WO2012132474A1 - ガラス基板の製造方法 - Google Patents

ガラス基板の製造方法 Download PDF

Info

Publication number
WO2012132474A1
WO2012132474A1 PCT/JP2012/002253 JP2012002253W WO2012132474A1 WO 2012132474 A1 WO2012132474 A1 WO 2012132474A1 JP 2012002253 W JP2012002253 W JP 2012002253W WO 2012132474 A1 WO2012132474 A1 WO 2012132474A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
molten glass
melting tank
glass substrate
temperature
Prior art date
Application number
PCT/JP2012/002253
Other languages
English (en)
French (fr)
Inventor
哲郎 君嶋
次伸 村上
宣之 日沖
慎吾 藤本
Original Assignee
AvanStrate株式会社
アヴァンストレート コリア インコーポレイテッド
安瀚視特股▲分▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AvanStrate株式会社, アヴァンストレート コリア インコーポレイテッド, 安瀚視特股▲分▼有限公司 filed Critical AvanStrate株式会社
Priority to JP2012525557A priority Critical patent/JP5668066B2/ja
Priority to CN201280003100.9A priority patent/CN103124700B/zh
Publication of WO2012132474A1 publication Critical patent/WO2012132474A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
    • C03B5/03Tank furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/18Controlling or regulating the temperature of the float bath; Composition or purification of the float bath
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
    • C03B5/03Tank furnaces
    • C03B5/031Cold top tank furnaces

Definitions

  • the present invention relates to a glass substrate manufacturing method for manufacturing a glass substrate.
  • glass substrates used for flat panel displays are mainly 0.5 to 0.7 mm in thickness and 300 to 400 to 2850 to 3050 mm in size. is there.
  • An overflow down draw method is known as a method for manufacturing a glass substrate for FPD.
  • the overflow downdraw method in a forming furnace, the molten glass is made to overflow from the upper part of the molded body of the molten glass, whereby the sheet glass is formed from the molten glass, and the formed sheet glass is gradually cooled and cut. Thereafter, the cut sheet glass is further cut into a predetermined size according to customer specifications, subjected to cleaning, end face polishing, etc., and shipped as a glass substrate for FDP.
  • the glass substrate for liquid crystal display devices has a semiconductor element formed on the surface thereof, and therefore does not contain an alkali metal component at all or even if it is contained, the semiconductor element is affected. It is preferable that the amount is as small as possible.
  • bubbles are present in the glass substrate, it causes a display defect. Therefore, a glass substrate in which bubbles are present cannot be used as a glass substrate for FPD. For this reason, it is calculated
  • the hot spring of the molten glass is emphasized, the convection of the molten glass is promoted and the agitation is performed well, and the glass in the semi-molten state on the surface of the glass raw material input end side is prevented from prematurely flowing to the outlet end side.
  • a glass melting furnace that can be used is known (Patent Document 1).
  • Patent Document 1 a glass melting furnace that can be used is known (Patent Document 1).
  • Patent Document 1 A glass melting furnace that can be used is known (Patent Document 1).
  • a plurality of pairs of electrodes with the energizing direction as the length direction of the kiln are arranged at appropriate intervals in the hot spring region on the way from the glass material charging end region to the lead-out end region.
  • the hot spring of the molten glass is emphasized by arranging the double rows over the entire length in the direction. Thereby, the glass in a semi-molten state or the like is prevented from flowing rapidly toward the lead-out end.
  • SiO 2 (silica) among the glass raw materials put into the glass melting furnace (melting tank) is more likely to remain unmelted than other raw material components. Therefore, when the hot spring is weak, SiO 2 collects on the liquid surface on the MTE (Melting End) side which is the lead-out end side of the molten glass of the glass melting furnace (melting tank) as shown in FIG. It is easy to form a silica-rich heterogeneous substrate 120. If the hot spring is always emphasized, the silica-rich heterogeneous base 120 will not flow quickly to the outlet end side, but in the case of a molten glass having a high viscosity glass composition, The glass temperature must be increased to reduce the viscosity.
  • a glass substrate such as a flat display such as a liquid crystal display is required not to adversely affect characteristics of a semiconductor element such as a TFT (Thin Film Transistor) formed on the glass substrate.
  • TFT Thin Film Transistor
  • a non-alkali glass containing no alkali metal component as described above, or a glass containing a trace amount of alkali even if it contains an alkali metal component, as described above.
  • alkali-free glass and alkali-containing glass have high temperature viscosity, it is difficult to emphasize the hot spring as described above. That is, when manufacturing a glass substrate having a glass composition with high high-temperature viscosity, it is difficult to manufacture a glass substrate that suppresses unevenness of the glass composition such as striae using the above-described known method with emphasis on hot springs.
  • an object of the present invention is to provide a method for producing a glass substrate, which can suppress unevenness in the glass composition such as striae, using a completely different method.
  • One embodiment of the present invention is a method for producing a glass substrate including a melting step of melting a glass raw material in a melting tank.
  • a glass raw material is introduced into substantially the entire liquid surface of the molten glass stored in the melting tank, thereby creating a molten glass in which the temperature of the surface layer including the liquid surface is uniform,
  • the molten glass is flowed from the outlet provided at the bottom of the inner side wall facing the first direction toward the subsequent step,
  • the temperature of the lower layer of the molten glass located below the surface layer in the depth direction of the molten glass is set such that the convection due to the temperature distribution of the molten glass does not occur in the lower layer. While making the temperature distribution along the first direction of the lower molten glass uniform by adjusting at least the amount of heat given to the molten glass located at both ends in the first direction of the melting tank, the melting Glass is allowed to flow from the outlet to the subsequent step.
  • FIG. 2 is a view schematically showing an example of an apparatus for performing a melting process to a cutting process shown in FIG. It is a figure explaining the melting tank used at the melting process shown in FIG. It is a figure explaining injection
  • FIG. 1 is a diagram showing an example of steps of a method for producing a glass substrate according to the present invention.
  • the glass substrate manufacturing method includes a melting step (ST1), a clarification step (ST2), a homogenization step (ST3), a supply step (ST4), a forming step (ST5), and a slow cooling step (ST6). And a cutting step (ST7).
  • a plurality of glass substrates that have a grinding process, a polishing process, a cleaning process, an inspection process, a packing process, and the like and are stacked in the packing process are transported to a supplier.
  • the melting step (ST1) is performed in a melting tank.
  • the glass raw material is introduced into substantially the entire liquid surface of the molten glass stored in the melting tank, thereby producing a molten glass having a uniform surface temperature including the liquid surface.
  • molten glass is poured from the outflow port provided in the bottom part of the inner side wall which faces a 1st direction among the inner side walls of a melting tank toward a post process.
  • the temperature of the lower layer of the molten glass positioned below the surface layer in the depth direction of the molten glass is adjusted so that the convection due to the temperature distribution of the molten glass does not occur in the lower layer.
  • the molten glass is allowed to flow from the outlet to the subsequent process while uniforming the temperature distribution along the first direction of the underlying molten glass.
  • the temperature of the molten glass located at both ends in the first direction of the melting tank is likely to decrease, so the temperature is adjusted to increase this temperature and the temperature distribution in the lower layer is made uniform.
  • temperature control is performed so that this temperature may be lowered, and the temperature distribution in the lower layer is made uniform.
  • substantially the entire surface of the liquid surface of the molten glass into which the glass raw material is charged means 80% or more of the liquid surface of the molten glass in the melting tank.
  • the glass raw material can be charged either by reversing the bucket containing the glass raw material and dispersing the glass raw material into the molten glass, by conveying the glass raw material by using a belt conveyor, or by dispersing the glass raw material.
  • a method of sometimes charging, a method of dispersing glass raw material with a screw feeder, or a method of charging a substantially entire surface at a time may be used.
  • a glass raw material is charged using a bucket.
  • the “surface layer” of the molten glass means a region including the liquid surface within a range of 5% or less of the depth from the liquid surface toward the bottom of the melting tank, and the “lower layer” of the molten glass is other than the surface layer. Refers to the area.
  • the “bottom part” where the outflow port is provided is a part of the lower layer that is close to the bottom surface. Preferably, it refers to a region where the depth from the bottom surface in the depth direction of the dissolution tank is 1 ⁇ 2 or less of the depth between the liquid surface and the bottom of the dissolution tank.
  • the molten glass in the melting tank rises in temperature when electricity flows through the molten glass itself and generates heat.
  • the heating glass is supplemented with a flame by a burner.
  • the raw material can also be melted.
  • a clarifier is added to the glass raw material.
  • SnO 2 , As 2 O 3 , Sb 2 O 3 and the like are known as fining agents, but are not particularly limited. However, it is preferable to use SnO 2 (tin oxide) as a clarifying agent from the viewpoint of reducing environmental burden.
  • the clarification step (ST2) is performed at least in the clarification tank.
  • the bubbles containing O 2 , CO 2 or SO 2 contained in the molten glass absorb O 2 generated by the reductive reaction of the clarifier.
  • the bubbles rise to the liquid surface of the molten glass and are discharged.
  • the reducing substance obtained by the reduction reaction of the clarifier undergoes an oxidation reaction by lowering the temperature of the molten glass. Thereby, gas components such as O 2 in the foam remaining in the molten glass are reabsorbed in the molten glass, and the foam disappears.
  • the oxidation reaction and reduction reaction by the fining agent are performed by controlling the temperature of the molten glass.
  • a reduced pressure defoaming method in which a reduced pressure atmosphere is created in a clarification tank and bubbles present in the molten glass are grown in a reduced pressure atmosphere and defoamed can be used. In this case, it is effective in that no clarifier is used.
  • a clarification method using tin oxide as a clarifier is used.
  • the glass components are homogenized by stirring the molten glass in the stirring tank supplied through the pipe extending from the clarification tank using a stirrer. Thereby, the composition unevenness of the glass which is a cause of striae or the like can be reduced.
  • One stirring tank or two stirring tanks may be provided.
  • the molten glass is supplied to the molding apparatus through a pipe extending from the stirring tank.
  • a molding step (ST5) and a slow cooling step (ST6) are performed.
  • the molten glass is formed into a sheet glass to make a flow of the sheet glass.
  • an overflow down draw method or a float method can be used. In this embodiment to be described later, an over download method is used.
  • the slow cooling step (ST6) the sheet glass that has been formed and flowed is cooled to a desired thickness, so that internal distortion does not occur and warpage does not occur.
  • a cutting process (ST7) a plate-shaped glass plate is obtained by cutting the sheet glass supplied from the forming device into a predetermined length in the cutting device.
  • the cut glass plate is further cut into a predetermined size to produce a glass substrate of a target size. After this, the end surface of the glass substrate is ground and polished, the glass substrate is cleaned, and further, the presence of abnormal defects such as bubbles and striae is inspected. Will be packed as.
  • FIG. 2 is a diagram schematically showing an example of an apparatus for performing the melting step (ST1) to the cutting step (ST7) in the present embodiment.
  • the apparatus mainly includes a melting apparatus 100, a forming apparatus 200, and a cutting apparatus 300.
  • the melting apparatus 100 includes a melting tank 101, a clarification tank 102, a stirring tank 103, and glass supply pipes 104, 105, and 106.
  • the glass raw material is charged using a bucket 101d.
  • the clarification tank 102 the temperature of the molten glass MG is adjusted, and the clarification of the molten glass MG is performed using the oxidation-reduction reaction of the clarifier.
  • the molten glass MG is stirred and homogenized by the stirrer 103a.
  • the sheet glass SG is formed from the molten glass MG by the overflow down draw method using the formed body 210.
  • FIG. 3 is a diagram illustrating a schematic configuration of the melting tank 101 of the present embodiment.
  • the melting tank 101 makes molten glass in which the temperature of the surface layer including the liquid surface is made uniform by introducing the glass raw material to substantially the entire liquid surface 101 c of the molten glass MG stored in the melting tank 101. Further, among the inner side walls of the melting tank 101, the melting tank 101 is from an outlet 104 a provided at the bottom of the inner side wall in the left-right direction (first direction) in FIG. 3, more specifically leftward.
  • the molten glass MG is poured toward the subsequent process.
  • the melting tank 101 has a wall 110 made of a refractory material such as a refractory brick.
  • the melting tank 101 has an internal space surrounded by a wall 110.
  • the internal space of the melting tank 101 is formed in a liquid tank 101a that accommodates the molten glass MG formed by melting the glass raw material introduced into the space while being heated, and an upper layer of the molten glass MG.
  • an upper space 101b which is a gas phase.
  • the wall 110 parallel to the first direction of the upper space 101b of the dissolution tank 101 is provided with a burner 112 that burns a combustion gas mixed with fuel, oxygen, and the like to generate a flame.
  • the burner 112 heats the refractory in the upper space 101b with a flame to raise the temperature of the wall 110.
  • the glass raw material is heated by the radiant heat of the wall 110 that has become high temperature, or by the gas phase atmosphere that has become high temperature.
  • a raw material charging window 101f is provided on the surface in contact with the upper space 101b.
  • the bucket 101d containing the glass raw material enters and leaves the upper space 101b, and moves forward, backward, left and right on the liquid surface 101c of the molten glass MG in accordance with instructions from a computer 118 described later.
  • FIG. 4 is a view for explaining the introduction of the glass raw material in the melting tank 101.
  • the glass raw material is charged over substantially the entire liquid surface of the molten glass MG stored in the melting tank 101.
  • molten glass MG in which the temperature of the surface layer including the liquid surface is made uniform is produced. That is, the melting tank 101 is provided with a packet operation mechanism that moves the bucket 101d to a target area and reverses the upper surface of the bucket 101d to the lower surface in a state where the bucket 101d contains the glass raw material according to an instruction from the computer 118.
  • the area where the glass material is charged by the bucket 101d and the time interval for the glass material are set in advance so that the glass material floating on the liquid surface 101c of the molten glass MG does not disappear. Therefore, in the melting tank 101, since it is thrown into substantially the whole liquid level of the molten glass MG, it always floats so that the glass surface covers the liquid level 101c of the molten glass MG.
  • the glass raw material is always floated so as to cover the liquid surface 101c because the heat of the molten glass MG does not radiate through the liquid surface 101c to the upper space 101b which is a gas phase, and the liquid surface of the molten glass MG This is because the temperature distribution of the surface layer including it is made uniform and kept constant.
  • raw material components having low meltability high melting temperature
  • SiO 2 silicon
  • Three pairs of electrodes 114 made of a heat-resistant conductive material such as tin oxide or molybdenum are provided on the inner side walls 110a and 110b of the liquid tank 101a parallel to the first direction of the melting tank 101 and facing each other. Is provided.
  • the three pairs of electrodes 114 are provided in regions corresponding to the lower layer of the molten glass MG in the inner side walls 110a and 110b. All of the three pairs of electrodes 114 extend from the outer wall surface of the liquid tank 101a to the inner wall surface. Of each of the three pairs of electrodes 114, the electrode on the far side in the figure is not shown.
  • Each pair of the three pairs of electrodes 114 is provided on the inner side walls 110a and 110b so as to face each other through the molten glass MG.
  • Each pair of electrodes 114 passes a current through molten glass MG located between the electrodes.
  • the molten glass MG generates Joule heat by itself to heat the molten glass MG.
  • the molten glass MG is heated to, for example, 1500 ° C. or higher.
  • the heated molten glass MG is sent to the clarification tank 102 through the glass supply pipe 104. Note that the distance in the first direction between the pair of electrodes 114 out of the three pairs of electrodes 114 and the pair of electrodes 114 adjacent to the pair is the same.
  • the temperature is controlled to make the temperature of the MG uniform.
  • the melting tank 101 is provided with three pairs of electrodes 114, but two pairs or four or more pairs of electrodes may be provided. Even in the case where there are four or more pairs of electrodes 114, the separation distance in the first direction between each pair of electrodes 114 and the pair of electrodes 114 adjacent to this pair is the same in the lower layer. This is preferable in that the temperature is controlled in order to make the temperature of the molten glass MG uniform.
  • the burner 112 is provided in the upper space 101b, but the burner 112 may not be provided.
  • the burner 112 may be used as an auxiliary.
  • the glass raw material is dispersed and introduced into the liquid surface 101c of the large area of the molten glass MG, and the entire surface of the liquid surface 101c is covered with the glass raw material to prevent heat radiation from the liquid surface 101c of the molten glass MG. A decrease in temperature can be suppressed. Thereby, the glass raw material can be melted by the temperature of the molten glass MG without using the burner 112 when continuously forming the molten glass.
  • Each of the electrodes 114 is connected to the control unit 116, and the electric power (alternating current) supplied to each of the electrodes 114 is controlled for each pair of the electrodes 114 in order to make the temperature distribution of the molten glass MG in the lower layer uniform.
  • the control unit 116 is further connected to a computer 118.
  • the computer 118 receives from the control unit 116 the power that the control unit 116 applies to the electrodes 114, specifically the voltage and current values, and is sandwiched between the electrodes 114 in the melting tank 101 based on the voltage and current information.
  • the temperature information of the molten glass MG is obtained.
  • the computer 118 further aligns the temperature of the molten glass MG measured by each pair of the three electrodes 114 within a predetermined allowable range, for example, within 5 ° C., preferably within 3 ° C., based on this temperature information. As described above, an instruction of power to be applied to the electrode 114 is sent to the control unit 116. Further, the computer 118 instructs a bucket operation mechanism (not shown) to operate a bucket 101d described later through the control unit 116.
  • the computer 118 obtains temperature information of the molten glass MG at a position sandwiched between the pair of electrodes 114 by the following method. That is, the voltage of each pair of electrodes 114 is E (V), the current is I (A), the cross-sectional area of the current flowing through the molten glass MG between the pair of electrodes 114 is S (m 2 ), and the electrodes 114
  • the cross-sectional area S and the length L are values determined by the melting tank 101.
  • the relationship between the specific resistance ⁇ and the temperature of the molten glass MG is obtained in advance, and is calculated by the computer 118 using this relationship.
  • the temperature information of the molten glass MG can be obtained from the specific resistance ⁇ .
  • the relationship between the specific resistance ⁇ and the temperature of the molten glass MG can be expressed by a functional expression of the specific resistance ⁇ , for example, F ( ⁇ ).
  • F ( ⁇ ) can be defined by the following formula.
  • the molten glass MG located in the vicinity of the inner side walls 110c and 110d facing the first direction is likely to become low temperature by heat radiation from the inner side walls 110c and 110d. For this reason, in this embodiment, the temperature distribution in the lower layer is made uniform by increasing the temperature at both ends of the melting tank 202 in the first direction.
  • Temperature T (° C.) of molten glass MG a / (log ( ⁇ ) + b) ⁇ 273.15 a, b: Constants depending on the glass composition.
  • the outflow port 104 a of the melting tank 101 is connected to the clarification tank 102 through the glass supply pipe 104.
  • FIG. 5 is a diagram for explaining convection of the molten glass inside the melting tank 101 in the present embodiment.
  • the glass raw material is charged to substantially the entire liquid surface of the molten glass MG stored in the melting tank 101, thereby producing a molten glass MG having a uniform surface temperature including the liquid surface 101c.
  • this molten glass MG is flowed from the outlet 104a toward the subsequent step, the temperature of the lower layer of the molten glass MG in the depth direction of the molten glass MG is prevented so that convection due to the temperature distribution of the molten glass MG does not occur in the lower layer.
  • the amount of heat given to the molten glass located at both ends in the horizontal direction in FIG. By adjusting at least, the temperature distribution in the lower layer is made uniform. It is from the left and right side walls in FIG. 3 that at least the amount of heat applied to the molten glass located at both ends so as to increase the temperature of the molten glass located at both ends in the left-right direction in FIG. This is because heat is easily released to the outside, and the temperature of the molten glass MG at the both ends is likely to be lower than that at the center. That is, the amount of heat applied to the molten glass positioned at both ends is adjusted so that the temperature of the molten glass positioned at both ends where the temperature tends to decrease increases.
  • FIG. 6 is a figure explaining the convection of the molten glass inside the conventional melting tank. As shown in FIG.
  • the molten glass in the conventional melting tank, in the region A, the molten glass is partially heated so that a pot spring is formed, and convection is promoted.
  • raw material components such as SiO 2 that are difficult to melt move by convection, for example, where the silica-rich heterogeneous substrate 120 is away from the glass raw material introduction position. It is easy to collect in.
  • the opportunity for this heterogeneous substrate 120 to flow out of the outlet along the convection increases, which tends to cause unevenness in the glass composition such as striae.
  • the molten glass in which the temperature of the surface layer including the liquid surface 101 c is made uniform by introducing the glass raw material to substantially the entire liquid surface of the molten glass MG stored in the melting tank 101. create. Furthermore, molten glass MG is poured from the outflow port 104a provided in the bottom part of the inner side wall facing the first direction among the inner side walls of the melting tank 101 toward the subsequent step. At this time, at least the amount of heat given to the molten glass MG positioned at both ends in the first direction of the melting tank so that the convection due to the temperature distribution of the molten glass does not occur in the lower layer.
  • the molten glass MG is allowed to flow from the outlet to the subsequent process while making the temperature distribution along the first direction of the lower layer molten glass MG uniform.
  • the temperature distribution along the first direction of the lower layer molten glass MG by increasing the temperature of the molten glass MG, the temperature located at both ends of the melting tank 101 in the first direction is likely to decrease, While making the temperature distribution in the lower layer uniform, the molten glass MG is caused to flow from the outlet 104a to the clarification step. For this reason, since convection due to the temperature distribution of the molten glass MG does not occur in the lower layer, it is possible to suppress unevenness of the glass composition due to the heterogeneous substrate 120 or the like.
  • the temperature at 10 2.5 poise of molten glass having high viscosity for example, molten glass is 1300 ° C. or higher (eg, 1300 ° C. or higher and 1650 ° C. or lower), more preferably 1500 ° C. or higher (eg, 1500 ° C. or higher and 1650 ° C. or lower).
  • the manufacturing method of the present embodiment can be applied, and the advantage of suppressing unevenness of the glass composition such as striae is greater than in the case of the conventional manufacturing method.
  • the manufacturing method of the embodiment is suitable. Moreover, you may use together the heating by a burner in the melting tank 101 about such molten glass with a large specific resistance.
  • each pair of the three pairs of electrodes 114 faces each other in the direction orthogonal to the right and left direction (first direction) in FIG. 3, and therefore the first of the molten glass MG.
  • the temperature in the lower layer along the direction can be effectively made uniform.
  • the electric power supplied to the three pairs of electrodes 114 is more at the both end portions than in the central portion of the melting tank 101 in the first direction in consideration of heat release from the melting tank 101. Since it supplies so that it may become high, it is easy to equalize the temperature distribution in the 1st direction of the molten glass MG in a lower layer.
  • the melting method of this embodiment is suitable when the inner side wall of the melting tank 101 is composed of a refractory material containing ZrO 2 having excellent corrosion resistance as a component.
  • the composition of the glass used in the present embodiment is composed of aluminosilicate glass, SiO 2 and (silica) may comprise more than 50 wt%.
  • the manufacturing method of this embodiment applied to an aluminosilicate glass having this glass composition can effectively suppress unevenness of the glass composition as compared with the conventional method.
  • SiO 2 can be contained in an amount of 55% by mass or more, and SiO 2 can be contained in an amount of 60% by mass or more.
  • the manufacturing method of this embodiment to which the aluminosilicate glass having these compositions is applied can more effectively suppress glass composition unevenness than the conventional method.
  • the molten glass MG is melted so that convection due to the temperature distribution does not occur. Outflow from the outlet 104a can be prevented.
  • the glass raw material is always added to the liquid surface 101c so as to have a certain thickness, SiO 2 is prevented from remaining melted, and the heterogeneous substrate 120 due to SiO 2 as shown in FIG.
  • the manufacturing method of this embodiment to which a total of 60 mass% or more of SiO 2 and Al 2 O 3 can be applied and an aluminosilicate glass having this glass composition is applied is more effective than the conventional glass composition. Can be suppressed. Furthermore, SiO 2 and Al 2 O 3 can be contained in a total of 65 mass% or more, and SiO 2 and Al 2 O 3 can be contained in a total of 70 mass% or more. Even with a glass composition that contains 60% by mass or more of SiO 2 and Al 2 O 3 in total and can easily form a silica-rich heterogeneous base 120, the molten glass MG is melted so that convection due to temperature distribution does not occur.
  • the silica-rich heterogeneous substrate can be prevented from flowing out from the outlet 104a.
  • the glass raw material is always added to the liquid surface 101c so as to have a certain thickness, SiO 2 is prevented from remaining melted, and the heterogeneous substrate 120 due to SiO 2 as shown in FIG.
  • a glass composition containing 60% by mass or more of SiO 2 and Al 2 O 3 in total and having a high viscosity of molten glass MG is used for the glass substrate, and convection of the molten glass is promoted as in the conventional case, a melting tank is formed.
  • ZrO 2 (zirconia) contained in the refractory to be dissolved may dissolve into the molten glass and cause devitrification of the glass.
  • the temperature distribution of the molten glass MG in the lower layer is made uniform so as not to cause convection due to the temperature distribution of the molten glass MG. There is no need to heat. For this reason, elution of ZrO 2 (zirconia) from the refractory in the dissolution tank 101 can be prevented.
  • the upper limit of the total content of SiO 2 and Al 2 O 3 is, for example, 95% by mass.
  • the glass substrate is preferably composed of aluminoborosilicate glass.
  • B 2 O 3 (boron oxide) were melted at a low temperature as compared with SiO 2, moreover, to lower the melting temperature of the SiO 2. Therefore, in a glass composition having a high SiO 2 content, the inclusion of B 2 O 3 is effective in that it is difficult to produce the heterogeneous substrate 120 (see FIG. 6).
  • the glass composition of a glass substrate can mention the following, for example.
  • the content rate display of the composition shown below is mass%. SiO 2 : 50 to 70%, B 2 O 3 : 5 to 18%, Al 2 O 3 : 0 to 25%, MgO: 0 to 10%, CaO: 0-20%, SrO: 0 to 20%, BaO: 0 to 10%, RO: 5 to 20% (where R is at least one selected from Mg, Ca, Sr and Ba, and the glass substrate contains), It is preferable that it is an alkali free glass containing.
  • the following glass compositions can be mentioned. SiO 2 : 50 to 70%, B 2 O 3 : 1-10%, Al 2 O 3 : 0 to 25%, MgO: 0 to 10%, CaO: 0-20%, SrO: 0 to 20%, BaO: 0 to 10%, RO: 5-30% (where R is the total amount of Mg, Ca, Sr and Ba), Similarly, it is also preferable that the glass be an alkali-free glass.
  • the following glass compositions can be mentioned. SiO 2 : 50 to 70%, B 2 O 3 : 3 to 15%, Al 2 O 3 : 8 to 25%, MgO: 0 to 10%, CaO: 0-20%, SrO: 0 to 20%, BaO: 0 to 10%, RO: 5 to 20% (where R is the total amount of Mg, Ca, Sr and Ba), Similarly, it is also preferable that the glass be an alkali-free glass.
  • the glass substrate may be a glass containing a trace amount of alkali metal (the total content of alkali gold images is greater than 0% by mass).
  • the total of R ′ 2 O is 0.10% or more and 0.5% or less, preferably 0.20% or more and 0.5% or less (where R ′ is selected from Li, Na, and K)
  • R ′ is selected from Li, Na, and K
  • the glass substrate contains at least one kind.
  • the content of iron oxide in the glass is more preferably 0.01 to 0.2% from the viewpoint of reducing the specific resistance. Further, it is preferred not to include As 2 O 3, Sb 2 O 3 and PbO substantially.
  • the manufacturing method of this embodiment can be effectively applied to the glass substrate for liquid crystal display devices.
  • the glass substrate for a liquid crystal display device suppresses the thermal expansion of the glass substrate and does not deteriorate the characteristics of the TFT (Thin Film Transistor) formed on the glass substrate.
  • TFT Thin Film Transistor
  • Alkali metal components Li, Na and K
  • the high temperature viscosity of the molten glass MG is increased. Need to be partially heated to high temperatures.
  • the glass raw material is charged over substantially the entire liquid surface 101c of the molten glass MG, and the temperature of the molten glass MG is adjusted so that convection of the molten glass MG does not occur.
  • the manufacturing method of this embodiment can be suitably applied to a glass substrate for a liquid crystal display device in that the temperature of the molten glass is not partially excessively increased as in the prior art.
  • SnO 2 titanium oxide
  • SnO 2 is used as a clarifier from the viewpoint of reducing the environmental load.
  • the melting temperature is not set too high.
  • the temperature of the molten glass MG is not required to partially heat the molten glass in order to emphasize the hot spring as in the conventional known manufacturing method.
  • the clarification action of SnO 2 can be effectively functioned.
  • a heat retaining member is provided around the portion where the electrode 114 is provided on the outer side wall of the melting tank 101.
  • the heat insulating material for example, a plate member obtained by hardening a heat insulating material such as glass wool or ceramic fiber into a plate shape or the like is used.

Abstract

 ガラス基板の製造方法における熔解工程では、ガラス原料を、熔解槽に蓄えられた熔融ガラスの液面の略全面に投入することにより、液面を含む表層の温度が均一化した熔融ガラスを作り、前記熔解槽の内側側壁のうち、第1の方向に向く内側側壁の底部に設けられた流出口から後工程に向けて前記熔融ガラスを流す。前記熔融ガラスを流すとき、熔融ガラスの深さ方向において前記表層より下方に位置する前記熔融ガラスの下層の温度を、前記下層において前記熔融ガラスの温度分布に起因した対流が生じないように、前記熔解槽の前記第1の方向の両端部に位置する熔融ガラスに与える熱量を調整する。これにより、前記下層の熔融ガラスの前記第1の方向に沿った温度分布を均一化させる。

Description

ガラス基板の製造方法
 本発明は、ガラス基板を製造するガラス基板の製造方法に関する。
 液晶ディスプレイやプラズマディスプレイなどのフラットパネルディスプレイ(以下FPDという)に用いるガラス基板は、例えば、厚さが0.5~0.7mmで、サイズが300×400mm~2850~×3050mmのものが主流である。
 FPD用ガラス基板の製造方法として、オーバーフローダウンドロー法が知られている。オーバーフローダウンドロー法では、成形炉において、熔融ガラスの成形体の上部から熔融ガラスを溢れさせることにより熔融ガラスからシートガラスが成形され、成形されたシートガラスが徐冷され、切断される。その後、切断されたシートガラスは、さらに、顧客の仕様に合わせて所定のサイズに切断され、洗浄、端面研磨などが行われ、FDP用ガラス基板として出荷される。
 FPD用ガラス基板のうち、特に液晶表示装置用ガラス基板は、その表面に半導体素子が形成されるため、アルカリ金属成分を全く含有しないか、または、含まれていても半導体素子等に影響を及ぼさない程度の微量であることが好ましい。
 また、ガラス基板中に泡が存在すると表示欠点の原因となるため、泡が存在するガラス基板は、FPD用ガラス基板として用いることはできない。このため、泡がガラス基板に残存しないことが求められている。
 また、ガラス基板にガラス組成のムラ(ガラス組成が均一でないこと)が存在すると、例えば脈理と呼ばれるスジ状の欠陥が発生する。この脈理は、ガラス組成の不均質に起因する熔融ガラスの粘度の違いから、成形時の熔融ガラスの表面に微細な表面凹凸を形成し、この表面凹凸がガラス基板にも残存する。このため、このガラス基板を液晶パネル用のガラス基板として、液晶パネルに組み込んだとき、セルギャップに誤差が生じ、あるいは、表示ムラを起こす原因となる。このため、ガラス基板の製造段階で脈理等のガラス組成のムラを引き起こさないようにする必要がある。
 例えば、熔融ガラスのホットスプリングを強調し、熔融ガラスの対流を促進して良く攪拌を行わせると共に、ガラス原料投入端側表層の半熔融状態等のガラスが導出端側へ早流れすることを阻止し得るガラス熔解窯が知られている(特許文献1)。
 上記ガラス熔解窯では、ガラス原料の投入端側の領域から導出端側の領域に至る途中のホットスプリング領域に、通電方向を窯の長さ方向とした複数対の電極を適宜間隔で窯の幅方向全長に亘って複列配置することにより、熔融ガラスのホットスプリングを強調している。これにより、半熔融状態等のガラスが導出端側へ早流れすることを抑えている。
特開2002-60226号公報
 しかし、上記ガラス熔解窯(熔解槽)に投入されるガラス原料のうちSiO2(シリカ)は、他の原料成分に比べて熔け残り易い。このため、ホットスプリングが弱い場合には、SiO2は、図6に示すように、ガラス熔解窯(熔解槽)の熔融ガラスの導出端側であるMTE(Melting End)側の液面に集まってシリカリッチの異質素地120を形成し易い。ホットスプリングが常に強調されていれば、シリカリッチの異質素地120が、導出端側へ早流れすることは少ないが、粘性の高いガラス組成の熔融ガラスの場合、ホットスプリングを強調するために、熔融ガラスの温度を高めて粘性を低くしなければならない。しかし、溶融ガラスの温度を高く上げすぎると、熔解槽を構成する耐火物等の内側側壁から、耐蝕性の確保のために含有するZrO2(ジルコニア)が熔融ガラスに溶出し、ガラスの失透の原因になる場合がある。このため、粘性の高いガラス組成の熔融ガラスの場合、熔融ガラスの温度を上げて対流を作ることは難しい。
 また、フラットディスプレイ、例えば液晶ディスプレイ等のガラス基板には、ガラス基板に形成するTFT(Thin Film Transistor)等の半導体素子の特性に悪影響を与えないようにすることが求められている。このため、液晶ディスプレイ等のガラス基板には、上述したようにアルカリ金属成分を全く含まない無アルカリガラス、あるいは、アルカリ金属成分を含んでも微量であるアルカリ微量含有ガラスが用いられることが好ましい。しかし、無アルカリガラスやアルカリ微量含有ガラスは、高温粘性が高いため、上述したように、ホットスプリングを強調することが難しい。すなわち、高温粘性が高いガラス組成を持つガラス基板を製造する場合、ホットスプリングを強調した上記公知の方法を用いて脈理等のガラス組成のムラを抑制したガラス基板を製造することは難しい。
 そこで、本発明は、従来とは全く異なる方式を用いて、脈理等のガラス組成のムラを抑制することができるガラス基板の製造方法を提供することを目的とする。
 本発明の一態様は、ガラス原料を熔解槽で熔解する熔解工程を含むガラス基板の製造方法である。
 前記熔解工程では、ガラス原料を、熔解槽に蓄えられた熔融ガラスの液面の略全面に投入することにより、液面を含む表層の温度が均一化した熔融ガラスを作り、
 前記熔解槽の内側側壁のうち、第1の方向に向く内側側壁の底部に設けられた流出口から後工程に向けて前記熔融ガラスを流し、
 前記熔融ガラスを流すとき、熔融ガラスの深さ方向において前記表層より下方に位置する前記熔融ガラスの下層の温度を、前記下層において前記熔融ガラスの温度分布に起因した対流が生じないように、前記熔解槽の前記第1の方向の両端部に位置する熔融ガラスに与える熱量を少なくとも調整することにより、前記下層の熔融ガラスの前記第1の方向に沿った温度分布を均一化させながら、前記熔融ガラスを前記流出口から前記後工程に流す。
 上記形態のガラス基板の製造方法では、脈理等のガラス組成のムラを抑制することができる。
本発明のガラス基板の製造方法の工程の一例を示す図である。 図1に示す熔解工程~切断工程を行う装置の一例を模式的に示す図である。 図1に示す熔解工程で用いる熔解槽を説明する図である。 図3に示す熔解槽におけるガラス原料の投入を説明する図である。 本実施形態における熔解槽内部の熔融ガラスの対流を説明する図である。 従来の熔解槽内部の熔融ガラスの対流を説明する図である。
 以下、本実施形態のガラス基板の製造方法について説明する。図1は、本発明のガラス基板の製造方法の工程の一例を示す図である。
(ガラス基板の製造方法の全体概要)
 ガラス基板の製造方法は、熔解工程(ST1)と、清澄工程(ST2)と、均質化工程(ST3)と、供給工程(ST4)と、成形工程(ST5)と、徐冷工程(ST6)と、切断工程(ST7)と、を主に有する。この他に、研削工程、研磨工程、洗浄工程、検査工程、梱包工程等を有し、梱包工程で積層された複数のガラス基板は、納入先の業者に搬送される。
 熔解工程(ST1)は熔解槽で行われる。熔解槽では、ガラス原料を、熔解槽に蓄えられた熔融ガラスの液面の略全面に投入することにより、液面を含む表層の温度が均一化した熔融ガラスを作る。さらに、熔解槽の内側側壁のうち、第1の方向に向く内側側壁の底部に設けられた流出口から後工程に向けて熔融ガラスを流す。このとき、熔融ガラスの深さ方向において表層より下方に位置する熔融ガラスの下層の温度を、下層において熔融ガラスの温度分布に起因した対流が生じないように、熔解槽の第1の方向の両端部に位置する熔融ガラスに与える熱量を少なくとも調整することにより、下層の熔融ガラスの第1の方向に沿った温度分布を均一化させながら、熔融ガラスを流出口から後工程に流す。例えば、上記温度分布のうち、熔解槽の第1の方向の両端部に位置する熔融ガラスの温度は下がり易いので、この温度を上昇させるように温度調節をして下層における温度分布を均一化させる。また、上記両端部に位置する熔融ガラスの温度が上がり易い場合、この温度を下げるように温度調節をして下層における温度分布を均一化させる。
 ここで、ガラス原料が投入される熔融ガラスの液面の「略全面」とは、熔解槽の熔融ガラスの液面の80%以上をいう。ガラス原料の投入方法は、ガラス原料を収めたバケットを反転して熔融ガラスにガラス原料を分散投入する方式でも、ベルトコンベアを用いてガラス原料を搬送して分散投入する方式、あるいは略全面に一時に投入する方式でも、スクリューフィーダによりガラス原料を分散投入する方式、あるいは一時に略全面に一時に投入する方式でもよい。後述する実施形態では、バケットを用いてガラス原料が投入される。また、熔融ガラスの「表層」とは、液面から溶解槽の底部に向かった深さの5%以下の範囲内の液面を含む領域をいい、熔融ガラスの「下層」とは、表層以外の領域をいう。また、流出口が設けられる「底部」とは、上記下層の一部であって、底面に近い領域をいう。好ましくは、溶解槽の深さ方向において底面からの深さが、液面と溶解槽の底部との間の深さの1/2以下である領域をいう。
 熔解槽の熔融ガラスは、熔融ガラス自身に電気が流れて自ら発熱することで昇温するが、加熱方法は、この通電による熔融ガラスの加熱のほかに、バーナーによる火焔を補助的に与えてガラス原料を熔解することもできる。なお、ガラス原料には清澄剤が添加される。清澄剤として、SnO2,As23,Sb23等が知られているが、特に制限されない。しかし、環境負荷低減の点から、清澄剤としてSnO2(酸化錫)を用いることが好ましい。
 清澄工程(ST2)は、少なくとも清澄槽において行われる。清澄工程では、清澄槽内の熔融ガラスが昇温されることにより、熔融ガラス中に含まれるO2、CO2あるいはSO2を含んだ泡が、清澄剤の還元反応により生じたO2を吸収して成長し、熔融ガラスの液面に泡は浮上して放出される。さらに、清澄工程では、熔融ガラスの温度を低下させることにより、清澄剤の還元反応により得られた還元物質が酸化反応をする。これにより、熔融ガラスに残存する泡中のO2等のガス成分が熔融ガラス中に再吸収されて、泡が消滅する。清澄剤による酸化反応及び還元反応は、熔融ガラスの温度を制御することにより行われる。なお、清澄工程は、減圧雰囲気を清澄槽につくり、熔融ガラスに存在する泡を減圧雰囲気で成長させて脱泡させる減圧脱泡方式を用いることもできる。この場合、清澄剤を用いない点で有効である。なお後述する清澄工程では、酸化錫を清澄剤として用いた清澄方法を用いる。
 均質化工程(ST3)では、清澄槽から延びる配管を通って供給された攪拌槽内の熔融ガラスを、スターラを用いて攪拌することにより、ガラス成分の均質化を行う。これにより、脈理等の原因であるガラスの組成ムラを低減することができる。なお、攪拌槽は1つ設けても、2つ設けてもよい。
 供給工程(ST4)では、攪拌槽から延びる配管を通して熔融ガラスが成形装置に供給される。
 成形装置では、成形工程(ST5)及び徐冷工程(ST6)が行われる。
 成形工程(ST5)では、熔融ガラスをシートガラスに成形し、シートガラスの流れを作る。成形は、オーバーフローダウンドロー法あるいはフロート法を用いることができる。後述する本実施形態では、オーバダウンロード法が用いられる。
 徐冷工程(ST6)では、成形されて流れるシートガラスが所望の厚さになり、内部歪が生じないように、さらに、反りが生じないように冷却される。
 切断工程(ST7)では、切断装置において、成形装置から供給されたシートガラスを所定の長さに切断することで、板状のガラス板を得る。切断されたガラス板はさらに、所定のサイズに切断され、目標サイズのガラス基板が作られる。この後、ガラス基板の端面の研削、研磨が行われ、ガラス基板の洗浄が行われ、さらに、気泡や脈理等の異常欠陥の有無が検査された後、検査合格品のガラス板が最終製品として梱包される。
 図2は、本実施形態における熔解工程(ST1)~切断工程(ST7)を行う装置の一例を模式的に示す図である。当該装置は、図2に示すように、主に熔解装置100と、成形装置200と、切断装置300と、を有する。熔解装置100は、熔解槽101と、清澄槽102と、攪拌槽103と、ガラス供給管104,105,106と、を有する。
 図2に示す例の熔解装置101では、ガラス原料の投入がバケット101dを用いて行われる。清澄槽102では、熔融ガラスMGの温度を調整して、清澄剤の酸化還元反応を利用して熔融ガラスMGの清澄が行われる。さらに、攪拌槽103では、スターラ103aによって熔融ガラスMGが攪拌されて均質化される。成形装置200では、成形体210を用いたオーバーフローダウンドロー法により、熔融ガラスMGからシートガラスSGが成形される。
(熔解槽の詳細説明)
 図3は、本実施形態の熔解槽101の概略構成を説明する図である。
 熔解槽101は、ガラス原料を、熔解槽101に蓄えられた熔融ガラスMGの液面101cの略全面に投入することにより、液面を含む表層の温度が均一化した熔融ガラスを作る。さらに、熔解槽101は、熔解槽101の内側側壁のうち、図3中の左右方向(第1の方向)、より具体的には左方向に向く内側側壁の底部に設けられた流出口104aから後工程に向けて熔融ガラスMGを流す。
 熔解槽101は、耐火レンガ等の耐火物により構成された壁110を有する。熔解槽101は、壁110で囲まれた内部空間を有する。熔解槽101の内部空間は、上記空間に投入されたガラス原料が熔解してできた溶融ガラスMGを加熱しながら収容する液槽101aと、溶融ガラスMGの上層に形成され、ガラス原料が投入される、気相である上部空間101bとを有する。
 溶解槽101の上部空間101bの上記第1の方向に平行な壁110には、燃料と酸素等を混合した燃焼ガスが燃焼して火炎を発するバーナー112が設けられる。バーナー112は火炎によって上部空間101bの耐火物を加熱して壁110を高温にする。ガラス原料は、高温になった壁110の輻射熱により、また、高温となった気相の雰囲気によって加熱される。
 図3中の熔解槽101の左側側壁には、上部空間101bに接する面には、原料投入窓101fが設けられている。この原料投入窓101fを通して、ガラス原料を収めたバケット101dが上部空間101bに出入りし、後述するコンピュータ118の指示に従って熔融ガラスMGの液面101c上を前後左右に移動するように構成されている。
 図4は、熔解槽101におけるガラス原料の投入を説明する図である。
 図4に示すように、ガラス原料は、熔解槽101に蓄えられた熔融ガラスMGの液面の略全面に投入される。これにより、液面を含む表層の温度が均一化した熔融ガラスMGが作られる。
 すなわち、熔解槽101は、コンピュータ118の指示によって、バケット101dがガラス原料を収めた状態で、バケット101dを目標とする区域に移動させ、バケット101dの上面を下面に反転させるパケット動作機構を備える。バケット101dがガラス原料を投入する区域および投入する時間間隔は、熔融ガラスMGの液面101cに浮遊するガラス原料が無くならないように、予め定められている。したがって、熔解槽101内部では、熔融ガラスMGの液面の略全面に投入されるので、常に熔融ガラスMGの液面101cをガラス原料が覆うように浮遊している。
 このようにガラス原料を、常時液面101cを覆うように浮遊させるのは、熔融ガラスMGの熱が液面101cを通して、気相である上部空間101bに放射されず、熔融ガラスMGの液面を含む表層の温度分布を均一化させて、一定に維持させるためである。また、ガラス原料のうち、SiO2(シリカ)等の熔解性の低い(熔解温度が高い)原料成分を効率よく熔解させ、SiO2(シリカ)等の原料成分の熔け残りを防止するためである。SiO2等の熔解温度の高い原料成分は、他の成分、例えばB23(酸化ホウ素)等の原料成分と混合された状態では、SiO2等の固有の熔解温度より低い温度でSiO2等は溶解され得る。このため、熔融ガラスMGの液面101c上にガラス原料が常に存在して液面101cを覆うように、ガラス原料を絶えず分散投入する。これにより、B23等の原料成分が、熔けにくいSiO2等の原料成分とともに熔解するので、SiO2(シリカ)等の原料成分の熔け残りを防止することができる。従来のように、ガラス原料が、熔融ガラスの液面の一部に投入される場合、熔け難いSiO2等の原料成分が熔け残り、熔融ガラスの対流によって、ガラス原料の投入位置から遠くに離れた液面に異質素地として浮遊する場合がある。また、この異質素地は、熔融ガラスの対流によって熔解槽内部に移動し、場合によっては、熔解槽の流出口から流出して後処理工程に流れる場合もあり、脈理等のガラス組成のムラの原因となりやすい。
 このため、本実施形態では、熔解槽101において、ガラス原料を、熔融ガラスMGの液面の略全面に投入する。したがって、熔融ガラスMGの液面を含む表層における温度が均一化される。また、SiO2等の原料成分の熔け残りを防止することもできる。
 熔解槽101の上記第1の方向に平行で、お互いに対向する液槽101aの内側側壁110a,110bに、酸化錫あるいはモリブデン等の耐熱性を有する導電性材料で構成された3対の電極114が設けられている。3対の電極114は、内側側壁110a,110bのうち、熔融ガラスMGの下層に対応する領域に設けられている。3対の電極114はいずれも、液槽101aの外壁の面から内壁の面まで延びている。3対の電極114のそれぞれの対のうち、図中奥側の電極は図示されていない。3対の電極114の各対は、溶融ガラスMGを通してお互いに対向するように、内側壁110a,110bに設けられている。各対の電極114は、電極間に位置する溶融ガラスMGに電流を流す。溶融ガラスMGはこの通電により、ジュール熱を自ら発して溶融ガラスMGを加熱する。熔解槽101では、溶融ガラスMGは例えば1500℃以上に加熱される。加熱された溶融ガラスMGは、ガラス供給管104を通して清澄槽102へ送られる。なお、3対の電極114のうちの各電極114の対と、この対に隣り合う電極114の対との間の第1の方向における離間距離はいずれも同じであることが、下層における熔融ガラスMGの温度を均一化させるために温度を制御する点で好ましい。
 本実施形態では、熔解槽101には3対の電極114が設けられるが、2対あるいは4対以上の電極が設けられてもよい。電極114の対が4対以上の場合でも、各電極114の対と、この対に隣り合う電極114の対との間の第1の方向における離間距離はいずれも同じであることが、下層における熔融ガラスMGの温度を均一化させるために温度を制御する点で好ましい。
 図3に示す熔解槽101では、バーナー112が上部空間101bに設けられているが、バーナー112は設けられなくてもよい。比抵抗が大きい溶融ガラス(例えば、1500℃における比抵抗が180Ω・cm以上である熔融ガラス)において、バーナー112が補助的に用いられてもよい。熔融ガラスMGの広い面積の液面101cにガラス原料を分散投入し、液面101cの略全面をガラス原料で覆うことにより、熔融ガラスMGの液面101cからの熱放射を防ぎ、熔融ガラスMGの温度の低下を抑えることができる。これにより、ガラス原料を、連続して熔融ガラスをつくるときバーナー112を用いることなく熔融ガラスMGの温度によって熔解させることができる。
 電極114のそれぞれは、制御ユニット116に接続されており、下層における熔融ガラスMGの温度分布を均一化するために、電極114のそれぞれに投入する電力(交流)が、電極114の対毎に制御されている。制御ユニット116は、さらにコンピュータ118と接続されている。コンピュータ118は、制御ユニット116が電極114に投入する電力、具体的に電圧と電流の値を制御ユニット116から受け取り、この電圧及び電流の情報から、熔解槽101内の電極114間に挟まれた熔融ガラスMGの温度情報を求める。コンピュータ118は、さらにこの温度情報に基いて、3対の電極114のそれぞれの対が計測する熔融ガラスMGの温度が所定の許容範囲内、例えば5℃以内、好ましくは3℃以内の範囲で揃うように、電極114に投入する電力の指示を制御ユニット116に送る。また、コンピュータ118は、制御ユニット116を通して後述するバケット101dを動作するように、図示されないバケット動作機構に指示をする。
 コンピュータ118は、例えば、以下の方法で、電極114の対の間に挟まれた位置にある熔融ガラスMGの温度情報を得る。すなわち、電極114の各対の電圧をE(V)とし、電流をI(A)とし、電極114の対の間において熔融ガラスMGを流れる電流の断面積をS(m2)とし、電極114の対の間の長さをL(m)としたとき、ρ=E/I×S/Lの式に従って熔融ガラスMGの比抵抗ρ(Ω・m)を求める。断面積S及び長さLは、熔解槽101によって定まった値である。
 比抵抗ρは、電流が流れる熔融ガラスMGの温度によって変化するので、予め比抵抗ρと熔融ガラスMGの温度の間の関係を求めておくことにより、この関係を用いて、コンピュータ118で算出された比抵抗ρから熔融ガラスMGの温度情報を求めることができる。比抵抗ρと熔融ガラスMGの温度の間の関係は、例えば、F(ρ)のように、比抵抗ρの関数式で表すことができる。一例を挙げると、関数式F(ρ)は下記式で定めることができる。一般に、第1の方向に面する内側壁110c,110d近傍に位置する熔融ガラスMGは内側壁110c,110dから熱放射により低温になり易い。このため、本実施形態では、熔解槽202の第1の方向の両端部における温度を上昇させることにより、下層における温度分布を均一化させる。
 熔融ガラスMGの温度T(℃)= a/(log(ρ)+b)-273.15
 a,b:ガラス組成に依存する定数。
 熔解槽101の流出口104aは、ガラス供給管104を通して、清澄槽102と接続されている。
 図5は、本実施形態における熔解槽101内部の熔融ガラスの対流を説明する図である。本実施形態では、ガラス原料を、熔解槽101に蓄えられた熔融ガラスMGの液面の略全面に投入することにより、液面101cを含む表層の温度が均一化した熔融ガラスMGを作る。この熔融ガラスMGを流出口104aから後工程に向けて流すとき、熔融ガラスMGの深さ方向において熔融ガラスMGの下層の温度を、下層において熔融ガラスMGの温度分布に起因した対流が生じないように、下層の熔融ガラスMGの図3中の左右方向(第1の方向)に沿った温度分布のうち、熔解槽101の図3中の左右方向の両端部に位置する熔融ガラスに与える熱量を少なくとも調整することにより、下層における温度分布を均一化させる。熔解槽101の図3中の左右方向の両端部に位置する熔融ガラスの温度を上昇させるように両端部に位置する熔融ガラスに与える熱量を少なくとも調整するのは、図3中の左右の側壁から外部に熱が放出され易く、上記両端部における熔融ガラスMGの温度は中央部に比べて低くなり易いからである。すなわち、温度が低下し易い両端部に位置する熔融ガラスの温度が上昇するように、両端部に位置する熔融ガラスに与える熱量を調整する。このため、3対の電極114に供給する電力は、熔解槽101の図3中の左右方向(第1の方向)の中央部の電極114に比べて、両側に位置する電極114の方を高く設定することが好ましい。したがって、熔融ガラスMGは、下層における熔融ガラスMGの温度分布に起因した対流を起こすことなく、熔融ガラスMGの流出口104aからの流出に引っ張られて、図5に示す矢印のように流れる。
 一方、図6は、従来の熔解槽内部の熔融ガラスの対流を説明する図である。図6に示すように、従来の熔解槽では、領域Aにおいて、ポットスプリングが形成されるように熔融ガラスは部分的に強く加熱されて対流が促進される。このため、熔融ガラスの液面の一部に投入したガラス原料のうち、SiO2等の熔けにくい原料成分が対流によって移動し、例えばシリカリッチの異質素地120がガラス原料の投入位置から離れたところに溜まり易い。また、この異質素地120が対流に沿って流出口から流出する機会が増え、脈理等のガラス組成のムラの原因となりやすい。
 このように、本実施形態では、ガラス原料を、熔解槽101に蓄えられた熔融ガラスMGの液面の略全面に投入することにより、液面101cを含む表層の温度が均一化した熔融ガラスを作る。さらに、熔解槽101の内側側壁のうち、第1の方向に向く内側側壁の底部に設けられた流出口104aから後工程に向けて熔融ガラスMGを流す。このとき、熔融ガラスMGの下層の温度を、下層において熔融ガラスの温度分布に起因した対流が生じないように、熔解槽の第1の方向の両端部に位置する熔融ガラスMGに与える熱量を少なくとも調整することにより、下層の熔融ガラスMGの第1の方向に沿った温度分布を均一化させながら、熔融ガラスMGを流出口から後工程に流す。例えば、下層の熔融ガラスMGの第1の方向に沿った温度分布のうち、熔解槽101の第1の方向の両端部に位置する温度が低下し易い熔融ガラスMGの温度を上昇させることにより、下層における温度分布を均一化させながら、熔融ガラスMGを流出口104aから清澄工程に流す。このため、下層において熔融ガラスMGの温度分布に起因した対流が生じないので、異質素地120等に起因したガラス組成のムラを抑制することができる。なお、下層において熔融ガラスMGの温度分布が均一でない場合、下層と温度が均一化した表層との間には温度差の分布が生じるので、従来のようなホットスプリングの対流ができ易い。
 したがって、粘性の高い熔融ガラス、例えば、熔融ガラスの102.5 poiseにおける温度が1300℃以上(例えば、1300℃以上1650℃以下)、より好ましくは、1500℃以上(例えば、1500℃以上1650℃以下)である熔融ガラスであっても、本実施形態の製造方法を適用することができ、従来の製造方法の場合に比べて、脈理等のガラス組成のムラを抑制することができる利点が大きい。また、1500℃における比抵抗が180Ω・cm以上である比抵抗が大きい熔融ガラスにおいても、ホットスプリングを強調するために過度な電圧をかける必要がないため、耐火物に電流が流れることを防ぐことができる。このため、ガラスの失透の原因になり易いZrO2(ジルコニア)が熔解槽101の熔融ガラスMGと接する内側側壁から溶出することを防止しつつガラス組成のムラを抑制することができるため、本実施形態の製造方法が適している。また、このような比抵抗が大きい溶融ガラスについては、熔解槽101においてバーナーによる加熱を併用してもよい。
 本実施形態では、3対の電極114のそれぞれの対は、図3中の左右の方向(第1の方向)に直交する方向に向いてお互いに対向しているので、熔融ガラスMGの第1の方向に沿った下層における温度を効果的に均一化させることができる。
 また、本実施形態では、3対の電極114に供給する電力は、溶解槽101の熱の放出を考慮して、第1の方向の熔解槽101の中央部に比べて、両端部の方が高くなるように供給されるので、下層における熔融ガラスMGの第1の方向における温度分布を均一化し易い。
 本実施形態では、熔融ガラスの温度分布に起因する対流を引きこさないように熔融ガラスMGの下層における温度が均一化されるので、従来のように熔融ガラスの温度分布に起因した対流を促進させるために、熔解槽101を構成する耐火物の溶出を犠牲にして熔融ガラスを部分的に過度に高温に加熱する必要がなくなる。このため、ガラスの失透の原因になり易いZrO2(ジルコニア)が熔解槽101の熔融ガラスMGと接する内側側壁から溶出し難くなる。したがって、本実施形態の熔解方法は、耐蝕性に優れたZrO2を成分に含む耐火物によって熔解槽101の内側側壁が構成されている場合に適している。
(ガラス組成)
 本実施形態に用いるガラスの組成については、アルミノシリケートガラスで構成され、SiO2(シリカ)を50質量%以上含むことができる。このガラス組成を有するアルミノシリケートガラスに適用した本実施形態の製造方法は、従来に比べて効果的にガラス組成のムラを抑制することができる。さらには、SiO2を55質量%以上含むことができ、さらに、SiO2を60質量%以上含むことができる。これらの組成を有するアルミノシリケートガラスを適用した本実施形態の製造方法は、従来に比べてより効果的にガラス組成ムラを抑制することができる。SiO2を50質量%以上含み、シリカリッチの異質素地ができ易いガラス組成であっても、熔融ガラスMGが温度分布に起因した対流が発生しないように熔解されるので、シリカリッチの異質素地が流出口104aから流出することを防止することができる。また、ガラス原料が液面101cに常に一定の厚さ分存在するように投入されるので、SiO2の熔け残りが防止され、図6に示すようなSiO2による異質素地120が生じ難い。また、SiO2を50質量%以上含み熔融ガラスMGの粘性が高いガラス組成をガラス基板に用い、従来のように熔融ガラスの対流を促進した場合、溶解槽を構成する耐火物に含有するZrO2(ジルコニア)が熔融ガラスに溶出し、ガラスの失透の原因になる場合がある。しかし、本実施形態は、熔融ガラスMGの温度分布に起因する対流を引き起こさないように下層における熔融ガラスMGの温度分布を均一化するので、従来のように熔融ガラスを過度に高温に加熱する必要がない。このため、溶解槽101の耐火物からZrO2(ジルコニア)の溶出を防ぐことができる。なお、SiO2のガラス組成における含有率の上限は例えば70質量%である。
 また、SiO2とAl23とを合計で60質量%以上含むことができ、このガラス組成を有するアルミノシリケートガラスを適用した本実施形態の製造方法は、従来に比べて効果的にガラス組成のムラを抑制することができる。さらに、SiO2とAl23とを合計で65質量%以上含むことができ、さらに、SiO2とAl23とを、合計で70質量%以上含むことができる。SiO2とAl23とを合計で60質量%以上含みシリカリッチの異質素地120ができ易いガラス組成であっても、熔融ガラスMGが温度分布に起因した対流が発生しないように熔解されるので、シリカリッチの異質素地が流出口104aから流出することを防止することができる。また、ガラス原料が液面101cに常に一定の厚さ分存在するように投入されるので、SiO2の熔け残りが防止され、図6に示すようなSiO2による異質素地120が生じ難い。また、SiO2とAl23とを合計で60質量%以上含み熔融ガラスMGの粘性が高いガラス組成をガラス基板に用い、従来のように熔融ガラスの対流を促進した場合、溶解槽を構成する耐火物に含有するZrO2(ジルコニア)が熔融ガラスに溶出し、ガラスの失透の原因になる場合がある。しかし、本実施形態は、熔融ガラスMGの温度分布に起因する対流を引き起こさないように下層における熔融ガラスMGの温度分布を均一化するので、従来のように熔融ガラスを部分的に過度に高温に加熱する必要がない。このため、溶解槽101の耐火物からZrO2(ジルコニア)の溶出を防ぐことができる。なお、ガラス組成において、SiO2とAl23との合計の含有率の上限は、例えば95質量%である。
 また、ガラス基板は、アルミノボロシリケートガラスで構成されることが好ましい。B23(酸化ホウ素)は、SiO2に比べて低温で熔解し、しかも、SiO2の熔解温度を低下させる。したがって、SiO2の含有率が高いガラス組成においては、B23を含有させることは、異質素地120(図6参照)を生じさせ難い点で有効である。
 ガラス基板のガラス組成は例えば以下のものを挙げることができる。
以下示す組成の含有率表示は、質量%である。
SiO:50~70%、
:5~18%、
Al:0~25%、
MgO:0~10%、
CaO:0~20%、
SrO:0~20%、
BaO:0~10%、
RO:5~20%(ただし、RはMg、Ca、Sr及びBaから選ばれる少なくとも1種であり、ガラス基板が含有するものである)、
を含有する無アルカリガラスであることが好ましい。
 また、ガラス基板のガラスについては、以下のガラス組成を挙げることができる。
SiO:50~70%、
:1~10%、
Al:0~25%、
MgO:0~10%、
CaO:0~20%、
SrO:0~20%、
BaO:0~10%、
RO:5~30%(ただし、RはMg、Ca、Sr及びBaの合量)、
を含有する無アルカリガラスであることも、同様に好ましい。
 また、ガラス基板のガラスについては、以下のガラス組成を挙げることができる。
SiO:50~70%、
:3~15%、
Al:8~25%、
MgO:0~10%、
CaO:0~20%、
SrO:0~20%、
BaO:0~10%、
RO:5~20%(ただし、RはMg、Ca、Sr及びBaの合量)、
を含有する無アルカリガラスであることも、同様に好ましい。
 なお、本実施形態では無アルカリガラスとしたが、ガラス基板はアルカリ金属を微量含んだ(アルカリ金像の合計含有率が0質量%より大きい)アルカリ微量含有ガラスであってもよい。アルカリ金属を含有させる場合、R’Oの合計が0.10%以上0.5%以下、好ましくは0.20%以上0.5%以下(ただし、R’はLi、Na及びKから選ばれる少なくとも1種であり、ガラス基板が含有するものである)含むことが好ましい。また、ガラスの熔解を容易にするために、比抵抗を低下させるという観点から、ガラス中の酸化鉄の含有量が0.01~0.2%であることがさらに好ましい。また、As、SbおよびPbOを実質的に含まないことが好ましい。
 本実施形態の製造方法は、液晶表示装置用ガラス基板に効果的に適用できる。液晶表示装置用ガラス基板は、ガラス基板における熱膨張を抑制し、かつ、ガラス基板に形成されるTFT(Thin Film Transistor)の特性を低下させないために、上述したように、ガラス組成にアルカリ金属成分(Li、Na及びK)を含ませないか、含ませても微量であることが好ましい。しかし、アルカリ金属成分(Li、Na及びK)を含ませないか、含ませても微量である場合、熔融ガラスMGの高温粘性が高くなるため、強いホットスプリングを作るためには、熔融ガラスMGを部分的に高温に加熱する必要がある。本実施形態では、熔融ガラスMGの液面101cの略全面にガラス原料は投入され、しかも、熔融ガラスMGの対流が生じないように熔融ガラスMGの温度は調整されるので、従来のように、熔融ガラスの温度分布を作るために熔融ガラスMGを部分的に高温に加熱する必要がなくなる。したがって、本実施形態の製造方法は、従来のように熔融ガラスの温度を部分的に過度に高くしない点で、液晶表示装置用ガラス基板に好適に適用できる。
 この他に、清澄剤として、SnO2(酸化錫)を0.01~0.5質量%含むことが、環境負荷を低減する一方、効率よい清澄効果を発揮させる点で、好ましい。
 また、本実施形態では、環境負荷低減の点から、清澄剤としてSnO2を用いるが、SnO2の清澄作用を効果的に機能させるためには、熔解温度を高くしすぎないことが好ましい。熔融ガラスMGの温度を本実施形態では、従来の公知の製造方法のように、ホットスプリングを強調するために熔融ガラスを部分的に過度に加熱する必要がないので、溶解槽101の耐火物からZrO2(ジルコニア)の溶出を防ぐことができる他、SnO2の清澄作用を効果的に機能させることができる。
 また、本実施形態では、熔融ガラスMGの下層における温度を熔解槽101内でより効果的に均一化するために、熔解槽101の外側側壁には、電極114が設けられる部分の周りに保温部材が設けられることが好ましい。保温材として、例えば、グラスウールやセラミックファイバ等の断熱材を板状に固めた板部材等が用いられる。これにより、熔解槽101の外側側壁からの放熱を防ぐことができ、熔融ガラスMGの温度を熔解槽101内でより効果的に均一にし、熔融ガラスMGの対流をより一層低減することができる。
 以上、本発明のガラス基板の製造方法について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
100 熔解装置
101 熔解槽
101a 液槽
101b 上部空間
101c 液面
101d バケット
101f 原料投入窓
102 清澄槽
103 攪拌槽
103a スターラ
104,105,106 ガラス供給管
110 壁
110a,110b,110c,110d 内側側壁
112 バーナー
114 電極
116 制御ユニット
118 コンピュータ
120 異質素地
200 成形装置
210 成形体
300 切断装置

Claims (11)

  1.  ガラス原料を熔解槽で加熱して熔解する熔解工程を含み、
     前記熔解工程では、
     ガラス原料を、熔解槽に蓄えられた熔融ガラスの液面の略全面に投入することにより、液面を含む表層の温度が均一化した熔融ガラスを作り、
     前記熔解槽の内側側壁のうち、第1の方向に向く内側側壁の底部に設けられた流出口から後工程に向けて前記熔融ガラスを流し、
     前記熔融ガラスを流すとき、熔融ガラスの深さ方向において前記表層より下方に位置する前記熔融ガラスの下層の温度を、前記下層において前記熔融ガラスの温度分布に起因した対流が生じないように、前記熔解槽の前記第1の方向の両端部に位置する熔融ガラスに与える熱量を少なくとも調整することにより、前記下層の熔融ガラスの前記第1の方向に沿った温度分布を均一化させながら、前記熔融ガラスを前記流出口から前記後工程に流す、
    ことを特徴とするガラス基板の製造方法。
  2.  前記下層における前記温度分布を均一化させるために、前記熔解槽の前記第1の方向に平行な内側側壁のうち、前記下層に対応する前記深さ方向の部分に、前記液面に平行な方向に電流を流して前記下層に位置する熔融ガラスを通電加熱する複数対の電極が設けられ、前記複数対の電極のそれぞれの対は、前記第1の方向に直交する方向に向いてお互いに対向している、請求項1に記載のガラス基板の製造方法。
  3.  前記複数対の電極に供給する電力は、前記第1の方向の前記熔解槽の前記第1の方向の中央部に位置する電極に比べて、前記第1の方向の前記熔解槽の両側に位置する電極の方が高い、請求項2に記載のガラス基板の製造方法。
  4.  前記熔解槽の前記熔融ガラスと接する内側側壁は、ジルコニアを成分に含む耐火物によって構成されている、請求項1~3のいずれか1項に記載のガラス基板の製造方法。
  5.  前記熔融ガラスの102.5 poiseにおける温度は、1300℃以上である、請求項1~4のいずれか1項に記載のガラス基板の製造方法。
  6.  前記製造されるガラス基板は、アルミノシリケートガラスで構成され、SiO2を50質量%以上含む、請求項1~5のいずれか1項に記載のガラス基板の製造方法。
  7.  前記製造されるガラス基板は、アルミノシリケートガラスで構成され、SiO2とAl23とを合計で60質量%以上含む、請求項6に記載のガラス基板の製造方法。
  8.  前記製造されるガラス基板は、無アルカリガラスあるいはアルカリ微量含有ガラスで構成される、請求項1~7のいずれか1項に記載のガラス基板の製造方法。
  9.  前記熔融ガラスの1500℃における比抵抗は、180Ω・cm以上である、請求項1~8のいずれか1項に記載のガラス基板の製造方法。
  10.  前記ガラス原料には、酸化錫が清澄剤として添加されている、請求項1~9のいずれか1項に記載のガラス基板の製造方法。
  11.  前記熔解槽の外側側壁には、前記複数対の電極が設けられる部分の周りに保温部材が設けられる、請求項2に記載のガラス基板の製造方法。
PCT/JP2012/002253 2011-03-31 2012-03-30 ガラス基板の製造方法 WO2012132474A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012525557A JP5668066B2 (ja) 2011-03-31 2012-03-30 ガラス基板の製造方法
CN201280003100.9A CN103124700B (zh) 2011-03-31 2012-03-30 玻璃基板的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-081272 2011-03-31
JP2011081272 2011-03-31
JP2012-006374 2012-01-16
JP2012006374 2012-01-16

Publications (1)

Publication Number Publication Date
WO2012132474A1 true WO2012132474A1 (ja) 2012-10-04

Family

ID=46930242

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/002253 WO2012132474A1 (ja) 2011-03-31 2012-03-30 ガラス基板の製造方法
PCT/JP2012/002252 WO2012132473A1 (ja) 2011-03-31 2012-03-30 ガラス基板の製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002252 WO2012132473A1 (ja) 2011-03-31 2012-03-30 ガラス基板の製造方法

Country Status (4)

Country Link
KR (1) KR101300980B1 (ja)
CN (2) CN103080025B (ja)
TW (1) TWI469940B (ja)
WO (2) WO2012132474A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016102059A (ja) * 2015-12-25 2016-06-02 日本電気硝子株式会社 ガラス基板及びその製造方法
JP2016124750A (ja) * 2014-12-29 2016-07-11 AvanStrate株式会社 ガラス基板の製造方法
CN106396340A (zh) * 2016-08-31 2017-02-15 郑州登电玄武石纤有限公司 一种用于生产连续玄武石纤维的电熔窑炉
JP2017178712A (ja) * 2016-03-31 2017-10-05 AvanStrate株式会社 ガラス基板の製造方法、及び、ガラス基板の製造装置
WO2019054385A1 (ja) * 2017-09-13 2019-03-21 日本電気硝子株式会社 ガラス物品の製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107445450B (zh) * 2013-03-27 2020-09-11 安瀚视特控股株式会社 玻璃基板的制造方法及玻璃基板制造装置
JP6496145B2 (ja) * 2014-12-29 2019-04-03 AvanStrate株式会社 ガラス基板の製造方法
CN105621859A (zh) * 2016-01-27 2016-06-01 徐林波 低强度混泡浸没燃烧法
CN105731763B (zh) * 2016-01-30 2021-07-30 台州市迪欧电器有限公司 排管浸没燃烧法及其喷管浸没燃烧器
CN105967498A (zh) * 2016-02-03 2016-09-28 徐林波 排管浸没燃烧法及其套管浸没燃烧器
KR20190078512A (ko) * 2017-12-26 2019-07-04 아반스트레이트 가부시키가이샤 유리 기판 제조 장치 및 유리 기판의 제조 방법
CN108911480B (zh) * 2018-07-24 2021-11-09 彩虹显示器件股份有限公司 一种平板玻璃窑炉电极推进系统及推进方法
CN112551868A (zh) * 2020-12-30 2021-03-26 河南光远新材料股份有限公司 一种低介电玻璃纤维生产的通路燃烧控制结构
CN114057377A (zh) * 2021-10-27 2022-02-18 安徽科技学院 一种环保型耐侵蚀电熔玻璃窖炉

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832030A (ja) * 1981-08-20 1983-02-24 Nitto Boseki Co Ltd ガラスの電気溶融炉
WO2005021450A1 (ja) * 2003-08-29 2005-03-10 Nippon Sheet Glass Company, Limited ガラス溶融装置及びガラス溶融方法
JP2010260782A (ja) * 2009-04-06 2010-11-18 Asahi Glass Co Ltd 高ジルコニア質耐火物及び溶融窯

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1024598A (en) * 1974-10-15 1978-01-17 Eugene C. Varrasso Method of and apparatus for monitoring for incipient electrode failure in the joule effect heating of heat softenable material
JPS5832030B2 (ja) * 1981-06-09 1983-07-09 株式会社東芝 Ni基耐熱合金の接合方法
JPS59128221A (ja) * 1983-01-11 1984-07-24 Yokohamashi 電気溶融装置
JPS6053780A (ja) * 1983-09-05 1985-03-27 大同特殊鋼株式会社 直接通電式溶融処理炉の電極挿入制御装置
JPS61291423A (ja) * 1985-06-17 1986-12-22 Ishikawajima Harima Heavy Ind Co Ltd 導電性物質の加熱方法および装置
KR20060020888A (ko) * 2004-09-01 2006-03-07 삼성코닝 주식회사 유리용해로 용융조용 전기부스팅장치
JP4630976B2 (ja) * 2007-08-31 2011-02-09 独立行政法人 日本原子力研究開発機構 ガラス溶融炉
CN101968318B (zh) * 2010-09-13 2012-09-19 中国恩菲工程技术有限公司 电炉功率的自动控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832030A (ja) * 1981-08-20 1983-02-24 Nitto Boseki Co Ltd ガラスの電気溶融炉
WO2005021450A1 (ja) * 2003-08-29 2005-03-10 Nippon Sheet Glass Company, Limited ガラス溶融装置及びガラス溶融方法
JP2010260782A (ja) * 2009-04-06 2010-11-18 Asahi Glass Co Ltd 高ジルコニア質耐火物及び溶融窯

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016124750A (ja) * 2014-12-29 2016-07-11 AvanStrate株式会社 ガラス基板の製造方法
JP2016102059A (ja) * 2015-12-25 2016-06-02 日本電気硝子株式会社 ガラス基板及びその製造方法
JP2017178712A (ja) * 2016-03-31 2017-10-05 AvanStrate株式会社 ガラス基板の製造方法、及び、ガラス基板の製造装置
CN106396340A (zh) * 2016-08-31 2017-02-15 郑州登电玄武石纤有限公司 一种用于生产连续玄武石纤维的电熔窑炉
WO2019054385A1 (ja) * 2017-09-13 2019-03-21 日本電気硝子株式会社 ガラス物品の製造方法
KR20200052248A (ko) * 2017-09-13 2020-05-14 니폰 덴키 가라스 가부시키가이샤 유리 물품의 제조 방법
JPWO2019054385A1 (ja) * 2017-09-13 2020-08-27 日本電気硝子株式会社 ガラス物品の製造方法
US11613487B2 (en) 2017-09-13 2023-03-28 Nippon Electric Glass Co., Ltd. Method for producing glass article
KR102569272B1 (ko) 2017-09-13 2023-08-22 니폰 덴키 가라스 가부시키가이샤 유리 물품의 제조 방법
JP7457278B2 (ja) 2017-09-13 2024-03-28 日本電気硝子株式会社 ディスプレイ用ガラス基板の製造方法

Also Published As

Publication number Publication date
TWI469940B (zh) 2015-01-21
TW201247579A (en) 2012-12-01
CN103080025B (zh) 2015-08-05
CN103124700B (zh) 2016-03-16
CN103080025A (zh) 2013-05-01
KR20120138838A (ko) 2012-12-26
WO2012132473A1 (ja) 2012-10-04
CN103124700A (zh) 2013-05-29
KR101300980B1 (ko) 2013-08-27

Similar Documents

Publication Publication Date Title
WO2012132474A1 (ja) ガラス基板の製造方法
JP5752647B2 (ja) ガラス基板の製造方法
CN107445450B (zh) 玻璃基板的制造方法及玻璃基板制造装置
JP5616450B2 (ja) ガラス板の製造方法
TW201323357A (zh) 玻璃板之製造方法
JP5890559B2 (ja) ガラス基板の製造方法
TW201505979A (zh) 玻璃板之製造方法
JP5731437B2 (ja) ガラス板の製造方法
JP2014198656A (ja) ガラス板の製造方法、ガラス板の製造装置
JP6002526B2 (ja) ガラス基板の製造装置及びガラス基板の製造方法
JP5668066B2 (ja) ガラス基板の製造方法
JP2018002539A (ja) ガラス基板の製造方法、およびガラス基板製造装置
JP2019011236A (ja) ガラス基板の製造方法、及びガラス基板製造装置
JP6566824B2 (ja) ガラス基板の製造方法
JP6498933B2 (ja) ディスプレイ用ガラス基板の製造方法および製造装置
KR101432413B1 (ko) 유리판의 제조 방법
JP6714677B2 (ja) ガラス基板製造装置、及びガラス基板の製造方法
JP6749123B2 (ja) ガラス基板の製造方法、及び、ガラス基板の製造装置
JP6630217B2 (ja) ガラス板の製造方法
KR20190078512A (ko) 유리 기판 제조 장치 및 유리 기판의 제조 방법
JP6333602B2 (ja) ガラス基板の製造方法
JP2015189657A (ja) ガラス板の製造方法、及び、ガラス板の製造装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280003100.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012525557

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12763352

Country of ref document: EP

Kind code of ref document: A1