊維層であり、矢印A方向に走行している。この強化繊維層21の厚さ方向両側には、フィルムロール23から供給される離型紙14a付きの樹脂Aフィルム13aが積層される。この強化繊維層21と樹脂Aフィルム13aとは、離型紙14aを介して熱ローラー40を用いて熱プレスされる。この熱プレスにより、1次プリプレグ10が形成される。その後、1次プリプレグの両面に積層されている離型紙14aは、1次プリプレグ10から剥離されてローラー24に巻き取られる。次いで、離型紙が除去された1次プリプレグ10の両面には、フィルムロール25から供給される離型紙付きの樹脂Bフィルム15aが積層される。この1次プリプレグ10と樹脂Bフィルム15aとは、離型紙を介して熱ローラー41を用いて熱プレスされる。この熱プレスにより、第1の発明のプリプレグ100が形成される。離型紙がその両面に貼付されているこのプリプレグ100は、ローラー101に巻き取られる。
 樹脂Aフィルムの熱プレス時の温度は、70~160℃であり、90~140℃が好ましい。70℃未満である場合、樹脂Aフィルムを構成するエポキシ樹脂組成物[A]の粘度が十分に低下しない。その結果、エポキシ樹脂組成物[A]を強化繊維層内に十分に含浸させ難い。160℃を超える場合、エポキシ樹脂組成物[A]が硬化しやすい。その結果、得られるプリプレグのドレープ性が悪化しやすい。
 樹脂Aフィルムの熱プレス時の線圧は、1~25kg/cmであり、2~15kg/cmが好ましい。1kg/cm未満である場合、樹脂Aフィルムを構成する樹脂組成物[A]を強化繊維層内に十分に含浸させ難い。25kg/cmを超える場合、強化繊維を損傷させやすい。
 樹脂Bフィルムの熱プレス時の温度は、50~90℃であり、60~80℃が好ましい。50℃未満である場合、表面のタックが強すぎるため、樹脂フィルムの離型性が悪化し、プリプレグの製造工程が安定しない場合がある。90℃を超える場合、樹脂Bフィルムを構成するエポキシ樹脂組成物[B]と、1次プリプレグを構成するエポキシ樹脂組成物[A]とが混ざり、硬化剤との反応が進行する。その結果、プリプレグを長期間保存すると、タック性及びドレープ性が低下する。
 樹脂Bフィルムの熱プレス時の線圧は、0.1~10kg/cmであり、0.5~6kg/cmが好ましい。0.1kg/cm未満である場合、1次プリプレグと樹脂Bフィルムとが十分に接着されない。10kg/cmを超える場合、樹脂Bフィルムを構成するエポキシ樹脂組成物[B]と、1次プリプレグを構成するエポキシ樹脂組成物[A]とが混ざり、硬化剤との反応が進行する。その結果、プリプレグを長期間保存すると、タック性及びドレープ性が低下する。
 上記製造方法により製造される第1の発明のプリプレグは、図1のように、強化繊維層内にエポキシ樹脂組成物[A]113が含浸されている。
 プリプレグの生産速度は特に限定されないが、生産性や経済性などを考慮すると、0.1m/min以上であり、1m/min以上であることが好ましく、5m/min以上であることが特に好ましい。
 樹脂Aフィルム、樹脂Bフィルムはそれぞれ公知の方法で作製できる。例えば、ダイコーター、アプリケーター、リバースロールコーター、コンマコーター、ナイフコーターなどを用いて、離型紙や離型フィルムなどの支持体上に流延、キャストすることにより作製できる。フィルム化の際の樹脂温度は、その樹脂の組成や粘度に応じて適宜設定される。
 樹脂Bフィルムの厚さは、2~30μmが好ましく、5~20μmが特に好ましい。2μm未満の場合は、得られるプリプレグのタック性が低下する。30μmを超える場合は、得られるプリプレグの取扱い性や複合材料の成形精度が低下しやすい。
 本発明の第1の形態のプリプレグは、上記の製造方法に限らず、例えば、強化繊維層の厚さ方向片側又は両側に樹脂Aフィルム、樹脂Bフィルムを順次積層して、1段階で熱プレスして製造することもできる。この場合は、エポキシ樹脂組成物[A]内に含まれている硬化剤が、エポキシ樹脂組成物[B]に拡散しないように低温で熱プレスを行う必要がある。
 本発明の第1の形態のプリプレグは、強化繊維基材の含有量が40~80質量%であることが好ましく、50~70質量%であることが特に好ましい。40質量%未満の場合は、このプリプレグを用いて作製される複合材料の強度等が低い。80質量%を超える場合は、強化繊維層内に含浸される樹脂量が不足する。その結果、このプリプレグを用いて作製される複合材料にボイド等を発生させる。
 本発明の第1の形態のプリプレグは、本発明の効果を妨げない範囲において安定剤や離型剤、フィラー、着色剤等が配合されていても良い。
 本発明の第1の形態のプリプレグは、硬化反応させる際に、加熱することによって、エポキシ樹脂組成物[A]中に含まれている硬化剤がエポキシ樹脂組成物[B]中に拡散される。これにより、エポキシ樹脂組成物[A]と、[B]とが共に硬化される。
 [本発明の第2の形態](表面層に硬化剤を含むプリプレグ)
 以下、本発明の第2の形態のプリプレグについて説明する。
(1)プリプレグの構造
 本発明の第2の形態のプリプレグは、強化繊維基材と、該強化繊維基材が形成する強化繊維層内に含浸されたエポキシ樹脂組成物[C]とからなる1次プリプレグと、
 該1次プリプレグの片面又は両面に形成されるエポキシ樹脂組成物[D]からなる表面層と、が一体化されてなるプリプレグである。
 図3は、第2の形態のプリプレグの断面概略を示す説明図である。図3中、200は第2の形態のプリプレグであり、210は1次プリプレグである。1次プリプレグ210は、炭素繊維211からなる強化繊維層と、この強化繊維層内に含浸しているエポキシ樹脂組成物[C]213とから構成されている。1次プリプレグ210の表面には、樹脂組成物[D]215からなる表面層が1次プリプレグ210と一体となって形成されている。
 本発明の第2の形態のプリプレグにおいて、エポキシ樹脂組成物[C]に含まれるエポキシ樹脂とエポキシ樹脂組成物[D]に含まれるエポキシ樹脂との質量比は、9:1~1:1であることが好ましい。
 (2)1次プリプレグ
 本発明の第2の形態において1次プリプレグは、プリプレグ断面における中央部の強化繊維層と、該強化繊維層に含浸されたエポキシ樹脂組成物[C]とからなる。1次プリプレグは、図4(b)及び図4(c)中、1次プリプレグ210として表される。
 1次プリプレグに用いられる強化繊維基材の種類、形態は、第1の形態において説明した強化繊維基材と同様である。
 (3)エポキシ樹脂組成物[C]
 エポキシ樹脂組成物[C]は、少なくともエポキシ樹脂及び熱可塑性樹脂を含有し、かつ硬化剤を含有しないエポキシ樹脂組成物である。以下、エポキシ樹脂組成物[C]に用いられる各成分について説明する。
 (i)エポキシ樹脂
 本発明の第2の形態に用いるエポキシ樹脂の種類、配合量、形態は、以下の点を除いて第1の形態において説明したエポキシ樹脂と同様である。
 エポキシ樹脂組成物[C]とエポキシ樹脂組成物[D]とに用いられているエポキシ樹脂の総量(以下、「全エポキシ樹脂量」ともいう)に対して、3官能のエポキシ樹脂が30質量%以上であることが好ましく、30~80質量%であることが特に好ましい。80質量%を超えると、得られるプリプレグの取扱い性が低下する場合がある。
 3官能のエポキシ樹脂は、エポキシ樹脂組成物[C]に含まれるエポキシ樹脂量に対して、10質量%以上であることが好ましく、20~85質量%であることが特に好ましい。
 (ii)硬化剤
 エポキシ樹脂組成物[C]は、エポキシ樹脂を硬化させる化合物を含有しない。
 (iii)熱可塑性樹脂
 本発明の第2の形態に用いる熱可塑性樹脂の種類、配合量、形態は、以下の点を除いて第1の形態において説明した熱可塑性樹脂と同様である。
 複合材料の耐衝撃性を向上させるためには、エポキシ樹脂組成物[C]は、エポキシ樹脂可溶性熱可塑性樹脂又はエポキシ樹脂不溶性熱可塑性樹脂を含有していることが必須である。エポキシ樹脂組成物[C]は、エポキシ樹脂可溶性熱可塑性樹脂及びエポキシ樹脂不溶性熱可塑性樹脂の両者を含有していることが特に好ましい。
 エポキシ樹脂組成物[C]に含まれるエポキシ樹脂可溶性熱可塑性樹脂の量は、1次プリプレグの加工性の観点から、エポキシ樹脂組成物[C]に含まれるエポキシ樹脂100質量部に対して、5~60質量部となるように配合することが好ましい。
 (4)エポキシ樹脂組成物[D]
 エポキシ樹脂組成物[D]は、少なくともエポキシ樹脂、その硬化剤及びエポキシ樹脂に溶解したエポキシ樹脂可溶性熱可塑性樹脂からなる。図4(c)中において、第2の形態のプリプレグの表面層215aを構成する成分である。以下、エポキシ樹脂組成物[D]に用いられる各成分について説明する。
 (i)エポキシ樹脂
 エポキシ樹脂組成物[D]に配合されるエポキシ樹脂の種類、配合量、形態は、第1の形態において説明したエポキシ樹脂と同様である。
 (ii)硬化剤
 本発明の第2の形態に用いる硬化剤の種類は、第1の形態において説明した硬化剤と同様である。
 エポキシ樹脂組成物[D]に含まれる硬化剤の量は、エポキシ樹脂組成物[C]とエポキシ樹脂組成物[D]両者の中に用いられている全エポキシ樹脂を硬化させるのに適した量である。用いるエポキシ樹脂や硬化剤の種類に応じて適宜調節される。例えば、芳香族ジアミン化合物を硬化剤として用いる場合、全エポキシ樹脂量100質量部に対して、25~55質量部であることが好ましい。また、保存安定性の観点から、エポキシ樹脂組成物[D]に含まれるエポキシ樹脂100質量部に対して、50~300質量部であることが好ましく、100~200質量部であることがより好ましい。
 (iii)熱可塑性樹脂
 エポキシ樹脂組成物[D]は、エポキシ樹脂に溶解した熱可塑性樹脂を含有する。エポキシ樹脂組成物[D]に配合される熱可塑性樹脂はエポキシ樹脂可溶性熱可塑性樹脂である。
 エポキシ樹脂可溶性熱可塑性樹脂の種類、形態は、第1の形態において説明したエポキシ樹脂可溶性熱可塑性樹脂と同様である。
 エポキシ樹脂組成物[D]に含まれるエポキシ樹脂可溶性熱可塑性樹脂の配合量は、エポキシ樹脂組成物[D]に含まれるエポキシ樹脂100質量部に対して、5~50質量部が好ましく、15~40質量部がより好ましい。配合量が5質量部未満の場合、得られるプリプレグを用いて作製する複合材料の耐衝撃性が不十分になる場合がある。また、50質量部を超える場合、エポキシ樹脂組成物[D]の粘度が著しく高くなり取扱い性が悪化する場合がある。
 (5)プリプレグの製造方法
 本発明の第2の形態におけるプリプレグの製造方法は、第1の形態におけるエポキシ樹脂組成物[A]、エポキシ樹脂組成物[B]、樹脂Aフィルム及び樹脂Bフィルムを、それぞれエポキシ樹脂組成物[C]、エポキシ樹脂組成物[D]、樹脂Cフィルム及び樹脂Dフィルムと読み替える他は、第1の発明において説明したプリプレグの製造方法と同様である。
 上記製造方法により、製造される本発明の第2の形態のプリプレグは、図3のように、強化繊維層内にエポキシ樹脂組成物[C] 213が含浸されている。
 本発明の第2の形態のプリプレグは、本発明の効果を妨げない範囲において安定剤や離型剤、フィラー、着色剤等が配合されていても良い。
 本発明の第2の形態のプリプレグは、硬化反応させる際に、加熱することによって、エポキシ樹脂組成物[D]中に含まれている硬化剤がエポキシ樹脂組成物[C]中に拡散される。これにより、エポキシ樹脂組成物[C]と、[D]とが共に硬化される。
 本発明のプリプレグが複数枚積層されて得られる積層物を、常法より成形硬化することによって複合材料が作製できる。成形方法としては、プレス成形法、オートクレーブ成形法、ラッピングテープ法及び内圧成形法などが挙げられる。
 本発明のプリプレグを用いて得られる複合材料は、航空機構造部材、風車の羽根、自動車外板及びICトレイやノートパソコンの筐体(ハウジング)などのコンピュータ用途、さらにはゴルフシャフトやテニスラケットなどスポーツ用途に好ましく用いられる。
 以下、実施例によって本発明をより詳細に説明する。本実施例、比較例において使用する成分や試験方法は以下の通りである。
 〔成分〕
 (強化繊維層)
 強化繊維層には、引張強度5800MPa(590kgf/mm)、弾性率310GPa(32tf/mm)の炭素繊維ストランドを用いた。
 (熱硬化性樹脂)
 ・アラルダイトMY0600(商品名)(以後、「MY0600」と記載する):ハンツマン・アドバンスト・マテリアルズ社製のグリシジルアミン型エポキシ樹脂(3官能基)
 ・アラルダイトMY0510(商品名)(以後、「MY0510」と記載する):ハンツマン・アドバンスト・マテリアルズ社製のグリシジルアミン型エポキシ樹脂(3官能基)
 ・スミエポキシELM100(商品名)(以後、「ELM100」と記載する):住友化学工業(株)製のグリシジルアミン型エポキシ樹脂(3官能基)
 ・エピコート604(商品名)(以後、「jER604」と記載する):ジャパンエポキシレジン(株)製のグリシジルアミン型エポキシ樹脂(4官能基)
 ・エピコート828(商品名)(以後、「jER828」と記載する):ジャパンエポキシレジン(株)製のグリシジルアミン型エポキシ樹脂(2官能基)
 (熱可塑性樹脂)
 ・PES-5003P(商品名):住友化学工業(株)製のポリエーテルスルホン(粒子径3~40μm)
 ・TR-55(商品名):エムスケミージャパン社製のグリルアミド(粒子径5~35μm)
 (硬化剤)
 ・3,3’-ジアミノジフェニルスルホン(以後、「3,3’-DDS」と記載する):日本合成加工社製の芳香族アミン系硬化剤
 ・4,4’-ジアミノジフェニルスルホン(以後、「4,4’-DDS」と記載する):和歌山精化社製の芳香族アミン系硬化剤
 〔吸水率〕
 プリプレグを100×100mmにカットし、質量(W1)を測定した。その後、デシケーター内で、プリプレグを水中に沈めた。デシケーター内を、10kPa以下に減圧することにより、プリプレグ内部の空気を水と置換させた。プリプレグを水中から取り出し、表面の水を拭き取り、プリプレグの質量(W2)を測定した。これらの測定値から下記式
   吸水率(%)=[(W2-W1)/W1]×100
     W1:プリプレグの質量(g)
     W2:吸水後のプリプレグの質量(g)
 を用いて吸水率を算出した。
 〔室温保存安定性〕
 プリプレグを温度26.7℃、湿度65%に10日間保存した。その後、プリプレグをカットし、金型に積層することにより評価した。評価結果は以下の基準(○~×)で表した。
○:金型へ積層しても十分追従し、製造直後とほとんど変わらない。
△:プリプレグの硬化反応が進行し、タック性及び/又はドレープ性がやや悪化しているが、金型へ積層しても追従し、使用には問題が無い。
×:プリプレグの硬化反応が進行し、タック性及び/又はドレープ性が著しく低下しており、金型へ積層することが困難。
 〔タック性〕
 プリプレグのタック性は、タッキング試験装置 TAC-II(RHESCA CO., LTD.)を用いて以下の方法により測定した。27℃に保持された試験ステージにプリプレグをセットし、27℃に保持された直径5mmのタックプローブ(SUS製)を初期荷重100gfでプリプレグに接触させた。このタックプローブを試験速度(離脱速度)10mm/secでプリプレグから離脱させる際にタックプローブが受ける抵抗の最大値を荷重値して取得した。製造直後のプリプレグと、温度26.7℃、湿度65%に10日間保存したプリプレグとについて、それぞれタックプローブ試験を実施した。評価結果は以下の基準(○~×)で表した。
○:製造直後に測定するタックプローブ試験の荷重値が200gf以上であり、10日間保存後に測定するタックプローブ試験の荷重値がその50~100%(以下、この割合を「タック保持率」ともいう)である。
△:製造直後に測定するタックプローブ試験の荷重値が200gf以上であり、10日間保存後のタック保持率が25~50%である。
×:製造直後に測定するタックプローブ試験の荷重値が200gf以上であり、10日間保存後のタック保持率が0~25%である。
 〔ドレープ性〕
 プリプレグのドレープ性は、ASTM D1388に準拠して、以下の試験により評価した。プリプレグを0°繊維方向に対し90°方向にカットし、傾斜角度 41.5°の傾斜に対するドレープ性(flexural rigidity, mg*cm)を評価した。この評価は、プリプレグの製造直後と、温度26.7℃、湿度65%で所定の期間保存した後とに、それぞれ実施した。評価結果は以下の基準(○~×)で表した。
○:20日間経過後のドレープ性は製造直後と変わらない。
△:10日間経過後のドレープ性は製造直後と変わらないが、10日以降からは、若干ドレープ性が低下した。
×:10日間経過後のドレープ性は製造直後よりも低下し、使用するには問題のあるレベルであった。
 〔衝撃後圧縮強度(CAI)〕
 得られたプリプレグをカット、積層し、積層構成[+45/0/-45/90]3Sの積層体を得た。通常の真空オートクレーブ成形法を用い、0.59MPaの圧力下、180℃の条件で2時間成形した。得られた成形物を幅101.6mm × 長さ152.4mmに切断し、衝撃後圧縮強度(CAI)試験の試験片を得た。この試験片を用いて30.5J衝撃後のCAIを測定した。
 〔層間靭性(GIc)〕
 得られたプリプレグを所定の寸法にカットした後、積層し、0°方向に10層積層した積層体を2つ作製した。初期クラックを発生させるために、離型フィルムを2つの積層体の間にはさみ、両者を組み合わせて、積層構成[0]20のプリプレグ積層体を得た。通常の真空オートクレーブ成形法を用い、0.59MPaの圧力下、180℃の条件で2時間成形した。得られた成形物(複合材料)を幅12.7mm × 長さ304.8mmの寸法に切断し、層間破壊靭性モードI(GIc)の試験片を得た。試験方法として、双片持ちはり層間破壊靱性試験法(DCB法)を用い、き裂進展長さ、荷重、及びき裂開口変位を計測することにより、GIc算出した。
 〔層間破壊靭性モードII(GIIc)〕
 得られたプリプレグを所定の寸法にカットした後、積層し、0°方向に10層積層した積層体を2つ作製した。初期クラックを発生させるために、離型フィルムを2つの積層体の間にはさみ、両者を組み合わせ、積層構成[0]20のプリプレグ積層体を得た。通常の真空オートクレーブ成形法を用い、0.59MPaの圧力下、180℃の条件で2時間成形した。得られた成形物(複合材料)を幅12.7mm × 長さ304.8mmの寸法に切断し、層間破壊靭性モードII(GIIc)の試験片を得た。この試験片を用いて、GIIc試験を行った。
 GIIc試験方法として、3点曲げ荷重を負荷するENF(end notched flexure test)試験を行った。
 支点間距離101.6mm、厚さ25μmのPTFEフィルムにより作製したクラックの先端が、支点から38.1mmとなる位置に試験片を配置し、2.54mm/minの速度で曲げの負荷を与えて初期クラックを形成させた。
 その後、初期クラックにより生じたクラックの先端が、支点から25.4mmの位置になるように試験片を配置し、2.54mm/minの速度で曲げの負荷を与えて試験を行った。
 同様に、クラック先端が、支点から25.4mmの位置になるように試験片を配置し、2.54mm/minの速度で曲げの負荷を与えて、3回の曲げ試験を実施し、それぞれの曲げ試験の荷重―ストロークからGIIcを算出した。
 〔実施例1~11、比較例1、2〕
 先ず、表1又は表2に示す各成分を攪拌機を用いて80℃で30分間混合して、エポキシ樹脂組成物[A]及びエポキシ樹脂組成物[B]をそれぞれ調製した。このエポキシ樹脂組成物[A]及びエポキシ樹脂組成物[B]を、それぞれフィルムコーターを用いて離型フィルム上に塗布し、樹脂Aフィルム及び樹脂Bフィルムを得た。
次に、樹脂Aフィルム2枚の間に、前記炭素繊維ストランドを一方向に均一に配列(目付け(190g/m))させて供給し、ローラーを用いて、10kg/cm、130℃で加圧及び加熱して、1次プリプレグを得た。
その後、樹脂Bフィルム2枚の間に前記1次プリプレグを供給し、ローラーを用いて、1.5kg/cm、70℃で加圧及び加熱してプリプレグを得た。
プリプレグ全体に対する樹脂の含有率は33質量%であった。得られたプリプレグの各種性能を表1又は表2に示した。
Figure JPOXMLDOC01-appb-T000001
 実施例1は、CAI、GIc、GIIc(以下、「コンポジット物性」ともいう)が非常に高く、10日間保存後のタック保持率が55%であり、ドレープ性も比較的良好であった。
 実施例2は、コンポジット物性が非常に高く、10日間保存後のタック保持率が60%であり、ドレープ性も比較的良好であった。
 実施例3は、コンポジット物性が高く、10日間保存後のタック保持率が55%であり、ドレープ性も比較的良好であった。
 実施例4は、コンポジット物性が高く、10日間保存後のタック保持率が65%であり、ドレープ性も比較的良好であった。
 実施例5は、コンポジット物性が高く、10日間保存後のタック保持率が45%であり、ドレープ性も比較的良好であった。
 実施例6は、コンポジット物性が非常に高く、10日間保存後のタック保持率が40%であり、ドレープ性は良好であった。
 実施例7は、コンポジット物性が非常に高く、10日間保存後のタック保持率が40%であり、ドレープ性も比較的良好であった。
 実施例8は、10日間保存後のタック保持率が70%であり、ドレープ性も良好であったが、硬化剤に4,4’-DDSを用いたため、コンポジット物性が少し低下した。
 実施例9は、10日間保存後のタック保持率が80%であり、ドレープ性も良好であったが、3官能グリシジルアミン型エポキシ樹脂を用いていないため、コンポジット物性が少し低下した。
 実施例10は、10日間保存後のタック保持率が55%であり、ドレープ性も良好であったが、硬化剤に4,4’-DDSを用いたため、コンポジット物性が少し低下した。
 実施例11は、10日間保存後のタック保持率が80%であり、ドレープ性も良好であったが、3官能グリシジルアミン型エポキシ樹脂を用いていないため、コンポジット物性が少し低下した。
Figure JPOXMLDOC01-appb-T000002

 比較例1は、10日間保存後のタック保持率が52%と良好であったが、内層に高濃度の3官能グリシジルアミン型エポキシ樹脂MY0600と、硬化剤3,3’-DDSとが存在するため、室温保存安定性とドレープ性が著しく悪化した。
 比較例2は、含浸層(内層)、タック層(表層)に、高濃度のMY0600と、硬化剤3,3’-DDSとが存在するため、室温保存安定性とタック保持性、ドレープ性が著しく悪化した。10日間保存後のタック保持率は、10%と非常に低い値であった。
 〔比較例3~8〕
 先ず、表3に示す各成分を、攪拌機を用いて80℃で30分間混合して均一とし、樹脂組成物を得た。得られた樹脂組成物を、フィルムコーターを用いて離型フィルム上に塗布し、目付け5g/m~40g/mの樹脂フィルムを得た。
次に、樹脂フィルム2枚の間に、前記炭素繊維ストランドを一方向に均一に配列(目付け(190g/m))させて供給し、ローラーを用いて5kg/cm、130℃で加圧及び加熱してプリプレグを得た。
プリプレグ全体に対する樹脂の含有率は33質量%であった。得られたプリプレグの各種性能を表3に示した。
Figure JPOXMLDOC01-appb-T000003

 比較例3~6は、一段階で含浸させたため、プリプレグの樹脂含浸性が悪い。また、3官能グリシジルアミン型エポキシ樹脂が高濃度に存在し、3,3’-DDSとの硬化反応により、室温保存安定性、タック保持性、ドレープ性が著しく悪く、使用するのが困難な状態であった。比較例3~6のプリプレグは、10日間保存後のタック保持率が10%以下であった。
 比較例7~8は、一段階で含浸させたため、プリプレグの樹脂含浸性が悪い。また、表層樹脂が経時的に沈み込み、プリプレグのタック性が著しく悪化し、使用するのが困難な状態となった。比較例7~8のプリプレグは、10日間保存後のタック保持率が10%以下であった。
 〔実施例12~18、比較例9~10〕
 先ず、表4又は表5に示す各成分を攪拌機を用いて80℃で30分間混合して、エポキシ樹脂組成物[C]及びエポキシ樹脂組成物[D]をそれぞれ調製した。このエポキシ樹脂組成物[C]及びエポキシ樹脂組成物[D]を、それぞれフィルムコーターを用いて離型フィルム上に塗布し、樹脂Cフィルム及び樹脂Dフィルムを得た。
次に、樹脂Cフィルム2枚の間に、前記炭素繊維ストランドを一方向に均一に配列(目付け(190g/m))させて供給し、ローラーを用いて、15kg/cm、130℃で加圧及び加熱して、1次プリプレグを得た。
その後、樹脂Dフィルム2枚の間に前記1次プリプレグを供給し、ローラーを用いて、1.5kg/cm、70℃で加圧及び加熱してプリプレグを得た。
プリプレグ全体に対する樹脂の含有率は33質量%であった。得られたプリプレグの各種性能を表4又は表5に示した。
Figure JPOXMLDOC01-appb-T000004
 実施例12は、コンポジット物性が非常に高く、10日間保存後のタック保持率が65%であり、ドレープ性も比較的良好であった。
 実施例13は、コンポジット物性が非常に高く、10日間保存後のタック保持率が60%であり、ドレープ性も比較的良好であった。
 実施例14は、コンポジット物性が高く、10日間保存後のタック保持率が55%であり、ドレープ性も比較的良好であった。
 実施例15は、コンポジット物性が高く、10日間保存後のタック保持率が65%であり、ドレープ性も比較的良好であった。
 実施例16は、コンポジット物性が高く、10日間保存後のタック保持率が45%であり、ドレープ性も比較的良好であった。
 実施例17は、コンポジット物性が高く、10日間保存後のタック保持率が40%であり、ドレープ性は良好であった。
 実施例18は、コンポジット物性が高く、10日間保存後のタック保持率が40%であり、ドレープ性も比較的良好であった。
Figure JPOXMLDOC01-appb-T000005
 比較例9は、10日間保存後のタック保持率が52%と良好であったが、内層に高濃度の3官能グリシジルアミン型エポキシ樹脂MY0600と、硬化剤3,3’-DDSとが存在するため、室温保存安定性とドレープ性が著しく悪い。
 比較例10は、含浸層(内層)、タック層(表層)に、高濃度の3官能グリシジルアミン型エポキシ樹脂MY0600と、硬化剤3,3’-DDSとが存在するため、室温保存安定性とタック保持性、ドレープ性が著しく悪い。10日間保存後のタック保持率は、10%と非常に低い値であった。
 〔比較例11~16〕
 先ず、表6に示す各成分を、攪拌機を用いて80℃で30分間混合して均一とし、樹脂組成物を得た。得られた樹脂組成物をフィルムコーターを用いて離型フィルム上に塗布し、目付け5g/m~40g/mの樹脂フィルムを得た。
次に、樹脂フィルム2枚の間に、前記炭素繊維ストランドを一方向に均一に配列(目付け(190g/m))させて供給し、ローラーを用いて5kg/cm、130℃で加圧及び加熱してプリプレグを得た。
プリプレグ全体に対する樹脂の含有率は33質量%であった。得られたプリプレグの各種性能を表6に示した。
Figure JPOXMLDOC01-appb-T000006

 比較例11~16は、一段階で含浸させたため、プリプレグの樹脂含浸性が悪い。また、3官能グリシジルアミン型エポキシ樹脂が高濃度に存在し、3,3’-DDSとの反応により、室温保存安定性、タック保持性、ドレープ性が著しく悪く、使用するのが困難な状態であった。比較例11~16の10日間保存後のタック保持率は、10%以下であった。
 比較例15、16は、一段階で含浸させたため、プリプレグの樹脂含浸性が悪い。また、表層樹脂が経時的に沈み込むことにより、プリプレグのタック性が著しく悪化し、使用するのが困難な状態であった。比較例15~16の10日間保存後のタック保持率は、10%以下であった。

Claims (20)

  1.  強化繊維基材と、該強化繊維基材が形成する強化繊維層内に含浸された、少なくともエポキシ樹脂及び熱可塑性樹脂を含むエポキシ樹脂組成物とからなる1次プリプレグと、
     該1次プリプレグの片面又は両面に形成される、少なくともエポキシ樹脂及びエポキシ樹脂に溶解したエポキシ樹脂可溶性熱可塑性樹脂を含むエポキシ樹脂組成物からなる表面層と、
    からなるプリプレグであって、
     1次プリプレグのエポキシ樹脂組成物と表面層のエポキシ樹脂組成物のどちらか一方のみがエポキシ樹脂の硬化剤を含むことを特徴とするプリプレグ。
  2.  強化繊維基材と、該強化繊維基材が形成する強化繊維層内に含浸されたエポキシ樹脂組成物[A]とからなる1次プリプレグと、
     該1次プリプレグの片面又は両面に形成されるエポキシ樹脂組成物[B]からなる表面層と、
    からなるプリプレグであって、エポキシ樹脂組成物[A]、[B]がそれぞれ、以下に示す配合であることを特徴とするプリプレグ。
    エポキシ樹脂組成物[A]:少なくともエポキシ樹脂、エポキシ樹脂の硬化剤、及び熱可塑性樹脂を含むエポキシ樹脂組成物
    エポキシ樹脂組成物[B]:少なくともエポキシ樹脂、及びエポキシ樹脂に溶解したエポキシ樹脂可溶性熱可塑性樹脂を含み、かつエポキシ樹脂の硬化剤を含まないエポキシ樹脂組成物
  3.  エポキシ樹脂組成物[A]及び[B]に含まれるエポキシ樹脂の総量の30質量%以上が3官能基のエポキシ樹脂である請求項2に記載のプリプレグ。
  4.  エポキシ樹脂組成物[A]に含まれる熱可塑性樹脂が、少なくともエポキシ樹脂可溶性熱可塑性樹脂を含む請求項2に記載のプリプレグ。
  5.  前記エポキシ樹脂可溶性熱可塑性樹脂が、ポリエーテルスルホン、ポリスルホン、ポリエーテルイミド、ポリカーボネートのいずれか1種又は2種以上からなる請求項4に記載のプリプレグ。
  6.  エポキシ樹脂組成物[A]が、さらにエポキシ樹脂不溶性熱可塑性樹脂を含有する請求項4又は5に記載のプリプレグ。
  7.  前記エポキシ樹脂不溶性熱可塑性樹脂が、非晶性ナイロン、ナイロン6、ナイロン12、非晶性ポリイミドのいずれか1種又は2種以上からなる請求項6に記載のプリプレグ。
  8.  エポキシ樹脂組成物[A]に含まれる硬化剤が、芳香族ジアミン化合物である請求項2に記載のプリプレグ。
  9.  前記芳香族ジアミン化合物が、3,3’-ジアミノジフェニルスルホンである請求項8に記載のプリプレグ。
  10.  強化繊維基材が形成する強化繊維層内に、以下に示す配合のエポキシ樹脂組成物[A]を含浸させて1次プリプレグを得、
     次いで、1次プリプレグの片面又は両面に、以下に示す配合のエポキシ樹脂組成物[B]を1次プリプレグと一体化させることを特徴とするプリプレグの製造方法。
    エポキシ樹脂組成物[A]:少なくともエポキシ樹脂、エポキシ樹脂の硬化剤、及び熱可塑性樹脂を含むエポキシ樹脂組成物
    エポキシ樹脂組成物[B]:少なくともエポキシ樹脂とエポキシ樹脂に溶解したエポキシ樹脂可溶性熱可塑性樹脂を含み、かつエポキシ樹脂の硬化剤を含まないエポキシ樹脂組成物
  11.  強化繊維基材と、該強化繊維基材が形成する強化繊維層内に含浸されたエポキシ樹脂組成物[C]とからなる1次プリプレグと、
     該1次プリプレグの片面又は両面に形成されるエポキシ樹脂組成物[D]からなる表面層と、
    とからなるプリプレグであって、エポキシ樹脂組成物[C]、[D]がそれぞれ、以下に示す配合であることを特徴とするプリプレグ。
    エポキシ樹脂組成物[C]:少なくともエポキシ樹脂及び熱可塑性樹脂を含み、かつエポキシ樹脂の硬化剤を含まないエポキシ樹脂組成物
    エポキシ樹脂組成物[D]:少なくともエポキシ樹脂、エポキシ樹脂の硬化剤、及びエポキシ樹脂に溶解したエポキシ樹脂可溶性熱可塑性樹脂を含むエポキシ樹脂組成物
  12.  エポキシ樹脂組成物[C]及び[D]に含まれるエポキシ樹脂の総量の30質量%以上が3官能基のエポキシ樹脂である請求項11に記載のプリプレグ。
  13.  エポキシ樹脂組成物[C]に含まれる熱可塑性樹脂が、少なくともエポキシ樹脂可溶性熱可塑性樹脂を含む請求項11に記載のプリプレグ。
  14.  前記エポキシ樹脂可溶性熱可塑性樹脂が、ポリエーテルスルホン、ポリスルホン、ポリエーテルイミド、ポリカーボネートのいずれか1種又は2種以上請求項13に記載のプリプレグ。
  15.  エポキシ樹脂組成物[C]が、さらにエポキシ樹脂不溶性熱可塑性樹脂を含有する請求項13又は14に記載のプリプレグ。
  16.  前記エポキシ樹脂不溶性熱可塑性樹脂が、非晶性ナイロン、ナイロン6、ナイロン12、非晶性ポリイミドのいずれか1種又は2種以上からなる請求項15に記載のプリプレグ。
  17.  エポキシ樹脂組成物[D]に含まれる硬化剤が、芳香族ジアミン化合物である請求項11に記載のプリプレグ。
  18.  前記芳香族ジアミン化合物が、3,3’-ジアミノジフェニルスルホンである請求項17記載のプリプレグ。
  19.  前記強化繊維基材が炭素繊維である請求項2又は11に記載のプリプレグ。
  20.  強化繊維基材が形成する強化繊維層内に、以下に示す配合のエポキシ樹脂組成物[C]を含浸させて1次プリプレグを得、
     次いで、1次プリプレグの片面又は両面に、以下に示す配合のエポキシ樹脂組成物[D]を1次プリプレグと一体化させることを特徴とするプリプレグの製造方法。
    エポキシ樹脂組成物[C]:少なくともエポキシ樹脂及び熱可塑性樹脂を含み、かつエポキシ樹脂の硬化剤を含まないエポキシ樹脂組成物
    エポキシ樹脂組成物[D]:少なくともエポキシ樹脂、エポキシ樹脂の硬化剤、及びエポキシ樹脂に溶解したエポキシ樹脂可溶性熱可塑性樹脂を含むエポキシ樹脂組成物
PCT/JP2012/057160 2011-03-30 2012-03-21 プリプレグ及びその製造方法 WO2012133033A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP12765114.9A EP2692783B1 (en) 2011-03-30 2012-03-21 Prepreg and method for manufacturing same
CN201280007784.XA CN103347939B (zh) 2011-03-30 2012-03-21 预浸料及其制造方法
US13/981,807 US10047478B2 (en) 2011-03-30 2012-03-21 Prepreg and method for manufacturing same
EP16205786.3A EP3170857B1 (en) 2011-03-30 2012-03-21 Prepreg and method for manufacturing same
ES12765114.9T ES2661253T3 (es) 2011-03-30 2012-03-21 Material preimpregnado y método de su fabricación
JP2012540969A JP5159990B2 (ja) 2011-03-30 2012-03-21 プリプレグ及びその製造方法
KR1020137020356A KR101911479B1 (ko) 2011-03-30 2012-03-21 프리프레그 및 그 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-076090 2011-03-30
JP2011-076102 2011-03-30
JP2011076090 2011-03-30
JP2011076102 2011-03-30

Publications (1)

Publication Number Publication Date
WO2012133033A1 true WO2012133033A1 (ja) 2012-10-04

Family

ID=46930765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057160 WO2012133033A1 (ja) 2011-03-30 2012-03-21 プリプレグ及びその製造方法

Country Status (7)

Country Link
US (1) US10047478B2 (ja)
EP (2) EP3170857B1 (ja)
JP (1) JP5159990B2 (ja)
KR (1) KR101911479B1 (ja)
CN (1) CN103347939B (ja)
ES (2) ES2881376T3 (ja)
WO (1) WO2012133033A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084356A (ja) * 2012-10-22 2014-05-12 Toho Tenax Co Ltd プリプレグ
JP2016509082A (ja) * 2012-12-19 2016-03-24 サイテク・インダストリーズ・インコーポレーテツド 破壊靭性を改善するための粒子強化
JP2016534868A (ja) * 2013-08-22 2016-11-10 サイテク・インダストリーズ・インコーポレーテツド 複合材料の結合方法
JP2017141427A (ja) * 2016-02-05 2017-08-17 住友化学株式会社 芳香族ポリスルホン、プリプレグ及びプリプレグの製造方法
JP2017150145A (ja) * 2016-02-22 2017-08-31 積水化学工業株式会社 対象物を補強または補修する方法および繊維強化樹脂プリプレグシート
US20170306117A1 (en) * 2014-10-29 2017-10-26 Toray Industries, Inc. Epoxy resin composition, cured resin, prepreg and fiber-reinforced composite material
WO2019193940A1 (ja) * 2018-04-02 2019-10-10 東レ株式会社 プリプレグおよびその製造方法
WO2020003662A1 (ja) * 2018-06-26 2020-01-02 東レ株式会社 プリプレグおよびその製造方法、スリットテーププリプレグ、炭素繊維強化複合材料
JPWO2020235489A1 (ja) * 2019-05-23 2020-11-26
JP2021172694A (ja) * 2020-04-21 2021-11-01 帝人株式会社 プリプレグ
WO2023182432A1 (ja) * 2022-03-23 2023-09-28 帝人株式会社 熱硬化性プリプレグ及びその製造方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4659827B2 (ja) * 2005-05-30 2011-03-30 株式会社カネカ グラファイトフィルムの製造方法
JP5890497B2 (ja) * 2014-03-07 2016-03-22 東京応化工業株式会社 硬化性組成物
US9637586B2 (en) * 2015-02-12 2017-05-02 Uop Llc High temperature resistant epoxy resins for producing hollow fiber membrane modules for high temperature gas separation applications
ES2817409T3 (es) * 2015-09-03 2021-04-07 Toray Industries Composición de resina epoxídica, material preimpregnado y material compuesto reforzado con fibra de carbono
RU2690115C1 (ru) 2015-09-28 2019-05-30 Торэй Индастриз, Инк. Препрег со смоляными композициями, имеющими различные скорости отверждения
JP6884535B2 (ja) 2016-02-05 2021-06-09 住友化学株式会社 芳香族ポリスルホン、プリプレグ及びプリプレグの製造方法
JP2017150146A (ja) * 2016-02-22 2017-08-31 積水化学工業株式会社 対象物を補強または補修する方法
FR3051797A1 (fr) * 2016-05-24 2017-12-01 Univ Claude Bernard Lyon Materiau composite epoxyde / thermoplastique et son procede de preparation
KR102536971B1 (ko) * 2016-09-13 2023-05-25 주식회사 테크위드 롤러프레임과 서포터가 일체화된 프리프레그 제조 장치
CN108654028A (zh) * 2018-05-23 2018-10-16 东莞市翔实信息科技有限公司 一种羽毛球拍碳纤维手柄及其制备方法
CN109736089A (zh) * 2018-12-14 2019-05-10 南昌大学 一种改性聚酯纤维丝的制备方法
GB2580087B (en) * 2018-12-20 2022-09-07 Hexcel Composites Ltd Improved thermocurable moulding process
EP3931243A1 (en) 2019-02-28 2022-01-05 Dow Global Technologies LLC Process for producing a fiber composite
GB201911998D0 (en) * 2019-08-21 2019-10-02 Hexcel Composites Ltd Improved thermocurable moulding process
CN111098427A (zh) * 2019-11-21 2020-05-05 深圳市郎搏万先进材料有限公司 一种丝束预浸料、以及复合材料高压储氢罐及其制备工艺
EP4053193A4 (en) * 2019-12-31 2023-11-22 Kolon Industries, Inc. PREPREG, PREPARATION METHOD THEREFOR AND FIBER REINFORCED COMPOSITE MATERIAL PREPARED THEREFROM
US11440285B2 (en) * 2020-05-04 2022-09-13 Textron Innovations Inc. Method of quantifying surface resin
CN116215046A (zh) * 2022-12-31 2023-06-06 中复神鹰(上海)科技有限公司 一种耐冲击型及环境适应性纤维增强树脂基复合材料及其预浸料制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5593613A (en) * 1979-01-06 1980-07-16 Nitto Electric Ind Co Prepreg for electric insulation
JPS60243113A (ja) 1984-05-17 1985-12-03 Sumitomo Chem Co Ltd 強靭性に優れたエポキシ樹脂組成物
JPH0538718A (ja) * 1991-08-06 1993-02-19 Mitsubishi Kasei Corp 繊維補強複合材の硬化方法
JPH0741576A (ja) 1993-07-30 1995-02-10 Toray Ind Inc プリプレグおよび繊維強化樹脂
JPH0741577A (ja) 1993-07-30 1995-02-10 Toray Ind Inc プリプレグおよび繊維強化プラスチック
JPH0741575A (ja) 1993-07-30 1995-02-10 Toray Ind Inc プリプレグおよび繊維強化複合材料
JPH08259713A (ja) 1995-03-22 1996-10-08 Toray Ind Inc プリプレグおよび繊維強化複合材料
JP2000334874A (ja) * 1999-05-31 2000-12-05 Dainippon Ink & Chem Inc 常温硬化性シート状材料及びその硬化方法
JP2010144118A (ja) * 2008-12-22 2010-07-01 Toho Tenax Co Ltd プリプレグとその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6117551A (en) * 1996-12-18 2000-09-12 Toray Industries, Inc. Carbon fiber prepreg, and a production process thereof
EP1072634B1 (en) 1999-07-28 2005-03-16 Hexcel Corporation Reactive resin sheet materials
US20060182949A1 (en) * 2005-02-17 2006-08-17 3M Innovative Properties Company Surfacing and/or joining method
JP4969363B2 (ja) * 2006-08-07 2012-07-04 東レ株式会社 プリプレグおよび炭素繊維強化複合材料
GB0619401D0 (en) * 2006-10-02 2006-11-08 Hexcel Composites Ltd Composite materials with improved performance
MY145997A (en) * 2007-04-17 2012-06-15 Hexcel Corp Pre-impregnated composite materials with improved performance
EP2311892A1 (en) 2008-06-25 2011-04-20 Toho Tenax CO., LTD. Epoxy resin composition and prepreg using same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5593613A (en) * 1979-01-06 1980-07-16 Nitto Electric Ind Co Prepreg for electric insulation
JPS60243113A (ja) 1984-05-17 1985-12-03 Sumitomo Chem Co Ltd 強靭性に優れたエポキシ樹脂組成物
JPH0538718A (ja) * 1991-08-06 1993-02-19 Mitsubishi Kasei Corp 繊維補強複合材の硬化方法
JPH0741576A (ja) 1993-07-30 1995-02-10 Toray Ind Inc プリプレグおよび繊維強化樹脂
JPH0741577A (ja) 1993-07-30 1995-02-10 Toray Ind Inc プリプレグおよび繊維強化プラスチック
JPH0741575A (ja) 1993-07-30 1995-02-10 Toray Ind Inc プリプレグおよび繊維強化複合材料
JPH08259713A (ja) 1995-03-22 1996-10-08 Toray Ind Inc プリプレグおよび繊維強化複合材料
JP2000334874A (ja) * 1999-05-31 2000-12-05 Dainippon Ink & Chem Inc 常温硬化性シート状材料及びその硬化方法
JP2010144118A (ja) * 2008-12-22 2010-07-01 Toho Tenax Co Ltd プリプレグとその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2692783A4

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084356A (ja) * 2012-10-22 2014-05-12 Toho Tenax Co Ltd プリプレグ
JP2016509082A (ja) * 2012-12-19 2016-03-24 サイテク・インダストリーズ・インコーポレーテツド 破壊靭性を改善するための粒子強化
JP2018024879A (ja) * 2012-12-19 2018-02-15 サイテク・インダストリーズ・インコーポレーテツド 硬化性プリプレグプライを作製するための方法
JP2016534868A (ja) * 2013-08-22 2016-11-10 サイテク・インダストリーズ・インコーポレーテツド 複合材料の結合方法
US20170306117A1 (en) * 2014-10-29 2017-10-26 Toray Industries, Inc. Epoxy resin composition, cured resin, prepreg and fiber-reinforced composite material
JP2017141427A (ja) * 2016-02-05 2017-08-17 住友化学株式会社 芳香族ポリスルホン、プリプレグ及びプリプレグの製造方法
JP2017150145A (ja) * 2016-02-22 2017-08-31 積水化学工業株式会社 対象物を補強または補修する方法および繊維強化樹脂プリプレグシート
US11505666B2 (en) 2018-04-02 2022-11-22 Toray Industries, Inc. Prepreg and manufacturing method for same
JP7234919B2 (ja) 2018-04-02 2023-03-08 東レ株式会社 プリプレグおよびその製造方法
WO2019193940A1 (ja) * 2018-04-02 2019-10-10 東レ株式会社 プリプレグおよびその製造方法
JPWO2019193940A1 (ja) * 2018-04-02 2021-02-25 東レ株式会社 プリプレグおよびその製造方法
JPWO2020003662A1 (ja) * 2018-06-26 2021-05-13 東レ株式会社 プリプレグおよびその製造方法、スリットテーププリプレグ、炭素繊維強化複合材料
JP7188384B2 (ja) 2018-06-26 2022-12-13 東レ株式会社 プリプレグおよびその製造方法、スリットテーププリプレグ、炭素繊維強化複合材料
WO2020003662A1 (ja) * 2018-06-26 2020-01-02 東レ株式会社 プリプレグおよびその製造方法、スリットテーププリプレグ、炭素繊維強化複合材料
US11939465B2 (en) 2018-06-26 2024-03-26 Toray Industries, Inc. Prepreg and production method therefor, slit tape prepreg, carbon fiber-reinforced composite material
WO2020235489A1 (ja) * 2019-05-23 2020-11-26 東レ株式会社 プリプレグ、積層体および成形品
JP7047923B2 (ja) 2019-05-23 2022-04-05 東レ株式会社 プリプレグ、積層体および成形品
JPWO2020235489A1 (ja) * 2019-05-23 2020-11-26
US12049548B2 (en) 2019-05-23 2024-07-30 Toray Industries, Inc. Prepreg, layered body, and molding
JP2021172694A (ja) * 2020-04-21 2021-11-01 帝人株式会社 プリプレグ
JP7448409B2 (ja) 2020-04-21 2024-03-12 帝人株式会社 プリプレグ
WO2023182432A1 (ja) * 2022-03-23 2023-09-28 帝人株式会社 熱硬化性プリプレグ及びその製造方法

Also Published As

Publication number Publication date
CN103347939A (zh) 2013-10-09
JP5159990B2 (ja) 2013-03-13
EP2692783A4 (en) 2014-10-01
EP3170857B1 (en) 2021-05-05
US20140057515A1 (en) 2014-02-27
US10047478B2 (en) 2018-08-14
CN103347939B (zh) 2017-04-05
KR20140016885A (ko) 2014-02-10
EP2692783A1 (en) 2014-02-05
JPWO2012133033A1 (ja) 2014-07-28
EP3170857A1 (en) 2017-05-24
KR101911479B1 (ko) 2018-12-19
EP2692783B1 (en) 2017-12-20
ES2661253T3 (es) 2018-03-28
ES2881376T3 (es) 2021-11-29

Similar Documents

Publication Publication Date Title
JP5159990B2 (ja) プリプレグ及びその製造方法
JP6254995B2 (ja) プリプレグ及びその製造方法
JP5115675B2 (ja) プリプレグ、および繊維強化複合材料
JP7448409B2 (ja) プリプレグ
JP5723505B2 (ja) 樹脂組成物、硬化物、プリプレグ、および繊維強化複合材料
EP2816075B1 (en) Fiber-reinforced composite material
EP3135718A1 (en) Epoxy resin system containing insoluble and partially soluble or swellable toughening particles for use in prepreg and structural component applications
WO2014030638A1 (ja) エポキシ樹脂組成物、及びこれを用いたフィルム、プリプレグ、繊維強化プラスチック
JPWO2018003694A1 (ja) プリプレグおよびその製造方法
JP7190258B2 (ja) エポキシ樹脂組成物、プリプレグ、及び繊維強化複合材料
JP2013142123A (ja) プリプレグ及びプリプレグの製造方法
JP2019156981A (ja) プリプレグ、繊維強化複合材料、及びそれらの製造方法
JP2013142122A (ja) プリプレグ及びプリプレグの製造方法
JP7143473B2 (ja) プリプレグ及びその製造方法、並びに繊維強化複合材料
JP7481160B2 (ja) プリプレグ
JP6321391B2 (ja) 繊維強化複合材料、プリプレグおよびそれらの製造方法
WO2023182432A1 (ja) 熱硬化性プリプレグ及びその製造方法
JP2021195473A (ja) プリプレグ
JP2001342268A (ja) プリプレグ及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012540969

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765114

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13981807

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137020356

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE