WO2012124609A1 - 糖鎖蛍光標識方法 - Google Patents

糖鎖蛍光標識方法 Download PDF

Info

Publication number
WO2012124609A1
WO2012124609A1 PCT/JP2012/056011 JP2012056011W WO2012124609A1 WO 2012124609 A1 WO2012124609 A1 WO 2012124609A1 JP 2012056011 W JP2012056011 W JP 2012056011W WO 2012124609 A1 WO2012124609 A1 WO 2012124609A1
Authority
WO
WIPO (PCT)
Prior art keywords
sugar chain
sugar
fluorescent
labeling method
labeling
Prior art date
Application number
PCT/JP2012/056011
Other languages
English (en)
French (fr)
Inventor
碧 阿部
秀行 島岡
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to KR1020137021067A priority Critical patent/KR20140040109A/ko
Priority to US13/980,795 priority patent/US9085645B2/en
Priority to JP2013504696A priority patent/JPWO2012124609A1/ja
Priority to CN2012800092337A priority patent/CN103380378A/zh
Priority to EP12757654.4A priority patent/EP2685263A4/en
Publication of WO2012124609A1 publication Critical patent/WO2012124609A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/66Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1433Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • G01N2030/8827Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials involving nucleic acids

Definitions

  • the present invention relates to a sugar chain fluorescent labeling method for recovering, separating and purifying sugar chain molecules and fluorescently labeling them for measurement, and relates to a sugar chain capturing carrier for capturing sugar chain molecules and a method for labeling the sugar chains.
  • sugar chain molecules have attracted attention as the third chain following nucleic acids and proteins.
  • research on cell differentiation, canceration, immune reaction, fertilization, etc. has been conducted, and attempts to create new medicines and medical materials are continuing.
  • sugar chains are receptors for many toxins, viruses, and bacteria, and are also attracting attention as cancer markers. In this field as well, we try to create new medicines and medical materials as well. Attempts continue.
  • Sugar chains are analyzed by various methods such as an array method.
  • HPLC and CE are widely used techniques from the viewpoints of good separation, good reproducibility, quantitativeness, high sensitivity, etc.
  • the reducing end of the sugar chain is reduced to a reduced amino acid. It is necessary to label by the chemical method.
  • purification and labeling of these sugar chains takes time and man-hours, and it is difficult to prepare a large amount of samples at once.
  • Patent Documents 1, 2, and 3 Various methods for analyzing sugar chains by fluorescent labeling have been developed (for example, Patent Documents 1, 2, and 3).
  • the labeling efficiency is not 100%, and sugar chains that are not labeled sugar chains are mixed in one sample. This situation does not pose a major problem when fluorescence detection is performed using HPLC or CE, but there is a problem that peaks are complicated when analyzing sugar chains by mass spectrometry.
  • the labeling efficiency is poor, there is a possibility that the sensitivity is lowered in the analysis by HPLC or CE.
  • An object of the present invention is to provide a method for easily and efficiently fluorescently labeling sugar chains.
  • a method for fluorescently labeling sugar chains wherein a fluorescent substance composed of an aromatic amine having a concentration of 0.5 mol / L or more is reacted with a sugar chain for labeling. .
  • the aromatic ring portion of the aromatic amine is a benzene ring, pyrene ring, naphthalene ring, acridone ring, fluorescein ring, dansyl ring, coumarin ring, acridine ring, or any derivative thereof
  • the fluorescent substance having an aromatic amine is selected from the group consisting of 2-aminobenzoamide, 2-aminobenzoic acid, 8-aminopyrene-1,3,6-trisulfonate, 8-aminophosphorane-1,3,6-trisulfonate, 2-amino- 9 (10H) -acridone, 5-Aminofluorescein, dansylethylenediamine, 7-Amino-4-methylcoumarin, 3-Aminobenzoic acid, 7-Amino-1-naphthol, 3- (Acetylamino) -6-aminoamine, At least one kind selected from any derivative of fluorescent substance 5.
  • R1 and R2 are hydrocarbon chains having 1 to 20 carbon atoms into which —O—, —S—, —NH—, —CO—, and —CONH— may be inserted;
  • R3, R4, and R5 are H, CH 3 Or a hydrocarbon chain having 2 to 5 carbon atoms, m and n represent the number of monomer units.
  • M and n have the same meaning as described above.
  • (9) The sugar chain fluorescent labeling method according to any one of (1) to (8), wherein the sugar chain is a biological substance.
  • (11) A kit used for the sugar chain fluorescent labeling method according to any one of (1) to (10).
  • the present invention relates to a sugar chain labeling method for analyzing a sugar chain by HPLC or mass spectrometry.
  • the sugar chain is captured and purified on a sugar chain capture carrier, and then the sugar chain is released and the sugar chain is labeled with a fluorescent substance.
  • the present invention also relates to a kit used for the sugar chain labeling method of the present invention.
  • a method for labeling sugar chains with a fluorescent reagent a method called reductive amination is generally used.
  • Add a fluorescent reagent having an amino group to the sugar chain sample react the aldehyde group formed at the sugar chain reducing end with the amino group of the fluorescent reagent, and reduce the formed Schiff base with a reducing agent to reduce the sugar chain.
  • a fluorescent label is introduced at the reducing end.
  • the present invention was invented for the purpose of further increasing the yield of fluorescently labeled sugar chains by increasing the concentration of the fluorescent reagent and increasing the reaction opportunity.
  • sugar chain used in the present invention is not particularly limited, and may be a biological substance such as blood, body fluid or tissue extract, or a sugar chain compound produced by chemical synthesis.
  • sugar chain included is a sugar chain bound to any of a sugar amino acid, glycopeptide, glycoprotein, glycolipid, glycosaminoglycan, proteoglycan, glycosylphosphatidylinositol, peptidoglycan, and lipopolysaccharide, or free You can choose from sugar chains.
  • sugar chain labeling examples include a method in which an aromatic amine is allowed to act and the sugar chain is bound to the labeling compound by a reductive amination reaction.
  • the labeling reagent to be used is not particularly limited as long as it is an aromatic amine, but is preferably selected from the group consisting of the following substances containing an amino group.
  • Examples include 2-Aminobenzoamide, 2-Aminobenzoic acid, 8-Aminopyrene-1,3,6-trisulfonate, 8-Aminophathalene-1,3,6-trisulphonate, 2-Amino9 (10H) -acridone, 5-Aminofluoresceine 7-Amino-4-methylcoumarin, 3-Aminobenzoic acid, 7-Amino-1-naphthol, 3- (Acetylamino) -6-aminoacidine, among which 2-aminobenzomide or 2-aminobenzoic acid is a reagent, Reactive It is effective from fecal.
  • these derivatives are also preferably used.
  • 2-aminobenzomide or 2-aminobenzoic acid is used as the aromatic amine, it is used at 0.35 mol / L under general conditions, but at a concentration of 0.5 mol / L or more, preferably 1.4 mol / L or more. By using it, the labeling efficiency can be improved. However, when the concentration exceeds 3 mol / L, it is difficult to remove the aromatic amine that has not been used in the reaction, so the most preferable concentration is 1.4 mol / L or more and 3 mol / L or less.
  • the liquid volume when particles are used as a carrier for capturing sugar chains, the liquid volume is usually enough to soak the particles, for example, 50 ⁇ L for 5 mg of particles, but the volume is doubled to 100 ⁇ L Thus, the labeling efficiency can be increased. Although the liquid volume may exceed 100 ⁇ L, it is difficult to remove the aromatic amine that has not been used in the reaction, so it is preferable to adjust it to between 100 ⁇ L and 200 ⁇ L for 5 mg particles. .
  • sugar chains can be reacted in a liquid phase, but by using a sugar chain-trapping carrier described below, sugar chains can be purified, recovered, and labeled with a fluorescent reagent continuously.
  • the sugar chain-trapping carrier is a carrier having a reactive primary amino group for capturing a sugar chain on its surface, and preferably has an oxylamino group or a hydrazide group as the primary amino. This is preferable because it can react with and bind to the aldehyde group which is the sugar chain reducing end even in the absence of an enzyme or a coupling reagent.
  • the sugar chain-trapping carrier is preferably a particle having a structure represented by the following general formula [Chemical Formula 1].
  • R1 and R2 are hydrocarbon chains having 1 to 20 carbon atoms into which —O—, —S—, —NH—, —CO—, and —CONH— may be inserted;
  • R3, R4, and R5 are H, CH 3 Or a hydrocarbon chain having 2 to 5 carbon atoms, m and n represent the number of monomer units.
  • the carrier is preferably a carrier insoluble in an aqueous solution or an organic solvent, and the material is not particularly limited, but glass or a resin excellent in organic solvent resistance such as silicon, polystyrene, ethylene, and the like. -Maleic anhydride copolymer, polymethyl methacrylate and the like can be selected.
  • the carrier is preferably particles composed of a polymer matrix having a crosslinked polymer structure having a structure represented by the following general formula [Chemical Formula 2]. (M and n are the same as described above.)
  • the form of the sugar chain-trapping carrier is not particularly limited, but is preferably in the form of particles or plates.
  • a large number of samples may be processed at the same time, and in this case, continuous processing is possible by using a column packed with particles.
  • a multiwell plate it is possible to process many samples simultaneously.
  • a multiwell plate such as 6, 12, 24, 48, 96, 384 well can be used as appropriate.
  • an inorganic substance can be used as the particle material.
  • a particulate material can be used, and examples thereof include silica particles, alumina particles, glass particles, and metal particles.
  • the organic polymer substance a polysaccharide gel typified by agarose or sepharose, or a polymer obtained by polymerizing a polymer of a vinyl compound can be used.
  • the shape of the particles is preferably a sphere, and the particles preferably have an average particle size of 0.1 ⁇ m to 500 ⁇ m.
  • the average particle diameter in this case is obtained by measuring the diameter of each particle observed in the optical microscope field of view. It is considered that the carrier particles having a particle size in such a range can be easily collected by centrifugation, a filter, and the like, and have a sufficient surface area, so that the reaction efficiency with sugar chains is high. When the particle size is significantly larger than the above range, the reaction efficiency with the sugar chain may be lowered due to the small surface area. In addition, when the particle size is significantly smaller than the above range, it may be difficult to collect the particles using a filter. Furthermore, when the particles are packed in a column and used, if the particle size is too small, the pressure loss at the time of liquid passage may increase.
  • the sugar chain immobilized on the carrier is not particularly limited, but may be a sugar chain compound produced by chemical synthesis, even if it is a biological substance such as blood, body fluid or tissue extract. There may be.
  • the sugar chain contained may be a free sugar chain or a sugar chain bound to any of a sugar amino acid, glycopeptide, glycoprotein, glycolipid, glycosaminoglycan, proteoglycan, glycosylphosphatidylinositol, peptidoglycan, and lipopolysaccharide. To be elected.
  • the conditions for the binding reaction between the sugar chain reducing terminal and the primary amino group using the sugar chain-trapping carrier is that the pH is 2 to 7, the reaction temperature is 50 to 100 ° C., preferably 60 to 90 ° C., more preferably. Is 70 to 85 ° C., and the reaction time is 15 to 120 minutes.
  • the most preferred conditions are pH 3-6, reaction temperature 80 ° C., reaction time 1 hour.
  • the pH is less than 3 or more than 7
  • the production of an imine that is an intermediate is slowed, and the capture efficiency is lowered.
  • the reaction temperature is less than 50 ° C., the reaction efficiency may be remarkably deteriorated, and sugar chains cannot be sufficiently captured.
  • the reaction is preferably carried out in an open system to completely evaporate the solvent.
  • the purpose of this is to cause a sufficient reaction by infinitely concentrating the solution concentration as the solvent evaporates.
  • the reaction temperature exceeds 90 ° C.
  • the sugar chain itself is adversely affected, and when the carrier is a plastic, deformation and melting may occur depending on the type.
  • the reaction time is shorter than 30 minutes, a sufficient binding reaction may not be obtained, and sugar chains cannot be captured sufficiently.
  • the reaction exceeding 90 minutes does not show the effect of only taking time without further capturing of sugar chains.
  • the sugar chain-trapping carrier It is necessary to wash the sugar chain-trapping carrier in a state where the sugar chain is captured in order to remove impurities.
  • a solution used for the washing liquid alcohols such as methanol and ethanol; water and an aqueous buffer are used.
  • the pH of the aqueous solution is preferably near neutral, and the pH is 4 to 10, more preferably 6 to 8.
  • the carrier capturing the sugar chain can easily remove impurities other than the sugar chain in the purified raw material by washing, and only the sugar chain can be recovered together with the carrier.
  • a cleaning method in the case of particles, the particles can be cleaned by immersing them in a cleaning solution and repeating the replacement of the cleaning solution.
  • the particles are put into a centrifuge tube or a tube, a washing solution is added, and after shaking, the particles are precipitated by centrifugation and washed by repeating the operation of removing the supernatant.
  • the particles can be washed by adding particles into a centrifuge tube, adding a washing solution, allowing the particles to settle naturally or by forcible sedimentation by centrifugation, and then removing the supernatant.
  • the washing operation is preferably performed 3 to 6 times.
  • the washing liquid can be simply washed by dispensing and sucking and removing in each well.
  • you may use the centrifuge which can centrifuge a plate as needed.
  • a filter tube which is a tube-shaped container and is equipped with a filter having a pore size which allows liquid permeation and does not allow the particles to permeate on the bottom surface.
  • 6-384 multi-well plates with the filter attached to the bottom are commercially available, and high throughput can be achieved by using these plates.
  • solution dispensing equipment, suction removal systems, and plate transport systems for example, Beckman Coulter's Biomek series
  • plate transport systems for example, Beckman Coulter's Biomek series
  • a series of operations may be performed.
  • substances other than the sugar chain-trapping substance may be removed by filtration or centrifugation.
  • the column may be filled with a sugar chain-trapping carrier, and the process from sugar chain-trapping reaction to labeling may be continuously processed in the column. Thereby, a large amount of sugar chains can be purified and labeled.
  • Example 1> (Adjustment of sugar chain sample) 1 mg of bovine serum-derived IgG (SIGMA, I5506) was dissolved in 50 ⁇ L of 100 mM ammonium bicarbonate (Wako Pure Chemicals, 017-02875), then 5 ⁇ L of 120 mM DTT (dithiothreitol, SIGMA, D9779) was added at 60 ° C. The reaction was allowed for 30 minutes. After completion of the reaction, 10 ⁇ L of 123 mM IAA (iodoacetamide, Wako Pure Chemical, 093-02152) was added, and the mixture was allowed to react at room temperature for 1 hour in the dark.
  • SIGMA bovine serum-derived IgG
  • protease treatment was performed with 400 U of trypsin (SIGMA, T0303) to fragment the protein portion into peptides.
  • the reaction solution was treated at 90 ° C. for 5 minutes and then treated with 5 U of glycosidase F (Roche, 1-365-193) to release sugar chains from the peptide, thereby obtaining a pretreated biological sample.
  • sugar chain purification by sugar chain capture carrier The sugar chain solution 20 ⁇ L and 180 ⁇ L of 2% acetic acid / acetonitrile in a disposable column containing 5 mg of particles having a hydrazide group (BlotGlyco®), manufactured by Sumitomo Bakelite Co., Ltd., BS-45603), which is a carrier for capturing sugar chains.
  • BlotGlyco® a hydrazide group
  • the solution was added and reacted at 80 ° C. for 1 hour. The reaction was carried out in an open system, and it was visually confirmed that the solvent was completely evaporated and the particles were dried.
  • Example 2 Preparation of a sugar chain sample, which is a process other than the sugar chain labeling process, purification of a sugar chain using a sugar chain capture carrier, removal of excess 2AB, and detection of a labeled sugar chain were performed in the same manner as in Example 1.
  • Example 3 Preparation of a sugar chain sample, steps other than sugar chain labeling, purification of a sugar chain using a sugar chain capture carrier, removal of excess 2AB, and detection of a labeled sugar chain were performed in the same manner as in Example 1.
  • Example 4 Preparation of a sugar chain sample, which is a process other than the sugar chain labeling process, purification of a sugar chain using a sugar chain capture carrier, removal of excess 2AB, and detection of a labeled sugar chain were performed in the same manner as in Example 1.
  • ⁇ Comparative Example 1> Preparation of a sugar chain sample, which is a process other than the sugar chain labeling process, purification of a sugar chain using a sugar chain capture carrier, removal of excess 2AB, and detection of a labeled sugar chain were performed in the same manner as in Example 1.
  • ⁇ Comparative Example 2> Preparation of a sugar chain sample, which is a process other than the sugar chain labeling process, purification of a sugar chain using a sugar chain capture carrier, removal of excess 2AB, and detection of a labeled sugar chain were performed in the same manner as in Example 1.
  • FIG. 2 is a graph showing the total area of peaks obtained in Example 1, Example 2, Example 3 and Comparative Example 1.
  • FIG. The peak area value obtained became larger as the concentration became higher than 0.35M which is generally used. Then, what plotted the total area of the peak obtained in Example 2, Example 4, and Comparative Example 2 is shown in FIG. The peak area value obtained became larger as the amount of the solution was larger than 50 ⁇ L. From the above results, after capturing and purifying the sugar chain using the sugar chain-trapping carrier, the sugar chain is released, and the released sugar chain has a high concentration (0.5 mol / L or more) composed of an aromatic amine. It has been clarified that the sugar chain fluorescent labeling method of the present application, in which a sugar chain is labeled with a fluorescent substance, has an excellent effect.
  • sugar chains can be easily collected and purified, and sugar chains can be labeled with aromatic amines, thereby providing the sugar chains.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Polymers & Plastics (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Diabetes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本発明は、糖鎖を簡便に蛍光標識する方法と、それに用いる糖鎖捕捉担体を提供することを目的とする。本発明により、糖鎖を捕捉するための一級アミノ基を有する担体において、前記一級アミノ基で糖鎖を捕捉、回収、精製し、担体から捕捉された糖鎖を遊離させ、かつ0.5mmol/L以上の芳香族アミンで構成される蛍光物質で糖鎖を標識する糖鎖蛍光標識方法が提供される。

Description

糖鎖蛍光標識方法
本発明は、糖鎖分子を回収、分離、精製し、測定のために蛍光標識する糖鎖蛍光標識方法であって、糖鎖分子を捕捉する糖鎖捕捉担体と、前記糖鎖の標識方法に関する。
本願は、2011年3月11日に、日本に出願された特願2011-053897号に基づき優先権を主張し、その内容をここに援用する。
生化学分野において、近年、核酸、タンパク質に続く第三の鎖として糖鎖分子が注目されている。特に細胞の分化や癌化、免疫反応や受精などのかかわりが研究され、新たな医薬や医療材料を創製しようとする試みが続けられている。
また、糖鎖は多くの毒素、ウィルス及びバクテリアなどの受容体であり、また、癌のマーカーとしても注目されており、こちらの分野においても、同様に新たな医薬や医療材料を創製しようとする試みが続けられている。
しかしながら、糖鎖は、研究の重要性を認識されながら、その複雑な構造や多様性から、第一、第二の鎖である核酸、タンパク質に比較して研究の推進が著しく遅れている。
そのため近年糖鎖構造を迅速、簡便に、かつ精度高く解析する方法が求められるようになり、高速液体クロマトグラフィ(HPLC)、核磁気共鳴法、キャピラリー電気泳動法(CE法)、質量分析法、レクチンアレイ法などの多種多様の方法により糖鎖解析が行われている。これら種々の手法を用いて糖鎖を解析するためには、あらかじめ生体試料中に含まれるタンパク質、ペプチド、脂質、核酸などと糖鎖を分離・精製することが必要である。また、HPLCやCEは分離の良さ、再現性の良さ、定量性、感度の高さなどと言った点から広く用いられる手法であるが、高い感度を得るために糖鎖の還元末端を還元アミノ化法等により標識化する必要がある。しかしながら、これら糖鎖の精製や標識化は時間と工数がかかり、一度に多量の試料を調製するのは困難を要していた。
糖鎖を蛍光標識して解析する方法は、種々開発されている(例えば特許文献1、2、3)。しかしながら、その標識化効率は100%ではなく、1つのサンプルに標識された糖鎖とされていない糖鎖が混在していた。この状況はHPLCやCEを用いて蛍光検出している際は大きな問題とならないが、質量分析法により糖鎖を分析する際にピークが複雑化するという問題点があった。また、標識化効率が悪い場合、HPLCやCEによる分析においても、感度が低下するという問題が生じる可能性があった。
特開平7-20131号公報 特開2006-098367号公報 特開2008-309501号公報
本発明は、糖鎖を簡便に効率よく蛍光標識する方法を提供することを目的とする。
このような目的は、下記(1)~(7)に記載の本発明により達成される。
(1)糖鎖を蛍光標識する方法であって、濃度が0.5mol/L以上の芳香族アミンで構成される蛍光物質と糖鎖を反応させ標識することを特徴とする糖鎖蛍光標識方法。
(2)芳香族アミンの芳香環部分が、ベンゼン環、ピレン環、ナフタレン環、アクリドン環、フルオレセイン環、ダンシル環、クマリン環、アクリジン環、またはこれらのいずれかの誘導体である、(1)に記載の糖鎖蛍光標識方法。
(3)芳香族アミンで構成される蛍光物質の励起波長が330~750nmである、(1)または(2)に記載の糖鎖蛍光標識方法。
(4)芳香族アミンで構成される蛍光物質の発光波長が420~780nmである、(1)~(3)のいずれか1項に記載の糖鎖蛍光標識方法。
(5)前記芳香族アミンを有する蛍光物質が、2-Aminobenzamide,2-Aminobenzoic  acid,8-Aminopyrene-1,3,6-trisulfonate,8-Aminonaphthalene-1,3,6-trisulphonate,2-Amino-9(10H)-acridone,5-Aminofluorescein,Dansylethylenediamine,7-Amino-4-methylcoumarine,3-Aminobenzoic  acid,7-Amino-1-naphthol,3-(Acetylamino)-6-aminoacridine、及び前記芳香族アミンを有する蛍光物質のいずれかの誘導体から選ばれる少なくとも一種類の蛍光物質である(1)~(4)のいずれか1項に記載の糖鎖蛍光標識方法。
(6)糖鎖捕捉担体を用いて糖鎖を捕捉、精製した後、前記糖鎖捕捉担体より糖鎖を遊離させ、遊離した糖鎖を前記芳香族アミンで構成される蛍光物質で糖鎖を標識するものである(1)~(5)のいずれか1項に記載の糖鎖の蛍光標識方法。
(7)前記糖鎖捕捉担体が下記の(化1)で表される構造を有するポリマー粒子である(6)に記載の糖鎖蛍光標識方法。
Figure JPOXMLDOC01-appb-C000003
(R1,R2は-O-,-S-,-NH-,-CO-,-CONH-が挿入されてもよい炭素数1~20の炭化水素鎖,R3,R4,R5はH,CH3,または炭素数2~5の炭化水素鎖を示す。m,nはモノマーユニット数を示す。)
(8)前記糖鎖捕捉担体が下記の(化2)で表される構造を有するポリマー粒子である(6)または(7)に記載の糖鎖蛍光標識方法。
Figure JPOXMLDOC01-appb-C000004
(m,nは前記と同じ意味である。)
(9)前記糖鎖が、生体由来物質である(1)~(8)のいずれか1項に記載の糖鎖蛍光標識方法。
(10)前期糖鎖が、糖アミノ酸、糖ペプチド、糖タンパク質、糖脂質、グリコサミノグリカン、プロテオグリカン、グリコシルホスファチジルイノシトール、ペプチドグリカン、およびリポ多糖の中のいずれかに結合した糖鎖、または遊離の糖鎖である(1)~(9)のいずれか1項に記載の糖鎖蛍光標識方法。(11)(1)~(10)のいずれか1項に記載の糖鎖蛍光標識方法に用いられるキット。
本発明によれば、糖鎖分子を簡便に効率よく蛍光標識することが可能となる。
本願の実施例における検討で得られたHPLCチャートの代表例である。 本願の実施例1、実施例2、実施例3および比較例1で得られたピークの総面積をグラフにしたものである。 本願の実施例2、実施例4及び比較例2で得られたピークの総面積をグラフにしたものである。
本発明は、糖鎖をHPLCや質量分析測定によって分析するための糖鎖標識方法に関するものである。特に、糖鎖捕捉担体上に糖鎖を捕捉・精製後、糖鎖を遊離し蛍光物質により糖鎖を標識する方法である。また本発明は、本発明の糖鎖標識方法に使用されるキットにも関する。
糖鎖を蛍光試薬で標識する方法には、還元アミノ化法という方法が一般的に使用される。糖鎖試料にアミノ基を有する蛍光試薬を加え、糖鎖還元末端に形成されるアルデヒド基と蛍光試薬のアミノ基とを反応させ、形成されたシッフ塩基を還元剤により還元する事で糖鎖の還元末端に蛍光標識が導入される。
糖鎖標識の効率を上げるために、本発明では、蛍光試薬濃度を上げ、反応機会を上げることにより、より蛍光標識糖鎖の収率を上げることを目的に発明された。
具体的には、以下の通りである。
(糖鎖について)
本発明において用いる糖鎖は、特に限定するものではないが、血液、体液や組織抽出物などの生体由来物質でもあっても、化学合成により生成された糖鎖化合物であってもよい。
また、含まれる糖鎖が、糖アミノ酸、糖ペプチド、糖タンパク質、糖脂質、グリコサミノグリカン、プロテオグリカン、グリコシルホスファチジルイノシトール、ペプチドグリカン、およびリポ多糖の中のいずれかに結合した糖鎖、または遊離の糖鎖から選ぶことができる。
(糖鎖標識)
糖鎖を標識する方法としては、芳香族アミンを作用させて、還元アミノ化反応により糖鎖を前記標識化合物に結合させる方法が挙げられる。
使用する標識試薬は芳香族アミンであれば特に限定するものではないが、下記のアミノ基を含む物質からなる群から選ぶことが、好ましい。
例として2-Aminobenzamide,2-Aminobenzoic  acid,8-Aminopyrene-1,3,6-trisulfonate,8-Aminonaphthalene-1,3,6-trisulphonate,2-Amino9(10H)-acridone,5-Aminofluorescein,Dansylethylenediamine,7-Amino-4-methylcoumarine,3-Aminobenzoic  acid,7-Amino-1-naphthol,3-(Acetylamino)-6-aminoacridineが挙げられ、中でも2-aminobenzamideまたは2-aminobenzoic acidが、試薬としての入手、反応の簡便性から効果的である。また、標識試薬としての機能が維持される限りにおいて、これらの誘導体もまた好ましく用いられる。
芳香族アミンとして2-aminobenzamideまたは2-aminobenzoic acidを用いる場合、一般的な条件では0.35mol/Lで使用されるが、0.5mol/L以上の濃度、好ましくは1.4mol/L以上で使用することにより、標識効率を向上させることが可能となる。ただし、濃度が3mol/Lを超えると、反応に使用されなかった芳香族アミンを除去するのが困難になるため、最も好ましい濃度は1.4mol/L以上3mol/L以下である。
また、液量に関して、糖鎖を捕捉する担体として粒子を用いた場合、通常は粒子が浸る程度の液量、例えば、5mgの粒子に対して50μLであるが、容量を倍量の100μLにすることにより、標識効率を上げることができる。液量は100μLを超えても良いが、反応に使用されなかった芳香族アミンを除去するのが困難になるため、5mgの粒子に対しては100μL~200μLの間になるよう調整するのが好ましい。
(還元アミノ化反応による標識方法)
具体的には、2-Aminobenzamideによる標識の場合、精製された糖鎖が入った反応容器に1.4 M 2-Aminobenzamid, 1 M sodium cyanoborohydrideの濃度になるように30%酢酸/ジメチルスルホキシド(DMSO)に溶解させた溶液100 μLを加え、30~70℃で1~10時間反応する事で達成される。
(糖鎖捕捉担体について)
糖鎖は液相で反応させることも可能であるが、以下に説明する糖鎖捕捉担体を用いることにより、糖鎖の精製、回収、蛍光試薬による標識を連続的に行うことが可能となる。
(糖鎖捕捉担体について)
前記糖鎖捕捉担体は、糖鎖を捕捉するための反応性の一級アミノ基をその表面に有する担体であり、前記一級アミノとしてオキシルアミノ基またはヒドラジド基を有することが望ましい。これは、酵素やカップリング試薬などの非存在下においても糖鎖還元末端であるアルデヒド基と反応し結合可能であるから好適である。
前記糖鎖捕捉担体は、下記一般式〔化1〕の構造を有する粒子であることが好ましい。
Figure JPOXMLDOC01-appb-C000005
(R1,R2は-O-,-S-,-NH-,-CO-,-CONH-が挿入されてもよい炭素数1~20の炭化水素鎖,R3,R4,R5はH,CH,または炭素数2~5の炭化水素鎖を示す。m,nはモノマーユニット数を示す。)
また、前記担体は、水溶液や有機溶媒に不溶性の担体であることがのぞましく、材質は特に限定するものではないが、ガラスや耐有機溶剤性に優れた樹脂、例えばシリコン、ポリスチレン、エチレン-無水マレイン酸共重合物、ポリメタクリル酸メチル等を選ぶことができる。
前記担体は、下記一般式〔化2〕の構造を有する架橋ポリマー構造を有するポリマーマトリックスで構成される粒子であることが好ましい。
Figure JPOXMLDOC01-appb-C000006
(m,nは前記と同様である。)
前記糖鎖捕捉担体の形態は、特に限定するものではないが、粒子またはプレート状の形態であることが好ましい。糖鎖ライブラリーを作製するためには、同時に多数の試料を処理する可能性があり、その際には、カラムに粒子を充填したものを使用する事で連続的な処理が可能である。また、マルチウェルプレートであれば同時に多検体を処理することが可能である。マルチウェルプレートとしては、6、12、24,48、96,384ウェルなどのマルチウェルプレートを適宜使用することが出来る。
式〔2〕の担体以外では、粒子の材料として無機物質を用いることができる。前記粒子を構成する無機物質としては、粒子状のものを用いることができ、例えばシリカ粒子、アルミナ粒子、ガラス粒子、金属粒子などが挙げられる。また、有機高分子物質としては、アガロース、セファロースに代表される多糖類ゲル、ビニル化合物の重合体であるポリマーを粒子状にしたものを使用することが出来る。
また、粒子としたときの形状は球であることが好ましく、平均粒径0.1μm以上500μm以下の粒子であることが好ましい。この場合の平均粒径は光学顕微鏡視野において観察される各粒子の直径を計測することにより求めたものである。このような範囲の粒径を有する担体の粒子は、遠心分離、フィルターなどによる回収が容易であり、かつ、充分な表面積を有しているために糖鎖との反応効率も高いと考えられる。粒径が上記の範囲よりも大幅に大きい場合、表面積が小さくなるために糖鎖との反応効率が低くなることがある。また、粒径が上記の範囲よりも大幅に小さい場合、特にフィルターによる粒子の回収が難しくなることがある。さらに、粒子をカラムに充填して用いる場合、粒径が過小であると通液の際の圧力損失が大きくなってしまうことがある。
本発明において、担体上に固定化される糖鎖は、特に限定するものではないが、血液、体液や組織抽出物などの生体由来物質でもあっても、化学合成により生成された糖鎖化合物であってもよい。
また、含まれる糖鎖は、遊離の糖鎖あるいは、糖アミノ酸、糖ペプチド、糖タンパク質、糖脂質、グリコサミノグリカン、プロテオグリカン、グリコシルホスファチジルイノシトール、ペプチドグリカン、リポ多糖のいずれかに結合した糖鎖から選ばれる。
(糖鎖捕捉について)
前記糖鎖捕捉担体を用いた糖鎖還元末端と一級アミノ基の結合反応の条件の一具体例は、pHが2~7、反応温度が50~100℃、好ましくは60~90℃、より好ましくは70~85℃、反応時間が15~120分である。最も好ましい条件はpH3~6、反応温度が80℃、反応時間が1時間である。
pHが3未満、または7を越える場合は中間体であるイミン体の生成が遅くなるため、捕捉効率が落ちる。反応温度は、50℃未満の場合、反応効率が著しく悪化する場合があり、糖鎖を十分に捕捉することができない。反応は、開放系で行って溶媒を完全に蒸発させることが好ましい。これは、溶媒が蒸発するにつれて溶液濃度が無限濃縮されることにより十分な反応を起こさせることが目的である。
また、反応温度が90℃を超える場合は、糖鎖自身に悪影響を及ぼすと共に、担体がプラスチックの場合は種類によって変形、溶融を発生することがある。
反応時間が30分より短い場合は十分な結合反応が得られない場合があり、糖鎖を十分に捕捉することが出来ない。また90分を超えた反応は、更なる糖鎖の捕捉は見られず時間をかけただけの効果がない。
(夾雑物の除去について)
糖鎖を捕捉した状態の糖鎖捕捉担体は、夾雑物を取り除くために洗浄する必要がある。
ここで、洗浄液に用いられる溶液としては、メタノール、エタノールなどのアルコール類;水および水性緩衝液などが使用される。ここで、洗浄に水溶液が用いられる場合、この水溶液のpHは中性付近であることが好ましく、そのpHは4~10、より好ましくは6~8である。
前記の糖鎖を捕捉した担体は、洗浄により、精製原料中の糖鎖以外の夾雑物を簡単に除去することが可能で、糖鎖のみを担体ごと回収することができる。
洗浄方法としては、粒子の場合は、洗浄液に浸漬し、洗浄液の交換を繰り返すことで洗浄することができる。
具体的には、遠沈管やチューブに粒子を入れ、洗浄液を加え、振とうの後、遠心操作により粒子を沈殿させて、上清を除去する操作を繰り返すことにより洗浄する。
例えば、遠心チューブ内に粒子を入れ、洗浄液を加え、粒子を自然沈降、または、遠心分離により強制的に沈降させた後、上清を除去する操作を繰り返すことで洗浄することができる。前記洗浄操作は3~6回行うことが好ましい。
プレートの場合は、各ウェル内に洗浄液を分注、吸引除去を繰り返すことで簡便に洗浄することができる。また、必要に応じてプレートを遠心可能な遠心分離機を用いても良い。
また、チューブ状の容器であって、底面部に、液体透過可能で前記粒子が不透過な孔径を有するフィルターを装着するフィルターチューブを用いることも可能である。前記フィルターチューブに粒子を入れて使用することで、洗浄に要した洗浄液を、フィルターを介して除去することが可能となり、前記の遠心操作後の上清除去の工程が必要なくなり、作業性の向上を図ることができる。
また、6~384穴のマルチウェルプレートの底部に前記フィルターを装着したものが各種市販されており、これらのプレートを用いることでハイスループット化することが可能である。特に96穴マルチウェルプレートは、溶液分注機器、吸引除去システム、およびプレートの搬送システム(例えばベックマンコールター社のBiomekシリーズ)が開発されており、ハイスループット化に最適であり、この自動機を用いて一連の作業を行ってもよい。
また、マルチプレートを用いた場合には、ろ過操作あるいは遠心操作により糖鎖捕捉物質以外の物質を除去してもよい。
カラムに糖鎖捕捉担体を充てんし、糖鎖捕捉反応から標識までを連続的にカラムで処理してもよい。これにより、大量の糖鎖精製および標識が可能となる。
 以下、本発明を実施例および比較例に基づいて詳細に説明するが、本発明はこれに限定されるものではない。
<実施例1>
(糖鎖サンプルの調整)
ウシ血清由来IgG(SIGMA、I5506)1 mgを100mM重炭酸アンモニウム(和光純薬、017-02875)50μLに溶解させた後、120mM DTT(ジチオスレイトール、SIGMA、D9779)を5μL加え、60℃で30分間反応させた。反応終了後、123mM IAA(ヨードアセトアミド、和光純薬、093-02152)10μLを加えて遮光下、室温で1時間反応させた。続いて400Uのトリプシン(SIGMA、T0303)によってプロテアーゼ処理をし、タンパク質部分をペプチド断片化した。反応溶液を90℃で5分処理した後、5UのグリコシダーゼF(Roche、1-365-193)による処理を行って糖鎖をペプチドから遊離させ、予備処理済の生体試料を得た。
(糖鎖捕捉担体による糖鎖精製)
糖鎖捕捉用の担体であるヒドラジド基を有する粒子5mg(BlotGlyco(R))、住友ベークライト株式会社製、BS-45603)が入ったディスポカラムに上記糖鎖溶液20μLおよび180μLの2%酢酸/アセトニトリル溶液を加え、80℃で1時間反応させた。反応は開放系で行い、溶媒が完全に蒸発し粒子が乾固した状態であることを目視で確認した。グアニジン溶液、水、メタノール、トリエチルアミン溶液にて粒子を洗浄後、10%無水酢酸/メタノールを添加し、室温で30分間反応させ、未反応のヒドラジド基をキャッピングした。キャッピング後、メタノール、塩酸水溶液、水にて粒子を洗浄した。
 続いて、粒子の入ったディスポカラムに超純水20μLおよび2%酢酸/アセトニトリル溶液180μLを加え、70℃で1.5時間反応させた。反応は開放系で行い、溶媒が完全に蒸発し粒子が乾固した状態であることを目視で確認した。
(糖鎖標識)
2-aminobenzamide(2-AB、和光純薬、574-92441)による標識を行った。粒子の入ったディスポカラムに、2-ABおよびシアノ水素化ホウ素ナトリウムの終濃度がそれぞれ0.7M、1Mになるように30%酢酸/ジメチルスルホシキド(DMSO)混合溶媒に溶解させて調製した溶液100μLを添加し、60℃で2時間反応させた。
(余剰2ABの除去)
反応溶液50μLを回収し、アセトニトリルで10倍に希釈した後、シリカカラム (BlotGlycoキット付属品)に添加してシリカゲルに標識糖鎖を吸着させた。アセトニトリルにてカラムを洗浄後、超純水50μLにて標識糖鎖を回収した。
(標識化糖鎖の検出)
得られた標識糖鎖をHPLCにて測定した。アミノカラム(Shodex Asahipak NH2P-50)を用いて励起波長330nm、蛍光波長420nmにて測定した。
<実施例2>
下記、糖鎖の標識工程以外の工程である糖鎖サンプルの調製、糖鎖捕捉担体による糖鎖精製、余剰2ABの除去、標識化糖鎖の検出は実施例1と同様にして行った。
(糖鎖標識)
2-aminobenzamide(2-AB、和光純薬、574-92441)による標識を行った。粒子の入ったディスポカラムに、2-ABおよびシアノ水素化ホウ素ナトリウムの終濃度がそれぞれ1.4M、1Mになるように30%酢酸/ジメチルスルホシキド(DMSO)混合溶媒に溶解させて調製した溶液100μLを添加し、60℃で2時間反応させた。
<実施例3>
下記、糖鎖の標識以外の工程である糖鎖サンプルの調製、糖鎖捕捉担体による糖鎖精製、余剰2ABの除去、標識化糖鎖の検出は実施例1と同様にして行った。
(糖鎖標識)
2-aminobenzamide(2-AB、和光純薬、574-92441)による標識を行った。粒子の入ったディスポカラムに、2-ABおよびシアノ水素化ホウ素ナトリウムの終濃度がそれぞれ2.8M、1Mになるように30%酢酸/ジメチルスルホシキド(DMSO)混合溶媒に溶解させて調製した溶液100μLを添加し、60℃で2時間反応させた。
<実施例4> 
下記、糖鎖の標識工程以外の工程である糖鎖サンプルの調製、糖鎖捕捉担体による糖鎖精製、余剰2ABの除去、標識化糖鎖の検出は実施例1と同様にして行った。
(糖鎖標識)
2-aminobenzamide(2-AB、和光純薬、574-92441)による標識を行った。粒子の入ったディスポカラムに、2-ABおよびシアノ水素化ホウ素ナトリウムの終濃度がそれぞれ1.4M、1Mになるように30%酢酸/ジメチルスルホシキド(DMSO)混合溶媒に溶解させて調製した溶液200μLを添加し、60℃で2時間反応させた。
<比較例1>
下記、糖鎖の標識工程以外の工程である糖鎖サンプルの調製、糖鎖捕捉担体による糖鎖精製、余剰2ABの除去、標識化糖鎖の検出は実施例1と同様にして行った。
(糖鎖標識)
2-aminobenzamide(2-AB、和光純薬、574-92441)による標識を行った。粒子の入ったディスポカラムに、2-ABおよびシアノ水素化ホウ素ナトリウムの終濃度がそれぞれ0.35M、1Mになるように30%酢酸/ジメチルスルホシキド(DMSO)混合溶媒に溶解させて調製した溶液100μLを添加し、60℃で2時間反応させた。
<比較例2>
下記、糖鎖の標識工程以外の工程である糖鎖サンプルの調整、糖鎖捕捉担体による糖鎖精製、余剰2ABの除去、標識化糖鎖の検出は実施例1と同様にして行った。
(糖鎖標識)
2-aminobenzamide(2-AB、和光純薬、574-92441)による標識を行った。粒子の入ったディスポカラムに、2-ABおよびシアノ水素化ホウ素ナトリウムの終濃度がそれぞれ1.4M、1Mになるように30%酢酸/ジメチルスルホシキド(DMSO)混合溶媒に溶解させて調製した溶液50μLを添加し、60℃で2時間反応させた。
上記検討で得られたHPLCチャートの代表例を図1に示す。また、実施例1、実施例2、実施例3および比較例1で得られたピークの総面積をグラフにしたものを図2に示す。一般的に使用されている0.35Mよりも濃度が高くなるにつれて得られるピーク面積値が大きくなった。
 続いて、実施例2、実施例4及び比較例2で得られたピークの総面積をグラフにしたものを図3に示す。溶液量が50μLよりも多くなるにつれて得られるピーク面積値が大きくなった。
上記の結果から、糖鎖捕捉担体を用いて糖鎖を捕捉、精製した後、糖鎖を遊離させ、遊離した糖鎖を芳香族アミンで構成される高濃度(0.5mol/L以上)の蛍光物質で糖鎖を標識する、本願の糖鎖の蛍光標識方法は、優れた効果を有することが明らかになった。
本発明により、簡便に糖鎖を回収、精製し、芳香族アミンによる糖鎖標識を実施でき、前記糖鎖を提供することが可能となった。

Claims (11)

  1. 糖鎖を蛍光標識する方法であって、
    濃度が0.5mol/L以上の芳香族アミンで構成される蛍光物質と糖鎖を反応させ標識すること
    を特徴とする糖鎖蛍光標識方法。
  2. 芳香族アミンの芳香環部分が、ベンゼン環、ピレン環、ナフタレン環、アクリドン環、フルオレセイン環、ダンシル環、クマリン環、アクリジン環、またはこれらのいずれかの誘導体である、請求項1に記載の糖鎖蛍光標識方法。
  3. 芳香族アミンで構成される蛍光物質の励起波長が330~750nmである、請求項1または2に記載の糖鎖蛍光標識方法。
  4. 芳香族アミンで構成される蛍光物質の発光波長が420~780nmである、請求項1~3のいずれか1項に記載の糖鎖蛍光標識方法。
  5. 前記芳香族アミンを有する蛍光物質が、2-Aminobenzamide,2-Aminobenzoic  acid,8-Aminopyrene-1,3,6-trisulfonate,8-Aminonaphthalene-1,3,6-trisulphonate,2-Amino-9(10H)-acridone,5-Aminofluorescein,Dansylethylenediamine,7-Amino-4-methylcoumarine,3-Aminobenzoic  acid,7-Amino-1-naphthol,3-(Acetylamino)-6-aminoacridine、及び前記芳香族アミンを有する蛍光物質のいずれかの誘導体から選ばれる少なくとも一種類の蛍光物質である請求項1~4のいずれか1項に記載の糖鎖蛍光標識方法。
  6. 糖鎖捕捉担体を用いて糖鎖を捕捉、精製した後、前記糖鎖捕捉担体より糖鎖を遊離させ、遊離した糖鎖を前記芳香族アミンで構成される蛍光物質で糖鎖を標識するものである請求項1~5のいずれか1項に記載の糖鎖の蛍光標識方法。
  7. 前記糖鎖捕捉担体が下記の(化1)で表される構造を有するポリマー粒子である請求項6に記載の糖鎖蛍光標識方法。
    [化1]
    Figure JPOXMLDOC01-appb-I000001
    (R1,R2は-O-,-S-,-NH-,-CO-,-CONH-が挿入されてもよい炭素数1~20の炭化水素鎖,R3,R4,R5はH,CH3,または炭素数2~5の炭化水素鎖を示す。m,nはモノマーユニット数を示す。)
  8. 前記糖鎖捕捉担体が下記の(化2)で表される構造を有するポリマー粒子である請求項6または7に記載の糖鎖蛍光標識方法。
    [化2]       
    Figure JPOXMLDOC01-appb-I000002
    (m,nは前記と同じ意味である。)
  9. 前記糖鎖が、生体由来物質である請求項1~8のいずれか1項に記載の糖鎖蛍光標識方法。
  10. 前期糖鎖が、糖アミノ酸、糖ペプチド、糖タンパク質、糖脂質、グリコサミノグリカン、プロテオグリカン、グリコシルホスファチジルイノシトール、ペプチドグリカン、およびリポ多糖の中のいずれかに結合した糖鎖、または遊離の糖鎖である請求項1~9のいずれか1項に記載の糖鎖蛍光標識方法。
  11. 請求項1~10のいずれか1項に記載の糖鎖蛍光標識方法に用いられるキット。
PCT/JP2012/056011 2011-03-11 2012-03-08 糖鎖蛍光標識方法 WO2012124609A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137021067A KR20140040109A (ko) 2011-03-11 2012-03-08 당쇄 형광 표지 방법
US13/980,795 US9085645B2 (en) 2011-03-11 2012-03-08 Sugar chain fluorescent labeling method
JP2013504696A JPWO2012124609A1 (ja) 2011-03-11 2012-03-08 糖鎖蛍光標識方法
CN2012800092337A CN103380378A (zh) 2011-03-11 2012-03-08 糖链荧光标记方法
EP12757654.4A EP2685263A4 (en) 2011-03-11 2012-03-08 FLUORESCENT MARKING METHOD FOR SUGAR CHAINS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-053897 2011-03-11
JP2011053897 2011-03-11

Publications (1)

Publication Number Publication Date
WO2012124609A1 true WO2012124609A1 (ja) 2012-09-20

Family

ID=46830682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056011 WO2012124609A1 (ja) 2011-03-11 2012-03-08 糖鎖蛍光標識方法

Country Status (6)

Country Link
US (1) US9085645B2 (ja)
EP (1) EP2685263A4 (ja)
JP (1) JPWO2012124609A1 (ja)
KR (1) KR20140040109A (ja)
CN (1) CN103380378A (ja)
WO (1) WO2012124609A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2909632B1 (en) * 2012-10-17 2021-11-24 Hexal AG Improved method of mapping glycans of glycoproteins

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103788941B (zh) * 2014-01-22 2016-01-20 中国药科大学 一种新型巯基荧光探针、制备方法及其应用
CN104592207B (zh) * 2014-03-07 2017-06-06 南京农业大学 一种新型单糖荧光衍生方法和应用
CN104597187A (zh) * 2014-12-30 2015-05-06 佛山安普泽生物医药有限公司 快速全面检测药用单克隆抗体n糖基化位点上寡糖的方法
CN108796044B (zh) * 2018-06-12 2020-10-09 苏州百源基因技术有限公司 基于荧光标记多糖的染料编码方法
CN111560085B (zh) * 2019-10-29 2020-12-18 皖西学院 壳聚糖荧光探针、制备方法及其应用
CN111560083B (zh) * 2019-10-29 2021-02-19 皖西学院 壳聚糖萘基硫脲荧光探针、制备方法及其在检测铁离子中的应用
CN114136936A (zh) * 2021-11-11 2022-03-04 中国科学院遗传与发育生物学研究所 4-磷酸赤藓糖的检测方法
CN114685571B (zh) * 2022-04-18 2022-11-25 江南大学 一种寡糖荧光标记物及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01141356A (ja) * 1987-11-27 1989-06-02 Takara Shuzo Co Ltd 糖類の蛍光標識方法
JPH0720131A (ja) 1993-07-02 1995-01-24 Nakano Vinegar Co Ltd 糖類の蛍光標識方法
JP2005241408A (ja) * 2004-02-26 2005-09-08 National Institute Of Advanced Industrial & Technology リン酸化糖の分析方法及び定量方法
JP2006098367A (ja) 2004-09-30 2006-04-13 Hitachi High-Technologies Corp 糖鎖の解析方法
JP2007212235A (ja) * 2006-02-08 2007-08-23 Nippon Medical School マンノース・グルコース同時測定方法
WO2008018170A1 (fr) * 2006-08-09 2008-02-14 Sumitomo Bakelite Co., Ltd. Substance capable de capturer les chaînes glucidiques et procédé l'utilisant
JP2008309501A (ja) 2007-06-12 2008-12-25 Kyowa Hakko Kirin Co Ltd 糖鎖の解析方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410177A (en) * 1987-07-02 1989-01-13 Takara Shuzo Co Fluorescent labeling method for saccharides
JP3720520B2 (ja) * 1997-03-27 2005-11-30 タカラバイオ株式会社 糖と標的物との相互作用の測定方法
JP3893470B2 (ja) * 2005-03-10 2007-03-14 国立大学法人 香川大学 糖類の蛍光標識化方法、糖類の蛍光標識化装置
DK2282209T3 (da) * 2008-04-30 2012-11-26 Sumitomo Bakelite Co Fremgangsmåde til markering af sukkerkæder
US20110089033A1 (en) * 2008-06-12 2011-04-21 Sumitomo Bakelite Co., Ltd. Method of preparing sugar chain sample, sugar chain sample, and method of analyzing sugar chain

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01141356A (ja) * 1987-11-27 1989-06-02 Takara Shuzo Co Ltd 糖類の蛍光標識方法
JPH0720131A (ja) 1993-07-02 1995-01-24 Nakano Vinegar Co Ltd 糖類の蛍光標識方法
JP2005241408A (ja) * 2004-02-26 2005-09-08 National Institute Of Advanced Industrial & Technology リン酸化糖の分析方法及び定量方法
JP2006098367A (ja) 2004-09-30 2006-04-13 Hitachi High-Technologies Corp 糖鎖の解析方法
JP2007212235A (ja) * 2006-02-08 2007-08-23 Nippon Medical School マンノース・グルコース同時測定方法
WO2008018170A1 (fr) * 2006-08-09 2008-02-14 Sumitomo Bakelite Co., Ltd. Substance capable de capturer les chaînes glucidiques et procédé l'utilisant
JP2008309501A (ja) 2007-06-12 2008-12-25 Kyowa Hakko Kirin Co Ltd 糖鎖の解析方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2685263A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2909632B1 (en) * 2012-10-17 2021-11-24 Hexal AG Improved method of mapping glycans of glycoproteins

Also Published As

Publication number Publication date
US20130310552A1 (en) 2013-11-21
KR20140040109A (ko) 2014-04-02
JPWO2012124609A1 (ja) 2014-07-24
EP2685263A4 (en) 2014-11-19
EP2685263A1 (en) 2014-01-15
US9085645B2 (en) 2015-07-21
CN103380378A (zh) 2013-10-30

Similar Documents

Publication Publication Date Title
WO2012124609A1 (ja) 糖鎖蛍光標識方法
JP5500067B2 (ja) 糖鎖標識方法
JP2016027345A (ja) 糖鎖試料調製方法
JP5026070B2 (ja) ポリマー粒子
JP2013068594A (ja) シアロ糖鎖をアミド化修飾する方法
JP2009142238A (ja) 細胞表面糖鎖の遊離方法及び検出方法
JP5927760B2 (ja) 酸性糖鎖試料調製方法
WO2015033743A1 (ja) 標識糖鎖試料の調製方法
JP5125637B2 (ja) 糖鎖試料調製方法
JP6048036B2 (ja) 糖鎖の精製方法
CN1354176A (zh) 精制高纯度替曲朵辛的方法
US20170292122A1 (en) Purification of nucleic acid from a sample containing nucleic acid and endotoxin
JP2013076629A (ja) α2,6−シアロ糖鎖とα2,3−シアロ糖鎖とを識別する方法
JP5983347B2 (ja) 糖鎖精製方法
WO2015146514A1 (ja) 標識された糖鎖試料の調製において糖鎖からのシアル酸の脱離を抑制する方法
CN113383003B (zh) 由糖蛋白制备糖链的方法、试剂盒和装置
JP5682850B1 (ja) 糖鎖試料を標識するための化合物
JP7521307B2 (ja) 糖鎖を標識する方法及びキット
JP6064541B2 (ja) 糖鎖精製方法
WO2016054295A1 (en) Systems and methods for determining probative samples and isolation and quantitation of cells
JP2013070682A (ja) 細胞表面糖鎖の製造方法および細胞表面糖鎖試料
JP2022122455A (ja) 糖鎖を標識する方法及びキット
JP2024060941A (ja) 糖鎖を標識する方法及びキット
JP2013076649A (ja) 単糖分析用試料の製造方法
JP2013142566A (ja) 糖鎖試料の調製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12757654

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013504696

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012757654

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13980795

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137021067

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE