WO2012132696A1 - ガスバリア積層体、その製造方法、電子デバイス用部材及び電子デバイス - Google Patents

ガスバリア積層体、その製造方法、電子デバイス用部材及び電子デバイス Download PDF

Info

Publication number
WO2012132696A1
WO2012132696A1 PCT/JP2012/054706 JP2012054706W WO2012132696A1 WO 2012132696 A1 WO2012132696 A1 WO 2012132696A1 JP 2012054706 W JP2012054706 W JP 2012054706W WO 2012132696 A1 WO2012132696 A1 WO 2012132696A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
thin film
barrier laminate
electronic device
organosilicon compound
Prior art date
Application number
PCT/JP2012/054706
Other languages
English (en)
French (fr)
Inventor
智史 永縄
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to US14/004,960 priority Critical patent/US9763345B2/en
Priority to KR1020137025424A priority patent/KR20140012696A/ko
Priority to CN201280015793.3A priority patent/CN103534084B/zh
Priority to EP12763091.1A priority patent/EP2692522A4/en
Publication of WO2012132696A1 publication Critical patent/WO2012132696A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0213Venting apertures; Constructional details thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32412Plasma immersion ion implantation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Definitions

  • the present invention relates to a gas barrier laminate having excellent gas barrier properties and flexibility, a method for producing the same, an electronic device member comprising the gas barrier laminate, and an electronic device including the electronic device member.
  • the plastic film has a problem that it easily transmits water vapor, oxygen, and the like as compared with the glass plate, and easily causes deterioration of elements inside the display.
  • Patent Document 1 proposes a flexible display substrate in which a transparent gas barrier layer made of a metal oxide is laminated on a transparent plastic film.
  • the flexible display substrate described in this document is obtained by laminating a transparent gas barrier layer made of a metal oxide on the surface of a transparent plastic film by vapor deposition, ion plating, sputtering, or the like.
  • vapor deposition ion plating, sputtering, or the like.
  • the gas barrier layer is cracked and the gas barrier property is lowered.
  • such a method uses a solid raw material as a target, there is also a problem that the raw material cost is high.
  • Patent Document 2 discloses a gas barrier laminate in which a plastic film and a resin layer containing polyorganosilsesquioxane as a main component are laminated on at least one surface of the plastic film.
  • gas barrier properties such as oxygen and water vapor
  • it is necessary to further laminate an inorganic compound layer so there is a risk that the process is complicated, costly, or toxic gas is used. There was a problem such as.
  • Patent Document 3 discloses a plasma generated under a pressure of 600 to 1520 Torr on a polymer film using an organosilicon compound that is liquid in a temperature range of 20 to 150 ° C. as a film forming raw material.
  • a method for producing a gas barrier film in which a thin film mainly composed of silicon oxide is formed by the CVD method used is disclosed.
  • the gas barrier properties of the film obtained by this method were not satisfactory.
  • Patent Document 4 a high oxidation silicon oxide layer and a low oxidation silicon oxide layer are sequentially laminated on a base material by a dry coating method, and then the low oxidation silicon oxide layer surface is formed from oxygen or the like.
  • a transparent gas barrier laminated film in which a polymer layer is laminated on the plasma treated surface of the low-oxidation silicon oxide layer after the plasma treatment with the gas is disclosed.
  • the film obtained by this method has a problem that it is necessary to laminate a plurality of layers, and the manufacturing process is complicated and economically disadvantageous.
  • JP 2000-338901 A JP 2006-123307 A JP 11-256338 A JP 2004-351832 A
  • the present invention has been made in view of the above-described prior art, does not require a complicated manufacturing process, can be manufactured at a lower cost than conventional inorganic film formation, and has excellent gas barrier properties. It is an object of the present invention to provide a gas barrier laminate having flexibility, a method for producing the gas barrier laminate, an electronic device member comprising the gas barrier laminate, and an electronic device including the electronic device member.
  • the inventors of the present invention are gas barrier laminates having a gas barrier layer on a substrate, and the gas barrier layer is formed by a CVD method using an organosilicon compound as a film forming material.
  • the gas barrier laminate obtained by implanting ions into the organosilicon compound thin film was found to have excellent gas barrier properties and flexibility, and the present invention was completed.
  • the following gas barrier laminates (1) to (7) are provided.
  • the ion is characterized in that at least one gas selected from the group consisting of hydrogen, nitrogen, oxygen, argon, helium, neon, xenon, krypton, and silicon compound is ionized
  • the manufacturing method of the gas barrier laminated body of following (8) and (9) is provided.
  • (8) forming a thin film made of an organosilicon compound on a substrate by a CVD method using an organosilicon compound as a film forming raw material; And a step of implanting ions into the formed thin film.
  • the method for producing a gas barrier laminate according to (1). (9) forming a thin film having a refractive index of 1.46 to 1.60 on a substrate by a CVD method using an organosilicon compound as a film forming raw material;
  • the following electronic device member (10) is provided.
  • An electronic device member comprising the gas barrier laminate according to any one of (1) to (7).
  • the following electronic device (11) is provided.
  • An electronic device comprising the electronic device member according to (10).
  • a gas barrier laminate that does not require a complicated manufacturing process, can be manufactured at a lower cost than conventional inorganic film deposition, and has excellent gas barrier properties and flexibility, and its manufacture
  • a method, an electronic device member comprising the gas barrier laminate, and an electronic device comprising the electronic device member are provided. According to the production method of the present invention, the gas barrier laminate of the present invention can be efficiently produced.
  • FIG. 1 It is a figure which shows schematic structure of the plasma CVD film-forming apparatus used for this invention. It is a figure showing the presence rate (%) of an oxygen atom, a carbon atom, and a silicon atom in the organosilicon compound thin film of Example 1 before ion implantation and after ion implantation. It is a figure showing the abundance ratio (%) of an oxygen atom, a carbon atom, a silicon atom, and a nitrogen atom in the organosilicon compound thin film before and after ion implantation in Example 2.
  • Gas barrier laminate of the present invention is a gas barrier laminate having a gas barrier layer on a substrate, and the gas barrier layer is formed by a CVD method using an organosilicon compound as a film forming material. It is obtained by implanting ions into a compound thin film.
  • the gas barrier laminate of the present invention has a gas barrier layer on a substrate.
  • the material constituting the substrate is not particularly limited as long as it meets the purpose of the gas barrier laminate.
  • polyesters, polyamides or cycloolefin polymers are preferred, and polyesters or cycloolefin polymers are more preferred because of their excellent flexibility and versatility.
  • polyester examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polyarylate.
  • polyamide examples include wholly aromatic polyamide, nylon 6, nylon 66, nylon copolymer, and the like.
  • cycloolefin polymers include norbornene polymers, monocyclic olefin polymers, cyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers, and hydrides thereof. Specific examples thereof include Apel (an ethylene-cycloolefin copolymer manufactured by Mitsui Chemicals), Arton (a norbornene polymer manufactured by JSR), Zeonoa (a norbornene polymer manufactured by Nippon Zeon), and the like. .
  • Apel an ethylene-cycloolefin copolymer manufactured by Mitsui Chemicals
  • Arton a norbornene polymer manufactured by JSR
  • Zeonoa a norbornene polymer manufactured by Nippon Zeon
  • the thickness of the substrate is usually 1 to 500 ⁇ m, preferably 10 to 200 ⁇ m, although it depends on the intended use of the gas barrier laminate.
  • the substrate may be subjected to pretreatment such as corona discharge treatment or plasma treatment to remove soiling substances or activate the surface.
  • an organic silicon compound thin film is first formed on a substrate by a CVD method using an organic silicon compound as a film forming raw material, and then ions are implanted into the formed organic silicon compound thin film. Can be obtained.
  • the organic silicon compound to be used is not particularly limited as long as it is an organic compound containing silicon, but preferably further contains an oxygen atom and / or a nitrogen atom.
  • tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane (TEOS), tetra n-propoxysilane, tetraisopropoxysilane, tetra n-butoxysilane, tetra-t-butoxysilane;
  • An alkylalkoxysilane having an unsubstituted or substituted group such as dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, (3,3,3-trifluoropropyl) trimethoxysilane;
  • Arylalkoxysilanes such as diphenyldimethoxysilane and phenyltriethoxysilane;
  • Disiloxanes such as hexamethyldisiloxane (HMDSO); Ami
  • Cyanate silanes such as tetraisocyanate silane; Halogenosilanes such as triethoxyfluorosilane; Alkenylsilanes such as diallyldimethylsilane and allyltrimethylsilane; Alkyl silanes having no substituents or substituents such as di-t-butylsilane, 1,3-disilabutane, bis (trimethylsilyl) methane, tetramethylsilane, tris (trimethylsilyl) methane, tris (trimethylsilyl) silane, benzyltrimethylsilane; Silylalkynes such as bis (trimethylsilyl) acetylene, trimethylsilylacetylene, 1- (trimethylsilyl) -1-propyne; Silylalkenes such as 1,4-bistrimethylsilyl-1,3-butadiyne, cyclopentadienyltrimethylsilane;
  • film formation can be performed with ease of handling and a low degree of vacuum, equipment cost can be suppressed, and the boiling point at 1.01 ⁇ 10 5 Pa (same below) is 40 to 200 ° C. from the viewpoint of film formation ease.
  • An organosilicon compound having a boiling point of 50 to 180 ° C. is more preferred, an organosilicon compound having a boiling point of 60 to 170 ° C. is more preferred, and handling property, versatility and the obtained gas barrier layer are excellent.
  • hexamethyldisiloxane, hexamethyldisilazane, tetramethyldisilazane, and tetraethoxysilane are particularly preferable.
  • the CVD (Chemical Vapor Deposition) method is a thin film forming technique in which a thin film forming raw material (film forming raw material) is supplied in a gaseous state onto a substrate, and this is decomposed by heat or plasma energy to grow a thin film. is there.
  • the CVD method is not particularly limited, and examples thereof include a thermal CVD method, a plasma CVD method, a photo CVD method, and a laser CVD method.
  • the plasma CVD method is preferable because the temperature applied to the substrate can be lowered.
  • the plasma CVD method is a method for growing a thin film by using gas plasma.
  • a gas containing a source gas film forming source
  • the process comprises depositing the substance to be produced on the substrate through a chemical reaction in the gas phase or on the substrate.
  • the plasma state is realized by glow discharge, and a method using a direct current glow discharge, a method using a high-frequency glow discharge, a method using a microwave discharge, and the like are known according to the glow discharge method. .
  • An apparatus used for the plasma CVD method can be used without particular limitation as long as it is a vacuum film forming apparatus, and a parallel plate CVD apparatus is generally used.
  • a microwave CVD apparatus for example, a microwave CVD apparatus, an ECR-CVD apparatus, A density plasma CVD apparatus (helicon wave system, high frequency induction system) or the like can be used.
  • an oxidizing gas or a reducing gas may be used in combination with the raw material organosilicon compound for the purpose of improving the gas barrier properties of the resulting gas barrier layer. preferable.
  • an inert gas such as helium, neon, argon, xenon, or krypton may be added to control the concentration of active species generated in the plasma and promote dissociation of the source gas.
  • inert gases can be used alone or in combination of two or more.
  • an organic silicon compound in a gaseous state is mixed with an oxidizing gas or a reducing gas, and optionally an inert gas, in a reaction chamber having an internal pressure of 0.05 Pa to 500 Pa, preferably 30 Pa to 150 Pa.
  • An organic silicon compound thin film can be formed by introducing and generating plasma by applying power of 100 to 1000 W, preferably 300 to 500 W to the electrode, and depositing it on a substrate disposed on the electrode. it can.
  • the thickness of the resulting organosilicon compound thin film is usually 10 to 1000 nm, preferably 30 to 500 nm, particularly preferably 100 to 300 nm.
  • the film thickness can be adjusted by changing the processing time and the like.
  • the treatment time is usually from 5 seconds to several minutes, preferably from 10 seconds to 4 minutes.
  • a gas barrier laminate having sufficient gas barrier performance can be obtained by implanting ions into the organosilicon compound thin film as described later.
  • an organic silicon compound thin film having a refractive index in an arbitrary range can be obtained by appropriately selecting an organic silicon compound as a film forming raw material or appropriately selecting the conditions of the plasma CVD method.
  • the refractive index of the organosilicon compound thin film is preferably 1.46 to 1.60. If the refractive index of the organosilicon compound thin film is greater than 1.60, the film becomes hard and defects such as cracks are likely to occur. On the other hand, if the refractive index is less than 1.46, it is difficult to form a uniform and high-density gas via layer even if ions are implanted, and a favorable gas barrier property cannot be obtained, and the flexibility may be inferior. That is, if the refractive index is in the above range, as will be described later, a gas barrier layer having high gas barrier properties and excellent flexibility can be obtained by implanting ions into the organosilicon compound thin film. The refractive index can be measured by a known refractive index measuring device (ellipsometer).
  • the organic silicon compound thin film formed by the plasma CVD method is less likely to generate pinholes than the conventional method. Therefore, by using such an organic silicon compound thin film, a gas barrier layer having stable gas barrier properties can be formed.
  • ions are implanted into the obtained organosilicon compound thin film to form a gas barrier layer.
  • ions to be implanted ions of rare gases such as argon, helium, neon, krypton, and xenon; ions such as fluorocarbon, hydrogen, nitrogen, oxygen, carbon dioxide, chlorine, fluorine, and sulfur;
  • alkane gases such as methane, ethane, propane, butane, pentane and hexane
  • alkene gases such as ethylene, propylene, butene and pentene
  • alkadiene gases such as pentadiene and butadiene
  • acetylene Ions of alkyne gases such as methylacetylene
  • aromatic hydrocarbon gases such as benzene, toluene, xylene, indene, naphthalene and phenanthrene
  • ions of cycloalkane gases such as cyclopropane and cyclohexane
  • cyclopentene Ions of cycloalkene gases such as cyclohexene
  • An ion of a fluorocarbon compound Ions of fluorinated hydrocarbon compounds such as 1,1-difluoroethylene, 1,1,1,2-tetrafluoroethane, 1,1,2,2,3-pentafluoropropane; Ions of fluorinated chlorohydrocarbon compounds such as difluorodichloromethane and trifluorochloromethane; Ions of fluorinated alcohols such as 1,1,1,3,3,3-hexafluoro-2-propanol, 1,3-difluoro-2-propanol, perfluorobutanol; Fluorinated carboxylic acid esters such as vinyl trifluoroacetate and 1,1,1-trifluoroethyl trifluoroacetate; ions of fluorinated ketones such as acetyl fluoride, hexafluoroacetone and 1,1,1-trifluoroacetone; Etc.
  • fluorinated hydrocarbon compounds such as 1,1-d
  • hydrogen, nitrogen, oxygen, argon, helium, neon, xenon, krypton and silicon compounds can be injected more easily and a gas barrier layer having better gas barrier properties and flexibility can be obtained.
  • At least one ion selected from the group consisting of nitrogen, oxygen, argon or helium is particularly preferable.
  • the ion implantation amount may be appropriately determined according to the purpose of use of the gas barrier laminate to be formed (necessary gas barrier properties, flexibility, etc.).
  • Examples of the ion implantation method include a method of irradiating ions accelerated by an electric field (ion beam), a method of implanting ions in plasma (plasma ion implantation method), and the like.
  • ion beam a method of irradiating ions accelerated by an electric field
  • plasma ion implantation method a method of implanting ions in plasma
  • the latter plasma ion implantation method is preferable because a gas barrier layer having excellent gas barrier properties can be obtained easily.
  • the plasma ion implantation method generates plasma in an atmosphere containing a plasma generating gas, and applies a negative high voltage pulse to a laminate having an organosilicon compound thin film on its surface, thereby This is a method of injecting ions (positive ions) into the surface portion of the organosilicon compound thin film.
  • the thickness of the layer into which ions are implanted (hereinafter sometimes referred to as “ion implantation layer”) can be controlled by the implantation conditions such as the type of ions, applied voltage, treatment time, etc.
  • the thickness of the organosilicon compound thin film to be used Although it may be determined according to the purpose of use of the gas barrier laminate, it is usually 5 to 1000 nm, preferably 20 to 500 nm from the surface layer.
  • the ion implantation can be confirmed, for example, by performing elemental analysis measurement of the surface portion of the organosilicon compound thin film using X-ray photoelectron spectroscopy (XPS) analysis.
  • XPS X-ray photoelectron spectroscopy
  • a gas barrier layer obtained by implanting ions into an organic silicon compound thin film formed by a CVD method using an organosilicon compound as a film forming raw material is different from a gas barrier layer made of a conventional inorganic compound layer, Since it has flexibility inside the layer, it has excellent flexibility and has a sufficient gas barrier property even when the film thickness is relatively thin at 500 nm or less.
  • the shape of the gas barrier laminate of the present invention is not particularly limited, and examples thereof include a film shape, a sheet shape, a rectangular parallelepiped shape, a polygonal column shape, and a cylindrical shape.
  • a film shape When used as an electronic device member as described later, it is preferably a film or sheet.
  • the thickness of the film can be appropriately determined depending on the intended use of the electronic device.
  • the gas barrier laminate of the present invention may be composed of only the base material and the gas barrier layer, and may further include other layers. Examples of other layers include an inorganic thin film layer. , A conductor layer, a shock absorbing layer, a primer layer, and the like.
  • the inorganic thin film layer is a layer composed of one or more inorganic compounds.
  • the gas barrier property can be further improved.
  • Inorganic compounds that can be generally formed in a vacuum and have a gas barrier property such as inorganic oxides, inorganic nitrides, inorganic carbides, inorganic sulfides, inorganic oxynitrides and inorganic oxide carbides that are composites thereof Inorganic nitride carbide, inorganic oxynitride carbide, and the like.
  • the thickness of the inorganic thin film layer is usually in the range of 10 nm to 1000 nm, preferably 20 to 500 nm, more preferably 20 to 100 nm.
  • Examples of the material constituting the conductor layer include metals, alloys, metal oxides, electrically conductive compounds, and mixtures thereof. Specifically, tin oxide doped with antimony (ATO); tin oxide doped with fluorine (FTO); zinc oxide doped with tin oxide and germanium (GZO), zinc oxide, indium oxide, indium tin oxide (ITO) , Semiconductive metal oxides such as zinc indium oxide (IZO); metals such as gold, silver, chromium and nickel; mixtures of these metals and conductive metal oxides; inorganic conductivity such as copper iodide and copper sulfide Substances: Organic conductive materials such as polyaniline, polythiophene, polypyrrole, etc.
  • a formation method of a conductor layer there is no restriction
  • vapor deposition, sputtering, ion plating, thermal CVD, plasma CVD, and the like can be given. What is necessary is just to select the thickness of a conductor layer suitably according to the use. Usually, it is 10 nm to 50 ⁇ m, preferably 20 nm to 20 ⁇ m.
  • the impact absorbing layer is for protecting the gas barrier layer when an impact is applied to the gas barrier layer.
  • a raw material which forms a shock absorption layer For example, acrylic resin, urethane type resin, silicone type resin, olefin type resin, rubber-type material etc. are mentioned.
  • adhesives such as acrylic adhesives, silicone adhesives and rubber adhesives are particularly preferable.
  • a formation method of a shock absorption layer For example, the material (adhesive etc.) which forms the said shock absorption layer, and the shock absorption layer forming solution containing other components, such as a solvent, if desired, are laminated
  • a shock absorbing layer may be separately formed on the release substrate, and the obtained film may be transferred and stacked on the layer to be stacked.
  • the thickness of the shock absorbing layer is usually 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m.
  • the primer layer plays a role of improving interlayer adhesion between the base material and the gas barrier layer.
  • a gas barrier laminate excellent in interlayer adhesion and surface smoothness can be obtained.
  • the material constituting the primer layer is not particularly limited, and known materials can be used.
  • a photopolymerization comprising a silicon-containing compound; a photopolymerizable compound comprising a photopolymerizable monomer and / or a photopolymerizable prepolymer, and a polymerization initiator that generates a radical in the photopolymerizable compound at least in the ultraviolet region.
  • Composition polyester resin, polyurethane resin (particularly polyacryl polyol, polyester polyol, polyether polyol, etc.
  • a primer layer forming solution obtained by dissolving or dispersing the material constituting the primer layer in an appropriate solvent is applied to one side or both sides of the substrate, and the obtained coating film is dried. It can be formed by heating.
  • an ordinary wet coating method can be used as a method for applying the primer layer forming solution to the support. Examples include dipping method, roll coating, gravure coating, knife coating, air knife coating, roll knife coating, die coating, screen printing method, spray coating, gravure offset method and the like.
  • a method for drying the coating film of the primer layer forming solution conventionally known drying methods such as hot air drying, hot roll drying, and infrared irradiation can be employed.
  • the thickness of the primer layer is usually 10 to 1000 nm.
  • ion implantation may be performed on the obtained primer layer by a method similar to the method of implanting ions.
  • a gas barrier laminate having better gas barrier properties can be obtained.
  • the gas barrier layer may be formed on both the front side and the back side of the substrate.
  • the arrangement position of the gas barrier layer is not particularly limited.
  • the other layer may be a single layer or two or more layers of the same type or different types.
  • the gas barrier laminate of the present invention has excellent gas barrier properties and flexibility. It can be confirmed that the gas barrier laminate of the present invention has excellent gas barrier properties because the gas barrier laminate of the present invention has a low permeability of gas such as water vapor.
  • the water vapor transmission rate is usually 5 g / m 2 / day or less, preferably 1 g / m 2 / day or less, more preferably 0.5 g / m 2 / day or less.
  • steam of a gas barrier laminated body can be measured using a well-known gas-permeability measuring apparatus.
  • the gas barrier laminate of the present invention has excellent flexibility, for example, by winding the gas barrier laminate of the present invention around a 3 mm ⁇ stainless steel rod with the ion implantation surface outside, and in the circumferential direction. After 10 reciprocations, the presence or absence of cracks was observed with an optical microscope, and it can be confirmed that no cracks were observed.
  • the gas barrier laminate production method of the present invention includes the step 1 of forming an organosilicon compound thin film on a substrate by a CVD method using an organosilicon compound as a film forming material. And a step 2 of implanting ions into the organosilicon compound thin film.
  • a process of forming an organosilicon compound thin film having a refractive index of 1.46 to 1.60 on a substrate by a CVD method using an organosilicon compound as a film forming raw material And a step of implanting ions into the formed organosilicon compound thin film.
  • a predetermined organosilicon compound can be used as a film forming raw material and a known CVD film forming apparatus can be used.
  • the CVD method is as described above, and the plasma CVD method is preferable. Formation of the organosilicon compound thin film on the substrate by plasma CVD can be performed using a known plasma CVD film forming apparatus.
  • FIG. 1 schematically shows an example of a plasma CVD film forming apparatus.
  • a plasma CVD film forming apparatus shown in FIG. 1 includes an anode electrode 2, a cathode electrode 3, and a reaction chamber 1 having a high-frequency power source 4 for supplying high-frequency power, and an organosilicon compound connected to the reaction chamber 1 through a pipe. It comprises a container 5 to be accommodated, an oxidizing gas chamber 6, a carrier gas chamber 8, a vacuum pump 7 for evacuating the reaction chamber, and an exhaust duct 10.
  • the container 5, the oxidizing gas chamber 6, and the carrier gas chamber 8 are provided with flow control valves 9a, 9b, and 9c, respectively.
  • the reaction chamber 1 has airtightness capable of maintaining the internal space at a predetermined degree of vacuum.
  • the base material 11 is placed on the anode electrode 2 in the reaction chamber 1 by a base material holder (not shown), and the inside of the reaction chamber 1 is brought to a predetermined degree of vacuum by the vacuum pump 7.
  • the reaction gas (organosilicon compound) filled in the container 5 is vaporized and introduced into the reaction chamber 1 through a pipe.
  • oxygen (O 2 ) gas for example, as the oxidizing gas is introduced from the oxidizing gas chamber 6, and Ar, for example, as the carrier gas, is introduced from the carrier gas chamber 8 into the reaction chamber 1 at a predetermined flow rate.
  • the flow rate of the reaction gas is usually 1 to 100 ml / min, and the flow rate of the oxidizing gas is usually 1 to 100 ml / min.
  • the flow rate of the carrier gas is usually 1 to 200 ml / min.
  • oxidizing gas examples include those similar to the oxidizing gas described above other than oxygen gas.
  • carrier gas the same inert gas as described above can be used other than Ar.
  • the formation of the organosilicon compound thin film by the CVD method may be a batch type or a continuous type.
  • the refractive index of the obtained organosilicon compound thin film is preferably 1.46 to 1.60.
  • ions are implanted into the obtained organosilicon compound thin film.
  • ion species to be implanted include the same as described above.
  • the method for implanting ions into the organosilicon compound thin film may be a batch type or a continuous type. Among these, from the viewpoint of production efficiency, the organosilicon compound is transported in a certain direction while transporting a long base material on which an organosilicon compound thin film is formed (hereinafter sometimes referred to as “laminated body”). A method of implanting ions into the surface portion of the thin film is preferable.
  • an elongated laminate can be unwound from an unwinding roll, and ions can be injected while being conveyed in a certain direction, and can be taken up by a winding roll.
  • the gas barrier laminate obtained in this way can be continuously produced.
  • the long laminate may include the other layers as long as the organosilicon compound thin film is formed on the surface portion.
  • the thickness of the laminate is usually 10 to 500 ⁇ m, preferably 20 to 300 ⁇ m, from the viewpoint of unwinding, winding and conveying operability.
  • the method for implanting ions into the organosilicon compound thin film is not particularly limited. Among these, a method of forming an ion implantation layer on the surface portion of the thin film by plasma ion implantation is particularly preferable.
  • (A) a method in which ions existing in a plasma generated using an external electric field are implanted into the surface portion of the thin film, or (B) the thin film is formed without using an external electric field.
  • a method of injecting ions present in the plasma generated only by the electric field generated by the negative high voltage pulse to be applied to the surface portion of the thin film is preferable.
  • the pressure during ion implantation is preferably 0.01 to 1 Pa.
  • the pressure during plasma ion implantation is in such a range, a uniform ion implantation layer can be easily and efficiently formed, and an ion implantation layer having both transparency and gas barrier properties can be efficiently formed. Can do.
  • the processing operation is simple, and the processing time can be greatly shortened. Further, the entire thin film can be processed uniformly, and ions in the plasma can be continuously injected into the surface portion of the thin film with high energy when a negative high voltage pulse is applied. Furthermore, without applying other special means such as radio frequency (hereinafter abbreviated as “RF”) or a high-frequency power source such as a microwave, just applying a negative high voltage pulse to the thin film, A high-quality ion-implanted layer can be uniformly formed on the surface of the thin film.
  • RF radio frequency
  • a high-frequency power source such as a microwave
  • the pulse width when applying a negative high voltage pulse is preferably 1 to 15 ⁇ sec.
  • the pulse width is in such a range, a transparent and uniform ion implantation layer can be formed more easily and efficiently.
  • the applied voltage when generating plasma is preferably -1 kV to -50 kV, more preferably -1 kV to -30 kV, and particularly preferably -5 kV to -20 kV. If ion implantation is performed at an applied voltage greater than ⁇ 1 kV, the ion implantation amount (dose amount) becomes insufficient, and desired performance cannot be obtained. On the other hand, if ion implantation is performed at a value smaller than ⁇ 50 kV, the laminate is charged at the time of ion implantation, and problems such as coloring of the laminate occur.
  • a plasma ion implantation apparatus When ions in plasma are implanted into the surface of the organosilicon compound thin film, a plasma ion implantation apparatus is used. Specifically, as a plasma ion implantation apparatus, ( ⁇ ) a high-frequency power is superimposed on a feedthrough that applies a negative high-voltage pulse to an organosilicon compound thin film (ion-implanted layer), and the periphery of the layer to be ion-implanted.
  • An apparatus that uniformly surrounds the plasma and attracts, injects, collides, and deposits ions in the plasma Japanese Patent Laid-Open No. 2001-26887
  • An antenna is provided in the chamber, and high-frequency power is applied to generate plasma.
  • the plasma ion implantation apparatus ( ⁇ ) or ( ⁇ ) because the processing operation is simple, the processing time can be greatly shortened, and it is suitable for continuous use.
  • Examples of the method using the plasma ion implantation apparatus ( ⁇ ) and ( ⁇ ) include those described in the pamphlet of WO2010 / 021326.
  • the plasma generating means for generating plasma is also used by the high voltage pulse power source, other special means such as a high frequency power source such as RF and microwave are used.
  • the plasma is generated simply by applying a negative high voltage pulse, and ions in the plasma are implanted into the surface portion of the organosilicon compound thin film, and an ion implantation layer is continuously formed on the surface portion.
  • the gas barrier laminate in which the ion implantation layer is formed can be mass-produced.
  • the electronic device member of the present invention comprises the gas barrier laminate of the present invention. Therefore, since the member for electronic devices of the present invention has excellent gas barrier properties and flexibility, it is possible to prevent deterioration of the element due to gas such as water vapor.
  • the electronic device member of the present invention is suitable as a display member such as a liquid crystal display or an EL display; a solar battery back sheet used for a solar battery or the like;
  • the electronic device of the present invention includes the electronic device member of the present invention.
  • Specific examples include a liquid crystal display, an organic EL display, an inorganic EL display, electronic paper, and a solar battery.
  • the electronic device of the present invention includes the electronic device member comprising the gas barrier laminate of the present invention, it has excellent gas barrier properties and flexibility.
  • the test method is as follows.
  • the plasma ion implantation apparatus used is an apparatus for ion implantation using an external electric field.
  • RF power supply Model number “RF56000”, manufactured by JEOL Ltd.
  • High voltage pulse power supply “PV-3-HSHV-0835”, manufactured by Kurita Seisakusho
  • Gas flow rate 100 sccm
  • Duty ratio 0.5%
  • Repetition frequency 1000Hz
  • Applied voltage -25kV -RF power supply: frequency 13.56 MHz
  • applied power 1000 W -Chamber internal pressure: 0.2 Pa
  • Pulse width 5 ⁇ sec ⁇ Processing time (ion implantation time): 300 sec ⁇ Conveying speed: 0.2m / min
  • ⁇ Flexibility test method> The obtained laminate was wound around a 3 mm ⁇ stainless steel rod with the polyethylene terephthalate film side inward and reciprocated 10 times in the circumferential direction, and then checked for cracks with an optical microscope (magnification 2000 times, manufactured by Keyence Corporation). Observed. The case where crack generation was not recognized was evaluated as “none”, and the case where crack generation was observed was evaluated as “present”.
  • Example 1 A polyethylene terephthalate film (trade name: PETA-4100, thickness 50 ⁇ m, manufactured by Toyobo Co., Ltd.) is used as a base material on a base material holder on the anode electrode 2 in the vacuum film forming apparatus (plasma CVD film forming apparatus) shown in FIG. , Hereinafter referred to as “PET film”), and the internal pressure of the reaction chamber of the apparatus was set to 75 Pa.
  • Hexamethyldisiloxane (HMDSO) as an organosilicon compound was vaporized at 50 ° C. and introduced into the reaction chamber together with an oxidizing gas (O 2 ) and a carrier gas (Ar).
  • HMDSO Hexamethyldisiloxane
  • Plasma was generated using an RF power source, a film formation time was set to 30 seconds, an HMDSO thin film (film thickness: 211 nm) was formed on the substrate, and a laminate 1 was manufactured.
  • the refractive index of the formed HMDSO thin film was 1.48.
  • argon (Ar) was plasma ion-implanted on the surface of the HMDSO thin film of the obtained laminate 1 to form a gas barrier layer, whereby the gas barrier laminate 1 was produced.
  • Example 2 In Example 1, hexamethyldisilazane (HMDSZ) was used as the organosilicon compound, the internal pressure of the apparatus reaction chamber was set to 70 Pa, and the film formation time was set to 45 seconds. A HMDSZ thin film (thickness: 209 nm) was formed to produce a laminate 2. The refractive index of the formed HMDSZ thin film was 1.50. Using the obtained laminate 2, a gas barrier laminate 2 was produced in the same manner as in Example 1.
  • HMDSZ hexamethyldisilazane
  • Example 3 In Example 1, tetramethyldisilazane (TMDS) was used as the organosilicon compound, the internal pressure of the apparatus reaction chamber was set to 60 Pa, and the film formation time was set to 60 seconds. A TMDS thin film (film thickness 195 nm) was formed, and the laminate 3 was produced. The refractive index of the formed TMDS thin film was 1.54. A gas barrier laminate 3 was produced using the obtained laminate 3 in the same manner as in Example 1.
  • TMDS tetramethyldisilazane
  • Example 4 In Example 1, tetraethoxysilane (TEOS) was used as the organosilicon compound, the internal pressure of the apparatus reaction chamber was 45 Pa, and the film formation time was 180 seconds. A thin film (thickness 214 nm) was formed, and the laminate 4 was produced. The refractive index of the formed TEOS thin film was 1.49. A gas barrier laminate 4 was produced using the obtained laminate 4 in the same manner as in Example 1.
  • TEOS tetraethoxysilane
  • the vertical axis represents the abundance ratio (%) of atoms when the total amount of oxygen atoms, carbon atoms, silicon atoms, and nitrogen atoms is 100
  • the horizontal axis represents the total sputtering time ( Sputtering time, minutes). Since the sputtering rate is constant, the sputtering time corresponds to the depth.
  • FIG. 2 is an analysis diagram of Example 1
  • FIG. 3 is an analysis example of Example 2
  • FIG. 4 is an analysis diagram of Example 3
  • FIG. 5 is an analysis diagram of Example 4.
  • FIGS. (B) is an analysis figure after ion implantation.
  • the abundance ratio of oxygen atoms, carbon atoms, silicon atoms, and nitrogen atoms clearly changed before and after ion implantation. That is, in the gas barrier laminates 1 to 4 obtained in Examples 1 to 4, the surface portion of the organosilicon compound thin film is implanted with ions, so that the oxidation of the surface portion is promoted and the surface portion has a high density. It was confirmed that a silicon oxide film was formed.
  • Example 1 a laminated body 1r was produced in the same manner as in Example 1 except that plasma ion implantation was not performed.
  • Example 2 a laminated body 2r was produced in the same manner as in Example 1 except that plasma ion implantation was not performed.
  • Example 3 a laminated body 3r was produced in the same manner as in Example 1 except that plasma ion implantation was not performed.
  • Example 4 a laminated body 4r was produced in the same manner as in Example 1 except that plasma ion implantation was not performed.
  • the sputtering conditions are as follows. ⁇ Target: Si ⁇ Deposition gas: Ar, O 2 Gas flow rate: Ar; 100 ml / min, O 2 ; 60 ml / min Film forming pressure: 0.2 Pa ⁇ Target power: 2500W ⁇ Sputtering time: 210 seconds
  • Comparative Example 6 As a conventionally used method, a silicon nitride (SiN) layer (200 nm) was formed on a PET film by a sputtering method to obtain a gas barrier laminate 6r. The refractive index of the silicon nitride (SiN) layer was 2.10. Sputtering was performed under the same conditions as in Comparative Example 5, except that oxygen was changed to nitrogen in Comparative Example 5.
  • the gas barrier laminates 1 to 4 obtained in Examples 1 to 4 had a low water vapor transmission rate and were excellent in flexibility.
  • the laminates 1r to 4r of Comparative Examples 1 to 4 which were not ion-implanted, had high water vapor permeability and poor gas barrier properties.
  • the gas barrier laminated bodies 5r and 6r having the gas barrier layer formed by sputtering in Comparative Examples 5 and 6 were excellent in gas barrier properties, cracks were generated in the gas barrier layer and the flexibility was poor.
  • the gas barrier laminate of the present invention can be suitably used as a member for electronic devices such as a flexible display member and a solar battery back sheet. According to the production method of the present invention, the gas barrier laminate of the present invention having excellent gas barrier properties can be produced safely and simply. Since the electronic device member of the present invention has excellent gas barrier properties and flexibility, it can be suitably used for electronic devices such as displays and solar cells.

Abstract

 従来の無機膜成膜に比べて安価に製造ができ、かつ、煩雑な製造工程を必要とせず、容易に優れたガスバリア性と可とう性を有するガスバリア積層体、その製造方法、このガスバリア積層体からなる電子デバイス用部材、及びこの電子デバイス用部材を備える電子デバイスを提供する。 基材上に、ガスバリア層を有するガスバリア積層体であって、前記ガスバリア層が、有機ケイ素化合物を原料として用いるCVD法により形成された有機ケイ素化合物薄膜に、イオンが注入されて得られたものであることを特徴とするガスバリア積層体、このガスバリア積層体の製造方法、前記ガスバリア積層体からなる電子デバイス用部材、及び、前記電子デバイス用部材を備える電子デバイス。

Description

ガスバリア積層体、その製造方法、電子デバイス用部材及び電子デバイス
 本発明は、優れたガスバリア性と可とう性を有するガスバリア積層体、その製造方法、このガスバリア積層体からなる電子デバイス用部材、及びこの電子デバイス用部材を備える電子デバイスに関する。
 近年、液晶ディスプレイやエレクトロルミネッセンス(EL)ディスプレイ等のディスプレイには、薄型化、軽量化、フレキシブル化等を実現するために、基板として、ガラス板に代えて透明プラスチックフィルムを用いることが検討されている。
 しかしながら、プラスチックフィルムは、ガラス板に比べて水蒸気や酸素等を透過しやすく、ディスプレイ内部の素子の劣化を起こしやすいという問題があった。
 この問題を解決すべく、特許文献1には、透明プラスチックフィルムに金属酸化物からなる透明ガスバリア層を積層したフレキシブルディスプレイ基板が提案されている。
 しかしながら、この文献記載のフレキシブルディスプレイ基板は、透明プラスチックフィルム表面に、蒸着法、イオンプレーティング法、スパッター法等により、金属酸化物からなる透明ガスバリア層を積層したものであるため、該基板を丸めたり折り曲げたりすると、ガスバリア層にクラックが発生してガスバリア性が低下するという問題があった。また、このような方法は、ターゲットとして固体原料を用いているため、原料コストが高いという問題もあった。
 特許文献2には、プラスチックフィルムと、該プラスチックフィルムの少なくとも一方の面に、ポリオルガノシルセスキオキサンを主成分とする樹脂層を積層してなるガスバリア性積層体が開示されている。
 しかしながら、酸素、水蒸気等のガスバリア性を得るためには、さらに無機化合物層を積層する必要があるため、工程が煩雑であったり、コストがかかったり、毒性を有するガスを使用する危険性がある等の問題があった。
 本発明に関連して、特許文献3には、高分子フィルム上に、20~150℃の温度域において液体である有機ケイ素化合物を成膜原料として、600~1520Torrの圧力下で発生するプラズマを用いたCVD法により、酸化ケイ素を主成分とする薄膜を形成させるガスバリア性フィルムの製造方法が開示されている。
 しかしながら、この方法で得られるフィルムのガスバリア性は、満足のいくものではなかった。
 また、特許文献4には、基材に、ドライコーティング法によって、高酸化度酸化ケイ素層と、低酸化度酸化ケイ素層とを順次積層し、次いで、低酸化度酸化ケイ素層面に、酸素等からなるガスによるプラズマ処理を施した後、さらに、該低酸化度酸化ケイ素層のプラズマ処理面にポリマー層を積層させた透明ガスバリア積層フィルムが開示されている。
 しかしながら、この方法で得られるフィルムは、複数の層を積層する必要があり、製造工程が煩雑で経済的に不利であるという問題があった。
特開2000-338901号公報 特開2006-123307号公報 特開平11-256338号公報 特開2004-351832号公報
 本発明は、上記した従来技術に鑑みてなされたものであり、煩雑な製造工程を必要とせず、従来の無機膜成膜に比べて安価に製造することができ、かつ、優れたガスバリア性と可とう性を有するガスバリア積層体、その製造方法、このガスバリア積層体からなる電子デバイス用部材、及びこの電子デバイス用部材を備える電子デバイスを提供することを課題とする。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、基材上にガスバリア層を有するガスバリア積層体であって、前記ガスバリア層が、有機ケイ素化合物を成膜原料として用いるCVD法により形成された有機ケイ素化合物薄膜に、イオンが注入されて得られたガスバリア積層体は、優れたガスバリア性と可とう性を有することを見出し、本発明を完成するに至った。
 かくして本発明の第1によれば、下記(1)~(7)のガスバリア積層体が提供される。
(1)基材上に、ガスバリア層を有するガスバリア積層体であって、前記ガスバリア層が、有機ケイ素化合物を成膜原料として用いるCVD法により形成された有機ケイ素化合物薄膜に、イオンが注入されて得られたものであることを特徴とするガスバリア積層体。
(2)基材上に、ガスバリア層を有するガスバリア積層体であって、前記ガスバリア層が、有機ケイ素化合物を成膜原料として用いるプラズマCVD法により形成された有機ケイ素化合物薄膜に、イオンが注入されて得られたものであることを特徴とするガスバリア積層体。
(3)基材上に、ガスバリア層を有するガスバリア積層体であって、前記ガスバリア層が、有機ケイ素化合物を成膜原料として用いるCVD法により形成された、屈折率が1.46~1.60である有機ケイ素化合物薄膜に、イオンが注入されて得られたものであることを特徴とするガスバリア積層体。
(4)前記イオンが、水素、窒素、酸素、アルゴン、ヘリウム、ネオン、キセノン、クリプトン、ケイ素化合物からなる群から選ばれる少なくとも一種のガスがイオン化されたものであることを特徴とする(1)~(3)のいずれかに記載のガスバリア積層体。
(5)前記イオンの注入が、プラズマイオン注入によるものであることを特徴とする(1)~(3)のいずれかに記載のガスバリア積層体。
(6)前記有機ケイ素化合物薄膜の厚みが、30~500nmであることを特徴とする(1)~(3)のいずれかに記載のガスバリア積層体。
(7)40℃、相対湿度90%雰囲気下での水蒸気透過率が1g/m/day以下であることを特徴とする(1)~(3)のいずれかに記載のガスバリア積層体。
 本発明の第2によれば、下記(8)、(9)のガスバリア積層体の製造方法が提供される。
(8)基材上に、有機ケイ素化合物を成膜原料として用いるCVD法により、有機ケイ素化合物からなる薄膜を形成する工程と、
形成した薄膜にイオンを注入する工程と
を有することを特徴とする、(1)に記載のガスバリア積層体の製造方法。
(9)基材上に、有機ケイ素化合物を成膜原料として用いるCVD法により、屈折率が1.46~1.60である薄膜を形成する工程と、
形成した薄膜にイオンを注入する工程と
を有することを特徴とする、(3)~(7)のいずれかに記載のガスバリア積層体の製造方法。
 本発明の第3によれば、下記(10)の電子デバイス用部材が提供される。
(10)前記(1)~(7)のいずれかに記載のガスバリア積層体からなる電子デバイス用部材。
 本発明の第4によれば、下記(11)の電子デバイスが提供される。
(1)前記(10)に記載の電子デバイス用部材を備える電子デバイス。
 本発明によれば、煩雑な製造工程を必要とせず、従来の無機膜成膜に比べて安価に製造することができ、かつ、優れたガスバリア性と可とう性を有するガスバリア積層体、その製造方法、このガスバリア積層体からなる電子デバイス用部材、及びこの電子デバイス用部材を備える電子デバイスが提供される。
 本発明の製造方法によれば、本発明のガスバリア積層体を効率よく製造することができる。
本発明に使用するプラズマCVD成膜装置の概略構成を示す図である。 実施例1の、イオン注入前及びイオン注入後の有機ケイ素化合物薄膜における、酸素原子、炭素原子及びケイ素原子の存在割合(%)を表す図である。 実施例2の、イオン注入前及びイオン注入後の有機ケイ素化合物薄膜における、酸素原子、炭素原子、ケイ素原子及び窒素原子の存在割合(%)を表す図である。 実施例3の、イオン注入前及びイオン注入後の有機ケイ素化合物薄膜における、酸素原子、炭素原子、ケイ素原子及び窒素原子の存在割合(%)を表す図である。 実施例4の、イオン注入前及びイオン注入後の有機ケイ素化合物薄膜における、酸素原子、炭素原子及びケイ素原子の存在割合(%)を表す図である。
 以下、本発明を、1)ガスバリア積層体、2)ガスバリア積層体の製造方法、並びに、3)電子デバイス用部材及び電子デバイス、に項分けして詳細に説明する。
1)ガスバリア積層体
 本発明のガスバリア積層体は、基材上にガスバリア層を有するガスバリア積層体であって、前記ガスバリア層が、有機ケイ素化合物を成膜原料として用いるCVD法により形成された有機ケイ素化合物薄膜に、イオンが注入されて得られたものであることを特徴とする。
 本発明のガスバリア積層体は、基材上にガスバリア層を有する。
 基材を構成する素材としては、ガスバリア積層体の目的に合致するものであれば特に制限されない。例えば、ポリイミド、ポリアミド、ポリアミドイミド、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリオレフィン、ポリエステル、ポリカーボネート、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンスルフィド、ポリアリレート、アクリル系樹脂、シクロオレフィン系ポリマー、芳香族系重合体等の合成樹脂が挙げられる。
 これらの中でも、可とう性に優れ、汎用性があることから、ポリエステル、ポリアミド又はシクロオレフィン系ポリマーが好ましく、ポリエステル又はシクロオレフィン系ポリマーがより好ましい。
 ポリエステルとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリアリレート等が挙げられる。
 ポリアミドとしては、全芳香族ポリアミド、ナイロン6、ナイロン66、ナイロン共重合体等が挙げられる。
 シクロオレフィン系ポリマーとしては、ノルボルネン系重合体、単環の環状オレフィン系重合体、環状共役ジエン系重合体、ビニル脂環式炭化水素重合体、及びこれらの水素化物が挙げられる。その具体例としては、アペル(三井化学社製のエチレン-シクロオレフィン共重合体)、アートン(JSR社製のノルボルネン系重合体)、ゼオノア(日本ゼオン社製のノルボルネン系重合体)等が挙げられる。
 基材の厚さは、目的とするガスバリア積層体の用途等にもよるが、通常1~500μm、好ましくは10~200μmである。
 基材には、コロナ放電処理、プラズマ処理等の前処理を施し、汚れ物質の除去や表面の活性化を行っておいてもよい。
 本発明におけるガスバリア層は、基材上に、先ず、有機ケイ素化合物を成膜原料として用いるCVD法により有機ケイ素化合物薄膜を形成し、次に、形成された有機ケイ素化合物薄膜に、イオンを注入することにより得ることができる。
 用いる有機ケイ素化合物としては、ケイ素を含む有機化合物であれば特に制限はないが、酸素原子及び/又は窒素原子をさらに含有するものが好ましい。
 具体的には、テトラメトキシシラン、テトラエトキシシラン(TEOS)、テトラn-プロポキシシラン、テトライソプロポキシシラン、テトラn-ブトキシシラン、テトラt-ブトキシシラン等のテトラアルコキシシラン;
ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、(3,3,3-トリフルオロプロピル)トリメトキシシラン等の無置換若しくは置換基を有するアルキルアルコキシシラン;
ジフェニルジメトキシシラン、フェニルトリエトキシシラン等のアリールアルコキシシラン;
ヘキサメチルジシロキサン(HMDSO)等のジシロキサン;
ビス(ジメチルアミノ)ジメチルシラン、ビス(ジメチルアミノ)メチルビニルシラン、ビス(エチルアミノ)ジメチルシラン、ジエチルアミノトリメチルシラン、ジメチルアミノジメチルシラン、テトラキスジメチルアミノシラン、トリス(ジメチルアミノ)シラン等のアミノシラン;
ヘキサメチルジシラザン(HMDSZ)、ヘキサメチルシクロトリシラザン、ヘプタメチルジシラザン、ノナメチルトリシラザン、オクタメチルシクロテトラシラザン、テトラメチルジシラザン(TMDS)等のシラザン;
テトライソシアナートシラン等のシアナートシラン;
トリエトキシフルオロシラン等のハロゲノシラン;
ジアリルジメチルシラン、アリルトリメチルシラン等のアルケニルシラン;
ジ-t-ブチルシラン、1,3-ジシラブタン、ビス(トリメチルシリル)メタン、テトラメチルシラン、トリス(トリメチルシリル)メタン、トリス(トリメチルシリル)シラン、ベンジルトリメチルシラン等の無置換若しくは置換基を有するアルキルシラン;
ビス(トリメチルシリル)アセチレン、トリメチルシリルアセチレン、1-(トリメチルシリル)-1-プロピン等のシリルアルキン;
1,4-ビストリメチルシリル-1,3-ブタジイン、シクロペンタジエニルトリメチルシラン等のシリルアルケン;
フェニルジメチルシラン、フェニルトリメチルシラン等のアリールアルキルシラン;
プロパルギルトリメチルシラン等のアルキニルアルキルシラン;
ビニルトリメチルシラン等のアルケニルアルキルシラン;
ヘキサメチルジシラン等のジシラン;
オクタメチルシクロテトラシロキサン、テトラメチルシクロテトラシロキサン、ヘキサメチルシクロテトラシロキサン等のシロキサン;
N,O-ビス(トリメチルシリル)アセトアミド;
ビス(トリメチルシリル)カルボジイミド;
等が挙げられる。
 これらの中でも、取り扱い性、及び低い真空度で成膜でき、設備コストが抑えられ、成膜容易性の観点から、1.01×10Paにおける沸点(以下にて同じ)が40~200℃である有機ケイ素化合物が好ましく、沸点が50~180℃である有機ケイ素化合物がより好ましく、沸点が60~170℃である有機ケイ素化合物がさらに好ましく、取り扱い性、汎用性及び得られるガスバリア層が優れたガスバリア性を有するという点からく、ヘキサメチルジシロキサン、ヘキサメチルジシラザン、テトラメチルジシラザン、テトラエトキシシランが特に好ましい。
 CVD(Chemical Vapor Deposition)法は、基材上に、薄膜形成用原料(成膜原料)を気体状態で供給し、これを熱あるいはプラズマのエネルギーなどで分解して薄膜成長を行なう薄膜形成技術である。
 本発明において、CVD法は特に限定されず、熱CVD法、プラズマCVD法、光CVD法、レーザーCVD法等が挙げられる。
 これらの中でも、基材にかかる温度を低くすることができるという点から、プラズマCVD法が好ましい。
 プラズマCVD法は、気体プラズマを利用して薄膜成長を行うものであり、基本的には、減圧下において原料ガス(成膜原料)を含むガスを高電界による電気的エネルギーで放電させ、分解させ、生成する物質を気相中或いは基材上での化学反応を経て、基材上に堆積させるプロセスから成る。プラズマ状態は、グロー放電によって実現されるものであり、このグロー放電の方式によって、直流グロー放電を利用する方法、高周波グロー放電を利用する方法、マイクロ波放電を利用する方法等が知られている。
 プラズマCVD法に用いる装置としては、真空成膜装置であれば特に限定されずに用いることができ、平行平板CVD装置が一般的であるが、例えばマイクロ波CVD装置、ECR-CVD装置、及び高密度プラズマCVD装置(ヘリコン波方式、高周波誘導方式)等を用いることができる。
 有機ケイ素化合物薄膜をプラズマCVD法で形成する際には、得られるガスバリア層のガスバリア性を向上させるという目的から、原料の有機ケイ素化合物に加えて、酸化性ガス又は還元性ガスを併用することが好ましい
 酸化性ガス又は還元性ガスとしては、O、O、NO、NO、CO、CO、水素、炭化水素、アンモニア、H等のいずれか1種又は2種以上の組み合わせ等が挙げられる。これらの中でもOが好ましい。
 また、プラズマ中で発生する活性種の濃度制御や原料ガスの解離促進のために、ヘリウム、ネオン、アルゴン、キセノン、クリプトン等の不活性ガスを添加してもよい。これらの不活性ガスは1種単独で、あるいは2種以上を混合して用いることができる。
 プラズマCVD法においては、例えば、内圧を、0.05Pa~500Pa、好ましくは30Pa~150Paとした反応室内に、気体状態の有機ケイ素化合物を、酸化性ガス又は還元性ガス、所望により不活性ガスとともに導入し、電極に100~1000W、好ましくは300~500Wの電力をかけることによってプラズマを生成させ、これを電極上に配置した基材上に堆積させることによって、有機ケイ素化合物薄膜を形成することができる。
 得られる有機ケイ素化合物薄膜の膜厚は、通常10~1000nm、好ましくは30~500nm、特に好ましくは100~300nmである。プラズマCVDにおいて、処理時間等を変化させることにより、膜厚を調整することができる。処理時間は通常5秒から数分、好ましくは10秒から4分である。
 本発明においては、有機ケイ素化合物薄膜の厚みがナノオーダーであっても、後述するように有機ケイ素化合物薄膜にイオンを注入することにより、充分なガスバリア性能を有するガスバリア積層体を得ることができる。
 本発明においては、成膜原料の有機ケイ素化合物を適宜選択したり、上記プラズマCVD法の条件等を適宜選択することにより、任意の範囲の屈折率の有機ケイ素化合物薄膜を得ることが出来る。
 本発明においては、有機ケイ素化合物薄膜の屈折率は、1.46~1.60であることが好ましい。有機ケイ素化合物薄膜の屈折率が1.60より大きいと、膜が固くなりクラック等の欠陥が発生しやすくなる。一方、屈折率が1.46より小さいと、イオンを注入しても均一で高密度なガスバイア層が形成されにくく、好ましいガスバリア性が得られず、可とう性も劣る可能性がある。すなわち、屈折率が上記範囲であれば、後述するように、有機ケイ素化合物薄膜にイオンを注入することで、ガスバリア性が高く、可とう性にも優れるガスバリア層を得ることが出来る。
 屈折率は、公知の屈折率測定装置(エリプソメーター)により測定することができる。
 また、上記プラズマCVD法により形成される有機ケイ素化合物薄膜は、従来の方法に比べて、ピンホールが発生しにくい。従って、このような有機ケイ素化合物薄膜を用いることによって、安定したガスバリア性を有するガスバリア層を形成することができる。
 次に、得られた有機ケイ素化合物薄膜にイオンを注入することにより、ガスバリア層を形成する。
 注入するイオンとしては、アルゴン、ヘリウム、ネオン、クリプトン、キセノンなどの希ガスのイオン;フルオロカーボン、水素、窒素、酸素、二酸化炭素、塩素、フッ素、硫黄等のイオン;
メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン等のアルカン系ガス類のイオン;エチレン、プロピレン、ブテン、ペンテン等のアルケン系ガス類のイオン;ペンタジエン、ブタジエン等のアルカジエン系ガス類のイオン;アセチレン、メチルアセチレン等のアルキン系ガス類のイオン;ベンゼン、トルエン、キシレン、インデン、ナフタレン、フェナントレン等の芳香族炭化水素系ガス類のイオン;シクロプロパン、シクロヘキサン等のシクロアルカン系ガス類のイオン;シクロペンテン、シクロヘキセン等のシクロアルケン系ガス類のイオン;
金、銀、銅、白金、ニッケル、パラジウム、クロム、チタン、モリブデン、ニオブ、タンタル、タングステン、アルミニウム等の導電性の金属のイオン;
パーフルオロカーボン(PFC)等のフロリナート;テトラフルオロメタン、ヘキサフルオロエタン、1,1,2,2-テトラフルオロエチレン、1,1,1,2,3,3-ヘキサフルオロプロパン、ヘキサフルオロプロペン等のフッ化炭素化合物のイオン;
1,1-ジフルオロエチレン、1,1,1,2-テトラフルオロエタン、1,1,2,2,3-ペンタフルオロプロパン等のフッ化炭化水素化合物のイオン;
ジフルオロジクロロメタン、トリフルオロクロロメタン等のフッ化塩化炭化水素化合物のイオン;
1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、1,3-ジフルオロ-2-プロパノール、パーフルオロブタノール等のフッ化アルコールのイオン;
ビニルトリフルオロアセテート、1,1,1-トリフルオロエチルトリフルオロアセテート等のフッ化カルボン酸エステル;アセチルフルオライド、ヘキサフルオロアセトン、1,1,1-トリフルオロアセトン等のフッ化ケトンのイオン;
等が挙げられる。
 なかでも、より簡便に注入することができ、より優れたガスバリア性と可とう性を有するガスバリア層が得られることから、水素、窒素、酸素、アルゴン、ヘリウム、ネオン、キセノン、クリプトン及びケイ素化合物からなる群から選ばれる少なくとも一種のイオンが好ましく、窒素、酸素、アルゴン又はヘリウムのイオンが特に好ましい。
 イオンの注入量は、形成するガスバリア積層体の使用目的(必要なガスバリア性、可とう性等)等に合わせて適宜決定すればよい。
 イオン注入法としては、電界により加速されたイオン(イオンビーム)を照射する方法、プラズマ中のイオンを注入する方法(プラズマイオン注入法)等が挙げられる。なかでも、本発明においては、優れたガスバリア性を有するガスバリア層が簡便に得られることから、後者のプラズマイオン注入法が好ましい。
 プラズマイオン注入法は、具体的には、プラズマ生成ガスを含む雰囲気下でプラズマを発生させ、有機ケイ素化合物薄膜を表面に有する積層体に、負の高電圧パルスを印加することにより、該プラズマ中のイオン(陽イオン)を有機ケイ素化合物薄膜の表面部に注入する方法である。
 イオンが注入される層(以下、「イオン注入層」ということがある)の厚みは、イオンの種類や印加電圧、処理時間等の注入条件により制御することができ、用いる有機ケイ素化合物薄膜の厚み、ガスバリア積層体の使用目的等に応じて決定すればよいが、通常表層から5~1000nm、好ましくは20~500nmである。
 イオンが注入されたことは、例えば、X線光電子分光(XPS)分析を用いて、有機ケイ素化合物薄膜の表面部の元素分析測定を行うことによって確認することができる。
 このように、有機ケイ素化合物薄膜の表面部にイオンが注入されることにより、ガスバリア層内部に柔軟性を残しつつ、表面部の酸化が促進し、表面部に高密度なガスバリア層が形成される。
 以上のように、有機ケイ素化合物を成膜原料として用いるCVD法により形成された、有機ケイ素化合物薄膜に、イオンが注入されて得られるガスバリア層は、従来の無機化合物層からなるガスバリア層と異なり、層内部に柔軟性を有するため、可とう性に優れ、膜厚が500nm以下と比較的薄い場合であっても、十分なガスバリア性を有する。
 本発明のガスバリア積層体の形状は、特に制限されず、例えば、フィルム状、シート状、直方体状、多角柱状、筒状などが挙げられる。後述するごとき電子デバイス用部材として用いる場合には、フィルム状、シート状であることが好ましい。該フィルムの厚みは、目的とする電子デバイスの用途によって適宜決定することができる。
 本発明のガスバリア積層体は、前記基材、及び、ガスバリア層のみからなるものであってもよいし、さらに他の層を含むものであってもよい
 他の層としては、例えば、無機薄膜層、導電体層、衝撃吸収層、プライマー層等が挙げられる。
 無機薄膜層は、無機化合物の一種又は二種以上からなる層である。無機化合物層を設けることで、ガスバリア性をさらに向上させることができる。
 無機化合物としては、一般的に真空成膜可能で、ガスバリア性を有するもの、例えば無機酸化物、無機窒化物、無機炭化物、無機硫化物、これらの複合体である無機酸化窒化物、無機酸化炭化物、無機窒化炭化物、無機酸化窒化炭化物等が挙げられる。
 無機薄膜層の厚みは、通常10nm~1000nm、好ましくは20~500nm、より好ましくは20~100nmの範囲である。
 導電体層を構成する材料としては、金属、合金、金属酸化物、電気伝導性化合物、これらの混合物等が挙げられる。具体的には、アンチモンをドープした酸化スズ(ATO);フッ素をドープした酸化スズ(FTO);酸化スズ、ゲルマニウムをドープした酸化亜鉛(GZO)、酸化亜鉛、酸化インジウム、酸化インジウムスズ(ITO)、酸化亜鉛インジウム(IZO)等の半導電性金属酸化物;金、銀、クロム、ニッケル等の金属;これら金属と導電性金属酸化物との混合物;ヨウ化銅、硫化銅等の無機導電性物質;ポリアニリン、ポリチオフェン、ポリピロール等の有機導電性材料;等が挙げられる。
 導電体層の形成方法としては特に制限はない。例えば、蒸着法、スパッタリング法、イオンプレーティング法、熱CVD法、プラズマCVD法等が挙げられる。
 導電体層の厚さはその用途等に応じて適宜選択すればよい。通常10nm~50μm、好ましくは20nm~20μmである。
 衝撃吸収層は、ガスバリア層に衝撃が加わった時に、ガスバリア層を保護するためのものである。衝撃吸収層を形成する素材としては、特に限定されないが、例えば、アクリル系樹脂、ウレタン系樹脂、シリコーン系樹脂、オレフィン系樹脂、ゴム系材料等が挙げられる。
 また、粘着剤、コート剤、封止剤等として市販されているものを使用することもでき、特に、アクリル系粘着剤、シリコーン系粘着剤、ゴム系粘着剤等の粘着剤が好ましい。
 衝撃吸収層の形成方法としては特に制限はなく、例えば、前記衝撃吸収層を形成する素材(粘着剤等)、及び、所望により、溶剤等の他の成分を含む衝撃吸収層形成溶液を、積層すべき層上に塗布し、得られた塗膜を乾燥し、必要に応じて加熱等して形成する方法が挙げられる。
 また、別途、剥離基材上に衝撃吸収層を成膜し、得られた膜を、積層すべき層上に転写して積層してもよい。
 衝撃吸収層の厚みは、通常1~100μm、好ましくは5~50μmである。
 プライマー層は、基材とガスバリア層との層間密着性を高める役割を果たす。プライマー層を設けることにより、層間密着性及び表面平滑性に優れるガスバリア積層体を得ることができる。
 プライマー層を構成する材料としては、特に限定されず、公知のものが使用できる。例えば、ケイ素含有化合物;光重合性モノマー及び/又は光重合性プレポリマーからなる光重合性化合物、及び前記光重合性化合物に少なくとも紫外光域の光でラジカルを発生する重合開始剤を含む光重合性組成物;ポリエステル系樹脂、ポリウレタン系樹脂(特にポリアクリルポリオール、ポリエステルポリオール、ポリエーテルポリオール等とイソシアネート化合物との2液硬化型樹脂)、アクリル系樹脂、ポリカーボネート系樹脂、塩化ビニル/酢酸ビニル共重合体、ポリビニルブチラール系樹脂、ニトロセルロース系樹脂等の樹脂類;アルキルチタネート;エチレンイミン;等が挙げられる。これらの材料は一種単独で、或いは二種以上を組み合わせて用いることができる。
 プライマー層は、プライマー層を構成する材料を適当な溶剤に溶解又は分散してなるプライマー層形成用溶液を、基材の片面又は両面に塗付し、得られた塗膜を乾燥させ、所望により加熱することより形成することができる。
 プライマー層形成用溶液を支持体に塗付する方法としては、通常の湿式コーティング方法を用いることができる。例えばディッピング法、ロールコート、グラビアコート、ナイフコート、エアナイフコート、ロールナイフコート、ダイコート、スクリーン印刷法、スプレーコート、グラビアオフセット法等が挙げられる。
 プライマー層形成用溶液の塗膜を乾燥する方法としては、熱風乾燥、熱ロール乾燥、赤外線照射等、従来公知の乾燥方法が採用できる。
 プライマー層の厚みは、通常、10~1000nmである。
 また、得られたプライマー層に、前記イオンを注入する方法と同様の方法によりイオン注入を行ってもよい。プライマー層にもイオン注入を行うことにより、よりガスバリア性に優れるガスバリア積層体を得ることができる。
 本発明のガスバリア積層体においては、ガスバリア層は、基材の表側と裏側の両側に形成されていてもよい。ガスバリア積層体が、他の層を含む積層体である場合、前記ガスバリア層の配置位置は特に限定されない。また、他の層は、単層でも、同種又は異種の2層以上であってもよい。
 本発明のガスバリア積層体は、優れたガスバリア性と可とう性を有する。
 本発明のガスバリア積層体が優れたガスバリア性を有していることは、本発明のガスバリア積層体の水蒸気等のガスの透過率が小さいことから確認することができる。例えば、水蒸気透過率は、通常5g/m/day以下であり、好ましくは1g/m/day以下であり、より好ましくは0.5g/m/day以下である。なお、ガスバリア積層体の水蒸気等の透過率は、公知のガス透過率測定装置を使用して測定することができる。
 また、本発明のガスバリア積層体が優れた可とう性を有していることは、例えば、本発明のガスバリア積層体を、3mmφステンレスの棒に、イオン注入面を外側にして巻きつけ、周方向に10往復させた後、光学顕微鏡でクラック発生の有無を観察し、クラックの発生が認められないことから確認することができる。
2)ガスバリア積層体の製造方法
 本発明のガスバリア積層体の製造方法は、基材上に、有機ケイ素化合物を成膜原料として用いるCVD法により、有機ケイ素化合物薄膜を形成する工程1と、形成した有機ケイ素化合物薄膜にイオンを注入する工程2とを有することを特徴とする。
 本発明のガスバリア積層体の製造方法においては、基材上に、有機ケイ素化合物を成膜原料として用いるCVD法により、屈折率が1.46~1.60である有機ケイ素化合物薄膜を形成する工程と、形成した有機ケイ素化合物薄膜にイオンを注入する工程とを有することが好ましい。
〈工程1〉
 基材上に、CVD法により、有機ケイ素化合物薄膜を形成するには、具体的には、成膜原料として所定の有機ケイ素化合物を用い、公知のCVD成膜装置を使用して行うことができる。CVD法に関しては、上述した通りであり、プラズマCVD法が好ましい。基材上に、プラズマCVD法による有機ケイ素化合物薄膜の形成は、公知のプラズマCVD成膜装置を使用して行うことができる。
 以下、プラズマCVD成膜装置を用いて、基材上に有機ケイ素化合物薄膜を形成する方法の一例を、図を参照しながら説明する。
 図1にプラズマCVD成膜装置の一例を模式的に示す。図1に示すプラズマCVD成膜装置は、アノード電極2、カソード電極3、及び、高周波電力を供給する高周波電源4を有する反応室1と、反応室1に配管を通じて接続される、有機ケイ素化合物を収容する容器5、酸化性ガス室6、キャリアガス室8、反応室内を真空引きする真空ポンプ7、排気ダクト10からなる。容器5、酸化性ガス室6、キャリアガス室8にはそれぞれ、流量調節弁9a、9b、9cが備わっている。
 反応室1はその内部空間を所定の真空度に保持できる気密性を有している。
 先ず、反応室1内のアノード電極2上に、図示しない基材ホルダにより基材11を載置し、反応室1内を真空ポンプ7により所定の真空度にする。容器5内に充填された反応ガス(有機ケイ素化合物)を気化し、配管を通して反応室1内に導入する。また同時に、酸化性ガス室6から例えば、酸化性ガスとして酸素(O)ガスを、キャリアガス室8から例えば、キャリアガスとしてArを、反応室1内に所定の流量で導入する。
 反応ガスの流量は、通常1~100ml/分であり
 酸化性ガスの流量は、通常1~100ml/分であり、
 キャリアガスの流量は、通常1~200ml/分である。
 酸化性ガスとしては、酸素ガス以外には上述した酸化性ガスと同様のものが挙げられる。また、キャリアガスとしては、Ar以外には上述した不活性ガスと同様のものが挙げられる。
 さらに、反応室1内の圧力を所定の値に調整した後、カソード電極3に、高周波電源4を接続し、反応室1内の反応ガスに高周波電力を与えると、反応ガスが部分的に分解し、イオンやラジカルが生成する。反応ガスから生成したイオン、ラジカルはさらに反応して、基材上に堆積し、有機ケイ素化合物薄膜が形成される。
 反応室内の圧力、成膜の際の電力、成膜時間等の好ましい値は、前記1)で記載した値と同様である。
 本発明によれば、CVD法において基材等を特に加熱する必要がなく、有機ケイ素化合物薄膜を簡便に形成することができる。
 また、CVD法による有機ケイ素化合物薄膜の形成は、バッチ式であっても連続式であってもよい。
 また、得られる有機ケイ素化合物薄膜の屈折率は、1.46~1.60であることが好ましい。
〈工程2〉
 次に、得られた有機ケイ素化合物薄膜にイオンを注入する。
 注入するイオン種としては、上述したのと同様のものが挙げられる。
 有機ケイ素化合物薄膜にイオンを注入する方法としては、バッチ式であっても連続式であってもよい。なかでも、生産効率の観点から、長尺状の、有機ケイ素化合物薄膜が形成された基材(以下、「積層体」ということがある。)を、一定方向に搬送しながら、前記有機ケイ素化合物薄膜の表面部に、イオンを注入する方法が好ましい。
 この製造方法によれば、例えば、長尺状の積層体を巻き出しロールから巻き出し、それを一定方向に搬送しながらイオンを注入し、巻き取りロールで巻き取ることができるので、イオンが注入されて得られるガスバリア積層体を連続的に製造することができる。
 長尺状の積層体は、有機ケイ素化合物薄膜が表面部に形成されていれば、前記他の層を含むものであってもよい。
 積層体の厚さは、巻き出し、巻き取り及び搬送の操作性の観点から、通常10~500μm、好ましくは20~300μmである。
 有機ケイ素化合物薄膜にイオンを注入する方法は、特に限定されない。なかでも、プラズマイオン注入法により、前記薄膜の表面部にイオン注入層を形成する方法が特に好ましい。
 プラズマイオン注入法としては、(A)外部電界を用いて発生させたプラズマ中に存在するイオンを、前記薄膜の表面部に注入する方法、又は(B)外部電界を用いることなく、前記薄膜に印加する負の高電圧パルスによる電界のみで発生させたプラズマ中に存在するイオンを、前記薄膜の表面部に注入する方法が好ましい。
 前記(A)の方法においては、イオン注入する際の圧力(プラズマイオン注入時の圧力)を0.01~1Paとすることが好ましい。プラズマイオン注入時の圧力がこのような範囲にあるときに、簡便にかつ効率よく均一なイオン注入層を形成することができ、透明性、ガスバリア性を兼ね備えたイオン注入層を効率よく形成することができる。
 前記(B)の方法は、減圧度を高くする必要がなく、処理操作が簡便であり、処理時間も大幅に短縮することができる。また、前記薄膜全体にわたって均一に処理することができ、負の高電圧パルス印加時にプラズマ中のイオンを高エネルギーで薄膜の表面部に連続的に注入することができる。さらに、radio frequency(高周波、以下、「RF」と略す。)や、マイクロ波等の高周波電力源等の特別の他の手段を要することなく、薄膜に負の高電圧パルスを印加するだけで、薄膜の表面部に良質のイオン注入層を均一に形成することができる。
 前記(A)及び(B)のいずれの方法においても、負の高電圧パルスを印加するとき、すなわちイオン注入するときのパルス幅は、1~15μsecであるのが好ましい。パルス幅がこのような範囲にあるときに、透明で均一なイオン注入層をより簡便にかつ効率よく形成することができる。
 また、プラズマを発生させるときの印加電圧は、好ましくは-1kV~-50kV、より好ましくは-1kV~-30kV、特に好ましくは-5kV~-20kVである。印加電圧が-1kVより大きい値でイオン注入を行うと、イオン注入量(ドーズ量)が不十分となり、所望の性能が得られない。一方、-50kVより小さい値でイオン注入を行うと、イオン注入時に積層体が帯電し、また積層体への着色等の不具合が生じ、好ましくない。
 有機ケイ素化合物薄膜の表面部にプラズマ中のイオンを注入する際には、プラズマイオン注入装置を用いる。
 プラズマイオン注入装置としては、具体的には、(α)有機ケイ素化合物薄膜(イオン注入する層)に負の高電圧パルスを印加するフィードスルーに高周波電力を重畳してイオン注入する層の周囲を均等にプラズマで囲み、プラズマ中のイオンを誘引、注入、衝突、堆積させる装置(特開2001-26887号公報)、(β)チャンバー内にアンテナを設け、高周波電力を与えてプラズマを発生させてイオン注入する層周囲にプラズマが到達後、イオン注入する層に正と負のパルスを交互に印加することで、正のパルスでプラズマ中の電子を誘引衝突させてイオン注入する層を加熱し、パルス定数を制御して温度制御を行いつつ、負のパルスを印加してプラズマ中のイオンを誘引、注入させる装置(特開2001-156013号公報)、(γ)マイクロ波等の高周波電力源等の外部電界を用いてプラズマを発生させ、高電圧パルスを印加してプラズマ中のイオンを誘引、注入させるプラズマイオン注入装置、(δ)外部電界を用いることなく高電圧パルスの印加により発生する電界のみで発生するプラズマ中のイオンを注入するプラズマイオン注入装置等が挙げられる。
 これらの中でも、処理操作が簡便であり、処理時間も大幅に短縮でき、連続使用に適していることから、(γ)又は(δ)のプラズマイオン注入装置を用いるのが好ましい。
 前記(γ)及び(δ)のプラズマイオン注入装置を用いる方法については、WO2010/021326号パンフレットに記載のものが挙げられる。
 前記(γ)及び(δ)のプラズマイオン注入装置では、プラズマを発生させるプラズマ発生手段を高電圧パルス電源によって兼用しているため、RFやマイクロ波等の高周波電力源等の特別の他の手段を要することなく、負の高電圧パルスを印加するだけで、プラズマを発生させ、有機ケイ素化合物薄膜の表面部にプラズマ中のイオンを注入し、イオン注入層を連続的に形成し、表面部にイオン注入層が形成されたガスバリア積層体を量産することができる。
3)電子デバイス用部材及び電子デバイス
 本発明の電子デバイス用部材は、本発明のガスバリア積層体からなることを特徴とする。従って、本発明の電子デバイス用部材は、優れたガスバリア性と可とう性を有しているので、水蒸気等のガスによる素子の劣化を防ぐことができる。本発明の電子デバイス用部材は、液晶ディスプレイ、ELディスプレイ等のディスプレイ部材;太陽電池等に用いる太陽電池バックシート;等として好適である。
 本発明の電子デバイスは、本発明の電子デバイス用部材を備える。具体例としては、液晶ディスプレイ、有機ELディスプレイ、無機ELディスプレイ、電子ペーパー、太陽電池等が挙げられる。
 本発明の電子デバイスは、本発明のガスバリア積層体からなる電子デバイス用部材を備えているので、優れたガスバリア性と可とう性を有する。
 以下、実施例を挙げて本発明をさらに詳細に説明する。但し、本発明は、以下の実施例になんら限定されるものではない。
 用いた真空成膜装置(プラズマCVD成膜装置)、プラズマイオン注入装置、屈折率測定装置、X線光電子分光測定装置(XPS)と測定条件、水蒸気透過率測定装置と測定条件、及び可とう性試験方法は以下の通りである。なお、用いたプラズマイオン注入装置は外部電界を用いてイオン注入する装置である。
〈真空成膜装置(プラズマCVD成膜装置)〉
 ・反応ガス(流量):有機ケイ素化合物(10ml/分)
 ・導入ガス(流量): 酸化性ガス:酸素(O)(20ml/分)
 ・キャリアガス:アルゴン(Ar)(100ml/分)
 ・電力:400W
〈プラズマイオン注入装置〉
 ・RF電源:型番号「RF56000」、日本電子社製
 ・高電圧パルス電源:「PV-3-HSHV-0835」、栗田製作所社製
 ・ガス流量:100sccm
 ・Duty比:0.5%
 ・繰り返し周波数:1000Hz
 ・印加電圧:-25kV
 ・RF電源:周波数 13.56MHz、印加電力 1000W
 ・チャンバー内圧:0.2Pa
 ・パルス幅:5μsec
 ・処理時間(イオン注入時間):300sec
 ・搬送速度:0.2m/min
<屈折率測定装置>
 ・エリプソメーター:「分光エリプソメトリー2000U」、ジェー・エー・ウーラム・ジャパン社製
<X線光電子分光測定装置(XPS)>
 ・測定装置:「PHI Quantera SXM」、アルバックファイ社製
 ・X線ビーム径:100μm
 ・電力値:25W
 ・電圧:15kV
 ・取り出し角度:45°
<水蒸気透過率の測定>
 ・水蒸気透過率測定装置:「PERMATRAN-W3/33」、mocon社製
 ・測定条件:相対湿度90%、40℃
<可とう性試験方法>
 3mmφステンレスの棒に、得られた積層体を、ポリエチレンテレフタレートフィルム側を内側にして巻きつけ、周方向に10往復させた後、光学顕微鏡(倍率2000倍、キーエンス社製)でクラック発生の有無を観察した。クラックの発生が認められなかった場合を「なし」、クラックの発生が認められた場合を「あり」と評価した。
<有機ケイ素化合物薄膜の膜厚の測定>
 エリプソメーター(「分光エリプソメトリー2000U」、ジェー・エー・ウーラム・ジャパン社製)を用いて膜厚を測定した。
(実施例1)
 図1に示す真空成膜装置(プラズマCVD成膜装置)内のアノード電極2上の基材ホルダに、基材としてのポリエチレンテレフタレートフィルム(商品名:PETA-4100、厚さ50μm、東洋紡績社製、以下「PETフィルム」という。)をセットし、装置の反応室の内圧を75Paとした。有機ケイ素化合物としてのヘキサメチルジシロキサン(HMDSO)を50℃で気化し、酸化性ガス(O)、キャリアガス(Ar)とともに反応室に導入した。
 RF電源を用いてプラズマを発生させ、成膜時間を30秒として、基材上にHMDSO薄膜(膜厚211nm)を形成し、積層体1を作製した。形成されたHMDSO薄膜の屈折率は、1.48だった。
 次いで、プラズマイオン注入装置を用いて、得られた積層体1のHMDSO薄膜の表面に、アルゴン(Ar)をプラズマイオン注入してガスバリア層を形成し、ガスバリア積層体1を作製した。
(実施例2)
 実施例1において、有機ケイ素化合物としてヘキサメチルジシラザン(HMDSZ)を用い、装置反応室の内圧を70Paとし、成膜時間を45秒とした以外は、実施例1と同様にしてPETフィルム上にHMDSZ薄膜(膜厚209nm)を形成し、積層体2を作製した。形成されたHMDSZ薄膜の屈折率は、1.50だった。
 得られた積層体2を用いて、実施例1と同様にしてガスバリア積層体2を作製した。
(実施例3)
 実施例1において、有機ケイ素化合物としてテトラメチルジシラザン(TMDS)を用い、装置反応室の内圧を60Paとし、成膜時間を60秒とした以外は、実施例1と同様にしてPETフィルム上にTMDS薄膜(膜厚195nm)を形成し、積層体3を作製した。形成されたTMDS薄膜の屈折率は、1.54だった。
 得られた積層体3を用いて、実施例1と同様にしてガスバリア積層体3を作製した。
(実施例4)
 実施例1において、有機ケイ素化合物としてテトラエトキシシラン(TEOS)を用い、装置反応室の内圧を45Paとし、成膜時間を180秒とした以外は、実施例1と同様にしてPETフィルム上にTEOS薄膜(膜厚214nm)を形成し、積層体4を作製した。形成されたTEOS薄膜の屈折率は、1.49だった。
 得られた積層体4を用いて、実施例1と同様にしてガスバリア積層体4を作製した。
 実施例1~4で得られたガスバリア積層体1~4につき、XPS測定により、ガスバリア積層体1~4の表面から10nm付近の元素分析を行なうことにより、イオンが注入されたことを確認した。測定結果を図2~5に示す。
 図2~5において、縦軸は、酸素原子、炭素原子、ケイ素原子、窒素原子の存在量の合計を100とした場合の原子の存在比(%)を表し、横軸はスパッタリングの積算時間(スパッタ時間、分)を表す。スパッタリングの速度は一定であるので、スパッタ時間は、深さに対応している。
 図2は実施例1の、図3は実施例2の、図4は実施例3の、図5は実施例4の分析図であり、図2~5の(a)図はイオン注入前の、(b)図はイオン注入後の分析図である。
 図2~5に示すように、イオン注入前とイオン注入後では、明らかに酸素原子、炭素原子、ケイ素原子、窒素原子の存在比が変化していた。すなわち、実施例1~4で得られたガスバリア積層体1~4は、有機ケイ素化合物薄膜の表面部にイオンが注入されていることにより、表面部の酸化が促進し、表面部に高密度な酸化ケイ素膜が形成されていることが確認された。
(比較例1)
 実施例1において、プラズマイオン注入を行わない以外は、実施例1と同様にして積層体1rを作製した。
(比較例2)
 実施例2において、プラズマイオン注入を行わない以外は、実施例1と同様にして積層体2rを作製した。
(比較例3)
 実施例3において、プラズマイオン注入を行わない以外は、実施例1と同様にして積層体3rを作製した。
(比較例4)
 実施例4において、プラズマイオン注入を行わない以外は、実施例1と同様にして積層体4rを作製した。
(比較例5)
 PETフィルム上に、スパッタリング法により、SiO層(200nm)を形成してガスバリア積層体5rとした。SiO層の屈折率は1.45だった。
 スパッタリング条件は以下の通りである。
 ・ターゲット:Si
 ・成膜ガス:Ar,O
 ・ガス流量:Ar;100ml/分,O;60ml/分
 ・成膜圧力:0.2Pa
 ・ターゲット電力:2500W
 ・スパッタ時間:210秒
(比較例6)
 PETフィルム上に、従来から用いられる方法として、スパッタリング法により、窒化ケイ素(SiN)の層(200nm)を形成してガスバリア積層体6rとした。窒化ケイ素(SiN)の層の屈折率は2.10だった。
 スパッタリングは、比較例5において酸素を窒素とした以外は、比較例5と同条件で行った。
 実施例1~4、比較例1~6で得られたガスバリア積層体1~4、5r、6r、積層体1r~4rにつき、水蒸気透過率を測定し、可とう性試験を行った。測定結果及び評価結果を下記第1表に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~4で得られたガスバリア積層体1~4は、水蒸気透過率が低く、さらに可とう性に優れていた。一方、比較例1~4の、イオン注入されなかった積層体1r~4rは、水蒸気透過率が高く、ガスバリア性に劣っていた。また、比較例5、6のスパッタリングで形成したガスバリア層を有するガスバリア積層体5r、6rは、ガスバリア性は優れているものの、ガスバリア層にクラックが発生し、可とう性に劣っていた。
 本発明のガスバリア積層体は、フレキシブルなディスプレイ部材、太陽電池バックシート等の電子デバイス用部材として好適に用いることができる。
 本発明の製造方法によれば、優れたガスバリア性を有する本発明のガスバリア積層体を安全に簡便に製造することができる。
 本発明の電子デバイス用部材は、優れたガスバリア性と可とう性を有するため、ディスプレイ、太陽電池等の電子デバイスに好適に用いることができる。
1・・・反応室、2・・・アノード電極、3・・・カソード電極、4・・・高周波電源、5・・・容器、6・・・酸活性ガス室、7・・・真空ポンプ、8・・・キャリアガス室、9a,9b,9c・・・流量調節弁、10・・・排気ダクト、11・・・基材

Claims (11)

  1.  基材上に、ガスバリア層を有するガスバリア積層体であって、前記ガスバリア層が、有機ケイ素化合物を成膜原料として用いるCVD法により形成された有機ケイ素化合物薄膜に、イオンが注入されて得られたものであることを特徴とするガスバリア積層体。
  2.  基材上に、ガスバリア層を有するガスバリア積層体であって、前記ガスバリア層が、有機ケイ素化合物を成膜原料として用いるプラズマCVD法により形成された有機ケイ素化合物薄膜に、イオンが注入されて得られたものであることを特徴とするガスバリア積層体。
  3.  基材上に、ガスバリア層を有するガスバリア積層体であって、前記ガスバリア層が、有機ケイ素化合物を成膜原料として用いるCVD法により形成された、屈折率が1.46~1.60である有機ケイ素化合物薄膜に、イオンが注入されて得られたものであることを特徴とするガスバリア積層体。
  4.  前記イオンが、水素、窒素、酸素、アルゴン、ヘリウム、ネオン、キセノン、クリプトン及びケイ素化合物からなる群から選ばれる少なくとも一種のガスがイオン化されたものであることを特徴とする請求項1~3のいずれかに記載のガスバリア積層体。
  5.  前記イオンの注入が、プラズマイオン注入によるものであることを特徴とする請求項1~3のいずれかに記載のガスバリア積層体。
  6.  前記有機ケイ素化合物薄膜の厚みが、30~500nmであることを特徴とする請求項1~3のいずれかに記載のガスバリア積層体。
  7.  40℃、相対湿度90%雰囲気下での水蒸気透過率が1g/m/day以下であることを特徴とする請求項1~3のいずれかに記載のガスバリア積層体。
  8.  基材上に、有機ケイ素化合物を成膜原料として用いるCVD法により、有機ケイ素化合物からなる薄膜を形成する工程と、形成した薄膜にイオンを注入する工程とを有することを特徴とする請求項1に記載のガスバリア積層体の製造方法。
  9.  基材上に、有機ケイ素化合物を成膜原料として用いるCVD法により、有機ケイ素化合物からなる、屈折率が1.46~1.60である薄膜を形成する工程と、形成した薄膜にイオンを注入する工程とを有することを特徴とする請求項3~7のいずれかに記載のガスバリア積層体の製造方法。
  10.  請求項1~7のいずれかに記載のガスバリア積層体からなる電子デバイス用部材。
  11.  請求項10に記載の電子デバイス用部材を備える電子デバイス。
PCT/JP2012/054706 2011-03-30 2012-02-27 ガスバリア積層体、その製造方法、電子デバイス用部材及び電子デバイス WO2012132696A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/004,960 US9763345B2 (en) 2011-03-30 2012-02-27 Gas barrier laminated body, method for producing same, member for electronic device, and electronic device
KR1020137025424A KR20140012696A (ko) 2011-03-30 2012-02-27 가스 배리어 적층체, 그 제조 방법, 전자 디바이스용 부재 및 전자 디바이스
CN201280015793.3A CN103534084B (zh) 2011-03-30 2012-02-27 阻气层叠体、其制造方法、电子装置用部件及电子装置
EP12763091.1A EP2692522A4 (en) 2011-03-30 2012-02-27 BODY COATED WITH A GASPERFILM, METHOD FOR THE PRODUCTION THEREOF, ELEMENT FOR AN ELECTRONIC DEVICE AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-075156 2011-03-30
JP2011075156A JP5781350B2 (ja) 2011-03-30 2011-03-30 ガスバリア積層体、その製造方法、電子デバイス用部材及び電子デバイス

Publications (1)

Publication Number Publication Date
WO2012132696A1 true WO2012132696A1 (ja) 2012-10-04

Family

ID=46930452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054706 WO2012132696A1 (ja) 2011-03-30 2012-02-27 ガスバリア積層体、その製造方法、電子デバイス用部材及び電子デバイス

Country Status (7)

Country Link
US (1) US9763345B2 (ja)
EP (1) EP2692522A4 (ja)
JP (1) JP5781350B2 (ja)
KR (1) KR20140012696A (ja)
CN (1) CN103534084B (ja)
TW (1) TWI513845B (ja)
WO (1) WO2012132696A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101720017B1 (ko) * 2014-01-08 2017-03-27 (주)디엔에프 신규한 트리실릴아민 유도체, 이의 제조방법 및 이를 이용한 실리콘 함유 박막
JP6363385B2 (ja) * 2014-04-21 2018-07-25 東京エレクトロン株式会社 封止膜の形成方法及び封止膜製造装置
WO2020072625A1 (en) * 2018-10-03 2020-04-09 Versum Materials Us, Llc Methods for making silicon and nitrogen containing films
JP7188600B2 (ja) * 2019-08-08 2022-12-13 信越化学工業株式会社 含フッ素有機ケイ素化合物の薄膜の光学定数計測方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256338A (ja) 1998-03-11 1999-09-21 Mitsubishi Heavy Ind Ltd ガスバリア性フィルムの製造方法
JP2000338901A (ja) 1999-06-01 2000-12-08 Matsushita Electric Ind Co Ltd フレキシブルディスプレイ基板の製造方法
JP2001026887A (ja) 1999-07-12 2001-01-30 Agency Of Ind Science & Technol 表面改質方法及び表面改質装置
JP2001156013A (ja) 1999-11-26 2001-06-08 Natl Inst Of Advanced Industrial Science & Technology Meti 表面改質方法及び表面改質装置
JP2003340971A (ja) * 2002-05-24 2003-12-02 Dainippon Printing Co Ltd ガスバリア性プラスチックフィルム
JP2004203935A (ja) * 2002-12-24 2004-07-22 Toppan Printing Co Ltd ガスバリア性フィルム及びその製造方法並びにその製造装置
JP2004314599A (ja) * 2003-02-10 2004-11-11 Dainippon Printing Co Ltd バリアフィルム
JP2004351832A (ja) 2003-05-30 2004-12-16 Toppan Printing Co Ltd 透明ガスバリア積層フィルム
JP2005096275A (ja) * 2003-09-25 2005-04-14 Dainippon Printing Co Ltd バリア性フィルム
JP2006123307A (ja) 2004-10-28 2006-05-18 Dainippon Printing Co Ltd ガスバリア性積層体
JP2007307784A (ja) * 2006-05-18 2007-11-29 Toppan Printing Co Ltd ガスバリアフィルム
WO2010021326A1 (ja) 2008-08-19 2010-02-25 リンテック株式会社 成形体、その製造方法、電子デバイス部材および電子デバイス
WO2010134611A1 (ja) * 2009-05-22 2010-11-25 リンテック株式会社 成形体、その製造方法、電子デバイス用部材及び電子デバイス
JP2010284845A (ja) * 2009-06-10 2010-12-24 Lintec Corp ガスバリア性フィルムおよびその製造方法
JP2011000718A (ja) * 2009-06-16 2011-01-06 Lintec Corp ガスバリア性フィルム及び電子デバイス用部材

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2794088B2 (ja) * 1995-11-20 1998-09-03 工業技術院長 プラスチック成形体の劣化防止方法
US20010038894A1 (en) * 2000-03-14 2001-11-08 Minoru Komada Gas barrier film
US7288311B2 (en) 2003-02-10 2007-10-30 Dai Nippon Printing Co., Ltd. Barrier film
JP2005280718A (ja) * 2004-03-26 2005-10-13 Yoshino Kogyosho Co Ltd 高いガスバリア性を有する合成樹脂製容器
EP1586674A1 (en) * 2004-04-14 2005-10-19 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO Coatings, and methods and devices for the manufacture thereof
JP5275543B2 (ja) * 2005-08-31 2013-08-28 株式会社吉野工業所 高いバリア性を有する合成樹脂製容器
US7651959B2 (en) * 2007-12-03 2010-01-26 Asm Japan K.K. Method for forming silazane-based dielectric film
JP2010106081A (ja) * 2008-10-28 2010-05-13 Seiko Epson Corp 接合方法、接合体および光学素子
US8637396B2 (en) * 2008-12-01 2014-01-28 Air Products And Chemicals, Inc. Dielectric barrier deposition using oxygen containing precursor
TWI491500B (zh) * 2009-02-16 2015-07-11 Lintec Corp A manufacturing method of a laminated body, a structure for an electronic device, and an electronic device
KR101526134B1 (ko) * 2009-03-17 2015-06-04 린텍 가부시키가이샤 성형체, 그 제조 방법, 전자 디바이스 부재 및 전자 디바이스
JP5379530B2 (ja) * 2009-03-26 2013-12-25 リンテック株式会社 成形体、その製造方法、電子デバイス用部材および電子デバイス
TWI535561B (zh) * 2010-09-21 2016-06-01 Lintec Corp A molded body, a manufacturing method thereof, an electronic device element, and an electronic device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256338A (ja) 1998-03-11 1999-09-21 Mitsubishi Heavy Ind Ltd ガスバリア性フィルムの製造方法
JP2000338901A (ja) 1999-06-01 2000-12-08 Matsushita Electric Ind Co Ltd フレキシブルディスプレイ基板の製造方法
JP2001026887A (ja) 1999-07-12 2001-01-30 Agency Of Ind Science & Technol 表面改質方法及び表面改質装置
JP2001156013A (ja) 1999-11-26 2001-06-08 Natl Inst Of Advanced Industrial Science & Technology Meti 表面改質方法及び表面改質装置
JP2003340971A (ja) * 2002-05-24 2003-12-02 Dainippon Printing Co Ltd ガスバリア性プラスチックフィルム
JP2004203935A (ja) * 2002-12-24 2004-07-22 Toppan Printing Co Ltd ガスバリア性フィルム及びその製造方法並びにその製造装置
JP2004314599A (ja) * 2003-02-10 2004-11-11 Dainippon Printing Co Ltd バリアフィルム
JP2004351832A (ja) 2003-05-30 2004-12-16 Toppan Printing Co Ltd 透明ガスバリア積層フィルム
JP2005096275A (ja) * 2003-09-25 2005-04-14 Dainippon Printing Co Ltd バリア性フィルム
JP2006123307A (ja) 2004-10-28 2006-05-18 Dainippon Printing Co Ltd ガスバリア性積層体
JP2007307784A (ja) * 2006-05-18 2007-11-29 Toppan Printing Co Ltd ガスバリアフィルム
WO2010021326A1 (ja) 2008-08-19 2010-02-25 リンテック株式会社 成形体、その製造方法、電子デバイス部材および電子デバイス
WO2010134611A1 (ja) * 2009-05-22 2010-11-25 リンテック株式会社 成形体、その製造方法、電子デバイス用部材及び電子デバイス
JP2010284845A (ja) * 2009-06-10 2010-12-24 Lintec Corp ガスバリア性フィルムおよびその製造方法
JP2011000718A (ja) * 2009-06-16 2011-01-06 Lintec Corp ガスバリア性フィルム及び電子デバイス用部材

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. A. WOOLLAM: "Spectroscopic Ellipsometer 2000U", JAPAN CO., INC.
See also references of EP2692522A4 *

Also Published As

Publication number Publication date
US9763345B2 (en) 2017-09-12
EP2692522A4 (en) 2015-04-29
CN103534084A (zh) 2014-01-22
EP2692522A1 (en) 2014-02-05
JP5781350B2 (ja) 2015-09-24
JP2012206448A (ja) 2012-10-25
TW201247923A (en) 2012-12-01
US20140072798A1 (en) 2014-03-13
CN103534084B (zh) 2016-08-17
TWI513845B (zh) 2015-12-21
KR20140012696A (ko) 2014-02-03

Similar Documents

Publication Publication Date Title
JP5704610B2 (ja) 成形体、その製造方法、電子デバイス用部材および電子デバイス
JP5725865B2 (ja) プラズマ処理装置、及び大気圧グロー放電電極構成を使用して基板を処理するための方法
KR101464094B1 (ko) 투명 도전성 필름, 그 제조 방법, 전자 디바이스용 부재 및 전자 디바이스
KR101489552B1 (ko) 성형체, 그 제조 방법, 전자 디바이스용 부재, 및 전자 디바이스
JP5781350B2 (ja) ガスバリア積層体、その製造方法、電子デバイス用部材及び電子デバイス
JP5635360B2 (ja) 透明導電性フィルム、その製造方法、電子デバイス用部材及び電子デバイス
KR20170012251A (ko) 가스 배리어성 적층체 및 그 제조 방법, 전자 디바이스용 부재, 그리고 전자 디바이스
EP2554602B1 (en) Molded object, process for producing same, member for electronic device, and electronic device
KR101825930B1 (ko) 성형체, 그 제조 방법, 전자 디바이스용 부재 및 전자 디바이스
KR101442371B1 (ko) 성형체, 그 제조 방법, 전자 디바이스용 부재 및 전자 디바이스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763091

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137025424

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14004960

Country of ref document: US