WO2012127978A1 - 光反射性異方性導電接着剤及び発光装置 - Google Patents

光反射性異方性導電接着剤及び発光装置 Download PDF

Info

Publication number
WO2012127978A1
WO2012127978A1 PCT/JP2012/054568 JP2012054568W WO2012127978A1 WO 2012127978 A1 WO2012127978 A1 WO 2012127978A1 JP 2012054568 W JP2012054568 W JP 2012054568W WO 2012127978 A1 WO2012127978 A1 WO 2012127978A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
particles
reflective
anisotropic conductive
conductive adhesive
Prior art date
Application number
PCT/JP2012/054568
Other languages
English (en)
French (fr)
Inventor
秀次 波木
士行 蟹澤
英明 馬越
Original Assignee
ソニーケミカル&インフォメーションデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーケミカル&インフォメーションデバイス株式会社 filed Critical ソニーケミカル&インフォメーションデバイス株式会社
Priority to US14/004,553 priority Critical patent/US9670384B2/en
Priority to KR1020137024229A priority patent/KR20140019349A/ko
Priority to EP12760304.1A priority patent/EP2687572B1/en
Priority to CN2012800139969A priority patent/CN103429693A/zh
Publication of WO2012127978A1 publication Critical patent/WO2012127978A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/04Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Definitions

  • the present invention relates to a light-reflective anisotropic conductive adhesive used for anisotropically conductively connecting a light emitting element to a wiring board, and a light emitting device in which the light emitting element is mounted on the wiring board using the adhesive.
  • a light emitting device using a light emitting diode (LED) element is widely used, and the structure of an old type light emitting device is such that, as shown in FIG. 3, an LED element 33 is bonded to a substrate 31 with a die bond adhesive 32, The p electrode 34 and the n electrode 35 on the upper surface are wire-bonded to the connection terminal 36 of the substrate 31 with a gold wire 37, and the entire LED element 33 is sealed with a transparent mold resin 38.
  • the gold wire 37 absorbs light having a wavelength of 400 to 500 nm emitted from the LED element 33 to the upper surface side, and a part of the light emitted to the lower surface side. Is absorbed by the die-bonding adhesive 32 and the luminous efficiency of the LED element 33 is reduced.
  • the LED element 33 be flip-chip mounted (Patent Document 1).
  • bumps 39 are formed on the p electrode 34 and the n electrode 35, respectively, and the p electrode 34 and the n electrode 35 are insulated from the bump forming surface of the LED element 33.
  • the light reflection layer 40 is provided.
  • the LED element 33 and the substrate 31 are connected and fixed by using an anisotropic conductive paste 41 or an anisotropic conductive film (not shown) and curing them. Therefore, in the light emitting device of FIG. 4, the light emitted upward of the LED element 33 is not absorbed by the gold wire, and most of the light emitted downward is reflected by the light reflecting layer 40 and emitted upward. Luminous efficiency (light extraction efficiency) does not decrease.
  • the light reflecting layer 40 must be provided on the LED element 33 by a metal vapor deposition method or the like so that the p-electrode 34 and the n-electrode 35 are insulated from each other. There was a problem that it was not possible.
  • the surface of the conductive particles covered with gold, nickel, or copper in the cured anisotropic conductive paste or anisotropic conductive film exhibits brown or dark brown
  • the epoxy resin binder itself in which the conductive particles are dispersed also exhibits a brown color due to the imidazole-based latent curing agent commonly used for curing, and the light emission efficiency of the light emitted from the light emitting element (light extraction) There is also a problem that it is difficult to improve efficiency.
  • An object of the present invention is to solve the above-described problems of the prior art, and light-emitting elements such as light-emitting diodes (LEDs) are flip-chip mounted on a wiring board using an anisotropic conductive adhesive to emit light.
  • LEDs light-emitting diodes
  • an anisotropic conductive adhesive that can improve the light emission efficiency without using a light reflecting layer on the LED element that causes an increase in manufacturing cost, and wiring the light emitting element using the adhesive
  • the present inventors can prevent the light emission efficiency from being lowered, and the anisotropic conductive adhesive has titanium oxide with a high refractive index. It has been found that by blending the particles as light-reflective insulating particles, the luminous efficiency of the light-emitting element can be prevented from being lowered. In addition, when the light-reflective anisotropic conductive adhesive containing titanium oxide particles having a surface exhibiting a high photocatalytic action is applied to a light-emitting device, the present inventors are able to reduce the organic matter contained in the cured adhesive.
  • the present inventors have found that such a concern can be eliminated by surface-treating the surface of the titanium oxide particles so as to cover the surface with a metal oxide such as aluminum oxide. Based on these findings, the present inventors have completed the present invention.
  • the present invention is a light-reflective anisotropic conductive adhesive used for anisotropic conductive connection of a light-emitting element to a wiring board, comprising a thermosetting resin composition, conductive particles, and light-reflective insulating particles.
  • the light-reflective anisotropic conductive adhesive is characterized in that the light-reflective insulating particles are obtained by surface-treating titanium oxide particles with other metal oxides.
  • the present invention provides a light emitting device in which a light emitting element is mounted on a wiring board by a flip chip method through the above-described light reflective anisotropic conductive adhesive.
  • the light-reflective anisotropic conductive adhesive of the present invention used for anisotropically conductively connecting a light-emitting element to a wiring board is a light obtained by surface-treating the surface of titanium oxide particles having a high refractive index with a metal oxide. Contains reflective insulating particles. Therefore, this light-reflective anisotropic conductive adhesive can reflect light. Moreover, the titanium oxide particles themselves are surface-treated with other metal oxides (hereinafter referred to as “metal oxide” in the present invention means metal oxides other than titanium oxide). Therefore, it does not come into direct contact with the organic matter in the cured product of the adhesive.
  • the conductive particles are composed of core particles coated with a metal material, and white to gray light reflecting layers formed on the surface from zinc oxide (ZnO) particles or aluminum oxide (Al 2 O 3 ) particles.
  • ZnO zinc oxide
  • Al 2 O 3 aluminum oxide
  • the light-reflective conductive particles themselves exhibit white to gray color, so that the wavelength dependency of the reflection characteristics with respect to visible light is small, and therefore the luminous efficiency is further improved.
  • the emission color of the light emitting element can be reflected as it is.
  • the present invention is a light-reflective anisotropic conductive adhesive used for anisotropically conductively connecting a light-emitting element to a wiring board, and includes a thermosetting resin composition, conductive particles, and light-reflective insulating particles.
  • a light-reflective anisotropic conductive adhesive that has titanium oxide particles surface-treated with a metal oxide as light-reflective insulating particles for reflecting light incident on the anisotropic conductive adhesive to the outside. It is characterized by its use.
  • titanium oxide (TiO 2 ) particles are used as the light-reflective insulating particles.
  • the refractive index is higher than that of an adhesive component that is an organic substance and the white hiding property is high.
  • a titanium oxide either a rutile type or an anatase type can be used, but a rutile type can be preferably used in terms of a higher refractive index.
  • the reason for the surface treatment of titanium oxide particles with metal oxide is that the titanium oxide particles and the adhesive are cured so that the organic matter contained in the cured product of the adhesive is not photodegraded by the high photocatalytic action of titanium oxide. This is to prevent direct contact with objects.
  • the metal oxide for surface treatment of the titanium oxide particles needs to be light reflective and insulating.
  • aluminum oxide (Al 2 O 3 ), silicon monoxide (SiO) examples thereof include at least one selected from the group consisting of silicon dioxide (SiO 2 ), zinc oxide (ZnO), zinc dioxide (ZnO 2 ), and zirconium oxide (ZrO 2 ).
  • SiO 2 itself has a relatively low refractive index, it seems difficult to affect the high refractive index of titanium oxide.
  • a known dry or wet surface treatment process can be employed as a surface treatment technique of titanium oxide particles with a metal oxide.
  • the dry surface treatment process include a vacuum deposition method, a CVD method, a sputtering method, and a mechanofusion method.
  • the wet surface treatment process includes a method in which titanium oxide particles are dispersed in a colloidal metal oxide and the metal oxide is adsorbed on the surface, and a metal halide or metal alkoxide in an aqueous dispersion of titanium oxide particles. And a method of forming a coating film of metal oxide by hydrolyzing with hydrochloric acid or the like if necessary.
  • an aqueous slurry is obtained by dispersing titanium oxide particles as a raw material in water, and a surface treatment agent such as sodium aluminate, aluminum sulfate, aluminum nitrate, aluminum chloride is added to the obtained aqueous slurry.
  • the surface treatment agent is adsorbed on the surface of the titanium oxide particles, dried, fired and pulverized to obtain titanium oxide particles whose surface is coated with Al 2 O 3 .
  • the pH is adjusted to about 6 to 7 with acid or alkali, and the titanium dioxide particles are coated with the surface treatment agent.
  • the aqueous slurry is filtered with a filter press, a drum filter or the like and washed to wash away remaining salts. Then, it dries with a band dryer, a spray drier, etc., and obtains a dried product.
  • the dried product is fired at a temperature in the range of 400 to 1000 ° C., preferably in the range of 500 to 900 ° C., using an appropriate means such as an electric furnace or a rotary firing furnace.
  • the firing lumps can be obtained titanium oxide particles surface-coated with Al 2 O 3.
  • the fired lump obtained in this way may be pulverized as it is using a fluid energy mill, or pulverized with a bead mill as an aqueous slurry, and after passing through the steps of filtration, washing and drying, You may grind
  • an appropriate organic treatment agent may be used as necessary.
  • organic treatment agents include polyhydric alcohols, alkanolamines, silicone oils, silane coupling agents, and titanium coupling agents.
  • the amount of the surface treatment agent used for the titanium oxide particles is determined by adjusting the amount of the surface treatment agent added to the aqueous slurry according to the required content of the titanium oxide particles in the light-reflective insulating particles. be able to.
  • titanium oxide in the light-reflective insulating particles When the content of titanium oxide in the light-reflective insulating particles is too small (that is, when the amount of metal oxide present on the surface of the titanium oxide particles increases and the metal oxide surface treatment film becomes too thick), titanium oxide However, if the amount of the metal oxide present on the surface of the titanium oxide particles decreases, the surface treatment film of the metal oxide becomes too thin. ), The photocatalytic action of the titanium oxide particles may not be sufficiently suppressed, so that the content is preferably 80 to 96%, more preferably 85 to 93% on the basis of the number of atoms. This numerical value can be obtained by fluorescent X-ray analysis.
  • the shape of the light-reflective insulating particles having titanium oxide particles as the core particles may be substantially spherical, scale-like, amorphous, needle-like, etc., but depending on the reflection efficiency, dispersibility in the resin composition, and metal oxide In consideration of the handling property of the surface treatment, a substantially spherical shape is preferable.
  • the particle diameter of such substantially spherical light-reflective insulating particles is 0.5 ⁇ m or more, which is widely used as a light-reflecting agent, because titanium oxide as a core particle has a high refractive index. It is possible to use a particle having a particle size smaller than that of zinc oxide having a particle size of 1, and to prevent the reliability of anisotropic conductive connection based on the blending of the light-reflective insulating particles. On the other hand, if the particle size is excessively small, the light reflectance tends to decrease. Accordingly, the preferred particle size is 0.1 to 10 ⁇ m, particularly preferably 0.2 to 0.3 ⁇ m. This range is effective for flip-chip mounting LED elements that emit blue light using a light-reflective anisotropic conductive adhesive.
  • the light-reflective insulating particles have a refractive index (JIS K7142) that is preferably greater than the refractive index (JIS K7142) of the cured product of the thermosetting resin composition, more preferably at least about 0.02. preferable. This is because when the difference in refractive index is small, the reflection efficiency at the interface between them decreases.
  • light-reflective insulating particles other than the light-reflective insulating particles obtained by surface-treating the titanium oxide particles described above with a metal oxide can be used in combination as long as the effects of the present invention are not impaired.
  • Examples of such light-reflective insulating particles that can be used in combination include resin-coated metal particles in which the surfaces of the metal particles are coated with a transparent insulating resin.
  • Examples of the metal particles include nickel, silver, and aluminum.
  • the shape of the particles include an amorphous shape, a spherical shape, a scale shape, and a needle shape.
  • a spherical shape is preferable from the viewpoint of the light diffusion effect, and a scale shape is preferable from the viewpoint of the total reflection effect.
  • Particularly preferred are scaly or spherical silver particles, especially scaly silver particles, in terms of light reflectance.
  • the size of such resin-coated metal particles varies depending on the shape, generally, if it is too large, there is a risk of inhibiting connection by anisotropic conductive particles, and if it is too small, it is difficult to reflect light.
  • the particle diameter is 0.1 to 30 ⁇ m, more preferably 0.2 to 10 ⁇ m.
  • the major axis is preferably 0.1 to 100 ⁇ m, more preferably 1 to 50 ⁇ m, and the thickness is The thickness is preferably 0.01 to 10 ⁇ m, more preferably 0.1 to 5 ⁇ m.
  • the size of the light-reflective insulating particles is the size including the insulating coating when the insulating coating is applied.
  • a cured product of acrylic resin can be preferably used.
  • examples thereof include resins obtained by radical copolymerization of methyl methacrylate and 2-hydroxyethyl methacrylate in the presence of a radical polymerization initiator such as an organic peroxide such as benzoyl peroxide.
  • a radical polymerization initiator such as an organic peroxide such as benzoyl peroxide.
  • it is more preferably crosslinked with an isocyanate-based crosslinking agent such as 2,4-tolylene diisocyanate.
  • the metal particles it is preferable to introduce a ⁇ -glycidoxy group, a vinyl group, or the like into the metal surface in advance with a silane coupling agent.
  • such resin-coated metal particles are prepared by adding metal particles and a silane coupling agent in a solvent such as toluene and stirring the mixture at room temperature for about 1 hour, and then, if necessary, a radical monomer and a radical polymerization initiator. Then, a crosslinking agent is added, and the mixture is stirred while heating to the radical polymerization start temperature.
  • the content is preferably 1 to 50% by volume, more preferably 2 to 25% by volume with respect to the thermosetting resin composition.
  • metal particles used in conventional conductive particles for anisotropic conductive connection can be used.
  • examples thereof include gold, nickel, copper, silver, solder, palladium, aluminum, alloys thereof, multilayered products thereof (for example, nickel plating / gold flash plating products), and the like.
  • gold, nickel, and copper turn the conductive particles brown, so that the effects of the present invention can be enjoyed over other metal materials.
  • Examples of the shape of the metal particles applied as the conductive particles include a spherical shape and a flake shape.
  • the spherical shape is preferable, and if the particle size is too large, the connection reliability is lowered, and therefore preferably 1 to 20 ⁇ m. More preferably, it is 2 to 10 ⁇ m, particularly preferably 3 to 6 ⁇ m.
  • metal-coated resin particles obtained by coating resin particles with a metal material can be used.
  • resin particles include styrene resin particles, benzoguanamine resin particles, and nylon resin particles.
  • a method of coating the resin particles with a metal material a conventionally known method can be employed, and an electroless plating method, an electrolytic plating method, or the like can be used.
  • the layer thickness of the metal material to be coated is sufficient to ensure good connection reliability, and is usually 0.1 to 3 ⁇ m although it depends on the particle size of the resin particles and the type of metal.
  • the particle size of the resin particle is preferably 1 to 20 ⁇ m, more preferably 3 to 10 ⁇ m, and particularly preferably 3 to 5 ⁇ m. is there.
  • the shape of the resin particles is preferably spherical, but may be flakes or rugby balls.
  • the metal-coated resin particles have a spherical shape, and if the particle size is too large, the connection reliability is lowered. Therefore, it is preferably 1 to 20 ⁇ m, more preferably 2 to 10 ⁇ m, and particularly preferably 3 to 6 ⁇ m.
  • 1A and 1B are sectional views of such light-reflective conductive particles 10 and 20. First, the light reflective conductive particles in FIG. 1A will be described.
  • the light-reflective conductive particles 10 include a core particle 1 coated with a metal material, and at least one inorganic particle 2 selected from zinc oxide (ZnO) particles or aluminum oxide (Al 2 O 3 ) particles on the surface thereof.
  • the light reflection layer 3 is formed.
  • Zinc oxide particles or aluminum oxide particles are inorganic particles that exhibit a white color under sunlight. Accordingly, the light reflecting layer 3 formed from them exhibits white to gray.
  • the expression of white to gray means that the wavelength dependency of the reflection characteristic for visible light is small and the visible light is easily reflected.
  • Zinc oxide particles having no refraction and a high refractive index can be preferably used.
  • the surface thereof is made of a metal material.
  • a mode in which the surface is coated with a metal material as described above, a mode in which the core particle 1 itself is a metal material (for example, nickel, solder, copper, etc.), or the metal-coated resin described above
  • a mode in which the surface of the resin particle, such as a particle, is coated with a metal material is exemplified.
  • the thickness of the light reflecting layer 3 formed from the inorganic particles 2 is too low with respect to the particle size of the core particle 1. If it is too large, poor conduction will occur. Therefore, it is preferably 0.5 to 50%, more preferably 1 to 25%.
  • the particle size of the inorganic particles 2 constituting the light-reflecting layer 3 is preferably 0.02 to 4 ⁇ m, more preferably 0.1 to 1 ⁇ m, and particularly preferably 0.2 to 0.5 ⁇ m.
  • the particle size of the inorganic particles 2 is set so that the light to be reflected (that is, the light emitted from the light emitting element) is not transmitted. It is preferable that it is 50% or more.
  • examples of the shape of the inorganic particles 2 include an indefinite shape, a spherical shape, a scaly shape, and a needle shape.
  • a spherical shape is used from the viewpoint of the light diffusion effect
  • a scaly shape is used from the point of the total reflection effect. preferable.
  • the light-reflective conductive particles 10 in FIG. 1A are formed by a known film forming technique (so-called mechano-fusion method) in which a film composed of small-sized particles is formed on the surface of large-sized particles by physically colliding large and small powders. ).
  • the inorganic particles 2 are fixed so as to bite into the metal material on the surface of the core particle 1.
  • the monolayer of the inorganic particles 2 constitutes the light reflecting layer 3.
  • the layer thickness of the light reflecting layer 3 is considered to be equivalent to or slightly thinner than the particle size of the inorganic particles 2.
  • the light reflective conductive particles 20 in FIG. 1B will be described.
  • the light-reflecting layer 3 contains a thermoplastic resin 4 that functions as an adhesive
  • the inorganic particles 2 are also fixed together by this thermoplastic resin 4, and the inorganic particles 2 are multilayered (for example, It differs from the light-reflective conductive particle 10 of FIG. 1A in that it is multi-layered into two or three layers.
  • the mechanical strength of the light reflecting layer 3 is improved, and the inorganic particles 2 are hardly peeled off.
  • thermoplastic resin 4 a halogen-free thermoplastic resin can be preferably used for the purpose of low environmental load, and for example, polyolefins such as polyethylene and polypropylene, polystyrene, acrylic resins and the like can be preferably used.
  • Such light-reflective conductive particles 20 can also be manufactured by a mechanofusion method. If the particle size of the thermoplastic resin 4 applied to the mechano-fusion method is too small, the adhesion function is lowered, and if it is too large, it is difficult to adhere to the core particles, so that it is preferably 0.02 to 4 ⁇ m, more preferably 0.1 ⁇ m. ⁇ 1 ⁇ m. Further, if the amount of the thermoplastic resin 4 is too small, the adhesive function is lowered, and if it is too large, aggregates of particles are formed. The amount is 2 to 500 parts by mass, more preferably 4 to 25 parts by mass.
  • thermosetting resin composition used for the light-reflective anisotropic conductive adhesive of the present invention it is preferable to use a colorless and transparent one as much as possible. This is because the light reflecting efficiency of the light-reflective conductive particles in the anisotropic conductive adhesive is reflected without decreasing, and the light color of incident light is not changed.
  • the colorless and transparent means that the cured product of the thermosetting resin composition has a light transmittance (JIS K7105) of 80% or more, preferably 90% or more with respect to visible light having a wavelength of 380 to 780 nm with an optical path length of 1 cm.
  • the amount of conductive particles such as light-reflective conductive particles with respect to 100 parts by mass of the thermosetting resin composition is too small, conduction failure occurs, and if it is too large, a pattern is formed. Since a short circuit tends to occur, the amount is preferably 1 to 100 parts by mass, more preferably 10 to 50 parts by mass.
  • the reflection characteristic of the light-reflective anisotropic conductive adhesive of the present invention is such that the reflectance of light-cured anisotropic conductive adhesive in light having a wavelength of 450 nm (JIS) is improved in order to improve the luminous efficiency of the light-emitting element.
  • K7105 is at least 30%.
  • the reflection characteristics and blending amount of the light-reflective conductive particles to be used, the blending composition of the thermosetting resin composition, and the like may be appropriately adjusted. Usually, if the amount of the light-reflective conductive particles having good reflection characteristics is increased, the reflectance tends to increase.
  • the reflection characteristics of the light-reflective anisotropic conductive adhesive can be evaluated from the viewpoint of refractive index. That is, if the refractive index of the cured product is larger than the refractive index of the cured product of the thermosetting resin composition excluding the conductive particles and the light-reflective insulating particles, the light-reflective insulating particles and the thermosetting surrounding them. This is because the amount of light reflection at the interface with the cured product of the conductive resin composition increases.
  • the difference obtained by subtracting the refractive index of the cured product of the thermosetting resin composition (JIS K7142) from the refractive index of the light-reflective insulating particles (JIS K7142) is preferably 0.02 or more, more preferably Is desirably 0.2 or more.
  • the refractive index of a cured product of a thermosetting resin composition mainly composed of an epoxy resin is about 1.5.
  • thermosetting resin composition constituting the light-reflective anisotropic conductive adhesive of the present invention
  • those used in conventional anisotropic conductive adhesives and anisotropic conductive films can be used.
  • thermosetting resin composition is obtained by blending a curing agent with an insulating binder resin.
  • the insulating binder resin is preferably an epoxy resin mainly composed of an alicyclic epoxy compound, a heterocyclic epoxy compound, a hydrogenated epoxy compound, or the like.
  • Preferred examples of the alicyclic epoxy compound include those having two or more epoxy groups in the molecule. These may be liquid or solid. Specific examples include glycidyl hexahydrobisphenol A, 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexene carboxylate, and the like. Among these, 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexenecarboxylate is preferred because it can ensure light transmission suitable for mounting LED elements on the cured product and is excellent in rapid curing. Can be preferably used.
  • heterocyclic epoxy compound examples include an epoxy compound having a triazine ring, and 1,3,5-tris (2,3-epoxypropyl) -1,3,5-triazine-2,4 is particularly preferable. , 6- (1H, 3H, 5H) -trione.
  • hydrogenated epoxy compound hydrogenated products of the above-described alicyclic epoxy compounds and heterocyclic epoxy compounds, and other known hydrogenated epoxy compounds can be used.
  • the alicyclic epoxy compound, heterocyclic epoxy compound and hydrogenated epoxy compound may be used alone, but two or more kinds may be used in combination.
  • other epoxy compounds may be used in combination as long as the effects of the present invention are not impaired.
  • the curing agent examples include acid anhydrides, imidazole compounds, and dicyan.
  • an acid anhydride-based curing agent that hardly changes the color of the cured product particularly an alicyclic acid anhydride-based curing agent, can be preferably used.
  • methylhexahydrophthalic anhydride etc. can be mentioned preferably.
  • thermosetting resin composition of the light-reflective anisotropic conductive adhesive of the present invention when an alicyclic epoxy compound and an alicyclic acid anhydride-based curing agent are used, the respective amounts used are alicyclic. If the amount of the acid anhydride-based curing agent is too small, the amount of the uncured epoxy compound increases, and if the amount is too large, the corrosion of the adherend material tends to be accelerated by the influence of the excess curing agent.
  • the alicyclic acid anhydride curing agent is preferably used in an amount of 80 to 120 parts by mass, more preferably 95 to 105 parts by mass with respect to parts by mass.
  • the light-reflective anisotropic conductive adhesive of the present invention can be produced by uniformly mixing light-reflective insulating particles, conductive particles (preferably light-reflective conductive particles), and a thermosetting resin composition. it can.
  • light-reflective anisotropic conductive films they are dispersed and mixed together with a solvent such as toluene, and applied to a peeled PET film so as to have a desired thickness, and a temperature of about 80 ° C. Just dry.
  • the light-emitting device 200 includes the connection terminal 22 on the substrate 21 and the connection bumps 26 formed on the n-electrode 24 and the p-electrode 25 of the LED element 23 as light-emitting elements.
  • This is a light emitting device in which a light reflective anisotropic conductive adhesive is applied and the substrate 21 and the LED element 23 are flip-chip mounted.
  • the cured product 100 of the light-reflective anisotropic conductive adhesive in FIG. 2 includes a cured product 11 of a thermosetting resin composition in which the light-reflective insulating particles (not shown) and the light-reflective conductive particles 10 are formed. It is dispersed inside.
  • non-light-reflective conductive particles can be used.
  • the light emitting device 200 configured as described above, among the light emitted from the LED elements 23, the light emitted toward the substrate 21 is the light in the cured product 100 of the light-reflective anisotropic conductive adhesive. The light is reflected by the reflective insulating particles and the light-reflective conductive particles 10 and emitted from the upper surface of the LED element 23. Accordingly, it is possible to prevent a decrease in luminous efficiency.
  • Configurations other than the light-reflective anisotropic conductive adhesive (the LED element 23, the bump 26, the substrate 21, the connection terminal 22, and the like) in the light-emitting device 200 of the present invention can be the same as the configuration of the conventional light-emitting device. .
  • the light emitting device 200 of the present invention can be manufactured by using a conventional anisotropic conductive connection technique except that the light reflective anisotropic conductive adhesive of the present invention is used.
  • a well-known light emitting element can be applied in the range which does not impair the effect of this invention other than an LED element.
  • Example 1 A colorless transparent thermosetting epoxy binder composition having a refractive index of about 1.50 (YX-8000, JER Co., Ltd .: containing MeHHPA at 50% by mass) and 12 volumes of the following light-reflective insulating particles 1 are contained.
  • Au coated resin conductive particles having an average particle size of 5 ⁇ m as conductive particles particles (particles obtained by electroless gold plating of 0.2 ⁇ m thickness on spherical acrylic resin particles having an average particle size of 4.6 ⁇ m (Bright 20GNB4.6EH, Nippon Chemical Industry ( Ltd.) was uniformly mixed at a ratio of 10% by mass to obtain a light-reflective anisotropic conductive adhesive having a white appearance color.
  • the obtained light-reflective anisotropic conductive adhesive was applied to a ceramic white plate so as to have a dry thickness of 100 ⁇ m, and heated at 200 ° C. for 1 minute to be cured. About this hardened
  • the obtained results are shown in Table 1. It is desired that the total luminous flux is practically 300 mlm or more.
  • Example 2 A light-reflective anisotropic conductive adhesive having a white appearance color was obtained in the same manner as in Example 1 except that the blending amount of the light-reflective insulating particles was 7% by volume. Further, similarly to Example 1, a light reflectance evaluation test, a total light flux amount evaluation test and a light resistance test on an LED mounting sample were performed. The obtained results are shown in Table 1.
  • Example 3 A light-reflective anisotropic conductive adhesive having a white appearance color was obtained in the same manner as in Example 1 except that the blending amount of the light-reflective insulating particles was 21% by volume. Further, similarly to Example 1, a light reflectance evaluation test, a total light flux amount evaluation test and a light resistance test on an LED mounting sample were performed. The obtained results are shown in Table 1.
  • Example 4 instead of Au-coated resin conductive particles, Ni-coated resin conductive particles having an average particle size of 5 ⁇ m (particles obtained by subjecting spherical acrylic resin particles having an average particle size of 4.6 ⁇ m to electroless nickel plating having a thickness of 0.2 ⁇ m) should be used. Except that, a light-reflective anisotropic conductive adhesive having a white appearance color was obtained in the same manner as in Example 1. Further, similarly to Example 1, a light reflectance evaluation test, a total light flux amount evaluation test and a light resistance test on an LED mounting sample were performed. The obtained results are shown in Table 1.
  • Examples 5 to 10 and Comparative Example 1 The light-reflective anisotropic conductive adhesives of Examples 5 to 10 having a white appearance color and Comparative Example 1 were obtained in the same manner as Example 1 except that the following light-reflective insulating particles 2 to 8 were used. It was. Further, similarly to Example 1, a light reflectance evaluation test, a total light flux amount evaluation test and a light resistance test on an LED mounting sample were performed. The obtained results are shown in Table 1.
  • ⁇ Light reflective insulating particles 1 (used in Examples 1 to 4)> Titanium oxide particles surface-treated with Al 2 O 3 and SiO 2 (KR-380, Titanium Industry Co., Ltd .: particle diameter 0.5 ⁇ m, titanium content 94%)
  • ⁇ Light reflective insulating particles 2 (used in Example 5)> Titanium oxide particles surface-treated with Al 2 O 3 and SiO 2 (R-7E, Titanium Industry Co., Ltd .: particle diameter 0.23 ⁇ m, titanium content 85% or slightly over)
  • ⁇ Light-reflective insulating particle 3 (used in Example 6)> Titanium oxide particles surface-treated with Al 2 O 3 , SiO 2 and ZrO 2 (D-918, Titanium Industry Co., Ltd .: particle diameter 0.26 ⁇ m, titanium content 88% or slightly over)
  • ⁇ Light reflective insulating particles 4 (used in Example 7)> Titanium oxide particles surface-treated with Al 2 O 3 and SiO 2 (R-3L, Titanium Industry Co., Ltd .: particle size 0.23 ⁇ m, titanium content 90% or slightly over)
  • ⁇ Light reflecting insulating particles 5 (used in Example 8)> Titanium oxide particles surface-treated with Al 2 O 3 , SiO 2 and ZnO (R-650, Titanium Industry Co., Ltd .: particle diameter 0.23 ⁇ m, titanium content 93% or slightly over)
  • ⁇ Light reflective insulating particles 6 (used in Example 9)> Titanium oxide particles surface-treated with Al 2 O 3 (SR-1, Titanium Industry Co., Ltd .: particle diameter 0.25 ⁇ m, titanium content 94% or slightly over)
  • ⁇ Light Reflective Insulating Particle 7 (Used in Example 10)> Titanium oxide particles surface-treated with Al 2 O 3 (R-11P, Titanium Industry Co., Ltd .: particle diameter 0.2 ⁇ m, titanium content 95% or slightly over)
  • ⁇ Light reflective insulating particles 8 (used in Comparative Example 1)> Titanium oxide particles not surface-treated with metal oxide (R-310, Titanium Industry Co., Ltd .: particle diameter 0.2 ⁇ m, titanium content 97% or slightly over)
  • the light reflectivity is 30% or more, and the blue color of light at 450 nm is It was reflected in the same color. Moreover, the total luminous flux was 300 mlm or more. The light resistance was also evaluated at least as “ ⁇ ”.
  • the light-reflective anisotropic conductive adhesive of the present invention is used to produce a light-emitting device by flip-chip mounting a light-emitting element such as a light-emitting diode (LED) element on a wiring board using an anisotropic conductive adhesive, Even if a light reflecting layer that causes an increase in manufacturing cost is not provided in the light emitting element, the light emission efficiency can be prevented from being lowered. Moreover, it is excellent also in light resistance. Therefore, the light-reflective anisotropic conductive adhesive of the present invention is useful when flip-chip mounting an LED element.
  • a light-emitting element such as a light-emitting diode (LED) element

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

 発光素子を配線板に異方性導電接続するために使用する光反射性異方性導電接着剤は、熱硬化性樹脂組成物、導電粒子及び光反射性絶縁粒子を含有する。このような光反射性絶縁粒子は、酸化チタン粒子を、Al、SiO、SiO、ZnO、ZnO及びZrOからなる群より選択された一種で表面処理したものである。光反射性絶縁粒子の酸化チタン含有量は、85~93%である。光反射性絶縁粒子の粒径は、0.2~0.3μmであり、導電粒子の粒径は、2~10μmである。

Description

光反射性異方性導電接着剤及び発光装置
 本発明は、発光素子を配線板に異方性導電接続するために使用する光反射性異方性導電接着剤、その接着剤を用いて発光素子を配線板に実装してなる発光装置に関する。
 発光ダイオード(LED)素子を使用した発光装置が広く使用されており、旧タイプの発光装置の構造は、図3に示すように、基板31上にダイボンド接着剤32でLED素子33を接合し、その上面のp電極34とn電極35とを、基板31の接続端子36に金ワイヤ37でワイヤボンディングし、LED素子33全体を透明モールド樹脂38で封止したものとなっている。ところが、図3の発光装置の場合、LED素子33が発する光のうち、上面側に出射する400~500nmの波長の光を金ワイヤ37が吸収し、また、下面側に出射した光の一部がダイボンド接着剤32により吸収されてしまい、LED素子33の発光効率が低下するという問題がある。
 このため、図4に示すように、LED素子33をフリップチップ実装することが提案されている(特許文献1)。このフリップチップ実装技術においては、p電極34とn電極35とにバンプ39がそれぞれ形成されており、更に、LED素子33のバンプ形成面には、p電極34とn電極35とが絶縁されるように光反射層40が設けられている。そして、LED素子33と基板31とは、異方性導電ペースト41や異方性導電フィルム(図示せず)を用い、それらを硬化させて接続固定される。このため、図4の発光装置においては、LED素子33の上方へ出射した光は金ワイヤで吸収されず、下方へ出射した光の殆どは光反射層40で反射して上方に出射するので、発光効率(光取り出し効率)が低下しない。
特開平11-168235号公報
 しかしながら、特許文献1の技術ではLED素子33に光反射層40を、p電極34とn電極35とが絶縁されるように金属蒸着法などにより設けなければならず、製造上、コストアップが避けられないという問題があった。
 他方、光反射層40を設けない場合には、硬化した異方性導電ペーストや異方性導電フィルム中の金、ニッケルあるいは銅で被覆された導電粒子の表面は茶色乃至は暗茶色を呈し、また、導電粒子を分散させているエポキシ樹脂バインダー自体も、その硬化のために常用されるイミダゾール系潜在性硬化剤のために茶色を呈しており、発光素子が発した光の発光効率(光取り出し効率)を向上させることが困難であるという問題もあった。
 本発明の目的は、以上の従来の技術の問題点を解決することであり、発光ダイオード(LED)素子等の発光素子を配線板に異方性導電接着剤を用いてフリップチップ実装して発光装置を製造する際に、製造コストの増大を招くような光反射層をLED素子に設けなくても、発光効率を改善できる異方性導電接着剤、その接着剤を使用して発光素子を配線板にフリップチップ実装してなる発光装置を提供することである。
 本発明者らは、異方性導電接着剤そのものに光反射機能を持たせれば、発光効率を低下させないようにできるとの仮定の下、異方性導電接着剤に、屈折率の高い酸化チタン粒子を光反射性絶縁粒子として配合することにより、発光素子の発光効率を低下させないようにできることを見出した。本発明者らは、また、高い光触媒作用を示す表面を有する酸化チタン粒子を含有する光反射性異方性導電接着剤を発光装置に適用した場合、硬化した接着剤中に含まれる有機物が光分解してしまうことが懸念されるものの、酸化チタン粒子の表面を酸化アルミニウムなどの金属酸化物で被覆するように表面処理することにより、そのような懸念が払拭されることを見出した。そしてこれらの知見に基づき、本発明者らは本発明を完成させるに至った。
 即ち、本発明は、発光素子を配線板に異方性導電接続するために使用する光反射性異方性導電接着剤であって、熱硬化性樹脂組成物、導電粒子及び光反射性絶縁粒子を含有してなり、該光反射性絶縁粒子が、酸化チタン粒子をそれ以外の金属酸化物で表面処理したものであることを特徴とする光反射性異方性導電接着剤を提供する。
 また、本発明は、上述の光反射性異方性導電接着剤を介して、発光素子がフリップチップ方式で配線板に実装されている発光装置を提供する。
 発光素子を配線板に異方性導電接続するために使用する本発明の光反射性異方性導電接着剤は、屈折率が高い酸化チタン粒子の表面を金属酸化物で表面処理してなる光反射性絶縁粒子を含有する。従って、この光反射性異方性導電接着剤は光を反射することができる。しかも、この酸化チタン粒子自体は、それ以外の金属酸化物(以下、本発明において「金属酸化物」と記載した場合には、酸化チタン以外の金属酸化物を意味するものとする)で表面処理されているため、接着剤の硬化物中の有機物と直接接触しないようになっている。このため、光反射性異方性導電接着剤を発光装置における発光素子を配線板に実装する際に適用した場合でも、硬化した接着剤中に含まれる有機物が光分解されないようにすることができる。
 更に、導電粒子として、金属材料で被覆されているコア粒子と、その表面に酸化亜鉛(ZnO)粒子又は酸化アルミニウム(Al)粒子から形成された白色~灰色の光反射層とから構成されている光反射性導電粒子を使用した場合、この光反射性導電粒子自体が白色~灰色を呈しているため、可視光に対する反射特性の波長依存性が小さく、従って、発光効率を更に向上させることができ、しかも発光素子の発光色をそのままの色で反射させることができる。
異方性導電接着剤用の光反射性導電粒子の断面図である。 異方性導電接着剤用の光反射性導電粒子の断面図である。 本発明の発光装置の断面図である。 従来の発光装置の断面図である。 従来の発光装置の断面図である。
 本発明は、発光素子を配線板に異方性導電接続するために使用する光反射性異方性導電接着剤であって、熱硬化性樹脂組成物、導電粒子及び光反射性絶縁粒子を含有する光反射性異方性導電接着剤であり、異方性導電接着剤に入射した光を外部に反射するための光反射性絶縁粒子として、酸化チタン粒子を金属酸化物で表面処理したものを使用することが特徴となっている。
 本発明において、光反射性絶縁粒子として酸化チタン(TiO)粒子を利用する理由は、屈折率が有機物である接着剤成分よりも高く、白色隠蔽性が高いからである。このような酸化チタンとして、ルチル型、アナターゼ型のいずれも使用することができるが、より屈折率が高い点からルチル型を好ましく使用することができる。
 また、酸化チタン粒子を金属酸化物で表面処理する理由は、酸化チタンの高い光触媒作用により接着剤の硬化物に含まれる有機物が光分解してしまわないように、酸化チタン粒子と接着剤の硬化物とが直接接触することを防ぐためである。
 酸化チタン粒子を表面処理するための金属酸化物としては、光反射性且つ絶縁性であることが必要であり、具体的には、酸化アルミニウム(Al)、一酸化ケイ素(SiO)、二酸化ケイ素(SiO)、酸化亜鉛(ZnO)、二酸化亜鉛(ZnO)及び酸化ジルコニウム(ZrO)からなる群より選択された少なくとも一種を挙げることができる。好ましくは少なくともAlを使用する。なお、SiOは、それ自身比較的屈折率が低いために、酸化チタンの高い屈折率に影響を与え難いと思われる。
 酸化チタン粒子の金属酸化物による表面処理の手法としては、公知のドライ又はウェット表面処理プロセスを採用することができる。例えば、ドライ表面処理プロセスとしては、真空蒸着法、CVD法、スパッタリング法、メカノフュージョン法等を挙げることができる。また、ウェット表面処理プロセスとしては、コロイド状の金属酸化物中に、酸化チタン粒子を分散させ、その表面に金属酸化物を吸着させる方法、酸化チタン粒子の水性分散液に金属ハロゲン化物又は金属アルコキシドを投入し、必要により塩酸等を用いて加水分解処理することにより金属酸化物のコーティング膜を形成する方法等が挙げられる。
 ウェット表面処理プロセスに従って酸化チタン粒子をAlで表面処理する例(イ)及び(ロ)を以下に説明する。
(イ)まず、原料である酸化チタン粒子を水に分散させて水性スラリーを取得し、得られた水性スラリーに、アルミン酸ナトリウム、硫酸アルミニウム、硝酸アルミニウム、塩化アルミニウム等の表面処理剤を添加し、酸化チタン粒子の表面に表面処理剤を吸着させ、乾燥した後、焼成、粉砕することによって、Alで表面被覆された酸化チタン粒子を得ることができる。
(ロ)別法として、酸化チタン粒子を含む水性スラリーに前述の表面処理剤を添加した後、酸又はアルカリにてpHを6~7程度に調整し、二酸化チタン粒子を表面処理剤で被覆した後、水性スラリーをフィルタープレス、ドラムフィルター等で濾過し、洗浄して、残存する塩類を洗い流す。その後、バンドドライヤー、噴霧乾燥機等で乾燥して、乾燥物を得る。次いで、この乾燥物を電気炉又は回転型焼成炉等の適宜の手段を用いて、400~1000℃の範囲、好ましくは、500~900℃の範囲の温度で焼成する。これにより焼成塊状物として、Alで表面被覆された酸化チタン粒子を得ることができる。
 なお、このようにして得られた焼成塊状物は、そのまま流体エネルギーミルを用いて粉砕してもよいし、水性スラリーとしてビーズミルで粉砕を行い、濾過、水洗、乾燥の各工程を経た後、流体エネルギーミルで粉砕してもよい。
 また、上記(イ)及び(ロ)において乾燥物を粉砕するに際し、必要に応じて、適当な有機処理剤を用いてもよい。そのような有機処理剤として、例えば、多価アルコール、アルカノールアミン、シリコーンオイル、シランカップリング剤、チタンカップリング剤等を挙げることができる。
 また、酸化チタン粒子に対する表面処理剤の使用量は、光反射性絶縁粒子における酸化チタン粒子の必要とされる含有量に応じて、水性スラリーに対する表面処理剤の添加量を調整することにより決定することができる。
 光反射性絶縁粒子中の酸化チタンの含有量は、少なすぎると(即ち、酸化チタン粒子の表面に存在する金属酸化物量が多くなり、金属酸化物表面処理膜が厚くなりすぎると)、酸化チタンの高い屈折率を利用することが困難となる傾向があり、逆に多すぎると(即ち、酸化チタン粒子の表面に存在する金属酸化物量が少なくなり、金属酸化物表面処理膜が薄くなりすぎると)、酸化チタン粒子の光触媒作用を十分に抑制できないおそれが生ずるので、原子数基準で好ましくは80~96%、より好ましくは85~93%である。なお、この数値は、蛍光X線分析により取得することができる。
 酸化チタン粒子をコア粒子とする光反射性絶縁粒子の形状としては、略球状、鱗片状、無定形状、針状等でもよいが、反射効率や樹脂組成物への分散性、金属酸化物による表面処理のハンドリング性等を考慮すると、略球状が好ましい。
 また、このような略球状の光反射性絶縁粒子の粒径としては、コア粒子である酸化チタンが高い屈折率を有していることから、光反射剤として広く使用されている0.5μm以上の粒径の酸化亜鉛よりも、より小さい粒径のものを使用することができ、光反射性絶縁粒子の配合に基づく異方性導電接続の信頼性を防止することが可能となる。他方、過度に粒径が小さいと、光反射率が低下する傾向がある。従って、好ましい粒径は、0.1~10μm、特に好ましくは0.2~0.3μmである。また、この範囲は、光反射性異方性導電接着剤を使って青色の光を発光するLED素子をフリップチップ実装する上で効果的である。
 光反射性絶縁粒子は、その屈折率(JIS K7142)が、好ましくは熱硬化性樹脂組成物の硬化物の屈折率(JIS K7142)よりも大きいこと、より好ましくは少なくとも0.02程度大きいことが好ましい。これは、屈折率差が小さいとそれらの界面での反射効率が低下するからである。
 なお、本発明において、以上説明した酸化チタン粒子を金属酸化物で表面処理した光反射性絶縁粒子以外の光反射性絶縁粒子を、本発明の効果を損なわない範囲で併用することができる。このような併用可能な光反射性絶縁粒子としては、金属粒子の表面を透明な絶縁性樹脂で被覆した樹脂被覆金属粒子が挙げられる。金属粒子としては、ニッケル、銀、アルミニウム等を挙げることができる。粒子の形状としては、無定形状、球状、鱗片状、針状等を挙げることができるが、中でも、光拡散効果の点から球状、全反射効果の点から鱗片状の形状が好ましい。特に好ましいものは、光の反射率の点から鱗片状又は球状銀粒子、中でも鱗片状銀粒子である。
 このような樹脂被覆金属粒子の大きさは、形状によっても異なるが、一般に大きすぎると、異方性導電粒子による接続を阻害するおそれがあり、小さすぎると光を反射しにくくなるので、好ましくは球状の場合には粒径0.1~30μm、より好ましくは0.2~10μmであり、鱗片状の場合には、長径が好ましくは0.1~100μm、より好ましくは1~50μmで厚みが好ましくは0.01~10μm、より好ましくは0.1~5μmである。
 なお、光反射性絶縁粒子の大きさは、絶縁被覆されている場合には、その絶縁被覆も含めた大きさである。
 このような樹脂被覆金属粒子における当該樹脂としては、種々の絶縁性樹脂を使用することができる。機械的強度や透明性等の点からアクリル系樹脂の硬化物を好ましく利用することができる。例えば、ベンゾイルパーオキサイド等の有機過酸化物などのラジカル重合開始剤の存在下で、メタクリル酸メチルとメタクリル酸2-ヒドロキシエチルとをラジカル共重合させた樹脂を挙げることができる。この場合、2,4-トリレンジイソシアネート等のイソシアネート系架橋剤で架橋されていることがより好ましい。また、金属粒子としては、予めシランカップリング剤でγ-グリシドキシ基やビニル基等を金属表面に導入しておくことが好ましい。
 このような樹脂被覆金属粒子は、例えば、トルエンなどの溶媒中に金属粒子とシランカップリング剤とを投入し、室温で約1時間攪拌した後、ラジカルモノマーとラジカル重合開始剤と、必要に応じて架橋剤とを投入し、ラジカル重合開始温度に加温しながら攪拌することにより製造することができる。
 以上説明した光反射性絶縁粒子の、光反射性異方性導電接着剤中の配合量は、少なすぎると十分な光反射を実現することができず、また多すぎると、併用している導電粒子に基づく接続が阻害されるので、熱硬化性樹脂組成物に対し、好ましくは1~50体積%、より好ましくは2~25体積%である。
 本発明の光反射性異方性導電接着剤を構成する導電粒子としては、異方性導電接続用の従来の導電粒子において用いられている金属粒子を利用することができる。例えば、金、ニッケル、銅、銀、半田、パラジウム、アルミニウム、それらの合金、それらの多層化物(例えば、ニッケルメッキ/金フラッシュメッキ物)等を挙げることができる。中でも、金、ニッケル、銅は、導電粒子を茶色としてしまうことから、本発明の効果を他の金属材料よりも享受することができる。
 導電粒子として適用する金属粒子の形状としては、球状形状、フレーク状形状等が挙げられるが、球状形状が好ましく、その粒径は大きすぎると接続信頼性の低下となるので、好ましくは1~20μm、より好ましくは2~10μm、特に好ましくは3~6μmである。
 また、導電粒子として、樹脂粒子を金属材料で被覆した金属被覆樹脂粒子を使用することができる。このような樹脂粒子としては、スチレン系樹脂粒子、ベンゾグアナミン樹脂粒子、ナイロン樹脂粒子などが挙げられる。樹脂粒子を金属材料で被覆する方法としても従来公知の方法を採用することができ、無電解メッキ法、電解メッキ法等を利用することができる。また、被覆する金属材料の層厚は、良好な接続信頼性を確保するに足る厚さであり、樹脂粒子の粒径や金属の種類にもよるが、通常、0.1~3μmである。
 また、樹脂粒子の粒径は、小さすぎると導通不良が生じ、大きすぎるとパターン間ショートが生じる傾向があるので、好ましくは1~20μm、より好ましくは3~10μm、特に好ましくは3~5μmである。この場合、樹脂粒子の形状としては球状が好ましいが、フレーク状、ラクビーボール状であってもよい。
 好ましい金属被覆樹脂粒子は球状形状であり、その粒径は大きすぎると接続信頼性の低下となるので、好ましくは1~20μm、より好ましくは2~10μm、特に好ましくは3~6μmである。
 特に、本発明においては、上述したような導電粒子に対し光反射性を付与し、光反射性導電粒子とすることが好ましい。図1A、図1Bは、このような光反射性導電粒子10、20の断面図である。まず、図1Aの光反射性導電粒子から説明する。
 光反射性導電粒子10は、金属材料で被覆されているコア粒子1と、その表面に酸化亜鉛(ZnO)粒子又は酸化アルミニウム(Al)粒子から選択された少なくとも一種の無機粒子2から形成された光反射層3とから構成される。酸化亜鉛粒子又は酸化アルミニウム粒子は、太陽光の下では白色を呈する無機粒子である。従って、それらから形成された光反射層3は白色~灰色を呈する。白色~灰色を呈しているということは、可視光に対する反射特性の波長依存性が小さく、且つ可視光を反射しやすいことを意味する。
 なお、酸化亜鉛粒子又は酸化アルミニウム粒子のうち、硬化した光反射性異方性導電接着剤の熱硬化性樹脂組成物の硬化物の光劣化が懸念される場合には、光劣化に対して触媒性がなく、屈折率も高い酸化亜鉛粒子を好ましく使用することができる。
 コア粒子1は、異方性導電接続に共されるものであるので、その表面が金属材料で構成されている。ここで、表面が金属材料で被覆されている態様としては、前述したように、コア粒子1そのものが金属材料(例えばニッケル、半田、銅など)である態様、もしくは、先に説明した金属被覆樹脂粒子のような、樹脂粒子の表面が金属材料で被覆された態様が挙げられる。
 無機粒子2から形成された光反射層3の層厚は、コア粒子1の粒径との相対的大きさの観点からみると、コア粒子1の粒径に対し、小さすぎると反射率の低下が著しくなり、大きすぎると導通不良が生ずるので、好ましくは0.5~50%、より好ましくは1~25%である。
 また、光反射性導電粒子10において、光反射層3を構成する無機粒子2の粒径は、小さすぎると光反射現象が生じ難くなり、大きすぎると光反射層の形成が困難となる傾向があるので、好ましくは0.02~4μm、より好ましくは0.1~1μm、特に好ましくは0.2~0.5μmである。この場合、光反射させる光の波長の観点からみると、無機粒子2の粒径は、反射させるべき光(即ち、発光素子が発する光)が透過してしまわないように、その光の波長の50%以上であることが好ましい。この場合、無機粒子2の形状としては無定形状、球状、鱗片状、針状等を挙げることができるが、中でも、光拡散効果の点から球状、全反射効果の点から鱗片状の形状が好ましい。
 図1Aの光反射性導電粒子10は、大小の粉末同士を物理的に衝突させることにより大粒径粒子の表面に小粒径粒子からなる膜を形成させる公知の成膜技術(いわゆるメカノフュージョン法)により製造することができる。この場合、無機粒子2は、コア粒子1の表面の金属材料に食い込むように固定され、他方、無機粒子2同士が融着固定されにくいから、無機粒子2のモノレイヤーが光反射層3を構成する。従って、図1Aの場合、光反射層3の層厚は、無機粒子2の粒径と同等乃至はわずかに薄くなると考えられる。
 次に、図1Bの光反射性導電粒子20について説明する。この光反射性導電粒子20においては、光反射層3が接着剤として機能する熱可塑性樹脂4を含有し、この熱可塑性樹脂4により無機粒子2同士も固定され、無機粒子2が多層化(例えば2層あるいは3層に多層化)している点で、図1Aの光反射性導電粒子10と相違する。このような熱可塑性樹脂4を含有することにより、光反射層3の機械的強度が向上し、無機粒子2の剥落などが生じにくくなる。
 熱可塑性樹脂4としては、環境低負荷を意図してハロゲンフリーの熱可塑性樹脂を好ましく使用することができ、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンやポリスチレン、アクリル樹脂等を好ましく使用することができる。
 このような光反射性導電粒子20も、メカノフュージョン法により製造することができる。メカノフュージョン法に適用する熱可塑性樹脂4の粒子径は、小さすぎると接着機能が低下し、大きすぎるとコア粒子に付着しにくくなるので、好ましくは0.02~4μm、より好ましくは0.1~1μmである。また、このような熱可塑性樹脂4の配合量は、少なすぎると接着機能が低下し、多すぎると粒子の凝集体が形成されるので、無機粒子2の100質量部に対し、好ましくは0.2~500質量部、より好ましくは4~25質量部である。
 本発明の光反射性異方性導電接着剤に使用する熱硬化性樹脂組成物としては、なるべく無色透明なものを使用することが好ましい。異方性導電接着剤中の光反射性導電粒子の光反射効率を低下させず、しかも入射光の光色を変えずに反射させるためである。ここで、無色透明とは、熱硬化性樹脂組成物の硬化物が、波長380~780nmの可視光に対して光路長1cmの光透過率(JIS K7105)が80%以上、好ましくは90%以上となることを意味する。
 本発明の光反射性異方性導電接着剤において、熱硬化性樹脂組成物100質量部に対する光反射性導電粒子等の導電粒子の配合量は、少なすぎると導通不良が生じ、多すぎるとパターン間ショートが生ずる傾向があるので、好ましくは1~100質量部、より好ましくは10~50質量部である。
 本発明の光反射性異方性導電接着剤の反射特性は、発光素子の発光効率を向上させるために、光反射性異方性導電接着剤の硬化物の波長450nmの光に対する反射率(JIS K7105)が、少なくとも30%であることが望ましい。このような反射率とするためには、使用する光反射性導電粒子の反射特性や配合量、熱硬化性樹脂組成物の配合組成などを適宜調整すればよい。通常、反射特性の良好な光反射性導電粒子の配合量を増量すれば、反射率も増大する傾向がある。
 また、光反射性異方性導電接着剤の反射特性は屈折率という観点から評価することもできる。即ち、その硬化物の屈折率が、導電粒子と光反射性絶縁粒子とを除いた熱硬化性樹脂組成物の硬化物の屈折率よりも大きいと、光反射性絶縁粒子とそれを取り巻く熱硬化性樹脂組成物の硬化物との界面での光反射量が増大するからである。具体的には、光反射性絶縁粒子の屈折率(JIS K7142)から、熱硬化性樹脂組成物の硬化物の屈折率(JIS K7142)を差し引いた差が、好ましくは0.02以上、より好ましくは0.2以上であることが望まれる。なお、通常、エポキシ樹脂を主体とする熱硬化性樹脂組成物の硬化物の屈折率は約1.5である。
 本発明の光反射性異方性導電接着剤を構成する熱硬化性樹脂組成物としては、従来の異方性導電接着剤や異方性導電フィルムにおいて使用されているものを利用することができる。一般に、このような熱硬化性樹脂組成物は、絶縁性バインダー樹脂に硬化剤を配合したものである。絶縁性バインダー樹脂としては、脂環式エポキシ化合物や複素環系エポキシ化合物や水素添加エポキシ化合物などを主成分としたエポキシ系樹脂が好ましく挙げられる。
 脂環式エポキシ化合物としては、分子内に2つ以上のエポキシ基を有するものが好ましく挙げられる。これらは液状であっても、固体状であってもよい。具体的には、グリシジルヘキサヒドロビスフェノールA、3,4-エポキシシクロヘキセニルメチル-3′,4′-エポキシシクロヘキセンカルボキシレート等を挙げることができる。中でも、硬化物にLED素子の実装等に適した光透過性を確保でき、速硬化性にも優れている点から、3,4-エポキシシクロヘキセニルメチル-3′,4′-エポキシシクロヘキセンカルボキシレートを好ましく使用することができる。
 複素環系エポキシ化合物としては、トリアジン環を有するエポキシ化合物を挙げることができ、特に好ましくは1,3,5-トリス(2,3-エポキシプロピル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオンを挙げることができる。
 水素添加エポキシ化合物としては、先述の脂環式エポキシ化合物や複素環系エポキシ化合物の水素添加物や、その他公知の水素添加エポキシ化合物を使用することができる。
 脂環式エポキシ化合物や複素環系エポキシ化合物や水素添加エポキシ化合物は、単独で使用してもよいが、2種以上を併用することができる。また、これらのエポキシ化合物に加えて本発明の効果を損なわない限り、他のエポキシ化合物を併用してもよい。例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、テトラメチルビスフェノールA、ジアリールビスフェノールA、ハイドロキノン、カテコール、レゾルシン、クレゾール、テトラブロモビスフェノールA、トリヒドロキシビフェニル、ベンゾフェノン、ビスレゾルシノール、ビスフェノールヘキサフルオロアセトン、テトラメチルビスフェノールA、テトラメチルビスフェノールF、トリス(ヒドロキシフェニル)メタン、ビキシレノール、フェノールノボラック、クレゾールノボラックなどの多価フェノールとエピクロルヒドリンとを反応させて得られるグリシジルエーテル; グリセリン、ネオペンチルグリコール、エチレングリコール、プロピレングリコール、ブチレングリコール、ヘキシレングリコール、ポリエチレングリコール、ポリプロピレングリコールなどの脂肪族多価アルコールとエピクロルヒドリンとを反応させて得られるポリグリシジルエーテル; p-オキシ安息香酸、β-オキシナフトエ酸のようなヒドロキシカルボン酸とエピクロルヒドリンとを反応させて得られるグリシジルエーテルエステル; フタル酸、メチルフタル酸、イソフタル酸、テレフタル酸、テトラハイドロフタル酸、エンドメチレンテトラハイドロフタル酸、エンドメチレンヘキサハイドロフタル酸、トリメリット酸、重合脂肪酸のようなポリカルボン酸から得られるポリグリシジルエステル; アミノフェノール、アミノアルキルフェノールから得られるグリシジルアミノグリシジルエーテル; アミノ安息香酸から得られるグリシジルアミノグリシジルエステル; アニリン、トルイジン、トリブロモアニリン、キシリレンジアミン、ジアミノシクロヘキサン、ビスアミノメチルシクロヘキサン、4,4′-ジアミノジフェニルメタン、4,4′-ジアミノジフェニルスルホンなどから得られるグリシジルアミン; エポキシ化ポリオレフィン等の公知のエポキシ樹脂類が挙げられる。
 硬化剤としては、酸無水物、イミダゾール化合物、ジシアンなどを挙げることができる。中でも、硬化物を変色させ難い酸無水物系硬化剤、特に脂環式酸無水物系硬化剤を好ましく使用できる。具体的には、メチルヘキサヒドロフタル酸無水物等を好ましく挙げることができる。
 本発明の光反射性異方性導電接着剤の熱硬化性樹脂組成物において、脂環式エポキシ化合物と脂環式酸無水物系硬化剤とを使用する場合、それぞれの使用量は、脂環式酸無水物系硬化剤が少なすぎると未硬化エポキシ化合物が多くなり、多すぎると余剰の硬化剤の影響で被着体材料の腐食が促進される傾向があるので、脂環式エポキシ化合物100質量部に対し、脂環式酸無水物系硬化剤を、好ましくは80~120質量部、より好ましくは95~105質量部の割合で使用する。
 本発明の光反射性異方性導電接着剤は、光反射性絶縁粒子と導電粒子(好ましくは光反射性導電粒子)と熱硬化性樹脂組成物とを均一に混合することにより製造することができる。また、光反射性異方性導電フィルムとする場合には、それらをトルエン等の溶媒とともに分散混合し、剥離処理したPETフィルムに所期の厚さとなるように塗布し、約80℃程度の温度で乾燥すればよい。
 次に、本発明の発光装置について図2を参照しながら説明する。発光装置200は、基板21上の接続端子22と、発光素子としてLED素子23のn電極24とp電極25とのそれぞれに形成された接続用のバンプ26との間に、前述の本発明の光反射性異方性導電接着剤を塗布し、基板21とLED素子23とがフリップチップ実装されている発光装置である。ここで、図2における光反射性異方性導電接着剤の硬化物100は、光反射性絶縁粒子(図示せず)と光反射性導電粒子10とが熱硬化性樹脂組成物の硬化物11中に分散してなるものである。光反射性導電粒子10に代えて非光反射性導電粒子を使用することができる。なお、必要に応じて、LED素子23の全体を覆うように透明モールド樹脂で封止してもよい。また、LED素子23に従来と同様に光反射層を設けてもよい。
 このように構成されている発光装置200においては、LED素子23が発した光のうち、基板21側に向かって発した光は、光反射性異方性導電接着剤の硬化物100中の光反射性絶縁粒子と光反射性導電粒子10とで反射し、LED素子23の上面から出射する。従って、発光効率の低下を防止することができる。
 本発明の発光装置200における光反射性異方性導電接着剤以外の構成(LED素子23、バンプ26、基板21、接続端子22等)は、従来の発光装置の構成と同様とすることができる。また、本発明の発光装置200は、本発明の光反射性異方性導電接着剤を使用すること以外は、従来の異方性導電接続技術を利用して製造することができる。なお、発光素子としては、LED素子の他、本発明の効果を損なわない範囲で公知の発光素子を適用することができる。
  実施例1
 屈折率が約1.50の無色透明な熱硬化型エポキシ系バインダー組成物(YX-8000、JER(株):MeHHPAを50質量%で含有)に、以下の光反射性絶縁粒子1を12体積%、導電粒子として平均粒径5μmのAu被覆樹脂導電粒子(平均粒径4.6μmの球状アクリル樹脂粒子に0.2μm厚の無電解金メッキを施した粒子(ブライト20GNB4.6EH、日本化学工業(株))を10質量%となる割合で均一に混合することにより、外観色が白色の光反射性異方性導電接着剤を得た。
(光反射率評価試験)
 得られた光反射性異方性導電接着剤を、セラミック製の白色板に乾燥厚で100μmとなるように塗布し、200℃で1分間加熱し、硬化させた。この硬化物について、分光光度計(U3300、(株)日立製作所)を用いて、波長450nmの光に対する反射率(JIS K7150)を測定した。得られた結果を表1に示す。反射率は、実用上30%以上であることが望まれる。
(LED実装サンプルにおける全光束量評価試験)
 100μmピッチの銅配線にNi/Au(5.0μm厚/0.3μm厚)メッキ処理した配線を有するガラスエポキシ基板に、バンプボンダー(FB700、(株)カイジョー)を用いて15μm高の金バンプを形成した。この金バンプ付きエポキシ基板に、光反射性異方性導電接着剤を用いて、青色LED(Vf=3.2(If=20mA))を200℃、60秒、1Kg/チップという条件でフリップチップ実装し、テスト用LEDモジュールを得た。
 得られたテスト用LEDモジュールについて、全光束量測定システム(積分全球)(LE-2100、大塚電子(株))を用いて全光束量を測定した(測定条件;If=20mA(定電流制御))。得られた結果を表1に示す。全光束量は実用上300mlm以上であることが望まれる。
(耐光性試験)
 全光束量評価試験に適用したテスト用LEDモジュールを新たに作成し、エージング条件(85℃、85%RH、500時間)下で点灯し続けた。そして、エージング前(初期)後のテスト用LEDモジュールの全光束量を、全光束量評価試験の場合と同様に測定し、以下の評価基準に従って評価した。実用上、少なくとも「△」評価であることが望ましい。
<評価基準>
 ◎:エージング前の全光束量に対するエージング後の全光束量の減少率(%)が5%未満
 ○:エージング前の全光束量に対するエージング後の全光束量の減少率(%)が5%以上10%未満
 △:エージング前の全光束量に対するエージング後の全光束量の減少率(%)が10%以上20%未満
 ×:エージング前の全光束量に対するエージング後の全光束量の減少率(%)が20%以上
  実施例2
 光反射性絶縁粒子の配合量を7体積%とすること以外、実施例1と同様にして外観色が白色の光反射性異方性導電接着剤を得た。また、実施例1と同様に、光反射率評価試験、LED実装サンプルにおける全光束量評価試験及び耐光性試験を行った。得られた結果を表1に示す。
  実施例3
 光反射性絶縁粒子の配合量を21体積%とすること以外、実施例1と同様にして外観色が白色の光反射性異方性導電接着剤を得た。また、実施例1と同様に、光反射率評価試験、LED実装サンプルにおける全光束量評価試験及び耐光性試験を行った。得られた結果を表1に示す。
  実施例4
 Au被覆樹脂導電粒子に代えて、平均粒径5μmのNi被覆樹脂導電粒子(平均粒径4.6μmの球状アクリル樹脂粒子に0.2μm厚の無電解ニッケルメッキを施した粒子)を使用すること以外、実施例1と同様にして外観色が白色の光反射性異方性導電接着剤を得た。また、実施例1と同様に、光反射率評価試験、LED実装サンプルにおける全光束量評価試験及び耐光性試験を行った。得られた結果を表1に示す。
 実施例5~10及び比較例1
 以下の光反射性絶縁粒子2~8をそれぞれ使用すること以外、実施例1と同様にして外観色が白色の実施例5~10及び比較例1の光反射性異方性導電接着剤を得た。また、実施例1と同様に、光反射率評価試験、LED実装サンプルにおける全光束量評価試験及び耐光性試験を行った。得られた結果を表1に示す。
<光反射性絶縁粒子1(実施例1~4で使用)>
 AlとSiOとで表面処理された酸化チタン粒子(KR-380、チタン工業(株):粒子径0.5μm、チタン含有量94%)
<光反射性絶縁粒子2(実施例5で使用)>
 AlとSiOとで表面処理された酸化チタン粒子(R-7E、チタン工業(株):粒子径0.23μm、チタン含有量85%又は僅かに超)
<光反射性絶縁粒子3(実施例6で使用)>
 AlとSiOとZrOとで表面処理された酸化チタン粒子(D-918、チタン工業(株):粒子径0.26μm、チタン含有量88%又は僅かに超)
<光反射性絶縁粒子4(実施例7で使用)>
 AlとSiOとで表面処理された酸化チタン粒子(R-3L、チタン工業(株):粒子径0.23μm、チタン含有量90%又は僅かに超)
<光反射性絶縁粒子5(実施例8で使用)>
 AlとSiOとZnOとで表面処理された酸化チタン粒子(R-650、チタン工業(株):粒子径0.23μm、チタン含有量93%又は僅かに超)
<光反射性絶縁粒子6(実施例9で使用)>
 Alで表面処理された酸化チタン粒子(SR-1、チタン工業(株):粒子径0.25μm、チタン含有量94%又は僅かに超)
<光反射性絶縁粒子7(実施例10で使用)>
 Alで表面処理された酸化チタン粒子(R-11P、チタン工業(株):粒子径0.2μm、チタン含有量95%又は僅かに超)
<光反射性絶縁粒子8(比較例1で使用)>
 金属酸化物で表面処理されていない酸化チタン粒子(R-310、チタン工業(株):粒子径0.2μm、チタン含有量97%又は僅かに超)
Figure JPOXMLDOC01-appb-T000001
 表1からわかるように、光反射性絶縁粒子を含有する実施例1~10の光反射性異方性導電接着剤の場合、光反射率がいずれも30%以上あり、450nmの光の青色がそのままの色で反射していた。しかも全光束量も300mlm以上であった。そして耐光性も少なくとも「△」評価であった。
 それに対し、比較例1の場合、光反射性絶縁粒子が金属酸化物で表面処理されていない酸化チタン粒子を使用したため、反射率と全光束量については好ましい結果であったが、耐光性試験の結果が「×」評価であった。
 本発明の光反射性異方性導電接着剤は、発光ダイオード(LED)素子等の発光素子を配線板に異方性導電接着剤を用いてフリップチップ実装して発光装置を製造する際に、製造コストの増大を招くような光反射層を発光素子に設けなくても、発光効率を低下させないようにすることができる。また、耐光性にも優れている。よって、本発明の光反射性異方性導電接着剤は、LED素子をフリップチップ実装する際に有用である。
1 コア粒子
2 無機粒子
3 光反射層
4 熱可塑性樹脂
10、20 光反射性導電粒子
11 熱硬化性樹脂組成物の硬化物
21 基板
22 接続端子
23 LED素子
24 n電極
25 p電極
26 バンプ
31 基板
32 ダイボンド接着剤
33 LED素子
34 p電極
35 n電極
36 接続端子
37 金ワイヤ
38 透明モールド樹脂
39 バンプ
40 光反射層
41 異方性導電ペースト
100 光反射性異方性導電接着剤の硬化物
200 発光装置

Claims (20)

  1.  発光素子を配線板に異方性導電接続するために使用する光反射性異方性導電接着剤であって、熱硬化性樹脂組成物、導電粒子及び光反射性絶縁粒子を含有してなり、該光反射性絶縁粒子が、酸化チタン粒子をそれ以外の金属酸化物で表面処理したものであることを特徴とする光反射性異方性導電接着剤。
  2.  光反射性絶縁粒子の酸化チタン含有量が、原子数基準で85~93%である請求項1記載の光反射性異方性導電接着剤。
  3.  該金属酸化物が、Al、SiO、SiO、ZnO、ZnO及びZrOからなる群より選択された少なくとも一種である請求項1又は2記載の光反射性異方性導電接着剤。
  4.  該金属酸化物が、少なくともAlである請求項3記載の光反射性異方性導電接着剤。
  5.  該光反射性絶縁粒子の形状が、略球状である請求項1~4のいずれかに記載の光反射性異方性導電接着剤。
  6.  光反射性絶縁粒子の粒径が、0.2~0.3μmであり、導電粒子の粒径が2~10μmである請求項1~5のいずれかに記載の光反射性異方性導電接着剤。
  7.  光反射性絶縁粒子の屈折率が、熱硬化性樹脂組成物の硬化物の屈折率よりも大きい請求項1~6のいずれかに記載の光反射性異方性導電接着剤。
  8.  酸化チタン粒子をそれ以外の金属酸化物で表面処理した光反射性絶縁粒子に加えて、樹脂被覆金属粒子を光反射性絶縁粒子として含有する請求項1~7のいずれかに記載の光反射性異方性導電接着剤。
  9.  樹脂被覆金属粒子が、鱗片状銀粒子である請求項8記載の光反射性異方性導電接着剤。
  10.  熱硬化性樹脂組成物に対する光反射性絶縁粒子の配合量が、1~50体積%である請求項1~9のいずれかに記載の光反射性異方性導電接着剤。
  11.  導電粒子が、金属材料で被覆されているコア粒子と、その表面に酸化亜鉛粒子又は酸化アルミニウム粒子から選択された少なくとも一種の無機粒子から形成された光反射層とからなる光反射性導電粒子である請求項1~10のいずれかに記載の光反射性異方性導電接着剤。
  12.  導電粒子が、金属材料で被覆されているコア粒子と、その表面に酸化亜鉛粒子から形成された光反射層とからなる光反射性導電粒子である請求項11記載の光反射性異方性導電接着剤。
  13.  コア粒子が樹脂粒子の表面が金属材料で被覆されたものである請求項11又は12記載の光反射性異方性導電接着剤。
  14.  コア粒子の粒径に対する光反射層の層厚が0.5~50%である請求項11~13のいずれかに記載の光反射性異方性導電接着剤。
  15.  熱硬化性樹脂組成物が、エポキシ系樹脂と酸無水物系硬化剤とを含有する請求項1~14のいずれかに記載の光反射性異方性導電接着剤。
  16.  熱硬化性樹脂組成物の硬化物の波長380~780nmの可視光に対する光路長1cmの光透過率(JIS K7105)が、80%以上である請求項1~15のいずれかに記載の光反射性異方性導電接着剤。
  17.  熱硬化性樹脂組成物100質量部に対する光反射性導電粒子の配合量が、1~100質量部である請求項11~16のいずれかに記載の光反射性異方性導電接着剤。
  18.  光反射性異方性導電接着剤の硬化物の波長450nmに光に対する反射率(JIS K7105)が、少なくとも30%である請求項1~17のいずれかに記載の光反射性異方性導電接着剤。
  19.  請求項1~18のいずれかに記載の光反射性異方性導電接着剤を介して、発光素子がフリップチップ方式で配線板に実装されている発光装置。
  20.  発光素子が、発光ダイオードである請求項19記載の発光装置。
PCT/JP2012/054568 2011-03-18 2012-02-24 光反射性異方性導電接着剤及び発光装置 WO2012127978A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/004,553 US9670384B2 (en) 2011-03-18 2012-02-24 Light-reflective anisotropic conductive adhesive and light-emitting device
KR1020137024229A KR20140019349A (ko) 2011-03-18 2012-02-24 광반사성 이방성 도전 접착제 및 발광 장치
EP12760304.1A EP2687572B1 (en) 2011-03-18 2012-02-24 Light-reflective anisotropic conductive adhesive and light-emitting device
CN2012800139969A CN103429693A (zh) 2011-03-18 2012-02-24 光反射性各向异性导电粘接剂和发光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011060700 2011-03-18
JP2011-060700 2011-03-18

Publications (1)

Publication Number Publication Date
WO2012127978A1 true WO2012127978A1 (ja) 2012-09-27

Family

ID=46879138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054568 WO2012127978A1 (ja) 2011-03-18 2012-02-24 光反射性異方性導電接着剤及び発光装置

Country Status (7)

Country Link
US (1) US9670384B2 (ja)
EP (1) EP2687572B1 (ja)
JP (1) JP2012212865A (ja)
KR (1) KR20140019349A (ja)
CN (1) CN103429693A (ja)
TW (1) TW201241842A (ja)
WO (1) WO2012127978A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150228414A1 (en) * 2012-08-22 2015-08-13 Sumitomo Osak Cement Co., Ltd. Dye-sensitive solar cell paste, porous light-reflective insulation layer, and dye-sensitive solar cell
WO2015146275A1 (ja) * 2014-03-28 2015-10-01 デクセリアルズ株式会社 異方性導電フィルム
WO2017154978A1 (ja) * 2016-03-09 2017-09-14 東洋紡株式会社 伸縮性導体シート及び伸縮性導体シート形成用ペースト

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5617210B2 (ja) * 2009-09-14 2014-11-05 デクセリアルズ株式会社 光反射性異方性導電接着剤及び発光装置
JP2013243344A (ja) * 2012-04-23 2013-12-05 Nichia Chem Ind Ltd 発光装置
JP6065586B2 (ja) * 2012-12-28 2017-01-25 日亜化学工業株式会社 発光装置及びその製造方法
TWI556478B (zh) 2014-06-30 2016-11-01 億光電子工業股份有限公司 發光二極體裝置
JP6844331B2 (ja) * 2016-03-08 2021-03-17 東洋紡株式会社 伸縮性導体形成用ペースト、伸縮性導体シートおよび生体情報計測用プローブ
JP6715052B2 (ja) * 2016-03-25 2020-07-01 デクセリアルズ株式会社 接続構造体の製造方法
JP6935702B2 (ja) * 2016-10-24 2021-09-15 デクセリアルズ株式会社 異方性導電フィルム
US11787987B2 (en) 2018-07-23 2023-10-17 Xerox Corporation Adhesive with substrate compatibilizing particles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11168235A (ja) 1997-12-05 1999-06-22 Toyoda Gosei Co Ltd 発光ダイオード
WO2004044044A1 (ja) * 2002-11-13 2004-05-27 Idemitsu Kosan Co., Ltd. 熱可塑性樹脂組成物配合用酸化チタン、熱可塑性樹脂組成物及びその成形体
JP2006145919A (ja) * 2004-11-19 2006-06-08 Mitsubishi Plastics Ind Ltd 光反射体及び光反射体の製造方法
JP2010168266A (ja) * 2008-12-27 2010-08-05 Jgc Catalysts & Chemicals Ltd 高屈折率金属酸化物微粒子の水分散ゾル、その調製方法および該金属酸化物微粒子の有機溶媒分散ゾル
WO2011030621A1 (ja) * 2009-09-14 2011-03-17 ソニーケミカル&インフォメーションデバイス株式会社 光反射性異方性導電接着剤及び発光装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859364A (en) * 1988-05-25 1989-08-22 E. I. Du Pont De Nemours And Company Conductive paste composition
JP3390278B2 (ja) 1994-12-05 2003-03-24 ダイセル化学工業株式会社 セルロースエステル組成物および成形品
JPH09111135A (ja) * 1995-10-23 1997-04-28 Mitsubishi Materials Corp 導電性ポリマー組成物
TW201005393A (en) 2004-11-19 2010-02-01 Mitsubishi Plastics Inc Light reflecting body and manufacturing method of light reflecting body
JP4749201B2 (ja) 2006-03-31 2011-08-17 三井化学株式会社 半導体発光素子封止用組成物
JP2009139678A (ja) * 2007-12-07 2009-06-25 Seiko Epson Corp 発光装置及び電子機器並びに成膜方法
JP5230532B2 (ja) * 2009-05-29 2013-07-10 三菱樹脂株式会社 白色フィルム、金属積層体、led搭載用基板及び光源装置
JP2011054902A (ja) 2009-09-04 2011-03-17 Shin-Etsu Chemical Co Ltd 光半導体ケース形成用白色熱硬化性シリコーン樹脂組成物及び光半導体ケース
US8883048B2 (en) 2009-09-11 2014-11-11 Asahi Kasei Chemicals Corporation Reflector for light-emitting device, and light-emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11168235A (ja) 1997-12-05 1999-06-22 Toyoda Gosei Co Ltd 発光ダイオード
WO2004044044A1 (ja) * 2002-11-13 2004-05-27 Idemitsu Kosan Co., Ltd. 熱可塑性樹脂組成物配合用酸化チタン、熱可塑性樹脂組成物及びその成形体
JP2006145919A (ja) * 2004-11-19 2006-06-08 Mitsubishi Plastics Ind Ltd 光反射体及び光反射体の製造方法
JP2010168266A (ja) * 2008-12-27 2010-08-05 Jgc Catalysts & Chemicals Ltd 高屈折率金属酸化物微粒子の水分散ゾル、その調製方法および該金属酸化物微粒子の有機溶媒分散ゾル
WO2011030621A1 (ja) * 2009-09-14 2011-03-17 ソニーケミカル&インフォメーションデバイス株式会社 光反射性異方性導電接着剤及び発光装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150228414A1 (en) * 2012-08-22 2015-08-13 Sumitomo Osak Cement Co., Ltd. Dye-sensitive solar cell paste, porous light-reflective insulation layer, and dye-sensitive solar cell
WO2015146275A1 (ja) * 2014-03-28 2015-10-01 デクセリアルズ株式会社 異方性導電フィルム
JP2015191823A (ja) * 2014-03-28 2015-11-02 デクセリアルズ株式会社 異方性導電フィルム
WO2017154978A1 (ja) * 2016-03-09 2017-09-14 東洋紡株式会社 伸縮性導体シート及び伸縮性導体シート形成用ペースト
JPWO2017154978A1 (ja) * 2016-03-09 2019-01-10 東洋紡株式会社 伸縮性導体シート及び伸縮性導体シート形成用ペースト
TWI708266B (zh) * 2016-03-09 2020-10-21 日商東洋紡股份有限公司 伸縮性導體片及伸縮性導體片形成用糊劑
TWI736363B (zh) * 2016-03-09 2021-08-11 日商東洋紡股份有限公司 伸縮性導體片及伸縮性導體片形成用糊劑

Also Published As

Publication number Publication date
US9670384B2 (en) 2017-06-06
EP2687572B1 (en) 2018-05-30
EP2687572A4 (en) 2015-01-07
CN103429693A (zh) 2013-12-04
TW201241842A (en) 2012-10-16
JP2012212865A (ja) 2012-11-01
US20140001419A1 (en) 2014-01-02
KR20140019349A (ko) 2014-02-14
TWI563518B (ja) 2016-12-21
EP2687572A1 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
WO2012127978A1 (ja) 光反射性異方性導電接着剤及び発光装置
JP5617210B2 (ja) 光反射性異方性導電接着剤及び発光装置
EP2685513B1 (en) Light-reflective anisotropic conductive adhesive and light-emitting device
JP5526698B2 (ja) 光反射性導電粒子、異方性導電接着剤及び発光装置
JP5888023B2 (ja) 光反射性異方性導電接着剤及び発光装置
JP5555038B2 (ja) 光反射性異方性導電接着剤及び発光装置
WO2012144033A1 (ja) 光反射性導電粒子、異方性導電接着剤及び発光装置
JP5785306B2 (ja) 光反射性異方性導電接着剤及び発光装置
JP2014030026A (ja) 異方性導電接着剤及び発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760304

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 14004553

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137024229

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012760304

Country of ref document: EP