WO2012128308A1 - エポキシ樹脂組成物、プリプレグ、繊維強化複合材料、電子・電気機器用筐体 - Google Patents

エポキシ樹脂組成物、プリプレグ、繊維強化複合材料、電子・電気機器用筐体 Download PDF

Info

Publication number
WO2012128308A1
WO2012128308A1 PCT/JP2012/057300 JP2012057300W WO2012128308A1 WO 2012128308 A1 WO2012128308 A1 WO 2012128308A1 JP 2012057300 W JP2012057300 W JP 2012057300W WO 2012128308 A1 WO2012128308 A1 WO 2012128308A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
component
resin composition
mass
fiber
Prior art date
Application number
PCT/JP2012/057300
Other languages
English (en)
French (fr)
Inventor
正雄 冨岡
金子 学
美雪 萩原
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to JP2012517945A priority Critical patent/JP5648685B2/ja
Priority to KR1020137022618A priority patent/KR101520207B1/ko
Priority to CN201280010908.XA priority patent/CN103403054B/zh
Priority to US14/006,168 priority patent/US10364347B2/en
Priority to EP12761336.2A priority patent/EP2690121B1/en
Publication of WO2012128308A1 publication Critical patent/WO2012128308A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/04Epoxynovolacs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3254Epoxy compounds containing three or more epoxy groups containing atoms other than carbon, hydrogen, oxygen or nitrogen
    • C08G59/3272Epoxy compounds containing three or more epoxy groups containing atoms other than carbon, hydrogen, oxygen or nitrogen containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/21Urea; Derivatives thereof, e.g. biuret
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/0091Housing specially adapted for small components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/04Epoxynovolacs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • Y10T428/249942Fibers are aligned substantially parallel
    • Y10T428/249945Carbon or carbonaceous fiber

Definitions

  • the present invention relates to an epoxy resin composition, a prepreg, a fiber-reinforced composite material, and a casing for electronic / electric equipment.
  • Fiber reinforced composite materials combining resin and reinforcing fibers are used in various applications because they are excellent in lightness, rigidity, impact resistance, and the like.
  • carbon fiber reinforced composite materials are lightweight, high in strength, and high in rigidity, and thus are used in a wide range of fields such as sports and leisure applications such as fishing rods and golf shafts, and industrial applications such as automobiles and aircraft.
  • carbon fiber reinforced composite materials have been used as casings for electronic and electrical devices such as notebook personal computers because of their characteristics such as electromagnetic shielding properties of carbon fibers in addition to their mechanical properties.
  • Fiber reinforced composite materials may be required flame retardant performance in various applications. For example, in the case of a casing of an electronic / electrical device, since fire due to heat generated from the inside of the device may cause a fire, flame retardancy is required.
  • a flame retardant method for fiber reinforced composite materials a method of adding a brominated epoxy resin to a matrix resin has been widely used.
  • red phosphorus and phosphate ester compounds have been used as an incombustible method to replace brominated epoxy resins from the viewpoint of toxic substances generated during combustion of halogen-containing resin compositions on the human body and the environment.
  • a method of adding to a resin for example, Patent Document 1 and a method of adding a phosphazene compound to an epoxy resin have become mainstream.
  • Red phosphorus and phosphate compounds are easily hydrolyzed 5)
  • Tg glass transition temperature
  • a method of using a prepreg as an intermediate material in which a reinforcing fiber is impregnated with a thermosetting resin is generally used.
  • a molded article made of a fiber-reinforced composite material can be obtained by cutting a prepreg into a desired shape and then shaping the prepreg and heat-curing it in a mold.
  • an epoxy resin-based one containing an epoxy resin as a thermosetting resin is widely used. Since an epoxy resin is hard to be cured alone, a curing agent or a curing accelerator is usually blended.
  • epoxy resin prepregs generally have a long molding time (the time until curing is completed), so they are used for parts that require mass productivity such as automobile parts. It was difficult to do.
  • a high cycle molding method with high productivity there is a method of performing press molding at a high temperature and a high pressure, which is frequently used for automobile applications.
  • press molding there is a method of increasing the molding die temperature and shortening the curing time as a technique used for further improving productivity.
  • the mold temperature is higher by about 20 ° C. or more than the glass transition temperature (Tg) of the cured product, the cured product becomes soft.
  • Patent Document 2 discloses an epoxy resin composition that completes curing in a short time even at a low temperature, an epoxy resin, an amine compound having at least one sulfur atom in the molecule, and / or an epoxy resin and at least one sulfur in the molecule.
  • An epoxy resin composition comprising a reaction product of an amine compound having an atom, a urea compound, and dicyandiamide, and a prepreg using the epoxy resin composition are disclosed.
  • a method of manufacturing the material is disclosed.
  • the urea compound 3- (3,4-dichlorophenyl) -1,1-dimethylurea or phenyldimethylurea is used.
  • the epoxy resin composition has room for further improvement in curability.
  • cured material obtained is low, and there exists a problem in heat resistance.
  • the present invention has been made in view of the above circumstances, and has an epoxy resin composition and a prepreg capable of obtaining a fiber-reinforced composite material having excellent curability and flame retardancy and excellent heat resistance, and the prepreg.
  • An object of the present invention is to provide a fiber-reinforced composite material and a housing for electric / electronic devices obtained by using the above.
  • the present invention has the following aspects.
  • An epoxy resin composition containing the following component (A), component (B), component (C) and component (D), wherein the amount of urea group derived from component (D) is (A) It is at least 0.25 times the amount of the phosphorus atom derived from the component, and the content of the component (A) is 7 with respect to 100 parts by mass of the epoxy resin other than the component (A) contained in the epoxy resin composition. It is an epoxy resin composition that is at least part by mass.
  • Component Phosphorus compound.
  • Component (C) An epoxy resin curing agent having no urea structure in the molecule.
  • Component Component: A dimethylurea compound represented by the following formula (a).
  • R is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • n is an integer of 0 or more.
  • X is a group represented by the following formula (I), (II) or (III), and (n + 2) Xs in the formula may be the same or different. However, at least one X out of (n + 2) X is a group represented by the formula (I) or (II).
  • Y is —H or —CH 3 , and (n + 2) Ys in the formula may be the same or different.
  • the component (B) includes at least one selected from a trisphenol methane type epoxy resin, an aminophenol type epoxy resin, a diaminodiphenyl methane type epoxy resin, a novolac type epoxy resin, and a modified product thereof.
  • the content of the component (B) is 18 parts by mass or more and 100 parts by mass or less in 100 parts by mass of the epoxy resin excluding the component (A) among all the epoxy resins contained in the epoxy resin composition.
  • the epoxy resin composition according to claim 1. [11] The epoxy resin composition according to any one of [1] to [10], wherein the component (C) is dicyandiamide.
  • a fiber-reinforced composite material that has excellent curability and has excellent flame resistance and excellent heat resistance without containing a halogen-based flame retardant, red phosphorus, phosphate ester, or phosphazene compound.
  • An epoxy resin composition and a prepreg that can be manufactured, and a fiber-reinforced composite material and a housing for electric and electronic devices obtained by using the prepreg.
  • the epoxy resin composition of the present invention contains the following components (A) to (D) as essential components.
  • the phosphorus compound as the component (A) is not particularly limited as long as it contains a phosphorus atom in the molecule, but phosphorus-containing compounds such as phosphate esters, condensed phosphate esters, and phosphaphenanthrene compounds, and red phosphorus Preferably used. These phosphorus compounds may be incorporated into the epoxy resin skeleton during the curing reaction, or may be dispersed or compatible with the epoxy resin composition. Red phosphorus has a specific gravity of 2.2, which is small compared to metal oxides, and also has a very high phosphorus atom content that acts to impart a flame retardant contained in red phosphorus, thus obtaining a sufficient flame retardant effect.
  • red phosphorus a material in which the surface of red phosphorus is coated with a metal hydroxide and / or a resin to improve stability is more preferably used.
  • the metal oxide include aluminum hydroxide, magnesium hydroxide, zinc hydroxide, titanium hydroxide and the like.
  • the resin is preferably a phenol resin, an epoxy resin, polymethyl methacrylate, or the like having high affinity with the epoxy resin that is the base resin.
  • the coating amount is preferably 1% by weight or more and 20% by weight or less with respect to 100% by weight of red phosphorus.
  • the coating effect is not sufficient, and phosphine gas may be generated during kneading at a high temperature.
  • the larger the coating amount the better in terms of stability, but it is preferable not to exceed 20% by weight from the viewpoint of flame retardancy and weight reduction of the fiber-reinforced composite material.
  • Specific examples of the phosphate ester include triallyl phosphate, alkylallyl phosphate, alkyl phosphate, phosphonate and the like.
  • triallyl phosphate examples include triphenyl phosphate, tricresyl phosphate, trixylyl phosphate, cresyl diphenyl phosphate, cresyl di-2,6-xylenyl phosphate, hydroxydiphenyl phosphate, and the like.
  • alkyl allyl phosphate examples include octyl diphenyl phosphate.
  • alkyl phosphate include trimethyl phosphate, triethyl phosphate, tri n-butyl phosphate, triisobutyl phosphate, tris (2-methylhexyl) phosphate and the like.
  • phosphonates examples include dimethyl methyl phosphonate.
  • the condensed phosphate ester examples include resorcinol bis (diphosphate) and bisphenol A bis (diphenyl phosphate).
  • the phosphorus atom content of the component (A) is preferably 1.0% by mass or more and 8.0% by mass or less. The higher the phosphorus atom content, the better the flame retardancy of the cured product of the epoxy resin composition, and the flame retardancy of the resulting composite material. As the phosphorus atom content is lower, the heat resistance of the cured product of the epoxy resin composition is improved, and the heat resistance of the resulting composite material is improved.
  • the component (A) is more preferably a phosphorus-containing epoxy resin modified product composed of the compound (b) represented by the following formula (b).
  • the epoxy resin composition using the modified phosphorus-containing epoxy resin has excellent curability, has excellent flame retardancy without containing a halogen-based flame retardant, red phosphorus, phosphate ester, and phosphazene compound, and is heat resistant. Since a fiber-reinforced composite material having excellent properties can be obtained, it is further preferable.
  • n is an integer of 0 or more.
  • X is a group represented by the following formula (I), (II) or (III), and (n + 2) Xs in the formula may be the same or different. However, at least one X out of (n + 2) X is a group represented by the formula (I) or (II).
  • Y is —H or —CH 3 , and (n + 2) Ys in the formula may be the same or different.
  • n is an integer of 0 or more, preferably an integer of 0 to 10, and more preferably an integer of 0 to 5. If it is 10 or less, the balance between heat resistance and fluidity is excellent.
  • the compound (b) constituting the component (A) may be one type or two or more types.
  • a part of (n + 2) X in the formula (b) is a group represented by the formula (I) or (II), and a part is the formula (III).
  • a compound in which all of (n + 2) X's in the formula (b) are groups represented by the formula (I) or (II).
  • a part of the (n + 2) Xs may be a group represented by the formula (I) or (II), and a part may be represented by the formula (III). It may be a mixture of a compound that is a group and a compound in which all of the (n + 2) X in the formula (b) are groups represented by the formula (I) or (II).
  • a commercial item may be used for (A) component, and what was synthesize
  • An example of the commercially available product is FX-289FA manufactured by Nippon Steel Chemical Co., Ltd.
  • an epoxy resin for example, a phenol novolac type epoxy resin or a cresol novolak type
  • all of (n + 2) X in the formula (b) are groups represented by the formula (III)
  • An example is a method in which an epoxy resin is reacted with a compound represented by the following formula (c) (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide) in the presence of a catalyst at a high temperature.
  • the content of the component (A) is such that the epoxy resin other than the component (A) in the epoxy resin composition (component (B) and other epoxy resins optionally blended) 100.
  • 7 mass parts or more and 100 mass parts or less are preferable with respect to a mass part, and 25 mass parts or more and 90 mass parts or less are more preferable.
  • 100 mass parts or less are preferable. By setting it to 100 parts by mass or less, appropriate heat resistance can be imparted to the cured product.
  • the content of the component (A) is preferably a blending amount such that the phosphorus atom content in the epoxy resin composition is 0.4% by mass or more and 3.5% by mass or less, A blending amount of 1.2% by mass or more and 2.9% by mass or less is more preferable.
  • the content is preferably a blending amount such that the phosphorus atom content in the epoxy resin composition is 0.4% by mass or more and 3.5% by mass or less, A blending amount of 1.2% by mass or more and 2.9% by mass or less is more preferable.
  • the component (B) is an epoxy resin having three or more epoxy groups per molecule, does not correspond to the component (A), and does not contain the component (A).
  • Examples of the component (B) include a phenol novolac type epoxy resin, a cresol novolak type epoxy resin, a DPP (Diphenylolpropane) novolac type epoxy resin, a trisphenolmethane type epoxy resin, a bisnaphthylmethane type epoxy resin, a diaminodiphenylmethane type epoxy resin, Examples include aminophenol methane type epoxy resins and modified products thereof. Any of these may be used alone or in combination of two or more.
  • Component (B) is excellent in flame retardancy, heat resistance of cured products, etc. among the above, so trisphenol methane type epoxy resin, aminophenol type epoxy resin, diaminodiphenylmethane type epoxy resin, novolac type epoxy resin and It is preferable to include at least one selected from these modified products, and it is more preferable to include at least one selected from trisphenolmethane type epoxy resin, diaminodiphenylmethane type epoxy resin, and aminophenolmethane type epoxy resin.
  • the content of (B) is 18 parts by mass or more in 100 parts by mass of the epoxy resin excluding the component (A) among the total epoxy resins contained in the epoxy resin composition. 100 mass parts or less are preferable, and 58 mass parts or more and 100 mass parts or less are more preferable. Sufficient heat resistance is obtained by setting it as 18 mass parts or more.
  • an epoxy resin is defined as a resin having two or more epoxy groups per molecule and having an epoxy equivalent of 1400 g / eq or less.
  • the component (A) is a compound having two or more epoxy groups in one molecule (for example, n in the formula (b) is an integer of 1 or more (the number of X is 3 or more), and (n + 2)
  • n in the formula (b) is an integer of 1 or more (the number of X is 3 or more)
  • n + 2 In which two or more of X are compounds represented by the above formula (III), and the epoxy equivalent of the entire component (A) is 1400 g / eq or less, the component (A) Corresponds to an epoxy resin.
  • the component (A) does not correspond to an epoxy resin.
  • the component (C) is an epoxy resin curing agent that does not have a urea structure in the molecule.
  • the component (C) may be any component as long as it does not have a urea structure in the molecule and can cure the epoxy resin, and a known curing agent can be used. Specific examples include amines, acid anhydrides, novolak resins, phenolic compounds, mercaptans, Lewis acid amine complexes, onium salts, imidazole compounds, and the like.
  • amine-type curing agents such as amines and imidazole compounds are preferable.
  • amine-type curing agents include aromatic amines such as diaminodiphenylmethane and diaminodiphenylsulfone, aliphatic amines, imidazole derivatives, dicyandiamide, tetramethylguanidine, thiourea-added amines, isomers and modified products thereof. It is done.
  • dicyandiamide is preferable in that it can impart a thermal activity type latency to the epoxy resin composition and is excellent in storage stability of the epoxy resin composition.
  • the thermal activation type potential means a property that is in a state of low activity at room temperature, but undergoes a phase change or chemical change by giving a certain thermal history, and changes to a state of high activity. To do.
  • the blending amount of the component (C) is such that the ratio of the number of active hydrogen equivalents of the component (C) to the number of epoxy equivalents of the epoxy resin composition excluding the component (C) is 0.00.
  • An amount that is 4 or more and 0.9 or less is preferable.
  • the ratio is more preferably 0.5 or more and 0.8 or less.
  • the component (D) needs to be a dimethylurea compound represented by the following formula (a).
  • component (D) examples include 1,1 ′-(4-methyl-1,3-phenylene) bis (3,3-dimethylurea).
  • component (D) As a commercial item of a component, omicure (Omicure) 24 (made by PTI Japan) etc. are mentioned.
  • the content of the component (D) is such that the amount of urea group derived from the component (D) is 0.25 times or more the amount of phosphorus atom derived from the component (A). Is the amount. That is, the ratio of the amount of the urea group derived from the component (D) to the amount of the phosphorus atom derived from the component (A) (hereinafter sometimes referred to as “urea equivalent—phosphorus”) is 0.25 times or more. By setting it to 0.25 times or more, excellent curability can be obtained.
  • the heat resistance is preferably high at 3.00 times or less. More preferably, it is 1.85 times or less.
  • a prepreg using the resin composition is cured to produce a fiber-reinforced composite material, and when molded at about 150 ° C., immediately after molding. Even if the fiber reinforced composite material is taken out, it is more preferable because it is difficult to deform.
  • the content of the component (D) is such that the amount of urea group derived from the component (D) is 0 of the amount of epoxy group contained in the epoxy resin composition.
  • the amount is preferably from 0.03 times to 0.25 times. When it is 0.03 times or more, sufficient curability is obtained, and when it is 0.25 times or less, sufficient heat resistance is obtained for the cured product.
  • the ratio of the amount of the urea group derived from the component (D) to the amount of the epoxy group contained in the epoxy resin composition may be hereinafter referred to as “urea equivalent-epoxy”.
  • the epoxy resin composition of the present invention may contain a thermoplastic resin (E) as long as the effects of the present invention are not impaired in order to control the resin flow during molding and impart toughness of the cured product.
  • thermoplastic resin (E) include polyamide, polyester, polycarbonate, polyether sulfone, polyphenylene ether, polyphenylene sulfide, polyether ether ketone, polyether ketone ketone, polyimide, polytetrafluoroethylene, polyether, polyolefin, and liquid crystal polymer.
  • Polyarylate Polysulfone, polyacrylonitrile styrene, polystyrene, polyacrylonitrile, polymethyl methacrylate, ABS, AES, ASA, polyvinyl chloride, polyvinyl formal, phenoxy resin and the like. Any of these may be used alone or in combination of two or more. Among these, a phenoxy resin is preferable from the viewpoint of excellent resin flow controllability, curability, flame retardancy of a cured product, and the like.
  • the epoxy resin composition of the present invention contains an epoxy resin (hereinafter referred to as other epoxy resin) other than the component (A) and the component (B) as necessary, as long as the effects of the present invention are not impaired. May be.
  • Other epoxy resins include those having two epoxy groups in one molecule and having an epoxy equivalent of 1400 g / eq or less and not corresponding to component (A). Specific examples thereof include, for example, bisphenol type epoxy. Examples thereof include resins, alicyclic epoxy resins, epoxy resins having a biphenyl skeleton, naphthalene-type epoxy resins, and isocyanate-modified epoxy resins. Any of these may be used alone or in combination of two or more. Of these, bisphenol-type epoxy resins are preferred. Examples of the bisphenol type epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, and bisphenol S type epoxy resin, and any of them may be used.
  • the epoxy resin composition of the present invention may contain various known additives as long as it does not impair the effects of the present invention.
  • the additive include silicone oils, natural waxes, synthetic waxes, release agents such as metal salts of linear fatty acids, acid amides, esters, paraffins, crystalline silica, fused silica, calcium silicate.
  • powders such as alumina, calcium carbonate, talc and barium sulfate, inorganic fillers such as glass fiber and carbon fiber, colorants such as carbon black and bengara, and silane coupling agents. Any of these may be used alone or in combination of two or more.
  • the epoxy resin composition of this invention can be prepared by mixing said each component.
  • Examples of the method for mixing the components include a method using a mixer such as a three-roll mill, a planetary mixer, a kneader, a universal agitator, a homogenizer, or a homodisper.
  • the prepreg of the present invention is obtained by impregnating reinforcing fibers with the epoxy resin composition of the present invention.
  • the content of the epoxy resin composition relative to the total weight of the prepreg (hereinafter referred to as the resin content) is preferably 15% by mass or more and 50% by mass or less, more preferably 20% by mass or more and 45% by mass. % Or less, and more preferably 25% by mass or more and 35% by mass or less.
  • the resin content is less than 15% by mass, the adhesion between the reinforcing fiber and the epoxy resin composition is lowered, and when it exceeds 50% by mass, the flame retardancy may be lowered.
  • the reinforcing fiber is not particularly limited, and may be appropriately selected according to the use or the like from known reinforcing fibers constituting the fiber-reinforced composite material.
  • various inorganic fibers or organic fibers such as carbon fiber, aramid fiber, nylon fiber, high-strength polyester fiber, glass fiber, boron fiber, alumina fiber, and silicon nitride fiber can be used.
  • carbon fiber, aramid fiber, glass fiber, boron fiber, alumina fiber, and silicon nitride fiber are preferable from the viewpoint of flame retardancy, and carbon fiber is particularly preferable from the viewpoint of excellent specific strength, specific elasticity, and electromagnetic wave shielding properties.
  • the carbon fiber preferably has a strand tensile strength measured according to JIS R7601 (1986) of 1.0 GPa to 9.0 GPa, a strand tensile modulus of 150 GPa to 1000 GPa, and a strand tensile strength of 1.5 GPa to 9. More preferred is 0 GPa or less and a strand tensile modulus of 200 GPa or more and 1000 GPa or less.
  • the form of the reinforcing fiber may be one aligned in one direction, woven fabric, or non-crimp fabric.
  • the prepreg of the present invention can be produced by a known method using the epoxy resin composition of the present invention and reinforcing fibers.
  • the prepreg of the present invention uses the epoxy resin composition of the present invention, it has excellent curability, and can be cured within 5 minutes at a curing temperature of 140 ° C., for example.
  • the epoxy resin composition of this invention has the comparatively high glass transition temperature (Tg) of hardened
  • the fiber-reinforced composite material of the present invention is obtained by curing the prepreg. Since the fiber-reinforced composite material of the present invention is excellent in flame retardancy, heat resistance, electromagnetic wave shielding properties, mechanical properties, and the like, it is preferably a carbon fiber-reinforced composite material containing carbon fibers as reinforcing fibers.
  • the fiber reinforced composite material of the present invention can be produced by a known method using the prepreg of the present invention, and examples thereof include a method of press molding using a mold. The general conditions when performing press molding using a mold are a curing temperature of 100 ° C. or more and 150 ° C.
  • the epoxy resin composition of the invention is excellent in curability as described above, it can be molded in a short time such as within 5 minutes at a curing temperature of 140 ° C. by high cycle press molding.
  • the fiber reinforced composite material of the present invention is a cured product of the epoxy resin composition of the present invention, the fiber reinforced composite material has excellent flame retardancy without containing a halogen-based flame retardant, red phosphorus, and phosphate ester.
  • a fiber-reinforced composite material molded plate having a thickness of 0.6 mm flame retardancy of V-0 level can be achieved with UL-94V. Therefore, the fiber-reinforced composite material of the present invention is useful in applications that require high flame retardancy. Such applications include casings for electrical and electronic equipment, interior materials for aircraft and automobiles, and the like.
  • the fiber-reinforced composite material of the present invention also has good heat resistance. Therefore, the fiber-reinforced composite material of the present invention is highly useful in applications requiring excellent heat resistance in addition to high flame retardancy, and is particularly suitable for use in electrical and electronic equipment casings.
  • the housing for electric / electronic devices of the present invention is a part or all of the fiber-reinforced composite material of the present invention.
  • “Electronic / Electrical Equipment” is a general term for electronic equipment and electrical equipment. Examples of electrical / electronic equipment include personal computers (notebook type, desktop type), mobile phones, electronic notebooks, portable music players, electronic book displays, and the like. Is mentioned.
  • the housing for electric / electronic equipment of the present invention may be composed of the fiber-reinforced composite material of the present invention, and the fiber-reinforced composite material of the present invention and other materials (metal, injection-like thermoplastic resin, etc.) It may be comprised from.
  • TX-0911 Liquid phenol novolac type epoxy resin, epoxy equivalent 172 g / eq, manufactured by Nippon Steel Chemical Co., Ltd.
  • jER152 Liquid phenol novolac type epoxy resin, epoxy equivalent of 177 g / eq, manufactured by Mitsubishi Chemical Corporation.
  • jER1032H60 Trisphenol methane type epoxy resin, epoxy equivalent 169 g / eq, manufactured by Mitsubishi Chemical Corporation).
  • EPICLON N-540 Trifunctional modified phenol novolac type epoxy resin, epoxy equivalent 170 g / eq, manufactured by DIC Corporation.
  • jER630 p-aminophenol type epoxy resin, epoxy equivalent 97 g / eq, manufactured by Mitsubishi Chemical Corporation.
  • jER604 Diaminodiphenylmethane type epoxy resin, epoxy equivalent 120 g / eq, manufactured by Mitsubishi Chemical Corporation.
  • jER828 Liquid bisphenol A type epoxy resin, epoxy equivalent of 189 g / eq, manufactured by Mitsubishi Chemical Corporation.
  • jER807 Liquid bisphenol F type epoxy resin, epoxy equivalent 168 g / eq, manufactured by Mitsubishi Chemical Corporation.
  • [(D) component] omicure 24 1,1 ′-(4-methyl-1,3-phenylene) bis (3,3-dimethylurea), manufactured by PTI Japan.
  • DCMU99 3- (3,4-dichlorophenyl) -1,1-dimethylurea, manufactured by Hodogaya Chemical Co., Ltd.
  • omicure94 1-phenyl-3,3-dimethylurea, manufactured by PTI Japan.
  • omicure 52 4,4′-methylenebis (phenyldimethylurea), manufactured by PTI Japan.
  • Thermoplastic resin (E)] YP-70 Phenoxy resin, manufactured by Mitsubishi Chemical Corporation.
  • E2020P micro polyethersulfone, manufactured by BASF Japan Ltd.
  • Carbon fiber Carbon fiber: Pyrofil TR50S15L, manufactured by Mitsubishi Rayon Co., Ltd.
  • the epoxy resin compositions of Examples 1 to 28 and Comparative Examples 1 to 10 were prepared by the following procedure. In accordance with the compositions in Tables 1 to 6, first, the solid component (C), the component (D) or other urea compound, and the liquid component jER152 are combined with the solid component and the liquid component. The mass ratio of 1: 1 was weighed into a container and stirred and mixed. This was further finely mixed in a three-roll mill to obtain a curing agent master batch (however, in Examples 17 to 23, 26 and 27, jER828 was used instead of jER152).
  • the obtained epoxy resin composition was formed into a film using an M-500 comma coater manufactured by Hirano Techseed Co., Ltd., and a resin film having a basis weight of 37 g / m 2 was produced.
  • This resin film was laminated on both surfaces of carbon fibers aligned by a drum wind method and impregnated with a heating roll to obtain a carbon fiber prepreg having a fiber basis weight of 170 g / m 2 and a resin content of 30% by mass.
  • UL-94V combustion test (cured resin): An uncured epoxy resin composition is cured at an oven atmosphere temperature of 130 ° C. ⁇ 120 minutes (temperature increase rate is 2 ° C./min) to form a 2 mm thick resin plate, and then processed into a length of 127 mm ⁇ a width of 12.7 mm A test piece was obtained. The test piece was subjected to a combustion test according to the UL-94V standard using a combustion tester manufactured by Suga Test Instruments. That is, the test piece was vertically attached to the clamp, flame contact with a 20 mm flame was performed for 10 seconds, and the combustion time was measured.
  • V-0, V-1, V-2, fail was performed based on the result. As for flame retardancy, V-0 is most excellent, and V-1, V-2, and fail are in that order.
  • DSC-Tg measurement After heating 8 to 12 mg of an uncured epoxy resin composition at 130 ° C. ⁇ 2 hours, 150 ° C. ⁇ 2 hours, or 155 ° C. ⁇ 1 hour using Q1000 manufactured by TA Instruments (both the rate of temperature increase is 60 Next, using the same Q1000 manufactured by TA Instruments, the intermediate glass transition temperature was measured under the measurement conditions of a nitrogen flow rate of 50 ml / min and a heating rate of 10 ° C./min in accordance with JISK7121. This was designated as DSC-Tg. The higher the DSC-Tg, the better the heat resistance.
  • Example 1 As shown in Table 1, an epoxy resin composition was prepared using FX-289FA as the component (A), TX-0911 and jER152 as the component (B), DICY15 as the component (C), and omicure 24 as the component (D). Physical properties were evaluated. The results are shown in Table 1.
  • Example 2 As shown in Table 2, an epoxy resin composition was prepared in the same manner as in Example 1 except that TX-0911 and jER152 as component (B) were prepared, and FX-289FA as component (A) was increased or decreased. Physical properties were evaluated. The results are shown in Table 2.
  • Example 6 As shown in Table 2, an epoxy resin composition was prepared using FX-289FA as the component (A), TX-0911 and jER152 as the component (B), DICY15 as the component (C), and omicure 24 as the component (D). Physical properties were evaluated. The results are shown in Table 2.
  • Example 7 to 12, 28 As shown in Table 3, an epoxy resin composition was prepared in the same manner as in Example 1 except that the amount of omicure 24 as the component (D) was increased, and the physical properties were evaluated. The results are shown in Table 3.
  • Example 13 As shown in Table 4, an epoxy resin composition was prepared in the same manner as in Example 9 except that the amount of DICY15 as the component (C) was reduced, and the physical properties were evaluated. The results are shown in Table 4.
  • Example 14 As shown in Table 4, an epoxy resin composition was prepared in the same manner as in Example 13 except that the amount of omicure 24 as the component (D) was increased, and the physical properties were evaluated. The results are shown in Table 4.
  • Example 16 As shown in Table 4, an epoxy resin composition was prepared in the same manner as in Example 9 except that the amount of DICY15 as the component (C) and omicure 24 as the component (D) was increased, and the physical properties were evaluated. The results are shown in Table 4.
  • Examples 17 to 20 As shown in Table 5, (A) component FX-289FA, (B) component TX-0911, jER1032H60 and jER630, (C) component DICY15, (D) component omicure24, other epoxy resin jER828, heat Epoxy resin compositions were prepared using YP-70 as the plastic resin, and the physical properties were evaluated. The results are shown in Table 5.
  • Example 21 As shown in Table 5, (A) component FX-289FA, (B) component TX-0911, jER1032H60 and jER630, (C) component DICY15, (D) component omicure24, other epoxy resin jER828, heat Epoxy resin compositions were prepared using YP-70 as the plastic resin, and the physical properties were evaluated. The results are shown in Table 5. Moreover, the carbon fiber composite material board was created and the physical property was evaluated. The results are shown in Table 6.
  • Examples 22 and 23 As shown in Table 5, FX-289FA as component (A), TX-0911 and jER604 as component (B), DICY15 as component (C), omicure 24 as component (D), jER828 as other epoxy resin, thermoplastic resin An epoxy resin composition was prepared using YP-70 as the product, and the physical properties were evaluated. The results are shown in Table 5.
  • Example 24 As shown in Table 5, FX-289FA as component (A), TX-0911, jER152, N-540 and jER630 as component (B), DICY15 as component (C), omicure24 as component (D), and thermoplastic resin as component (D) Epoxy resin compositions were prepared using E2020P micro and the physical properties were evaluated. The results are shown in Table 5.
  • Example 25 As shown in Table 5, an epoxy resin composition was prepared in the same manner as in Example 24 except that E2020P micro, which is a thermoplastic resin, was changed to YP-70, and the physical properties were evaluated. The results are shown in Table 5.
  • Example 26 As shown in Table 5, FX-289FA as component (A), TX-0911 as component (B), jER1032H60 and jER604, DICY15 as component (C), omicure 24 as component (D), jER828 as other epoxy resin, heat Epoxy resin compositions were prepared using YP-70 as the plastic resin, and the physical properties were evaluated. The results are shown in Table 5.
  • Example 27 As shown in Table 5, FX-289FA as component (A), TX-0911 as component (B), jER1032H60 and jER604, DICY15 as component (C), omicure24 as component (D), jER828 and jER807 as other epoxy resins
  • An epoxy resin composition was prepared using YP-70 as the thermoplastic resin, and the physical properties were evaluated. The results are shown in Table 5. Moreover, the carbon fiber composite material board was created and the physical property was evaluated. The results are shown in Table 6.
  • phosphorus atom content (% by mass)”, “urea equivalent-to-epoxy”, and “urea equivalent-to-phosphorus” are respectively the phosphorus atom content (% by mass) in the epoxy resin composition, The ratio of the amount of the urea group derived from the component (D) to the amount of the epoxy group contained in the epoxy resin composition, the amount of the urea group derived from the component (D) to the amount of the phosphorus atom derived from the component (A) The ratio of the quantity.
  • the components (A) to (D) are contained, the “urea equivalent to phosphorus” is 0.25 or more, and the content of the component (A) is an epoxy resin other than the component (A) (Component (B) and other epoxy resins)
  • Comparative Example 1 containing no component (D) was low in curability.
  • the comparative example 2 which does not contain (A) component and contains DCMU99 instead of (D) component had low flame retardancy and heat resistance.
  • Comparative Examples 3 to 4 and 10 containing DCMU99, omicure94 or omicure52 instead of the component (D) had low curability and heat resistance.
  • Comparative Examples 7 to 9 having “urea equivalent to phosphorus” of less than 0.25 have low curability and heat resistance, and in particular, Comparative Example 8 having “urea equivalent to phosphorus” of 0.08 is 130 ° C. ⁇ 2 hours. It did not harden under the conditions.
  • a fiber-reinforced composite material that has excellent curability and has excellent flame resistance and excellent heat resistance without containing a halogen-based flame retardant, red phosphorus, phosphate ester, or phosphazene compound. It is possible to provide an epoxy resin composition and a prepreg that can be manufactured, a fiber-reinforced composite material obtained by using the prepreg, and a casing for an electric / electronic device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)

Abstract

硬化性に優れ、優れた難燃性を有し且つ耐熱性に優れる繊維強化複合材料を得ることができるエポキシ樹脂組成物およびプリプレグ、ならびに前記プリプレグを用いて得られる繊維強化複合材料および電気・電子機器用筐体の提供。 (A)成分:リン化合物; (B)成分:1分子に3つ以上のエポキシ基を有するエポキシ樹脂であって前記(A)成分に該当せず、かつ前記(A)成分を含有しないエポキシ樹脂; (C)成分:分子中にウレア構造を有さないエポキシ樹脂硬化剤; (D)成分:式(a)で示されるジメチルウレア化合物;を含有するエポキシ樹脂組成物。[式(a)中、Rは、水素原子または、炭素数が1~10のいずれかであるアルキル基。] を含有するエポキシ樹脂組成物。

Description

エポキシ樹脂組成物、プリプレグ、繊維強化複合材料、電子・電気機器用筐体
 本発明は、エポキシ樹脂組成物、プリプレグ、繊維強化複合材料、電子・電気機器用筐体に関する。
 本願は、2011年3月22日に、日本に出願された特願2011-062751号に基づき優先権を主張し、その内容をここに援用する。
 樹脂と強化繊維を組み合わせた繊維強化複合材料は、軽量性、剛性、耐衝撃性等に優れることから様々な用途に用いられている。特に炭素繊維強化複合材料は、軽量かつ高強度、高剛性であるため、釣り竿やゴルフシャフト等のスポーツ・レジャー用途、自動車や航空機等の産業用途等の幅広い分野で用いられている。近年、炭素繊維強化複合材料は、その機械特性に加え、炭素繊維の電磁波遮蔽性といった特長から、ノートパソコンなどの電子・電気機器の筐体としても使用されている。
 繊維強化複合材料は、様々な用途の中で、難燃性能を求められることがある。たとえば電子・電気機器の筐体用途においては、機器内部からの発熱による発火が火災の原因となる可能性があるため、難燃性能が求められている。
 繊維強化複合材料の難燃化方法としては、マトリックス樹脂に臭素化エポキシ樹脂を添加する方法が広く用いられてきた。しかし近年では、ハロゲンを含む樹脂組成物の燃焼時に発生する有害物質の人体や環境への負荷といった観点から、臭素化エポキシ樹脂を代替する難燃化方法として、赤リンやリン酸エステル化合物をエポキシ樹脂に添加する方法(たとえば特許文献1)や、ホスファゼン化合物をエポキシ樹脂に添加する方法が主流となってきた。しかし、これらの方法は、1)添加量が多いと機械的強度が低下する、2)貯蔵安定性が不良である、3)長期間にわたって赤リンやリン酸エステル化合物、ホスファゼン化合物が徐々に染み出す(ブリードアウトする)、4)赤リンやリン酸エステル化合物が容易に加水分解する、5)リン酸エステル化合物やホスファゼン化合物の添加量が多いと、マトリックス樹脂の硬化物のガラス転移温度(Tg)が低下し、硬化物の耐熱性が低くなる、等の問題がある。そのため、上記の方法では、付与できる難燃性能に限界があり、その安定性も低い。特に赤リンやリン酸エステル化合物を用いる方法は、4)の問題から、高い絶縁性や耐水性が求められるプリント配線基板や電子材料などの分野での採用が難しい。
 繊維強化複合材料の製造には、強化繊維に熱硬化性樹脂を含浸させた、中間材料であるプリプレグを使用する方法が一般的に用いられる。たとえばプリプレグを所望の形状に切断した後に賦形し、金型内で加熱硬化させることにより、繊維強化複合材料からなる成形品を得ることができる。
 プリプレグとしては、熱硬化性樹脂としてエポキシ樹脂を含有するエポキシ樹脂系のものが汎用されている。エポキシ樹脂は、単独では硬化しにくいため、通常、硬化剤や硬化促進剤が配合される。しかし、硬化剤や硬化促進剤が配合されていても、エポキシ樹脂系のプリプレグは一般に成形時間(硬化が完了するまでの時間)が長いため、自動車部材のような量産性を求められる部材に使用することは難しかった。
 一方、生産性が高いハイサイクル成形法として、高温高圧でプレス成形を行う方法があり、自動車用途に多用されている。このようなプレス成形において、さらに生産性を高めるために用いられる手法として、成形金型温度を上げて硬化時間を短縮させる方法がある。しかし、成形金型温度を、硬化物のガラス転移温度(Tg)よりおよそ20℃以上高くした場合、硬化物が柔らかくなってしまう。この状態で硬化物を成形金型から取り出すと、変形等の問題が生じてしまう。そのため、この様な場合、硬化物を取り出す前に、成形金型を冷却せねばならず、これはハイサイクル成形といった面では好ましくない。
 特許文献2には、低温でも短時間に硬化が完了するエポキシ樹脂組成物として、エポキシ樹脂と、分子内に少なくとも一つの硫黄原子を有するアミン化合物及び/又はエポキシ樹脂と分子内に少なくとも一つの硫黄原子を有するアミン化合物との反応生成物と、尿素化合物と、ジシアンジアミドとからなるエポキシ樹脂組成物および前記エポキシ樹脂組成物を用いたプリプレグが開示され、また、前記プリプレグをプレス成形して繊維強化複合材料を製造する方法が開示されている。尿素化合物としては、3-(3,4-ジクロロフェニル)-1,1-ジメチル尿素やフェニルジメチルウレアが用いられている。
 しかし、前記エポキシ樹脂組成物は、硬化性にさらなる改善の余地がある。また、得られる硬化物のTgが低く、耐熱性に問題がある。
国際公開第2005/082982号パンフレット 国際公開第2004/048435号パンフレット
 本発明は、上記事情に鑑みてなされたものであって、硬化性に優れ難燃性を有し且つ耐熱性に優れる繊維強化複合材料を得ることができるエポキシ樹脂組成物およびプリプレグ、ならびに前記プリプレグを用いて得られる繊維強化複合材料および電気・電子機器用筐体を提供することを目的とする。
 本発明は、以下の側面を有する。
 [1]下記(A)成分、(B)成分、(C)成分および(D)成分を含有するエポキシ樹脂組成物であって、(D)成分由来のウレア基の物質量が、(A)成分由来のリン原子の物質量の0.25倍以上であり、(A)成分の含有量が、前記エポキシ樹脂組成物中に含まれる(A)成分以外のエポキシ樹脂100質量部に対して7質量部以上であるエポキシ樹脂組成物である。
 (A)成分:リン化合物。
 (B)成分:1分子に3つ以上のエポキシ基を有するエポキシ樹脂であって前記(A)成分に該当せず、かつ前記(A)成分を含有しないエポキシ樹脂。
 (C)成分:分子中にウレア構造を有さないエポキシ樹脂硬化剤。
 (D)成分:下記式(a)で示されるジメチルウレア化合物。
Figure JPOXMLDOC01-appb-C000004
(Rは、水素原子または、炭素数が1~10のいずれかであるアルキル基)
 [2]前記(A)成分が、リン原子含有率が1.0質量%以上8.0質量%以下のリン化合物である[1]に記載のエポキシ樹脂組成物。
 [3]前記(A)成分が、下記式(b)で示される化合物(b)からなるリン含有エポキシ樹脂変性物である[1]又は[2]に記載のエポキシ樹脂組成物。
Figure JPOXMLDOC01-appb-C000005
[式中、nは0以上の整数である。Xは下記式(I)、(II)または(III)で示される基であり、式中の(n+2)個のXはそれぞれ同じであっても異なってもよい。ただし、(n+2)個のXのうちの少なくとも1つのXは前記式(I)または(II)で示される基である。Yは-Hまたは-CHであり、式中の(n+2)個のYはそれぞれ同じであっても異なってもよい。]
Figure JPOXMLDOC01-appb-C000006
 [4]前記(D)成分が、1,1'-(4-メチル-1,3-フェニレン)ビス(3,3-ジメチル尿素)である[1]~[3]に記載のエポキシ樹脂組成物。
 [5]前記(D)成分由来のウレア基の物質量が、(A)成分由来のリン原子の物質量の0.48倍以上0.90倍以下である[1]~[4]に記載のエポキシ樹脂組成物。
 [6]前記(D)成分由来のウレア基の物質量が、前記エポキシ樹脂組成物中のエポキシ基の物質量の0.03倍以上0.25倍以下である、[1]~[5]のいずれか一項に記載のエポキシ樹脂組成物。
 [7]前記エポキシ樹脂組成物中のリン原子含有率が0.4質量%以上3.5質量%以下である、[1]~[6]のいずれか一項に記載のエポキシ樹脂組成物。
 [8]前記(B)成分が、トリスフェノールメタン型エポキシ樹脂、アミノフェノール型エポキシ樹脂、ジアミノジフェニルメタン型エポキシ樹脂、ノボラック型エポキシ樹脂およびこれらの変性物から選ばれる少なくとも1種を含む、[1]~[7]のいずれか一項に記載のエポキシ樹脂組成物。
 [9]前記(B)成分の含有量が、前記エポキシ樹脂組成物中に含まれる全エポキシ樹脂のうち、前記(A)成分を除くエポキシ樹脂100質量部中、18質量部以上100質量部以下である、[1]~[8]のいずれか一項に記載のエポキシ樹脂組成物。
 [10]前記(B)成分の含有量が、前記エポキシ樹脂組成物中に含まれる全エポキシ樹脂100質量部中、58質量部以上100質量部以下である、[1]~[8]のいずれか一項に記載のエポキシ樹脂組成物。
 [11]前記(C)成分がジシアンジアミドである、[1]~[10]のいずれか一項に記載のエポキシ樹脂組成物。
 [12]さらに、熱可塑性樹脂(E)を含有する、[1]~[11]のいずれか一項に記載のエポキシ樹脂組成物。
 [13]前記熱可塑性樹脂(E)がフェノキシ樹脂である、[12]に記載のエポキシ樹脂組成物。
 [14][1]~[13]のいずれか一項に記載のエポキシ樹脂組成物を強化繊維に含浸させてなるプリプレグ。
 [15][14]に記載のプリプレグを硬化して得られる繊維強化複合材料。
 [16][15]に記載の繊維強化複合材料で一部または全部が構成された電気・電子機器用筐体。
 本発明によれば、硬化性に優れ、ハロゲン系難燃剤、赤リン、リン酸エステル、ホスファゼン化合物を含有せずに優れた難燃性を有し且つ耐熱性に優れる繊維強化複合材料を得ることができるエポキシ樹脂組成物およびプリプレグ、ならびに前記プリプレグを用いて得られる繊維強化複合材料および電気・電子機器用筐体を提供できる。
 以下、本発明について、詳細に説明する。
[エポキシ樹脂組成物]
 本発明のエポキシ樹脂組成物は、以下の(A)~(D)成分を必須成分として含有する。
<(A)成分>
 (A)成分である、リン化合物は、分子中にリン原子を含むものであれば特に限定されないが、リン酸エステル、縮合リン酸エステル、フォスファフェナントレン系化合物などのリン含有化合物や赤リンが好ましく用いられる。これらのリン化合物は、硬化反応中にエポキシ樹脂骨格に取り込まれても、エポキシ樹脂組成物に分散または相溶しても構わない。
 赤リンは、比重が2.2と金属酸化物に比べて小さく、さらに赤リン中に含まれる難燃剤を付与する働きをするリン原子含有率が非常に大きいため、十分な難燃効果を得るために加えなくてはならない難燃剤の添加量が少量でよい。
 赤リンは、赤リンの表面を金属水酸化物および/または樹脂を用いて被覆し安定性を高めたものがより好適に用いられる。金属酸化物としては、水酸化アルミニウム、水酸化マグネシウム、水酸化亜鉛、水酸化チタン等が挙げられる。樹脂の種類、被覆量について特に限定はないが、樹脂としてはベース樹脂であるエポキシ樹脂との親和性が高いフェノール樹脂、エポキシ樹脂、ポリメチルメタクリレート等が好ましい。また、被覆量は、赤リン100重量%に対して1重量%以上20重量%以下が好ましい。1重量%よりも少ない場合には、被覆効果が十分ではなく、高温での混練時などにホスフィンガスが発生する場合がある。かかる被覆量は大きければ多いほど安定性という意味では好ましいが、難燃効果や繊維強化複合材料の軽量化という観点からは20重量%を超えないことが好ましい。
 リン酸エステルの具体例としては、トリアリルホスフェート、アルキルアリルホスフェート、アルキルホスフェート、ホスホネート等が挙げられる。トリアリルホスフェートとしては、トリフェニルホスフェート、トリクレジルホスフェート、トリキシリルホスフェート、クレジルジフェニルホスフェート、クレジルジ2,6-キシレニルホスフェート、ヒドロキシジフェニルホスフェート等がある。アルキルアリルホスフェートとして、オクチルジフェニルホスフェート等がある。アルキルホスフェートとしては、トリメチルホスフェート、トリエチルホスフェート、トリn-ブチルホスフェート、トリイソブチルホスフォネート、トリス(2メチルヘキシル)ホスフェート等がある。ホスホネートとしては、ジメチルメチルホスフォネート等がある。
 縮合リン酸エステルとしては、レゾルシノールビス(ジホスフェート)、ビスフェノールAビス(ジフェニルホスフェート)等がある。
 前記(A)成分のリン原子含有率は、1.0質量%以上8.0質量%以下が好ましい。前記リン原子含有率が高いほど、前記エポキシ樹脂組成物の硬化物の難燃性が向上し、得られる複合材料の難燃性が向上する。前記リン原子含有率が低いほど、前記エポキシ樹脂組成物の硬化物の耐熱性が向上し、得られる複合材料の耐熱性が向上する。
 (A)成分は、下記式(b)で示される化合物(b)からなるリン含有エポキシ樹脂変性物であることがより好ましい。前記リン含有エポキシ樹脂変性物を用いたエポキシ樹脂組成物は、硬化性に優れ、ハロゲン系難燃剤、赤リン、リン酸エステル、ホスファゼン化合物を含有せずに優れた難燃性を有し且つ耐熱性に優れる繊維強化複合材料を得ることができるので、さらに好ましい。
Figure JPOXMLDOC01-appb-C000007
[式中、nは0以上の整数である。Xは下記式(I)、(II)または(III)で示される基であり、式中の(n+2)個のXはそれぞれ同じであっても異なってもよい。ただし、(n+2)個のXのうちの少なくとも1つのXは前記式(I)または(II)で示される基である。Yは-Hまたは-CHであり、式中の(n+2)個のYはそれぞれ同じであっても異なってもよい。]
Figure JPOXMLDOC01-appb-C000008
 式(b)中、nは0以上の整数であり、0~10の整数が好ましく、0~5の整数がより好ましい。10以下であれば耐熱性と流動性のバランスに優れる。
 (A)成分を構成する化合物(b)は1種でも2種以上でもよい。たとえば、(A)成分は、式(b)中の(n+2)個のXのうちの一部が前記式(I)または(II)で示される基であり、一部が前記式(III)で示される基である化合物のみから構成されてもよく、式(b)中の(n+2)個のXのうちの全部が前記式(I)または(II)で示される基である化合物のみから構成されてもよく、式(b)中の(n+2)個のXのうちの一部が前記式(I)または(II)で示される基であり、一部が前記式(III)で示される基である化合物と、式(b)中の(n+2)個のXのうちの全部が前記式(I)または(II)で示される基である化合物との混合物であってもよい。
 (A)成分は、市販品を用いてもよく、公知の製造方法により合成したものを用いてもよい。
 市販品としては、たとえば新日鐵化学株式会社製FX-289FAが挙げられる。
 (A)成分の製造方法としては、たとえば、式(b)中の(n+2)個のXのすべてが式(III)で示される基であるエポキシ樹脂(たとえばフェノールノボラック型エポキシ樹脂またはクレゾールノボラック型エポキシ樹脂)に、下記式(c)で表される化合物(9,10-ジヒドロ-9-オキサ-10-フォスファフェナントレン-10-オキサイド)を高温・触媒存在下で反応させる方法が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 本発明のエポキシ樹脂組成物中、(A)成分の含有量は、前記エポキシ樹脂組成物中の(A)成分以外のエポキシ樹脂((B)成分および任意に配合されるその他のエポキシ樹脂)100質量部に対し、7質量部以上100質量部以下が好ましく、25質量部以上90質量部以下がさらに好ましい。7質量部以上とすることで、優れた難燃性が得られる。また100質量部以下が好ましい。100質量部以下とすることで、硬化物に適当な耐熱性を付与することができる。
 また本発明のエポキシ樹脂組成物中、(A)成分の含有量は、前記エポキシ樹脂組成物中のリン原子含有率が0.4質量%以上3.5質量%以下となる配合量が好ましく、1.2質量%以上2.9質量%以下となる配合量がより好ましい。0.4質量%以上とすることで、充分な難燃性能を付与することができる。3.5質量%以下とすることで、硬化物に適当な耐熱性を付与することができる。
<(B)成分>
 (B)成分は、1分子に3つ以上のエポキシ基を有するエポキシ樹脂であって前記(A)成分に該当せず、かつ前記(A)成分を含有しないエポキシ樹脂である。
 (B)成分としては、たとえば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、DPP(Diphenylolpropane)ノボラック型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂、ビスナフチルメタン型エポキシ樹脂、ジアミノジフェニルメタン型エポキシ樹脂、アミノフェノールメタン型エポキシ樹脂、これらの変性物等が挙げられる。これらはいずれか1種を単独で使用してもよく、2種類以上を併用してもよい。
 (B)成分は、上記のなかでも、難燃性、硬化物の耐熱性等に優れることから、トリスフェノールメタン型エポキシ樹脂、アミノフェノール型エポキシ樹脂、ジアミノジフェニルメタン型エポキシ樹脂、ノボラック型エポキシ樹脂およびこれらの変性物から選ばれる少なくとも1種を含むことが好ましく、トリスフェノールメタン型エポキシ樹脂、ジアミノジフェニルメタン型エポキシ樹脂、アミノフェノールメタン型エポキシ樹脂から選ばれる少なくとも1種を含むことがより好ましい。
 本発明のエポキシ樹脂組成物中、(B)の含有量は、前記エポキシ樹脂組成物中に含まれる全エポキシ樹脂のうち、前記(A)成分を除くエポキシ樹脂100質量部中、18質量部以上100質量部以下が好ましく、58質量部以上100質量部以下がより好ましい。18質量部以上とすることで充分な耐熱性が得られる。
 なお、本発明において、エポキシ樹脂は、1分子に2つ以上のエポキシ基を有し、かつエポキシ当量が1400g/eq以下の樹脂と定義される。
 (A)成分が、1分子中に2つ以上のエポキシ基を有する化合物(たとえば式(b)中のnが1以上の整数(Xの数が3以上)であり、かつ(n+2)個のXのうち2以上が前記式(III)で示される基である化合物)を含む場合であって、(A)成分全体としてのエポキシ当量が1400g/eq以下であった場合は、(A)成分はエポキシ樹脂に該当する。
 1分子中に2つ以上のエポキシ基を有する化合物を含まない場合や、(A)成分全体としてのエポキシ当量が1400g/eqを超える場合は、(A)成分はエポキシ樹脂には該当しない。
<(C)成分>
 (C)成分は、分子中にウレア構造を有さないエポキシ樹脂硬化剤である。
 (C)成分としては、分子中にウレア構造を有さず、エポキシ樹脂を硬化させうるものであればよく、公知の硬化剤が使用可能である。具体例として、アミン、酸無水物、ノボラック樹脂、フェノール化合物、メルカプタン、ルイス酸アミン錯体、オニウム塩、イミダゾール化合物などが挙げられる。
 (C)成分としては、アミン、イミダゾール化合物等のアミン型の硬化剤が好ましい。アミン型の硬化剤としては、例えば、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等の芳香族アミン、脂肪族アミン、イミダゾール誘導体、ジシアンジアミド、テトラメチルグアニジン、チオ尿素付加アミン、それらの異性体、変成体等が挙げられる。
 上記のなかでも、エポキシ樹脂組成物に熱活性型の潜在性を付与することができ、エポキシ樹脂組成物の保存安定性に優れる点で、ジシアンジアミドが好ましい。
 なお、ここで熱活性型の潜在性とは、室温では活性の低い状態であるが、一定の熱履歴を与えることにより相変化や化学変化などを起こし、活性の高い状態に変わるという性質を意味する。
 本発明のエポキシ樹脂組成物中、(C)成分の配合量は、(C)成分を除いた前記エポキシ樹脂組成物のエポキシ当量数に対する(C)成分の活性水素当量数の比が、0.4以上0.9以下となる量が好ましい。前記比は0.5以上0.8以下がより好ましい。0.4以上とすることによりエポキシ樹脂組成物に充分な硬化性を付与できる。0.9以下とすることにより、得られる硬化物の靭性を高くできる。
<(D)成分>
 (D)成分は、下記式(a)で示されるジメチルウレア化合物であることが必要である。
Figure JPOXMLDOC01-appb-C000010
(Rは、水素原子または、炭素数が1~10のいずれかであるアルキル基)
 (D)成分としては、例えば、1,1'-(4-メチル-1,3-フェニレン)ビス(3,3-ジメチル尿素)等が挙げられる。
 (D)成分の市販品としては、omicure(オミキュア)24(ピイ・ティ・アイ・ジャパン(株)製)等が挙げられる。
 本発明のエポキシ樹脂組成物中、(D)成分の含有量は、前記(D)成分由来のウレア基の物質量が、(A)成分由来のリン原子の物質量の0.25倍以上となる量である。つまり(A)成分由来のリン原子の物質量に対する(D)成分由来のウレア基の物質量の比率(以下、「ウレア当量-対リン」ということがある)が0.25倍以上である。0.25倍以上とすることで、優れた硬化性が得られる。3.00倍以下であると耐熱性が高く好ましい。より好ましくは1.85倍以下である。また、0.48倍以上0.90倍以下であると、前記樹脂組成物を用いたプリプレグを硬化して、繊維強化複合材料を製造する際に、150℃程度で成形した場合に、成形直後に繊維強化複合材料を取り出しても、変形しにくいのでより好ましい。
 また、本発明のエポキシ樹脂組成物中、(D)成分の含有量は、前記(D)成分由来のウレア基の物質量が、前記エポキシ樹脂組成物中に含まれるエポキシ基の物質量の0.03倍以上0.25倍以下となる量であることが好ましい。0.03倍以上であることにより、充分な硬化性が得られ、0.25倍以下であることにより、硬化物に充分な耐熱性が得られる。なお、前記エポキシ樹脂組成物中に含まれるエポキシ基の物質量に対する(D)成分由来のウレア基の物質量の比率を、以下、「ウレア当量-対エポキシ」ということがある。
 本発明のエポキシ樹脂組成物は、成形中の樹脂フロー制御や硬化物の靱性付与のため、本発明の効果を損なわない範囲で、熱可塑性樹脂(E)を含有してもよい。
 熱可塑性樹脂(E)としては、たとえばポリアミド、ポリエステル、ポリカーボネート、ポリエーテルスルフォン、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリイミド、ポリテトラフルオロエチレン、ポリエーテル、ポリオレフィン、液晶ポリマー、ポリアリレート、ポリスルフォン、ポリアクリロニトリルスチレン、ポリスチレン、ポリアクリロニトリル、ポリメチルメタクリレート、ABS、AES、ASA、ポリ塩化ビニル、ポリビニルフォルマール、フェノキシ樹脂等が挙げられる。これらはいずれか1種を単独で使用してもよく、2種類以上を併用してもよい。
 上記の中でも、樹脂フロー制御性、硬化性、硬化物の難燃性等に優れる点から、フェノキシ樹脂が好ましい。
 本発明のエポキシ樹脂組成物は、必要に応じて、本発明の効果を損なわない範囲で、前記(A)成分および(B)成分以外のエポキシ樹脂(以下、その他のエポキシ樹脂という)を含有してもよい。
 その他のエポキシ樹脂としては、1分子中に2つのエポキシ基を有し、エポキシ当量が1400g/eq以下で、(A)成分に該当しないものが挙げられ、その具体例としては、たとえばビスフェノール型エポキシ樹脂、脂環式エポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、ナフタレン型エポキシ樹脂、イソシアネート変性エポキシ樹脂等が挙げられる。これらはいずれか1種を単独で使用してもよく、2種類以上を併用してもよい。中でもビスフェノール型エポキシ樹脂が好ましい。
 ビスフェノール型エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等が挙げられ、いずれを用いてもよい。
 本発明のエポキシ樹脂組成物は、必要に応じて、本発明の効果を損なわない範囲で、公知の様々な添加剤を含有してもよい。前記添加剤としては、たとえば、シリコーンオイル、天然ワックス類、合成ワックス類、直鎖脂肪酸の金属塩、酸アミド、エステル類、パラフィン類等の離型剤、結晶質シリカ、溶融シリカ、ケイ酸カルシウム、アルミナ、炭酸カルシウム、タルク、硫酸バリウム等の粉体やガラス繊維、炭素繊維等の無機充填剤、カーボンブラック、ベンガラ等の着色剤、シランカップリング剤等が挙げられる。これらはいずれか1種を単独で使用してもよく、2種類以上を併用してもよい。
<エポキシ樹脂組成物の調製方法>
 本発明のエポキシ樹脂組成物は、上記の各成分を混合することにより調製できる。
 各成分の混合方法としては、三本ロールミル、プラネタリミキサー、ニーダー、万能かくはん機、ホモジナイザー、ホモディスパーなどの混合機を用いる方法が挙げられる。
[プリプレグ]
 本発明のプリプレグは、前記本発明のエポキシ樹脂組成物を強化繊維に含浸させてなるものである。
 本発明のプリプレグにおいて、プリプレグ全重量に対するエポキシ樹脂組成物の含有率(以下、樹脂含有率と言う)は、好ましくは15質量%以上50質量%以下であり、より好ましくは20質量%以上45質量%以下であり、さらに好ましくは25質量%以上35質量%以下である。樹脂含有率が15質量%未満であると、強化繊維とエポキシ樹脂組成物との接着性が低下し、50質量%を超
えると、難燃性能が低下するおそれがある。
 強化繊維としては、特に限定されず、繊維強化複合材料を構成する強化繊維として公知のもののなかから用途等に応じて適宜選択すればよい。たとえば炭素繊維、アラミド繊維、ナイロン繊維、高強度ポリエステル繊維、ガラス繊維、ボロン繊維、アルミナ繊維、窒化珪素繊維などの各種の無機繊維または有機繊維を用いることができる。中でも、難燃性の観点から、炭素繊維、アラミド繊維、ガラス繊維、ボロン繊維、アルミナ繊維、窒化珪素繊維が好ましく、比強度、比弾性および電磁波遮蔽性に優れる点から、炭素繊維が特に好ましい。
 炭素繊維は、JIS R7601(1986)に準じて測定したストランド引張強度が1.0GPa以上9.0GPa以下、ストランド引張弾性率が150GPa以上1000GPa以下のものが好ましく、ストランド引張強度1.5GPa以上9.0GPa以下、ストランド引張弾性率200GPa以上1000GPa以下のものがより好ましい。
 強化繊維の形態としては、一方向に引き揃えられたものであってもよく、織物、またはノンクリンプファブリックでもよい。
 本発明のプリプレグは、本発明のエポキシ樹脂組成物と強化繊維とを用いて、公知の方法で製造することができる。
 本発明のプリプレグは、本発明のエポキシ樹脂組成物を用いていることから、硬化性に優れており、たとえば硬化温度140℃において、5分以内に硬化させることが可能である。
 また、本発明のエポキシ樹脂組成物は、硬化物のガラス転移温度(Tg)が比較的高く、耐熱性に優れている。そのため、本発明のプリプレグの成形を、高温高圧を用いるハイサイクルプレス成形により行った場合でも、硬化物が柔らかくなりにくく、成形金型からの取出しを、変形等の不具合を生じることなく短時間で実施できる。
 したがって、本発明のプリプレグによれば、従来のエポキシ樹脂組成物を用いる場合に比べて短い成形時間で繊維強化複合材料を製造できる。そのため本発明のプリプレグは、生産性が要求される部材の製造にも使用できる。
[繊維強化複合材料]
 本発明の繊維強化複合材料は、前記プリプレグを硬化して得られるものである。
 本発明の繊維強化複合材料は、難燃性、耐熱性、電磁波遮蔽性、機械特性等に優れることから、強化繊維として炭素繊維を含む炭素繊維強化複合材料であることが好ましい。
 本発明の繊維強化複合材料は、本発明のプリプレグを用いて、公知の方法で製造することができ、たとえば金型を用いてプレス成形する方法が挙げられる。金型を用いたプレス成形を行う際の一般的条件は、硬化温度が100℃以上150℃以下、成形時の圧力が1MPa以上15MPa以下、硬化時間は1分間以上20分間以下であるが、本発明のエポキシ樹脂組成物は前述の通り硬化性に優れているので、ハイサイクルプレス成形によりたとえば硬化温度140℃において、5分以内のような短時間で成形できる。
 本発明の繊維強化複合材料は、マトリックス樹脂が前記本発明のエポキシ樹脂組成物の硬化物であることから、ハロゲン系難燃剤、赤リン、リン酸エステルを含有せずに優れた難燃性を有し、たとえば0.6mm厚の繊維強化複合材料成形板としたときに、UL-94VでV-0のレベルの難燃性を達成できる。
 したがって、本発明の繊維強化複合材料は、高度な難燃性能が要求される用途において有用である。かかる用途としては、電気・電子機器用筐体、航空機や自動車の内装用材料等が挙げられる。
 また、本発明の繊維強化複合材料は、耐熱性も良好である。そのため、本発明の繊維強化複合材料は、高度な難燃性能に加えて、優れた耐熱性が要求される用途における有用性が高く、特に、電気・電子機器用筐体に好適に用いられる。
[電気・電子機器用筐体]
 本発明の電気・電子機器用筐体は、前記本発明の繊維強化複合材料で一部または全部が構成されたものである。
 「電子・電気機器」は、電子機器および電気機器の総称で、電気・電子機器としては、たとえば、パーソナルコンピュータ(ノート型、デスクトップ型)、携帯電話、電子手帳、ポータブル音楽プレーヤー、電子書籍ディスプレイ等が挙げられる。
 本発明の電気・電子機器用筐体は、本発明の繊維強化複合材料からなるものであってもよく、本発明の繊維強化複合材料と他の材料(金属、インジェクション様熱可塑性樹脂等)とから構成されるものであってもよい。
 次に実施例により本発明をさらに詳細に説明する。
 以下の各例で使用した原料(樹脂等)、エポキシ樹脂組成物調製方法、炭素繊維プリプレグ作成方法、炭素繊維複合材料板作成方法、物性の評価方法を以下に示す。
<原料>
[(A)成分]
 FX-289FA:リン含有エポキシ樹脂変性物(式(b)中のYが-H、nが0~8である化合物の混合物)、エポキシ当量7740g/eq、リン原子含有率7.4質量%、新日鐵化学(株)製。
[(B)成分]
 TX-0911:液状フェノールノボラック型エポキシ樹脂、エポキシ当量172g/eq、新日鐵化学(株)製。
 jER152:液状フェノールノボラック型エポキシ樹脂、エポキシ当量177g/eq、三菱化学(株)製。
 jER1032H60:トリスフェノールメタン型エポキシ樹脂、エポキシ当量169g/eq、三菱化学(株)製)。
 EPICLON N-540:3官能変性フェノールノボラック型エポキシ樹脂、エポキシ当量170g/eq、DIC(株)製。
 jER630:p-アミノフェノール型エポキシ樹脂、エポキシ当量97g/eq、三菱化学(株)製。
 jER604:ジアミノジフェニルメタン型エポキシ樹脂、エポキシ当量120g/eq、三菱化学(株)製。
[その他のエポキシ樹脂]
 jER828:液状ビスフェノールA型エポキシ樹脂、エポキシ当量189g/eq、三菱化学(株)製。
 jER807:液状ビスフェノールF型エポキシ樹脂、エポキシ当量168g/eq、三菱化学(株)製。
[(C)成分]
 DICY15:ジシアンジアミド、活性水素当量21g/eq、三菱化学(株)製。
[(D)成分]
 omicure24:1,1'-(4-メチル-1,3-フェニレン)ビス(3,3-ジメチル尿素)、ピイ・ティ・アイ・ジャパン(株)製。
[その他のウレア化合物]
 DCMU99:3-(3,4-ジクロロフェニル)-1,1-ジメチル尿素、保土ヶ谷化学工業(株)製。
 omicure94:1-フェニル-3,3-ジメチル尿素、ピイ・ティ・アイ・ジャパン(株)製。
 omicure52:4,4’-メチレンビス(フェニルジメチルウレア)、ピイ・ティ・アイ・ジャパン(株)製。
[熱可塑性樹脂(E)]
 YP-70:フェノキシ樹脂、三菱化学(株)製。
 E2020P micro:ポリエーテルスルフォン、BASFジャパン(株)製。
[炭素繊維]
 炭素繊維:パイロフィルTR50S15L、三菱レイヨン(株)製。
<エポキシ樹脂組成物調製方法>
 実施例1~28、比較例1~10のエポキシ樹脂組成物を以下の手順で調製した。
 表1~6の組成に従い、まず、固形成分である(C)成分と、(D)成分またはその他のウレア化合物と、液状成分であるjER152とを、前記固形成分を合わせたものと前記液状成分の質量比が1:1となる量を容器に計量し、攪拌、混合した。これを三本ロールミルにてさらに細かく混合し、硬化剤マスターバッチを得た(ただし、実施例17~23、26及び27では、jER152の代わりにjER828を使用した)。
 つづけて、表1~6の組成の内、前記硬化剤マスターバッチ以外の成分をフラスコに計量し、オイルバスを用いて160℃に加熱し溶解混合した。その後65℃程度まで冷却し、そこに前記硬化剤マスターバッチを加えて攪拌混合することによりエポキシ樹脂組成物を得た(ただし、比較例2および比較例5は、前記硬化剤マスターバッチとjER152とを65℃で攪拌混合することによりエポキシ樹脂組成物を得た)。
<炭素繊維プリプレグ作成方法>
 得られたエポキシ樹脂組成物を、(株)ヒラノテクシード製M-500コンマコーターでフィルム状にし、樹脂目付け37g/mのレジンフィルムを作製した。このレジンフィルムを、ドラムワインド方式によって引き揃えられた炭素繊維の両面に張り合わせ、加熱ロールで含浸させて、繊維目付170g/m、樹脂含有率30質量%の炭素繊維プリプレグを得た。
<炭素繊維複合材料板作成方法1>
 得られた炭素繊維プリプレグを適当なサイズにカットし、繊維方向が[0°/90°]s=0°/90°/90°/0°となるように4枚積み重ね、130℃×90分、昇温速度2℃/分、圧力0.6MPaの条件でオートクレーブにて硬化して、0.6mm厚の炭素繊維複合材料板([0/90]s)を得た。
<炭素繊維複合材料板作成方法2>
 得られた炭素繊維プリプレグを適当なサイズにカットし、繊維方向が[0°]14=0°/0°/0°/0°/0°/0°/0°/0°/0°/0°/0°/0°/0°/0°となるように14枚積み重ね、150℃×5分、圧力8MPaの条件でプレス機にて硬化して、2mm厚の炭素繊維複合材料板([0]14)を得た。
<評価方法>
(1)UL-94V燃焼試験(樹脂硬化物):
 未硬化のエポキシ樹脂組成物をオーブン雰囲気温度130℃×120分(昇温速度は2℃/min)で硬化させて2mm厚の樹脂板を作成した後、長さ127mm×幅12.7mmに加工して試験片とした。前記試験片について、スガ試験機製燃焼試験機を用いて、UL-94V規格に従って燃焼試験を実施した。すなわち、試験片をクランプに垂直に取付け、20mm炎による接炎を10秒間行い、燃焼時間を測定した。5個の試験片について燃焼試験を行い、クランプまで燃焼したサンプルの数、各燃焼時間のうちの最大値、および5個の燃焼時間の合計(総燃焼時間)を記録した。また、その結果に基づいて判定[V-0、V-1、V-2、fail]を行った。難燃性はV-0が最も優れており、V-1、V-2、failの順に劣っていく。
(2)UL-94V燃焼試験(炭素繊維複合材料板):
 試験片を、炭素繊維複合材料板作成方法1で得た炭素繊維複合材料板([0/90]s)を長さ127mm×幅12.7mmに加工したものに変更するほかは、上記(1)UL-94V燃焼試験(樹脂硬化物)と同様にして評価を行った。
(3)示差走査熱量測定(DSC)による発熱ピークの測定(硬化性評価):
 測定機器としてTAインスツルメント社製Q1000を用いて、未硬化のエポキシ樹脂組成物8~12mgを窒素雰囲気下、昇温速度10℃/minで加熱し、発熱ピークが極大となる温度を記録した。
 発熱ピークが極大となる温度が低いほど、硬化性に優れる。
(4)DSC-Tgの測定:
 TAインスツルメント社製Q1000を用いて、未硬化のエポキシ樹脂組成物8~12mgを130℃×2時間または150℃×2時間または155℃×1時間加熱した後(昇温速度はいずれも60℃/min)、続けて、同じくTAインスツルメント社製Q1000を用い、JISK7121準拠して、窒素流量50ml/min、昇温速度10℃/minの測定条件で、中間点ガラス転移温度を測定し、これをDSC-Tgとした。
 DSC-Tgが高いほど、耐熱性に優れる。
(5)DMA G’-Tgの測定:
 未硬化のエポキシ樹脂組成物をオーブン雰囲気温度150℃×15分(昇温速度は10℃/min)で硬化させて2mm厚の樹脂板を作成した(この時の樹脂表面温度を、熱電対を用いて記録し、樹脂の温度が150℃以上となっている時間を記録した)後、長さ55mm×幅12.7mmに加工して試験片とした。前記試験片について、TAインスツルメント社製ARES-RDSを用いて、測定周波数1Hz、昇温速度5℃/分で、貯蔵弾性率G’を温度に対して対数プロットし、logG’の平坦領域の近似直線と、G’が転移する領域の近似直線との交点から求まる温度をDMA G’-Tgとして記録した。
 DSC G’-Tgが高いほど、耐熱性に優れる。
(6)炭素繊維複合材料板の曲げ試験:
 炭素繊維複合材料板作成方法2で得た炭素繊維複合材料板([0]14)を、繊維方向が長辺となるよう長さ127mm×幅12.7mmに加工して試験片とした。前記試験片について、インストロン社製インストロン万能試験機5565を用いて、ASTM D790に準拠して3点曲げ試験を行い、曲げ強度、曲げ弾性率を記録した。
(実施例1)
 表1に示すとおり、(A)成分としてFX-289FA、(B)成分としてTX-0911およびjER152、(C)成分としてDICY15、(D)成分としてomicure24を用いてエポキシ樹脂組成物を調製し、物性を評価した。結果は表1に記す。
(比較例1)
 表1に示すとおり、(D)成分であるomicure24を除いた以外は実施例1と同様にエポキシ樹脂組成物を調製し、物性を評価した。結果は表1に記す。
(比較例2)
 表1に示すとおり、(B)成分としてjER152、(C)成分としてDICY15、その他のウレア化合物としてDCMU99を使用してエポキシ樹脂組成物を調製し、物性を評価した。結果は表1に記す。
(比較例3)
 表1に示すとおり、(A)成分としてFX-289FA、(B)成分としてTX-0911およびjER152、(C)成分としてDICY15、その他のウレア化合物としてDCMU99を用いてエポキシ樹脂組成物を調製し、物性を評価した。結果は表1に記す。
(比較例4)
 表1に示すとおり、(A)成分としてFX-289FA、(B)成分としてTX-0911およびjER152、(C)成分としてDICY15、その他のウレア化合物としてomicure94を用いてエポキシ樹脂組成物を調製し、物性を評価した。結果は表1に記す。
(比較例10)
 表1に示すとおり、(A)成分としてFX-289FA、(B)成分としてTX-0911およびjER152、(C)成分としてDICY15、その他のウレア化合物としてomicure52を用いてエポキシ樹脂組成物を調製し、物性を評価した。結果は表1に記す。
(比較例5)
 表2に示すとおり、(B)成分としてjER152、(C)成分としてDICY15、(D)成分としてomicure24を用いてエポキシ樹脂組成物を調製し、物性を評価した。結果は表2に記す。
(比較例6)
 表2に示すとおり、(B)成分のTX-0911とjER152とを用意し、(A)成分であるFX-289FAを減量した以外は実施例1と同様にエポキシ樹脂組成物を調製し、物性を評価した。結果は表2に記す。
(実施例2~5)
 表2に示すとおり、(B)成分のTX-0911とjER152とを用意し、(A)成分であるFX-289FAを増減させた以外は実施例1と同様にエポキシ樹脂組成物を調製し、物性を評価した。結果は表2に記す。
(比較例7)
 表2に示すとおり、(D)成分であるomicure24を減量した以外は実施例6と同様にエポキシ樹脂組成物を調製し、物性を評価した。結果は表2に記す。
(実施例6)
 表2に示すとおり、(A)成分としてFX-289FA、(B)成分としてTX-0911およびjER152、(C)成分としてDICY15、(D)成分としてomicure24を用いてエポキシ樹脂組成物を調製し、物性を評価した。結果は表2に記す。
(比較例8、9)
 表3に示すとおり、(D)成分であるomicure24を減量した以外は実施例1と同様にエポキシ樹脂組成物を調製し、物性を評価した。結果は表3に記す。
(実施例7~12、28)
 表3に示すとおり、(D)成分であるomicure24を増量した以外は実施例1と同様にエポキシ樹脂組成物を調製し、物性を評価した。結果は表3に記す。
(実施例13)
 表4に示すとおり、(C)成分であるDICY15を減量した以外は実施例9と同様にエポキシ樹脂組成物を調製し、物性を評価した。結果は表4に記す。
(実施例14,15)
 表4に示すとおり、(D)成分であるomicure24を増量した以外は実施例13と同様にエポキシ樹脂組成物を調製し、物性を評価した。結果は表4に記す。
(実施例16)
 表4に示すとおり、(C)成分であるDICY15および(D)成分であるomicure24を増量した以外は実施例9と同様にエポキシ樹脂組成物を調製し、物性を評価した。結果は表4に記す。
(実施例17~20)
 表5に示すとおり、(A)成分としてFX-289FA、(B)成分としてTX-0911、jER1032H60およびjER630、(C)成分としてDICY15、(D)成分としてomicure24、その他のエポキシ樹脂としてjER828、熱可塑性樹脂としてYP-70を用いてエポキシ樹脂組成物を調製し、物性を評価した。結果は表5に記す。
(実施例21)
 表5に示すとおり、(A)成分としてFX-289FA、(B)成分としてTX-0911、jER1032H60およびjER630、(C)成分としてDICY15、(D)成分としてomicure24、その他のエポキシ樹脂としてjER828、熱可塑性樹脂としてYP-70を用いてエポキシ樹脂組成物を調製し、物性を評価した。結果は表5に記す。
 また、炭素繊維複合材料板を作成し、その物性を評価した。結果は表6に記す。
(実施例22、23)
 表5に示すとおり、(A)成分としてFX-289FA、(B)成分としてTX-0911およびjER604、(C)成分としてDICY15、(D)成分としてomicure24、その他のエポキシ樹脂としてjER828、熱可塑性樹脂としてYP-70を用いてエポキシ樹脂組成物を調製し、物性を評価した。結果は表5に記す。
(実施例24)
 表5に示すとおり、(A)成分としてFX-289FA、(B)成分としてTX-0911、jER152、N-540およびjER630、(C)成分としてDICY15、(D)成分としてomicure24、熱可塑性樹脂としてE2020P microを用いてエポキシ樹脂組成物を調製し、物性を評価した。結果は表5に記す。
(実施例25)
 表5に示すとおり、熱可塑性樹脂であるE2020P microをYP-70に変更した以外は実施例24と同様にエポキシ樹脂組成物を調製し、物性を評価した。結果は表5に記す。
(実施例26)
 表5に示すとおり、(A)成分としてFX-289FA、(B)成分としてTX-0911、jER1032H60およびjER604、(C)成分としてDICY15、(D)成分としてomicure24、その他のエポキシ樹脂としてjER828、熱可塑性樹脂としてYP-70を用いてエポキシ樹脂組成物を調製し、物性を評価した。結果は表5に記す。
(実施例27)
 表5に示すとおり、(A)成分としてFX-289FA、(B)成分としてTX-0911、jER1032H60およびjER604、(C)成分としてDICY15、(D)成分としてomicure24、その他のエポキシ樹脂としてjER828およびjER807、熱可塑性樹脂としてYP-70を用いてエポキシ樹脂組成物を調製し、物性を評価した。結果は表5に記す。
 また、炭素繊維複合材料板を作成し、その物性を評価した。結果は表6に記す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 表1~6中、「リン原子含有率(質量%)」、「ウレア当量-対エポキシ」、「ウレア当量-対リン」はそれぞれ、エポキシ樹脂組成物中のリン原子含有率(質量%)、エポキシ樹脂組成物中に含まれるエポキシ基の物質量に対する(D)成分由来のウレア基の物質量の比率、(A)成分由来のリン原子の物質量に対する(D)成分由来のウレア基の物質量の比率、を示す。
 上記結果に示すとおり、(A)~(D)成分を含有し、「ウレア当量-対リン」が0.25以上であり、(A)成分の含有量が、(A)成分以外のエポキシ樹脂((B)成分およびその他のエポキシ樹脂)100質量部に対して7質量部以上である実施例1~28のエポキシ樹脂組成物は、発熱ピーク温度がいずれも160℃以下と低く、硬化性に優れていた。また、得られる硬化物は難燃性および耐熱性に優れていた。また、実施例21、27のエポキシ樹脂組成物を用いて作成したプリプレグを硬化させた炭素繊維複合材料は、硬化物と同様に難燃性に優れており、機械特性も良好であった。
 一方、(D)成分を含有しない比較例1は硬化性が低かった。(A)成分を含有せず、(D)成分の代わりにDCMU99を含有する比較例2は難燃性および耐熱性が低かった。(D)成分の代わりにDCMU99またはomicure94またはomicure52を含有する比較例3~4、10は硬化性および耐熱性が低かった。(A)成分を含有しない比較例5、(A)成分の含有量が、(A)成分以外のエポキシ樹脂100質量部に対して5質量部である比較例6はそれぞれ難燃性が低かった。「ウレア当量-対リン」が0.25未満の比較例7~9は硬化性および耐熱性が低く、特に「ウレア当量-対リン」が0.08の比較例8は、130℃×2時間の条件では硬化しなかった。
 本発明によれば、硬化性に優れ、ハロゲン系難燃剤、赤リン、リン酸エステル、ホスファゼン化合物を含有せずに優れた難燃性を有し且つ耐熱性に優れる繊維強化複合材料を得ることができるエポキシ樹脂組成物およびプリプレグ、ならびに前記プリプレグを用いて得られる繊維強化複合材料および電気・電子機器用筐体を提供することが出来る。

Claims (16)

  1.  下記(A)成分、(B)成分、(C)成分および(D)成分を含有するエポキシ樹脂組成物であって、(D)成分由来のウレア基の物質量が、(A)成分由来のリン原子の物質量の0.25倍以上であり、(A)成分の含有量が、前記エポキシ樹脂組成物中に含まれる(A)成分以外のエポキシ樹脂100質量部に対して7質量部以上であるエポキシ樹脂組成物。
     (A)成分:リン化合物。
     (B)成分:1分子に3つ以上のエポキシ基を有するエポキシ樹脂であって前記(A)成分に該当せず、かつ前記(A)成分を含有しないエポキシ樹脂。
     (C)成分:分子中にウレア構造を有さないエポキシ樹脂硬化剤。
     (D)成分:下記式(a)で示されるジメチルウレア化合物。
    Figure JPOXMLDOC01-appb-C000001
    (Rは、水素原子または、炭素数が1~10のいずれかであるアルキル基)
  2.  前記(A)成分が、リン原子含有率が1.0質量%以上8.0質量%以下のリン化合物である請求項1に記載のエポキシ樹脂組成物。
  3.  前記(A)成分が、下記式(b)で示される化合物(b)からなるリン含有エポキシ樹脂変性物である請求項1または2に記載のエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    [式中、nは0以上の整数である。Xは下記式(I)、(II)または(III)で示される基であり、式中の(n+2)個のXはそれぞれ同じであっても異なってもよい。ただし、(n+2)個のXのうちの少なくとも1つのXは前記式(I)または(II)で示される基である。Yは-Hまたは-CHであり、式中の(n+2)個のYはそれぞれ同じであっても異なってもよい。]
    Figure JPOXMLDOC01-appb-C000003
  4.  前記(D)成分が、1,1'-(4-メチル-1,3-フェニレン)ビス(3,3-ジメチル尿素)である請求項1~3のいずれか一項に記載のエポキシ樹脂組成物。
  5.  前記(D)成分由来のウレア基の物質量が、(A)成分由来のリン原子の物質量の0.48倍以上0.90倍以下である請求項1~4のいずれか一項に記載のあるエポキシ樹脂組成物。
  6.  前記(D)成分由来のウレア基の物質量が、前記エポキシ樹脂組成物中のエポキシ基の物質量の0.03倍以上0.25倍以下である、請求項1~5のいずれか一項に記載のエポキシ樹脂組成物。
  7.  前記エポキシ樹脂組成物中のリン原子含有率が0.4質量%以上3.5質量%以下である、請求項1~6のいずれか一項に記載のエポキシ樹脂組成物。
  8.  前記(B)成分が、トリスフェノールメタン型エポキシ樹脂、アミノフェノール型エポキシ樹脂、ジアミノジフェニルメタン型エポキシ樹脂、ノボラック型エポキシ樹脂およびこれらの変性物から選ばれる少なくとも1種を含む、請求項1~7のいずれか一項に記載のエポキシ樹脂組成物。
  9.  前記(B)成分の含有量が、前記エポキシ樹脂組成物中に含まれる全エポキシ樹脂のうち、前記(A)成分を除くエポキシ樹脂100質量部中、18質量部以上100質量部以下である、請求項1~8のいずれか一項に記載のエポキシ樹脂組成物。
  10.  前記(B)成分の含有量が、前記エポキシ樹脂組成物中に含まれる全エポキシ樹脂のうち、前記(A)成分を除くエポキシ樹脂100質量部中、58質量部以上100質量部以下である、請求項1~8のいずれか一項に記載のエポキシ樹脂組成物。
  11.  前記(C)成分がジシアンジアミドである、請求項1~10のいずれか一項に記載のエポキシ樹脂組成物。
  12.  さらに、熱可塑性樹脂(E)を含有する、請求項1~11のいずれか一項に記載のエポキシ樹脂組成物。
  13.  前記熱可塑性樹脂(E)がフェノキシ樹脂である、請求項12に記載のエポキシ樹脂組成物。
  14.  請求項1~13のいずれか一項に記載のエポキシ樹脂組成物を強化繊維に含浸させてなるプリプレグ。
  15.  請求項14に記載のプリプレグを硬化して得られる繊維強化複合材料。
  16.  請求項15に記載の繊維強化複合材料で一部または全部が構成された電気・電子機器用筐体。
PCT/JP2012/057300 2011-03-22 2012-03-22 エポキシ樹脂組成物、プリプレグ、繊維強化複合材料、電子・電気機器用筐体 WO2012128308A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012517945A JP5648685B2 (ja) 2011-03-22 2012-03-22 エポキシ樹脂組成物、プリプレグ、繊維強化複合材料、電子・電気機器用筐体
KR1020137022618A KR101520207B1 (ko) 2011-03-22 2012-03-22 에폭시 수지 조성물, 프리프레그, 섬유 강화 복합 재료, 및 전자·전기 기기용 하우징
CN201280010908.XA CN103403054B (zh) 2011-03-22 2012-03-22 环氧树脂组合物、预浸料、纤维增强复合材料、电子电气设备用壳体
US14/006,168 US10364347B2 (en) 2011-03-22 2012-03-22 Epoxy resin composition, prepreg, fiber-reinforced composite material, and housing for electrical or electronic equipment
EP12761336.2A EP2690121B1 (en) 2011-03-22 2012-03-22 Epoxy resin composition, prepreg, fiber-reinforced composite material, and housing for electrical or electronic equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011062751 2011-03-22
JP2011-062751 2011-03-22

Publications (1)

Publication Number Publication Date
WO2012128308A1 true WO2012128308A1 (ja) 2012-09-27

Family

ID=46879449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057300 WO2012128308A1 (ja) 2011-03-22 2012-03-22 エポキシ樹脂組成物、プリプレグ、繊維強化複合材料、電子・電気機器用筐体

Country Status (7)

Country Link
US (1) US10364347B2 (ja)
EP (1) EP2690121B1 (ja)
JP (1) JP5648685B2 (ja)
KR (1) KR101520207B1 (ja)
CN (1) CN103403054B (ja)
TW (2) TWI541262B (ja)
WO (1) WO2012128308A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110194A (ja) * 2015-12-10 2017-06-22 三菱ケミカル株式会社 内圧成形用プリプレグ、及び繊維強化複合材料の製造方法
JP2018154780A (ja) * 2017-03-21 2018-10-04 三菱ケミカル株式会社 プリプレグ及び炭素繊維強化複合材料
WO2019019465A1 (zh) * 2017-07-26 2019-01-31 广东生益科技股份有限公司 一种热固性树脂组合物、由其制作的半固化片、覆金属箔层压板及高频电路板
CN113708079A (zh) * 2021-09-02 2021-11-26 湖南航天环宇通信科技股份有限公司 一种表面金属化碳纤维复合材料抛物面天线的制备方法及设备

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5817206B2 (ja) 2011-05-09 2015-11-18 横浜ゴム株式会社 繊維強化複合材料用エポキシ樹脂組成物
JP5920431B2 (ja) 2014-09-19 2016-05-18 横浜ゴム株式会社 繊維強化複合材料用エポキシ樹脂組成物、繊維強化複合材料用エポキシ樹脂組成物の製造方法、プリプレグ及びハニカムパネル
EP3211052B1 (en) * 2014-10-20 2019-06-12 Sekisui Plastics Co., Ltd. Tacky gel sheet having adhesive applications, method for producing same, method for fixing a pair of objects, and composite material
KR101807807B1 (ko) * 2014-11-17 2018-01-18 주식회사 엘지화학 반도체 접착용 수지 조성물 및 반도체용 접착 필름
ES2776799T3 (es) * 2015-03-31 2020-08-03 Toho Tenax Co Ltd Composición de resina epoxídica, material preimpregnado, material compuesto reforzado con fibra de carbono y métodos de fabricación para los mismos
TWI591109B (zh) * 2015-06-11 2017-07-11 Mitsubishi Rayon Co Epoxy resin composition, molded article, prepreg, fiber reinforced Composites and structures
CN104945885A (zh) * 2015-07-14 2015-09-30 江苏兆鋆新材料股份有限公司 一种环氧树脂碳纤维预浸料的制备方法
CN105237959B (zh) * 2015-09-25 2018-06-29 宿松县焕然机电有限责任公司 一种电机槽楔用耐水耐热绝缘复合材料
JP6789495B2 (ja) * 2015-10-07 2020-11-25 昭和電工マテリアルズ株式会社 アンダーフィル用樹脂組成物、電子部品装置及び電子部品装置の製造方法
TWI600543B (zh) * 2015-10-27 2017-10-01 松果綠能科技有限公司 製備仿金屬生物基複合基材的方法
CN113544198B (zh) 2019-02-15 2024-06-11 陶氏环球技术有限责任公司 环氧组合物
CN111393795B (zh) * 2019-11-19 2023-10-13 浙江工业大学 一种三维导热绝缘环氧树脂复合材料及其制备方法
CN111269537B (zh) * 2020-03-19 2022-06-17 北华航天工业学院 一种环氧树脂基复合透波材料的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11124489A (ja) * 1997-10-22 1999-05-11 Sumitomo Bakelite Co Ltd 難燃性樹脂組成物、これを用いたプリプレグ及び積層板
JPH11166035A (ja) * 1997-09-09 1999-06-22 Toto Kasei Co Ltd リン含有エポキシ樹脂組成物
WO2004048435A1 (ja) 2002-11-28 2004-06-10 Mitsubishi Rayon Co., Ltd. プリプレグ用エポキシ樹脂、プリプレグ、繊維強化複合材料およびこれらの製造方法
WO2005082982A1 (ja) 2004-02-27 2005-09-09 Toray Industries, Inc. 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグ、一体化成形品、繊維強化複合材料板、および電気・電子機器用筐体
JP2008214547A (ja) * 2007-03-06 2008-09-18 Toray Ind Inc 繊維強化複合材料用プリプレグおよび繊維強化複合材料
WO2010109957A1 (ja) * 2009-03-25 2010-09-30 東レ株式会社 エポキシ樹脂組成物、プリプレグ、炭素繊維強化複合材料および電子電気部品筐体
WO2010140351A1 (ja) * 2009-06-01 2010-12-09 三菱レイヨン株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3386955A (en) * 1966-01-14 1968-06-04 American Cyanamid Co Substituted ureas as low temperature epoxy curing agents
US6201074B1 (en) * 1996-09-26 2001-03-13 Siemens Aktiengesellschaft Mixture of epoxy resin, epoxide group-containing P compound, P-modified epoxy resin and polyamine
CN100591713C (zh) * 2004-02-27 2010-02-24 东丽株式会社 碳纤维增强复合材料用环氧树脂组合物、预浸料坯、一体化成型品、纤维增强复合材料板及电气·电子设备用外壳
WO2011037239A1 (ja) * 2009-09-28 2011-03-31 三菱レイヨン株式会社 繊維強化複合材料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11166035A (ja) * 1997-09-09 1999-06-22 Toto Kasei Co Ltd リン含有エポキシ樹脂組成物
JPH11124489A (ja) * 1997-10-22 1999-05-11 Sumitomo Bakelite Co Ltd 難燃性樹脂組成物、これを用いたプリプレグ及び積層板
WO2004048435A1 (ja) 2002-11-28 2004-06-10 Mitsubishi Rayon Co., Ltd. プリプレグ用エポキシ樹脂、プリプレグ、繊維強化複合材料およびこれらの製造方法
WO2005082982A1 (ja) 2004-02-27 2005-09-09 Toray Industries, Inc. 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグ、一体化成形品、繊維強化複合材料板、および電気・電子機器用筐体
JP2008214547A (ja) * 2007-03-06 2008-09-18 Toray Ind Inc 繊維強化複合材料用プリプレグおよび繊維強化複合材料
WO2010109957A1 (ja) * 2009-03-25 2010-09-30 東レ株式会社 エポキシ樹脂組成物、プリプレグ、炭素繊維強化複合材料および電子電気部品筐体
WO2010140351A1 (ja) * 2009-06-01 2010-12-09 三菱レイヨン株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110194A (ja) * 2015-12-10 2017-06-22 三菱ケミカル株式会社 内圧成形用プリプレグ、及び繊維強化複合材料の製造方法
JP2018154780A (ja) * 2017-03-21 2018-10-04 三菱ケミカル株式会社 プリプレグ及び炭素繊維強化複合材料
WO2019019465A1 (zh) * 2017-07-26 2019-01-31 广东生益科技股份有限公司 一种热固性树脂组合物、由其制作的半固化片、覆金属箔层压板及高频电路板
US11319397B2 (en) 2017-07-26 2022-05-03 Shengyi Technology Co., Ltd. Thermosetting resin composition, prepreg made therefrom, laminate clad with metal foil, and high-frequency circuit board
CN113708079A (zh) * 2021-09-02 2021-11-26 湖南航天环宇通信科技股份有限公司 一种表面金属化碳纤维复合材料抛物面天线的制备方法及设备
CN113708079B (zh) * 2021-09-02 2023-12-05 湖南航天环宇通信科技股份有限公司 一种表面金属化碳纤维复合材料抛物面天线的制备方法及设备

Also Published As

Publication number Publication date
KR20130118382A (ko) 2013-10-29
EP2690121A1 (en) 2014-01-29
TW201241030A (en) 2012-10-16
CN103403054B (zh) 2016-03-09
TW201509981A (zh) 2015-03-16
EP2690121A4 (en) 2014-09-03
TWI541262B (zh) 2016-07-11
JP5648685B2 (ja) 2015-01-07
US10364347B2 (en) 2019-07-30
KR101520207B1 (ko) 2015-05-13
JPWO2012128308A1 (ja) 2014-07-24
CN103403054A (zh) 2013-11-20
US20140010979A1 (en) 2014-01-09
EP2690121B1 (en) 2020-06-10

Similar Documents

Publication Publication Date Title
JP5648685B2 (ja) エポキシ樹脂組成物、プリプレグ、繊維強化複合材料、電子・電気機器用筐体
JP6390755B2 (ja) 炭素繊維強化複合材料および構造体
JP5720118B2 (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP5904194B2 (ja) プリプレグおよび繊維強化複合材料
JP6657605B2 (ja) エポキシ樹脂組成物、成形品、プリプレグ、繊維強化複合材料および構造体
JP2011148938A (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2016044246A (ja) エポキシ樹脂組成物、プリプレグ、繊維強化複合材料および構造体
JP2007231073A (ja) 難燃性炭素繊維強化複合材料およびその製造方法
JP5659806B2 (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2012046720A (ja) ポリマーアロイとその製造方法
KR20230104872A (ko) 프리프레그, 성형품 및 에폭시 수지 조성물
JP2022144570A (ja) エポキシ樹脂組成物、およびプリプレグ
JP2022133828A (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280010908.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012517945

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12761336

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137022618

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14006168

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012761336

Country of ref document: EP