WO2012126178A2 - 减缓肝癌恶化、改善肝功能、改善肝纤维化、改善肝硬化、改善肝发炎及促进受损肝脏再生之药物组合物 - Google Patents

减缓肝癌恶化、改善肝功能、改善肝纤维化、改善肝硬化、改善肝发炎及促进受损肝脏再生之药物组合物 Download PDF

Info

Publication number
WO2012126178A2
WO2012126178A2 PCT/CN2011/072045 CN2011072045W WO2012126178A2 WO 2012126178 A2 WO2012126178 A2 WO 2012126178A2 CN 2011072045 W CN2011072045 W CN 2011072045W WO 2012126178 A2 WO2012126178 A2 WO 2012126178A2
Authority
WO
WIPO (PCT)
Prior art keywords
pharmaceutical composition
liver
proanthocyanidin
monomer
plant
Prior art date
Application number
PCT/CN2011/072045
Other languages
English (en)
French (fr)
Other versions
WO2012126178A3 (zh
Inventor
张秀凤
马俊贤
杨国义
林士弘
林坚栋
黄凯文
Original Assignee
财团法人工业技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 财团法人工业技术研究院 filed Critical 财团法人工业技术研究院
Priority to PL11861553T priority Critical patent/PL2689777T3/pl
Priority to AU2011362905A priority patent/AU2011362905B2/en
Priority to NO11861553A priority patent/NO2689777T3/no
Priority to SG2013069604A priority patent/SG193486A1/en
Priority to EP11861553.3A priority patent/EP2689777B1/en
Priority to JP2014500226A priority patent/JP6166251B2/ja
Priority to CN201180069476.5A priority patent/CN103442709B/zh
Priority to KR1020167033543A priority patent/KR101981378B1/ko
Priority to KR1020137027665A priority patent/KR20140020966A/ko
Priority to DK11861553.3T priority patent/DK2689777T3/en
Priority to ES11861553.3T priority patent/ES2668785T3/es
Priority to PCT/CN2011/072045 priority patent/WO2012126178A2/zh
Priority to RU2013146602/15A priority patent/RU2561688C2/ru
Priority to CA2830616A priority patent/CA2830616C/en
Publication of WO2012126178A2 publication Critical patent/WO2012126178A2/zh
Publication of WO2012126178A3 publication Critical patent/WO2012126178A3/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • A61K31/3533,4-Dihydrobenzopyrans, e.g. chroman, catechin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/73Rosaceae (Rose family), e.g. strawberry, chokeberry, blackberry, pear or firethorn
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/87Vitaceae or Ampelidaceae (Vine or Grape family), e.g. wine grapes, muscadine or peppervine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/58Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4
    • C07D311/60Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4 with aryl radicals attached in position 2
    • C07D311/62Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4 with aryl radicals attached in position 2 with oxygen atoms directly attached in position 3, e.g. anthocyanidins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2121/00Preparations for use in therapy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to a pharmaceutical composition, and more particularly to a pharmaceutical composition for slowing the progression of liver cancer, improving liver function, improving liver fibrosis, improving liver cirrhosis, improving liver inflammation, and promoting regeneration of damaged liver.
  • Liver cancer ranks fifth among men worldwide for cancer deaths, and women rank eighth. Liver cancer is hardly detectable at an early stage and, therefore, often delays the optimal timing of treatment.
  • Clinically, surgical resection or liver transplantation is the best treatment. However, most patients with liver cancer are mostly advanced in the diagnosis of liver cancer. Only 15% of patients can undergo surgical resection, and the cure rate is lower than that. 5%.
  • there are treatments such as embolization, electrocautery, and radiation, but the recurrence rate is as high as 80% or more.
  • the clinically diagnosed liver cancer patients have an average survival rate of only about 6 months. It can be seen that liver cancer has a high mortality rate and is very poor in the future.
  • chemotherapeutic drugs commonly used in liver cancer such as Fluorouraci Pirarubicin, Oxaliplatin, Cisplatin, etc.
  • have very limited efficacy Currently, the latest treatment is Nexavar® (Sorafenib), a target drug using a variety of kinase inhibitors, for the treatment of advanced hepatocellular carcinoma or primary liver cancer, which can prolong the average survival time of patients with liver cancer.
  • Nexavar® Sorafenib
  • the global cancer treatment market has reached US$53.1 billion (Nature Review in Cancer), and the market for liver cancer treatment is about US$2.52 billion. It can be seen that the development of new drugs for treating liver cancer has great market potential.
  • One embodiment of the present invention provides a pharmaceutical composition for slowing liver cancer deterioration, improving liver function, improving liver fibrosis, improving liver cirrhosis, improving liver inflammation, promoting damaged liver regeneration, and/or reversing liver fibrosis And comprising: an effective amount of proanthocyanidin; and a pharmaceutically acceptable carrier or salt, wherein the monomer of the proanthocyanidin has the following chemical formula.
  • R1 when R1 is OCH3, R2 is OH, R3 is H, when R1 is OH, R2 is H, R3 is H, when R1 is OH, R2 is OH, R3 is H or when R1 is OH
  • R4 is 3-( ⁇ )- ⁇ , 3-( ⁇ )- ⁇ , 3-(a)-0-sugar or 3-(P)-0-sugar.
  • the pharmaceutical composition of the present invention has been experimentally tested and found to be applicable to the treatment of various liver diseases, including (1) liver cancer caused by chronic hepatitis B virus or hepatitis C virus infection, and the present invention can be improved. Improve liver function of liver cancer patients, slow down the progression of liver cancer, improve the rate of operation and success rate of liver cancer patients, reduce the recurrence rate, increase the survival rate of liver cancer patients and prolong the survival time. It can improve the quality of life of liver cancer patients. (2) The pharmaceutical composition of the present invention (BEL-X) can be used alone or in combination with other clinical therapeutic drugs to treat liver fibrosis patients. (3) The pharmaceutical composition of the present invention (BEL-X) can be used alone or in combination with other clinical treatments for the treatment of hepatic inflammatory diseases, such as fatty liver disease, to improve liver function and prevent liver cirrhosis and liver cancer.
  • the present invention is as follows.
  • a pharmaceutical composition for slowing the progression of liver cancer comprising:
  • R 3 when 1 ⁇ is 0 ( ⁇ 1 3 , R 2 is OH, R 3 is H, when 1 ⁇ is 011, R 2 is H, R 3 is H, and when OH is, R 2 is OH, When R 3 is H or when it is OH, R 2 is OH, R 3 is OH, and R 4 is 3-( ⁇ )- ⁇ , 3-( ⁇ )- ⁇ , 3-(a)-0-sugar or 3 -(p)-0-sugar; and
  • a pharmaceutically acceptable carrier or salt is provided.
  • composition for slowing the progression of liver cancer according to Item 1, wherein the monomer of the proanthocyanidin is linked to each other by a C4, C8 carbon bond, a C4, a C6 carbon bond or a C2, C7 oxygen bond.
  • composition for slowing the progression of liver cancer according to item 1, wherein the monomer of the proanthocyanidin comprises an R or S optical isomer of the C2, C3 or C4 position.
  • composition for slowing the progression of liver cancer according to Item 1 wherein the monomer of the proanthocyanidin comprises a flavonoid.
  • the pharmaceutical composition for slowing the progression of liver cancer according to Item 5 wherein the flavonoid compound comprises catechin, epicatechin, epiafzetechin, gallic acid Calocatechin, galloepicatechin ⁇ epigallocatechin, gallates, flavonols, flavandiols, leucocyanidins or procynidins .
  • the monomer of the proanthocyanidin comprises flavan-3-ol.
  • a pharmaceutical composition for improving liver function comprising:
  • R 3 when 1 ⁇ is 0 ( ⁇ 1 3 , R 2 is OH, R 3 is H, when 1 ⁇ is 011, R 2 is H, R 3 is H, and when OH is, R 2 is OH, When R 3 is H or when it is OH, R 2 is OH, R 3 is OH, and R 4 is 3-( ⁇ )- ⁇ , 3-( ⁇ )- ⁇ , 3-(a)-0-sugar or 3 -(p)-0-sugar; and
  • a pharmaceutically acceptable carrier or salt is provided.
  • composition for improving liver function according to item 11, wherein the monomer of the proanthocyanidin is linked to each other by a C4, C8 carbon bond, a C4, a C6 carbon bond or a C2, C7 oxygen bond.
  • the pharmaceutical composition for improving liver function according to Item 11, wherein the original cyanine The degree of polymerization is between 2 and 30.
  • composition for improving liver function according to item 11, wherein the monomer of the proanthocyanidin comprises an R or S optical isomer at a C2, C3 or C4 position.
  • the flavonoid compound comprises catechin, epicatechin, epiafzetechin, gallic acid Gallocatechin, galloepicatechin, epigallocatechin, gallates, flavonols, flavandiols, leucocyanidins or procynidins.
  • composition for improving liver function according to item 11, wherein the monomer of the proanthocyanidin comprises flavan-3-ol.
  • a pharmaceutical composition for improving liver fibrosis comprising:
  • R 3 when 1 ⁇ is 0 ( ⁇ 1 3 , R 2 is OH, R 3 is H, when 1 ⁇ is 011, R 2 is H, R 3 is H, and when OH is, R 2 is OH, When R 3 is H or when it is OH, R 2 is OH, R 3 is OH, and R 4 is 3-( ⁇ )- ⁇ , 3-( ⁇ )- ⁇ , 3-(a)-0-sugar or 3 -(p)-0-sugar; and
  • a pharmaceutically acceptable carrier or salt is provided.
  • composition for improving liver fibrosis according to Item 21, wherein the monomer of the proanthocyanidin is linked to each other by a C4, C8 carbon bond, a C4, C6 carbon bond or a C2, C7 oxygen bond.
  • composition for improving liver fibrosis according to Item 21, wherein the monomer of procyanidin comprises an R or S optical isomer at the C2, C3 or C4 position.
  • the pharmaceutical composition for improving liver fibrosis according to Item 25 wherein the flavonoid compound comprises catechin, epicatechin, epiafzetechin, gallic acid Calocatechin, galloepicatechin ⁇ epigallocatechin, gallates, flavonols, flavandiols, leucocyanidins or procynidins .
  • the monomer of proanthocyanidin comprises flavan-3-ol.
  • a pharmaceutical composition for improving cirrhosis comprising:
  • R 3 when 1 ⁇ is 0 ( ⁇ 1 3 , R 2 is OH, R 3 is H, when 1 ⁇ is 011, R 2 is H, R 3 is H, and when OH is, R 2 is OH, When R 3 is H or when it is OH, R 2 is OH, R 3 is OH, and R 4 is 3-( ⁇ )- ⁇ , 3-( ⁇ )- ⁇ , 3-(a)-0-sugar or 3 -(p)-0-sugar; and
  • a pharmaceutically acceptable carrier or salt is provided.
  • composition for improving liver cirrhosis according to Item 31, wherein the monomer of the proanthocyanidin is linked to each other by a C4, C8 carbon bond, a C4, a C6 carbon bond or a C2, C7 oxygen bond.
  • the pharmaceutical composition for improving liver cirrhosis according to Item 31, wherein the procyanidin The degree of polymerization is between 2 and 30.
  • the pharmaceutical composition for improving liver cirrhosis according to Item 35 wherein the flavonoid compound comprises catechin, epicatechin, epiafzetechin, gallic acid Gallocatechin, galloepicatechin, epigallocatechin, gallates, flavonols, flavandiols, leucocyanidins or procynidins.
  • a pharmaceutical composition for improving liver inflammation comprising:
  • R 3 when 1 ⁇ is 0 ( ⁇ 1 3 , R 2 is OH, R 3 is H, when 1 ⁇ is 011, R 2 is H, R 3 is H, and when OH is, R 2 is OH, When R 3 is H or when it is OH, R 2 is OH, R 3 is OH, and R 4 is 3-( ⁇ )- ⁇ , 3-( ⁇ )- ⁇ , 3-(a)-0-sugar or 3 -(p)-0-sugar; and
  • a pharmaceutically acceptable carrier or salt is provided.
  • composition for improving liver inflammation according to Item 41, wherein the monomer of the proanthocyanidin is linked to each other by a C4, C8 carbon bond, a C4, a C6 carbon bond or a C2, C7 oxygen bond.
  • the pharmaceutical composition for improving liver inflammation according to Item 41, wherein the monomer of the proanthocyanidin comprises an R or S optical isomer at a C2, C3 or C4 position.
  • the pharmaceutical composition for improving liver inflammation according to Item 41, wherein the monomer of the proanthocyanidin comprises a flavonoid compound.
  • the pharmaceutical composition for improving liver inflammation according to Item 45 wherein the flavonoid compound comprises catechin, epicatechin, epiafzetechin, gallic acid Gallocatechin, galloepicatechin, epigallocatechin, gallates, flavonols, flavandiols, leucocyanidins or procynidins.
  • the monomer of proanthocyanidin comprises flavan-3-ol.
  • the pharmaceutical composition for improving liver inflammation according to Item 41, wherein the proanthocyanidin is extracted from a plant.
  • the pharmaceutical composition for improving liver inflammation according to Item 48, wherein the plant comprises Ericaceae, Rosaceae, Pinaceae, Vitaceae il, and Urticaceae. ) plants.
  • the pharmaceutical composition for improving liver inflammation according to Item 49, wherein the plant of the Urticaceae comprises mountain castor.
  • a pharmaceutical composition for promoting the regeneration of damaged liver comprising:
  • R 3 when 1 ⁇ is 0 ( ⁇ 1 3 , R 2 is OH, R 3 is H, when 1 ⁇ is 011, R 2 is H, R 3 is H, and when OH is, R 2 is OH, When R 3 is H or when it is OH, R 2 is OH, R 3 is OH, and R 4 is 3-( ⁇ )- ⁇ , 3-( ⁇ )- ⁇ , 3-(a)-0-sugar or 3 -(p)-0-sugar; and
  • a pharmaceutically acceptable carrier or salt is provided.
  • the flavonoid compound comprises catechin, epicatechin, epiafzetechin, and gallnuts.
  • the pharmaceutical composition for promoting the regeneration of damaged liver according to Item 58, wherein the plant comprises Ericaceae, Rosaceae, Pinaceae, Vitaceae or Castoraceae. (Urticaceae) plant.
  • composition for promoting the regeneration of damaged liver according to item 59, wherein the plant of the Urticaceae comprises mountain nettle.
  • a pharmaceutical composition for reversing liver fibrosis comprising:
  • R 3 when 1 ⁇ is 0 ( ⁇ 1 3 , R 2 is OH, R 3 is H, when 1 ⁇ is 011, R 2 is H, R 3 is H, and when OH is, R 2 is OH, When R 3 is H or when it is OH, R 2 is OH, R 3 is OH, and R 4 is 3-( ⁇ )- ⁇ , 3-( ⁇ )- ⁇ , 3-(a)-0-sugar or 3 -(p)-0-sugar; and
  • a pharmaceutically acceptable carrier or salt is provided.
  • composition for reversing liver fibrosis according to Item 61, wherein the monomer of the proanthocyanidin is linked to each other by a C4, C8 carbon bond, a C4, C6 carbon bond or a C2, C7 oxygen bond.
  • composition for reversing liver fibrosis according to Item 61, wherein the monomer of the proanthocyanidin comprises an R or S optical isomer at a C2, C3 or C4 position.
  • the pharmaceutical composition for reversing liver fibrosis according to Item 65 wherein the flavonoid compound comprises catechin, epicatechin, epiafzetechin, gallic acid Calocatechin, galloepicatechin ⁇ epigallocatechin, gallates, flavonols, flavandiols, leucocyanidins or procynidins .
  • the monomer of proanthocyanidin comprises flavan-3-ol.
  • composition for reversing liver fibrosis according to item 69, wherein the plant of the Urticaceae comprises mountain nettle.
  • the pharmaceutical composition according to any one of items 1 to 70 which slows liver cancer, improves liver function, improves liver fibrosis, improves liver cirrhosis, improves liver inflammation, promotes liver regeneration, and/or reverses liver Use in fibrotic drugs.
  • Figure 1 represents 3-flavanol, 3,4-flavanol, catechin, epicatechin.
  • Fig. 2a and Fig. 2b represent the thermal decomposition gas chromatography mass spectrum of the original anthocyanin 95% alcohol extract and the purified proanthocyanidin.
  • Figure 3 represents the infrared absorption spectrum of proanthocyanidins from the re-purified 95% alcohol extract of M. chinensis.
  • Figures 4a and 4b represent Yamagata 95% alcohol extract, and the original anthocyanins of the purified proanthocyanidins are repurified. Mass spectrometry positive/negative mass spectrum of high performance liquid chromatography.
  • Figures 5a-c represent the 13C-NMR and 1H-NMR spectra of the jasmine 95% alcohol extract, repurified proanthocyanidins.
  • FIGS. 6a and 6b show that the monomer linkage of the purified proanthocyanidin polymer of the present invention is mainly 4-8, and the linking units of 4-8 and 4-6 are shown in Figs. 6a and 6b, respectively, according to the test charts of 1H NMR and 13C NMR.
  • Figure 7a-c represents the 95% alcohol extract of M. sylvestris, and the purified proanthocyanidin medium is used to assist laser desorption ionization mass spectrometry.
  • Figure 8 is a graph showing the effect of the pharmaceutical composition of the present invention (BEL-X) on the survival rate of liver cancer induced by hepatitis B virus X transgenic mice.
  • Fig. 9 is a graph showing the effect of the pharmaceutical composition of the present invention (BEL-X) on the degree of deterioration of liver cancer of hepatitis B virus X transgenic mice, and was evaluated by liver weight/body weight ratio.
  • Fig. 10 is a graph showing the effect of the pharmaceutical composition of the present invention (BEL-X) on liver function of liver cancer induced by hepatitis B virus X transgenic mice, and was evaluated by liver function index ALT.
  • Fig. 11 is a graph showing the effect of the pharmaceutical composition of the present invention (BEL-X) on liver function of liver cancer induced by hepatitis B virus X transgenic mice, and was evaluated by liver function index AST.
  • Fig. 12 is a graph showing the effect of the pharmaceutical composition of the present invention (BEL-X) on protecting liver fibrosis induced by DEN in rats, and was evaluated by hydroxyproline.
  • Fig. 13 is a graph showing the effect of the pharmaceutical composition of the present invention (BEL-X) on protecting liver fibrosis induced by DEN in rats, and was evaluated by ⁇ -SMA staining area.
  • Fig. 14 is a graph showing the effect of the pharmaceutical composition of the present invention (BEL-X) on liver fibrosis induced by the chemical drug DEN, which was evaluated by hydroxyproline content.
  • Figures 15 to 16 show the effect of the pharmaceutical composition of the present invention (BEL-X) on the survival rate of liver fibrosis/hepatoma induced by the chemical drug DEN.
  • Figure 17 is a graph showing that the pharmaceutical composition of the present invention (BEL-X) induces liver fibrosis in rats by chemical drug DEN. Regeneration Dimension of liver to regenerate liver volume ratio evaluated DETAILED DESCRIPTION t
  • the present invention uses proanthocyanidin as an active ingredient of a pharmaceutical composition (BEL-X) for the purpose of slowing the progression of liver cancer, improving liver function, improving liver fibrosis, improving liver cirrhosis, improving liver inflammation and promoting damaged liver regeneration.
  • BEL-X a pharmaceutical composition
  • the invention can extract proanthocyanidins from a plant, which has the effects of slowing the liver cancer deterioration, improving liver function, improving liver fibrosis, improving liver cirrhosis, improving liver inflammation and promoting damaged liver regeneration.
  • the plant used may include plants of the family Ericaceae, Rosaceae, Pinaceae, Vitaceae, or Urticaceae, preferably castor. Mountain ramie of the family Urticaceae.
  • the extracted portion of the plant may include roots, stems, leaves and/or fruits.
  • the present invention can be subjected to plant extraction by a conventional method.
  • the roots, stems, leaves and/or fruits of a plant are dried and sliced or ground, after which the plants are extracted with an extract.
  • the extraction is performed with roots and/or stems of the mountain nettle.
  • the above extract may be selected from water or a mixture of water and a solvent of a different polarity.
  • Solvents of different polarity to water may include alcohol, acetone, sterol or ethyl acetate.
  • the above solvents may be used singly, in combination or in combination with water.
  • the ratio of the extract to the plant is not particularly limited. In one embodiment, the ratio of the extract to the plant is 1:10 (W/W).
  • the extraction temperature will vary slightly depending on the extract. In one embodiment, room temperature soaking can be utilized. In another embodiment, it can be heated to a reflux temperature of different extracts (60 to 100 ° C). The extraction time is about 2 hours to 7 days, and the length is determined by the extraction temperature of the operation.
  • a dilute mineral acid e.g., dilute hydrochloric acid
  • an organic acid e.g., vitamin C or tartaric acid
  • the extract containing the proanthocyanidin active ingredient is concentrated and dried, or the extract may be partially or completely purified as needed.
  • the partial purification method is The dried extract is reconstituted with 95% alcohol and/or decyl alcohol solution, and then extracted with solvents of different polarities to remove some impurities, such as first removing the lipid and non-polar solvent (such as n-hexane).
  • the polar substance is extracted with trichloromethane and/or ethyl acetate to remove small molecular phenolic compounds.
  • the solvent-extracted aqueous layer is concentrated and dried to obtain a partially purified proanthocyanidin material.
  • the steps may include dissolving the partially purified extract in an alcohol or methanol solution and placing it in a molecular sieve column. Thereafter, it is extracted with different solutions and/or mixed solutions to carry out purification separation of proanthocyanidins.
  • the order of the different solutions is: 95% alcohol, 95% alcohol/sterol (1:1, v/v 50% decyl alcohol and 50% acetone aqueous solution.
  • Each of the extracts is flushed
  • the solution is collected in stages.
  • the purified proanthocyanidins in the solution are detected by liquid chromatography (280).
  • the solutions of different extracts are collected to obtain proanthocyanidin solutions with different molecular weight distributions.
  • the solution extracted from the different stages described above is concentrated at a temperature lower than 40° C. and freeze-dried to obtain purified proanthocyanidins.
  • the molecular sieve column for the extraction is Sephadex LH-20. Pipe column (purchased from Germany Anmasia Co., Ltd.).
  • the purified proanthocyanidin of the present invention has a monomer having the following chemical formula.
  • R1 when R1 is OCH3, R2 is OH and R3 is H. In another embodiment, when R1 is OH, R2 is H and R3 is H. In another embodiment, when R1 is OH, R2 is OH and R3 is H. In another embodiment, when R1 is OH, R2 is OH and R3 is OH.
  • R4 may be 3-( ⁇ )- ⁇ , 3-( ⁇ )- ⁇ , 3-(a)-0-sugar or 3-(P)-0-sugar.
  • the above proanthocyanidin monomer may include an R or S optical isomer at the C2, C3 or C4 position.
  • the monomeric structure of the proanthocyanidins may include flavonoids such as catechin, epicatechin, epiafzetechin, gallocatechin, galloepicatechin, Epigallocatechin, gallates, flavonols, flavandiols, leucocyanidins or procynidins.
  • the monomer of procyanidins may include flavan-3-ol or a flavan derivative.
  • the polymerization degree of the proanthocyanidins of the present invention is from 2 to 30, preferably from 3 to 20.
  • the monomers of the procyanidins of the present invention may be linked to each other by a C4, C8 carbon bond, a C4, C6 carbon bond or a C2, C7 oxygen bond.
  • the procyanidins of the invention have an average molecular weight of from 600 to 10,000.
  • the purified proanthocyanidins of the present invention may comprise proanthocyanidins of a single degree of polymerization. In another embodiment, the purified proanthocyanidins of the present invention may comprise procyanidin mixtures of varying degrees of polymerization.
  • the present invention can form a pharmaceutical composition for slowing liver cancer deterioration, improving liver function, improving liver fibrosis, improving liver cirrhosis, improving liver inflammation and promoting damaged liver regeneration, which may include proanthocyanidins and a proanthocyanidin.
  • a pharmaceutically acceptable carrier or salt may include proanthocyanidins and a proanthocyanidin.
  • the pharmaceutically acceptable carrier can include, but is not limited to, a solvent, a dispersion medium, a coating, an antibacterial agent, an antifungal agent, an osmotic pressure and an absorption delaying agent, or a pharmaceutical administration phase. Containing agent.
  • the pharmaceutical compositions can be formulated into a variety of suitable dosage forms using conventional methods.
  • Pharmaceutically acceptable salts can include, but are not limited to, inorganic or organic salts.
  • the inorganic salts may include alkali metal salts such as sodium, potassium or amine salts, such as alkaline earth salts of magnesium or calcium salts, or salts containing divalent or tetravalent cations such as rhodium, aluminum or zirconium salts.
  • the organic salts may include dicyclohexylamine salts, mercapto-D-glucosamine or amino acid salts such as arginine, lysine, histidine or glutamine.
  • the pharmaceutical composition of the present invention (BEL-X) may be administered orally, parenterally, by inhalation spray or via an implanted reservoir.
  • Non-mouth-friendly methods may include subcutaneous, intracutaneous, intravenous, intramuscular, intraarticular, intraarterial, and slippery. (intrasynovial), intrasternal, intrathecal or intraleanal injection or perfusion techniques.
  • Oral dosage forms can include, but are not limited to, tablets, capsules, emulsions, aqueous suspensions, dispersions or solutions.
  • the pharmaceutical composition of the present invention (BEL-X) has been experimentally tested and found to be applicable to the treatment of various liver diseases, including (1) liver cancer caused by chronic hepatitis B virus or hepatitis C virus infection, and the present invention can be improved. Improve liver function of liver cancer patients, slow down the progression of liver cancer, improve the rate of operation and success rate of liver cancer patients, reduce the recurrence rate, increase the survival rate of liver cancer patients and prolong the survival time. It can improve the quality of life of liver cancer patients.
  • the pharmaceutical composition of the present invention (BEL-X) can be used alone or in combination with other clinical therapeutic drugs to treat liver fibrosis patients.
  • BEL-X The pharmaceutical composition of the present invention
  • BEL-X can be used alone or in combination with other clinical treatments for the treatment of hepatic inflammatory diseases, such as fatty liver disease, to improve liver function and prevent liver cirrhosis and liver cancer.
  • the structure of proanthocyanidin monomer is detected by thermal decomposition gas chromatography mass spectrometry ⁇ Gas Chrimatograph - Mass Spectrometry ).
  • the method of detection is to separate the solid pure 4 ⁇ proanthocyanidins (the self-purified sample directly into the thermal decomposition gas chromatograph, to divide The temperature of the section (50 °C to 500 °C) or the setting of the single temperature is gradually heated or instantaneously heated, and the sample decomposed by heating is separated by a specific metal column of the thermal decomposition apparatus, and the mass spectrometer is detected.
  • the resulting spectrum determines the monomer structure of the proanthocyanidin polymer.
  • OCH 3 , R 2 is OH and R 3 is H, or OH and R 2 and R 3 are both H, or R 2 is OH and R 3 is H, or R 1 R 2 and R 3 All are OH.
  • composition of R 4 may be 3-(a)-OH, 3-(p)-OH, 3-(a)-0- Sugar or 3-(P)-0-sugar heap 2.
  • Purified proanthocyanidin samples were processed by high performance liquid chromatography mass spectrometry (electrically sprayed positive/negative Spectrometer, HPLC/ESI+, HPLC/ESI-) (Micromass Quattro/Waters 2690) detection, detection of monomers and polymers with proanthocyanidin polymerization degree 1 to 6 and glycoside containing 164 (ie monomer molecular weight plus A glycoside has a molecular weight of 164).
  • the mass spectrum positive/negative mass spectrum of purified proanthocyanidins by high performance liquid chromatography is shown in Figures 4a and 4b.
  • the monomer linkage of the purified proanthocyanidin polymer of the present invention is mainly 4-8.
  • the connecting units of 4-8 and 4-6 are shown in Figures 6a and 6b, respectively.
  • MALDI-TOF Matrix Assisted Laser Desorption Ionization Time-of-Flight
  • the partially purified proanthocyanidin molecular weight distribution was determined by medium-assisted laser desorption ionization mass spectrometry. The results are shown in Figures 7a-c. The results of the detection showed that the molecular weight distribution of the partially purified proanthocyanidins was 500-5000, and the results of the molecular weight distribution showed that the polymerization degree of the polymer was estimated to be about 2-18.
  • Example 2 was stored at 4.
  • the dried medicinal material of C is ground with a grinder and sieved to a powder smaller than the mesh 20 (20 mesh). Thereafter, 10 times (1:10, w/w) of reverse osmosis treated water (RO water) was added, and the mixture was heated under reflux for 2 hours (total twice). After standing to cool down and return to temperature, the warmed extract is collected and added to a 4 (95% to 50%) aqueous solution. After mixing, it was allowed to stand for cooling to be precipitated. The supernatant was poured into a centrifuge bag and centrifuged by a centrifuge. After that, the filtrate is placed at a temperature controlled below 40. Concentration is carried out in a vacuum decomposer of C, and dried by a freeze dryer to obtain an extract containing proanthocyanidin.
  • Example 4 Concentration is carried out in a vacuum decomposer of C, and dried by a freeze dryer to obtain an extract containing proanthocyanidin.
  • Example 2 or 3 containing proanthocyanidin was added to n-hexane (1:10, w/v) and heated under reflux (by Soxhelt apparatus) for 6 hours to remove lipids in the extract.
  • the solid obtained is dissolved in a 70% aqueous solution of decyl alcohol and/or 0.3 aqueous solution of vitamin C, and placed at a temperature controlled below 40. Concentration was carried out in a vacuum condenser of C to remove the solvent. It Thereafter, the concentrate was added to trichloromethane (1:1, trichloromethane: concentrate, v/v), and shaken with a shaker for 30 minutes (multiple extraction).
  • aqueous layer was added with ethyl acetate (1:1, ethyl acetate: aqueous layer, v/v), and shaken for 30 minutes (multiple extractions).
  • the water layer is then placed at a temperature controlled below 40.
  • Partially purified proanthocyanidins were obtained by concentration in a vacuum decomposer of C and drying by a freeze dryer.
  • Example 2 The extract of Example 2 or 3 containing proanthocyanidins was added to water/alcohol to dissolve (1:10, w/v). Thereafter, n-hexane (1:10, v/v) was added, and the shaker was shaken for 30 minutes (multiple extraction) to remove the lipid in the extract.
  • the aqueous layer was added with ethyl acetate (1:1, ethyl acetate: aqueous layer, v/v), and shaken for 30 minutes (multiple extractions).
  • the aqueous layer was then added with n-butanol (1:10, v /v) and shaken with a shaker for 30 minutes (multiple extractions).
  • the water layer is then placed at a temperature controlled below 40.
  • Partially purified proanthocyanidins were obtained by concentration in a vacuum condenser of C and drying by a freeze dryer.
  • the partially purified proanthocyanidin obtained in Example 4 was repurified by molecular sieve column chromatography (Gel Permeation Chromatography, 4 cm diameter x 45 cm long Sephadex LH-20). First, the solution is washed with solutions of different polarities to remove impurities. Thereafter, 2.5 g of partially purified proanthocyanidins were taken and dissolved in 0.5 mL of 95% alcohol. Next, the dissolved sample is placed in a molecular sieve column, continuously flushed with a series of solvents (eluent), and the flow washing solution of different solvents (extraction) is collected.
  • molecular sieve column chromatography Gel Permeation Chromatography, 4 cm diameter x 45 cm long Sephadex LH-20.
  • the extracts were 300mL 95% alcohol solution, 300mL 95% alcohol/sterol (1/1, v/v), 300mL Sterol, 300 mL of 50% aqueous decyl alcohol and 300 mL of 50% aqueous acetone. Except for the flow washing solution with 300 mL of 95% alcohol extract, the other stream washings were placed at a temperature controlled below 40. Concentrated in a vacuum condenser of C and dried by a freeze dryer to obtain partially purified or fully purified proanthocyanidins. Thereafter, the dried material was stored at -20 ° C until use.
  • mice The animal parental source used in the experiment was a male mouse of the hepatitis B virus X transgenic mouse C57BL/6J-HBx (AO 1 12 line) published in BBRC 1 in 2006.
  • mice experimental grouping and experimental design The mouse experimental group was divided into 6 groups, including non-transgenic mouse control group (Non-Tg mock 9-20M), non-transgenic mouse drug control group (Non-Tg BEL-X treated 9- 20M), control group of transgenic mice (Tg mock 9-20M) and drug test group of transgenic mice (Tg BEL-X treated) 3 groups: respectively from the age of 9 months of mice (Tg BEL-X treated 9-20M) Starting from 12 months of age (Tg BEL-X treated 12-20M) and starting from 15 months of age (Tg BEL-X treated 15-20M), the oral drug BEL-X (the pharmaceutical composition of the present invention) is administered once a day, continuously The medicine is up to 20 months old.
  • non-transgenic mouse control group Non-Tg BEL-X treated 9- 20M
  • control group of transgenic mice Tg mock 9-20M
  • drug test group of transgenic mice Tg BEL-X treated 3 groups: respectively from the age of 9 months of mice (Tg BEL-
  • Non-Tg mock 9-20M The control group of non-transgenic mice (Non-Tg mock 9-20M) and the control group of transgenic mice (Tg mock 9-20M) were given to the animals once a day for drinking from the age of 9 months, and continued until 20 months of age.
  • the non-transgenic mouse drug control group (Non-Tg BEL-X treated 9-20M) was also administered orally to the oral drug BEL-X once daily from the age of 9 months, and continued to be administered to 20 months of age.
  • the dose of BEL-X drug is 1,500 mg/kg/day.
  • Hepatitis B virus X transgenic mice are 100% at 20 months of age. Liver cancer is produced with a survival rate of approximately 64% (Tg mock 9-20M). The survival rates of the different-month-old feeding drugs BEL-X were: 9-20 months old (Tg BEL-X treated 9-20M) 70%, 12-20 months old (Tg BEL-X treated 12-20M) 100% , 15-20 months old (Tg BEL-X treated 15-20M) 58%.
  • Hepatitis B virus X-transgenic mice can induce liver cancer feeding in early stage.
  • BEL-X can increase the survival rate of mice producing hepatocarcinoma gene.
  • mice The animal parental source used in the experiment was a male mouse of the hepatitis B virus X transgenic mouse C57BL/6J-HBx (A01 12 line) published in BBRC 1 in 2006.
  • mice experimental grouping and experimental design The mouse experimental group was divided into 6 groups, including non-transgenic mouse control group (Non-Tg mock 9-20M), non-transgenic mouse drug control group (Non-Tg BEL-X treated 9- 20M), control group of transgenic mice (Tg mock 9-20M) and drug test group of transgenic mice (Tg BEL-X treated) 3 groups: respectively from the age of 9 months of mice (Tg BEL-X treated 9-20M) Starting from 12 months of age (Tg BEL-X treated 12-20M) and starting from 15 months of age (Tg BEL-X treated 15-20M), the oral drug BEL-X (the pharmaceutical composition of the present invention) is administered once a day, continuously The medicine is up to 20 months old.
  • non-transgenic mouse control group Non-Tg BEL-X treated 9- 20M
  • control group of transgenic mice Tg mock 9-20M
  • drug test group of transgenic mice Tg BEL-X treated 3 groups: respectively from the age of 9 months of mice (Tg BEL-
  • Non-transgenic mouse drug control group (Non-Tg BEL-X treated 9-20M) also from small The rats were given oral BEL-X once daily from the age of 9 months, and continued to be administered to 20 months of age.
  • the dose of BEL-X drug is 1,500 mg/kg/day.
  • the ratio of liver weight to body weight was measured: the animal was sacrificed and the liver (including liver tumor) was sampled.
  • the hepatic weight and body weight ratio can be obtained by dividing the weighed liver by the weight of the mouse.
  • the normal non-transgenic mouse (Non-Tg mock) has a liver weight to body weight ratio of about 5%, while the hepatitis B virus X transgenic mouse (Tg mock) produces liver cancer at 20 months of age. Therefore, the ratio of liver weight to body weight increased to about 13%. According to ANOVA statistical analysis, the liver weight and body weight ratio of transgenic mice and normal non-transgenic mice were significantly different.
  • mice Normal non-transgenic mice were fed BEL-X for 1 year (9-20 months old) (Non-Tg BEL-X treated 9-20M). The liver weight to body weight ratio was 5%, which was the same as that of the untreated group. This drug has no effect on normal animals.
  • mice The animal parental source used in the experiment was a male mouse of the hepatitis B virus X transgenic mouse C57BL/6J-HBx (A01 12 line) published in BBRC 1 in 2006.
  • mice experimental group was divided into 6 groups, including non-transgenic Rat control group (Non-Tg mock 9-20M), non-transgenic mouse drug control group (Non-Tg BEL-X treated 9-20M), transgenic mouse control group (Tg mock 9-20M) and transgenic mouse Drug test group (Tg BEL-X treated) Group 3: from 9 months old (Tg BEL-X treated 9-20M), 12 months old (Tg BEL-X treated 12-20M) and 15 months old
  • the oral drug BEL-X (the pharmaceutical composition of the present invention) was administered once a day starting from Tg BEL-X treated 15-20M, and continued to be administered to 18 months of age.
  • Non-Tg mock 9-20M The control group of non-transgenic mice (Non-Tg mock 9-20M) and the control group of transgenic mice (Tg mock 9-20M) were given to the animals once a day for drinking from the age of 9 months, and continued until 20 months of age.
  • the non-transgenic mouse drug control group (Non-Tg BEL-X treated 9-18M) was also administered orally with BEL-X once daily from the age of 9 months, and continued to be administered to 18 months of age.
  • the dose of BEL-X drug is 1,500 mg/kg/day.
  • Liver function ICG test After intravenous injection of indocyanine green (ICG) for 10 minutes, the concentration of ICG retained in the blood (mg/dl) was measured as an indicator of liver function. The trial was performed twice in total, and was performed at 12 and 18 months of age in mice.
  • ICG indocyanine green
  • Hepatitis B virus X transgenic mice (Tg mock 9-20M) developed liver cancer at 18 months of age, so their ICG metabolic delay was extended to 4.46 ⁇ 1.17 mg / dl, nonparametric statistical analysis found that transgenic mice and There is a significant difference in ICG metabolism in normal non-transgenic mice.
  • mice The animal parental source used in the experiment was a male mouse of the hepatitis B virus X transgenic mouse C57BL/6J-HBx (A01 12 line) published in BBRC 1 in 2006.
  • mice experimental group was divided into 6 groups, including non-transgenic mouse control group (Non-Tg mock 9-20M), non-transgenic mouse drug control group (Non-Tg BEL-X treated 9- 20M), control group of transgenic mice (Tg mock 9-20M) and drug test group of transgenic mice (Tg BEL-X treated) 3 groups: respectively from the age of 9 months of mice (Tg BEL-X treated 9-20M) Starting from 12 months of age (Tg BEL-X treated 12-20M) and starting from 15 months (Tg BEL-X treated 15-20M), daily oral administration of drugs BEL-X (the pharmaceutical composition of the present invention) is administered once and continuously until 20 months of age.
  • Non-Tg mock 9-20M The control group of non-transgenic mice (Non-Tg mock 9-20M) and the control group of transgenic mice (Tg mock 9-20M) were given to the animals once a day for drinking from the age of 9 months, and continued until 20 months of age.
  • the non-transgenic mouse drug control group (Non-Tg BEL-X treated 9-20M) was also administered with oral drug BEL-X once daily from the age of 9 months, and continued to be administered to 20 months of age.
  • the dose of BEL-X drug is 1,500 mg/kg/day.
  • liver function enzymes alanine aminotransferase (ALT) and aspartate aminotransferase (AST) assay All mice were periodically bled (monthly or cardiac bleed) once a month, and whole blood was allowed to stand in eppendorf for more than 30 minutes at room temperature. After coagulation, centrifuge at 10,800 g for 10 minutes. After centrifugation, the serum was transferred to a new eppendorf at -20. C Save to the date of detection. Serum ALT and AST values were determined by a wet serum biochemical analyzer (HITACHI 7080). Since liver disease caused by hepatitis B virus X transgenic mice is related to the age of animals, the liver function index ALT and AST measured in each group of animals from 9 to 20 months, starting from 9 months, every 3 Monthly mixed analysis.
  • HITACHI 7080 wet serum biochemical analyzer
  • mice Hepatitis B virus X transgenic mice were fed with BEL-X at different ages.
  • the ALT and AST of the three groups were lower than those of the untreated group (Tg mock 9-20M), and 9-20 months old (Tg BEL- X treated 9-20M) and 12-20 months old (Tg BEL-X treated 12-20M) had significant statistical differences between the drug-administered group and the non-administered group (Tg mock 9-20M), indicating that BEL-X can effectively improve liver cancer. Liver function of animals.
  • Hepatic fibrosis/hepatocarcinoma analysis was performed after staining with pathological sections and was followed by biochemical analysis of hydroxyproline. Determination of increased hydroxyproline content in the liver can be used as an indicator of liver fibrosis.
  • the livers of each group of animals were collected at different time points for determination of hydroxyproline content. Thereafter, the liver was sectioned for ⁇ -SMA immunostaining analysis. An increase in a-smooth-muscle-actin ( ⁇ -SMA) content is another indicator of liver fibrosis.
  • ⁇ -SMA a-smooth-muscle-actin
  • the livers of each group of animals were subjected to a-smooth-muscle-actin immunostaining, and liver cells were observed by a microscope to calculate the amount of cells containing the markers.
  • the DEN 9-week animal group continuously increased the hydroxyproline content in the liver, indicating that DEN successfully induced liver fibrosis, but also fed the experimental group of BEL-X ( In the D9H9 group, the hydroxyproline content was significantly decreased, indicating that BEL-X has a function of protecting the liver from liver fibrosis caused by the chemical substance DEN.
  • Hepatic fibrosis/degree of liver cancer was determined by visual inspection and was analyzed by hydroxyproline biochemical analysis. Determination of increased hydroxyproline content in the liver can be used as an indicator of liver fibrosis. At the 12th week, the livers of each group of animals were collected for hydroxyproline content determination.
  • mice 8-week Wistar rats were fed with diethyl Diethyl nitrosamine (DEN) (50 ppm, given in drinking water) was given for 10.5 weeks to induce liver fibrosis and liver cancer (group B).
  • BEL-X was administered at 0-10.5 weeks (group C), 3-10.5 weeks (group D), 6-10.5 weeks (group E) or 0-3 weeks after group DEN (group F).
  • the drug 1000 mg/kg body weight) was added to the feed for daily feeding. Animals were analyzed for liver cancer at appropriate time points. The control group did not give any medication (Group A) throughout the procedure. Animal deaths were recorded during the experiment, and survival rates of each group were analyzed by nonparametric statistics.
  • mice 8-week Wistar rats were fed diethyl nitrosamine (DEN) (100 ppm, added to drinking water) for 9 weeks to induce liver fibrosis and cirrhosis. (Unadministered group). Also in the 6th-9th week BEL-X drugs (divided into BEL-X high dose group (l,000 mg/kg body weight) and BEL-X low dose group (250 mg/kg body weight)) were fed daily in the diet. After completing the feeding of the drug, 50% of the liver lobe was excised at week 9, and liver samples were collected two days later, and sectioned and H&E stained. Thereafter, mitosis of hepatocytes was observed under a microscope to serve as a basis for liver regeneration.
  • DEN diethyl nitrosamine
  • the mitosis of hepatocytes was calculated as follows: There were at least 3 liver sections per animal, 10 fields per section, and the number of mitotic cells was counted at a microscope magnification of 400X, and the average of each group of animals was finally determined.
  • the chemical drug DEN induces liver fibrosis and hepatic resection after liver cancer.
  • the number of mitosis in the liver of the untreated group (7.6 ⁇ 4.6) is higher than that of the high- or low-dose BEL-X drug at the same time.
  • the number of mitosis in the liver (12 ⁇ 5.5 or 13.0 ⁇ 5.6) is much lower, indicating that BEL-X has a significant function of regenerating the liver when the chemical drug DEN causes liver damage.
  • FIG. 17 Please refer to Figure 17 to illustrate the proportion of liver volume regeneration.
  • the total amount of liver regeneration was 92 ⁇ 11%, and the cirrhosis group (DEN group) was 32 7% of the resection amount, while the treatment group (BEL-X group) was the resection amount. 79 ⁇ 6%.
  • the liver regeneration in the treatment group (BEL-X group) was significantly better than that in the cirrhosis group (D E N group), and there was no statistical difference between the control group and the control group.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Medical Informatics (AREA)
  • Botany (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Virology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)

Description

减緩肝癌恶化、 改善肝功能、 改善肝纤维化、 改善肝硬化、 改善肝发炎及 促进受损肝脏再生之药物组合物 技术领域
本发明系有关于一种药物组合物, 特别是有关于一种减緩肝癌恶化、 改 善肝功能、 改善肝纤维化、 改善肝硬化、 改善肝发炎及促进受损肝脏再生之 药物组合物。 背景技术
肝癌在全球癌症死因中男性排名第五, 女性排名第八。 肝癌在早期阶段 几乎不易查觉, 因此, 常延误最佳治疗时机。 临床上以外科手术切除或肝脏 移植为最佳之治疗手段, 但, 大部份肝癌病人在被诊断出罹患肝癌时多属于 晚期, 只有 15%的病人可接受手术切除, 且其治愈率低于 5%。 另外, 有使 用栓塞、 电烧、 放射等治疗方法, 但其复发率高达 8成以上。 临床有症状而 被诊断出为肝癌者, 其平均存活率仅约 6个月, 可见肝癌不但死亡率高, 预 后也非常差。 目前, 肝癌常用之化学治疗药物例如 Fluorouraci Pirarubicin, Oxaliplatin, Cisplatin等, 其疗效非常有限。 目前, 最新疗法为使用多种激酶 抑制剂的标靶药物 Nexavar® (Sorafenib), 用于治疗晚期肝细胞癌或原发性肝 癌, 可延长肝癌患者平均存活时间。 2008年全球癌症治疗市场规模已达 531 亿美元 (Nature Review in Cancer), 而肝癌治疗相关市场约有 25.2亿美元, 可 见治疗肝癌之相关新药开发具有非常大的市场潜力。
发明内容 本发明之一实施例, 提供一种减緩肝癌恶化、 改善肝功能、 改善肝纤维 化、 改善肝硬化、 改善肝发炎、 促进受损肝脏再生和 /或逆转肝纤维化之药物 组合物, 包括: 一有效量之原花青素; 以及一药学上可接受之载体或盐类, 其中该原花青素之单体具有下列化学式。
Figure imgf000004_0001
上述化学式中, 当 R1为 OCH3时, R2为 OH, R3为 H, 当 R1为 OH 时, R2为 H, R3为 H, 当 R1为 OH时, R2为 OH, R3为 H或当 R1为 OH 时, R2 为 OH, R3 为 OH, R4 为 3-(α)-ΟΗ、 3-(β)-ΟΗ、 3-(a)-0-sugar或 3-(P)-0-sugar。
本发明药物组合物 (BEL-X)经实验测试发现可应用于各种肝脏疾病之治 疗, 包含 (1) 由慢性 B型肝炎病毒或 C型肝炎病毒感染所引起之肝癌, 本发 可改善与提升肝癌病患之肝功能, 减緩肝癌恶化时程, 提高肝癌病患可进行 手术率与手术成功率, 降低术后复发率, 可增加肝癌病患之存活率与延长存 活时间,同时,亦可提升肝癌病患之生活品质。(2)本发明药物组合物 (BEL-X) 可单独使用或与其他临床治疗药物合并使用来治疗肝纤维化病患。 (3) 本发 明药物组合物 (BEL-X)可单独使用或与其他临床治疗药物合并使用来治疗肝 发炎病患, 例如: 脂肪肝疾病, 以改善其肝功能防止肝硬化与肝癌之发生。
即, 本发明如下述。
1. 一种减緩肝癌恶化之药物组合物, 包括:
一有效量之原花青素, 该原花青素之单体具有下列化学式:
Figure imgf000005_0001
其中, 当 1^为 0(^13时, R2为 OH , R3为 H , 当 1^为 011时, R2为 H , R3为 H , 当 为 OH时, R2为 OH , R3为 H或当 为 OH 时, R2为 OH , R3为 OH , R4为 3-(α)-ΟΗ、 3-(β)-ΟΗ、 3-(a)-0-sugar 或 3-(p)-0-sugar; 以及
一药学上可接受之载体或盐类。
2. 根据项 1 所述的减緩肝癌恶化之药物组合物, 其中该原花 青素之单体以 C4、 C8碳键、 C4、 C6碳键或 C2、 C7氧键彼此相连。
3. 根据项 1 所述的减緩肝癌恶化之药物组合物, 其中该原花 青素之聚合度介于 2~30。
4. 根据项 1 所述的减緩肝癌恶化之药物组合物, 其中该原花 青素之单体包括于 C2、 C3或 C4位置之 R或 S光学异构物。
5. 根据项 1 所述的减緩肝癌恶化之药物组合物, 其中该原花 青素之单体包括黄酮类化合物。
6. 根据项 5 所述的减緩肝癌恶化之药物组合物, 其中该黄酮 类化合物包括儿茶素(catechin)、 表儿茶素(epicatechin)、 表阿夫儿茶 精 (epiafzetechin)、 没食子酸儿茶素 (gallocatechin)、 galloepicatechin ^ 表没食子儿茶素(epigallocatechin)、 gallates , 黄酮醇(flavonols)、 黄 坑双醇(flavandiols)、 无 色 矢车 菊素 (leucocyanidins)或花青素 (procynidins)。 7. 根据项 1 所述的减緩肝癌恶化之药物组合物, 其中该原花 青素之单体包括黄烷 _3-醇(flavan-3-ol)。
8. 根据项 1 所述的减緩肝癌恶化之药物组合物, 其中该原花 青素萃取自一植物。
9. 根据项 8 所述的减緩肝癌恶化之药物组合物, 其中该植物 包括杜鹃花科 (Ericaceae)、 蔷薇科 (Rosaceae)、 松科 (Pinaceae)、 葡萄 科 (Vitaceae)il荨麻科 (Urticaceae)之植物。
10. 根据项 9 所述的减緩肝癌恶化之药物组合物, 其中该荨麻 科(Urticaceae)之植物包括山苎麻。
1 1 . 一种改善肝功能之药物组合物, 包括:
一有效量之原花青素, 该原花青素之单体具有下列化学式:
Figure imgf000006_0001
其中, 当 1^为 0(^13时, R2为 OH , R3为 H , 当 1^为 011时, R2为 H , R3为 H , 当 为 OH时, R2为 OH , R3为 H或当 为 OH 时, R2为 OH , R3为 OH , R4为 3-(α)-ΟΗ、 3-(β)-ΟΗ、 3-(a)-0-sugar 或 3-(p)-0-sugar; 以及
一药学上可接受之载体或盐类。
12. 根据项 1 1所述的改善肝功能之药物组合物, 其中该原花青 素之单体以 C4、 C8碳键、 C4、 C6碳键或 C2、 C7氧键彼此相连。
13. 根据项 1 1所述的改善肝功能之药物组合物, 其中该原花青 素之聚合度介于 2~30。
14. 根据项 1 1所述的改善肝功能之药物组合物, 其中该原花青 素之单体包括于 C2、 C3或 C4位置之 R或 S光学异构物。
15. 根据项 1 1所述的改善肝功能之药物组合物, 其中该原花青 素之单体包括黄酮类化合物。
16. 根据项 15所述的改善肝功能之药物组合物, 其中该黄酮类 化合物包括儿茶素(catechin)、 表儿茶素(epicatechin)、 表阿夫儿茶精 (epiafzetechin)、 没食子酸儿茶素 (gallocatechin)、 galloepicatechin、 表没食子儿茶素(epigallocatechin)、 gallates , 黄酮醇(flavonols)、 黄 烷双醇(flavandiols)、 无 色 矢车 菊素(leucocyanidins)或花青素 (procynidins)。
17. 根据项 1 1所述的改善肝功能之药物组合物, 其中该原花青 素之单体包括黄烷 -3-醇(flavan-3-ol)。
18. 根据项 1 1所述的改善肝功能之药物组合物, 其中该原花青 素萃取自一植物。
19. 根据项 18所述的改善肝功能之药物组合物, 其中该植物包 括杜鹃花科 (Ericaceae)、 蔷薇科 (Rosaceae)、 松科 (Pinaceae)、 葡萄科 (Vitaceae) il荨麻科 (Urticaceae)之植物。
20. 根据项 19所述的改善肝功能之药物组合物, 其中该荨麻科 (Urticaceae)之植物包括山苎麻。
21 . 一种改善肝纤维化之药物组合物, 包括:
一有效量之原花青素, 该原花青素之单体具有下列化学式:
Figure imgf000008_0001
其中, 当 1^为 0(^13时, R2为 OH , R3为 H , 当 1^为 011时, R2为 H , R3为 H , 当 为 OH时, R2为 OH , R3为 H或当 为 OH 时, R2为 OH , R3为 OH , R4为 3-(α)-ΟΗ、 3-(β)-ΟΗ、 3-(a)-0-sugar 或 3-(p)-0-sugar; 以及
一药学上可接受之载体或盐类。
22. 根据项 21所述的改善肝纤维化之药物组合物, 其中该原花 青素之单体以 C4、 C8碳键、 C4、 C6碳键或 C2、 C7氧键彼此相连。
23. 根据项 21所述的改善肝纤维化之药物组合物, 其中该原花 青素之聚合度介于 2~30。
24. 根据项 21所述的改善肝纤维化之药物组合物, 其中该原花 青素之单体包括于 C2、 C3或 C4位置之 R或 S光学异构物。
25. 根据项 21所述的改善肝纤维化之药物组合物, 其中该原花 青素之单体包括黄酮类化合物。
26. 根据项 25所述的改善肝纤维化之药物组合物, 其中该黄酮 类化合物包括儿茶素(catechin)、 表儿茶素(epicatechin)、 表阿夫儿茶 精 (epiafzetechin)、 没食子酸儿茶素 (gallocatechin)、 galloepicatechin ^ 表没食子儿茶素(epigallocatechin)、 gallates , 黄酮醇(flavonols)、 黄 坑双醇(flavandiols)、 无 色 矢车 菊素 (leucocyanidins)或花青素 (procynidins)。 27. 根据项 21所述的改善肝纤维化之药物组合物, 其中该原花 青素之单体包括黄烷 _3-醇(flavan-3-ol)。
28. 根据项 21所述的改善肝纤维化之药物组合物, 其中该原花 青素萃取自一植物。
29. 根据项 28所述的改善肝纤维化之药物组合物, 其中该植物 包括杜鹃花科 (Ericaceae)、 蔷薇科 (Rosaceae)、 松科 (Pinaceae)、 葡萄 科 (Vitaceae) il荨麻科 (Urticaceae)之植物。
30. 根据项 29所述的改善肝纤维化之药物组合物, 其中该荨麻 科(Urticaceae)之植物包括山苎麻。
31 . 一种改善肝硬化之药物组合物, 包括:
一有效量之原花青素, 该原花青素之单体具有下列化学式:
Figure imgf000009_0001
其中, 当 1^为 0(^13时, R2为 OH , R3为 H , 当 1^为 011时, R2为 H , R3为 H , 当 为 OH时, R2为 OH , R3为 H或当 为 OH 时, R2为 OH , R3为 OH , R4为 3-(α)-ΟΗ、 3-(β)-ΟΗ、 3-(a)-0-sugar 或 3-(p)-0-sugar; 以及
一药学上可接受之载体或盐类。
32. 根据项 31所述的改善肝硬化之药物组合物, 其中该原花青 素之单体以 C4、 C8碳键、 C4、 C6碳键或 C2、 C7氧键彼此相连。
33. 根据项 31所述的改善肝硬化之药物组合物, 其中该原花青 素之聚合度介于 2~30。
34. 根据项 31所述的改善肝硬化之药物组合物, 其中该原花青 素之单体包括于 C2、 C3或 C4位置之 R或 S光学异构物。
35. 根据项 31所述的改善肝硬化之药物组合物, 其中该原花青 素之单体包括黄酮类化合物。
36. 根据项 35所述的改善肝硬化之药物组合物, 其中该黄酮类 化合物包括儿茶素(catechin)、 表儿茶素(epicatechin)、 表阿夫儿茶精 (epiafzetechin)、 没食子酸儿茶素 (gallocatechin)、 galloepicatechin、 表没食子儿茶素(epigallocatechin)、 gallates , 黄酮醇(flavonols)、 黄 烷双醇(flavandiols)、 无 色 矢车 菊素(leucocyanidins)或花青素 (procynidins)。
37. 根据项 31所述的改善肝硬化之药物组合物, 其中该原花青 素之单体包括黄烷 -3-醇(flavan-3-ol)。
38. 根据项 31所述的改善肝硬化之药物组合物, 其中该原花青 素萃取自一植物。
39. 根据项 38所述的改善肝硬化之药物组合物, 其中该植物包 括杜鹃花科 (Ericaceae)、 蔷薇科 (Rosaceae)、 松科 (Pinaceae)、 葡萄科 (Vitaceae) il荨麻科 (Urticaceae)之植物。
40. 根据项 39所述的改善肝硬化之药物组合物, 其中该荨麻科 (Urticaceae)之植物包括山苎麻。
41 . 一种改善肝发炎之药物组合物, 包括:
一有效量之原花青素, 该原花青素之单体具有下列化学式:
Figure imgf000011_0001
其中, 当 1^为 0(^13时, R2为 OH , R3为 H , 当 1^为 011时, R2为 H , R3为 H , 当 为 OH时, R2为 OH , R3为 H或当 为 OH 时, R2为 OH , R3为 OH , R4为 3-(α)-ΟΗ、 3-(β)-ΟΗ、 3-(a)-0-sugar 或 3-(p)-0-sugar; 以及
一药学上可接受之载体或盐类。
42. 根据项 41所述的改善肝发炎之药物组合物, 其中该原花青 素之单体以 C4、 C8碳键、 C4、 C6碳键或 C2、 C7氧键彼此相连。
43. 根据项 41所述的改善肝发炎之药物组合物, 其中该原花青 素之聚合度介于 2~30。
44. 根据项 41所述的改善肝发炎之药物组合物, 其中该原花青 素之单体包括于 C2、 C3或 C4位置之 R或 S光学异构物。
45. 根据项 41所述的改善肝发炎之药物组合物, 其中该原花青 素之单体包括黄酮类化合物。
46. 根据项 45所述的改善肝发炎之药物组合物, 其中该黄酮类 化合物包括儿茶素(catechin)、 表儿茶素(epicatechin)、 表阿夫儿茶精 (epiafzetechin)、 没食子酸儿茶素 (gallocatechin)、 galloepicatechin、 表没食子儿茶素(epigallocatechin)、 gallates , 黄酮醇(flavonols)、 黄 坑双醇(flavandiols)、 无 色 矢车 菊素 (leucocyanidins)或花青素 (procynidins)。 47. 根据项 41所述的改善肝发炎之药物组合物, 其中该原花青 素之单体包括黄烷 -3-醇(flavan-3-ol)。
48. 根据项 41所述的改善肝发炎之药物组合物, 其中该原花青 素萃取自一植物。
49. 根据项 48所述的改善肝发炎之药物组合物, 其中该植物包 括杜鹃花科 (Ericaceae)、 蔷薇科 (Rosaceae)、 松科 (Pinaceae)、 葡萄科 (Vitaceae) il荨麻科 (Urticaceae)之植物。
50. 根据项 49所述的改善肝发炎之药物组合物, 其中该荨麻科 (Urticaceae)之植物包括山苎麻。
51 . 一种促进受损肝脏再生之药物组合物, 包括:
一有效量之原花青素, 该原花青素之单体具有下列化学式:
Figure imgf000012_0001
其中, 当 1^为 0(^13时, R2为 OH , R3为 H , 当 1^为 011时, R2为 H , R3为 H , 当 为 OH时, R2为 OH , R3为 H或当 为 OH 时, R2为 OH , R3为 OH , R4为 3-(α)-ΟΗ、 3-(β)-ΟΗ、 3-(a)-0-sugar 或 3-(p)-0-sugar; 以及
一药学上可接受之载体或盐类。
52. 根据项 51所述的促进受损肝脏再生之药物组合物, 其中该 原花青素之单体以 C4、 C8碳键、 C4、 C6碳键或 C2、 C7氧键彼此 相连。 53. 根据项 51所述的促进受损肝脏再生之药物组合物, 其中该 原花青素之聚合度介于 2~30。
54. 根据项 51所述的促进受损肝脏再生之药物组合物, 其中该 原花青素之单体包括于 C2、 C3或 C4位置之 R或 S光学异构物。
55. 根据项 51所述的促进受损肝脏再生之药物组合物, 其中该 原花青素之单体包括黄酮类化合物。
56. 根据项 55所述的促进受损肝脏再生之药物组合物, 其中该 黄酮类化合物包括儿茶素(catechin)、 表儿茶素(epicatechin)、 表阿夫 儿 茶 精 (epiafzetechin) 、 没 食 子 酸 儿 茶 素 (gallocatechin) 、 galloepicatechin ^ 表没食子 茶素 (epigallocatechin)、 gallates、 黄 S同 (flavonols) , 黄坑双醇(flavandiols)、 无色矢车菊素(leucocyanidins) 或花青素 (procynidins)。
57. 根据项 51所述的促进受损肝脏再生之药物组合物, 其中该 原花青素之单体包括黄烷 -3-醇(flavan-3-ol)。
58. 根据项 51所述的促进受损肝脏再生之药物组合物, 其中该 原花青素萃取自一植物。
59. 根据项 58所述的促进受损肝脏再生之药物组合物, 其中该 植物包括杜鹃花科 (Ericaceae)、 蔷薇科 (Rosaceae)、 松科 (Pinaceae)、 葡萄科 (Vitaceae)或荨麻科 (Urticaceae)之植物。
60. 根据项 59所述的促进受损肝脏再生之药物组合物, 其中该 荨麻科(Urticaceae)之植物包括山苎麻。
61 . 一种逆转肝纤维化之药物组合物, 包括:
一有效量之原花青素, 该原花青素之单体具有下列化学式:
Figure imgf000014_0001
其中, 当 1^为 0(^13时, R2为 OH , R3为 H , 当 1^为 011时, R2为 H , R3为 H , 当 为 OH时, R2为 OH , R3为 H或当 为 OH 时, R2为 OH , R3为 OH , R4为 3-(α)-ΟΗ、 3-(β)-ΟΗ、 3-(a)-0-sugar 或 3-(p)-0-sugar; 以及
一药学上可接受之载体或盐类。
62. 根据项 61所述的逆转肝纤维化之药物组合物, 其中该原花 青素之单体以 C4、 C8碳键、 C4、 C6碳键或 C2、 C7氧键彼此相连。
63. 根据项 61所述的逆转肝纤维化之药物组合物, 其中该原花 青素之聚合度介于 2~30。
64. 根据项 61所述的逆转肝纤维化之药物组合物, 其中该原花 青素之单体包括于 C2、 C3或 C4位置之 R或 S光学异构物。
65. 根据项 61所述的逆转肝纤维化之药物组合物, 其中该原花 青素之单体包括黄酮类化合物。
66. 根据项 65所述的逆转肝纤维化之药物组合物, 其中该黄酮 类化合物包括儿茶素(catechin)、 表儿茶素(epicatechin)、 表阿夫儿茶 精 (epiafzetechin)、 没食子酸儿茶素 (gallocatechin)、 galloepicatechin ^ 表没食子儿茶素(epigallocatechin)、 gallates , 黄酮醇(flavonols)、 黄 坑双醇(flavandiols)、 无 色 矢车 菊素 (leucocyanidins)或花青素 (procynidins)。 67. 根据项 61所述的逆转肝纤维化之药物组合物, 其中该原花 青素之单体包括黄烷 _3-醇(flavan-3-ol)。
68. 根据项 61所述的逆转肝纤维化之药物组合物, 其中该原花 青素萃取自一植物。 69. 根据项 68所述的逆转肝纤维化之药物组合物, 其中该植物 包括杜鹃花科 (Ericaceae)、 蔷薇科 (Rosaceae)、 松科 (Pinaceae)、 葡萄 科 (Vitaceae) il荨麻科 (Urticaceae)之植物。
70. 根据项 69 所述的逆转肝纤维化之药物组合物, 其中该荨麻科 (Urticaceae)之植物包括山苎麻。
71. 项 1~70 中任一项所述的药物组合物在制造减緩肝癌恶化、 改善肝 功能、 改善肝纤维化、 改善肝硬化、 改善肝发炎、 促进受损肝脏再生和 /或逆 转肝纤维化的药物中的用途。
72. 项 1~70 中任一项所述的药物组合物用于减緩肝癌恶化、 改善肝功 能、 改善肝纤维化、 改善肝硬化、 改善肝发炎、 促进受损肝脏再生和 /或逆转 肝纤维化。
为让本发明之上述目的、 特征及优点能更明显易懂, 下文特举一较佳实 施例, 并配合附图, 作详细说明 ^下。 附图说明 图 1代表 3-黄烷醇 (3-flavanol), 3,4-黄烷醇 (3,4-flavanol),儿茶素 (catechin), 表儿茶素 (epicatechin)。 图 2a与图 2b代表原花青素山苎麻 95%酒精萃取物, 再纯化后之原花青 素之热分解气相层析质谱图。 图 3代表山苎麻 95%酒精萃取物, 再纯化后之原花青素的红外光吸收光 谱图。
图 4a与 4b代表山苎麻 95%酒精萃取物,再纯化后之原花青素的原花青 素之高效液相层析之质谱正 /负质谱图。
图 5a-c代表山苎麻 95%酒精萃取物, 再纯化后之原花青素的 13C-NMR 和 1H-NMR图谱。
图 6a与 6b依据 1HNMR及 13CNMR之检验图谱显示, 本发明纯化之 原花青素高分子之单体连结以 4-8为主, 4-8及 4-6之连结单位分别如图 6a 与 6b所示。
图 7a-c代表山苎麻 95%酒精萃取物,再纯化后之原花青素介质辅助激光 脱附离子化质谱图谱。
图 8系显示本发明药物组合物 (BEL-X)对 B型肝炎病毒 X转基因鼠诱发 肝癌存活率之影响。
图 9系显示本发明药物组合物 (BEL-X)对 B型肝炎病毒 X转基因鼠肝癌 恶化程度之影响, 以肝重 /体重比进行评估。
图 10系显示本发明药物组合物 (BEL-X)对 B型肝炎病毒 X转基因鼠诱发 肝癌肝功能之影响, 以肝功能指数 ALT进行评估。
图 11系显示本发明药物组合物 (BEL-X)对 B型肝炎病毒 X转基因鼠诱发 肝癌肝功能之影响, 以肝功能指数 AST进行评估。
图 12系显示本发明药物组合物 (BEL-X)对保护化学药物 DEN诱发大鼠 肝纤维化之影响, 以羟脯氨酸含量 (hydroxyproline)进行评估。
图 13系显示本发明药物组合物 (BEL-X)对保护化学药物 DEN诱发大鼠 肝纤维化之影响, 以 α-SMA染色面积进行评估。
图 14系显示本发明药物组合物 (BEL-X)对化学药物 DEN诱发大鼠肝纤 维化之影响, 以羟脯氨酸含量进行评估。
图 15~16系显示本发明药物组合物 (BEL-X)对化学药物 DEN诱发大鼠肝 纤维化 /肝癌存活率之影响。
图 17系显示本发明药物组合物 (BEL-X)对化学药物 DEN诱发大鼠肝纤 维化肝再生之影响, 以肝体积再生比例进行评估 t 具体实施方式
本发明以原花青素作为药物组合物 (BEL-X)之有效成分, 以达减緩肝癌 恶化、 改善肝功能、 改善肝纤维化、 改善肝硬化、 改善肝发炎及促进受损肝 脏再生之目的。
本发明可自一植物萃取出原花青素,其具有减緩肝癌恶化、改善肝功能、 改善肝纤维化、 改善肝硬化、 改善肝发炎及促进受损肝脏再生之功效。 在一 实施例中, 使用的植物可包括杜鹃花科 (Ericaceae), 蔷薇科 (Rosaceae)、 松科 (Pinaceae) , 葡萄科 (Vitaceae)或荨麻科 (Urticaceae)之植物, 较佳为荨麻科 (Urticaceae)之山苎麻。 而植物之萃取部分可包括根、 茎、 叶和 /或果实。
本发明可以一般习知方法进行植物萃取。在一实施例中,将一植物之根、 茎、叶和 /或果实干燥后进行切片或磨碎,之后,以一萃取液对植物进行萃取。 在一实施例中, 选择以山苎麻之根和 /或茎进行萃取。
上述萃取液可选择水或水与不同极性溶剂混合之溶液。 与水不同极性的 溶剂可包括酒精、 丙酮、 曱醇或醋酸乙脂。 上述溶剂可单独使用、 混合使用 或与水混合使用。 萃取液与植物之比例并无特定限制, 在一实施例中, 萃取 液与植物之比例为 1: 10 (W/W)。
于萃取过程中, 萃取温度会随萃取液之不同而有些许改变。 在一实施例 中, 可利用室温浸泡。 在另一实施例中, 可加热至不同萃取液之回流温度 (60~100。C)。 萃取时间约为 2小时至 7天, 其长短端视操作之萃取温度而定。 另于萃取操作中, 可视需要将例如氯化钠、 稀无机酸 (如稀盐酸)或有机酸 (如 维生素 C或酒石酸)加入萃取液中, 以调节萃取液之 pH值。
之后, 将含有原花青素活性成分的萃取物浓缩后进行干燥, 或可视需要 对上述萃取物进行部分纯化或完全纯化。 在一实施例中, 部分纯化的方法是 将干燥之萃取物以 95%酒精和 /或曱醇水溶液回溶,之后, 利用不同极性之溶 剂萃取, 以去除部分杂质, 例如先以非极性溶剂 (如正己烷)去除脂质及非极 性物质, 再以三氯曱烷和 /或乙酸乙脂萃取去除小分子酚类化合物。 之后, 将 经溶剂萃取后之水层进行浓缩干燥,即可取得部分更加纯化之原花青素物质。
若欲进行完全纯化, 其步骤可包括以酒精或曱醇水溶液溶解上述经部分 纯化的萃取物, 再将其置入分子筛管柱中。 之后, 以不同溶液和 /或混合溶液 冲提, 进行原花青素之纯化分离。 在一实施例中, 不同溶液冲提的顺序为: 95%酒精、 95%酒精 /曱醇 (1 : 1 , v/v 50%曱醇与 50%丙酮水溶液。 将每一 冲提液冲提出来的溶液进行分段收集。之后, 以液相层析仪 (280 检测冲提 出来的溶液中经纯化的原花青素。 收集不同冲提液冲提出来的溶液, 可得到 不同分子量分布的原花青素溶液。 之后, 将上述不同阶段冲提出来的溶液以 低于 40。C之温度浓缩, 并冷冻干燥, 即可得到纯化之原花青素。 在一实施例 中, 进行冲提的分子筛管柱为 Sephadex LH-20管柱 (购自德国安玛西亚股份 有限公司)。
本发明经上述纯化后之原花青素, 其单体具有下列化学式。
Figure imgf000018_0001
在一实施例中, 当 R1为 OCH3时, R2为 OH, R3为 H。 在另一实施例 中, 当 R1为 OH时, R2为 H, R3为 H。 在另一实施例中, 当 R1为 OH时, R2为 OH, R3为 H。 在另一实施例中, 当 R1为 OH时, R2为 OH, R3为 OH。 上述化学式中, R4 可为 3-(α)-ΟΗ、 3-(β)-ΟΗ、 3-(a)-0-sugar 或 3-(P)-0-sugar。 上述原花青素的单体可包括于 C2、 C3或 C4位置之 R或 S光学异构物。 上述原花青素的单体结构中可包括黄酮类化合物,例如儿茶素 (catechin)、 表儿茶素(epicatechin)、 表阿夫儿茶精(epiafzetechin)、 没食子酸儿茶素 (gallocatechin)、 galloepicatechin、 表没食子儿茶素 (epigallocatechin)、 gallates、 黄酮醇 (flavonols)、 黄坑双醇 (flavandiols)、 无色矢车菊素 (leucocyanidins)或花 青素(procynidins)。 在一实施例中, 原花青素的单体可包括黄烷 -3-醇 (flavan-3-ol)或黄烷衍生物。
本发明原花青素的聚合度介于 2~30, 较佳介于 3~20。 本发明原花青素 的单体可以 C4、 C8碳键、 C4、 C6碳键或 C2、 C7氧键彼此相连。 本发明原 花青素的平均分子量介于 600~10,000。
在一实施例中, 本发明纯化的原花青素可包括单一聚合度之原花青素。 在另一实施例中, 本发明纯化的原花青素可包括不同聚合度之原花青素混合 物。
本发明可以上述萃取之原花青素制成一用于减緩肝癌恶化、 改善肝功 能、 改善肝纤维化、 改善肝硬化、 改善肝发炎及促进受损肝脏再生的药物组 合物, 其可包括原花青素与一药学上可接受之载体或盐类。
药学上可接受之载体可包括, 但不限定于溶剂、 分散介质 (dispersion medium) , 包衣 (coating) , 抗菌试剂、 抗真菌试剂、 等渗透压与吸收延迟 (absorption delaying)试剂或药学施用相容剂。对于不同给药方式,可利用习知 方法将药物组合物配制成各种适当剂型 (dosage form)。
药学上可接受之盐类可包括, 但不限定于无机盐类或有机盐类。 无机盐 类可包括例如钠、 钾或胺盐的碱金族盐类, 例如镁或钙盐的碱土族盐类, 或 例如辞、 铝或锆盐的含二价或四价阳离子盐类。 有机盐类可包括二环己胺盐 类、 曱基 -D-葡糖胺或例如精氨酸、 赖氨酸、 组氨酸或谷氨酰胺的氨基 酸盐类。 本发明药物组合物 (BEL-X)的给药方式可包括口服、 非口服、 经吸入喷 雾 (inhalation spray)或经植入贮存器 (implanted reservoir)的方式给药。非口月良方 式可包括经皮下 (subcutaneous)、 皮内 (intracutaneous)、 静月永内 (intravenous)、 月几肉内 (intramuscular)、 关节内 (intraarticular)、 动月永 (intraarterial)、 滑嚢 (月空)内 (intrasynovial)、 胸骨内 (intrasternal)、 虫知蛛膜下腔 (intrathecal)或疾病部位内 (intraleaional)注射或灌注技术。
口服剂型可包括, 但不限定于药锭、 胶嚢、 乳剂(emulsions), 水性悬浮 液 (aqueous suspensions)、 分散液 (dispersions)或溶液。
本发明药物组合物 (BEL-X)经实验测试发现可应用于各种肝脏疾病之治 疗, 包含 (1) 由慢性 B型肝炎病毒或 C型肝炎病毒感染所引起之肝癌, 本发 可改善与提升肝癌病患之肝功能, 减緩肝癌恶化时程, 提高肝癌病患可进行 手术率与手术成功率, 降低术后复发率, 可增加肝癌病患之存活率与延长存 活时间,同时,亦可提升肝癌病患之生活品质。(2)本发明药物组合物 (BEL-X) 可单独使用或与其他临床治疗药物合并使用来治疗肝纤维化病患。 (3) 本发 明药物组合物 (BEL-X)可单独使用或与其他临床治疗药物合并使用来治疗肝 发炎病患, 例如: 脂肪肝疾病, 以改善其肝功能防止肝硬化与肝癌之发生。 实施例 实施例 1
1. 原花青素聚合物之单体结构测定
原花青素单体之结构是以热分解气相层析质谱仪检测 ^ Gas Chrimatograph -Mass Spectrometry ) 。 检测的方法是将固体之纯 4匕 原花青素 (^自行纯化之样品 直接置于热分解气相层析仪, 以分 段温度 ( 50 °C至 500 °C ) 或单一温度之设定操作方式逐渐加温或瞬 间加温, 将加热分解的样品经热分解仪之特定的金属管柱分离, 经 质谱仪侦测器所产生的图谱, 判定出原花青素聚合物之单体结构。 原花青素聚合物之质谱图与结构分析分别显示于图 2a与 2b。 其中 图 2b-e之左半部为图 2a波峰之 m/z 值及其化学结构, 而右半部为 左半部波峰之单体解析。 判定出之原花青素聚合物之单体结构分子 式 ¾口下所示:
Figure imgf000021_0001
其中, 为 OCH3、 R2为 OH且 R3为 H, 或 为 OH且 R2 与 R3皆为 H, 或 与 R2皆为 OH且 R3为 H, 或 R1 R2与 R3皆为 OH。
而因热分解所测得之质谱显示含有配糖体讯号的 peak , 因此推定 R4的组成可能为 3-(a)-OH、3-(p)-OH、3-(a)-0-sugar或 3-(P)-0-sugar„ 2. 红外光吸收光谱分析
将纯化之原花青素样品和氯化钾混合压片, 以穿透式红外光谱 检测, 结果如图 3 所示, 其中较强的吸收波峰为 3412.38nm , 1610.57nm, 1521.40nm, 1441.14nm, 1284.86nm, 1 100.88nm 。 3. 高效液相层析盾谱图谱分析
将纯化之原花青素样品,以高效液层析质谱仪 (电喷洒正 /负质 谱仪, HPLC/ESI+ , HPLC/ESI-)(Micromass Quattro/Waters 2690)检 测, 侦测到原花青素聚合度 1到 6的单体及聚合物, 及含有 164之 配糖体(即单体分子量加一个配糖分子量 164)。纯化之原花青素之高 效液相层析之的质谱正 /负质谱图如图 4a与 4b所示。
4. 核磁共振碳 13 (13C NMR)和氢 H NMR)图谱分析
纯化之原花青素样品以碳 13 (13C NMR)和氢 NMR)核磁共 振仪器检测, 碳 13 (13C NMR)之结果如图 5a-c 所示。 其中在 142-145.7 ppm除显示 doublet-doublet之波峰夕卜,并没有另外的波峰, 显示单体有花青素 ,而没有飞燕草素(delphindin) , 即 B环 有 3 个 -OH 取代基者,此处与 EGA/MS所分析结果相同。 而在图 5b中 = H 或 OH而 R2= H或 OH或 OCH。
依据 iHNMR 及 13CNMR 之检验图语显示, 本发明纯化之原 花青素高分子之单体连结以 4-8为主。 4-8及 4-6之连结单位分别如 图 6a与 6b所示。
5. 介盾辅助激光脱附离子 4匕盾傳(Matrix Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF))分析
部分纯化之原花青素分子量分布是以介质辅助激光脱附离子 化质谱仪测定。 结果如图 7a-c所示。 检测之结果显示经部分纯化之 原花青素之分子量分布是 500-5000 , 由分子量分布之检测结果显 示, 推定高分子之聚合度约为 2-18。 实施例 2
含原花青素萃取物之制备(1) 将山苎麻药材的根部与连接根部的茎部以水洗净, 置于自然环 境下干燥。 将干燥后的药材切片至约 5mm厚度, 储存于 4°C备用。 取储存备用的山苎麻药材, 以研磨器研磨, 取过 后小于网孔 20 (20mesh)的粉末。 之后, 加入重量 10倍(1 : 10 , w/w)的 95 %酒精, 加热回流 2小时(共二次)。 待静置冷却回温后, 收集回温的萃取液, 并倒入离心袋中以离心机离心过滤。 之后, 将过滤液置于温度控制 在低于 40。C的减压浓缩机中进行浓缩, 并利用冷冻干燥机干燥之, 即可得到含原花青素的萃取物。 实施例 3
含原花青素萃取物之制备 (2)
取实施例 2储存于 4。C的干燥药材, 以研磨器研磨, 取过筛后 小于网孔 20 (20 mesh)的粉末。 之后, 加入重量 10倍(1 : 10 , w/w) 的逆渗透处理水(RO水), 加热回流 2小时(共二次)。 待静置冷却回 温后, 收集回温的萃取液, 并加入酒 4青(95%至 50%)水溶液。 于混 合后静置冷却待沉淀。 将上层液倒入离心袋中以离心机离心过滤。 之后, 将过滤液置于温度控制在低于 40。C 的减压浓缩机中进行浓 缩, 并利用冷冻干燥机干燥之, 即可得到含原花青素的萃取物。 实施例 4
含原花青素萃取物之纯化(1)
将实施例 2或 3含原花青素的萃取物加入正已烷(1 : 10 , w/v) 加热回流(by Soxhelt apparatus) 6小时, 以去除萃取物中的脂质。 得 到的固体物以 70%曱醇水溶液和 /或 0.3维生素 C水溶液溶解, 并置 于温度控制在低于 40。C的减压浓缩机中进行浓缩, 以去除溶剂。 之 后, 将浓缩体加入三氯曱烷(1: 1, 三氯曱烷: 浓缩体, v/v), 并以 振荡器振荡 30 分钟(多次萃取)。 取水层加入乙酸乙脂(1: 1, 乙酸 乙脂: 水层, v/v), 振荡 30分钟(多次萃取)。 再取水层置于温度控 制在低于 40。C 的减压浓缩机中进行浓缩, 并利用冷冻干燥机干燥 之, 即可得到部分纯化的原花青素。 实施例 5
含原花青素萃取物之纯化(2)
将实施例 2或 3含原花青素的萃取物加入水 /酒精溶解(1: 10, w/v)。 之后, 加入正已烷(1: 10, v/v), 以振荡器振荡 30分钟(多次 萃取), 以去除萃取物中的脂质。 取水层加入乙酸乙脂(1: 1, 乙酸 乙脂: 水层, v/v), 振荡 30分钟(多次萃取)。 再取水层加入正丁醇 (1: 10, v /v), 以振荡器振荡 30分钟(多次萃取)。 再取水层置于温 度控制在低于 40。 C的减压浓缩机中进行浓缩,并利用冷冻干燥机干 燥之, 即可得到部分纯化的原花青素。 实施例 6
含原花青素萃取物之纯化(3)
将实施例 4 所得的部分纯化原花青素, 以分子筛管柱层析(Gel Permeation Chromatography , 4cm diameter x 45cm long Sephadex LH-20)进行再纯化。 首先, 以不同极性的溶液进行冲提, 以去除杂 质。 之后, 取 2.5克部分纯化的原花青素, 以 0.5mL 95%酒精溶解 之。 接着, 将溶解后的样品置入分子筛管柱中, 以一系列溶剂(冲提 液)连续冲提, 并收集不同溶剂(冲提液)冲提出的流洗液。 冲提液分 别为 300mL 95%酒精溶液、 300mL 95%酒精 /曱醇(1/1 , v/v), 300mL 曱醇、 300mL 50%曱醇水溶液与 300mL 50%丙酮水溶液。 除了以 300mL 95%酒精冲提液冲提出的流洗液外, 其他各段冲提出的流洗 液均置于温度控制在低于 40。 C的减压浓缩机中进行浓缩,并利用冷 冻干燥机干燥之, 即可得到部分纯化或完全纯化的原花青素。 之后, 将上述干燥后的物质储存于 -20°C备用。 实施例 7
药物(BEL-X)对 B型肝炎病毒 X转基因鼠诱发肝癌存活率之影 响
实验动物: 实验所使用的动物亲代种源为 2006年 BBRC1所发 表之 B型肝炎病毒 X转基因鼠 C57BL/6J-HBx (AO 1 12 line)之公鼠。
实验分组与实验设计: 小鼠实验组别共分 6组, 包括非转基因 鼠之对照组(Non-Tg mock 9-20M)、 非转基因 鼠之药物对照组 (Non-Tg BEL-X treated 9-20M)、 转基因鼠之对照组(Tg mock 9-20M) 与转基因鼠之药物试验组(Tg BEL-X treated) 3组: 分别于小鼠 9月 龄起(Tg BEL-X treated 9-20M)、 12月龄起(Tg BEL-X treated 12-20M) 与 15 月龄起(Tg BEL-X treated 15-20M)开始每日给予口服药物 BEL-X (本发明药物组合物)一次, 持续给药至 20月龄。 非转基因鼠 之对照组(Non-Tg mock 9-20M)与转基因 鼠之对照组(Tg mock 9-20M)自小鼠 9 月龄起, 每日给予动物饮用水一次, 持续至 20 月 龄。 非转基因鼠之药物对照组(Non-Tg BEL-X treated 9-20M)亦自小 鼠 9月龄起, 每日给予口服药物 BEL-X—次, 持续给药至 20月龄。 BEL-X药物之剂量为 l ,000mg/kg/天。
结论:
1.请参阅图 8 , B型肝炎病毒 X转基因鼠公鼠在 20月龄时 100% 会产生肝癌, 其存活率约为 64% (Tg mock 9-20M)。 而不同月龄喂 食药物 BEL-X之存活率分别为: 9-20月龄(Tg BEL-X treated 9-20M) 70% , 12-20月龄(Tg BEL-X treated 12-20M) 100% , 15-20月龄(Tg BEL-X treated 15-20M) 58%。
2.以 Chi-Square进行统计分析发现, B型肝炎病毒 X转基因鼠 公鼠在 12-20月龄给药 BEL-X , 其 20月龄时存活率可达 100% , 具 显著差异。
3.B型肝炎病毒 X转基因鼠公鼠在早期诱发肝癌喂食 BEL-X可 增加产生肝癌基因鼠公鼠的存活率。 实施例 8
药物(BEL-X)对 B型肝炎病毒 X转基因鼠肝癌恶化程度减緩之 影响
实验动物: 实验所使用的动物亲代种源为 2006年 BBRC1所发 表之 B型肝炎病毒 X转基因鼠 C57BL/6J-HBx (A01 12 line)之公鼠。
实验分组与实验设计: 小鼠实验组别共分 6组, 包括非转基因 鼠之对照组(Non-Tg mock 9-20M)、 非转基因 鼠之药物对照组 (Non-Tg BEL-X treated 9-20M)、 转基因鼠之对照组(Tg mock 9-20M) 与转基因鼠之药物试验组(Tg BEL-X treated) 3组: 分别于小鼠 9月 龄起(Tg BEL-X treated 9-20M)、 12月龄起(Tg BEL-X treated 12-20M) 与 15 月龄起(Tg BEL-X treated 15-20M)开始每日给予口服药物 BEL-X (本发明药物组合物)一次, 持续给药至 20月龄。 非转基因鼠 之对照组(Non-Tg mock 9-20M)与转基因 鼠之对照组(Tg mock 9-20M)自小鼠 9 月龄起, 每日给予动物饮用水一次, 持续至 20 月 龄。 非转基因鼠之药物对照组(Non-Tg BEL-X treated 9-20M)亦自小 鼠 9月龄起, 每日给予口服药物 BEL-X—次, 持续给药至 20月龄。 BEL-X药物之剂量为 l ,000mg/kg/天。
测定肝重与体重的比率:将动物牺牲解剖并进行肝脏(含肝肿瘤) 釆样。 将所秤得的肝重除以小鼠的体重, 即可得到肝重与体重的比 率 (liver/Body weight)。
结论:
1.请参阅图 9 , 正常非转基因鼠(Non-Tg mock)的肝重与体重比 例约为 5% , 而 B型肝炎病毒 X转基因鼠公鼠(Tg mock)在 20月龄 时因产生肝癌, 故其肝重与体重比例上升至 13%左右, 以 ANOVA 统计分析发现, 转基因鼠与正常非转基因鼠的肝重与体重比例具显 著差异。
2.正常非转基因鼠喂食 BEL-X 连续 1 年(9-20 月龄) (Non-Tg BEL-X treated 9-20M)后肝重与体重比例与未喂药组相同均为 5% , 显示此药物对正常动物无任何影响。
3.B型肝炎病毒 X转基因鼠公鼠在不同月龄喂食药物 BEL-X发 现, 三组肝重与体重比例下降为 8%左右, 而 9-20 月龄(Tg BEL-X treated 9-20M)与 12-20月龄(Tg BEL-X treated 12-20M)给药组与未 给药组(Tg mock 9-20M)具有显著统计差异。 实施例 9
药物(BEL-X)对 B型肝炎病毒 X转基因鼠诱发肝癌其肝功能之 影响(1)
实验动物: 实验所使用的动物亲代种源为 2006年 BBRC1所发 表之 B型肝炎病毒 X转基因鼠 C57BL/6J-HBx (A01 12 line)之公鼠。
实验分组与实验设计: 小鼠实验组别共分 6组, 包括非转基因 鼠之对照组(Non-Tg mock 9-20M)、 非转基因 鼠之药物对照组 (Non-Tg BEL-X treated 9-20M)、 转基因鼠之对照组(Tg mock 9-20M) 与转基因鼠之药物试验组(Tg BEL-X treated) 3组: 分别于小鼠 9月 龄起(Tg BEL-X treated 9-20M)、 12月龄起(Tg BEL-X treated 12-20M) 与 15 月龄起(Tg BEL-X treated 15-20M)开始每日给予口服药物 BEL-X (本发明药物组合物)一次, 持续给药至 18月龄。 非转基因鼠 之对照组(Non-Tg mock 9-20M)与转基因 鼠之对照组(Tg mock 9-20M)自小鼠 9 月龄起, 每日给予动物饮用水一次, 持续至 20 月 龄。 非转基因鼠之药物对照组(Non-Tg BEL-X treated 9- 18M)亦自小 鼠 9月龄起, 每日给予口服药物 BEL-X—次, 持续给药至 18月龄。 BEL-X药物之剂量为 l ,000mg/kg/天。
肝功能 ICG检测: 以靛氰绿(indocyanine green, ICG)静脉注射 10分钟后, 测定 ICG滞留于血中的浓度(mg/dl) , 以作为肝功能的指 标。 本试验共进行 2次, 分别于小鼠 12月龄及 18月龄时执行。
结论:
1.请参阅下表 1 , 18月龄正常非转基因鼠(Non-Tg mock 9-20M) ICG的代谢值为 2.25±0.89mg/dl , 此结果与 18 月龄喂食 BEL-X组 (Non-Tg BEL-X treated 9-20M)无显著差异。
2. B型肝炎病毒 X转基因鼠公鼠(Tg mock 9-20M)在 18月龄时 因 产生肝癌 , 故其 ICG 代谢迟緩延至 4.46±1.17mg/dl , 以 nonparametric统计分析发现, 转基因鼠与正常非转基因鼠的 ICG代 谢具显著差异。
3. B 型肝炎病毒 X 转基因鼠公鼠在三组不同月龄喂食药物 BEL-X发现, 三组的 ICG代谢率均比未给药组(Tg mock 9-20M)低, 而在 9月龄开始喂食药物 BEL-X (Tg BEL-X treated 9-20M)与未给药 组(Tg mock 9-20M)具有显著统计差异, 显示 BEL-X可改善肝癌动 物的肝功能。 表 1
Figure imgf000029_0001
实施例 10
药物(BEL-X)对 B型肝炎病毒 X转基因鼠诱发肝癌其肝功能之 影响(2)
实验动物: 实验所使用的动物亲代种源为 2006年 BBRC1所发 表之 B型肝炎病毒 X转基因鼠 C57BL/6J-HBx (A01 12 line)之公鼠。
实验分组与实验设计: 小鼠实验组别共分 6组, 包括非转基因 鼠之对照组(Non-Tg mock 9-20M)、 非转基因 鼠之药物对照组 (Non-Tg BEL-X treated 9-20M)、 转基因鼠之对照组(Tg mock 9-20M) 与转基因鼠之药物试验组(Tg BEL-X treated) 3组: 分别于小鼠 9月 龄起(Tg BEL-X treated 9-20M)、 12月龄起(Tg BEL-X treated 12-20M) 与 15 月龄起(Tg BEL-X treated 15-20M)开始每日给予口服药物 BEL-X (本发明药物组合物)一次, 持续给药至 20月龄。 非转基因鼠 之对照组(Non-Tg mock 9-20M)与转基因 鼠之对照组(Tg mock 9-20M)自小鼠 9 月龄起, 每日给予动物饮用水一次, 持续至 20 月 龄。 非转基因鼠之药物对照组(Non-Tg BEL-X treated 9-20M)亦自小 鼠 9月龄起, 每日给予口服药物 BEL-X—次, 持续给药至 20月龄。 BEL-X药物之剂量为 l ,000mg/kg/天。
肝功能酶谷丙转氨酶 (ALT)与谷草转氨酶 (AST)检测: 所有小鼠 每月定期釆血(下颚或心脏釆血)一次, 全血于 eppendorf 中室温下静 置 30分钟以上。 凝血后以 l ,800g离心 10分钟。 离心后, 将血清移 至新 eppendorf 中于 -20。C 储存至检测当 日 。 以湿式血清生化仪 (HITACHI 7080)测定血清中的 ALT与 AST值。由于 B型肝炎病毒 X转基因鼠公鼠产生肝病变与动物月龄具关联性, 故将 9-20月龄每 组动物所测得肝功能指数 ALT与 AST , 由 9月龄开始, 每 3个月混 合分析。
结论:
1.请参阅图 10、 1 1 , 正常非转基因鼠(Non-Tg mock 9-20M)与 B 型肝炎病毒 X转基因鼠(Tg mock 9-20M)从第 12月龄开始有差异, 而正常非转基因鼠喂食 BEL-X (Non-Tg BEL-X treated 9-20M)与未 给药组(Non-Tg mock 9-20M)肝功能指数无显著差异。
2.B型肝炎病毒 X转基因鼠在不同月龄喂食药物 BEL-X 发现, 三组的 ALT与 AST比未给药组(Tg mock 9-20M)低,而 9-20月龄(Tg BEL-X treated 9-20M)及 12-20月龄(Tg BEL-X treated 12-20M)给药 组与未给药组(Tg mock 9-20M)具有显著统计差异, 显示 BEL-X可 以有效改善肝癌动物的肝功能。 实施例 11
药物(BEL-X)对化学药物 DEN诱发大鼠肝纤维化之影响(1) 实验分组与实验设计: 将 8周大的 Wistar大鼠分别喂食二乙基 亚 肖胺(diethyl nitrosamine, DEN)(100ppm, 添力口于饮水中给予) 6周 (D6组)及 9周(D9组), 以诱发产生肝纤维化与肝癌。 另外两组动物 在喂食 DEN同时亦给予 BEL-X药物(1000mg/kg body weight) (添加 于饲料中每日喂食, 连续 6周(D6H6组)及 9周(D9H9组))。 动物于 不同时间点进行肝癌程度分析。 对照组全程不给与任何药物。 每个 实验组各有 10 只大鼠。 肝纤维化 /肝癌程度分析以病理切片染色后 判读, 并佐以羟脯氨酸生化分析。 测定肝脏中羟脯氨酸含量上升可 作为肝纤维化的指标。 在不同时间点釆集各组动物肝脏进行羟脯氨 酸含量测定。 之后, 将肝脏进行切片进行 α-SMA 免疫染色分析。 a-smooth-muscle-actin (α-SMA)含量上升亦为肝纤维化的另一指标。 第 9周时, 釆集各组动物肝脏进行 a-smooth-muscle-actin免疫染色, 并利用显微镜进行肝脏细胞的观察, 计算含此标记的细胞量。
结论:
1.请参阅图 12 , 连续给予 DEN 9周的动物组(D9组), 其肝脏中 羟脯氨酸含量显著上升, 显示 DEN成功诱发肝纤维化, 但同时也喂 食 BEL-X 的实验组(D9H9组), 其羟脯氨酸含量则显著下降, 显示 BEL-X具有保护肝脏免于因化学物质 DEN造成肝纤维化的功能。
2.请参阅图 13 , 连续给予 DEN 9周的动物组(D9组), 其肝脏中 α-smooth-muscle-actin含量显著上升,显示 DEN成功诱发肝纤维化, 但同时也喂食 BEL-X 的实验组(D9H9 组)其含量显著下降, 显示 BEL-X具有保护肝脏免于化学物质 DEN造成肝纤维化的功能。
3.另外, 连续给予 DEN 6周同时也喂食 BEL-X的实验组(D6H6 组), 其 α-smooth-muscle-actin含量亦显著下降, 显示 BEL-X具有早 期保护肝脏免于因化学物质 D E N造成肝纤维化的功能。 实施例 12
药物(BEL-X)对化学药物 DEN诱发大鼠肝纤维化之影响(2) 实验分组与实验设计: 将 8周大的 Wistar大鼠分别喂食二乙基 亚竭胺(diethyl nitrosamine, DEN)(100ppm, 添加于饮水中给予), 以 诱发产生肝纤维化与肝癌。 另外三组动物在喂食 DEN 同时亦给予 BEL-X药物(1000mg/kg body weight) (添加于饲料中每日喂食, 分别 于第 3-6周、 第 6-9周与第 9-12周喂食)。 动物于适当时间点进行肝 癌程度分析。 对照组(DEN)为喂食 DEN过程中, 全程不给药。 每个 实验组各有 10 只大鼠。 肝纤维化 /肝癌程度分析以目测法判别, 并 佐以羟脯氨酸生化分析。 测定肝脏中羟脯氨酸含量上升可作为肝纤 维化的指标。 在第 12周釆集各组动物肝脏进行羟脯氨酸含量测定。
结论:
1.请参阅图 14 , 连续给予 DEN 9周的动物组(DEN) , 其肝脏中 羟脯氨酸含量显著上升, 显示 DEN 成功诱发肝纤维化, 但于早期 DEN诱发时期喂食 BEL-X的实验组(第 3-6周(DEN-BEL-X 3-6)与第 6-9周(DEN-BEL-X 6-9) , 其羟脯氨酸含量均显著下降, 显示 BEL-X 具有逆转因化学物质 DEN造成肝纤维化的功能。 实施例 13
药物(BEL-X)对化学药物 DEN 诱发大鼠肝纤维化存活率之影 响
实验分组与实验设计: 将 8周大的 Wistar大鼠分别喂食二乙基 亚竭胺 (diethyl nitrosamine, DEN)(50ppm , 添^于饮水中给予)连续 10.5周, 以诱发产生肝纤维化与肝癌(B组)。 在喂食 DEN同时分别 于 0-10.5周(C组), 3-10.5周(D组), 6-10.5周(E组)或在停止喂食 DEN后 0-3周(F组)将 BEL-X药物(1000mg/kg body weight)添加于饲 料中每日喂食。 动物于适当时间点进行肝癌程度分析。 对照组为全 程不给任何药物(A组)。 实验期间纪录动物死亡, 以 nonparametric 统计分析各组存活率。
结论:
1.请参阅图 15 , 在第 13.5周(94天)分析各组存活率发现, 单独 给予 DEN (B组)存活率仅剩 40%左右,而不同时间喂食 BEL-X的各 组均有非常高的存活率(>80%) ,显示 BEL-X可显著增加肝纤维化与 肝癌的存活率。
2.请参阅图 16 ,在第 15周(104天)分析 DEN诱发肝癌后再给予 BEL-X药物 3周(F组)的存活率发现: BEL-X给药期间(74-94天)不 仅可维持动物 100%的存活, 停止给予 BEL-X药物 5天后(95-99天) 仍可维持无死亡率。 在第 15周(104天)时发现其存活率 62%仍高于 单独给予 DEN (B组)在第 13.5周(94天)的存活率 40% ,显示 BEL-X 对肝硬化与肝癌动物不仅可延长其存活时间,亦可显著增加存活率。 实施例 14
化学药物 DEN 诱发大鼠肝脏受损后药物(BEL-X)对其肝脏再 生之影响(1)
实验分组与实验设计: 将 8周大的 Wistar大鼠分别喂食二乙基 亚竭胺(diethyl nitrosamine, DEN)(100ppm, 添加于饮水中给予)连续 9周, 以诱发产生肝纤维化与肝硬化(未给药组)。 另外在第 6-9周同 时添加 BEL-X药物(分为 BEL-X高剂量组(l ,000mg/kg body weight) 与 BEL-X低剂量组(250 mg/kg body weight))于饲料中每日喂食。 在 完成喂食药物后, 于第 9周切除 50%肝叶, 并于两天后收集肝脏样 品, 进行切片与 H&E染色。 之后, 在显微镜下观察肝细胞的有丝分 裂, 以作为肝脏再生依据。 肝细胞的有丝分裂计算如下: 每只动物 至少有 3个肝切片, 每个切片 10个视野, 在显微镜放大 400X倍率 下计数有丝分裂细胞数目, 最后求取每组动物的平均值。
结论:
1.请参阅下表 2 , 化学药物 DEN诱发肝纤维化与肝癌后进行肝 切发现, 未给药组肝脏的有丝分裂数(7.6±4.6)较同时给予高或低剂 量 BEL-X药物 3周动物肝脏的有丝分裂数(12±5.5或 13.0±5.6)低许 多, 显示当化学药物 DEN造成肝损伤时, BEL-X 具有显著使肝脏 再生的功能。 表 2
Figure imgf000034_0001
实施例 15
化学药物 DEN 诱发大鼠肝脏受损后药物(BEL-X)对其肝脏再 生之影响(2) 实验分组与实验设计: 将 8周大的 Wistar大鼠分别喂食二乙基 亚竭胺(diethyl nitrosamine, DEN)(100ppm, 添加于饮水中给予)连续 9周, 以诱发产生肝纤维化与肝硬化(DEN组)。 另外在第 6-9周同时 添加 BEL-X 药物(l ,000mg/kg body weight)于饲料中每曰 喂食 (BEL-X组)。 另外未喂食 DEN及 BEL-X者(对照组)进行相同手术。 在完成喂食药物后, 于第 9周以核磁共振摄影检查后, 切除 30%肝 叶。 两周后进行第二次核磁共振摄影检查并解剖之。 实验期间纪录 动物死亡。 在完成手术后观察各组动物进食时间与摄食量, 并计算 各组动物的存活率。
结论:
1.请参阅图 17 , 说明肝体积的再生比例。 正常肝的对照组大鼠 其肝再生总量为切除量的 92±1 1 % , 肝硬化组(DEN 组)为切除量的 32士 7% , 而治疗组(BEL-X组)为切除量的 79±6%。 治疗组(BEL-X组) 的肝再生情形明显较肝硬化组( D E N组)为佳, 与对照组则无统计上 差异。
2.请参阅下表 3 , 肝硬化动物在肝切后, 其进食时间(27 小时) 明显较对照组(1 1小时)延长许多, 而 BEL-X组于肝切后的进食时间 (16小时)明显少于肝硬化组(DEN组)。 另肝硬化组(DEN组)的摄食 量(42%)与对照组(91 %)相差甚多, 而 BEL-X组的摄食量(83%)亦明 显高于肝硬化组(DEN组), 与对照组无差异。 此即表示, BEL-X药 物对肝硬化动物肝切术后具良好影响, 可增加进食量与减少进食时 间。
3.此外, 肝硬化动物的存活率仅 55% , 然而, 当肝硬化动物有 喂食 BEL-X时, 其存活率则与对照组相同, 均达 100% , 由此显示, BEL-X药物确实可增加存活率。 表 3
Figure imgf000036_0001
虽然本发明已以较佳实施例揭露如上, 然其并非用以限定本发 明, 任何熟习此项技艺者, 在不脱离本发明之精神和范围内, 当可 作更动与润饰, 因此本发明之保护范围当视后附之权利要求书所界 定者为准。

Claims

权利要求书
1. 一种减緩肝癌恶化之药物组合物, 包括:
一有效量之原花青素, 该原花青素之单体具有下列化学式:
Figure imgf000037_0001
其中, 当 1^为 0(^13时, R2为 OH, R3为 H, 当 1^为 011时, R2为 H, R3为 H, 当 为 OH时, R2为 OH, R3为 H或当 为 OH 时, R2为 OH, R3为 OH, R4为 3-(α)-ΟΗ、 3-(β)-ΟΗ、 3-(a)-0-sugar 或 3-(p)-0-sugar; 以及
Figure imgf000037_0002
2. 根据权利要求 1所述的减緩肝癌恶化之药物组合物, 其中该 原花青素之单体以 C4、 C8碳键、 C4、 C6碳键或 C2、 C7氧键彼此 相连。
3. 根据权利要求 1所述的减緩肝癌恶化之药物组合物, 其中该 原花青素之聚合度介于 2~30。
4. 根据权利要求 1所述的减緩肝癌恶化之药物组合物, 其中该 原花青素之单体包括于 C2、 C3或 C4位置之 R或 S光学异构物。
5. 根据权利要求 1所述的减緩肝癌恶化之药物组合物, 其中该 原花青素之单体包括黄酮类化合物。
6. 根据权利要求 5所述的减緩肝癌恶化之药物组合物, 其中该 黄酮类化合物包括儿茶素(catechin)、 表儿茶素(epicatechin)、 表阿夫 儿 茶 精 (epiafzetechin) 、 没 食 子 酸 儿 茶 素 (gallocatechin) 、 galloepicatechin ^ 表没食子 茶素 (epigallocatechin)、 gallates、 黄 S同 (flavonols) , 黄坑双醇(flavandiols)、 无色矢车菊素(leucocyanidins) 或花青素 (procynidins)。
7. 根据权利要求 1所述的减緩肝癌恶化之药物组合物, 其中该 原花青素之单体包括黄烷 -3-醇(flavan-3-ol)。
8. 根据权利要求 1所述的减緩肝癌恶化之药物组合物, 其中该 原花青素萃取自一植物。
9. 根据权利要求 8所述的减緩肝癌恶化之药物组合物, 其中该 植物包括杜鹃花科 (Ericaceae)、 蔷薇科 (Rosaceae)、 松科 (Pinaceae)、 葡萄科 (Vitaceae)或荨麻科 (Urticaceae)之植物。
10. 根据权利要求 9所述的减緩肝癌恶化之药物组合物, 其中 该荨麻科(Urticaceae)之植物包括山苎麻。
1 1 . 一种改善肝功能之药物组合物, 包括:
一有效量之原花青素, 该原花青素之单体具有下列化学式:
Figure imgf000038_0001
其中, 当 1^为 0(^13时, R2为 OH , R3为 H , 当 1^为 011时, R2为 H , R3为 H , 当 为 OH时, R2为 OH , R3为 H或当 为 OH 时, R2为 OH , R3为 OH , R4为 3-(α)-ΟΗ、 3-(β)-ΟΗ、 3-(a)-0-sugar 或 3-(p)-0-sugar; 以及 一药学上可接受之载体或盐类。
12. 根据权利要求 1 1 所述的改善肝功能之药物组合物, 其中 该原花青素之单体以 C4、 C8碳键、 C4、 C6碳键或 C2、 C7氧键彼 此相连。
13. 根据权利要求 1 1 所述的改善肝功能之药物组合物, 其中 该原花青素之聚合度介于 2~30。
14. 根据权利要求 1 1 所述的改善肝功能之药物组合物, 其中 该原花青素之单体包括于 C2、 C3或 C4位置之 R或 S光学异构物。
15. 根据权利要求 1 1 所述的改善肝功能之药物组合物, 其中 该原花青素之单体包括黄酮类化合物。
16. 根据权利要求 15 所述的改善肝功能之药物组合物, 其中 该黄酮类化合物包括儿茶素(catechin)、 表儿茶素(epicatechin)、 表阿 夫儿茶精(epiafzetechin)、 没食子 酸儿茶素(gallocatechin) 、 galloepicatechin ^ 表没食子 茶素 (epigallocatechin)、 gallates、 黄 S同 (flavonols) , 黄坑双醇 ( flavandiols)、 无色矢车菊素(leucocyanidins) 或花青素 (procynidins)。
17. 根据权利要求 1 1 所述的改善肝功能之药物组合物, 其中 该原花青素之单体包括黄烷 -3-醇(flavan-3-ol)。
18. 根据权利要求 1 1 所述的改善肝功能之药物组合物, 其中 该原花青素萃取自一植物。
19. 根据权利要求 18 所述的改善肝功能之药物组合物, 其中 该植物包括杜鹃花科 (Ericaceae)、蔷薇科 (Rosace ae)、松科 (Pinaceae)、 葡萄科 (Vitaceae)或荨麻科 (Urticaceae)之植物。
20. 根据权利要求 19 所述的改善肝功能之药物组合物, 其中 该荨麻科(Urticaceae)之植物包括山苎麻。
21. 一种改善肝纤维化之药物组合物, 包括:
一有效量之原花青素, 该原花青素之单体具有下列化学式:
Figure imgf000040_0001
其中, 当 1^为 0(^13时, R2为 OH, R3为 H, 当 1^为 011时, R2为 H, R3为 H, 当 为 OH时, R2为 OH, R3为 H或当 为 OH 时, R2为 OH, R3为 OH, R4为 3-(α)-ΟΗ、 3-(β)-ΟΗ、 3-(a)-0-sugar 或 3-(p)-0-sugar; 以及
一药学上可接受之载体或盐类。
22. 根据权利要求 21 所述的改善肝纤维化之药物组合物, 其 中该原花青素之单体以 C4、 C8碳键、 C4、 C6碳键或 C2、 C7氧键 彼此相连。
23. 根据权利要求 21 所述的改善肝纤维化之药物组合物, 其 中该原花青素之聚合度介于 2~30。
24. 根据权利要求 21 所述的改善肝纤维化之药物组合物, 其 中该原花青素之单体包括于 C2、 C3或 C4位置之 R或 S光学异构 物。
25. 根据权利要求 21 所述的改善肝纤维化之药物组合物, 其 中该原花青素之单体包括黄酮类化合物。
26. 根据权利要求 25 所述的改善肝纤维化之药物组合物, 其 中该黄酮类化合物包括儿茶素(catechin)、 表儿茶素(epicatechin)、 表 阿夫儿茶精(epiafzetechin)、 没食子酸儿茶素(gallocatechin)、 galloepicatechin ^ 表没食子 茶素 (epigallocatechin)、 gallates、 黄 S同 (flavonols) , 黄坑双醇(flavandiols)、 无色矢车菊素(leucocyanidins) 或花青素 (procynidins)。
27. 根据权利要求 21 所述的改善肝纤维化之药物组合物, 其 中该原花青素之单体包括黄烷 -3-醇(flavan-3-ol)。
28. 根据权利要求 21 所述的改善肝纤维化之药物组合物, 其 中该原花青素萃取自一植物。
29. 根据权利要求 28 所述的改善肝纤维化之药物组合物, 其 中该植物包括杜鹃花科(Ericaceae)、 蔷薇科(Rosaceae)、 松科
(Pinaceae) . 葡萄科 (Vitaceae)或荨麻科 (Urticaceae)之植物。
30. 根据权利要求 29 所述的改善肝纤维化之药物组合物, 其 中该荨麻科(Urticaceae)之植物包括山苎麻。
31 . 一种改善肝硬化之药物组合物, 包括:
一有效量之原花青素, 该原花青素之单体具有下列化学式:
Figure imgf000041_0001
其中, 当 1^为 0(^13时, R2为 OH , R3为 H , 当 1^为 011时, R2为 H , R3为 H , 当 为 OH时, R2为 OH , R3为 H或当 为 OH 时, R2为 OH , R3为 OH , R4为 3-(α)-ΟΗ、 3-(β)-ΟΗ、 3-(a)-0-sugar 或 3-(p)-0-sugar; 以及 一药学上可接受之载体或盐类。
32. 根据权利要求 31 所述的改善肝硬化之药物组合物, 其中 该原花青素之单体以 C4、 C8碳键、 C4、 C6碳键或 C2、 C7氧键彼 此相连。
33. 根据权利要求 31 所述的改善肝硬化之药物组合物, 其中 该原花青素之聚合度介于 2~30。
34. 根据权利要求 31 所述的改善肝硬化之药物组合物, 其中 该原花青素之单体包括于 C2、 C3或 C4位置之 R或 S光学异构物。
35. 根据权利要求 31 所述的改善肝硬化之药物组合物, 其中 该原花青素之单体包括黄酮类化合物。
36. 根据权利要求 35 所述的改善肝硬化之药物组合物, 其中 该黄酮类化合物包括儿茶素(catechin)、 表儿茶素(epicatechin)、 表阿 夫儿茶精(epiafzetechin)、 没食子 酸儿茶素(gallocatechin) 、 galloepicatechin ^ 表没食子 茶素 (epigallocatechin)、 gallates、 黄 S同 (flavonols) , 黄坑双醇 ( flavandiols)、 无色矢车菊素(leucocyanidins) 或花青素 (procynidins)。
37. 根据权利要求 31 所述的改善肝硬化之药物组合物, 其中 该原花青素之单体包括黄烷 -3-醇(flavan-3-ol)。
38. 根据权利要求 31 所述的改善肝硬化之药物组合物, 其中 该原花青素萃取自一植物。
39. 根据权利要求 38 所述的改善肝硬化之药物组合物, 其中 该植物包括杜鹃花科 (Ericaceae)、蔷薇科 (Rosace ae)、松科 (Pinaceae)、 葡萄科 (Vitaceae)或荨麻科 (Urticaceae)之植物。
40. 根据权利要求 39 所述的改善肝硬化之药物组合物, 其中 该荨麻科(Urticaceae)之植物包括山苎麻。
41. 一种改善肝发炎之药物组合物, 包括:
一有效量之原花青素, 该原花青素之单体具有下列化学式:
Figure imgf000043_0001
其中, 当 1^为 0(^13时, R2为 OH, R3为 H, 当 1^为 011时, R2为 H, R3为 H, 当 为 OH时, R2为 OH, R3为 H或当 为 OH 时, R2为 OH, R3为 OH, R4为 3-(α)-ΟΗ、 3-(β)-ΟΗ、 3-(a)-0-sugar 或 3-(p)-0-sugar; 以及
一药学上可接受之载体或盐类。
42. 根据权利要求 41 所述的改善肝发炎之药物组合物, 其中 该原花青素之单体以 C4、 C8碳键、 C4、 C6碳键或 C2、 C7氧键彼 此相连。
43. 根据权利要求 41 所述的改善肝发炎之药物组合物, 其中 该原花青素之聚合度介于 2~30。
44. 根据权利要求 41 所述的改善肝发炎之药物组合物, 其中 该原花青素之单体包括于 C2、 C3或 C4位置之 R或 S光学异构物。
45. 根据权利要求 41 所述的改善肝发炎之药物组合物, 其中 该原花青素之单体包括黄酮类化合物。
46. 根据权利要求 45 所述的改善肝发炎之药物组合物, 其中 该黄酮类化合物包括儿茶素(catechin)、 表儿茶素(epicatechin)、 表阿 夫儿茶精(epiafzetechin)、 没食子 酸儿茶素(gallocatechin) 、 galloepicatechin ^ 表没食子 茶素 (epigallocatechin)、 gallates、 黄 S同 (flavonols) , 黄坑双醇(flavandiols)、 无色矢车菊素(leucocyanidins) 或花青素 (procynidins)。
47. 根据权利要求 41 所述的改善肝发炎之药物组合物, 其中 该原花青素之单体包括黄烷 -3-醇(flavan-3-ol)。
48. 根据权利要求 41 所述的改善肝发炎之药物组合物, 其中 该原花青素萃取自一植物。
49. 根据权利要求 48 所述的改善肝发炎之药物组合物, 其中 该植物包括杜鹃花科 (Ericaceae)、蔷薇科 (Rosace ae)、松科 (Pinaceae)、 葡萄科 (Vitaceae)或荨麻科 (Urticaceae)之植物。
50. 根据权利要求 49 所述的改善肝发炎之药物组合物, 其中 该荨麻科(Urticaceae)之植物包括山苎麻。
51 . 一种促进受损肝脏再生之药物组合物, 包括:
一有效量之原花青素, 该原花青素之单体具有下列化学式:
Figure imgf000044_0001
其中, 当 1^为 0(^13时, R2为 OH , R3为 H , 当 1^为 011时, R2为 H , R3为 H , 当 为 OH时, R2为 OH , R3为 H或当 为 OH 时, R2为 OH , R3为 OH , R4为 3-(α)-ΟΗ、 3-(β)-ΟΗ、 3-(a)-0-sugar 或 3-(p)-0-sugar; 以及
52. 根据权利要求 51所述的促进受损肝脏再生之药物组合物, 其中该原花青素之单体以 C4、 C8碳键、 C4、 C6碳键或 C2、 C7氧 键彼此相连。
53. 根据权利要求 51所述的促进受损肝脏再生之药物组合物, 其中该原花青素之聚合度介于 2~30。
54. 根据权利要求 51所述的促进受损肝脏再生之药物组合物, 其中该原花青素之单体包括于 C2、 C3或 C4位置之 R或 S光学异 构物。
55. 根据权利要求 51所述的促进受损肝脏再生之药物组合物, 其中该原花青素之单体包括黄酮类化合物。
56. 根据权利要求 55所述的促进受损肝脏再生之药物组合物, 其中该黄酮类化合物包括儿茶素(catechin)、 表儿茶素(epicatechin)、 表阿夫儿茶精(epiafzetechin)、 没食子酸儿茶素(gallocatechin)、 galloepicatechin ^ 表没食子 茶素 (epigallocatechin)、 gallates、 黄 S同 (flavonols) , 黄坑双醇 ( flavandiols)、 无色矢车菊素(leucocyanidins) 或花青素 (procynidins)。
57. 根据权利要求 51所述的促进受损肝脏再生之药物组合物, 其中该原花青素之单体包括黄烷 -3-醇(flavan-3-ol)。
58. 根据权利要求 51所述的促进受损肝脏再生之药物组合物, 其中该原花青素萃取自一植物。
59. 根据权利要求 58所述的促进受损肝脏再生之药物组合物, 其中该植物包括杜鹃花科(Ericaceae)、 蔷薇科(Rosaceae)、 松科 (Pinaceae) . 葡萄科 (Vitaceae)或荨麻科 (Urticaceae)之植物。
60. 根据权利要求 59所述的促进受损肝脏再生之药物组合物, 其中该荨麻科(Urticaceae)之植物包括山苎麻。
61. 一种逆转肝纤维化之药物组合物, 包括:
一有效量之原花青素, 该原花青素之单体具有下列化学式:
Figure imgf000046_0001
其中, 当 1^为 0(^13时, R2为 OH, R3为 H, 当 1^为 011时, R2为 H, R3为 H, 当 为 OH时, R2为 OH, R3为 H或当 为 OH 时, R2为 OH, R3为 OH, R4为 3-(α)-ΟΗ、 3-(β)-ΟΗ、 3-(a)-0-sugar 或 3-(p)-0-sugar; 以及
一药学上可接受之载体或盐类。
62. 根据权利要求 61 所述的逆转肝纤维化之药物组合物, 其 中该原花青素之单体以 C4、 C8碳键、 C4、 C6碳键或 C2、 C7氧键 彼此相连。
63. 根据权利要求 61 所述的逆转肝纤维化之药物组合物, 其 中该原花青素之聚合度介于 2~30。
64. 根据权利要求 61 所述的逆转肝纤维化之药物组合物, 其 中该原花青素之单体包括于 C2、 C3或 C4位置之 R或 S光学异构 物。
65. 根据权利要求 61 所述的逆转肝纤维化之药物组合物, 其 中该原花青素之单体包括黄酮类化合物。
66. 根据权利要求 65 所述的逆转肝纤维化之药物组合物, 其 中该黄酮类化合物包括儿茶素(catechin)、 表儿茶素(epicatechin)、 表 阿夫儿茶精(epiafzetechin)、 没食子酸儿茶素(gallocatechin)、 galloepicatechin ^ 表没食子 茶素 (epigallocatechin)、 gallates、 黄 S同 (flavonols) , 黄坑双醇(flavandiols)、 无色矢车菊素(leucocyanidins) 或花青素 (procynidins)。
67. 根据权利要求 61 所述的逆转肝纤维化之药物组合物, 其 中该原花青素之单体包括黄烷 -3-醇(flavan-3-ol)。
68. 根据权利要求 61 所述的逆转肝纤维化之药物组合物, 其 中该原花青素萃取自一植物。
69. 根据权利要求 68 所述的逆转肝纤维化之药物组合物, 其 中该植物包括杜鹃花科(Ericaceae)、 蔷薇科(Rosaceae)、 松科
(Pinaceae) . 葡萄科 (Vitaceae)或荨麻科 (Urticaceae)之植物。
70. 根据权利要求 69所述的逆转肝纤维化之药物组合物, 其中该荨麻 科 (Urticaceae)之植物包括山苎麻。
71. 权利要求 1~70 中任一项所述的药物组合物在制造减緩肝癌恶化、 改善肝功能、 改善肝纤维化、 改善肝硬化、 改善肝发炎、 促进受损肝脏再生 和 /或逆转肝纤维化的药物中的用途。
72. 权利要求 1~70 中任一项所述的药物组合物用于减緩肝癌恶化、 改 善肝功能、 改善肝纤维化、 改善肝硬化、 改善肝发炎、 促进受损肝脏再生和 / 或逆转肝纤维化。
PCT/CN2011/072045 2011-03-22 2011-03-22 减缓肝癌恶化、改善肝功能、改善肝纤维化、改善肝硬化、改善肝发炎及促进受损肝脏再生之药物组合物 WO2012126178A2 (zh)

Priority Applications (14)

Application Number Priority Date Filing Date Title
PL11861553T PL2689777T3 (pl) 2011-03-22 2011-03-22 Kompozycja farmaceutyczna do pobudzania regeneracji wątroby
AU2011362905A AU2011362905B2 (en) 2011-03-22 2011-03-22 Pharmaceutical composition for treating hepatic disease
NO11861553A NO2689777T3 (zh) 2011-03-22 2011-03-22
SG2013069604A SG193486A1 (en) 2011-03-22 2011-03-22 Pharmaceutical composition for treating hepatic disease
EP11861553.3A EP2689777B1 (en) 2011-03-22 2011-03-22 Pharmaceutical composition for inducing hepatic regeneration
JP2014500226A JP6166251B2 (ja) 2011-03-22 2011-03-22 障害を受けた肝臓の再生を促進させる医薬組成物
CN201180069476.5A CN103442709B (zh) 2011-03-22 2011-03-22 减缓肝癌恶化、改善肝功能、改善肝纤维化、改善肝硬化、改善肝发炎及促进受损肝脏再生之药物组合物
KR1020167033543A KR101981378B1 (ko) 2011-03-22 2011-03-22 간 질환 치료용 약학 조성물
KR1020137027665A KR20140020966A (ko) 2011-03-22 2011-03-22 간 질환 치료용 약학 조성물
DK11861553.3T DK2689777T3 (en) 2011-03-22 2011-03-22 PHARMACEUTICAL COMPOSITION TO INPUT HEPATIC REGENERATION
ES11861553.3T ES2668785T3 (es) 2011-03-22 2011-03-22 Composición farmacéutica para inducir la regeneración hepática
PCT/CN2011/072045 WO2012126178A2 (zh) 2011-03-22 2011-03-22 减缓肝癌恶化、改善肝功能、改善肝纤维化、改善肝硬化、改善肝发炎及促进受损肝脏再生之药物组合物
RU2013146602/15A RU2561688C2 (ru) 2011-03-22 2011-03-22 Фармацевтическая композиция для лечения болезни печени
CA2830616A CA2830616C (en) 2011-03-22 2011-03-22 Pharmaceutical composition for treating hepatic disease

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/072045 WO2012126178A2 (zh) 2011-03-22 2011-03-22 减缓肝癌恶化、改善肝功能、改善肝纤维化、改善肝硬化、改善肝发炎及促进受损肝脏再生之药物组合物

Publications (2)

Publication Number Publication Date
WO2012126178A2 true WO2012126178A2 (zh) 2012-09-27
WO2012126178A3 WO2012126178A3 (zh) 2012-11-22

Family

ID=46879777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072045 WO2012126178A2 (zh) 2011-03-22 2011-03-22 减缓肝癌恶化、改善肝功能、改善肝纤维化、改善肝硬化、改善肝发炎及促进受损肝脏再生之药物组合物

Country Status (13)

Country Link
EP (1) EP2689777B1 (zh)
JP (1) JP6166251B2 (zh)
KR (2) KR20140020966A (zh)
CN (1) CN103442709B (zh)
AU (1) AU2011362905B2 (zh)
CA (1) CA2830616C (zh)
DK (1) DK2689777T3 (zh)
ES (1) ES2668785T3 (zh)
NO (1) NO2689777T3 (zh)
PL (1) PL2689777T3 (zh)
RU (1) RU2561688C2 (zh)
SG (1) SG193486A1 (zh)
WO (1) WO2012126178A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104774909A (zh) * 2014-10-17 2015-07-15 江苏大学 一种原花青素诱导肝癌细胞自噬性死亡的分析方法及应用
JP2016502532A (ja) * 2012-12-26 2016-01-28 財團法人工業技術研究院Industrial Technology Research Institute 老化関連疾患を克服するためにshc−1/p66を抑制する方法
CN115010720A (zh) * 2022-06-02 2022-09-06 中国科学院昆明植物研究所 中甸艾中倍半萜二聚体及其药物组合物与其制备方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080846A1 (ko) * 2020-10-13 2022-04-21 서울대학교병원 플라본을 포함하는 섬유증의 예방 또는 치료용 조성물
WO2022205137A1 (zh) * 2021-03-31 2022-10-06 贝尔克斯生技股份有限公司 高聚原花青素组合物及其应用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6713506B2 (en) * 2000-10-11 2004-03-30 University Of South Florida Tea polyphenol esters and analogs thereof for cancer prevention and treatment
CN1443533A (zh) * 2002-03-07 2003-09-24 程彦杰 原花青素类化合物在用于制备解酒保肝产品方面的用途
TW200505468A (en) * 2003-08-11 2005-02-16 Suntory Ltd Agent for improving hepato-bililary dysfunction
JP2007519752A (ja) * 2004-01-30 2007-07-19 マーズ インコーポレイテッド 癌を治療するための方法および組成物
US20070054868A1 (en) * 2005-06-20 2007-03-08 The Trustees Of Columbia University In The City Of New York Synergistic polyphenol compounds, compositions thereof, and uses thereof
JP2008156265A (ja) * 2006-12-22 2008-07-10 Yamagata Prefecture A型プロアントシアニジンオリゴマー画分及びその製造方法
JP2008195672A (ja) * 2007-02-14 2008-08-28 Okayama Univ 経口摂取用組成物及び経口摂取用組成物の製造方法
JP4822291B2 (ja) * 2008-03-14 2011-11-24 財団法人宮崎県産業支援財団 肝線維化抑制剤
TWI370736B (en) * 2008-12-31 2012-08-21 Ind Tech Res Inst Pharmaceutical composition for treating hepatitis b and heath food for inhibiting hepatitis b virus
CN101822372A (zh) * 2009-03-05 2010-09-08 财团法人工业技术研究院 用以治疗b型肝炎的药学组合物与抑制b型肝炎病毒的保健食品
CN101507730B (zh) * 2009-03-26 2011-01-26 复旦大学 表没食子儿茶素没食子酸酯与柔红霉素的组合物及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"C57BL/6J-HBx", 2006, BBRC

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016502532A (ja) * 2012-12-26 2016-01-28 財團法人工業技術研究院Industrial Technology Research Institute 老化関連疾患を克服するためにshc−1/p66を抑制する方法
CN104774909A (zh) * 2014-10-17 2015-07-15 江苏大学 一种原花青素诱导肝癌细胞自噬性死亡的分析方法及应用
CN115010720A (zh) * 2022-06-02 2022-09-06 中国科学院昆明植物研究所 中甸艾中倍半萜二聚体及其药物组合物与其制备方法和应用
CN115010720B (zh) * 2022-06-02 2023-08-11 中国科学院昆明植物研究所 中甸艾中倍半萜二聚体及其药物组合物与其制备方法和应用

Also Published As

Publication number Publication date
CN103442709A (zh) 2013-12-11
EP2689777A4 (en) 2014-09-17
SG193486A1 (en) 2013-10-30
CN103442709B (zh) 2018-10-19
PL2689777T3 (pl) 2018-08-31
JP6166251B2 (ja) 2017-07-19
WO2012126178A3 (zh) 2012-11-22
KR20140020966A (ko) 2014-02-19
EP2689777B1 (en) 2018-03-28
ES2668785T3 (es) 2018-05-22
RU2561688C2 (ru) 2015-08-27
CA2830616A1 (en) 2012-09-27
EP2689777A2 (en) 2014-01-29
JP2014508785A (ja) 2014-04-10
KR101981378B1 (ko) 2019-05-22
AU2011362905B2 (en) 2015-11-12
KR20160143868A (ko) 2016-12-14
NO2689777T3 (zh) 2018-08-25
DK2689777T3 (en) 2018-05-22
AU2011362905A1 (en) 2013-10-31
CA2830616C (en) 2017-02-21
RU2013146602A (ru) 2015-04-27

Similar Documents

Publication Publication Date Title
KR101074158B1 (ko) 간 보호 또는 간 질환의 예방 및 치료용 인삼다당체 조성물
JP2007145849A (ja) Solanum属の植物由来の水溶性抽出物およびそれらの調製方法、ならびに水溶性抽出物を含む薬学的組成物
RU2700793C2 (ru) Фармацевтическая композиция, содержащая силибин, витамин е и l-карнитин
JP6656316B2 (ja) ハマナツメの使用方法、ハマナツメ抽出物の使用方法及び薬物混合物の使用方法
WO2012126178A2 (zh) 减缓肝癌恶化、改善肝功能、改善肝纤维化、改善肝硬化、改善肝发炎及促进受损肝脏再生之药物组合物
JP2010155840A (ja) B型肝炎を治療するための医薬組成物およびb型肝炎ウイルス抑制効果を有する健康食品
CN111228343A (zh) 曲札提取物及其在制备预防和/或治疗病毒性肺炎的药物的应用
WO2017092230A1 (zh) 双黄酮化合物及其治疗癌症和制备药物的用途
JP2000503686A (ja) 黄栢皮とオミナエシ植物の混合抽出物を含有するc型肝炎治療用製薬組成物
TWI458487B (zh) 藥學組合物之用途
EP2606883A1 (en) Uses of n-Butylidenephthalide in Treating a Liver Injury and Improving Liver Function
US20130123204A1 (en) Method for treating hepatitis b
TWI527587B (zh) 苧麻屬植物之萃取物用於製備治療肝臟纖維化之藥物的用途
TWI826039B (zh) 檳榔葉萃取物於治療或預防肝癌的醫藥用途
WO2012040919A1 (zh) 黄芩素在制备预防和治疗帕金森病药物中的应用
WO2005023278A1 (fr) Flavone glycyrrhizique : methode d'extraction et utilisation pour la preparation d'un medicament anti-cancereux
TW201825107A (zh) 桔梗屬植物萃出物用於治療發炎性腸道疾病之用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861553

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2830616

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2014500226

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011861553

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137027665

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013146602

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011362905

Country of ref document: AU

Date of ref document: 20110322

Kind code of ref document: A