WO2012121062A1 - リチウムイオン二次電池用正極活物質 - Google Patents

リチウムイオン二次電池用正極活物質 Download PDF

Info

Publication number
WO2012121062A1
WO2012121062A1 PCT/JP2012/054947 JP2012054947W WO2012121062A1 WO 2012121062 A1 WO2012121062 A1 WO 2012121062A1 JP 2012054947 W JP2012054947 W JP 2012054947W WO 2012121062 A1 WO2012121062 A1 WO 2012121062A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
lithium ion
ion secondary
Prior art date
Application number
PCT/JP2012/054947
Other languages
English (en)
French (fr)
Inventor
伊藤 淳史
建三 押原
大澤 康彦
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to RU2013145085/04A priority Critical patent/RU2540072C1/ru
Priority to MX2013008861A priority patent/MX2013008861A/es
Priority to KR1020137026042A priority patent/KR101505351B1/ko
Priority to CN201280011532.4A priority patent/CN103403930B/zh
Priority to US14/003,347 priority patent/US8916295B2/en
Priority to EP12754490.6A priority patent/EP2685533B1/en
Priority to BR112013023051A priority patent/BR112013023051A2/pt
Publication of WO2012121062A1 publication Critical patent/WO2012121062A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/56Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO3]2-, e.g. Li2[NixMn1-xO3], Li2[MyNixMn1-x-yO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material used for a lithium ion secondary battery suitable as a power source for driving a motor of an electric vehicle or a hybrid electric vehicle.
  • a positive electrode in which a positive electrode active material or the like is applied on both sides of a positive electrode current collector using a binder, and a negative electrode in which a negative electrode active material or the like is applied on both sides of a negative electrode current collector,
  • the structure is connected via an electrolyte layer and housed in a battery case.
  • active materials as a positive electrode active material, a solid solution material in which Li 2 MnO 3 and LiMO 2 (M in the formula is a transition metal element such as Ni and Co) has recently been obtained. It attracts attention because of its excellent properties and cycle characteristics.
  • Patent Document 1 discloses a solid solution system material composed of a Li—M 1 —Mn-based composite oxide represented by a predetermined composition formula, which has an O 3 crystal structure and forms a single phase.
  • a cathode composition for an ion battery is disclosed.
  • the present invention has been made to solve the above-described problems in lithium ion secondary batteries using a solid solution positive electrode active material.
  • An object of the present invention is to provide a positive electrode active material that can easily change the crystal structure accompanying Li desorption and can obtain a high reversible capacity. Moreover, it is providing the lithium ion secondary battery containing such a positive electrode active material.
  • the positive electrode active material for a lithium ion secondary battery of the present invention has a compound represented by the following composition formula, [Li 1.5 ] [Li 0.5 (1-x) Mn 1-x M 1.5x ] O 3 (Wherein x satisfies 0.1 ⁇ x ⁇ 0.5, M is represented by Ni ⁇ Co ⁇ Mn ⁇ , 0 ⁇ ⁇ 0.5, 0 ⁇ ⁇ ⁇ 0.33, 0 ⁇ ⁇ 0.5 is satisfied.)
  • the peak inverse value width of the (001) crystal plane of the compound measured by X-ray diffraction is 0.14 or more and 0.33 or less, and the average primary particle diameter of the compound is 0.03 ⁇ m or more and 0.4 ⁇ m or less. It is characterized by.
  • the lithium ion secondary battery of the present invention is characterized by containing a positive electrode active material for a lithium ion secondary battery.
  • FIG. 1 is a graph showing the results of subjecting a solid solution positive electrode active material fired at each temperature to X-ray diffraction.
  • FIG. 2 is a scanning electron microscope image of the solid solution positive electrode active material fired at each temperature.
  • FIG. 3 is a graph showing a discharge curve of a lithium ion secondary battery using a solid solution system positive electrode active material fired at each temperature.
  • FIG. 4A is a graph showing the relationship between the charge / discharge capacity and the average primary particle diameter of the positive electrode active material.
  • FIG. 4B is a graph showing the relationship between the charge / discharge curve and the average primary particle diameter of the positive electrode active material.
  • FIG. 5 is a graph showing the relationship between the discharge capacity of the lithium ion secondary battery and the average primary particle diameter of the positive electrode active material.
  • FIG. 6 is a graph showing the relationship between the discharge capacity of the lithium ion secondary battery and the peak inverse width of the (001) crystal plane of the positive electrode active material.
  • FIG. 7 is a graph showing the relationship between the discharge capacity of the lithium ion secondary battery and the positive electrode active material composition (x value).
  • FIG. 8 is a schematic cross-sectional view showing an example of a lithium ion secondary battery according to an embodiment of the present invention.
  • the positive electrode active material 1 for a lithium ion secondary battery of the present invention includes a compound that can absorb lithium ions during discharge and release lithium ions during charge. That is, it is made of a solid solution system material and has a peak opposite value width of (001) crystal plane measured by X-ray diffraction of 0.14 to 0.33 and an average primary particle diameter of 0.03 to 0.4 ⁇ m. It is.
  • the solid solution system material constituting the positive electrode active material 1 has a predetermined composition formula [Li 1.5 ] [Li 0.5 (1-x) Mn 1-x M 1.5x ] O 3 (where x Satisfies 0.1 ⁇ x ⁇ 0.5, M is represented by Ni ⁇ Co ⁇ Mn ⁇ , and satisfies 0 ⁇ ⁇ 0.5, 0 ⁇ ⁇ ⁇ 0.33, and 0 ⁇ ⁇ 0.5. .)
  • a composite oxide synthesized by a solid phase method or a solution method mixed hydroxide method, composite carbonate method, etc.
  • a composite carbonate method it is desirable to employ a composite carbonate method.
  • the composite carbonate method is adopted, the yield is high, and since it is an aqueous solution system, a uniform composition can be obtained and composition control is easy.
  • it can also be produced by a general synthesis method such as a coprecipitation method, a sol-gel method, or a PVA method.
  • x in the formula needs to be 0.1 to 0.5.
  • x exceeds 0.5, a discharge capacity of 200 mAh / g or more cannot be obtained, and sufficient superiority in capacity can not be exhibited as compared with a known layered positive electrode active material.
  • x is less than 0.1, the composition becomes close to Li 2 MnO 3 and charge / discharge may not be possible.
  • Ni in the composition formula represented by Ni ⁇ Co ⁇ Mn ⁇ , ⁇ is greater than 0 and less than 0.5, ⁇ is between 0 and 0.33, ⁇ is greater than 0 and less than 0.5, and ⁇ + ⁇ + ⁇ is defined as 1.
  • Ni in order for the positive electrode active material made of the composite oxide to exhibit a high capacity, Ni needs to be in a divalent state.
  • is in the above range, a two-electron reaction (Ni 2+ ⁇ ⁇ Ni 4+ ) occurs in a divalent state of Ni.
  • when trivalent Co is added, ⁇ needs to be in the range of 0 to 0.33 in order for Ni to perform a two-electron reaction in a divalent state.
  • the value of ⁇ in the case of adding tetravalent Mn, the value of ⁇ must be greater than 0 and less than or equal to 0.5 in order for Ni to react two-electron in a divalent state. is necessary.
  • the Co is added as necessary for the purpose of improving the purity of the material and improving the electronic conductivity.
  • the values of x, ⁇ , ⁇ , and ⁇ in the composition formula of the composite oxide are 0.1 ⁇ x ⁇ 0.25, 0 ⁇ ⁇ 0.457, 0 ⁇ ⁇ ⁇ 0.1, and 0 ⁇ , respectively. It is preferable that the range is ⁇ 0.457.
  • M 1 is at least one selected from the group consisting of Al, Fe, Cu, Mg and Ti.
  • the values of ⁇ , ⁇ , and ⁇ may be set in the same numerical range as described above in consideration that Ni is similarly two-electron-reacted in a divalent state.
  • it is preferable to satisfy 0 ⁇ ⁇ ⁇ 0.1.
  • exceeds 0.1, the reversible capacity of the positive electrode active material may be lowered.
  • M 1 Among the above elements, it can be preferably used Al and Ti. Nickel (Ni), cobalt (Co), and manganese (Mn) are known to contribute to capacity and output characteristics from the viewpoint of improving the purity of the material and improving the electronic conductivity. In addition, aluminum (Al), iron (Fe), copper (Cu), magnesium (Mg), and titanium (Ti) are known to contribute to capacity and output characteristics from the viewpoint of improving the stability of the crystal structure. Yes.
  • the positive electrode active material 1 for a lithium ion secondary battery of the present invention is required to have a peak inverse value width of (001) crystal plane measured by X-ray diffraction of 0.14 to 0.33. That is, when the peak inverse value width is less than 0.14, the crystallinity is increased while the primary particle size is significantly grown, and the battery performance is lowered. On the other hand, if it exceeds 0.33, since the crystallinity is low, structural breakdown occurs due to the structural change at the time of the first charge, which causes deterioration of battery characteristics.
  • the peak inverse value width is more preferably 0.16 or more and 0.3 or less.
  • the peak inverse value width of the (001) crystal plane by X-ray diffraction indicates that the smaller the value, the higher the crystallinity. Note that the higher the firing temperature in the synthesis process of the lithium-containing solid solution or the longer the firing time, the higher the crystallinity. That is, the peak inverse value width can be reduced under such conditions. Further, when the firing atmosphere is an inert atmosphere, the crystallinity is lowered and the inverse width tends to be increased.
  • the positive electrode active material 1 for a lithium ion secondary battery of the present invention needs to have an average primary particle diameter in the range of 0.03 ⁇ m to 0.4 ⁇ m.
  • the average primary particle diameter is less than 0.03 ⁇ m, the crystallinity becomes poor, structural breakdown occurs at the time of initial charge, and battery characteristics are deteriorated.
  • the average primary particle size is more preferably 0.25 ⁇ m or less.
  • the primary particle means a particle constituting an aggregate (secondary particle) observed by SEM (scanning electron microscope) or TEM (transmission electron microscope).
  • particle diameter means the maximum distance among the distances between any two points on the contour line of the active material particles observed using an observation means such as SEM or TEM.
  • average particle size a value calculated as an average value of particle sizes of particles observed in several to several tens of fields using an observation means such as SEM or TEM is adopted.
  • This primary particle size can be adjusted in the precursor preparation process and the firing process in the synthesis of the lithium-containing oxide solid solution. For example, when the precipitation method in the liquid phase is adopted for the synthesis of the precursor, the droplet size of the dropping liquid (precipitating agent) becomes smaller and the particles become smaller as the stirring speed of the solution is increased.
  • the primary particle size can be increased as the firing temperature is increased or the firing time is increased.
  • the particle size of the positive electrode active material of the present invention is not particularly limited. In general, the smaller the particle size, the better, but considering the work efficiency and ease of handling, the average particle size may be about 1 to 30 ⁇ m. More preferably, it is about 5 to 20 ⁇ m.
  • a lithium ion secondary battery 10 according to the present invention is obtained by applying a positive electrode active material 1 composed of a solid solution composite oxide having the above-described composition, crystal structure, peak inverse width of (001) crystal plane, and primary particle diameter. It is. Below, the structure, material, etc. are each demonstrated, referring drawings for the lithium ion secondary battery positive electrode 1 and the lithium ion secondary battery 10 which concern on embodiment of this invention.
  • the battery element 17 is housed and sealed.
  • the battery element 17 has a configuration in which a positive electrode plate in which the positive electrode 12 is formed on both surfaces of the positive electrode current collector 11, a separator layer 13, and a negative electrode plate in which the negative electrode 15 is formed on both surfaces of the negative electrode current collector 14. have.
  • a positive electrode or a negative electrode is formed only on one side of the current collector.
  • the positive electrode tab 18 and the negative electrode tab 19 that are electrically connected to the positive electrode plate and the negative electrode plate are connected to the positive electrode current collector 11 and the negative electrode current collector 14 of each electrode plate via the positive electrode terminal lead 20 and the negative electrode terminal lead 21. It is attached by ultrasonic welding or resistance welding. These tabs are sandwiched between the above-mentioned heat-sealed portions and exposed to the outside of the battery exterior material 22.
  • Adjacent positive electrode 12, separator layer 13, and negative electrode 15 constitute one single cell layer 16. That is, the positive electrode 12 on one side of the positive electrode plate and the negative electrode 15 on one side of the negative electrode plate adjacent to the positive electrode plate face each other with the separator layer 13 therebetween, so that the positive electrode plate, the separator layer 13, and the negative electrode plate A plurality of layers are sequentially stacked.
  • the lithium ion secondary battery 10 of the present embodiment has a configuration in which a plurality of single battery layers 16 are stacked and electrically connected in parallel.
  • the positive electrode 12 is formed on only one side of the outermost positive electrode current collector 11a located in both outermost layers of the battery element 17, but the arrangement of the positive electrode plate and the negative electrode plate in FIG. 8 is changed. Also good. That is, the outermost layer negative electrode current collector (not shown) may be positioned on both outermost layers of the battery element 17, and the negative electrode 15 may be formed only on one side in the case of the outermost layer negative electrode current collector. .
  • the positive electrode tab 18 and the negative electrode tab 19 are comprised by materials, such as aluminum, copper, titanium, nickel, stainless steel (SUS), these alloys, for example.
  • the material is not limited to these, and a conventionally known material used as a tab for a lithium ion secondary battery can be used.
  • the positive electrode tab 18 and the negative electrode tab 19 may be made of the same material or different materials. Further, as in the present embodiment, a separately prepared tab may be connected to a positive electrode current collector and a negative electrode current collector described later, and each positive electrode current collector and each negative electrode current collector described later are respectively extended. A tab may be formed. Note that the positive electrode tab 18 and the negative electrode tab 19 may come into contact with peripheral devices, wiring, and the like to cause a leakage, which may affect, for example, automobile parts, particularly products such as electronic devices. From such a point of view, it is preferable to cover portions of the positive electrode tab 18 and the negative electrode tab 19 taken out from the battery outer packaging material 22 with a heat-shrinkable heat-shrinkable tube (not shown).
  • a current collector plate may be used for the purpose of taking out the current outside the battery.
  • the current collector plate is electrically connected to a current collector or a lead, and is taken out of the laminate sheet which is the battery exterior material 22.
  • the material which comprises a current collector plate is not specifically limited,
  • the well-known highly electroconductive material conventionally used as a current collector plate for lithium ion secondary batteries can be used.
  • As a constituent material of the current collector plate for example, metal materials such as aluminum, copper, titanium, nickel, stainless steel (SUS), and alloys thereof are preferable, and aluminum and aluminum are more preferable from the viewpoint of light weight, corrosion resistance, and high conductivity. Copper or the like is preferable.
  • the same material may be used for a positive electrode current collecting plate and a negative electrode current collecting plate, and a different material may be used.
  • the battery exterior material 22 is preferably formed of a film-shaped exterior material, for example, from the viewpoint of miniaturization and weight reduction. However, it is not limited to this, The conventionally well-known material used for the exterior body for lithium ion secondary batteries can be used. That is, a metal can case can also be applied.
  • the lithium ion secondary battery 10 of the present invention when the lithium ion secondary battery 10 of the present invention is suitably used for a battery for large equipment of an electric vehicle or a hybrid electric vehicle, it is required to have high output and excellent cooling performance. It is possible to use a polymer-metal composite laminate sheet excellent in the above. More specifically, an exterior body formed of an exterior material such as a laminate film having a three-layer structure in which PP, aluminum, and nylon are laminated in this order can be applied.
  • the positive electrode has a positive electrode active material on one or both sides of a current collector (positive electrode current collector) made of a conductive material such as an aluminum foil, a copper foil, a nickel foil, or a stainless steel foil. Layers are formed and configured.
  • This positive electrode active material layer contains the positive electrode active material 1 of this invention, and also contains a conductive support agent and a binder as needed.
  • the thickness of the current collector is not particularly limited, but generally it is preferably about 1 to 30 ⁇ m.
  • the compounding ratio of the positive electrode active material 1, the conductive additive, and the binder in the positive electrode active material layer is not particularly limited.
  • the composition formula [Li 1.5 ] [Li 0.5 (1-x) Mn 1-x M 1.5x ] O 3 described above is used.
  • the solid solution positive electrode active material 1 should just be contained as an essential component. That is, there is no particular problem even when other positive electrode active materials are used in combination. Examples of such positive electrode active materials include lithium-transition metal composite oxides, lithium-transition metal phosphate compounds, lithium-transition metal sulfate compounds, ternary systems, NiMn systems, NiCo systems, and spinel Mn systems. Is mentioned.
  • lithium-transition metal composite oxide examples include LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , Li (Ni, Mn, Co) O 2 , Li (Li, Ni, Mn, Co) O 2 , LiFePO 4 and Examples include those in which some of these transition metals are substituted with other elements.
  • Examples of the ternary system include nickel / cobalt / manganese (composite) positive electrode materials.
  • spinel Mn system examples include LiMn 2 O 4 .
  • NiMn system examples include LiNi 0.5 Mn 1.5 O 4 .
  • NiCo system examples include Li (NiCo) O 2 .
  • a plurality of these positive electrode active materials can be used in combination, but in some cases, the optimum particle size may be different for each of these positive electrode active materials to exhibit a specific effect. In that case, it is only necessary to blend and use the optimum particle diameters for expressing each unique effect, and it is not always necessary to make the particle diameters of all the active materials uniform.
  • the binder is added for the purpose of maintaining the electrode structure by binding the active materials or the active material and the current collector.
  • binders include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl acetate, polyimide (PI), polyamide (PA), polyvinyl chloride (PVC), polymethyl acrylate (PMA), poly Thermosetting resins such as methyl methacrylate (PMMA), polyether nitrile (PEN), polyethylene (PE), polypropylene (PP) and polyacrylonitrile (PAN), epoxy resins, polyurethane resins, and urea resins,
  • rubber-based materials such as styrene butadiene rubber (SBR) can be used.
  • the conductive assistant is also referred to as a conductive agent, and refers to a conductive additive blended to improve conductivity.
  • the conductive aid used in the present invention is not particularly limited, and conventionally known ones can be used, and examples thereof include carbon black such as acetylene black, and carbon materials such as graphite and carbon fiber.
  • the negative electrode has a negative electrode active material layer formed on one side or both sides of a current collector (negative electrode current collector) made of the same conductive material as that of the positive electrode active material 1 described above, as in the case of the positive electrode. Composed.
  • This negative electrode active material layer contains a negative electrode active material, and also contains the same conductive additive and binder as in the case of the positive electrode active material 1 described above, if necessary.
  • the negative electrode active material applied to the lithium ion secondary battery 10 of the present invention is not particularly limited as long as it can reversibly occlude and release lithium, and a conventionally known negative electrode active material can be used.
  • a conventionally known negative electrode active material can be used.
  • high crystalline carbon graphite naturally graphite, artificial graphite, etc.
  • low crystalline carbon soft carbon, hard carbon
  • carbon black Ketjen black, acetylene black, channel black, lamp black, oil furnace black, Thermal black, etc.
  • carbon materials such as fullerene, carbon nanotube, carbon nanofiber, carbon nanohorn, carbon fibril, Si, Ge, Sn, Pb, Al, In, Zn, H, Ca, Sr, Ba, Ru, Rh, Ir, Pd, Pt, Ag, Au, Cd, Hg, Ga, Tl, C, N, Sb, Bi, O, S, Se, Te, Cl, and the like, and simple elements of these elements and these elements oxide containing (silicon monoxide
  • lithium-transition metal composite oxide such as an oxide (lithium titanate: Li 4 Ti 5 O 12 ) can be given.
  • these negative electrode active materials can be used alone or in the form of a mixture of two or more.
  • the positive electrode active material layer and the negative electrode active material layer are formed on one side or both sides of each current collector.
  • a positive electrode active material layer can be formed on one surface and a negative electrode active material layer can be formed on the other surface.
  • Such an electrode is applied to a bipolar battery.
  • the electrolyte layer is a layer containing a non-aqueous electrolyte.
  • the non-aqueous electrolyte contained in the electrolyte layer functions as a lithium ion carrier that moves between the positive and negative electrodes during charge and discharge.
  • the thickness of the electrolyte layer is preferably as thin as possible from the viewpoint of reducing internal resistance, and is usually in the range of about 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m.
  • the nonaqueous electrolyte is not particularly limited as long as it can exhibit such a function, and a liquid electrolyte or a polymer electrolyte can be used.
  • the liquid electrolyte has a form in which a lithium salt (electrolyte salt) is dissolved in an organic solvent.
  • organic solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), Examples include carbonates such as methylpropyl carbonate (MPC).
  • the lithium salt Li (CF 3 SO 2) 2 N, Li (C 2 F 5 SO 2) 2 N, LiPF 6, LiBF 4, LiAsF 6, LiTaF 6, LiClO 4, LiCF 3 SO 3 , etc.
  • a compound that can be added to the active material layer of the electrode can be employed.
  • polymer electrolytes are classified into a gel polymer electrolyte containing an electrolytic solution (gel electrolyte) and an intrinsic polymer electrolyte containing no electrolytic solution.
  • the gel polymer electrolyte is configured by injecting the liquid electrolyte described above into a matrix polymer (host polymer) made of an ion conductive polymer.
  • the ion conductive polymer used as the matrix polymer (host polymer) is not particularly limited.
  • the ion conductive polymer may be the same as or different from the ion conductive polymer used as the electrolyte in the active material layer, but is preferably the same.
  • the kind in particular of electrolyte solution lithium salt and organic solvent
  • the intrinsic polymer electrolyte is obtained by dissolving a lithium salt in the above matrix polymer and does not contain an organic solvent. Therefore, by using an intrinsic polymer electrolyte as the electrolyte, there is no fear of liquid leakage from the battery, and the reliability of the battery is improved.
  • the matrix polymer of the gel polymer electrolyte or the intrinsic polymer electrolyte can exhibit excellent mechanical strength by forming a crosslinked structure.
  • thermal polymerization, ultraviolet polymerization, radiation polymerization, electron beam is applied to a polymerizable polymer (for example, PEO or PPO) for forming a polymer electrolyte, using an appropriate polymerization initiator.
  • a polymerization process such as polymerization may be performed.
  • the non-aqueous electrolyte contained in these electrolyte layers may be a single type consisting of only one type or a mixture of two or more types.
  • a separator is used for the electrolyte layer.
  • the separator include a microporous film made of polyolefin such as polyethylene or polypropylene.
  • the lithium ion secondary battery 10 has a structure in which a battery element is housed in a battery case such as a can or a laminate container (packaging body).
  • the battery element is roughly classified into a wound battery having a structure in which a positive electrode, an electrolyte layer, and a negative electrode are wound, and a positive electrode, an electrolyte layer, and a negative electrode are stacked batteries.
  • the battery of FIG. 8 and the bipolar battery described above correspond to a battery having a stacked structure.
  • it may be called what is called a coin cell, a button battery, a laminate battery, etc. according to the shape and structure of a battery case.
  • aqueous ammonia was added dropwise to the mixed aqueous solution until the pH reached 7. Further, by adding dropwise an aqueous sodium carbonate solution, a nickel-cobalt-manganese composite carbonate was precipitated. During the dropwise addition of the aqueous sodium carbonate solution, the pH was maintained at 7 with aqueous ammonia. The obtained composite carbonate was suction filtered and washed with water. Next, after drying, a nickel-cobalt-manganese oxide was obtained by firing at a temperature of 700 ° C.
  • the obtained composite oxide and lithium hydroxide were weighed so that the lithium hydroxide was 0 to 0.3% excess from a predetermined molar ratio.
  • the positive electrode active materials having the respective component compositions shown in Table 1 were synthesized by firing in the atmosphere at 600 to 1000 ° C. for 12 hours.
  • the peak half-value width of the (001) crystal plane was determined by X-ray diffraction, and the average primary particle diameter was measured by SEM observation.
  • each positive electrode active material obtained as described above, acetylene black as a conductive additive, and polyvinylidene fluoride (PVdF) as a binder are blended in a mass ratio of 85: 10: 5. did.
  • NMP N-methylpyrrolidone
  • each positive electrode slurry was prepared. This slurry was applied onto an Al foil as a positive electrode current collector so that the amount of active material per unit area was about 10 mg, and a positive electrode having a diameter of 15 mm was obtained.
  • metallic lithium was used for the negative electrode active material.
  • 700 degreeC, 800 degreeC, and 900 degreeC conditions corresponds to the positive electrode active material 1 which concerns on this invention, and what was baked at 1000 degreeC is a comparative example.
  • SEM scanning electron microscope
  • the primary particles of the positive electrode active material 1 are not coarsened (0.18 ⁇ m, 0.19 ⁇ m, 0.25 ⁇ m), In the firing at 1000 ° C., coarsening (1.40 ⁇ m) of primary particles of the positive electrode active material was observed.
  • FIG. 3 shows the result of conducting a discharge test on a battery using the positive electrode active material.
  • the capacity increased as the firing temperature increased, whereas the capacity of the fired product at 1000 ° C. decreased. From these results, it was confirmed that (1) the higher the crystallinity, the larger the capacity, and (2) the influence of the coarsening of the particle diameter on the capacity is larger than the influence of the crystallinity.
  • the definition of the primary particle size is important.
  • Example 9 200 nm
  • Comparative Example 10 500 nm
  • the charge / discharge capacity and the charge / discharge curve were compared.
  • FIGS. 4 (a) and (b) The results are shown in FIGS. 4 (a) and (b), respectively.
  • an initial charging area A in which the voltage gradually increases and an initial charging area B in which the voltage is substantially constant and plateau thereafter are recognized.
  • the initial charging region B that is, the region where the voltage is plateau, it has been confirmed that a crystal structure change has occurred.
  • the capacity of region B is larger than that of Comparative Example 10. That is, it is considered that the smaller the particle, the easier the crystal structure change.
  • the ratio of the surface area to the volume or mass (specific surface area) of the particles is large between small particles and large particles. That is, small particles tend to have a larger specific surface area than large particles. From such a viewpoint, it is considered that the structural change easily proceeds on the surface. Further, when the particles become coarse, it is considered that the structural change in the bulk does not easily proceed, and as a result, the capacity becomes small. On the other hand, since the crystal structure is more likely to change as fine particles, a higher capacity can be realized. Further, if the crystallinity is low when the structural change occurs, the crystal structure is destroyed, so that it is considered that the capacity cannot be obtained.
  • the particle size of the solid solution positive electrode active material must be small and the crystallinity must be high. That is, it was found that the smaller the particle size, the larger the capacity in the initial charging region B, that is, the plateau region, which greatly contributes to the subsequent capacity.
  • FIGS. 5 to 7 The influence of the average primary particle diameter of the positive electrode active material, the peak half width of the (001) crystal plane, or the x value in the composition formula on the discharge capacity is shown in FIGS. 5 to 7, respectively.
  • white circles are plotted with examples of the present invention, and filled circles are plotted with comparative examples. All the batteries according to the examples (circles) have a value exceeding 220 mAh / g, and a higher capacity was exhibited than the batteries according to any of the comparative examples.
  • FIG. 5 shows the average primary particle diameter of the positive electrode active material
  • FIG. 6 shows a suitable numerical range of the peak half-value width of the (001) crystal plane, divided by two vertical broken lines. Further, FIG.
  • the average primary particle size of the positive electrode active material contained in the battery according to the present invention is 0.18 ⁇ m to 0.25 ⁇ m
  • the (001) plane peak half width is 0.190 to 0.329
  • the x value By setting 0.10 to 0.30, a battery exhibiting a high capacity was obtained.
  • the average primary particle size is set to 0.19 ⁇ m to 0.25 ⁇ m
  • the (001) plane peak half-value width is set to 0.190 to 0.270
  • the x value is set to 0.10 to 0.30. A battery exhibiting capacity was obtained.
  • the peak inverse value width and primary particle diameter of the (001) crystal plane are specified. Therefore, this active material is activated electrochemically, and the crystal structure change peculiar to the solid solution accompanying Li desorption that occurs around 4.5 V becomes easy. Therefore, the ratio of the reversible capacity to the theoretical capacity can be greatly improved.
  • Positive electrode active material Lithium ion secondary battery 11 Positive electrode collector 11a Outermost layer positive electrode collector 12 Positive electrode 13 Electrolyte layer 14 Negative electrode collector 15 Negative electrode 16 Single battery layer 17 Battery element 18 Positive electrode tab 19 Negative electrode tab 20 Positive electrode terminal Lead 21 Negative electrode terminal lead 22 Battery exterior material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明の正極活物質は、下記組成式で表される化合物を備え、 [Li1.5][Li0.5(1-x)Mn1-x1.5x]O (式中のxは0.1≦x≦0.5を満たし、MはNiαCoβMnγで表され、0<α≦0.5、0≦β≦0.33、0<γ≦0.5を満たす。) X線回折により測定された前記化合物の(001)結晶面のピーク反値幅が0.14以上0.33以下であり、前記化合物の平均一次粒子径が0.03μm以上0.4μm以下となっている。

Description

リチウムイオン二次電池用正極活物質
 本発明は、電気自動車やハイブリッド電気自動車などのモータ駆動用電源として好適なリチウムイオン二次電池に用いられる正極活物質に関する。
 近年、大気汚染や地球温暖化への対策として、CO排出量の規正が検討されている。特に自動車業界においては、ハイブリッド電気自動車や電気自動車の導入によるCO排出量の削減が期待されている。これら車両のモータ駆動用電源として、高性能な二次電池の開発が進められている。このようなモータ駆動用の二次電池としては、特に、高容量であることや優れたサイクル特性が要求されることから、各種二次電池の中でも高い理論エネルギを有するリチウムイオン二次電池が注目を集めている。
 一般に、リチウムイオン二次電池は、正極集電体の両面にバインダを用いて正極活物質等を塗布した正極と、同様に負極集電体の両面に負極活物質等を塗布した負極とが、電解質層を介して接続され、電池ケース内に収納された構造となっている。
 このようなリチウムイオン二次電池における容量特性や出力特性などの性能は、上記正極や負極を構成する活物質の選定によって大きく左右されることとなる。これら活物質のうち、正極活物質として、近年、LiMnOとLiMO(式中のMはNi,Coなどの遷移金属元素)とを固溶化させた固溶体材料が、理論容量、熱安定性及びサイクル特性に優れることから注目されている。
 例えば、特許文献1には、所定の組成式で表されるLi-M-Mn系複合酸化物から成る固溶体系材料であって、O3結晶構造を有し、単一相の形態をなすリチウムイオンバッテリー用カソード組成物が開示されている。
特表2004-538610号公報
 しかし、上記特許文献1に記載のカソード組成物においては、その組成や結晶構造を最適化したとしても、固溶体特有の4.5V付近で生じるLi脱離に伴う結晶構造変化が十分に進行しにくいという問題点がある。すなわち、電気化学的に活性化されないために、活物質中に含まれるLi量から計算される理論容量に対して、十分な可逆容量(放電容量)が得られないという課題があった。
 本発明は、固溶体系の正極活物質を用いたリチウムイオン二次電池における上記課題を解決するためになされたものである。そして、本発明の目的は、Li脱離に伴う結晶構造変化が容易であり、高い可逆容量が得られる正極活物質を提供することである。また、このような正極活物質を含有するリチウムイオン二次電池を提供することである。
 すなわち、本発明のリチウムイオン二次電池用正極活物質は、下記組成式で表される化合物を有し、
[Li1.5][Li0.5(1-x)Mn1-x1.5x]O
(式中のxは0.1≦x≦0.5を満たし、MはNiαCoβMnγで表され、0<α≦0.5、0≦β≦0.33、0<γ≦0.5を満たす。)
X線回折により測定された前記化合物の(001)結晶面のピーク反値幅が0.14以上0.33以下であり、前記化合物の平均一次粒子径が0.03μm以上0.4μm以下であることを特徴とする。
 また、本発明のリチウムイオン二次電池は、リチウムイオン二次電池用正極活物質を含有することを特徴としている。
図1は、各温度で焼成された固溶体系正極活物質をX線回折に供した結果を示すグラフである。 図2は、各温度で焼成された固溶体系正極活物質の走査型電子顕微鏡像である。 図3は、各温度で焼成された固溶体系正極活物質を用いたリチウムイオン二次電池の放電曲線を示すグラフである。 図4(a)は、充放電容量と正極活物質の平均一次粒子径の関係を示すグラフである。図4(b)は、充放電曲線と正極活物質の平均一次粒子径の関係を示すグラフである。 図5は、リチウムイオン二次電池の放電容量と正極活物質の平均一次粒子径の関係を示すグラフである。 図6は、リチウムイオン二次電池の放電容量と正極活物質の(001)結晶面のピーク反値幅の関係を示すグラフである。 図7は、リチウムイオン二次電池の放電容量と正極活物質組成(x値)の関係を示すグラフである。 図8は、本発明の実施形態に係るリチウムイオン二次電池の一例を示す概略断面図である。
 以下に、本発明のリチウムイオン二次電池用正極活物質と、これを用いたリチウムイオン二次電池について詳細に説明する。なお、本明細書において、「%」は特記しない限り質量百分率を表すものとする。また、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。
 本発明のリチウムイオン二次電池用正極活物質1は、放電の際にリチウムイオンを吸収し、充電の際にリチウムイオンを放出できる化合物を含む。すなわち、固溶体系材料から成り、X線回折により測定された(001)結晶面のピーク反値幅が0.14~0.33であると共に、平均一次粒子径が0.03~0.4μmのものである。そして、正極活物質1を構成する固溶体系材料は、所定の組成式[Li1.5][Li0.5(1-x)Mn1-x1.5x]O(式中のxは0.1≦x≦0.5を満たし、MはNiαCoβMnγで表され、0<α≦0.5、0≦β≦0.33、0<γ≦0.5を満たす。)で表される。
 このような複合酸化物は、市販品がない場合には、例えば、固相法や溶液法(混合水酸化物法、複合炭酸塩法など)によって合成したものを使用することができる。これら合成法の中では、複合炭酸塩法を採用することが望ましい。複合炭酸塩法を採用した場合は、収率が高く、水溶液系であるため均一組成を得ることができ、組成コントロールが容易である。これらの方法以外にも、共沈法やゾルゲル法、PVA法等、一般的な合成法により作製することもできる。
 上記複合酸化物を表す組成式においては、上記のように、式中のxを0.1~0.5とする必要がある。xが0.5を超える場合、200mAh/g以上の放電容量が得られず、公知の層状正極活物質と較べて容量面における十分な優位性を発揮できなくなる。一方、xが0.1未満である場合は、組成がLiMnOに近くなり、充放電できなくなることがある。
 NiαCoβMnγで表される組成式中のMについては、αを0超過0.5以下、βを0~0.33、γを0超過0.5以下とし、α+β+γを1とする必要がある。すなわち、上記複合酸化物から成る正極活物質が高容量を示すためには、Niが2価の状態である必要がある。αが上記範囲内にあるときに、Niが2価の状態で2電子反応(Ni2+←→Ni4+)が起こる。また、3価のCoを添加する場合、Niが2価の状態で2電子反応するためには、βが0~0.33の範囲である必要がある。また、4価のMnを添加する場合にあっては、Niが同様に2価の状態で2電子反応するためには、γの値が0を超え0.5以下の範囲内であることが必要である。なお、上記Coは、材料の純度向上及び電子伝導性向上を目的に、必要に応じて添加される。
 上記複合酸化物の組成式におけるx、α、β、γの値については、それぞれ0.1≦x≦0.25、0<α≦0.457、0≦β≦0.1、0<γ≦0.457の範囲であることが好ましい。
 なお、Mについては、NiαCoβMnγ σ(式中のα、β、γ、σはそれぞれ0<α≦0.5、0≦β≦0.33、0<γ≦0.5、0≦σ≦0.1を満たし、且つα+β+γ+σ=1を満足し、MはAl、Fe、Cu、Mg及びTiから成る群より選ばれた少なくとも1種のものである)で表される成分を好ましく適用することができる。
 この場合、α、β及びγの値については、Niが同様に2価の状態で2電子反応することを考慮し、上述した数値範囲と同様にすればよい。
 σについては、0≦σ≦0.1を満足することが好ましい。σが0.1を超えると、正極活物質の可逆容量が低くなることがある。なお、Mとしては、上記の元素のうちでも、AlとTiを好ましく用いることができる。ニッケル(Ni)、コバルト(Co)及びマンガン(Mn)は、材料の純度向上及び電子伝導性向上という観点から、容量及び出力特性に寄与することが知られている。また、アルミニウム(Al)、鉄(Fe)、銅(Cu)、マグネシウム(Mg)及びチタン(Ti)は、結晶構造の安定性向上という観点から、容量及び出力特性に寄与することが知られている。
 そして、本発明のリチウムイオン二次電池用正極活物質1は、X線回折により測定された(001)結晶面のピーク反値幅が0.14~0.33であることが必要となる。すなわち、上記ピーク反値幅が0.14に満たない場合には、結晶性が高まる一方で一次粒子サイズの成長が著しくなり、電池性能が低下する。一方、0.33を超えると、結晶性が低いために初回の充電時における構造変化によって構造破壊が生じるため、電池特性の低下の原因となる。なお、このピーク反値幅については、0.16以上0.3以下であることがより望ましい。
 X線回折による(001)結晶面のピーク反値幅は、その値が小さい程、結晶性が高いことを示す。なお、リチウム含有固溶体の合成過程における焼成温度が高いほど、又は焼成時間が長いほど、結晶性が高まる。すなわち、このような条件でピーク反値幅を小さくすることができる。また、焼成雰囲気を不活性雰囲気とすると、結晶性が低下し、反値幅が大きくなる傾向がある。
 さらに、本発明のリチウムイオン二次電池用正極活物質1は、その平均一次粒子径を0.03μm~0.4μmの範囲内とする必要がある。平均一次粒子径が0.03μmに満たない場合は、結晶性が乏しくなり初回充電時において構造破壊を生じ、電池特性が低下する。一方、0.4μmを超える場合には、充電時のLi離脱反応が粒子内部まで進行しないため、電池特性を十分に発揮できない。なお、この平均一次粒子径については、0.25μm以下であることがより好ましい。ここで、一次粒子とは、SEM(走査型電子顕微鏡)やTEM(透過型電子顕微鏡)により観察される凝集体(二次粒子)を構成する粒子を言う。
 なお、本明細中において、「粒子径」とは、SEMやTEMなどの観察手段を用いて観察される活物質粒子の輪郭線上における任意の2点間の距離のうち、最大の距離を意味する。「平均粒子径」の値としては、SEMやTEMなどの観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。
 この一次粒子径は、リチウム含有酸化物固溶体の合成に際して、前駆体作製過程と焼成過程において調整することができる。例えば、前駆体の合成に液相での沈澱法を採用した場合、溶液の攪拌速度を増加させるほど、滴下液(沈澱剤)の液滴サイズが小さくなり、小粒子化する。
 一方、焼成過程においては、焼成温度を高めるほど、又は焼成時間を長くするほど、一次粒子サイズを大きくすることができる。なお、本発明の正極活物質の粒径としては、特に限定されるものではない。一般には粒径が細かいほど望ましいが、作業能率や取り扱いの容易さなどを考慮すると、平均粒径で、1~30μm程度であればよい。更に好ましくは5~20μm程度である。
 本発明のリチウムイオン二次電池10は、上記した組成、結晶構造、(001)結晶面のピーク反値幅及び一次粒子径を備えた固溶体系の複合酸化物から成る正極活物質1を適用したものである。以下に、本発明の実施形態に係るリチウムイオン二次電池用正極1及びリチウムイオン二次電池10について、その構成や材料などを、図面を参照しながらそれぞれ説明する。
[リチウムイオン二次電池の構成]
 図8に例示するように、リチウムイオン二次電池10では、電池外装材22に高分子-金属を複合したラミネートフィルムを用いて、その周辺部の全部を熱融着にて接合することにより、電池要素17を収納し密封した構成を有している。ここで、電池要素17は、正極集電体11の両面に正極12が形成された正極板、セパレータ層13、および負極集電体14の両面に負極15が形成された負極板を積層した構成を有している。なお、電池要素の最下層および最上層では、集電体の片面のみに正極又は負極が形成される。また、上記の正極板及び負極板と導通される正極タブ18および負極タブ19が、正極端子リード20および負極端子リード21を介して各電極板の正極集電体11及び負極集電体14に超音波溶接や抵抗溶接等により取り付けられる。そして、これらのタブが上述の熱融着した部分に挟まれて、電池外装材22の外部に露出される構造を有する。
 隣接する正極12、セパレータ層13、および負極15は、一つの単電池層16を構成する。つまり、一の正極板片面の正極12と、この正極板に隣接する一の負極板片面の負極15とが、セパレータ層13を介して向き合うようにして、正極板、セパレータ層13、負極板の順に複数積層されている。このように、本実施形態のリチウムイオン二次電池10は、単電池層16が複数積層されることで、電気的に並列接続されてなる構成を有するともいえる。なお、電池要素17の両最外層に位置する最外層正極集電体11aには、いずれも片面のみに正極12が形成されているが、図8の正極板と負極板の配置を変更してもよい。つまり、電池要素17の両最外層に図示しない最外層負極集電体が位置するようにし、この最外層負極集電体の場合にも片面のみに負極15が形成されているようにしてもよい。
[正極タブ及び負極タブ]
 正極タブ18及び負極タブ19は、例えば、アルミニウムや銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金などの材料により構成される。しかしながら、これらに限定されるものではなく、リチウムイオン二次電池用のタブとして用いられている従来公知の材料を用いることができる。
 なお、正極タブ18及び負極タブ19は、同一材料のものを用いてもよく、異なる材料のものを用いてもよい。また、本実施形態のように、別途準備したタブを後述する正極集電体及び負極集電体に接続してもよく、後述する各正極集電体及び各負極集電体をそれぞれ延長することによってタブを形成してもよい。なお、正極タブ18及び負極タブ19が周辺機器や配線などに接触して漏電することにより、例えば、自動車部品、特に電子機器等の製品に影響を与えるおそれがある。このような観点から、正極タブ18及び負極タブ19の電池外装材22から取り出された部分を、図示しない耐熱絶縁性の熱収縮チューブなどにより被覆することが好ましい。
 また、電池外部に電流を取り出す目的で、集電板を用いてもよい。集電板は集電体やリードに電気的に接続され、電池外装材22であるラミネートシートの外部に取り出される。集電板を構成する材料は、特に限定されるものではなく、リチウムイオン二次電池用の集電板として従来用いられている公知の高導電性材料を用いることができる。集電板の構成材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等の金属材料が好ましく、より好ましくは軽量、耐食性及び高導電性の観点からアルミニウム及び銅などが好ましい。なお、正極集電板と負極集電板は、同一の材料が用いられてもよいし、異なる材料が用いられてもよい。
[電池外装材]
 電池外装材22は、例えば、小型化、軽量化の観点から、フィルム状の外装材で形成されたものであることが好ましい。ただ、これに限定されるものではなく、リチウムイオン二次電池用の外装体に用いられている従来公知の材料を用いることができる。即ち、金属缶ケースを適用することもできる。
 なお、本発明のリチウムイオン二次電池10を電気自動車、ハイブリッド電気自動車の大型機器用電池に好適に利用する場合、高出力化や冷却性能に優れることが要求されるため、例えば、熱伝導性に優れた高分子-金属複合ラミネートシートを使用することができる。より具体的には、PP、アルミニウム、ナイロンをこの順に積層して成る3層構造のラミネートフィルム等の外装材で形成された外装体を適用することができる。
〔正極〕
 本発明のリチウムイオン二次電池10において、正極は、アルミニウム箔、銅箔、ニッケル箔、ステンレス箔などの導電性材料から成る集電体(正極集電体)の片面又は両面に、正極活物質層が形成されて構成される。この正極活物質層は、本発明の正極活物質1を含有し、必要に応じて、導電助剤やバインダも含有する。
 上記集電体の厚さとしては、特に限定されないが、一般には1~30μm程度とすることが好ましい。また、正極活物質層中におけるこれら正極活物質1、導電助剤、バインダの配合比としては、特に限定されない。
 本発明のリチウムイオン二次電池10においては、上記した組成式[Li1.5][Li0.5(1-x)Mn1-x1.5x]Oで表される本発明の固溶体系正極活物質1が必須成分として含有されていればよい。すなわち、これ以外の他の正極活物質を併用する場合でも、特段の支障はない。このような正極活物質としては、例えば、リチウム-遷移金属複合酸化物、リチウム-遷移金属リン酸化合物、リチウム-遷移金属硫酸化合物、3元系、NiMn系、NiCo系及びスピネルMn系などのものが挙げられる。リチウム-遷移金属複合酸化物としては、例えば、LiMn、LiCoO、LiNiO、Li(Ni、Mn、Co)O、Li(Li、Ni、Mn、Co)O、LiFePO及びこれらの遷移金属の一部が他の元素により置換されたもの等が挙げられる。3元系としては、ニッケル・コバルト・マンガン系(複合)正極材等が挙げられる。スピネルMn系としてはLiMn等が挙げられる。NiMn系としては、LiNi0.5Mn1.5等が挙げられる。NiCo系としては、Li(NiCo)O等が挙げられる。
 これらの正極活物質を複数種併せて用いることもできるが、これらの正極活物質がそれぞれ固有の効果を発現する上で最適な粒径が異なる場合もある。その場合は、それぞれの固有の効果を発現する上で最適な粒径同士をブレンドして用いればよく、全ての活物質の粒径を必ずしも均一化させる必要はない。
 バインダは、活物質同士又は活物質と集電体とを結着させて電極構造を維持する目的で添加される。このようなバインダとして、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリ酢酸ビニル、ポリイミド(PI)、ポリアミド(PA)、ポリ塩化ビニル(PVC)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリエーテルニトリル(PEN)、ポリエチレン(PE)、ポリプロピレン(PP)およびポリアクリロニトリル(PAN)などの熱可塑性樹脂、エポキシ樹脂、ポリウレタン樹脂、およびユリア樹脂などの熱硬化性樹脂、ならびにスチレンブタジエンゴム(SBR)などのゴム系材料を用いることができる。
 導電助剤は、導電剤とも称し、導電性を向上させるために配合される導電性の添加物を言う。本発明に使用する導電助剤としては、特に制限されず、従来公知のものを利用することができ、例えば、アセチレンブラック等のカーボンブラック、グラファイト、炭素繊維などの炭素材料を挙げることができる。導電助剤を含有させることによって、活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上及び電解液の保液性の向上による電池の信頼性向上に寄与する。
〔負極〕
 一方、負極は、正極と同様に、上述した正極活物質1の場合と同様の導電性材料から成る集電体(負極集電体)の片面又は両面に、負極極活物質層が形成されて構成される。この負極活物質層は、負極活物質を含有し、必要に応じて、上述した正極活物質1の場合と同様の導電助剤やバインダも含有する。
 本発明のリチウムイオン二次電池10に適用される負極活物質としては、リチウムを可逆的に吸蔵及び放出できるものであれば特に制限されず、従来公知の負極活物質を使用することができる。例えば、高結晶性カーボンであるグラファイト(天然グラファイト、人造グラファイト等),低結晶性カーボン(ソフトカーボン,ハードカーボン),カーボンブラック(ケッチェンブラック,アセチレンブラック,チャンネルブラック,ランプブラック,オイルファーネスブラック,サーマルブラック等),フラーレン,カーボンナノチューブ,カーボンナノファイバー,カーボンナノホーン,カーボンフィブリルなどの炭素材料、Si,Ge,Sn,Pb,Al,In,Zn,H,Ca,Sr,Ba,Ru,Rh,Ir,Pd,Pt,Ag,Au,Cd,Hg,Ga,Tl,C,N,Sb,Bi,O,S,Se,Te,Cl等のリチウムと合金化する元素の単体、及びこれらの元素を含む酸化物(一酸化ケイ素(SiO),SiO(0<x<2),二酸化スズ(SnO),SnO(0<x<2),SnSiOなど)及び炭化物(炭化ケイ素(SiC)など)等、リチウム金属等の金属材料、リチウム-チタン複合酸化物(チタン酸リチウム:LiTi12)等のリチウム-遷移金属複合酸化物を挙げることができる。なお、これらの負極活物質は、単独で使用することも、2種以上の混合物の形態で使用することも可能である。
 上記においては、正極活物質層及び負極活物質層をそれぞれの集電体の片面又は両面上に形成するものとして説明した。これに対し、1枚の集電体において、一方の面には正極活物質層を、他方の面に負極活物質層を、それぞれに形成することもできる。このような電極は、双極型電池に適用される。
〔電解質層〕
 電解質層は、非水電解質を含む層である。電解質層に含まれる非水電解質は、充放電時に正負極間を移動するリチウムイオンのキャリアーとしての機能を有する。なお、電解質層の厚さとしては、内部抵抗を低減させる観点から薄ければ薄いほどよく、通常1~100μm程度、好ましくは5~50μmの範囲とする。
 非水電解質としては、このような機能を発揮できるものであれば特に限定されず、液体電解質又はポリマー電解質を用いることができる。
 液体電解質は、有機溶媒にリチウム塩(電解質塩)が溶解した形態を有する。有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、メチルプロピルカーボネート(MPC)等のカーボネート類が例示される。また、リチウム塩としては、Li(CFSON、Li(CSON、LiPF、LiBF、LiAsF、LiTaF、LiClO、LiCFSO等の電極の活物質層に添加され得る化合物を採用することができる。
 一方、ポリマー電解質は、電解液を含むゲルポリマー電解質(ゲル電解質)と、電解液を含まない真性ポリマー電解質に分類される。ゲルポリマー電解質は、イオン伝導性ポリマーからなるマトリックスポリマー(ホストポリマー)に、上述した液体電解質が注入されて構成される。電解質としてゲルポリマー電解質を用いると、電解質の流動性がなくなり、各層間のイオン伝導を遮断することが容易になるという利点がある。
 マトリックスポリマー(ホストポリマー)として用いられるイオン伝導性ポリマーとしては、特に限定されない。例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデンとヘキサフルオロプロピレンの共重合体(PVDF-HFP)、ポリエチレングリコール(PEG)、ポリアクリロニトリル(PAN)、ポリメチルメタクリレート(PMMA)及びこれらの共重合体等が挙げられる。ここで、上記のイオン伝導性ポリマーは、活物質層において電解質として用いられるイオン伝導性ポリマーと同じであっても、異なっていてもよいが、同じであることが好ましい。また、電解液(リチウム塩及び有機溶媒)の種類は特に制限されず、上記で例示したリチウム塩などの電解質塩及びカーボネート類などの有機溶媒が用いられる。
 真性ポリマー電解質は、上記のマトリックスポリマーにリチウム塩が溶解して成るものであって、有機溶媒を含まない。したがって、電解質として真性ポリマー電解質を用いることによって電池からの液漏れの心配がなくなり、電池の信頼性が向上することになる。
 ゲルポリマー電解質や真性ポリマー電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現することができる。このような架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、PEOやPPO)に対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。これらの電解質層に含まれる非水電解質は、1種のみから成る単独のものでも、2種以上を混合したものであっても差し支えない。
 なお、電解質層が液体電解質やゲルポリマー電解質から構成される場合には、電解質層にセパレータを用いる。セパレータの具体的な形態としては、例えば、ポリエチレンやポリプロピレン等のポリオレフィンから成る微多孔膜が挙げられる。
〔電池の形状〕
 リチウムイオン二次電池10は、電池素子を缶体やラミネート容器(包装体)などの電池ケースに収容した構造を有している。なお、電池素子が正極、電解質層及び負極を巻回した構造を有する巻回型の電池と、正極、電解質層及び負極を積層型の電池に大別される。図8の電池や上述した双極型電池は、積層型の構造を有する電池に該当する。また、電池ケースの形状や構造に応じて、いわゆるコインセル、ボタン電池、ラミネート電池などと称されることもある。
 以下、本発明を、実施例に基づいて更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 〔1〕固溶体系正極活物質の合成
 正極活物質としてのリチウム含有複合酸化物から成る固溶体を、複合炭酸塩法により合成した。まず、出発材料として、Ni、Co,Mnの3種の硫酸塩を使用した。具体的には、NiSO・6HO、CoSO・7HO、MnSO・5HOを用い、Ni、Co、Mnが所定のモル比となるように秤量した後、イオン交換水に溶解させて2Mの混合水溶液を得た。
 次に、この混合水溶液にアンモニア水をpH7になるまで滴下した。さらに、炭酸ナトリウム水溶液を滴下することによって、ニッケル-コバルト-マンガンの複合炭酸塩を沈澱させた。なお、炭酸ナトリウム水溶液を滴下している間、アンモニア水によってpH7に保持するようにした。得られた複合炭酸塩を吸引ろ過し、水洗した。次いで、乾燥した後、700℃の温度で焼成することにより、ニッケル-コバルト-マンガン酸化物を得た。
 そして、得られた複合酸化物と水酸化リチウムにおいて、水酸化リチウムが所定のモル比よりも0~0.3%過剰となるように秤量した。粉砕混合後、大気中600~1000℃で12時間焼成することによって、表1に示すような各成分組成を有する正極活物質をそれぞれ合成した。次いで、得られた各正極活物質について、X線回折によって(001)結晶面のピーク半値幅を求めると共に、SEM観察により、平均一次粒子径を測定した。これらの結果を表1に併せて示す。
Figure JPOXMLDOC01-appb-T000001
 〔2〕電極の作製
 上記により得られた各正極活物質と、導電助剤としてのアセチレンブラックと、バインダとしてのポリフッ化ビニリデン(PVdF)を、85:10:5の質量比となるように配合した。これにN-メチルピロリドン(NMP)を溶媒として添加して希釈することにより、正極スラリーをそれぞれ調整した。このスラリーを正極集電体であるAl箔上に、単位面積あたりの活物質量が10mg程度になるように塗布し、径15mmの正極を得た。一方、負極活物質には金属リチウムを用いた。
 〔3〕電池の作製
 乾燥機により120℃で4時間乾燥した正極と金属リチウムから成る負極とを、厚さ20μmのポリプロピレンの多孔質膜2枚を介して対向させ、コインセルの底部の上に重ね合わせ、正負極間の絶縁性を保つためにガスケットを装着した。次いで、シリンジを用いてこれに電解液を注液した。そして、スプリング及びスペーサーを積層した後、コインセルの上部を重ね合わせてかしめることによって、リチウムイオン二次電池を作製した。なお、上記電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)を1:2の容積比で混合した混合非水溶媒中に、LiPF(六フッ化リン酸リチウム)を1Mの濃度となるように溶解させたものを用いた。
 〔4〕充放電前処理
 上記により作製したそれぞれの電池を充放電装置に接続した。そして、電位差が4.5Vとなるまで電流レートを1/12Cとして定電流充電した後、この電位差が2.0Vとなるまで定電流放電を行ない、これを2回繰り返した。さらに、この電位差を4.6V、4.7V、さらに4.8Vと変更し、同様の定電流充放電を各2回ずつ行なった。これらの結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 〔5〕放電容量の測定
 そして、上記の前処理を施した各電池について、最高電圧が4.8Vとなるまで充電して、電池の最低電圧が2.0Vとなるまで放電する方法で、定電流レート(1/12C)にてそれぞれ充放電を行ない、各電池の放電容量を測定した。これらの結果を表1に併せて示す。
 上記実施例及び比較例により得られた固溶体系正極活物質のX線回折パターンの代表例として、同一組成の正極活物質(x=0.30、α=0.417、β=0.166、γ=0.417)を、700℃、800℃、900℃及び1000℃で焼成した結果を、図1に示す。なお、700℃、800℃及び900℃の条件で焼成されたものが本発明に係る正極活物質1に該当し、1000℃で焼成されたものは比較例である。また、各温度で焼成した正極活物質のSEM(走査型電子顕微鏡)像を、図2に示す。
 図1に示したX線回折パターンから、図中左端側(2θ=19°付近)に認められる(001)結晶面のピークの半値幅は、焼成温度が高くなるほど小さくなる(0.321→0.270→0.190→0.130)ことが判明した。すなわち焼成温度が高くなるほど結晶性が向上することが判明した。また、SEM観察では、700℃、800℃及び900℃での焼成において、正極活物質1の一次粒子の粗大化は認められないのに対し(0.18μm、0.19μm、0.25μm)、1000℃の焼成においては、正極活物質の一次粒子の粗大化(1.40μm)が認められた。
 図3は、上記正極活物質を用いた電池について、放電試験を行った結果を示すものである。700℃~900℃の間では、焼成温度が増加するにしたがって容量が増加するのに対し、1000℃の焼成品では容量が減少する傾向が認められた。これらの結果から、(1)高結晶性であるほど、容量が増加すること、(2)粒子径の粗大化による容量への影響は、結晶性の影響よりも大きいことが確認された。このように、固溶体系正極活物質を活性化させ、電池の高容量化を図るためには、結晶構造と組成に加えて、一次粒子径の規定が重要であることが判明した。
 次いで、正極活物質の組成、焼成温度及び(001)結晶面のピーク半値幅が同じであり、平均一次粒子径のみが相違する実施例9(200nm)と比較例10(500nm)の電池を用い、充放電容量及び充放電曲線を比較した。その結果を図4(a)及び(b)にそれぞれ示す。初期充電においては、図4(b)に示すように、電圧が緩やかに上昇する初期充電領域Aと、その後に電圧がほぼ一定でプラトーになっている初期充電領域Bとが認められた。なお、初期充電領域B、すなわち電圧がプラトーになっている領域では、結晶構造変化が生じていることが確認されている。
 図4(a)に示すように、一次粒子径が比較例10よりも小さい実施例9の電池では、領域Bの容量が比較例10よりも大きい。つまり、粒子が小さいほど結晶構造変化が容易であるものと考えられる。一般的に、小粒子と大粒子では、粒子の体積又は質量に対する表面積の割合(比表面積)が大きくことなることが知られている。すなわち、小粒子の方が大粒子に比べて比表面積が大きくなる傾向がある。このような観点から、構造変化は表面で進行しやすいものと考えられる。また、粒子が粗大になると、バルク内の構造変化が進行しにくく、結果として容量が小さくなるものと考えられる。これに対して、微粒子ほど結晶構造変化を生じやすいため、高い容量を実現できるものと考えられる。また、構造変化を生じる際に結晶性が低い場合、結晶構造破壊が生じてしまうため、容量が得られなくなると考えられる。
 固溶体系正極活物質に特有なプラトー領域における容量を有効に利用するためには、固溶体系正極活物質の粒子径が小さく且つ結晶性が高い必要があることが判った。すなわち、粒子径が小さいほど初期充電領域B、すなわちプラトー領域における容量が大きく、これがその後の容量に大きく寄与していることが判明した。
 正極活物質の平均一次粒子径、(001)結晶面のピーク半値幅又は組成式におけるx値が放電容量に及ぼす影響を、それぞれ図5~図7に示した。これらの図において、白抜き○印は本発明の実施例をプロットしたものであり、塗りつぶし●印は比較例をプロットしたものである。実施例(○印)に係る電池は、いずれも220mAh/gを超える値であり、いずれの比較例に係る電池よりも高い容量を発現した。図5は正極活物質の平均一次粒子径の、図6は(001)結晶面のピーク半値幅の、それぞれ好適な数値範囲を二つの縦破線で区分して示している。また、図7は、組成式におけるx値の好適な数値範囲(0.1≦x≦0.5)を縦破線で区分して示している。このように、本発明に係る電池に含有される正極活物質の平均一次粒子径を0.18μm~0.25μmとし、(001)面ピーク半値幅を0.190~0.329とし、x値を0.10~0.30とすることで、高い容量を発現する電池が得られた。また、平均一次粒子径を0.19μm~0.25μmとし、(001)面ピーク半値幅を0.190~0.270とし、x値を0.10~0.30とすることで、更に高い容量を発現する電池が得られた。なお、図5~図7の各図における比較例(●印)は、横軸の数値が本発明の好適な数値範囲に包含されるものもあるが、それ以外の数値において本発明の好適な数値範囲を外れており、実施例の電池に比べて容量が低かった。
 特願2011-051227号(出願日:2011年3月9日)の全内容は、ここに引用される。
 以上、実施形態及び実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 本発明では、固溶体系正極活物質の結晶構造、組成に加えて、(001)結晶面のピーク反値幅及び一次粒子径を特定している。そのため、この活物質は、電気化学的に活性化され、4.5V付近で生じるLi脱離に伴う固溶体特有の結晶構造変化が容易なものとなる。したがって、理論容量に対する可逆容量の比率を大幅に向上させることができる。
  1 正極活物質
  10 リチウムイオン二次電池
  11 正極集電体
  11a 最外層正極集電体
  12 正極
  13 電解質層
  14 負極集電体
  15 負極
  16 単電池層
  17 電池要素
  18 正極タブ
  19 負極タブ
  20 正極端子リード
  21 負極端子リード
  22 電池外装材

Claims (4)

  1.  下記組成式で表される化合物を有し、
    [Li1.5][Li0.5(1-x)Mn1-x1.5x]O(式中のxは0.1≦x≦0.5を満たし、MはNiαCoβMnγで表され、0<α≦0.5、0≦β≦0.33、0<γ≦0.5を満たす。)
     X線回折により測定された前記化合物の(001)結晶面のピーク反値幅が0.14以上0.33以下であり、
     前記化合物の平均一次粒子径が0.03μm以上0.4μm以下であることを特徴とするリチウムイオン二次電池用正極活物質。
  2.  前記化合物の(001)結晶面のピーク反値幅が0.16以上0.3以下であり、
     前記化合物の平均一次粒子径が0.25μm以下であることを特徴とする請求項1に記載のリチウムイオン二次電池用正極活物質。
  3.  前記組成式におけるxが0.1≦x≦0.25を満たし、
     α、β、γが、それぞれ0<α≦0.457、0≦β≦0.1、0<γ≦0.457を満たすことを特徴とする請求項1又は2に記載のリチウムイオン二次電池用正極活物質。
  4.  請求項1~3のいずれか1つの項に記載の正極活物質を含有することを特徴とするリチウムイオン二次電池。
PCT/JP2012/054947 2011-03-09 2012-02-28 リチウムイオン二次電池用正極活物質 WO2012121062A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2013145085/04A RU2540072C1 (ru) 2011-03-09 2012-02-28 Активный материал положительного электрода для литий-ионной вторичной батареи
MX2013008861A MX2013008861A (es) 2011-03-09 2012-02-28 Material activo de electrodo positivo para baterias secundarias de iones de litio.
KR1020137026042A KR101505351B1 (ko) 2011-03-09 2012-02-28 리튬 이온 2차 전지용 정극 활물질
CN201280011532.4A CN103403930B (zh) 2011-03-09 2012-02-28 锂离子二次电池用正极活性物质
US14/003,347 US8916295B2 (en) 2011-03-09 2012-02-28 Positive electrode active material for lithium ion secondary battery
EP12754490.6A EP2685533B1 (en) 2011-03-09 2012-02-28 Positive electrode active material for lithium ion secondary batteries
BR112013023051A BR112013023051A2 (pt) 2011-03-09 2012-02-28 material ativo de eletrodo positivo para bateria secundária de íon de lítio

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-051227 2011-03-09
JP2011051227A JP5741908B2 (ja) 2011-03-09 2011-03-09 リチウムイオン二次電池用正極活物質

Publications (1)

Publication Number Publication Date
WO2012121062A1 true WO2012121062A1 (ja) 2012-09-13

Family

ID=46798030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054947 WO2012121062A1 (ja) 2011-03-09 2012-02-28 リチウムイオン二次電池用正極活物質

Country Status (11)

Country Link
US (1) US8916295B2 (ja)
EP (1) EP2685533B1 (ja)
JP (1) JP5741908B2 (ja)
KR (1) KR101505351B1 (ja)
CN (1) CN103403930B (ja)
BR (1) BR112013023051A2 (ja)
MX (1) MX2013008861A (ja)
MY (1) MY166752A (ja)
RU (1) RU2540072C1 (ja)
TW (1) TWI456822B (ja)
WO (1) WO2012121062A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140356718A1 (en) * 2012-02-01 2014-12-04 Nissan Motor Co., Ltd. Transition metal oxide containing solid solution lithium, non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery
US10461378B2 (en) * 2014-01-09 2019-10-29 Nissan Motor Co., Ltd. Method for producing lithium ion secondary battery
JP2021051909A (ja) * 2019-09-25 2021-04-01 株式会社Gsユアサ 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、及び非水電解質二次電池

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6032458B2 (ja) 2012-02-03 2016-11-30 日産自動車株式会社 固溶体リチウム含有遷移金属酸化物及びリチウムイオン二次電池
JP6112380B2 (ja) 2012-03-07 2017-04-12 日産自動車株式会社 正極活物質、電気デバイス用正極及び電気デバイス
JP6156713B2 (ja) 2012-03-07 2017-07-05 日産自動車株式会社 正極活物質、電気デバイス用正極及び電気デバイス
WO2014021014A1 (ja) 2012-08-02 2014-02-06 日産自動車株式会社 非水系有機電解液二次電池
KR20180031067A (ko) 2012-11-22 2018-03-27 닛산 지도우샤 가부시키가이샤 전기 디바이스용 부극, 및 이것을 사용한 전기 디바이스
JP6168148B2 (ja) * 2013-07-31 2017-07-26 日産自動車株式会社 固溶体リチウム含有遷移金属酸化物、及び該固溶体リチウム含有遷移金属酸化物を正極に用いた非水電解質二次電池
JP2016177867A (ja) * 2013-07-31 2016-10-06 日産自動車株式会社 固溶体リチウム含有遷移金属酸化物、及び該固溶体リチウム含有遷移金属酸化物を正極に用いた非水電解質二次電池
JP6400364B2 (ja) * 2013-08-29 2018-10-03 本田技研工業株式会社 非水系二次電池用正極活物質及びその製造方法
JP6252602B2 (ja) * 2014-01-24 2017-12-27 日産自動車株式会社 電気デバイス
CN105934846B (zh) 2014-01-24 2019-06-28 日产自动车株式会社 电器件
EP3098892B1 (en) 2014-01-24 2018-11-14 Nissan Motor Co., Ltd Electrical device
CN105934845B (zh) * 2014-01-24 2019-07-05 日产自动车株式会社 电器件
CN105692703B (zh) * 2014-11-24 2017-09-08 苏州世名科技股份有限公司 富锂锰基正极材料及其制备方法和锂离子电池
CN112086616B (zh) * 2020-10-19 2021-10-08 四川工程职业技术学院 一种大(010)晶面镍钴锰/铝层状正极材料的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004538610A (ja) 2001-08-07 2004-12-24 スリーエム イノベイティブ プロパティズ カンパニー リチウムイオンバッテリー用の改良されたカソード組成物
JP2008270201A (ja) * 2007-03-27 2008-11-06 Univ Kanagawa リチウムイオン電池用正極材料

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753202A (en) * 1996-04-08 1998-05-19 Duracell Inc. Method of preparation of lithium manganese oxide spinel
WO1998054776A1 (fr) * 1997-05-27 1998-12-03 Tdk Corporation Electrode pour cellules electrolytiques non-aqueuses
KR101131479B1 (ko) * 2003-09-16 2012-03-30 에이지씨 세이미 케미칼 가부시키가이샤 리튬-니켈-코발트-망간-불소 함유 복합 산화물 및 그제조방법과 그것을 사용한 리튬 이차 전지
JP4613943B2 (ja) 2006-11-10 2011-01-19 三菱化学株式会社 リチウム遷移金属系化合物粉体、その製造方法、及びその焼成前躯体となる噴霧乾燥体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2010135285A (ja) 2008-10-31 2010-06-17 Sanyo Electric Co Ltd リチウム二次電池用正極活物質及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004538610A (ja) 2001-08-07 2004-12-24 スリーエム イノベイティブ プロパティズ カンパニー リチウムイオンバッテリー用の改良されたカソード組成物
JP2008270201A (ja) * 2007-03-27 2008-11-06 Univ Kanagawa リチウムイオン電池用正極材料

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ATSUSHI ITO ET AL.: "Koyoryo Lithium Ion Denchi-yo Seikyoku Zairyo Li2Mn03- LiMO2 no Sosei to Denchi Tokusei", THE ELECTROCHEMICAL SOCIETY OF JAPAN DAI 77 KAI TAIKAI KOEN YOKOSHU, vol. 1B22, 2010, XP008170728 *
KAZUHIRO YOSHII ET AL.: "Koyoryo Li2MnO3-Li(Co1/3Ni1/3Mn1/3)O2-kei Seikyoku Zairyo ni Kansuru Kenkyu I. Li Datsu Sonyuji no Kessho Kozo to Denshi Jotai no Henka", 50TH BATTERY SYMPOSIUM IN JAPAN KOEN YOKOSHU, vol. 1B16, 2009, XP008170724 *
NAOAKI YABUUCHI ET AL.: "Koyoryo Li2MnO3- Li (Co1/3Ni1/3Mn1/3) O2-kei Seikyoku Zairyo ni Kansuru Kenkyu II. Seikyoku to Denkaieki Kaimen ni Okeru Sanka Kangen Hanno", 50TH BATTERY SYMPOSIUM IN JAPAN KOEN YOKOSHU, vol. 1B17, 2009, XP008170725 *
See also references of EP2685533A4
TAISEI INOUE ET AL.: "xLi2Mn03-(1-x) LiM02 Koyoryo Seikyoku Zairyo no Denki Kagaku Tokusei", THE ELECTROCHEMICAL SOCIETY OF JAPAN DAI 77 KAI TAIKAI KOEN YOKOSHU, vol. 1B25, 2010, XP008170726 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140356718A1 (en) * 2012-02-01 2014-12-04 Nissan Motor Co., Ltd. Transition metal oxide containing solid solution lithium, non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery
US9461299B2 (en) * 2012-02-01 2016-10-04 Nissan Motor Co., Ltd. Transition metal oxide containing solid solution lithium, non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery
US10461378B2 (en) * 2014-01-09 2019-10-29 Nissan Motor Co., Ltd. Method for producing lithium ion secondary battery
JP2021051909A (ja) * 2019-09-25 2021-04-01 株式会社Gsユアサ 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、及び非水電解質二次電池
JP7330436B2 (ja) 2019-09-25 2023-08-22 株式会社Gsユアサ 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、及び非水電解質二次電池

Also Published As

Publication number Publication date
MX2013008861A (es) 2013-08-14
JP5741908B2 (ja) 2015-07-01
TW201238124A (en) 2012-09-16
BR112013023051A2 (pt) 2017-11-14
TWI456822B (zh) 2014-10-11
EP2685533B1 (en) 2015-08-26
JP2012190580A (ja) 2012-10-04
KR20130128008A (ko) 2013-11-25
KR101505351B1 (ko) 2015-03-23
US8916295B2 (en) 2014-12-23
EP2685533A4 (en) 2014-08-13
CN103403930B (zh) 2015-11-25
MY166752A (en) 2018-07-20
RU2540072C1 (ru) 2015-01-27
US20130337332A1 (en) 2013-12-19
CN103403930A (zh) 2013-11-20
EP2685533A1 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
KR102539694B1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2012121062A1 (ja) リチウムイオン二次電池用正極活物質
JP7191342B2 (ja) 二次電池用正極活物質、その製造方法及びこれを含むリチウム二次電池
JP5614729B2 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP5357268B2 (ja) 電気デバイス用正極材料およびこれを用いた電気デバイス
WO2013099441A1 (ja) 電気デバイス用負極活物質
JP5246747B2 (ja) リチウムイオン二次電池用負極、およびそれを用いたリチウムイオン二次電池
JP2011029000A (ja) リチウムイオン電池用正極材料の製造方法
US10418670B2 (en) Method of manufacturing lithium secondary battery and lithium secondary battery manufactured by the same
JP2011204563A (ja) 非水二次電池の製造方法
JP5691315B2 (ja) リチウムイオン電池用正極およびこれを用いたリチウムイオン電池
CN106558725B (zh) 锂离子二次电池
JP2013073818A (ja) リチウムイオン二次電池用複合負極活物質
KR101385334B1 (ko) 리튬 이온 2차 전지용 복합 정극 활물질 및 이것을 사용한 리튬 이온 2차 전지
CN111183537A (zh) 负极活性物质的预掺杂方法、以及电气设备用电极及电气设备的制造方法
JP5626035B2 (ja) リチウムイオン二次電池の前処理方法及び使用方法
WO2012124602A1 (ja) リチウムイオン二次電池の前処理方法
WO2013125465A1 (ja) 正極活物質
JP2012089349A (ja) リチウムイオン二次電池およびその製造方法
JP2024520714A (ja) リチウム二次電池用正極活物質の製造方法およびこれにより製造された正極活物質
JP2024504155A (ja) リチウム二次電池用正極、それを備える正極及びリチウム二次電池
WO2014041926A1 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、およびそれを用いたリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754490

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/008861

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2012754490

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14003347

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301004915

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 20137026042

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013145085

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013023051

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112013023051

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013023051

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130909