WO2012122760A1 - 一种滑石质建筑陶瓷砖及其制造方法 - Google Patents

一种滑石质建筑陶瓷砖及其制造方法 Download PDF

Info

Publication number
WO2012122760A1
WO2012122760A1 PCT/CN2011/076801 CN2011076801W WO2012122760A1 WO 2012122760 A1 WO2012122760 A1 WO 2012122760A1 CN 2011076801 W CN2011076801 W CN 2011076801W WO 2012122760 A1 WO2012122760 A1 WO 2012122760A1
Authority
WO
WIPO (PCT)
Prior art keywords
talc
ceramic tile
building ceramic
building
raw
Prior art date
Application number
PCT/CN2011/076801
Other languages
English (en)
French (fr)
Inventor
江伟辉
朱庆霞
包镇红
谭训彦
虞澎澎
苗立锋
刘健敏
Original Assignee
景德镇陶瓷学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 景德镇陶瓷学院 filed Critical 景德镇陶瓷学院
Publication of WO2012122760A1 publication Critical patent/WO2012122760A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/14Colouring matters
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/24Manufacture of porcelain or white ware
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/32Burning methods
    • C04B33/34Burning methods combined with glazing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3454Calcium silicates, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3472Alkali metal alumino-silicates other than clay, e.g. spodumene, alkali feldspars such as albite or orthoclase, micas such as muscovite, zeolites such as natrolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the invention belongs to the technical field of building ceramics, and particularly relates to a new material of building ceramic tiles and a method for producing the building ceramic tiles.
  • Building ceramic tiles are products made from some natural mineral raw materials through processes such as raw material processing, forming and firing. Natural minerals are contaminated with harmful metal oxides such as iron, manganese and titanium during the long evolution of the earth's crust, which can significantly reduce the whiteness of the product.
  • natural minerals are contaminated with harmful metal oxides such as iron, manganese and titanium during the long evolution of the earth's crust, which can significantly reduce the whiteness of the product.
  • glazed ceramic tiles because of the decorative glaze on the surface, it does not require high whiteness of the blank; porcelain tiles are unglazed products because the surface of the blank has no strong hiding power and high whiteness.
  • Yingshi Mine In the formation process of nature, Yingshi Mine is associated with uranium and antimony ore, which causes it to be radioactive. Excessive addition will easily cause the ceramic brick to exceed the standard, thus causing harm to the human body. Therefore, the development of a new material for green building ceramic tiles, which has the whiteness of ultra-white bricks, and no radioactive hazards, is very meaningful for the healthy development of China's building ceramic tiles.
  • China's talc reserves are abundant, with high whiteness, pure texture and less harmful components. It is well-known in the domestic and foreign markets. It is the world's largest producer and exporter of talc. The advantages of talc resources are outstanding.
  • the use of high whiteness talc as raw material to produce ultra-white building ceramic tiles is a strategic choice that is very suitable for China's national conditions.
  • talc is used as a flux raw material, and its amount is generally from 1 to 5%.
  • CN101037321A discloses a high whiteness non-radiative ceramic tile and a manufacturing method thereof, which have the following composition: burning talc 15 ⁇ 60%, feldspar 15 ⁇ 30%, porcelain sand 5 ⁇ 30%, black mud 20 ⁇ 28%, burning The temperature is from 1210 ° C to 1230 ° C.
  • the talc used is calcined talc calcined at 1200 ° C.
  • the black mud is a secondary deposited clay, and the porcelain sand is a quartz mineral.
  • the invention adopts partial talc and alumina powder through formula design and process optimization, and effectively overcomes the shortcomings of poor talc porcelain forming performance and narrow firing range, and is easy to popularize and apply.
  • the invention provides a talc building ceramic tile, characterized in that the chemical composition of the porcelain blank is 55 ⁇ 65% SiO 2 , 10 ⁇ 25% Al 2 O 3 , 10 ⁇ 25% MgO, 1 ⁇ 4 %K 2 O, 0.3 ⁇ 1.5% Na 2 O, 1 ⁇ 5% CaO.
  • the main crystal phase in the ceramic body can change with the composition of the billet. It can be cordierite, or the original enstatite, or the cordierite, the original stubborn. A combination of two or three of the three crystal phases of pyroxene and mullite.
  • the above talc building ceramic tile may be a porcelain brick having a water absorption rate of less than 0.5% according to the degree of sintering, or a semi-ceramic brick having a water absorption of 0.5 to 10%, or a water absorption rate of more than 10 % of ceramic tiles.
  • the surface of the above talc building ceramic tile can be applied with both opaque glaze and transparent glaze.
  • the talc building ceramic tile blank can be made into a talc composite building ceramic tile by using a secondary cloth process as a fabric on a base material prepared from inferior raw materials, and the thickness ratio of the talc fabric to the inferior base material is 0.1 ⁇ 3. .
  • the invention provides a method for producing the above talc building ceramic tile, and the production process is the same as the current general building ceramic tile, characterized in that the raw material formula used is by weight ratio: talc 35 ⁇ 75% (including: raw talc) The ratio of consumption to talc is 0.1 ⁇ 1), feldspar 8 ⁇ 35%, kaolin 15 ⁇ 35%, wollastonite 0 ⁇ 5%, alumina powder 2 ⁇ 10%; its firing temperature is: 1100 ⁇ 1250 °C.
  • the method is completely different.
  • the invention also adds 2 ⁇ 10% alumina powder to the blank formulation instead of introducing quartz like the usual talc porcelain batching (the use of porcelain sand in the literature CN101037321A is also a conventional process for introducing quartz), which has two functions: one During the firing process, part of the alumina powder is dissolved in the high-temperature glass liquid phase, which significantly increases the high-temperature viscosity of the liquid phase, so that the firing range of the green body is significantly expanded; the second is that some alumina powder reacts in the green body. Cordierite crystal phase.
  • the thermal expansion coefficient of the talc building ceramic tile of the present invention is small, which has It is beneficial to improve the thermal stability of talc building ceramic tiles.
  • the ceramic tiles of the invention not only have the advantages of wide source of talc raw materials and low cost, but also have the characteristics of high strength and no radioactive hazard. .
  • the invention introduces part of raw talc and alumina powder into the blank formula, which significantly improves the forming property of the talc building ceramic tile, and expands the firing range thereof, and is easy to be Promote the application.
  • the surface of the existing building ceramic tiles is opaque glaze, and the surface of the ceramic tile of the invention can not only apply opaque glaze, but also can apply transparent glaze, which provides the underglaze decoration of the building ceramic tile. It is possible to greatly improve the decorative effect of the brick body.
  • the talc building ceramic brick blank of the invention can be made into composite building ceramic bricks on other blanks prepared from inferior raw materials, which further reduces the bottleneck of breaking the shortage of high quality ceramic raw materials.
  • the cost of raw materials and the sustainable development of the building ceramics industry are of great significance.
  • Example 1 Raw materials were weighed according to the blank formulation: raw talc 20%, burnt talc 45%, kaolin 18%, potassium feldspar 10%, alumina 7%, billet chemical composition: 58.84% SiO 2 , 16.33% Al 2 O 3 , 20.44% MgO, 1.31% K 2 O, 2.65% CaO, 0.43 % Na 2 O.
  • the above raw materials are put into a ball mill, and the ball mill is mixed to the required fineness (that is, the cumulative percentage of particles below 10 ⁇ m accounts for 70% or more), and then sieved, iron-removed, spray-pulverized, and press-formed, and dried at 1220. After firing at ⁇ 1250 °C, the performance index of the obtained product is: water absorption rate 0.1%, whiteness 82.8, flexural strength 106.3 MPa, and the main crystal phase in the porcelain body is cordierite and original enstatite.
  • Example 2 Raw materials were weighed according to the blank formulation: raw talc 10%, burnt talc 35%, kaolin 25%, potassium feldspar 20%, alumina 10%, billet chemical composition: 57.54% SiO 2 , 23.24% Al 2 O 3 , 14.17% MgO, 2.37 % K 2 O, 1.97 % CaO, 0.71% Na 2 O. According to the preparation process described in Example 1, it can be fired at 1170 ⁇ 1200 °C. The performance index of the obtained product is: water absorption rate 0.3, whiteness 72.1, flexural strength 95.2 MPa, and the main crystal phase in the ceramic body is cordierite. .
  • Example 3 Raw materials were weighed according to the blank formulation: raw talc 15%, burnt talc 35%, kaolin 15%, potassium feldspar 29%, wollastonite 1%, alumina 5%, billet chemical composition: 61.51 % SiO 2 , 16.14% Al 2 O 3 , 15.58 % MgO, 3.18 % K 2 O, 2.61 % CaO, 0.98% Na 2 O.
  • the powder is prepared, and the talc composite building ceramic tile is made by covering the other blanks prepared from the inferior raw materials by the secondary cloth process, wherein the thickness of the fabric: the thickness of the base material is 2 It can be fired at 1180 ⁇ 1200°C.
  • the performance index of the obtained product is: water absorption rate 0.2%, whiteness 78.7, flexural strength 103.6MPa, and the main crystal phase in the porcelain is the original enstatite and mullite.
  • Example 4 Weighing raw materials according to the blank formulation: raw talc 14%, burnt talc 30%, kaolin 15%, potassium feldspar 35%, alumina 6%, billet chemical composition: 61.46% SiO 2 , 18.08% Al 2 O 3 , 13.71% MgO, 3.77 % K 2 O, 1.82 % CaO, 1.15 % Na 2 O.
  • the powder is pressed into a green body, and the transparent glaze is applied to the green body, and then fired at 1140-1160 ° C.
  • the performance index of the obtained product is: water absorption rate 2.1%, whiteness. 71.8, the flexural strength is 95.8 MPa, and the main crystalline phase in the porcelain is the original enstatite.
  • Example 5 Raw materials were weighed according to the blank formulation: 8% of raw talc, 27% of talc, 25% of kaolin, 30% of feldspar, 3% of wollastonite, 7% of alumina, and chemical composition of blank: 59.73% SiO 2 , 21.60% Al 2 O 3 , 10.97% MgO, 3.42% K 2 O, 3.19% CaO, 1.00 % Na 2 O.
  • the powder is pressed into a green body, and the opaque glaze is applied to the green body, and then fired at 1120 to 1140 ° C.
  • the performance index of the obtained product is: water absorption rate 6.6%, white Degree 73.4, the flexural strength is 88.2 MPa, and the main crystal phase in the porcelain is the original enstatite, mullite and cordierite.
  • Example 6 Raw materials were weighed according to the blank formulation: raw talc 22%, burnt talc 24%, kaolin 28%, potassium feldspar 19%, wollastonite 5%, alumina 2%, billet chemical composition: 61.89% SiO 2 , 15.74% Al 2 O 3 , 14.70% MgO, 2.44% K 2 O, 4.51% CaO, 0.71% Na 2 O.
  • the powder is prepared, and the talc composite building ceramic tile is made by covering the base material prepared from the inferior raw material by the secondary cloth process, wherein the thickness of the fabric: the thickness of the base material is 1 . It can be fired at 1150 ⁇ 1170 °C.
  • the performance index of the obtained product is: water absorption rate 3.78%, whiteness 73.9, flexural strength 44.5MPa, and the main crystal phase in the porcelain is the original enstatite, mullite and cordierite. .
  • Example 7 Raw materials were weighed according to the blank formulation: raw talc 20%, burnt talc 55%, kaolin 15%, potassium feldspar 8%, alumina 2%, blank chemical composition: 62.04% SiO 2 , 9.93% Al 2 O 3 , 23.42 % MgO, 1.11 % K 2 O, 3.11 % CaO, 0.37 % Na 2 O.
  • the powder is pressed into a green body, and the transparent glaze is applied to the green body, and then fired at 1170 to 1200 ° C.
  • the performance index of the obtained product is: water absorption rate of 15.6%, whiteness. 85.7, the flexural strength is 77.8MPa, and the main crystal phase in the porcelain is the original enstatite, mullite and cordierite.
  • Example 8 Raw materials were weighed according to the blank formulation: raw talc 10%, burnt talc 27%, kaolin 33%, potassium feldspar 20%, alumina 8%, wollastonite 2%, billet chemical composition: 58.39% SiO 2 , 23.86% Al 2 O 3 , 11.75 % MgO, 2.50 % K 2 O, 2.72% CaO, 0.72 % Na 2 O.
  • the powder is pressed into a green body, and the opaque glaze is applied to the green body, and then fired at 1100 to 1120 ° C.
  • the performance index of the obtained product is: water absorption rate of 14.5%, white. Degree 77.2, bending strength 73.2MPa, the main crystal phase in porcelain is cordierite and mullite.
  • Example 9 Raw materials were weighed according to the blank formulation: raw talc 5%, burnt talc 50%, kaolin 21%, potassium feldspar 16%, wollastonite 4%, alumina 4%, billet chemical composition: 60.68 % SiO 2 , 15.07% Al 2 O 3 , 17.04% MgO, 1.95 % K 2 O, 4.69 % CaO, 0.58 % Na 2 O.
  • the powder is prepared, and the talc composite building ceramic tile is made by covering the other blanks prepared from the inferior raw materials by the secondary cloth process, wherein the thickness of the fabric: the thickness of the base material is 0.25. It can be fired at 1140 ⁇ 1160 °C.
  • the performance index of the obtained product is: water absorption rate 10.7%, product whiteness 80.8, flexural strength 82.8MPa, main crystal phase in porcelain is original enstatite, cordierite and mo Come to the stone.

Description

一种滑石质建筑陶瓷砖及其制造方法 技术领域
本发明属于建筑陶瓷技术领域,具体涉及一种建筑陶瓷砖的新材质,以及一种生产这种建筑陶瓷砖的方法。
背景技术
随着我国社会和经济的快速发展,人民的生活水平显著提高,人们对高档建筑陶瓷砖的需求与日俱增,高白度陶瓷砖(超白砖)也因此深受消费者青睐,具有广阔的市场前景。建筑陶瓷砖是由一些天然矿物原料经过原料加工、成型以及烧成等工艺过程后制成的产品。天然矿物在漫长的地壳演变过程中会夹杂铁、锰、钛等有害的金属氧化物,这些杂质会显著降低制品的白度。对于施釉陶瓷砖来说,因其表面有装饰釉,它对坯体的白度要求不高;而瓷质砖是无釉的产品,因为其坯体表面没有遮盖力强、白度高的乳浊釉,所以瓷质砖对坯体原料自身的白度要求很高。然而,经过改革开放三十年的迅猛发展,我国虽然早已成为世界第一建筑陶瓷生产大国,但是与此同时也消耗了数量惊人的陶瓷原料,许多优质的陶瓷原料资源已经或濒于枯竭。通过应用优质陶瓷原料生产超白砖的传统技术路线越来越难以为继了。现有的解决方案是采用碳酸锆和锆英石等高价增白剂提高陶瓷砖白度,它虽然可以有效增加陶瓷砖白度,但是却大幅提高了原料成本,而且更糟糕的是,由于锆英石矿在自然界形成过程中与铀、钍矿伴生,导致它具有放射性,过量加入容易使陶瓷砖放射性超标,从而给人体造成伤害。因此,开发一种绿色建筑陶瓷砖新材质,使之既具有超白砖的白度,又没有放射性危害,这对我国建筑陶瓷砖的健康发展是非常有意义的。
我国滑石储量丰富,以白度高,质地纯,有害成分少著称,在国内外市场上享有盛誉,是世界上最大的滑石生产国和出口国,滑石资源优势十分突出。利用高白度的滑石作为原料生产超白建筑陶瓷砖,这是一条非常切合我国国情的战略选择。然而,在建筑陶瓷行业中,滑石是作为熔剂原料来使用的,其用量一般为1~5%。CN101037321A公开了一种高白度无辐射瓷砖及其制造方法,其配方组成为:烧滑石15~60%、长石15~30%、瓷砂5~30%、黑泥20~28%,烧成温度为1210℃~1230℃,所用的滑石是经过1200℃煅烧的烧滑石,其中的黑泥是一种二次沉积粘土,而瓷砂则是石英矿物。本发明通过配方设计和工艺优化,采用部分生滑石和氧化铝粉,有效克服了滑石瓷成型性能差、烧成范围窄的缺点,易于推广应用。
技术问题
本发明的目的在于克服现有高白建筑陶瓷砖生产中存在的不足,提供一种无放射性的高白滑石质建筑陶瓷砖,本发明的另一个目的是提供这种建筑陶瓷砖的制造方法。
技术解决方案
本发明提供的一种滑石质建筑陶瓷砖,其特征在于瓷坯的化学组成按重量比为:55~65%SiO2、10~25%Al2O3、10~25%MgO、1~4%K2O、0.3~1.5%Na2O、1~5%CaO,瓷体中的主晶相随坯料组成的变化可以是堇青石,或是原顽辉石,或是堇青石、原顽辉石和莫来石这三种晶相中的两种或三种晶相的组合。
上述的滑石质建筑陶瓷砖,根据其烧结程度的不同,可以是吸水率小于0.5%的瓷质砖,也可以是吸水率为0.5~10%的半瓷质砖,还可以是吸水率大于10%的陶质砖。
上述的滑石质建筑陶瓷砖表面既可以施乳浊釉,也可以施透明釉。通过二次布料工艺将上述滑石质建筑陶瓷砖坯料作为面料布在由劣质原料配制的底料上还可以制成滑石质复合建筑陶瓷砖,滑石质面料与劣质底料的厚度比为0.1~3。
本发明提供的一种生产上述滑石质建筑陶瓷砖的方法,生产工艺流程与目前通用的建筑陶瓷砖相同,其特征在于所用的原料配方按重量比为:滑石35~75%(其中:生滑石与烧滑石的用量比为0.1~1),长石8~35%,高岭土15~35%,硅灰石0~5%,氧化铝粉2~10%;其烧成温度为:1100~1250℃。
本发明在坯料配方中只将部分滑石煅烧,保留部分生滑石(生滑石∶烧滑石=0.1~1),使坯料的成型性能得到显著提高,这与文献CN101037321A所述的全部采用烧滑石的工艺方法截然不同的。
本发明还在坯料配方中加入2~10%氧化铝粉,而不是像通常滑石瓷配料那样引入石英(文献CN101037321A使用瓷砂也是属于引入石英的常规工艺),这有两方面的作用:其一是在烧成过程中部分氧化铝粉溶入高温玻璃液相中,显著提高液相的高温粘度,使坯体的烧成范围明显扩大;其二是部分氧化铝粉发生反应在坯体中形成堇青石晶相。由于堇青石热膨胀系数(2.3×10-6/℃)远小于原顽辉石的热膨胀系数(13.5×10-6/℃),因此本发明的滑石质建筑陶瓷砖的热膨胀系数较小,这有利于提高滑石质建筑陶瓷砖的热稳定性。
有益效果
采用上述技术方案生产的滑石质建筑陶瓷砖具有如下优点:
1、与现有采用锆英石等高价增白剂生产的超白砖相比,本发明的陶瓷砖不但具有滑石原料来源广、成本低的优势,而且还具有强度高、无放射性危害等特点。
2、与现有的滑石质建筑陶瓷砖相比,本发明在坯料配方中引入部分生滑石和氧化铝粉,显著提高了滑石质建筑陶瓷砖的成型性能,并且扩大了其烧成范围,易于推广应用。
3、现有建筑陶瓷砖的表面都是施乳浊釉,而本发明的陶瓷砖表面不但可以施乳浊釉,而且还可以施透明釉,这就为建筑陶瓷砖的釉下彩装饰提供了可能,从而大大提高砖体的装饰效果。
4、通过二次布料工艺可以将本发明的滑石质建筑陶瓷砖坯料布在由劣质原料配制的其它坯料上制成复合建筑陶瓷砖,这对于打破优质陶瓷原料日益稀缺这一瓶颈制约,进一步降低原料成本,保障建筑陶瓷行业可持续发展都具有十分重要的意义。
本发明的最佳实施方式
实施例1:按坯料配方称取原料:生滑石20%,烧滑石45%,高岭土18%,钾长石10%,氧化铝7%,坯料化学组成为:58.84%SiO2,16.33%Al2O3,20.44%MgO,1.31%K2O,2.65%CaO,0.43 %Na2O。将上述原料投入球磨机内,混合球磨至所要求的细度(即10μm以下的颗粒累计百分数占70%以上),然后依次进行过筛、除铁、喷雾制粉、压制成型,经干燥后在1220~1250℃烧成即可,所得产品的性能指标为:吸水率0.1 %,白度82.8, 抗折强度106.3MPa,瓷体中的主晶相为堇青石和原顽辉石。
本发明的实施方式
实施例2 :按坯料配方称取原料:生滑石10%,烧滑石35%,高岭土25%,钾长石20%,氧化铝10%,坯料化学组成为:57.54%SiO2,23.24%Al2O3,14.17%MgO,2.37 %K2O,1.97 %CaO,0.71%Na2O。按实施例1所述制备工艺,在1170~1200℃烧成即可,所得产品的性能指标为:吸水率0.3,白度72.1,抗折强度95.2MPa,瓷体中的主晶相为堇青石。
Mode for Invention
实施例3 :按坯料配方称取原料:生滑石15%,烧滑石35%,高岭土15%,钾长石29%,硅灰石1%,氧化铝5%,坯料化学组成为:61.51 %SiO2,16.14%Al2O3,15.58 %MgO,3.18 %K2O,2.61 %CaO, 0.98%Na2O。按实施例1所述制备工艺制成粉料,通过二次布料工艺将其作为面料覆盖在由劣质原料配制的其它坯料上制成滑石质复合建筑陶瓷砖,其中面料厚∶底料厚=2,在1180~1200℃烧成即可,所得产品的性能指标为:吸水率0.2%,白度78.7,抗折强度103.6MPa,瓷体中的主晶相为原顽辉石和莫来石。
Mode for Invention
实施例4 :按坯料配方称取原料:生滑石14%,烧滑石30%,高岭土15%,钾长石35%,氧化铝6%,坯料化学组成为:61.46 %SiO2,18.08%Al2O3,13.71%MgO,3.77 %K2O,1.82 %CaO,1.15 %Na2O。按实施例1所述制备工艺制成粉料压制成坯体,在坯体上施透明釉后,在1140-1160℃烧成即可,所得产品的性能指标为:吸水率2.1%,白度71.8,抗折强度95.8MPa,瓷体中的主晶相为原顽辉石。
Mode for Invention
实施例5 :按坯料配方称取原料:生滑石8%,烧滑石27%,高岭土25%,钾长石30%,硅灰石3%,氧化铝7%,坯料化学组成为:59.73 %SiO2,21.60 %Al2O3,10.97%MgO,3.42%K2O,3.19%CaO,1.00 %Na2O。按实施例1所述制备工艺制成粉料压制成坯体,在坯体上施乳浊釉后,在1120~1140℃烧成即可,所得产品的性能指标为:吸水率6.6%,白度73.4,抗折强度88.2MPa,瓷体中的主晶相为原顽辉石、莫来石和堇青石。
Mode for Invention
实施例6:按坯料配方称取原料:生滑石22%,烧滑石24%,高岭土28%,钾长石19%,硅灰石5%,氧化铝2%,坯料化学组成为:61.89%SiO2,15.74%Al2O3,14.70 %MgO,2.44 %K2O,4.51%CaO,0.71 %Na2O。按实施例1所述制备工艺制成粉料,通过二次布料工艺将其作为面料覆盖在由劣质原料配制的底料上制成滑石质复合建筑陶瓷砖,其中面料厚∶底料厚=1。在1150~1170℃烧成即可,所得产品的性能指标为:吸水率3.78%,白度73.9, 抗折强度44.5MPa,瓷体中的主晶相为原顽辉石、莫来石和堇青石。
Mode for Invention
实施例7 :按坯料配方称取原料:生滑石20%,烧滑石55%,高岭土15%,钾长石8%,氧化铝2%,坯料化学组成为:62.04 %SiO2,9.93%Al2O3,23.42 %MgO,1.11 %K2O,3.11 %CaO,0.37 %Na2O。按实施例1所述制备工艺制成粉料压制成坯体,在坯体上施透明釉后,在1170~1200℃烧成即可,所得产品的性能指标为:吸水率15.6%,白度85.7, 抗折强度77.8MPa,瓷体中的主晶相为原顽辉石、莫来石和堇青石。
Mode for Invention
实施例8 :按坯料配方称取原料:生滑石10%,烧滑石27%,高岭土33%,钾长石20%,氧化铝8%,硅灰石2%,坯料化学组成为:58.39 %SiO2,23.86%Al2O3,11.75 %MgO,2.50 %K2O,2.72%CaO,0.72 %Na2O。按实施例1所述制备工艺制成粉料压制成坯体,在坯体上施乳浊釉后,在1100~1120℃烧成即可,所得产品的性能指标为:吸水率14.5%,白度77.2, 抗折强度73.2MPa,瓷体中的主晶相为堇青石和莫来石。
Mode for Invention
实施例9 :按坯料配方称取原料:生滑石5%,烧滑石50%,高岭土21%,钾长石16%,硅灰石4%,氧化铝4%,坯料化学组成为:60.68 %SiO2,15.07%Al2O3,17.04 %MgO,1.95 %K2O,4.69 %CaO,0.58 %Na2O。按实施例1所述制备工艺制成粉料,通过二次布料工艺将其作为面料覆盖在由劣质原料配制的其它坯料上制成滑石质复合建筑陶瓷砖,其中面料厚∶底料厚=0.25,在1140~1160℃烧成即可,所得产品性能指标为:吸水率10.7%,产品白度80.8, 抗折强度82.8MPa,瓷体中的主晶相为原顽辉石、堇青石和莫来石。

Claims (6)

1. 一种滑石质建筑陶瓷砖,其特征在于其化学组成按重量比为:55~65%SiO2、10~25%Al2O3、10~25%MgO、1~4%K2O、0.3~1.5%Na2O、1~5%CaO,瓷体中的主晶相是堇青石,或是原顽辉石,或是堇青石、原顽辉石和莫来石这三种晶相中的两种或三种晶相的组合。
2. 根据权利要求1所述的滑石质建筑陶瓷砖,其特征在于:根据其烧结程度的不同,滑石质建筑陶瓷砖是吸水率小于0.5%的瓷质砖,或是吸水率为0.5~10%的半瓷质砖,或是吸水率大于10%的陶质砖。
3. 根据权利要求1或2所述的滑石质建筑陶瓷砖,其特征在于:以所述滑石质建筑陶瓷砖作为面料覆盖在由劣质原料配制的底料上制成滑石质复合建筑陶瓷砖。
4. 根据权利要求3所述的滑石质建筑陶瓷砖,其特征在于:滑石质面料与劣质底料的厚度比为0.1~3。
5. 根据权利要求1或2或4所述的滑石质建筑陶瓷砖,其特征在于:坯体表面施有乳浊釉,或是施有透明釉。
6. 一种生产如权利要求1或2所述的滑石质建筑陶瓷砖的方法,采用建筑陶瓷砖的常规烧成工艺,烧成温度1100~1250℃,其特征在于所用的原料配方按重量比为:滑石35~75%,长石8~35%,高岭土15~35%,硅灰石0~5%,氧化铝粉2~10%;所述的滑石是由生滑石与烧滑石按重量比为0.1~1混合组成。
PCT/CN2011/076801 2011-03-16 2011-07-04 一种滑石质建筑陶瓷砖及其制造方法 WO2012122760A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110062543.2A CN102180659B (zh) 2011-03-16 2011-03-16 一种滑石质建筑陶瓷砖及其制造方法
CN201110062543.2 2011-03-16

Publications (1)

Publication Number Publication Date
WO2012122760A1 true WO2012122760A1 (zh) 2012-09-20

Family

ID=44566979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076801 WO2012122760A1 (zh) 2011-03-16 2011-07-04 一种滑石质建筑陶瓷砖及其制造方法

Country Status (2)

Country Link
CN (1) CN102180659B (zh)
WO (1) WO2012122760A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109133889A (zh) * 2018-09-27 2019-01-04 温克仁 一种自生釉陶瓷瓶的成型工艺
CN113493342A (zh) * 2021-07-14 2021-10-12 上饶市广丰区方正非矿开发有限公司 一种高档镁质日用瓷及其制造方法
CN113860737A (zh) * 2021-10-22 2021-12-31 新明珠集团股份有限公司 一种亚光干粒材料及其制备方法
CN114933467A (zh) * 2022-06-30 2022-08-23 丽水学院 一种以机制砂淤泥为原料制备的陶瓷及制造方法
CN115259848A (zh) * 2022-07-01 2022-11-01 河北新玻尔瓷业有限公司 一种高白度的瓷砖及其生产工艺
CN115368115A (zh) * 2022-09-30 2022-11-22 广西欧神诺陶瓷有限公司 一种利用煤渣制备的轻质釉面砖及其制备方法
CN115536359A (zh) * 2022-09-20 2022-12-30 景德镇陶瓷大学 一种采用低成本原料低温烧成高强度建筑陶瓷坯体的制备方法及其产品
CN116003115A (zh) * 2023-02-22 2023-04-25 广东高瓷科技股份有限公司 一种透光岩板原料的制备方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102786298B (zh) * 2012-08-22 2013-10-09 湖南仙凤瓷业有限公司 镁质瓷坯料、镁质瓷及其制备方法
CN103058639B (zh) * 2012-12-12 2014-07-23 山东安勒特生态陶瓷纤维有限公司 750度滑石耐火纤维
CN103819181B (zh) * 2014-01-25 2015-10-21 景德镇陶瓷学院 一种中温烧结堇青石质耐热瓷及其制备方法
CN105330274A (zh) * 2014-08-07 2016-02-17 湖北金海达新型材料有限公司 一种超薄滑石质超白建筑陶瓷砖及其制造方法
CN105801149A (zh) * 2016-05-17 2016-07-27 岑溪市新建球陶瓷有限公司 耐火瓷砖
CN107129150A (zh) * 2017-06-27 2017-09-05 佛山市大千色釉料有限公司 一种高耐磨陶瓷釉面砖及其制备方法
CN108191390A (zh) * 2018-03-09 2018-06-22 重庆市欧华陶瓷有限责任公司 一种高强度陶瓷砖及其制备工艺
CN108383513B (zh) * 2018-04-16 2020-10-02 湖南格林美映鸿资源循环有限公司 一种滑石瓷材料及其制备方法
CN110395968B (zh) * 2019-07-09 2022-05-06 吴绍昌 镁质耐热砂锅
CN112794707B (zh) * 2021-04-14 2021-07-20 佛山市东鹏陶瓷有限公司 一种高白度高强度的透光陶瓷砖及其制备方法
CN114920541B (zh) * 2022-05-28 2023-03-17 河北浩锐陶瓷制品有限公司 一种瓷砖用高耐磨陶瓷材料及其制备方法和高耐磨陶瓷砖
CN116143496B (zh) * 2023-04-18 2023-07-11 佛山市东鹏陶瓷有限公司 一种基于干法制粉工艺的低吸水率瓷砖及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101037321A (zh) * 2006-03-15 2007-09-19 梁桐灿 一种高白度无辐射瓷砖及其制造方法
CN101070240A (zh) * 2006-05-11 2007-11-14 霍镰泉 一种超白抛光砖
CN101717248A (zh) * 2009-11-20 2010-06-02 景德镇陶瓷学院 一种中低温烧结日用滑石瓷及其生产方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101037321A (zh) * 2006-03-15 2007-09-19 梁桐灿 一种高白度无辐射瓷砖及其制造方法
CN101070240A (zh) * 2006-05-11 2007-11-14 霍镰泉 一种超白抛光砖
CN101717248A (zh) * 2009-11-20 2010-06-02 景德镇陶瓷学院 一种中低温烧结日用滑石瓷及其生产方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109133889A (zh) * 2018-09-27 2019-01-04 温克仁 一种自生釉陶瓷瓶的成型工艺
CN109133889B (zh) * 2018-09-27 2023-09-05 温克仁 一种自生釉陶瓷瓶的成型工艺
CN113493342A (zh) * 2021-07-14 2021-10-12 上饶市广丰区方正非矿开发有限公司 一种高档镁质日用瓷及其制造方法
CN113860737A (zh) * 2021-10-22 2021-12-31 新明珠集团股份有限公司 一种亚光干粒材料及其制备方法
CN114933467A (zh) * 2022-06-30 2022-08-23 丽水学院 一种以机制砂淤泥为原料制备的陶瓷及制造方法
CN115259848A (zh) * 2022-07-01 2022-11-01 河北新玻尔瓷业有限公司 一种高白度的瓷砖及其生产工艺
CN115536359A (zh) * 2022-09-20 2022-12-30 景德镇陶瓷大学 一种采用低成本原料低温烧成高强度建筑陶瓷坯体的制备方法及其产品
CN115368115A (zh) * 2022-09-30 2022-11-22 广西欧神诺陶瓷有限公司 一种利用煤渣制备的轻质釉面砖及其制备方法
CN115368115B (zh) * 2022-09-30 2023-09-19 广西欧神诺陶瓷有限公司 一种利用煤渣制备的轻质釉面砖及其制备方法
CN116003115A (zh) * 2023-02-22 2023-04-25 广东高瓷科技股份有限公司 一种透光岩板原料的制备方法

Also Published As

Publication number Publication date
CN102180659A (zh) 2011-09-14
CN102180659B (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
WO2012122760A1 (zh) 一种滑石质建筑陶瓷砖及其制造方法
CN102584341B (zh) 卫生陶瓷用的釉浆及其制备工艺
WO2012003792A1 (zh) 一种中低温烧结精骨瓷及其生产方法
CN108455857B (zh) 一种卫生陶瓷洁具柔光温润釉及其制备工艺
CN102718471B (zh) 红壤陶的坯体及其窑变釉的配方
CN112299833B (zh) 一种高强高韧莫来石陶瓷薄板及其制备方法
CN113443893B (zh) 一种陶瓷坯体、陶瓷板及其制备方法
CN104496438B (zh) 一种石英砂矿尾矿或硅砂矿尾矿基高强度陶瓷板及其制备方法
CN113979722B (zh) 一种陶瓷坯料、陶瓷曲面岩板
CN105693200A (zh) 一种景德镇影青强化瓷及其制备方法
CN105036703B (zh) 高致密低吸水的陶瓷制品及其制备方法
CN111533530B (zh) 一种卫生陶瓷配方及制备方法
CN105218072A (zh) 一种高抗热震性堇青石质耐热紫砂陶瓷及其制备方法
CN113800879B (zh) 一种透光石陶瓷板及其制备方法
CN103626474B (zh) 强化白云陶坯泥
CN113800880B (zh) 一种低密度拉长石质瓷质陶瓷板及其制备方法
CN105330274A (zh) 一种超薄滑石质超白建筑陶瓷砖及其制造方法
CN1028017C (zh) 自释釉低温陶瓷的制造方法
CN102603268A (zh) 卫生陶瓷用的泥浆及其制备工艺
CN103011773A (zh) 一种骨质瓷坯体
CN114292027B (zh) 一种干粒釉、干粒釉浆及干粒釉瓷质砖
CN106565204A (zh) 高性能红浆陶瓷制品及其制备方法
CN113480298B (zh) 一种高白度高透光度高可塑性陶瓷坯泥的制备及应用方法
CN114702298A (zh) 一种深色通体景观厚砖及其制备方法
CN114315139A (zh) 一种提高瓷质抛釉砖耐磨度的耐磨釉料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11861074

Country of ref document: EP

Kind code of ref document: A1