WO2012120882A1 - 帯電部材、プロセスカートリッジ及び電子写真装置 - Google Patents

帯電部材、プロセスカートリッジ及び電子写真装置 Download PDF

Info

Publication number
WO2012120882A1
WO2012120882A1 PCT/JP2012/001569 JP2012001569W WO2012120882A1 WO 2012120882 A1 WO2012120882 A1 WO 2012120882A1 JP 2012001569 W JP2012001569 W JP 2012001569W WO 2012120882 A1 WO2012120882 A1 WO 2012120882A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber layer
rubber
same manner
thickness
charging member
Prior art date
Application number
PCT/JP2012/001569
Other languages
English (en)
French (fr)
Inventor
谷口 智士
児玉 真隆
雄彦 青山
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to BR112013021759A priority Critical patent/BR112013021759A2/pt
Priority to KR1020137025731A priority patent/KR101453238B1/ko
Priority to EP12754380.9A priority patent/EP2685318B1/en
Priority to CN2012800124041A priority patent/CN103430106A/zh
Priority to US13/555,040 priority patent/US8548359B2/en
Publication of WO2012120882A1 publication Critical patent/WO2012120882A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • G03G15/0208Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices by contact, friction or induction, e.g. liquid charging apparatus
    • G03G15/0216Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices by contact, friction or induction, e.g. liquid charging apparatus by bringing a charging member into contact with the member to be charged, e.g. roller, brush chargers
    • G03G15/0233Structure, details of the charging member, e.g. chemical composition, surface properties

Definitions

  • the present invention relates to a charging member, a process cartridge and an electrophotographic apparatus using the charging member.
  • an AC voltage is superimposed on a DC voltage on a charging member disposed in contact with the photosensitive member. Is applied.
  • One of the problems with such a charging method is vibration noise generated by resonance between the photosensitive member and the charging member.
  • Patent Document 1 discloses a method for suppressing the generation of vibration noise by using a charging member having a natural frequency that does not cause resonance depending on the frequency of an AC voltage to be applied.
  • high-frequency AC voltage of about 3000 Hz, for example, has been applied to the charging member.
  • the motor itself that drives the photosensitive member vibrates, and the gear that transmits the driving force of the motor also vibrates.
  • Such vibration not only generates charging noise, but also vibrates the charging member disposed in contact with the photoconductor, making it difficult to stably charge the photoconductor to a predetermined potential.
  • the quality of the electrophotographic image may be deteriorated. Under such circumstances, the present inventors have realized that it is necessary to develop a technique for more reliably reducing the vibration of the charging member.
  • an object of the present invention is to provide a charging member that is less susceptible to vibration even when a high-frequency AC voltage is applied and that can stably charge the photosensitive member.
  • Another object of the present invention is to provide a process cartridge and an electrophotographic apparatus that can stably form a high-quality electrophotographic image.
  • a charging member having a conductive base, a conductive elastic layer, and a surface layer, wherein the elastic layer includes the first rubber layer and the first rubber layer from the base side.
  • a charging member having (f 2 / f 1 ) of 2.35 or more and 10.0 or less is provided.
  • a process cartridge in which the charging member and the photosensitive member are integrated and configured to be detachable from the electrophotographic apparatus main body.
  • an electrophotographic apparatus having the above charging member and a photoreceptor is provided.
  • the present invention it is possible to obtain a charging member that is less susceptible to vibration even when a high-frequency AC voltage is applied and can stably charge the photosensitive member.
  • a process cartridge that contributes to the provision of high-quality electrophotographic images can be obtained.
  • an electrophotographic apparatus capable of forming a high-quality electrophotographic image can be obtained.
  • the inventors of the present invention have studied various techniques related to vibration absorption in order to make the charging member carry vibration absorption ability in response to the above-described problems.
  • Non-Patent Document 1 On page 25 of Non-Patent Document 1, a graph showing the relationship between vibration transmissibility and frequency ratio (forced vibration frequency / natural frequency) is described. From this graph, it can be seen that the vibration is maximized by resonance when the frequency ratio is 1, and that the vibration transmissibility gradually decreases when the frequency ratio is ⁇ 2. The graph also shows that when the frequency ratio is about 2.4 to 3, the vibration transmissibility is 0.5 or less, and such a frequency ratio region is a region for vibration isolation. Further, on page 97 of non-patent document 2 and FIG. 7.2, a graph having the same effect as the graph described on page 25 of non-patent document 1 is described.
  • Non-Patent Documents 1 and 2 mentioned above in vibration absorption using a spring or the like, it is necessary to make the frequency ratio at least greater than ⁇ 2, and it is particularly preferable that the frequency ratio be 3 or more. It has been.
  • the present inventors have taken up a charging roller as a model in which a rubber layer composed of a first rubber layer 103 and a second rubber layer 105 is provided on a shaft core body 101 as shown in FIG.
  • the second rubber layer 105 on the surface side of the charging roller is regarded as a vibration source
  • the first rubber layer 103 on the shaft core body 101 side is regarded as an anti-vibration rubber, and transmitted from the outside of the charging roller 101 to the second rubber layer 105.
  • the frequency ratio required for the first rubber layer 103 in order to attenuate the generated vibration by the first rubber layer 103 and suppress the transmission of the vibration to the shaft core body 101 was obtained.
  • the frequency ratio at which the vibration transmissibility is 0.5 was calculated using the above formula (1).
  • 0.5 was substituted for the attenuation ratio (C / Cc).
  • rubber is mainly used for the elastic layer of the charging member, and rubber usually exhibits a damping ratio of 0.2 to 0.3. That is, as shown in the graphs of Non-Patent Documents 1 and 2, in a region where the frequency ratio is larger than ⁇ 2, the vibration transmissibility increases as the damping ratio increases. Therefore, the value of the frequency ratio ( ⁇ / ⁇ n ) obtained by substituting 0.5 into the term of the damping ratio (C / Cc) in the above formula (1) is the first in relation to the second rubber layer. It is considered that the rubber layer will sufficiently function as an anti-vibration rubber. As a result of the calculation, the natural frequency that the first rubber layer should have is 2.35 or more of the natural frequency of the second rubber layer.
  • the present inventors have examined the materials of the first rubber layer and the second rubber layer so that the natural frequency of the first rubber layer is 2.35 or more of the natural frequency of the second rubber layer. It was. As a result, by selecting the respective rubber materials of the first rubber layer and the second rubber layer and the filler to be contained in the rubber material, the natural frequencies of the first rubber layer and the second rubber layer are as described above. It was found that it can be adjusted to have a relationship. The present invention has been made based on the results of such studies.
  • the charging roller 200 includes a conductive shaft core 201 and a conductive elastic layer 203.
  • the elastic layer 203 includes a first rubber layer 203-1 and a second rubber layer 203-2 stacked on the first rubber layer 203-1 in order from the shaft core 201 side.
  • the first rubber layer 203-1 has a natural frequency (hereinafter also referred to as “f 1 ”) of the natural frequency (hereinafter also referred to as “f 2 ”) of the second rubber layer 203-2. 35 or more and 10.0 or less.
  • the technical significance of setting the lower limit value of the natural frequency ratio (hereinafter also referred to as “f 2 / f 1 ”) of the first rubber layer and the second rubber layer to 2.35 is described above.
  • the first rubber layer has an excellent anti-vibration function, and the vibration applied from the outside to the charging member is prevented from being transmitted to the shaft core body.
  • the reason why the upper limit value is set to 10.0 is that the natural frequency ratio is made larger than 10.0 in the material composition that can withstand practical use as the rubber layer of the charging member as a result of experiments by the present inventors. This is because a material composition that can be used was not found.
  • the conductive substrate 201 functions as an electrode for supplying a power source for applying a desired charge to a charged body such as a photosensitive member to the elastic layer, and also has a function of supporting the elastic layer 203 provided thereon.
  • the material include metals such as iron, copper, stainless steel, aluminum, nickel, and alloys thereof.
  • the elastic layer 203 has two layers of a first rubber layer 203-1 and a second rubber layer 203-2 provided in contact with the first rubber layer in order from the substrate side.
  • the natural frequency ratio (f 2 / f 1 ) of the natural frequency f 2 of the second rubber layer to the natural frequency f 1 of the first rubber layer is 2.35 or more and 10.0 or less. More preferably, it is 3.0 or more and 8.0 or less.
  • Each of the natural frequency f 1 of the first rubber layer and the natural frequency f 2 of the second rubber layer is preferably within the following numerical range on the assumption that the above natural frequency ratio is satisfied.
  • f 1 100 Hz or more and 600 Hz or less, particularly 150 Hz or more and 300 Hz or less.
  • f 2 400 Hz or more and 1400 Hz or less, particularly 500 Hz or more and 1200 Hz or less.
  • f 0 is the natural frequency of the spring with one end fixed
  • K is the spring constant [N / m]
  • M is the mass [kg] of the weight attached to the other end.
  • M in the formula (2) can be replaced with a mass per unit area. Therefore, the natural frequency of the rubber layer is expressed by K in the formula (2), the elastic modulus k of the rubber constituting the rubber layer, and M, the mass per unit area of the rubber layer, that is, the layer thickness t and the specific gravity.
  • the value f calculated by inserting the product of ⁇ can be obtained from equation (3).
  • the unit of the layer thickness t is mm
  • the unit of the specific gravity ⁇ is g / cm 3
  • the unit of the elastic modulus k is Pa.
  • the elastic modulus, specific gravity and thickness of each rubber layer are adjusted from the above formula (3). Specifically, for the second rubber layer, the elastic modulus is made larger than that of the first rubber layer, and the product of specific gravity and layer thickness is made smaller than that of the first rubber layer. Thereby, an elastic layer satisfying the natural frequency ratio according to the present invention can be formed.
  • the rubber that is a main constituent material of the first rubber layer and the second rubber layer natural rubber, a vulcanized product thereof, or an elastomer such as synthetic rubber can be used.
  • synthetic rubbers include ethylene propylene rubber, styrene butadiene rubber (SBR), silicone rubber, urethane rubber, isoprene rubber (IR), butyl rubber, and acrylonitrile butadiene rubber (NBR). Chloroprene rubber (CR), acrylic rubber, epichlorohydrin rubber, fluorine rubber, etc. These may be used alone or in combination of two or more.
  • First rubber layer One or more rubbers selected from the group consisting of epichlorohydrin rubber, urethane rubber and fluororubber.
  • epichlorohydrin rubber preferably contained in the first rubber layer include the following.
  • Epichlorohydrin homopolymer epichlorohydrin-ethylene oxide copolymer, epichlorohydrin-allyl glycidyl ether copolymer and epichlorohydrin-ethylene oxide-allyl glycidyl ether terpolymer.
  • a second rubber layer One or more rubbers selected from the group consisting of acrylonitrile butadiene rubber, styrene butadiene rubber, ethylene propylene rubber and butadiene rubber.
  • the specific gravity and elastic modulus of the rubber layer can be adjusted by selecting the type and amount of filler to be contained in the rubber layer.
  • the reinforcing effect of the rubber in the rubber layer is increased, so that the elastic modulus of the rubber layer is increased.
  • the elastic modulus of the rubber layer is increased by using a filler having a high rubber reinforcing effect.
  • the filler content in the second rubber layer is made larger than the filler content in the first rubber layer. More preferably, the first rubber layer does not contain a filler, and only the second rubber layer contains a filler.
  • the amount of filler in the second rubber layer is changed to the first rubber layer.
  • the amount is 9 to 100 times based on the mass with respect to the amount of filler in the layer.
  • Examples of the filler that can be contained in each rubber layer include inorganic compound particles and organic compound particles.
  • inorganic compound particles are given below.
  • Iron oxides such as ferrite, magnetite and hematite, and activated carbon.
  • Resins such as polyamide, silicone resin, fluororesin, (meth) acrylic resin, styrene resin, phenol resin, polyester resin, melamine resin, urethane resin, olefin resin, epoxy resin, copolymers, modified products and derivatives thereof.
  • EPDM Ethylene-propylene-diene copolymer
  • SBR styrene-butadiene copolymer rubber
  • silicone rubber silicone rubber
  • urethane rubber isoprene rubber (IR), butyl rubber, chloroprene rubber (CR).
  • examples of the filler having a high rubber reinforcing effect include carbon black and silica described later.
  • examples of fillers that have a relatively low rubber reinforcing effect compared to carbon black and silica include calcium carbonate, magnesium carbonate, zinc oxide, tin oxide, and magnesium oxide.
  • the volume average particle diameter of the filler to be contained in the second rubber layer is made smaller than that of the filler to be contained in the first rubber layer.
  • the volume average particle size of the carbon black contained in the first rubber layer is set to 100 to 900 nm
  • the second By setting the volume average particle size of the carbon black contained in the rubber layer to 10 to 50 nm, it is possible to cause the first and second rubber layers to have a significant difference in elastic modulus derived from the filler. is there.
  • the addition of the filler to the elastic layer acts in the direction of increasing the elastic modulus of the elastic layer as described above. That is, for the purpose of increasing the value of f 2 / f 1 , if the specific gravity of the first rubber layer is made larger than the specific gravity of the second rubber layer by adding a filler to the first rubber layer, The elastic modulus of the rubber layer increases, which adversely affects the achievement of the above object. Therefore, it is preferable to adjust the specific gravity of the first rubber layer mainly by appropriately selecting the rubber type to be contained in the first rubber layer. More preferably, it is ideal that the first rubber layer does not contain a filler.
  • the specific gravity and elastic modulus of the second rubber layer are preferably adjusted by selecting a rubber material, selecting a filler type, and adjusting the amount of addition.
  • the filler contained in the second rubber layer it is preferable to use a filler having a small specific gravity in order to increase the value of f 2 / f 1 .
  • Use of a filler having a large specific gravity acts in the direction of increasing the elastic modulus of the second rubber layer, but acts in the direction of decreasing the value of f 2 . Therefore, it is preferable to use a filler having a small specific gravity as the filler for adjusting the elastic modulus of the second rubber layer.
  • Such a filler examples include carbon black and silica. Since these fillers have a high effect of reinforcing rubber, it is possible to dramatically increase the elastic modulus of the elastic layer, and the specific gravity has a small value of around 2 , so that f 2 is increased. It is possible to adjust in the direction.
  • Examples of carbon black include black furnace black, thermal black, acetylene black, and ketjen black. The following can be illustrated as furnace black.
  • Examples of the thermal black include FT and MT.
  • Silica includes dry silica produced by burning silicon tetrachloride with oxygen and hydrogen, vapor-type dry silica, silica made from mineral acids such as sodium silicate and sulfuric acid, and wet-treated silica that has been pulverized and colloidal. Silica and synthetic silicate can be used.
  • ⁇ Rubber layer thickness> With respect to the elastic modulus of the first and second rubber layers, it is preferable that they are within the following numerical ranges, respectively, on the assumption that the relationship of f 2 / f 1 is satisfied.
  • First rubber layer 3 MPa or more and 35 MPa or less, particularly 3 MPa or more and 7 MPa or less.
  • the specific thickness of the second rubber layer is 200 ⁇ m or more and 1500 ⁇ m or less, particularly 300 ⁇ m or more and 1200 ⁇ m. More preferably, it is within the following range.
  • the thickness of the first rubber layer is not less than 0.75 times and not more than 14.3 times, particularly preferably not less than 1.00 times and not more than 6.67 times the thickness of the second rubber layer. It is preferable to do.
  • the first and second rubber layers are premised on maintaining the relationship of f 2 / f 1 , and softening oils, plasticizers, and other various types that adjust the hardness within a range that does not impede the function of the substances. You may contain additives, such as an anti-aging agent and a filler, which give a function.
  • the first and second rubber layers may contain a conductive agent that imparts conductivity.
  • a conductive agent that imparts conductivity.
  • the conductive agent either an ionic conductive agent or an electronic conductive agent can be used.
  • an ionic conductive agent since the addition of the electronic conductive agent may affect the natural frequency of the elastic layer, it is preferable to use an ionic conductive agent for adjusting the conductivity.
  • perchloric acid quaternary ammonium salt is suitable because of its resistance to environmental changes, and in particular, when a polar rubber is used as the binder of the elastic layer, an ammonium salt is used. preferable.
  • the volume resistivity of each rubber layer is preferably 10 2 ⁇ ⁇ cm or more and 10 8 ⁇ ⁇ cm or less in a temperature 23 ° C./humidity 50% RH environment.
  • the volume resistivity of each rubber layer is a volume resistivity measurement sample prepared by molding all materials used for the elastic layer into a 1 mm thick sheet, and depositing metal on both sides to form electrodes and guard electrodes. It can measure similarly to the volume resistivity measuring method of the surface layer mentioned later using.
  • the hardness of the first and second rubber layers is preferably 70 ° or less, particularly 60 ° or less in terms of micro hardness (MD-1 type). This is because a nip width between the charging member and the photosensitive member can be ensured, and the charging member can be stably driven and rotated with respect to the photosensitive member.
  • the micro hardness (MD-1 hardness) was measured using a micro rubber hardness tester (trade name: MD-1 capa, manufactured by Kobunshi Keiki Co., Ltd.) and in an environment of normal temperature and normal humidity (temperature 23 ° C./humidity 55% RH). After being allowed to stand for 12 hours or longer, the measured value measured in the 10N peak hold mode can be employed.
  • Examples of the method for forming an elastic layer according to the present invention include a method of extruding and injection molding an elastic layer material obtained by kneading a binder rubber, a conductive agent, a filler and the like. Specifically, a method of preparing a first rubber layer material and a second rubber layer material, and simultaneously extruding the substrate together with these materials using an extruder and vulcanizing the substrate can be mentioned. By simultaneously extruding a plurality of layers simultaneously, man-hours can be simplified.
  • a roller in which an unvulcanized first rubber layer is molded on a substrate is prepared, and a second rubber layer material is separately molded into an unvulcanized tube or sheet and covered with the tube or sheet.
  • a method of vulcanizing a roller formed with the unvulcanized first rubber layer in a mold is a method of vulcanizing a roller formed with the unvulcanized first rubber layer in a mold.
  • an unvulcanized first rubber layer is formed and a vulcanized roller is produced.
  • a second rubber layer material is formed into a tube shape, and the vulcanization is completed to complete the tube shape.
  • a second rubber layer is formed. Then, the method of inserting the roller which has a 1st rubber layer, flowing air in the tube-shaped 2nd rubber layer can be illustrated.
  • the obtained elastic layer can be polished or surface-treated as necessary.
  • the polishing process can be performed using a traverse NC cylindrical polishing machine or a plunge cut NC cylindrical polishing machine, and can be formed into a crown shape or the like.
  • Examples of the surface treatment include treatment using UV or electron beam and surface modification treatment performed by attaching or impregnating a compound to the surface.
  • a surface layer having a thickness of about 1 to 50 ⁇ m may be separately provided on the outside of the second rubber layer in order to suppress adhesion of dirt to the surface of the charging member.
  • the charging member has an electric resistance of 1 ⁇ 10 3 ⁇ or more and 1 ⁇ 10 10 ⁇ or less in a temperature 23 ° C./humidity 50% RH environment, so that the photosensitive member can be charged well. preferable.
  • the charging member preferably has a surface ten-point average roughness Rzjis ( ⁇ m) of 2 ⁇ Rzjis ⁇ 100 and a surface irregularity average interval Sm ( ⁇ m) of 15 ⁇ Sm ⁇ 200.
  • Rzjis surface ten-point average roughness
  • Sm surface irregularity average interval
  • Rz can be obtained as an average value obtained by randomly measuring six charging members.
  • Sm can be calculated as an average value of the average values of the six locations by randomly selecting six charging members, measuring the irregularity intervals of ten points at each location, and determining the average.
  • the measurement conditions are as follows.
  • Cut-off value 0.8mm Filter Gauss reserve length Cut-off x 2 Leveling Straight line (entire area) Evaluation length 8mm
  • the electrophotographic apparatus of the present invention only needs to have the charging member and the photoconductor, and an example of the schematic configuration is shown in FIG.
  • An electrophotographic photosensitive member 4 (hereinafter also referred to as “photosensitive member”), a process cartridge in which a charging device having the charging member 5 is integrated, a latent image forming device 11 that forms a latent image on the photosensitive member, and a latent image It has a developing device for forming a toner image, and a transfer device for transferring the toner image to a transfer material 7 such as paper.
  • the image forming apparatus includes a cleaning device that collects toner remaining on the photoconductor after the toner image is transferred, a fixing device 9 that fixes the toner image on the transfer material, and the like.
  • the cleaning device includes a cleaning blade 10 and a waste toner container 14.
  • the photoreceptor 4 is a rotary drum type having a photosensitive layer on a conductive substrate, and is driven to rotate at a predetermined peripheral speed (process speed) in the direction of an arrow.
  • the charging roller 5 is driven to a predetermined voltage by a power source applied from an AC power source 19 and is driven to rotate in accordance with the rotation of the photosensitive member abutted by a predetermined pressing force to charge the photosensitive member to a predetermined potential.
  • an exposure device such as a laser beam scanner that outputs a laser 11 performs exposure corresponding to image information on a uniformly charged photoconductor, thereby causing the image on the photoconductor.
  • An electrostatic latent image is formed.
  • the latent image on the photoconductor is developed by the developing sleeve or the developing roller 6 disposed close to or in contact with the photoconductor, and the toner having the same polarity as that of the photoconductor is conveyed, and the electrostatic latent image is developed by reversal development. Is formed.
  • the toner image on the photoconductor is transferred to a transfer material 7 such as plain paper conveyed by a paper feeding system between the transfer roller 8 and the photoconductor in the transfer device. Thereafter, in the fixing device 9, the toner image on the transfer material 7 is fixed on the transfer material by a heating roller or the like and is discharged outside the apparatus to obtain an output image.
  • the residual toner on the photosensitive member is mechanically scraped off by the blade-type cleaning member 10 in the cleaning device and recovered in the recovery container.
  • the process cartridge of the present invention may be any cartridge as long as the charging member and the photosensitive member are integrated and detachable from the main body of the electrophotographic apparatus.
  • a charging device having a photoreceptor 4 and a charging roller 5 a developing device having a developing roller 6, a toner supply roller 15 and a developing blade 13, a cleaning blade 10 and a waste toner container 14.
  • An example is one in which a cleaning device or the like configured is integrated and configured to be detachable from the main body of the electrophotographic apparatus.
  • the obtained composite conductive fine particles had a number average particle diameter of 15 nm and a volume resistivity of 1.1 ⁇ 10 2 ⁇ ⁇ cm.
  • Toluene was removed from the slurry obtained by wet pulverization using a kneader under reduced pressure distillation (bath temperature: 110 ° C., product temperature: 30 to 60 ° C., degree of vacuum: about 100 Torr), and the temperature was 120 ° C. for 2 hours.
  • the surface treatment agent was baked. The baked particles were cooled to room temperature and then pulverized using a pin mill to obtain surface-treated titanium oxide particles.
  • thermosetting adhesive containing 10% by mass of carbon black was applied to a stainless steel substrate having a diameter of 6 mm and a length of 252.5 mm and dried.
  • First rubber layer material The materials shown in Table 1 below were kneaded for 10 minutes in a closed mixer adjusted to 50 ° C. to prepare an unvulcanized rubber composition.
  • the rotation speed of the screw part of the crosshead extruder was adjusted so that the thickness of the first rubber layer was 2.5 mm and the thickness of the second rubber layer was 1 mm.
  • both ends of the rubber were removed, and the rubber length was 224.2 mm.
  • the outer peripheral surface of the second rubber layer was polished by using a plunge cut type cylindrical polishing machine so as to have a roller shape with an outer diameter of 12 mm to obtain an elastic roller.
  • the crown amount of this roller (the difference in outer diameter between the center and a position 90 mm away from the center) was 120 ⁇ m.
  • Methyl isobutyl ketone was added to a caprolactone-modified acrylic polyol solution (trade name: Plaxel DC2016, manufactured by Daicel Chemical Industries, Ltd.) to adjust the solid content to 17% by mass.
  • the material described in Table 4 below was added to 588.24 parts by mass of this solution (100 parts by mass of acrylic polyol solid content) to prepare a mixed solution.
  • the blocked isocyanate mixture is a 7: 3 mixture of each butanone oxime block of hexamethylene diisocyanate (HDI) and isophorone diisocyanate (IPDI).
  • HDI hexamethylene diisocyanate
  • IPDI isophorone diisocyanate
  • Duranate TPA-B80E trade name, manufactured by Asahi Kasei Kogyo Co., Ltd.
  • Vestanat B1370 trade name, manufactured by Degussa Huls
  • 195.6 g of the above mixed solution was put in a glass bottle having an internal volume of 450 mL together with 200 g of glass beads having an average particle diameter of 0.8 mm as a medium, and dispersed for 28 hours using a paint shaker disperser. After the dispersion, 2.55 g of polymethyl methacrylate resin particles having a volume average particle diameter of 10 ⁇ m (equivalent to 10 parts by mass with respect to 100 parts by mass of acrylic polyol solid content) was added. Thereafter, dispersion was performed for 5 minutes, and the glass beads were removed to obtain a surface layer coating solution.
  • dipping coating was performed once on the produced elastic roller.
  • the dipping application was performed with a dipping time of 9 seconds, and the dipping application was lifted up with an initial speed of 20 mm / s and a final speed of 2 mm / s, while the speed was changed linearly with respect to time. Then, after air drying at room temperature for 30 minutes or more, it was dried at a temperature of 80 ° C. for 1 hour and further at a temperature of 160 ° C. for 1 hour by a hot air circulating drier to obtain a charging roller 1 having a surface layer formed on an elastic layer. .
  • the elastic modulus, layer thickness, and specific gravity of the first rubber layer and the second rubber layer were measured by the following method. The results are shown in Table 10. Further, the natural frequencies of the first rubber layer and the second rubber layer were calculated by substituting these measurement results into the equation (3). The results are shown in Table 13.
  • the surface layer of the charging roller is ground using a plunge cut type cylindrical grinder, the elastic layer is exposed on the surface, and the elastic modulus is measured using a surface hardness measuring device (trade name: Fisherscope H100V, manufactured by Fisher Instruments). Was measured. In this case, the measurement was performed after the charging roller was left in a 23 ° C./50% RH environment for 12 hours or more. As shown in FIG. 3A, the measurement position is the axial center of the elastic layer 203, the central portion of the elastic layer in the axial direction, and the midpoint between the axial end portions of the elastic layer. About 3 places and the circumferential direction, as shown to FIG. 3B, it was set as 9 places in total, 3 places every 120 degrees.
  • Measurement conditions were performed by pushing the probe with a load of 300 mN at a speed of 1 ⁇ m / 10 s. Further, the surface of each elastic layer exposed on the surface was adjusted to 6 ⁇ m or less with the above-described ten-point average surface roughness Rzjis ( ⁇ m).
  • the cross section of the charging roller is cut out with a sharp blade at each position where the elastic modulus is measured, and observed with an optical microscope or an electron microscope to measure the radius, the layer thickness of the second rubber layer, and the layer thickness of the surface layer. Thus, the total thickness of the second rubber layer and the surface layer was reduced to obtain the thickness of the first rubber layer. Average values at the nine measurement positions shown in FIGS. 3A and 3B were calculated.
  • the produced charging roller 5 is brought into contact with the electrophotographic photosensitive member 4 with a spring pressure of 4.9 N at one end and a total of 9.8 N at both ends, and the electrophotographic photosensitive member 4 is It was rotated at a speed of 45 mm / sec.
  • the electrophotographic photosensitive member was taken out from a process cartridge for a monochrome laser printer (trade name: LaserJet P4515n, manufactured by Hewlett-Packard Japan) and used.
  • a voltage was applied to the charging roller from the outside. The conditions were AC voltage, peak voltage (Vpp) was 1800 V, frequency (f) was 2930 Hz, and DC voltage (Vdc) was ⁇ 600 V.
  • the magnitude (amplitude) of vibration of the charging roller rotating following the rotation of the photosensitive member was measured with a laser Doppler vibrometer (trade name: LV-1710, manufactured by Ono Sokki Co., Ltd.).
  • the measurement position was the center of the charging member in the longitudinal center and the position opposite to the contact position with the electrophotographic photosensitive member.
  • Table 13 shows the magnitude (amplitude) of vibration at 5860 Hz.
  • a black and white laser printer (trade name: LaserJet P4515n, manufactured by Hewlett-Packard Japan) was prepared as the electrophotographic apparatus shown in FIG. 5 using the process cartridge shown in FIG. The voltage was applied to the charging roller from the outside.
  • the AC + DC charging method was adopted, and the voltage applied to the charging member was an AC voltage, the peak voltage (Vpp) was 1800 V, the frequency (f) was 2930 Hz, and the DC voltage (Vdc) was ⁇ 600 V.
  • the image resolution was output at 600 dpi.
  • Evaluation 1 Evaluation of presence / absence and degree of image defect due to charging failure.
  • Evaluation 2 Evaluation of presence or absence of image defects due to scratches on the surface of the photoreceptor and the degree thereof.
  • the vibration of the charging roller in the electrophotographic image forming process promotes adhesion of the toner or the like to the surface of the charging roller, and the charging roller having the toner or the like adhered to the surface may cause charging failure. Further, the vibration of the charging roller in the electrophotographic image forming process may cause scratches on the surface of the photoreceptor. This image evaluation is for viewing the correlation between the vibration suppression effect of the charging roller and the quality of the electrophotographic image.
  • Typical examples of image defects caused by charging failure include dots and horizontal stripes.
  • an example of an image defect caused by a scratch generated on the photosensitive member is a vertical stripe.
  • the electrophotographic image was formed by the electrophotographic apparatus in the intermittent output mode.
  • the intermittent output mode is a mode that repeats a cycle in which the rotation of the photosensitive member is stopped over 3 seconds after two electrophotographic images are output.
  • the obtained four spot-like images, horizontal stripe-like images, rough images and vertical stripe-like images were performed according to the following criteria. The results are shown in Table 14.
  • the electrical resistance was determined by the following method. As shown in FIGS. 4A and 4B, both ends of the substrate 1 are supported in parallel by a cylindrical metal 32 having the same curvature as that of the photosensitive member by a loaded bearing 33 (a). Abut (b). In this state, the cylindrical metal 32 is rotated by a motor (not shown), and a DC voltage of ⁇ 200 V is applied from the stabilizing power supply 34 while the charging roller 5 that is in contact with the rotation is driven to rotate. At this time, the bearing load is 4.9 N, the metal cylinder is 30 mm in diameter, the metal cylinder is rotated at a peripheral speed of 45 mm / sec, the current flowing through the ammeter 35 is measured, and the resistance of the charging roller is calculated. In addition, the current measurement of the charging roller before being subjected to the image evaluation and the current measurement of the charging roller after being subjected to the image evaluation are both placed in the “environment 2” for 24 hours. After acclimatization.
  • the “environment 2” is an environment in which toner or the like adheres to the charging roller and scratches that occur on the photoreceptor are least likely to occur. For this reason, the above-mentioned “Environment 2” is considered to be the most appropriate environment in evaluating the variation in electrical resistance due to the change in conductivity of the elastic layer of the charging roller due to the formation of the electrophotographic image.
  • a charging roller used for forming an electrophotographic image under “Environment 2” was used as the target charging roller. The results are shown in Table 13.
  • Example 2 The same procedure as in Example 1 was performed except that the screw speed of the crosshead extruder was adjusted so that the thickness of the first rubber layer was 2.1 mm and the thickness of the second rubber layer was 1.4 mm. Thus, an elastic roller was produced.
  • the coating solution for the surface layer is changed to the composite conductive fine particles of Production Example 1 and the surface-treated titanium oxide particles of Production Example 2, and 30 parts by mass of carbon black (# 52: manufactured by Mitsubishi Chemical Corporation) is used. It was prepared in the same manner as in Example 1 except that the dispersion time was 36 hours. Thereafter, the charging roller 2 was prepared in the same manner as in Example 1, the electrical resistance, the layer thickness, the elastic modulus, and the specific gravity were measured, the natural frequency was calculated, and the durability test was evaluated.
  • Example 3 A material was prepared in the same manner as in Example 2 except that carbon black was not added to the first rubber layer material, and the addition amount of carbon black was changed to 100 parts by mass in the second rubber layer material. Except for adjusting the number of rotations of the screw part of the crosshead extruder so that the thickness of the first rubber layer is 2.4 mm and the thickness of the second rubber layer is 1.1 mm, the same as in Example 2. Thus, the charging roller 3 was produced, and each measurement and evaluation was performed in the same manner as in Example 1.
  • Example 4 The number of rotations of the die and screw part of the crosshead extruder is adjusted so that the thickness of the first rubber layer is 1.0 mm and the thickness of the second rubber layer is 1.25 mm, and the outer diameter is 9.5 mm. Polished to become. Otherwise, the charging roller 4 was prepared in the same manner as in Example 3, and each measurement and evaluation was performed in the same manner as in Example 1.
  • Example 5 The rotational speed of the screw part of the crosshead extruder was adjusted so that the thickness of the first rubber layer was 2.75 mm and the thickness of the second rubber layer was 0.75 mm. Otherwise, the charging roller 5 was produced in the same manner as in Example 2, and each measurement and evaluation was performed in the same manner as in Example 1.
  • Example 6 The rotational speed of the screw part of the crosshead extruder was adjusted so that the thickness of the first rubber layer was 2.6 mm and the thickness of the second rubber layer was 0.9 mm. Otherwise, the charging roller 6 was produced in the same manner as in Example 2, and each measurement and evaluation was performed in the same manner as in Example 1.
  • the second rubber layer material was prepared as follows. The components shown in Table 6 were added to 100 parts by mass of acrylonitrile butadiene rubber (NBR) (DN219 manufactured by Nippon Zeon Co., Ltd.), and kneaded for 15 minutes in a closed mixer adjusted to a temperature of 50 ° C.
  • NBR acrylonitrile butadiene rubber
  • Example 8 In the second rubber layer material, the material was prepared by changing the amount of carbon black added to 45 parts by mass. The rotational speed of the screw part of the crosshead extruder was adjusted so that the layer thickness of the first rubber layer was 2.3 mm and the layer thickness of the second rubber layer was 1.2 mm. Except for these, a charging roller 8 was produced in the same manner as in Example 7, and each measurement and evaluation was performed in the same manner as in Example 1.
  • Example 9 In the second rubber layer material, the amount of carbon black added was changed to 95 parts by mass to prepare a material.
  • the thickness of the first rubber layer was 1.5 mm, and the thickness of the second rubber layer was 1.0 mm.
  • the rotational speed of the screw part of the crosshead extruder was adjusted so that Except for these, a charging roller 9 was produced in the same manner as in Example 7, and each measurement and evaluation was performed in the same manner.
  • Example 10 In the first rubber layer material, the material was prepared by changing the amount of carbon black added to 5 parts by mass. In the second rubber layer material, the amount of carbon black added was changed to 80 parts by mass, and 20 parts by mass of silica (R972: manufactured by Nippon Aerosil Co., Ltd., average particle size 16 nm) was added to prepare a material. The rotational speed of the screw part of the crosshead extruder was adjusted so that the thickness of the first rubber layer was 2.0 mm and the thickness of the second rubber layer was 1.5 mm. Except for these, a charging roller 10 was produced in the same manner as in Example 7, and each measurement and evaluation was performed in the same manner as in Example 1.
  • silica R972: manufactured by Nippon Aerosil Co., Ltd., average particle size 16 nm
  • Example 11 In the first rubber layer material, the material was prepared by changing the amount of carbon black added to 1 part by mass. In the second rubber layer material, the amount of carbon black added was changed to 50 parts by mass, and 50 parts by mass of silica (R972: manufactured by Nippon Aerosil Co., Ltd., average particle size: 16 nm) was added to prepare a material. The rotational speed of the screw part of the crosshead extruder was adjusted so that the thickness of the first rubber layer was 1.8 mm and the thickness of the second rubber layer was 1.7 mm. Except for these, the charging roller 11 was prepared in the same manner as in Example 7, and each measurement and evaluation was performed in the same manner as in Example 1.
  • Example 12 In the second rubber layer material, the addition amount of acrylonitrile butadiene rubber (NBR) was changed to 50 parts by mass, and 50 parts by mass of styrene butadiene rubber (SBR) (JSR1500: manufactured by JSR) was added.
  • the material was prepared by changing the carbon black to 50 parts by mass of Toka Black # 5500 (manufactured by Tokai Carbon Co., Ltd., number average particle size 25 nm). The rotational speed of the screw part of the crosshead extruder was adjusted so that the thickness of the first rubber layer was 1.8 mm and the thickness of the second rubber layer was 1.7 mm. Except for these, the charging roller 12 was prepared in the same manner as in Example 2, and each measurement and evaluation was performed in the same manner.
  • Example 13 In the material for the second rubber layer, the addition amount of acrylonitrile butadiene rubber (NBR) was changed to 70 parts by mass, the addition amount of styrene butadiene rubber (SBR) was changed to 30 parts by mass, and carbon black was not added. Except for these, a second rubber layer material was prepared in the same manner as in Example 12, a charging roller 13 was prepared, and each measurement and evaluation was performed in the same manner as in Example 1.
  • NBR acrylonitrile butadiene rubber
  • SBR styrene butadiene rubber
  • Example 14 In the second rubber layer material, 50 parts by mass of acrylonitrile butadiene rubber (NBR) JSR230SV (manufactured by JSR) was changed to 30 parts by mass of DN219 (manufactured by Nippon Zeon), and the amount of SBR added was changed to 70 parts by mass.
  • a second rubber layer material was prepared in the same manner as in Example 12 except for these. The rotational speed of the screw part of the crosshead extruder was adjusted so that the thickness of the first rubber layer was 2.0 mm and the thickness of the second rubber layer was 1.5 mm. Except for these, the charging roller 14 was produced in the same manner as in Example 12, and each measurement and evaluation was performed in the same manner as in Example 1.
  • Example 15 The rotational speed of the screw part of the crosshead extruder was adjusted so that the thickness of the first rubber layer was 2.8 mm and the thickness of the second rubber layer was 1.2 mm. Otherwise, the charging roller 15 was produced in the same manner as in Example 2, and each measurement and evaluation was performed in the same manner as in Example 1.
  • Example 16 The rotational speed of the screw part of the crosshead extruder was adjusted so that the thickness of the first rubber layer was 1.8 mm and the thickness of the second rubber layer was 1.7 mm. Otherwise, the charging roller 16 was produced in the same manner as in Example 2, and each measurement and evaluation was performed in the same manner as in Example 1.
  • the second rubber layer material was prepared as follows. The components shown in Table 7 were added to 100 parts by mass of styrene butadiene rubber (SBR) (trade name: JSR1500, manufactured by JSR Corporation) and kneaded for 15 minutes in a closed mixer adjusted to a temperature of 50 ° C.
  • SBR styrene butadiene rubber
  • Example 18 In the first rubber layer material, the addition amount of calcium carbonate was changed to 30 parts by mass. In the second rubber layer material, the addition amount of carbon black was changed to 40 parts by mass, and the addition amount of silica was changed to 80 parts by mass. The material was prepared. The rotational speed of the screw part of the crosshead extruder was adjusted so that the thickness of the first rubber layer was 1.6 mm and the thickness of the second rubber layer was 1.9 mm. Except for these, the charging roller 18 was produced in the same manner as in Example 17, and each measurement and evaluation was performed in the same manner as in Example 1.
  • Example 19 In the first rubber layer material, the material was prepared by changing the amount of calcium carbonate added to 30 parts by mass.
  • acrylonitrile butadiene rubber (NBR) JSR230SV: manufactured by JSR
  • SBR acrylonitrile butadiene rubber
  • carbon black instead of carbon black, the material is prepared by changing 3 parts by mass of quaternary ammonium (Adekasizer LV70: manufactured by Asahi Denka Kogyo Co., Ltd.) and 100 parts by mass of silica to OX50 (manufactured by Nippon Aerosil Co., Ltd., volume average particle size 30 nm). did.
  • the rotational speed of the screw part of the crosshead extruder was adjusted so that the thickness of the first rubber layer was 1.8 mm and the thickness of the second rubber layer was 1.7 mm. Except for these, a charging roller 19 was produced in the same manner as in Example 17, and each measurement and evaluation was performed in the same manner as in Example 1.
  • Example 20 In the first rubber layer material, the material was prepared by changing the amount of calcium carbonate added to 130 parts by mass.
  • the second rubber layer material was prepared as follows. EPDM (EPT4045: manufactured by Mitsui Chemicals, Inc.) was used instead of acrylonitrile butadiene rubber (NBR), and the components shown in Table 8 were added and kneaded for 15 minutes in a closed mixer adjusted to a temperature of 80 ° C.
  • EPDM EPT4045: manufactured by Mitsui Chemicals, Inc.
  • NBR acrylonitrile butadiene rubber
  • Example 21 The rotational speed of the screw part of the crosshead extruder was adjusted so that the thickness of the first rubber layer was 1.6 mm and the thickness of the second rubber layer was 1.9 mm. Otherwise, a charging roller 21 was produced in the same manner as in Example 20, and each measurement and evaluation was performed in the same manner as in Example 1.
  • Example 22 The rotational speed of the screw part of the crosshead extruder was adjusted so that the thickness of the first rubber layer was 1.4 mm and the thickness of the second rubber layer was 2.1 mm. Otherwise, a charging roller 22 was produced in the same manner as in Example 20, and each measurement and evaluation was performed in the same manner as in Example 1.
  • Example 23 A fluorine-based resin (FC4430: manufactured by Sumitomo 3M) was applied as a primer to a stainless steel substrate having a diameter of 6 mm and a length of 252.5 mm, and the dried one was used as a conductive substrate.
  • FC4430 manufactured by Sumitomo 3M
  • the ingredients listed in Table 9 below were added to 100 parts by mass of a polyol vulcanized binary rubber (Daiel G-755L, manufactured by Daikin Industries, Ltd.), and the mixture was adjusted to 10 with a closed mixer adjusted to a temperature of 50 ° C. Kneading for 1 minute gave a material for the first rubber layer.
  • the second rubber layer material was prepared in the same manner as in Example 20.
  • the rubber length was 224.2 mm, and the outer peripheral surface of the elastic layer was polished by using a lung cut type cylindrical polishing machine so as to form a roller shape having an outer diameter of 12 mm to obtain an elastic roller.
  • the rotation speed of the polishing machine was adjusted so as not to peel off the rubber.
  • a surface layer was formed on this elastic roller in the same manner as in Example 2 to produce a charging roller 23, and each measurement and evaluation was performed in the same manner as in Example 1.
  • Example 24 In the first rubber layer material, instead of calcium carbonate and carbon black, the same as Example 1 except that 100 parts by mass of tin oxide (S-1: Mitsubishi Materials Electronics Chemical Co., Ltd., average particle size 30 nm) was added. Thus, a first rubber layer material was prepared. In the second rubber layer material, styrene butadiene rubber (SBR) (JSR1503: manufactured by JSR) was used instead of EPDM, the amount of zinc stearate was changed to 1 part by mass, and calcium carbonate and paraffin oil were not used. It was. A material was prepared in the same manner as Example 20 except for the above.
  • SBR styrene butadiene rubber
  • Example 2 Using the obtained material, the rotational speed of the screw part of the crosshead extruder was adjusted so that the layer thickness of the first rubber layer was 2.0 mm and the layer thickness of the second rubber layer was 1.5 mm. Except for these, a charging roller 24 was produced in the same manner as in Example 2, and each measurement and evaluation was performed in the same manner as in Example 1.
  • Example 25 An elastic roller was prepared in the same manner as in Example 24 except that in the first rubber layer material, the addition amount of tin oxide was changed to 80 parts by mass.
  • a surface layer was formed using the surface layer coating solution prepared as follows. Ethanol was added to polyvinyl butyral to adjust the solid content to 20% by mass. The components shown in Table 10 were added to 500 parts by mass of this solution (100 parts by mass of polyvinyl butyral solid content) to prepare a mixed solution.
  • Example 26 In the first rubber layer material, 10 parts by mass of EPDM (EPT4045: manufactured by Mitsui Chemicals) was added, and the addition amount of tin oxide was changed to 150 parts by mass to prepare a material. Otherwise, the charging roller 26 was produced in the same manner as in Example 25, and each measurement and evaluation was performed in the same manner as in Example 1.
  • EPDM EPT4045: manufactured by Mitsui Chemicals
  • Example 27 In the first rubber layer material, epichlorohydrin rubber (EO-EP-AGC terpolymer was added in an amount of 50 parts by mass and EPDM (EPT4045: manufactured by Mitsui Chemicals) was changed to acrylonitrile butadiene rubber (NBR) (DN219). The product was prepared in the same manner as in Example 26. The thickness of the first rubber layer was changed to 50 parts by mass, and the addition amount of tin oxide was changed to 170 parts by mass. The number of rotations of the screw portion of the crosshead extruder was adjusted so that the thickness of the second rubber layer was 2.0 mm and the thickness of the second rubber layer was adjusted to 1.5 mm. Each measurement and evaluation were performed in the same manner as in Example 1.
  • Example 28 The rotational speed of the screw part of the crosshead extruder was adjusted so that the thickness of the first rubber layer was 2.2 mm and the thickness of the second rubber layer was 1.3 mm. Otherwise, a charging roller 28 was produced in the same manner as in Example 27, and each measurement and evaluation was performed in the same manner as in Example 1.
  • Example 29 A material was prepared in the same manner as in Example 2 except that carbon black was changed to 50 parts by mass of Toka Black # 5500 (manufactured by Tokai Carbon Co., Ltd., average particle size 25 nm) in the second rubber layer material. The rotation speed of the screw part of the crosshead extruder was adjusted so that the thickness of the first rubber layer was 2.5 mm and the thickness of the second rubber layer was 1.0 mm. Otherwise, the charging roller 29 was produced in the same manner as in Example 2, and each measurement and evaluation was performed in the same manner as in Example 1.
  • Example 30 In the second rubber layer material, the carbon black was changed to 42 parts by mass of Toka Black # 4300 (manufactured by Tokai Carbon Co., Ltd., average particle size 25 nm), and the addition amount of carbon black was changed to 60 parts by mass.
  • the material was prepared as in 2.
  • the rotational speed of the screw part of the crosshead extruder is adjusted so that the thickness of the first rubber layer is 2.6 mm and the thickness of the second rubber layer is 0.9 mm, and the outer diameter of the elastic roller is 12 mm. It adjusted so that it might become. Except for these, the charging roller 31 was produced in the same manner as in Example 2, and each measurement and evaluation was performed in the same manner as in Example 1.
  • Example 31 In the same manner as in Example 29, except that the addition amount of calcium carbonate was changed to 150 parts by mass in the first rubber layer material and the addition amount of carbon black was changed to 60 parts by mass in the second rubber layer material. The material was prepared. The rotational speed of the screw part of the crosshead extruder was adjusted so that the thickness of the first rubber layer was 2.0 mm and the thickness of the second rubber layer was 1.5 mm. Except for these, a charging roller 32 was produced in the same manner as in Example 29, and each measurement and evaluation was performed in the same manner as in Example 1.
  • Example 32 In the second rubber layer material, a material was prepared in the same manner as in Example 31 except that the amount of carbon black added was changed to 100 parts by mass. The rotational speed of the screw part of the crosshead extruder was adjusted so that the thickness of the first rubber layer was 2.2 mm and the thickness of the second rubber layer was 1.3 mm. Except for these, a charging roller 33 was produced in the same manner as in Example 31, and each measurement and evaluation was performed in the same manner as in Example 1.
  • Example 33 The number of revolutions of the screw part of the crosshead extruder is adjusted so that the first rubber layer has a thickness of 2.5 mm and the second rubber layer has a thickness of 0.9 mm. It adjusted so that it might be set to 8 mm. Except for these, a charging roller 34 was produced in the same manner as in Example 32, and each measurement and evaluation was performed in the same manner as in Example 1.
  • a first rubber layer material was prepared.
  • a second rubber layer material was prepared in the same manner as in Example 25. The rotational speed of the screw portion of the crosshead extruder is adjusted so that the thickness of the first rubber layer is 2.3 mm and the thickness of the second rubber layer is 0.9 mm, and the outer diameter of the elastic roller is 11. It adjusted so that it might be set to 4 mm.
  • the charging roller 34 was produced in the same manner as in Example 25, and each measurement and evaluation was performed in the same manner as in Example 1.
  • Example 35 In the first rubber layer material, the first rubber layer material was prepared in the same manner as in Example 34 except that 5 parts by mass of carbon black (Thermax Flow Foam N990: manufactured by Canada, Canada, volume average particle size 270 nm) was added. Prepared. A second rubber layer material was prepared in the same manner as in Example 2 except that calcium carbonate was not added.
  • carbon black Thermax Flow Foam N990: manufactured by Canada, Canada, volume average particle size 270 nm
  • the rotational speed of the screw part of the crosshead extruder was adjusted so that the thickness of the first rubber layer was 1.7 mm and the thickness of the second rubber layer was 1.8 mm. Except for these, a charging roller 35 was produced in the same manner as in Example 25, and each measurement and evaluation was performed in the same manner as in Example 1.
  • Example 36 The first rubber layer material was prepared in the same manner as in Example 20 except that tin oxide was changed to 5 parts by mass of carbon black (Toka Black # 7360SB: Tokai Carbon Co., Ltd., volume average particle size 28 nm).
  • the second rubber layer material was prepared in the same manner as in Example 20 except that the addition amount of carbon black was changed to 15 parts by mass and the addition amount of calcium carbonate was changed to 20 parts by mass.
  • the rotational speed of the screw part of the crosshead extruder was adjusted so that the thickness of the first rubber layer was 2.0 mm and the thickness of the second rubber layer was 1.0 mm. During polishing, the number of rotations of the polishing machine was adjusted so as not to peel off the rubber. Except for these, a charging roller 36 was produced in the same manner as in Example 35, and each measurement and evaluation was performed in the same manner as in Example 1.
  • Example 37 The number of rotations of the die and screw part of the crosshead extruder is adjusted so that the thickness of the first rubber layer is 3.5 mm and the thickness of the second rubber layer is 0.9 mm. It was prepared to be 13.8 mm. Except for this, a charging roller 37 was produced in the same manner as in Example 36, and each measurement and evaluation was performed in the same manner as in Example 1.
  • Example 38 The first rubber layer material was prepared in the same manner as in Example 23, except that tin oxide was changed to 50 parts by mass of carbon black (Toka Black # 7360SB: manufactured by Tokai Carbon Co., Ltd., volume average particle size: 28 nm).
  • the second rubber layer material was prepared in the same manner as in Example 17 except that silica was not added and the addition amount of carbon black was changed to 50 parts by mass.
  • the rotational speed of the screw part of the crosshead extruder is adjusted so that the thickness of the first rubber layer is 2.0 mm, and the thickness of the rubber sheet is adjusted so that the thickness of the second rubber layer is 1.5 mm. It was adjusted. Except for these, a charging roller 38 was produced in the same manner as in Example 23, and each measurement and evaluation was performed in the same manner as in Example 1.
  • Example 39 The number of rotations of the die and screw part of the crosshead extruder is adjusted so that the thickness of the first rubber layer is 1.1 mm, and the rubber sheet is adjusted so that the thickness of the second rubber layer is 1.4 mm. The thickness was adjusted so that the outer diameter of the elastic roller was 10.0 mm. Otherwise, a charging roller 39 was produced in the same manner as in Example 38, and each measurement and evaluation was performed in the same manner as in Example 1.
  • Example 40 Except that the number of rotations of the screw part of the crosshead extruder was adjusted so that the thickness of the first rubber layer was 1.5 mm and the thickness of the second rubber layer was 2.0 mm, the same as in Example 24. Then, the charging roller 40 was produced, and each measurement and evaluation was performed in the same manner as in Example 1.
  • the first rubber layer material was prepared by mixing the substances shown in Table 11.
  • a substrate prepared in the same manner as in Example 1 is set in a mold having a cylindrical cavity, the first rubber layer material is injected, heated in a hot air oven at 100 ° C. for 30 minutes, and the outer diameter becomes 11 mm.
  • covered the 1st rubber layer was produced.
  • the second rubber layer material prepared in the same manner as in Example 38 was molded into a sheet shape having a thickness of about 1 mm. Except for these, a second rubber layer was prepared in the same manner as in Example 23, a charging roller 41 was prepared, and each measurement and evaluation was performed in the same manner as in Example 1.
  • Example 42 The first rubber layer material was prepared in the same manner as in Example 23 except that the amount of tin oxide added was changed to 170 parts by mass.
  • the second rubber layer material was changed to butadiene rubber (BR) (JSRBR01: manufactured by JSR) instead of SBR, silica was not added, and the addition amount of carbon black was changed to 100 parts by mass as in Example 17. Prepared in the same manner.
  • BR butadiene rubber
  • Example 43 The first rubber layer material was prepared in the same manner as in Example 23, except that tin oxide was changed to 30 parts by mass of carbon black (Toka Black # 7360SB: Tokai Carbon Co., Ltd., volume average particle size: 28 nm).
  • the second rubber layer material was prepared in the same manner as in Example 42. Except for these, a charging roller 43 was produced in the same manner as in Example 41, and each measurement and evaluation was performed in the same manner as in Example 1.
  • Example 44 The first rubber layer material was not added with carbon black, and the second rubber layer material was replaced with carbon black except that quaternary ammonium salt (Adekasizer LV70: manufactured by Asahi Denka Kogyo Co., Ltd.) was used in 2 parts by mass. Was prepared as in Example 7.
  • quaternary ammonium salt Adekasizer LV70: manufactured by Asahi Denka Kogyo Co., Ltd.
  • the outer diameter of the elastic roller is adjusted by adjusting the rotational speed of the screw portion of the crosshead extruder so that the thickness of the first rubber layer is 2.5 mm and the thickness of the second rubber layer is 1.0 mm. It was set to 12 mm. Except for these, a charging roller 44 was produced in the same manner as in Example 7, and each measurement and evaluation was performed in the same manner as in Example 1. The measurement and calculation results of Examples 2 to 44 are shown in Tables 12 and 13. Table 14 shows the results of image evaluation in Examples 2 to 44.
  • Example 1 For the first elastic layer, in the same manner as in Example 35, except that 5 parts by mass of carbon black (Thermax Flow Foam N990: manufactured by Canada, Canada, volume average particle size 270 nm) was added. The material was prepared.
  • the second rubber layer material was prepared in the same manner as in Example 9 except that the amount of carbon black added was changed to 48 parts by mass.
  • the rotational speed of the screw part of the crosshead extruder is adjusted so that the thickness of the first rubber layer is 1.0 mm and the thickness of the second rubber layer is 1.6 mm, and the outer diameter of the elastic roller is 10 2 mm. Except for these, a charging roller 45 was produced in the same manner as in Example 25, and each measurement and evaluation was performed in the same manner as in Example 1.
  • the first rubber layer material was prepared without adding carbon black, and the second rubber layer material was replaced with carbon black by using 2 parts by mass of quaternary ammonium salt (Adekasizer LV70: manufactured by Asahi Denka Kogyo Co., Ltd.). Except for this, it was prepared in the same manner as Comparative Example 1.
  • the rotational speed of the screw part of the crosshead extruder is adjusted so that the thickness of the first rubber layer is 1.5 mm and the thickness of the second rubber layer is 2.0 mm, and the outer diameter of the elastic roller is 12 0.0 mm. Except for these, the charging roller 46 was produced in the same manner as in Comparative Example 1, and each measurement and evaluation was performed in the same manner as in Example 1.
  • Example 4 It was prepared in the same manner as in Example 36 except that carbon black was not added to the first rubber layer material.
  • the second rubber layer material was prepared in the same manner as in Example 36 except that calcium carbonate was not added and the addition amount of carbon black was changed to 5 parts by mass.
  • the outer diameter of the elastic roller is adjusted by adjusting the number of rotations of the die and screw of the crosshead extruder so that the thickness of the first rubber layer is 1.8 mm and the thickness of the second rubber layer is 1.7 mm. was adjusted to 12.0 mm. Except for these, a charging roller 48 was produced in the same manner as in Example 36, and each measurement and evaluation was performed in the same manner as in Example 1.
  • the first rubber layer material was prepared in the same manner as in Comparative Example 1 except that calcium carbonate and carbon black were not added.
  • the second rubber layer material was prepared in the same manner as in Comparative Example 5 except that the amount of carbon black added was changed to 50 parts by mass. Adjust the rotational speed of the die and screw part of the crosshead extruder so that the thickness of the first rubber layer is 2.0 mm and the thickness of the second rubber layer is 3.5 mm. The thickness was adjusted to 16.0 mm. Except for these, a charging roller 50 was produced in the same manner as in Comparative Example 1, and each measurement and evaluation was performed in the same manner as in Example 1.
  • Comparative Example 7 The same material as the second rubber layer material of Comparative Example 2 was prepared as the first rubber layer material and the second rubber layer material. Further, the number of rotations of the die and screw part of the crosshead extruder is adjusted so that the thickness of the first rubber layer is 2.0 mm and the thickness of the second rubber layer is 1.5 mm, and the elastic roller The diameter was set to 12.0 mm. Except for these, a charging roller 51 was produced in the same manner as in Comparative Example 1, and each measurement and evaluation was performed in the same manner as in Example 1. The measurement results and evaluation results of Comparative Examples 1 to 7 are shown in Table 12 and Table 13. Table 15 shows the image evaluation results of Comparative Examples 1 to 7.
  • Photoconductor (Subject to be charged) 5 Charging roller (charging member) 6 Developing roller (developing device) 7 Transfer material 9 Fixing device 11 Laser (exposure device) 41, 51 Bases 42a, 52a First rubber layers 42b, 52b Second rubber layers 43, 53 Surface layer

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Laminated Bodies (AREA)

Abstract

 高周波数の交流電圧を印加した場合にも、振動が生じにくく、安定して感光体を帯電させることのできる帯電部材の提供。導電性の基体と、導電性の弾性層と、表面層とを有する帯電部材であって、該弾性層は、該基体側から第1ゴム層及び該第1ゴム層に積層される第2ゴム層を有し、該第1ゴム層の固有振動数をf1とし、該第2ゴム層の固有振動数をf2としたときの、固有振動数比(f2/f1)が、2.35以上、10.0以下である帯電部材。

Description

帯電部材、プロセスカートリッジ及び電子写真装置
 本発明は帯電部材、これを用いたプロセスカートリッジ及び電子写真装置に関する。
 電子写真装置において、ドラム形状の電子写真感光体(以降、「感光体」と略称する。)を安定的に帯電するために、感光体に接触配置した帯電部材に直流電圧に交流電圧を重畳して印加することが行われている。かかる帯電方式の課題の一つとして、感光体と帯電部材との共振により発生する振動音が挙げられる。
 このような課題に対して、印加する交流電圧の周波数によって共振が生じない固有振動数を有する帯電部材を使用することで振動音の発生を抑える方法が特許文献1に開示されている。ところで、近年、電子写真装置の高画質化および高速化の要請に伴って、帯電部材には、例えば、3000Hz程度の高周波数の交流電圧が印加されるようになってきている。
 また、感光体の高速回転に伴って、当該感光体を駆動するモータ自体が振動し、また、当該モータの駆動力を伝達するギア等も振動する。このような振動は、帯電音を生じさせるばかりでなく、感光体に接触して配置された帯電部材を振動させ、感光体を所定の電位に安定して帯電させることが困難となり、その結果として、電子写真画像の品位を低下させてしまうことがある。このような状況の下、本発明者らは、帯電部材の振動をより確実に低減させるための技術の開発が必要であるとの認識を持つに至った。
特開2004-279578号公報
「今日からモノ知りシリーズ トコトンやさしい振動・騒音の本」山田伸志著、初版、日刊工業新聞社、2007年3月25日、p.24-25 「新版 防振ゴム」戸原春彦、外10名共著、新版、社団法人日本鉄道車両工業会、平成10年10月30日、p.97-99
 そこで、本発明は、高周波数の交流電圧を印加した場合にも、振動が生じにくく、安定して感光体を帯電させることのできる帯電部材の提供することを課題とする。
 また、本発明は、高品位な電子写真画像を安定して形成することのできるプロセスカートリッジおよび電子写真装置の提供することを課題とする。
 本発明の一の態様によれば、導電性の基体と、導電性の弾性層と、表面層とを有する帯電部材であって、該弾性層は、該基体側から第1ゴム層及び該第1ゴム層に積層される第2ゴム層を有し、該第1ゴム層の固有振動数をf1とし、該第2ゴム層の固有振動数をf2としたときの、固有振動数比(f2/f1)が、2.35以上、10.0以下である帯電部材が提供される。
 また、本発明の他の態様によれば、上記の帯電部材と、感光体とが一体化され、電子写真装置本体に着脱可能に構成されているプロセスカートリッジが提供される。
 本発明のさらに他の態様によれば、上記の帯電部材と、感光体とを有している電子写真装置が提供される。
 本発明によれば、高い周波数の交流電圧を印加した場合であっても振動が生じにくく、感光体を安定して帯電させることのできる帯電部材を得ることができる。
 また、本発明によれば、高品位な電子写真画像の提供に資するプロセスカートリッジを得ることができる。更に、本発明によれば、高品位な電子写真画像を形成することのできる電子写真装置を得ることができる。
本発明に係る帯電部材の一例を示す側面図である。 本発明に係る帯電部材の一の例を示す側面図である。 本発明に係る帯電部材の弾性率の測定方法の説明図である。 本発明に係る帯電部材の弾性率の測定方法の説明図である。 本発明に係る帯電部材の電気抵抗の測定方法の説明図である。 本発明に係る帯電部材の電気抵抗の測定方法の説明図である。 本発明に係る電子写真装置の一例を示す概略構成図である。 本発明に係るプロセスカートリッジの一例を示す概略構成図である。 本発明に係る帯電部材の製造装置の一例を示す概略構成図である。 帯電部材の弾性層の比重の測定方法の説明図である。 帯電部材の弾性層の比重の測定方法の説明図である。 帯電部材の耐久性の評価方法の説明図である。 帯電部材に生じる振動の測定方法の説明図である。
 本発明者らは、上記の課題に対して帯電部材に振動吸収能を担持させるべく、種々の振動吸収に関わる技術について検討を行った。
 非特許文献1の第25頁には、振動伝達率と周波数比(強制振動振動数/固有振動数)との関係を示したグラフが記載されている。そして、このグラフから、周波数比1のときには共振によって振動が最大となること、および周波数比が√2以上では振動伝達率が漸次減少していくことが分かる。また、同グラフには、周波数比が約2.4~3のときには振動伝達率が0.5以下となり、このような周波数比の領域が防振の領域であることが記載されている。また、非特許文献2の第97頁、図7.2には、上記非特許文献1の第25頁に記載のグラフと同旨のグラフが記載されている。
 上記非特許文献1、2から分かるように、ばね等を用いた振動吸収においては、周波数比を少なくとも√2より大きくすることが必要であり、とくには、3以上とすることが好ましいことが知られている。
 そこで、本発明者らは、図1に示すような、軸芯体101に第1ゴム層103及び第2ゴム層105からなるゴム層が設けた帯電ローラをモデルとして取り上げた。そして、帯電ローラの表面側の第2ゴム層105を振動源、軸芯体101側の第1ゴム層103を防振ゴムと見做し、帯電ローラ101の外部から第2ゴム層105に伝えられた振動を、第1ゴム層103によって減衰させ、軸芯体101への当該振動の伝達を抑制するために第1ゴム層103に要求される周波数比を求めた。
 すなわち、非特許文献2の第98頁には式(7.6)として、振動伝達率と振動数比(ω/ω)および減衰比率(C/Cc)との関係を示した下記式(1)が記載されている。 
Figure JPOXMLDOC01-appb-M000001
 そこで、上記式(1)を用いて振動伝達率が0.5となる振動数比を計算した。ここで、減衰比率(C/Cc)には0.5を代入した。その理由は、帯電部材の弾性層には主にゴムが用いられ、ゴムは通常0.2~0.3の減衰比率を示すからである。つまり、非特許文献1、2のグラフに示されているように、振動数比が√2より大きい領域においては、減衰比率が大きいほど振動伝達率が大きくなる。よって、上記式(1)の減衰比率(C/Cc)の項に0.5を代入して求められる振動数比(ω/ω)の値は、第2ゴム層との関係において第1ゴム層を十分に防振ゴムとして機能させるものとなると考えられる。計算の結果、第1ゴム層が有するべき固有振動数は、第2ゴム層の固有振動数の2.35以上となる。
 次いで、本発明者らは、第1ゴム層の固有振動数を、第2ゴム層の固有振動数の2.35以上とするべく、第1ゴム層および第2ゴム層の材質について検討を行った。その結果、第1ゴム層および第2ゴム層の各々のゴム材料と当該ゴム材料中に含有させる充填剤とを選択することにより、第1ゴム層及び第2ゴム層の固有振動数が上記の関係を有するように調整できることを見出した。本発明は、かかる検討の結果に基づきなされたものである。
 以下に、本発明に係る帯電部材について詳述する。
 本発明に係る帯電ローラ200は、図2に示したように、導電性の軸芯体201と、導電性の弾性層203とを有する。弾性層203は、軸芯体201側から順に第1ゴム層203-1と、第1ゴム層203-1上に積層されている第2ゴム層203-2とを有する。そして、第1ゴム層203-1は、その固有振動数(以降、「f」とも記す)が第2ゴム層203-2の固有振動数(以降、「f」とも記す)の2.35以上、10.0以下である。
 ここで、第1ゴム層および第2ゴム層の固有振動数比(以降、「f/f」とも記す)の下限値を2.35とすることの技術的意義は、先に述べた通り、第1ゴム層に優れた防振機能を担持させ、帯電部材に対して外部から加わる振動が軸芯体に伝わることを抑制することである。
 一方、上限値を10.0とした理由は、本発明者らの実験の結果、帯電部材のゴム層として実用に耐え得る材料組成の中で、固有振動数比を10.0より大きくすることのできる材料組成が見出せなかったことによる。
[軸芯体]
 導電性の基体201は、感光体などの被帯電体に所望の電荷を付与する電源を弾性層へ供給する電極として機能し、また、その上に設けられる弾性層203を支持する機能をも有する。材質としては、例えば、鉄、銅、ステンレス、アルミニウム、ニッケル等の金属やその合金を挙げることができる。
[弾性層]
 弾性層203は、基体側から順に第1ゴム層203-1と、第1ゴム層に接して設けられてなる第2ゴム層203-2との2層を有する。そして、第1ゴム層の固有振動数f1に対する第2ゴム層の固有振動数f2の固有振動数比(f2/f1)は、2.35以上、10.0以下である。より好ましくは、3.0以上、8.0以下である。
 そして、第1ゴム層の固有振動数fおよび第2ゴム層の固有振動数fの各々は、上記の固有振動数比を満たすことを前提として下記の数値範囲内であることが好ましい。
1:100Hz以上、600Hz以下、特には、150Hz以上、300Hz以下。f2:400Hz以上、1400Hz以下、特には、500Hz以上、1200Hz以下。
 上記の固有振動数は、ばねの固有振動数を求める下記式(2)を適用して、弾性層の弾性率から求めた値を採用することができる。式(2)中、f0は一端を固定したばねの固有振動数、Kはばね定数[N/m]、Mは他端につけた錘の質量[kg]を示す。
Figure JPOXMLDOC01-appb-M000002
 弾性層のある点に着目すると、式(2)中のMは、単位面積当たりの質量で置き換えることができる。従って、ゴム層の固有振動数は、式(2)中のKに、ゴム層を構成しているゴムの弾性率k、Mにゴム層の単位面積当りの質量、即ち、層厚tと比重σの積を挿入して算出される値fとして、式(3)から求めることができる。ここで、層厚tの単位はmm、比重σの単位は、g/cm、弾性率kの単位は、Paである。
Figure JPOXMLDOC01-appb-M000003
 f2/f1の値を2.35以上、10.0以下とするためには、上記式(3)から、各ゴム層の弾性率、比重および厚さを調整する。具体的には、第2ゴム層について、弾性率を第1ゴム層の弾性率より大きくし、比重と層厚との積を第1ゴム層よりも小さくする。これによって、本発明に係る固有振動数比を満たす弾性層を形成し得る。
 次に、f2/f1が上記の数値範囲を満たすような第1ゴム層および第2ゴム層の製造方法について述べる。
<ゴムの選択>
 第1ゴム層及び第2ゴム層の主たる構成材料であるゴムとしては、天然ゴムやこれを加硫処理したもの、合成ゴム等のエラストマーを用いることができる。具体的には、以下のものを例示することができる。合成ゴムとしては、エチレンプロピレンゴム、スチレンブタジエンゴム(SBR)、シリコーンゴム、ウレタンゴム、イソプレンゴム(IR)、ブチルゴム、アクリロニトリルブタジエンゴム(NBR)。クロロプレンゴム(CR)、アクリルゴム、エピクロルヒドリンゴム及びフッ素ゴム等。これらは単独で、又は、2種以上を組み合わせて用いることもできる。
 そして、f2/f1を調整するためには、第1ゴム層に、第2ゴム層よりも比重の大きいゴムを含有させることが好ましい。以下に、第1ゴム層及び第2ゴム層に含有させることが好ましいゴム材料を挙げる。
第1ゴム層;
 エピクロルヒドリンゴム、ウレタンゴム及びフッ素ゴムからなる群から選択される1つまたは2つ以上のゴム。
 第1ゴム層に含有させることが好ましいエピクロルヒドリンゴムの具体例としては以下のものを挙げることができる。
 エピクロルヒドリン単独重合体、エピクロルヒドリン-エチレンオキサイド共重合体、エピクロルヒドリン-アリルグリシジルエーテル共重合体及びエピクロルヒドリン-エチレンオキサイド-アリルグリシジルエーテル三元共重合体。
 これらのうち、エピクロルヒドリン-エチレンオキサイド-アリルグリシジルエーテル三元共重合体は、安定した中抵抗領域の導電性を示し、重合度や組成比を任意に調整することにより、導電性や加工性の制御が容易であることから好ましい。
第2ゴム層;
 アクリロニトリルブタジエンゴム、スチレンブタジエンゴム、エチレンプロピレンゴム及びブタジエンゴムからなる群から選択される1つまたは2つ以上のゴム。
<フィラーの選択>
 ゴム層の比重および弾性率は、ゴム層に含有させるフィラーの種類および量を選択することによって調整することができる。
 一般にフィラーの含有量を増やすほどゴム層中のゴムの補強効果が高まるため、ゴム層の弾性率は上昇する。また、フィラーとしてゴムの補強効果の高いものを用いることによってもゴム層の弾性率は上昇する。
 一方、フィラーの体積平均粒径が大きいほど、ゴム層の弾性率は低下する。
従って、フィラーを用いて、f2/f1の値を大きくする方向に調整する具体的な方法としては下記(1)~(3)の方法が挙げられる。
 (1)第2ゴム層中のフィラーの含有量を第1ゴム層中のフィラー含有量よりも多くすること。より好ましくは、第1ゴム層にはフィラーを含有させず、第2ゴム層にのみフィラーを含有させること。
 具体的には、例えば、第1及び第2ゴム層の両方に、体積平均粒径の等しいカーボンブラックやシリカをフィラーとして含有させる場合においては、第2ゴム層中のフィラー量を、第1ゴム層中のフィラー量に対して質量基準で9~100倍とすることが挙げられる。
 各ゴム層に含有させることのできるフィラーとしては、無機化合物の粒子や、有機化合物の粒子が挙げられる。
 無機化合物の粒子の材料の具体例を以下に挙げる。酸化亜鉛、酸化錫、酸化インジウム、酸化チタン(二酸化チタン、一酸化チタン等)、酸化鉄、シリカ、アルミナ、酸化マグネシウム、酸化ジルコニウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸バリウム。ジルコン酸カルシウム、硫酸バリウム、二硫化モリブデン、炭酸カルシウム、炭酸マグネシウム、ドロマイト、タルク、カオリンクレー、マイカ、水酸化アルミニウム、水酸化マグネシウム。ゼオライト、ウオラストナイト、珪藻土、ガラスビーズ、ベントナイト、モンモリナイト、中空ガラス球、有機金属化合物や、有機金属塩。フェライト、マグネタイト、ヘマタイト等の酸化鉄類や活性炭。
 有機化合物の粒子を構成する材料の具体例を以下に挙げる。ポリアミド、シリコーン樹脂、フッ素樹脂、(メタ)アクリル樹脂、スチレン樹脂、フェノール樹脂、ポリエステル樹脂、メラミン樹脂、ウレタン樹脂、オレフィン樹脂、エポキシ樹脂、これらの共重合体や変性物、誘導体等の樹脂。エチレン-プロピレン-ジエン共重合体(EPDM)、スチレン-ブタジエン共重合ゴム(SBR)、シリコーンゴム、ウレタンゴム、イソプレンゴム(IR)、ブチルゴム、クロロプレンゴム(CR)。
 (2)第2ゴム層中に含有させるフィラーとして、第1ゴム層中に含有させるフィラーよりもゴムの補強効果が高いフィラーを用いること。
 この場合において、ゴムの補強効果が高いフィラーとしては、後述するカーボンブラックやシリカが挙げられる。一方、ゴムの補強効果がカーボンブラックやシリカと比較して相対的に低いフィラーとしては、炭酸カルシウム、炭酸マグネシウム、酸化亜鉛、酸化錫、酸化マグネシウム等が挙げられる。
 (3)第2ゴム層中の含有させるフィラーの体積平均粒径を、第1ゴム層中に含有させるフィラーのそれよりも小さくすること。
 具体的には、例えば、第1及び第2ゴム層の両方に、フィラーとしてカーボンブラックを用いる場合においては、第1ゴム層に含有させるカーボンブラックの体積平均粒径を100~900nmとし、第2ゴム層に含有させるカーボンブラックの体積平均粒径を10~50nmとすることで第1及び第2のゴム層に、フィラーに由来する有意な弾性率の相対的な差を持たせることが可能である。
 ところで、弾性層へのフィラーの添加は、上記したように、弾性層の弾性率を上昇させる方向に作用する。すなわち、f2/f1の値を大きくすることを目的として、第1ゴム層にフィラーを含有させることによって第1ゴム層の比重を第2ゴム層の比重よりも大きくしようとすると、第1ゴム層の弾性率が増加し、上記の目的の達成に不利に作用することとなる。従って、第1ゴム層の比重の調整は、主には、第1ゴム層に含有させるゴム種の適切な選択によって行うことが好ましい。より好ましくは、第1ゴム層にはフィラーを含有させないことが理想的である。
 一方、第2ゴム層の比重および弾性率の調整は、ゴム材料の選択、フィラー種の選択および添加量の調整によって行うことが好ましい。
 ここで、第2ゴム層に含有させるフィラーとしては、比重の小さいフィラーを用いることがf2/f1の値を大きくする上では好ましい。比重の大きなフィラーの使用は、第2ゴム層の弾性率を上昇させる方向には作用するものの、f2の値を小さくする方向に作用してしまう。従って、第2ゴム層の弾性率を調整するフィラーとしては、比重の小さなフィラーを用いることが好ましい。
 このようなフィラーの具体例としては、カーボンブラックやシリカが挙げられる。これらのフィラーは、ゴムを補強する効果が高いため、弾性層の弾性率を飛躍的に上昇させることが可能であり、かつ、比重が2近辺と小さな値を有するため、f2をより大きくする方向に調整することが可能である。
 カーボンブラックとしては、ブラックファーネスブラック、サーマルブラック、アセチレンブラック、ケッチェンブラックを例示することができる。ファーネスブラックとしては以下のものを例示することができる。SAF-HS、SAF、ISAF-HS、ISAF、ISAF-LS、I-ISAF-HS、HAF-HS、HAF、HAF-LS、T-HS、T-NS、MAF、FEF、GPF、SRF-HS-HM、SRF-LM、ECF、FEF-HS。サーマルブラックとしては、FT、MTを例示することができる。
 シリカとしては、四塩化ケイ素を酸素と水素で燃焼して作られる気相法による乾式シリカ、ケイ酸ナトリウムと硫酸等の鉱酸から作られるシリカを微粉砕化、球状処理化した湿式シリカ、コロイダルシリカ、合成ケイ酸塩を用いることができる。
<ゴム層の厚さ>
 第1および第2ゴム層の弾性率に関して、上記のf2/f1の関係を満たすことを前提として、各々以下のような数値範囲内にあることが好ましい。
第1ゴム層:3MPa以上、35MPa以下、特には、3MPa以上、7MPa以下。
第2ゴム層:8MPa以上、55MPa以下、特には、14MPa以上、48MPa以下。
 また、第1および第2ゴム層の弾性率が上記の範囲内にあることを前提として、第2ゴム層の具体的な厚さとしては、200μm以上、1500μm以下、特には、300μm以上、1200μm以下の範囲内とすることが更に好ましい。
 弾性率が相対的に大きな第2ゴム層の厚みを上記範囲内とすることで、帯電部材と感光体との間に形成されるニップ幅を大きくし得る。そして、第1ゴム層の厚さは、第2ゴム層の厚さの0.75倍以上、14.3倍以下、特には、より好ましくは、1.00倍以上、6.67倍以下とすることが好ましい。
 第1および第2ゴム層には、上記のf2/f1の関係を維持することを前提として、上記物質の機能を阻害しない範囲で、硬度を調整する軟化油、可塑剤、その他種々の機能を付与する、老化防止剤、充填剤等の添加剤を含有していてもよい。
 例えば、第1及び第2ゴム層に、導電性を付与する導電剤を含有させることができる。導電剤としては、イオン導電剤、電子導電剤の何れも使用することができる。ここで、電子導電剤の添加は、弾性層の固有振動数に影響を与える可能性があるため、導電性の調整には、イオン導電剤を用いることが好ましい。
 イオン導電剤としては、環境変化に対して抵抗が安定なことから過塩素酸4級アンモニウム塩が好適であり、特に、弾性層のバインダーに極性ゴムを使用する場合は、アンモニウム塩を用いることが好ましい。
 各ゴム層の体積抵抗率としては、温度23℃/湿度50%RH環境下で102Ω・cm以上108Ω・cm以下とすることが好ましい。各ゴム層の体積抵抗率は、弾性層に使用するすべての材料を厚さ1mmのシートに成型し、両面に金属を蒸着して電極とガード電極を形成して調製した体積抵抗率測定試料を用いて後述する表面層の体積抵抗率測定方法と同様に測定することができる。
 第1及び第2ゴム層の硬度としては、マイクロ硬度(MD-1型)で70°以下、特には、60°以下とすることが好ましい。なぜなら、帯電部材と感光体との間のニップ幅を確保し、帯電部材を感光体に対して安定に従動回転させることができる。なお、マイクロ硬度(MD-1硬度)は、マイクロゴム硬度計(商品名:MD-1 capa、高分子計器株式会社製)を用い、常温常湿(温度23℃/湿度55%RH)の環境中に12時間以上放置した後、10Nのピークホールドモードで測定した測定値を採用できる。
 本発明に係る弾性層の形成方法としては、バインダーゴム、導電剤、フィラー等を混練して得られた弾性層用材料を押出成形、射出成形する方法を挙げることができる。具体的には、第1ゴム層用材料と第2ゴム層用材料を調製し、押出成形機によりこれらの材料と共に、基体を同時一体的に押出成形し、加硫する方法が挙げられる。複数層を同時一体的に押出成形することにより工数の簡素化が可能になる。
 他の方法として、基体上に未加硫の第1ゴム層を成形したローラを調製し、別途、第2ゴム層用材料を未加硫のチューブ又はシートに成形し、このチューブ又はシートで被覆した未加硫の第1ゴム層を成形したローラを金型内で加硫する方法が挙げられる。
 更に、他の方法として、未加硫の第1ゴム層を成形、加硫したローラを作製し、別途、第2ゴム層用材料をチューブ状に成形し、加硫まで終了させてチューブ形状の第2ゴム層を形成する。その後、チューブ形状の第2ゴム層内に空気を流しつつ、第1ゴム層を有するローラを挿入する方法を例示できる。
 得られた弾性層は必要に応じて研磨加工や、表面処理を行うことができる。研磨加工は、トラバース方式のNC円筒研磨機、プランジカット方式のNC円筒研磨機を用いて行うことができ、クラウン形状等に形成することができる。表面処理としては、UVや電子線を用いた処理や、化合物を表面に付着、又は含浸させて行う表面改質処理を挙げることができる。
[表面層]
 本発明に係る帯電部材は、第2ゴム層の外側に、帯電部材の表面への汚れの付着を抑制するために、厚さが1~50μm程度の表面層を別途設けてもよい。
 帯電部材は、電気抵抗が、温度23℃/湿度50%RH環境中において、1×103Ω以上、1×1010Ω以下であることが、感光体の帯電を良好に行うことができることから好ましい。
 また、上記帯電部材は、表面の十点平均粗さRzjis(μm)が2≦Rzjis≦100であり、表面の凹凸平均間隔Sm(μm)が15≦Sm≦200であることがより好ましい。表面の十点平均粗さRzjisと、表面の凹凸平均間隔Smの測定法について下記に示す。
 JIS B 0601-1994表面粗さの規格に準じて測定し、表面粗さ測定器「SE-3500」(商品名、株式会社小坂研究所製)を用いて行う。Rzは、帯電部材を無作為に6箇所測定し、その平均値として求めることができる。また、Smは、帯電部材を無作為に6箇所選び、各箇所において10点の凹凸間隔を測定しその平均を求め、6箇所の平均値の平均値として算出することができる。測定条件は以下の通りである。
カットオフ値      0.8mm
フィルタ        ガウス
予備長さ        カットオフ×2
レベリング       直線(全域)
評価長さ       8mm
[電子写真装置]
 本発明の電子写真装置は、上記帯電部材と、感光体とを有しているものであればよく、その一例の概略構成を図5に示す。電子写真感光体4(以降、「感光体」ともいう)、上記帯電部材5を有する帯電装置が一体となったプロセスカートリッジ、感光体上に潜像を形成する潜像形成装置11、潜像をトナー像とする現像装置、トナー像を紙等の転写材7に転写する転写装置を有する。更に、トナー像を転写後の感光体に残留するトナーを回収するクリーニング装置、転写材上のトナー像を定着する定着装置9等から構成されている。クリーニング装置は、クリーニングブレ-ド10および廃トナー容器14とから構成されている。
 感光体4は、導電性基体上に感光層を有する回転ドラム型であり、矢示の方向に所定の周速度(プロセススピード)で回転駆動される。帯電ローラ5は、交流電源19から印加される電源により所定の電圧にされ、所定の押圧力で当接される感光体の回転に従い従動回転し、感光体を所定の電位に帯電する。潜像形成装置において、例えば、レーザー11を出力するレーザービームスキャナ等の露光装置(図示せず)により、一様に帯電された感光体に画像情報に対応した露光を行うことにより、感光体上に静電潜像が形成される。 
 感光体上の潜像は感光体に近接又は接触して配設される現像スリーブ又は現像ローラ6により、感光体と同極性のトナーが搬送され反転現像により、静電潜像が現像されトナー像が形成される。感光体上のトナー像は、転写装置において、転写ローラ8と感光体間に給紙システムにより搬送される普通紙等の転写材7に転写される。その後、定着装置9において、加熱ローラ等により転写材7上のトナー像が転写材に定着され、機外に排出され、出力画像を得る。
 一方、感光体上の残留トナーはクリーニング装置においてブレード型のクリーニング部材10によって、機械的に掻き落とされ回収容器に回収される。ここで、現像装置にて転写残トナーを回収する現像同時クリーニング方式を採用することにより、クリーニング装置を省くことも可能である。
[プロセスカートリッジ]
 本発明のプロセスカートリッジは、上記帯電部材と、感光体とが一体化され、電子写真装置本体に着脱可能に構成されているものであればよい。その一例として、図6に示すように、感光体4、帯電ローラ5を有する帯電装置、現像ローラ6とトナー供給ローラ15と現像ブレード13を備えた現像装置、クリーニングブレード10および廃トナー容器14により構成されてなるクリーニング装置等を一体化し、電子写真装置の本体に着脱可能に構成されているものを挙げることができる。
 以下に、本発明の帯電部材を具体的に詳細に説明する。
[製造例1]複合導電性微粒子の作製
 シリカ粒子(数平均粒径15nm、体積抵抗率1.8×1012Ω・cm)7.0kgに、メチルハイドロジェンポリシロキサン140gを、エッジランナーを稼動させながら添加し、588N/cm(60kg/cm)の線荷重で30分間混合攪拌を行った。このときの攪拌速度は22rpmであった。ここに、カーボンブラック粒子(数平均粒径20nm、体積抵抗率1.0×102Ω・cm、pH8.0)7.0kgを、エッジランナーを稼動させながら10分間かけて添加し、更に588N/cm(60kg/cm)の線荷重で60分間混合攪拌を行った。
 このようにしてメチルハイドロジェンポリシロキサンで被覆したシリカ粒子の表面にカーボンブラックを付着させた後、乾燥機を用いて温度80℃で60分間乾燥を行い、複合導電性微粒子を得た。このときの攪拌速度は22rpmであった。得られた複合導電性微粒子の数平均粒径が15nmであり、体積抵抗率は1.1×102Ω・cmであった。 
[製造例2]表面処理酸化チタン粒子の作製
 針状ルチル型酸化チタン粒子(数平均粒径15nm、縦:横=3:1、体積抵抗率2.3×1010Ω・cm)1000gに、表面処理剤としてイソブチルトリメトキシシラン110g及び溶媒としてトルエン3000gを配合してスラリーを調製した。このスラリーを、攪拌機で30分間混合した後、有効内容積の80%が数平均粒径0.8mmのガラスビーズで充填されたビスコミルに供給し、温度35±5℃で湿式解砕処理を行った。
 湿式解砕処理して得たスラリーを、ニーダーを用いて減圧蒸留(バス温度:110℃、製品温度:30~60℃、減圧度:約100Torr)によりトルエンを除去し、温度120℃で2時間表面処理剤の焼付け処理を行った。焼付け処理した粒子を室温まで冷却した後、ピンミルを用いて粉砕して、表面処理酸化チタン粒子を得た。
[実施例1]
[基体]
 直径6mm、長さ252.5mmのステンレス製基体に、カーボンブラックを10質量%含有させた熱硬化性接着剤を塗布、乾燥させた。
[第1ゴム層用材料]
 下記表1に記載の材料を、50℃に調節した密閉型ミキサーにて10分間混練して未加硫ゴム組成物を調製した。
Figure JPOXMLDOC01-appb-T000001
 次に、上記未加硫ゴム組成物178.5質量部に対して、加硫剤として硫黄1.2質量部、加硫促進剤としてジベンゾチアジルスルフィド(DM)1質量部及びテトラメチルチウラムモノスルフィド(TS)1質量部を添加し、温度20℃に冷却した二本ロール機にて10分間混練して、第1ゴム層用材料を得た。
[第2ゴム層用材料]
 下記表2に記載の材料を、温度50℃に調節した密閉型ミキサーにて15分間混練して未加硫ゴム組成物を得た。
Figure JPOXMLDOC01-appb-T000002
 次いで、上記未加硫ゴム組成物174質量部に対して、下記表3に記載の材料を加えて温度20℃に冷却した二本ロール機で15分間混練し、第2ゴム層用材料を得た。
[弾性ローラ]
 図7に示すクロスヘッド押出機を用い、上記基体と共に、第1ゴム層用材料及び第2ゴム層用材料を、基体を中心軸として、第1ゴム層、第2ゴム層の順になるように押出した。なお、図7において、36は基体としての芯金、37は芯金の送りローラ、40はクロスヘッド、38および39はクロスヘッドにゴムを導入する押し出し機であり、41は、周囲が第1ゴム層および第2ゴム層で被覆されてなる芯金を示す。
こうして、基体の外周に未加硫の第1ゴム層と第2ゴム層を積層したローラを作製した。押出外径は12.5mmに調整した。第1ゴム層の層厚が2.5mmに、第2ゴム層の層厚が1mmになるよう、クロスヘッド押出機スクリュー部の回転数を調整した。次いで、熱風炉にて、温度160℃で1時間加熱した後、ゴムの両端部を除去し、ゴム長さを224.2mmとした。更に、外径が12mmのローラ形状になるよう第2ゴム層の外周面を、プランジカット式の円筒研磨機を用いて研磨し、弾性ローラを得た。このローラのクラウン量(中央部と中央部から90mm離れた位置の外径の差)は120μmであった。
[表面層用塗布液]
 カプロラクトン変性アクリルポリオール溶液(商品名:プラクセルDC2016、ダイセル化学工業株式会社製)にメチルイソブチルケトンを加え、固形分17質量%となるように調整した。この溶液588.24質量部(アクリルポリオール固形分100質量部)に対して、下記表4に記載の材料を加え、混合溶液を調製した。
Figure JPOXMLDOC01-appb-T000004
*:上記ブロックイソシアネート混合物はヘキサメチレンジイソシアネート(HDI)とイソホロンジイソシアネート(IPDI)の各ブタノンオキシムブロック体の7:3混合物である。なお、HDIとしては、「デュラネートTPA-B80E」(商品名、旭化成工業株式会社製)を用い、IPDIとしては「ベスタナートB1370」(商品名、デグサ・ヒュルス社製)を用いた。また、当該ブロックイソシアネート混合物は、イソシアネート量としては「NCO/OH=1.0」となる量であった。
 内容積450mLのガラス瓶に上記混合溶液195.6gを、メディアとしての平均粒径0.8mmのガラスビーズ200gと共に入れ、ペイントシェーカー分散機を用いて28時間分散した。分散した後、体積平均粒径が10μmのポリメチルメタクリレート樹脂粒子2.55g(アクリルポリオール固形分100質量部に対して、10質量部相当量)を添加した。その後、5分間分散し、ガラスビーズを除去して表面層用塗布液を得た。
[帯電ローラ]
 上記表面層用塗布液を用いて、作製した弾性ローラに1回ディッピング塗布した。ディッピング塗布は、浸漬時間9秒、ディッピング塗布引き上げは、初期速度20mm/s、最終速度2mm/s、その間は時間に対して直線的に速度を変化させて行った。その後、常温で30分間以上風乾した後、熱風循環乾燥機にて温度80℃で1時間、更に温度160℃で1時間乾燥して、弾性層上に表面層を形成した帯電ローラ1を得た。
 帯電ローラ1について以下の方法により、第1ゴム層および第2ゴム層の弾性率、層厚、および比重を測定した。その結果を表10に示す。また、これらの測定結果を前記式(3)に代入して第1ゴム層および第2ゴム層の固有振動数を算出した。結果を表13に示す。
[弾性率]
 帯電ローラの表面層をプランジカット式円筒研磨機を用いて研削し、弾性層を表面に露出させ、表面硬度測定装置(商品名:フィッシャースコープH100V、フィッシャーインストルメンツ社製)を用いて、弾性率を測定した。この際、帯電ローラを23℃/50%RH環境に12時間以上放置後、測定を行った。測定位置は、帯電部材200の軸方向については、図3Aに示すように、弾性層203の軸方向中央部および弾性層の軸方向中央部と弾性層の軸方向両端部との中点との3ヶ所、周方向については、図3Bに示すように120°毎の3ヶ所の、合計9カ所とした。
 測定条件は、300mNの荷重で、測定子を1μm/10sの速度で押し込んで行った。また、表面に露出させた各弾性層の表面は、前述した十点平均表面粗さRzjis(μm)で6μm以下に調整した。
[層厚]
 帯電ローラの断面を、弾性率を測定した各位置において、鋭利な刃物で切り出し、光学顕微鏡や電子顕微鏡で観察し、半径、第2ゴム層の層厚、表面層の層厚を測定し、半径から、第2ゴム層と表面層の合計層厚を減じて第1ゴム層の層厚を求めた。図3A、3Bに示す9点の測定位置における平均値を算出した。
[比重]
 帯電ローラから各ゴム層を切断し、空中での重さと、水中での重さを測定して、比重を算出した。切り出した各ゴム層の断片を水中に完全に沈めるために、図8Aに示すように、試料42に金属の重りをつけた状態で空中の質量W(g)を測定した。次いで図8Bに示すように、そのままの状態で水中での質量Ww(g)を測定した。同様にして測定した金属の重りの空中の質量WOと水中の質量WwOを測定し、ゴム層の比重(SG)SG=(W-WO)/〔(W-WO)-(Ww-WwO)〕を算出した。WOとWwOとがほとんど同じであったので、WO=WwOとし、SG=(W-W0)/(W-Ww)として算出した。
[帯電ローラの振動の測定]
 図10に示すように、作製した帯電ローラ5を、その一端に4.9N、両端で合計9.8Nのバネによる押し圧力で電子写真感光体4に当接させ、電子写真感光体4を、45mm/secの速度で回転させた。電子写真感光体は、モノクロレーザープリンタ(商品名:LaserJet P4515n、日本ヒューレットパッカート社製)用のプロセスカートリッジに使用されているものを取り出して使用した。帯電ローラには、外部から、電圧を印加し、その条件は、交流電圧として、ピーク電圧(Vpp)を1800V、周波数(f)を2930Hz、直流電圧(Vdc)を-600Vとした。
 感光体の回転に従動して回転している帯電ローラの振動の大きさ(振幅)を、レーザードップラー振動計(商品名:LV-1710、株式会社小野測器社製)により測定した。測定位置は、帯電部材の長手中央、電子写真感光体との当接位置と逆の位置とした。振動を測定後、周波数解析したところ、5860Hzの振幅が最も大きかった。そこで、5860Hzの振動の大きさ(振幅)を表13に示す。
[画像評価]
 図6に示すプロセスカートリッジを使用した図5に示す電子写真装置として白黒レーザープリンタ(商品名:LaserJet P4515n、日本ヒューレットパッカート社製)を用意した。使用し、外部より、帯電ローラに電圧を印加した。AC+DC帯電方式を採用し、帯電部材に印加する電圧は、交流電圧として、ピーク電圧(Vpp)を1800V、周波数(f)を2930Hz、直流電圧(Vdc)を-600Vとした。画像の解像度を600dpiとして出力した。
 上記電子写真装置用のプロセスカートリッジを3個用意し、各々のプロセスカートリッジに評価用の帯電ローラを装着した。そして、図9に示したように、一端に4.9N、両端で合計9.8Nのバネによる押し圧力で帯電ローラ5を感光体4に当接させた。これらのプロセスカートリッジを各々、温度15℃/10%RH環境(環境1)、温度23℃/湿度50%RH環境(環境2)及び温度30℃/湿度80%RH環境(環境3)に24時間置き、各環境に順化させた後、各環境にて、電子写真画像の形成を行った。
 電子写真画像の形成は、感光体の回転方向と垂直方向に幅2ドット、間隔176ドットの横線画像を36千枚出力した。ここで、当該横線画像の18千枚出力後、24千枚出力後、30千枚出力後、および36千枚出力後にハーフトーン画像を1枚出力した。ハーフトーン画像とは、感光体の回転方向と垂直方向に幅1ドット、間隔2ドットの横線を形成する画像である。こうして得た4枚のハーフトーン画像(以降、ハーフトーン画像No.1~4)を目視にて観察し、下記の評価1及び評価2を行った。評価1および評価2は、下記表5に記載の基準に基づき行った。
評価1:帯電不良に起因する画像欠陥の有無とその程度の評価。
評価2:感光体の表面に生じた傷に起因する画像欠陥の有無とその程度の評価。
なお、電子写真画像の形成工程における帯電ローラの振動は、帯電ローラの表面へのトナー等の固着を促進し、トナー等が表面に固着した帯電ローラは帯電不良を引き起こすことがある。また、電子写真画像の形成工程における帯電ローラの振動は、感光体の表面に傷を生じさせることがある。本画像評価は、帯電ローラの振動抑制効果と、電子写真画像の品位との相関関係を見るためのものである。
帯電不良に起因する画像欠陥の代表例としては、ドットや横スジが挙げられる。一方、感光体に生じた傷に起因する画像欠陥の例としては、縦スジが挙げられる。
また、上記電子写真装置による電子写真画像の形成は間欠出力モードにて行った。間欠出力モードとは、電子写真画像を2枚出力した後、感光体の回転を3秒かけて停止させるというサイクルを繰り返すモードである。得られた4枚のポチ状画像、横スジ状画像、ガサツキ画像及び縦スジ状画像について以下の基準により行った。結果を表14に示す。
Figure JPOXMLDOC01-appb-T000005
[電気抵抗の測定]
上記の画像評価において、上記「環境2」での電子写真画像の形成に用いた帯電ローラについて、電気抵抗を算出し、電子写真画像の形成に供する前の電気抵抗に対する電気抵抗の変化を評価した。
電子写真画像の形成過程において帯電ローラが振動した場合、弾性層に含有されてなる電子導電剤またはイオン導電剤が当該振動によって弾性層内を徐々に移動し、弾性層の電気抵抗が変化する。この評価は、帯電ローラの振動抑制効果と帯電ローラの電気抵抗の経時変化との相関関係を見るために行ったものである。
電気抵抗は以下の方法により求めた。図4A、4Bに示すように、基体1の両端を、荷重のかかった軸受け33により感光体と同じ曲率の円柱形金属32に、平行になるように支持し(a)、円柱形金属32に当接させる(b)。この状態で、モータ(不図示)により円柱形金属32を回転させ、当接した帯電ローラ5を従動回転させながら安定化電源34から直流電圧-200Vを印加する。このとき軸受けの荷重は各4.9Nとし、金属製円柱は直径30mm、金属製円柱の回転は周速45mm/secとし、電流計35に流れる電流を測定し、帯電ローラの抵抗を算出する。
なお、画像評価に供する前の帯電ローラの電流測定、及び、画像評価に供した後の帯電ローラについての電流測定は、いずれの帯電ローラも、上記「環境2」に24時間置き、当該環境に順化させた後に行った。
上記「環境2」は、帯電ローラに対するトナー等の固着、及び、感光体に生じる傷が最も発生しにくい環境である。そのため、電子写真画像の形成による帯電ローラの弾性層の導電性の変化に起因する電気抵抗の変動を評価する上では、上記「環境2」が、最も適切な環境であると考えられるため、評価対象の帯電ローラとしては、上記「環境2」の下で電子写真画像の形成に用いた帯電ローラを採用した。
結果を表13に示す。
[実施例2]
 第1ゴム層の層厚が2.1mmに、第2ゴム層の層厚が1.4mmになるよう、クロスヘッド押出機のスクリュー部の回転数を調整した以外は、実施例1と同様にして、弾性ローラを作製した。表面層用塗布液を、製造例1の複合導電性微粒子と製造例2の表面処理酸化チタン粒子に変えて、カーボンブラック(#52:三菱化学社製)30質量部を用い、分散機を用いた分散時間を36時間に変更した他は、実施例1と同様にして調製した。その後、実施例1と同様にして帯電ローラ2を調製し、電気抵抗、層厚、弾性率、比重を測定し、固有振動数を算出し、耐久試験について評価を行った。
[実施例3]
 第1ゴム層用材料において、カーボンブラックを添加せず、第2ゴム層用材料において、カーボンブラックの添加量を100質量部に変更した他は実施例2と同様にして、材料を調製した。第1ゴム層の層厚が2.4mmに、第2ゴム層の層厚が1.1mmになるよう、クロスヘッド押出機のスクリュー部の回転数を調整した以外は、実施例2と同様にして帯電ローラ3を作製し、各測定及び評価を実施例1と同様に行った。
[実施例4]
 第1ゴム層の層厚が1.0mmに、第2ゴム層の層厚が1.25mmになるよう、クロスヘッド押出機のダイスとスクリュー部の回転数を調整し、外径が9.5mmになるように研磨した。それら以外は実施例3と同様にして帯電ローラ4を作製し、各測定及び評価を実施例1と同様に行った。
[実施例5]
 第1ゴム層の層厚が2.75mmに、第2ゴム層の層厚が0.75mmになるよう、クロスヘッド押出機のスクリュー部の回転数を調整した。それ以外は実施例2と同様にして帯電ローラ5を作製し、各測定及び評価を実施例1と同様に行った。
[実施例6]
 第1ゴム層の層厚が2.6mmに、第2ゴム層の層厚が0.9mmになるよう、クロスヘッド押出機のスクリュー部の回転数を調整した。それ以外は実施例2と同様にして帯電ローラ6を作製し、各測定及び評価を実施例1と同様に行った。
[実施例7]
 第2ゴム層用材料を以下のようにして調製した。アクリロニトリルブタジエンゴム(NBR)(DN219:日本ゼオン社製)100質量部に対して、表6に示す成分を加えて、温度50℃に調節した密閉型ミキサーにて15分間混練した。
Figure JPOXMLDOC01-appb-T000006
 次いで、加硫剤として硫黄1.2質量部、加硫促進剤としてジベンゾチアジルスルフィド(DM)1質量部及びテトラメチルチウラムモノスルフィド(TS)1質量部を添加し、温度20℃に冷却した二本ロール機にて10分間混練して、第2ゴム層用材料を準備した。得られた第2ゴム層用材料を用い、第1ゴム層の層厚が2.4mmに、第2ゴム層の層厚が1.1mmになるよう、クロスヘッド押出機のスクリュー部の回転数を調整した。これら以外は実施例2と同様にして帯電ローラ7を調製し、各測定及び評価を実施例1と同様に行った。
[実施例8]
 第2ゴム層用材料において、カーボンブラックの添加量を45質量部に変更して材料を調製した。第1ゴム層の層厚が2.3mmに、第2ゴム層の層厚が1.2mmになるよう、クロスヘッド押出機のスクリュー部の回転数を調整した。これら以外は実施例7と同様に帯電ローラ8を作製し、各測定及び評価を実施例1と同様に行った。
[実施例9]
 第2ゴム層用材料において、カーボンブラックの添加量を95質量部に変更して材料を調製し、第1ゴム層の層厚が1.5mmに、第2ゴム層の層厚が1.0mmになるよう、クロスヘッド押出機のスクリュー部の回転数を調整した。これら以外は、実施例7と同様にして帯電ローラ9を作製し、各測定及び評価を同様に行った。
[実施例10]
 第1ゴム層用材料において、カーボンブラックの添加量を5質量部に変更して材料を調製した。第2ゴム層用材料において、カーボンブラックの添加量を80質量部に変更し、更にシリカ(R972:日本アエロジル社製、平均粒径16nm)を20質量部を添加して材料を調製した。第1ゴム層の層厚が2.0mmに、第2ゴム層の層厚が1.5mmになるよう、クロスヘッド押出機のスクリュー部の回転数を調整した。これら以外は実施例7と同様にして帯電ローラ10を作製し、各測定及び評価を実施例1と同様に行った。
[実施例11]
 第1ゴム層用材料において、カーボンブラックの添加量を1質量部に変更して材料を調製した。第2ゴム層用材料において、カーボンブラックの添加量を50質量部に変更し、シリカ(R972:日本アエロジル社製、平均粒径16nm)を50質量部添加して材料を調製した。第1ゴム層の層厚が1.8mmに、第2ゴム層の層厚が1.7mmになるよう、クロスヘッド押出機のスクリュー部の回転数を調整した。これら以外は実施例7と同様にして帯電ローラ11を調製し、各測定及び評価を実施例1と同様に行った。
[実施例12]
 第2ゴム層用材料において、アクリロニトリルブタジエンゴム(NBR)の添加量を50質量部に変更し、スチレンブタジエンゴム(SBR)(JSR1500:JSR社製)50質量部を加えた。カーボンブラックをトーカブラック#5500(東海カーボン社製、数平均粒径25nm)50質量部に変更して材料を調製した。第1ゴム層の層厚が1.8mmに、第2ゴム層の層厚が1.7mmになるよう、クロスヘッド押出機のスクリュー部の回転数を調整した。これら以外は、実施例2と同様にして帯電ローラ12を調製し、各測定及び評価を同様に行った。
[実施例13]
 第2ゴム層用材料において、アクリロニトリルブタジエンゴム(NBR)の添加量を70質量部に変更し、スチレンブタジエンゴム(SBR)の添加量を30質量部に変更し、カーボンブラックを添加しなかった。これら以外は実施例12と同様にして、第2ゴム層用材料を調製し、帯電ローラ13を作製し、各測定及び評価を実施例1と同様に行った。 
[実施例14]
 第2ゴム層用材料において、アクリロニトリルブタジエンゴム(NBR)JSR230SV(JSR社製)50質量部をDN219(日本ゼオン社製)30質量部に変更し、SBRの添加量を70質量部に変更した。これら以外は実施例12と同様にして第2ゴム層用材料を調製した。第1ゴム層の層厚が2.0mmに、第2ゴム層の層厚が1.5mmになるよう、クロスヘッド押出機のスクリュー部の回転数を調整した。これら以外は実施例12と同様にして帯電ローラ14を作製し、各測定及び評価を実施例1と同様に行った。 
[実施例15]
 第1ゴム層の層厚が2.8mmに、第2ゴム層の層厚が1.2mmになるよう、クロスヘッド押出機のスクリュー部の回転数を調整した。それ以外は実施例2と同様にして帯電ローラ15を作製し、各測定及び評価を実施例1と同様に行った。
[実施例16]
 第1ゴム層の層厚が1.8mmに、第2ゴム層の層厚が1.7mmになるよう、クロスヘッド押出機のスクリュー部の回転数を調整した。それ以外は実施例2と同様にして帯電ローラ16を作製し、各測定及び評価を実施例1と同様に行った。
[実施例17]
 第2ゴム層用材料を以下のようにして調製した。スチレンブタジエンゴム(SBR)(商品名:JSR1500、JSR社製)100質量部に対して、表7に示す成分を加えて、温度50℃に調節した密閉型ミキサーにて15分間混練した。
Figure JPOXMLDOC01-appb-T000007
 次いで、架橋剤として硫黄1.2質量部、加硫促進剤としてテトラベンジルチウラムジスルフィド4.5質量部を添加し、20℃に冷却した二本ロール機にて15分間混練して、第2ゴム層用材料を得た。得られた第2ゴム層用材料を用い、第1ゴム層の層厚が1.5mmに、第2ゴム層の層厚が2.0mmになるよう、クロスヘッド押出機スクリュー部の回転数を調整した。これら以外は実施例3と同様にして帯電ローラ17を作製し、各測定及び評価を実施例1と同様に行った。
[実施例18]
 第1ゴム層用材料において、炭酸カルシウムの添加量を30質量部に変更し、第2ゴム層用材料において、カーボンブラックの添加量を40質量部、シリカの添加量を80質量部に変更して材料を調製した。第1ゴム層の層厚が1.6mmに、第2ゴム層の層厚が1.9mmになるよう、クロスヘッド押出機のスクリュー部の回転数を調整した。これら以外は実施例17と同様にして帯電ローラ18を作製し、各測定及び評価を実施例1と同様に行った。
[実施例19]
 第1ゴム層用材料において、炭酸カルシウムの添加量を30質量部に変更して材料を調製した。第2ゴム層用材料において、SBRに替えてアクリロニトリルブタジエンゴム(NBR)(JSR230SV:JSR社製)を用いた。また、カーボンブラックに替えて四級アンモニウム(アデカサイザーLV70:旭電化工業社製)3質量部、シリカをOX50(日本アエロジル社製、体積平均粒径30nm)100質量部に変更して材料を調製した。第1ゴム層の層厚が1.8mmに、第2ゴム層の層厚が1.7mmになるよう、クロスヘッド押出機のスクリュー部の回転数を調整した。これら以外は実施例17と同様にして帯電ローラ19を作製し、各測定及び評価を実施例1と同様に行った。
[実施例20]
 第1ゴム層用材料において、炭酸カルシウムの添加量を130質量部に変更して材料を調製した。第2ゴム層用材料を以下のようにして調製した。アクリロニトリルブタジエンゴム(NBR)に替えてEPDM(EPT4045:三井化学社製)を用い、表8に示す成分を加えて、温度80℃に調節した密閉型ミキサーにて15分間混練した。
Figure JPOXMLDOC01-appb-T000008
 次いで、加硫剤として硫黄1質量部、加硫促進剤としてジベンゾチアジルスルフィド(DM)1質量部及びテトラメチルチウラムモノスルフィド(TS)1質量部を添加した。温度25℃に冷却した二本ロール機にて10分間混練して、第2ゴム層用材料を準備した。得られたゴム層用材料を用い、第1ゴム層の層厚が1.5mmに、第2ゴム層の層厚が2.0mmになるよう、クロスヘッド押出機のスクリュー部の回転数を調整した。また、研磨の際はゴムの剥がれがないように注意して研磨機の回転数を調整した。これら以外は実施例2と同様にして帯電ローラ20を作製し、各測定及び評価を実施例1と同様に行った。
[実施例21]
 第1ゴム層の層厚が1.6mmに、第2ゴム層の層厚が1.9mmになるよう、クロスヘッド押出機のスクリュー部の回転数を調整した。それ以外は実施例20と同様にして帯電ローラ21を作製し、各測定及び評価を実施例1と同様に行った。
[実施例22]
 第1ゴム層の層厚が1.4mmに、第2ゴム層の層厚が2.1mmになるよう、クロスヘッド押出機のスクリュー部の回転数を調整した。それ以外は実施例20と同様にして帯電ローラ22を作製し、各測定及び評価を実施例1と同様に行った。
[実施例23]
[基体]
 直径6mm、長さ252.5mmのステンレス製基体に、プライマーとしてフッ素系樹脂(FC4430:住友スリーエム社製)を塗布し、乾燥したものを導電性基体として使用した。
[弾性層用材料]
 ポリオール加硫二元系フッ素ゴム(ダイエルG-755L:ダイキン工業株式会社製)100質量部に対して、下記表9に記載の成分を加えて、温度50℃に調節した密閉型ミキサーにて10分間混練し、第1ゴム層用材料を得た。
Figure JPOXMLDOC01-appb-T000009
 また、第2ゴム層用材料は、実施例20と同様にして準備した。
[帯電ローラ]
 図7に示す、2層同時クロスヘッド押出機の1本の押出機のみを用いて、上記基体と共に、第1ゴム層材料を基体を中心軸として押出し、基体の外周に未加硫の第1ゴム層を積層したローラを作製した。押出外径は9mmに調整した。第2ゴム層用材料を、厚さ約2mmのシート状に成型し、前記のローラに巻きつけた。端部を除去して、内径が12.5mmの円筒形キャビティを有する金型に設置して、温度160℃で15分間加熱後、金型から脱型し、更に温度170℃の熱風炉で10分加熱して二次加硫を施した。
 ゴム長さは、224.2mmとし、外径が12mmのローラ形状になるよう弾性層外周面を、ランジカット式の円筒研磨機を用いて研磨して弾性ローラを得た。研磨の際はゴムの剥がれないように注意して研磨機の回転数を調整した。この弾性ローラに実施例2と同様にして表面層を形成して帯電ローラ23を作製し、各測定及び評価を実施例1と同様に行った。
[実施例24]
 第1ゴム層用材料において、炭酸カルシウム及びカーボンブラックに替えて、酸化スズ(S-1:三菱マテリアル電子化成社製、平均粒径30nm)100質量部を添加した以外は、実施例1と同様にして、第1ゴム層用材料を準備した。第2ゴム層用材料において、EPDMに替えてスチレンブタジエンゴム(SBR)(JSR1503:JSR社製)を用い、ステアリン酸亜鉛の添加量を1質量部に変更し、炭酸カルシウム及びパラフィンオイルを用いなかった。
 これら以外は実施例20と同様にして、材料を調製した。得られた材料を用い、第1ゴム層の層厚が2.0mmに、第2ゴム層の層厚が1.5mmになるよう、クロスヘッド押出機のスクリュー部の回転数を調整した。これら以外は実施例2と同様にして、帯電ローラ24を作製し、各測定及び評価を実施例1と同様に行った。
[実施例25]
 第1ゴム層用材料において、酸化スズの添加量を80質量部に変更した以外は、実施例24と同様にして弾性ローラを調製した。以下のように調製した表面層塗布液を用いて、表面層を形成した。ポリビニルブチラールにエタノールを加え、固形分が20質量%となるように調整した。この溶液500質量部(ポリビニルブチラール固形分100質量部)に対して、表10に示す成分を加え、混合溶液を調整した。
Figure JPOXMLDOC01-appb-T000010
 内容積450mLのガラス瓶に上記混合溶液190.4gを、メディアとしての体積平均粒径0.8mmのガラスビーズ200gと共に入れ、ペイントシェーカー分散機を用いて24時間分散した。分散した後、平均粒径が6μmのポリメチルメタクリレート樹脂粒子を3.2g添加した(ポリビニルブチラール固形分100質量部に対して、10質量部相当量)。これら以外は実施例24と同様にして帯電ローラ25を作製し、各測定及び評価を実施例1と同様に行った。
[実施例26]
 第1ゴム層用材料において、EPDM(EPT4045:三井化学社製)10質量部添加し、酸化スズの添加量を150質量部に変更して材料を調製した。それ以外は実施例25と同様にして帯電ローラ26を作製し、各測定及び評価を実施例1と同様に行った。
[実施例27]
 第1ゴム層用材料において、エピクロルヒドリンゴム(EO-EP-AGC三元共重合体の添加量を50質量部に変更し、EPDM(EPT4045:三井化学社製)をアクリロニトリルブタジエンゴム(NBR)(DN219:日本ゼオン社製)50質量部に変更し、酸化スズの添加量を170質量部に変更した。これら以外は実施例26と同様にして、材料を調製した。第1ゴム層の層厚が2.0mmに、第2ゴム層の層厚が1.5mmになるようにクロスヘッド押出機のスクリュー部の回転数を調整した。これら以外は実施例26と同様にして帯電ローラ27を作製し、各測定及び評価を実施例1と同様に行った。
[実施例28]
 第1ゴム層の層厚が2.2mmに、第2ゴム層の層厚が1.3mmになるようにクロスヘッド押出機のスクリュー部の回転数を調整した。それ以外は実施例27と同様にして帯電ローラ28を作製し、各測定及び評価を実施例1と同様に行った。
[実施例29]
 第2ゴム層用材料において、カーボンブラックをトーカブラック#5500(東海カーボン社製、平均粒径25nm)50質量部に変更した以外は、実施例2と同様にして材料を調製した。第1ゴム層の層厚が2.5mmに、第2ゴム層の層厚が1.0mmになるよう、クロスヘッド押出機のスクリュー部の回転数を調整した。それ以外は実施例2と同様にして帯電ローラ29を作製し、各測定及び評価を実施例1と同様に行った。
[実施例30]
 第2ゴム層用材料において、カーボンブラックをトーカブラック#4300(東海カーボン社製、平均粒径25nm)42質量部に変更し、カーボンブラックの添加量を60質量部に変更した以外は、実施例2と同様にして材料を調製した。第1ゴム層の層厚が2.6mmに、第2ゴム層の層厚が0.9mmになるよう、クロスヘッド押出機のスクリュー部の回転数を調整し、弾性ローラの外径が12mmになるように調整した。これら以外は実施例2と同様にして帯電ローラ31を作製し、各測定及び評価を実施例1と同様に行った。
[実施例31]
 第1ゴム層用材料において、炭酸カルシウムの添加量を150質量部に変更し、第2ゴム層用材料において、カーボンブラックの添加量を60質量部に変更した以外は、実施例29と同様にして材料を調製した。第1ゴム層の層厚が2.0mmに、第2ゴム層の層厚が1.5mmになるよう、クロスヘッド押出機のスクリュー部の回転数を調整した。これら以外は実施例29と同様にして帯電ローラ32を作製し、各測定及び評価を実施例1と同様に行った。
[実施例32]
 第2ゴム層用材料において、カーボンブラックの添加量を100質量部に変更した以外は、実施例31と同様にして材料を調製した。第1ゴム層の層厚が2.2mmに、第2ゴム層の層厚が1.3mmになるよう、クロスヘッド押出機のスクリュー部の回転数を調整した。これら以外は実施例31と同様にして帯電ローラ33を作製し、各測定及び評価を実施例1と同様に行った。
[実施例33]
 第1ゴム層の層厚が2.5mmに、第2ゴム層の層厚が0.9mmになるよう、クロスヘッド押出機のスクリュー部の回転数を調整し、弾性ローラの外径が11.8mmになるように調整した。これら以外は実施例32と同様にして帯電ローラ34を作製し、各測定及び評価を実施例1と同様に行った。
[実施例34]
 第1ゴム層用材料において、エピクロルヒドリンゴムをEO-EP-AGC三元共重合体、EO/EP/AGE=40mol%/56mol%/4mol%に変更し、カーボンブラックを用いない以外は、実施例2と同様にして、第1ゴム層用材料を調製した。第2ゴム層用材料を実施例25と同様にして調製した。第1ゴム層の層厚が2.3mmに、第2ゴム層の層厚が0.9mmになるよう、クロスヘッド押出機のスクリュー部の回転数を調整し、弾性ローラの外径が11.4mmになるように調整した。これら以外は実施例25と同様にして帯電ローラ34を作製し、各測定及び評価を実施例1と同様に行った。
[実施例35]
 第1ゴム層用材料において、カーボンブラック(サーマックスフローフォームN990:カナダCancarb社製、体積平均粒径270nm)を5質量部添加した以外は実施例34と同様にして第1ゴム層用材料を調製した。第2ゴム層用材料を炭酸カルシウムを添加しない以外は実施例2と同様にして調製した。
 第1ゴム層の層厚が1.7mmに、第2ゴム層の層厚が1.8mmになるよう、クロスヘッド押出機のスクリュー部の回転数を調整した。これら以外は実施例25と同様にして帯電ローラ35を作製し、各測定及び評価を実施例1と同様に行った。
[実施例36]
 第1ゴム層用材料は、酸化スズをカーボンブラック(トーカブラック#7360SB:東海カーボン社製、体積平均粒径28nm)5質量部に変更した以外は実施例20と同様にして調製した。第2ゴム層用材料は、カーボンブラックの添加量を15質量部に、炭酸カルシウムの添加量を20質量部に変更した以外は、実施例20と同様にして調製した。第1ゴム層の層厚が2.0mmに、第2ゴム層の層厚が1.0mmになるよう、クロスヘッド押出機のスクリュー部の回転数を調整した。研磨の際は、ゴムの剥がれないように注意して研磨機の回転数を調整した。これら以外は実施例35と同様にして帯電ローラ36を作製し、各測定及び評価を実施例1と同様に行った。
[実施例37]
 第1ゴム層の層厚が3.5mmに、第2ゴム層の層厚が0.9mmになるよう、クロスヘッド押出機のダイスとスクリュー部の回転数を調整し、弾性ローラの外径が13.8mmになるように調製した。これ以外は実施例36と同様にして帯電ローラ37を作製し、各測定及び評価を実施例1と同様に行った。
[実施例38]
 第1ゴム層用材料は、酸化スズをカーボンブラック(トーカブラック#7360SB:東海カーボン社製、体積平均粒径:28nm)50質量部に変更した以外は実施例23と同様にして調製した。
 第2ゴム層材料はシリカを添加せず、カーボンブラックの添加量を50質量部に変更した以外は実施例17と同様にして調製した。第1ゴム層の層厚が2.0mmになるよう、クロスヘッド押出機のスクリュー部の回転数を調整し、第2ゴム層の層厚が1.5mmになるようにゴムシートの厚さを調整した。これら以外は実施例23と同様にして帯電ローラ38を作製し、各測定及び評価を実施例1と同様に行った。
[実施例39]
 第1ゴム層の層厚が1.1mmになるように、クロスヘッド押出機のダイスとスクリュー部の回転数を調整し、第2ゴム層の層厚が1.4mmになるようにゴムシートの厚さを調整し、弾性ローラの外径を10.0mmとなるようにした。それ以外は実施例38と同様にして帯電ローラ39を作製し、各測定及び評価を実施例1と同様に行った。
[実施例40]
 第1ゴム層の層厚が1.5mmに、第2ゴム層の層厚が2.0mmになるよう、クロスヘッド押出機のスクリュー部の回転数を調整した以外は実施例24と同様にして、帯電ローラ40を作製し、各測定及び評価を実施例1と同様に行った。
[実施例41]
 第1ゴム層用材料を表11に示す物質を混合して調製した。
Figure JPOXMLDOC01-appb-T000011
 円筒形キャビティを有する金型に実施例1と同様に調製した基体をセットし、第1ゴム層用材料を注入し、100℃の熱風炉にて30分加熱し、外径が11mmになるよう調整し第1ゴム層を被覆したローラを作製した。
 また、実施例38と同様に調製した第2ゴム層用材料を厚さ約1mmのシート状に成形した。これら以外は実施例23と同様にして第2ゴム層を調製し、帯電ローラ41を作製し、各測定及び評価を実施例1と同様に行った。
[実施例42]
 第1ゴム層用材料は、酸化スズの添加量を170質量部に変更した以外は実施例23と同様にして調製した。第2ゴム層材料はSBRに替えてブタジエンゴム(BR)(JSRBR01:JSR社製)に変更し、シリカを添加せず、カーボンブラックの添加量を100質量部に変更した以外は実施例17と同様にして調製した。
 第1ゴム層の層厚が2.3mmになるよう、クロスヘッド押出機のダイスとスクリュー部の回転数を調整し、第2ゴム層の層厚が1.2mmになるようにゴムシートの厚さを調整し、弾性ローラの外径が12.0mmになるように調製した。これら以外は実施例23と同様にして帯電ローラ42を作製し、各測定及び評価を実施例1と同様に行った。
[実施例43]
 第1ゴム層用材料は、酸化スズをカーボンブラック(トーカブラック#7360SB:東海カーボン社製、体積平均粒径:28nm)30質量部に変更した以外は実施例23と同様にして調製した。第2ゴム層材料は実施例42と同様にして調製した。これら以外は実施例41と同様にして帯電ローラ43を作製し、各測定及び評価を実施例1と同様に行った。
[実施例44]
 第1ゴム層用材料は、カーボンブラックを添加せず、第2ゴム層用材料はカーボンブラックに替えて四級アンモニウム塩(アデカサイザーLV70:旭電化工業社製)を2質量部に用いた以外は、実施例7と同様に調製した。
 また、第1ゴム層の層厚が2.5mmに、第2ゴム層の層厚が1.0mmになるようにクロスヘッド押出機のスクリュー部の回転数を調整し、弾性ローラの外径を12mmとした。これら以外は、実施例7と同様にして、帯電ローラ44を作製し、各測定及び評価を実施例1と同様に行った。
上記実施例2~44の測定および算出の結果を表12及び13に示す。また、上記実施例2~44の画像評価の結果を表14に示す。
[比較例1]
 第1の弾性層用材料において、カーボンブラック(サーマックスフローフォームN990:カナダCancarb社製、体積平均粒径270nm)を5質量部添加した以外は実施例35と同様にして第1の弾性層用材料を調製した。
 第2ゴム層用材料については、カーボンブラックの添加量を48質量部に変更した以外は実施例9と同様にして調製した。第1ゴム層の層厚が1.0mmに、第2ゴム層の層厚が1.6mmになるように、クロスヘッド押出機のスクリュー部の回転数を調整し、弾性ローラの外径を10.2mmとした。これら以外は実施例25と同様にして、帯電ローラ45を作製し、各測定及び評価を実施例1と同様に行った。
[比較例2]
 第1ゴム層用材料はカーボンブラックを添加せずに調製し、第2ゴム層用材料はカーボンブラックに替えて四級アンモニウム塩(アデカサイザーLV70:旭電化工業社製)を2質量部用いた以外は比較例1と同様に調製した。第1ゴム層の層厚が1.5mmに、第2ゴム層の層厚が2.0mmになるように、クロスヘッド押出機のスクリュー部の回転数を調整し、弾性ローラの外径を12.0mmとなるようにした。これら以外は比較例1と同様にして帯電ローラ46を作製し、各測定及び評価を実施例1と同様に行った。
[比較例3]
 第1ゴム層の層厚が1.0mmに、第2ゴム層の層厚が1.6mmになるよう、クロスヘッド押出機のスクリュー部の回転数を調整し、弾性ローラの外径を10.2mmに調製した。これら以外は比較例2と同様にして帯電ローラ47を作製し、各測定及び評価を実施例1と同様に行った。
[比較例4]
 第1ゴム層用材料にカーボンブラックを添加しない以外は、実施例36と同様に調製した。第2ゴム層用材料については、炭酸カルシウムを添加せず、また、カーボンブラックの添加量を5質量部に変更した以外は実施例36と同様に調製した。第1ゴム層の層厚が1.8mmに、第2ゴム層の層厚が1.7mmになるように、クロスヘッド押出機のダイスとスクリュー部の回転数を調整し、弾性ローラの外径を12.0mmとなるようにした。これら以外は実施例36と同様にして帯電ローラ48を作製し、各測定及び評価を実施例1と同様に行った。
[比較例5]
 第1ゴム層用材料及び第2ゴム層用材料はカーボンブラックの添加量を20質量部に変更した以外は、比較例4と同様に調製した。第1ゴム層の層厚が2.0mmに、第2ゴム層の層厚が1.3mmになるように、クロスヘッド押出機のダイスとスクリュー部の回転数を調整し、弾性ローラの外径を11.6mmに調製した。これら以外は、比較例4と同様にして帯電ローラ49を作製し、各測定及び評価を実施例1と同様に行った。
[比較例6]
 第1ゴム層用材料について、炭酸カルシウムおよびカーボンブラックを添加しなかった以外は、比較例1と同様にして調製した。第2ゴム層用材料については、カーボンブラックの添加量を50質量部に変更した以外は比較例5と同様に調製した。第1ゴム層の層厚が2.0mmに、第2ゴム層の層厚が3.5mmになるようにクロスヘッド押出機のダイスとスクリュー部の回転数を調整し、弾性ローラの外径を16.0mmに調製した。これら以外は、比較例1と同様にして帯電ローラ50を作製し、各測定及び評価を実施例1と同様に行った。
[比較例7]
 第1ゴム層用材料および第2ゴム層用材料として、比較例2の第2ゴム層用材料と同じものを調製した。また、第1ゴム層の層厚が2.0mmに、第2ゴム層の層厚が1.5mmになるようにクロスヘッド押出機のダイスとスクリュー部の回転数を調整し、弾性ローラの外径を12.0mmとなるようにした。これら以外は比較例1と同様にして、帯電ローラ51を作製し、各測定及び評価を実施例1と同様に行った。
上記比較例1~7の測定結果および評価結果を表12及び表13に示す。また、上記比較例1~7の画像評価の結果を表15に示す。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
4 感光体(被帯電体)
5 帯電ローラ(帯電部材)
6 現像ローラ(現像装置)
7 転写材
9 定着装置
11 レーザー(露光装置)
41、51 基体
42a、52a 第1ゴム層
42b、52b 第2ゴム層
43、53 表面層
この出願は2011年3月9日に出願された日本国特許出願第2011-051938からの優先権を主張するものであり、その内容を引用してこの出願の一部とするものである。

 

Claims (9)

  1. 導電性の基体と、導電性の弾性層と、表面層とを有する帯電部材であって、
    該弾性層は、該基体側から第1ゴム層及び該第1ゴム層に積層される第2ゴム層を有し、
    該第1ゴム層の固有振動数をf1とし、該第2ゴム層の固有振動数をf2としたときの、固有振動数比(f2/f1)が、2.35以上、10.0以下であることを特徴とする帯電部材。
  2. 前記f2が、400Hz以上、1400Hz以下である請求項1に記載の帯電部材。
  3. 前記第1ゴム層及び前記第2ゴム層がフィラーを含有する請求項1又は2に記載の帯電部材。
  4. 前記第1ゴム層がフィラーとして、炭酸カルシウム、炭酸マグネシウム、酸化亜鉛および酸化マグネシウムからなる群から選択される1つまたは2つ以上を含み、
    前記第2ゴム層がフィラーとして、カーボンブラックおよびシリカから選択される一方または両方を含む請求項3に記載の帯電部材。
  5. 前記第2ゴム層中のフィラーの体積平均粒径が、前記第1ゴム層中にフィラーの体積平均粒径よりも小さい請求項3又は4に記載の帯電部材。
  6. 前記第1ゴム層が、エピクロルヒドリンゴム、ウレタンゴム及びフッ素ゴムからなる群から選択される1つまたは2つ以上のゴムを含み、
    前記第2ゴム層が、アクリロニトリルブタジエンゴム、スチレンブタジエンゴム、エチレンプロピレンゴム及びブタジエンゴムからなる群から選択される1つまたは2つ以上のゴムを含む請求項1から5のいずれか一項に記載の帯電部材。
  7. 請求項1から6のいずれか一項に記載の帯電部材と、感光体とが一体化され、電子写真装置本体に着脱可能に構成されていることを特徴とするプロセスカートリッジ。
     
  8. 請求項1から6のいずれか一項に記載の帯電部材と、感光体とを有していることを特徴とする電子写真装置。
  9. 前記帯電部材に交流電圧を印加する手段を有する請求項8に記載の電子写真装置。

     
PCT/JP2012/001569 2011-03-09 2012-03-07 帯電部材、プロセスカートリッジ及び電子写真装置 WO2012120882A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112013021759A BR112013021759A2 (pt) 2011-03-09 2012-03-07 membro de carga, cartucho de processo e aparelho eletrofotográfico
KR1020137025731A KR101453238B1 (ko) 2011-03-09 2012-03-07 대전 부재, 프로세스 카트리지 및 전자 사진 장치
EP12754380.9A EP2685318B1 (en) 2011-03-09 2012-03-07 Charging member, process cartridge, and electrophotographic apparatus
CN2012800124041A CN103430106A (zh) 2011-03-09 2012-03-07 充电构件、处理盒和电子照相设备
US13/555,040 US8548359B2 (en) 2011-03-09 2012-07-20 Charging member, process cartridge and electrophotographic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-051938 2011-03-09
JP2011051938 2011-03-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/555,040 Continuation US8548359B2 (en) 2011-03-09 2012-07-20 Charging member, process cartridge and electrophotographic apparatus

Publications (1)

Publication Number Publication Date
WO2012120882A1 true WO2012120882A1 (ja) 2012-09-13

Family

ID=46797853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001569 WO2012120882A1 (ja) 2011-03-09 2012-03-07 帯電部材、プロセスカートリッジ及び電子写真装置

Country Status (7)

Country Link
US (1) US8548359B2 (ja)
EP (1) EP2685318B1 (ja)
JP (1) JP6008520B2 (ja)
KR (1) KR101453238B1 (ja)
CN (1) CN103430106A (ja)
BR (1) BR112013021759A2 (ja)
WO (1) WO2012120882A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111836A1 (ja) 2011-02-15 2012-08-23 キヤノン株式会社 帯電部材、その製法、プロセスカートリッジ及び電子写真装置
WO2012147301A1 (ja) 2011-04-27 2012-11-01 キヤノン株式会社 帯電部材、プロセスカートリッジ、電子写真装置、及び帯電部材の製造方法
CN104011600B (zh) 2011-12-14 2016-02-24 佳能株式会社 电子照相用构件、处理盒和电子照相设备
WO2013145616A1 (ja) 2012-03-29 2013-10-03 キヤノン株式会社 電子写真用部材の製造方法及びコーティング液
JP2013242390A (ja) * 2012-05-18 2013-12-05 Tokai Rubber Ind Ltd 導電性ロール
JP5936595B2 (ja) 2012-12-12 2016-06-22 キヤノン株式会社 帯電部材、プロセスカートリッジ及び電子写真装置
EP3048489B1 (en) 2013-09-20 2020-12-16 Canon Kabushiki Kaisha Charging member, method for manufacturing same, process cartridge, and electrophotographic device
WO2015098117A1 (ja) 2013-12-27 2015-07-02 キヤノン株式会社 帯電部材、プロセスカートリッジ及び電子写真画像形成装置
JP6051365B2 (ja) * 2014-09-25 2016-12-27 住友理工株式会社 帯電部材
US9599914B2 (en) 2015-04-03 2017-03-21 Canon Kabushiki Kaisha Electrophotographic member having bow-shaped resin particles defining concavity and protrusion at surface thereof
CN107430367B (zh) 2015-04-03 2020-02-21 佳能株式会社 充电构件、处理盒和电子照相设备
US10078286B2 (en) 2015-04-10 2018-09-18 Canon Kabushiki Kaisha Charging member, process cartridge and electrophotographic apparatus
US9989879B2 (en) 2015-06-26 2018-06-05 Canon Kabushiki Kaisha Charging member, process cartridge and electrophotographic image forming apparatus
CN105551576A (zh) * 2016-02-01 2016-05-04 安徽渡江电缆集团有限公司 一种计算机用低烟无卤电缆
CN105575466A (zh) * 2016-02-01 2016-05-11 安徽红旗电缆集团有限公司 一种三聚氰胺树脂电缆
CN105551574A (zh) * 2016-02-01 2016-05-04 安徽红旗电缆集团有限公司 一种船舶用碳化钨电缆
CN105590667A (zh) * 2016-02-03 2016-05-18 安徽华联电缆集团有限公司 一种添加聚氨酯丙烯酸酯的高性能电缆
JPWO2017221907A1 (ja) * 2016-06-20 2019-04-11 株式会社ブリヂストン 導電性ローラ
US10248042B2 (en) 2017-06-02 2019-04-02 Canon Kabushiki Kaisha Electrophotographic roller, process cartridge and electrophotographic apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000275930A (ja) * 1999-03-25 2000-10-06 Tokai Rubber Ind Ltd 帯電ロール
JP2002250336A (ja) * 2001-02-21 2002-09-06 Canon Chemicals Inc 半導電性ゴムローラ及び半導電性ゴムローラ用半導電性発泡性ゴム組成物
JP2004279578A (ja) 2003-03-13 2004-10-07 Tokai Rubber Ind Ltd 導電性ロール
JP2009086439A (ja) * 2007-10-01 2009-04-23 Canon Chemicals Inc 帯電部材、および電子写真装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000274424A (ja) * 1999-03-25 2000-10-03 Tokai Rubber Ind Ltd 導電性ロール
JP2004077972A (ja) * 2002-08-21 2004-03-11 Ricoh Co Ltd 帯電装置及び該装置を備えた画像形成装置
JP3812524B2 (ja) * 2002-09-20 2006-08-23 東海ゴム工業株式会社 導電性ロール
JP4775938B2 (ja) 2004-03-16 2011-09-21 キヤノン株式会社 電子写真用感光体の形成方法
WO2006088237A1 (ja) * 2005-02-21 2006-08-24 Canon Kasei Kabushiki Kaisha 帯電ロール、プロセスカートリッジ及び電子写真装置
JP2007279410A (ja) * 2006-04-07 2007-10-25 Konica Minolta Business Technologies Inc 帯電部材、帯電部材を有する帯電装置、および帯電装置を有する画像形成装置
JP4902810B1 (ja) 2010-10-04 2012-03-21 キヤノン株式会社 帯電部材、プロセスカートリッジ及び電子写真装置
KR101454139B1 (ko) 2010-10-08 2014-10-22 캐논 가부시끼가이샤 대전 부재, 프로세스 카트리지 및 전자 사진 장치
JP6164793B2 (ja) * 2011-03-09 2017-07-19 キヤノン株式会社 現像ローラ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000275930A (ja) * 1999-03-25 2000-10-06 Tokai Rubber Ind Ltd 帯電ロール
JP2002250336A (ja) * 2001-02-21 2002-09-06 Canon Chemicals Inc 半導電性ゴムローラ及び半導電性ゴムローラ用半導電性発泡性ゴム組成物
JP2004279578A (ja) 2003-03-13 2004-10-07 Tokai Rubber Ind Ltd 導電性ロール
JP2009086439A (ja) * 2007-10-01 2009-04-23 Canon Chemicals Inc 帯電部材、および電子写真装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HARUHIKO TOHARA: "Rubber Vibration Insulators", 30 October 1998, THE JAPAN ASSOCIATION OF ROLLING STOCK INDUSTRIES, pages: 97 - 99
SHINJI YAMADA: "Learned Person from Today Series, Thoroughly Plain Book on Vibration & Noise", 25 March 2007, THE NIKKAN KOGYO SIMBUN, LTD., pages: 24 - 25

Also Published As

Publication number Publication date
JP6008520B2 (ja) 2016-10-19
JP2012198535A (ja) 2012-10-18
EP2685318B1 (en) 2017-05-17
CN103430106A (zh) 2013-12-04
EP2685318A1 (en) 2014-01-15
BR112013021759A2 (pt) 2016-10-18
US8548359B2 (en) 2013-10-01
US20120288301A1 (en) 2012-11-15
KR101453238B1 (ko) 2014-10-22
KR20130135323A (ko) 2013-12-10
EP2685318A4 (en) 2014-09-10

Similar Documents

Publication Publication Date Title
JP6008520B2 (ja) 帯電部材、プロセスカートリッジ及び電子写真装置
JP5173249B2 (ja) 帯電部材、プロセスカートリッジ及び電子写真画像形成装置
JP4878659B1 (ja) 帯電部材及び電子写真装置
JP4799706B1 (ja) 帯電部材、プロセスカートリッジ及び電子写真装置
JP2010134451A (ja) 帯電部材、プロセスカートリッジ及び電子写真装置
JP2008276023A (ja) 帯電部材、プロセスカートリッジ及び電子写真画像形成装置
WO2014091721A1 (ja) 電子写真用部材、プロセスカ-トリッジおよび電子写真装置
JP5121438B2 (ja) 帯電部材、プロセスカートリッジ及び電子写真装置
JP5415783B2 (ja) 帯電部材、プロセスカートリッジ及び画像形成装置
JP5159156B2 (ja) 帯電部材、プロセスカートリッジ及び電子写真装置
JP6164793B2 (ja) 現像ローラ
JP5173247B2 (ja) 帯電部材、プロセスカートリッジ及び電子写真装置
JP5058691B2 (ja) 電子写真用帯電部材、プロセスカートリッジ及び電子写真装置
JP2014089415A (ja) 電子写真用帯電部材、プロセスカートリッジ及び電子写真装置
JP2005315979A (ja) 導電性部材、プロセスカートリッジ及び画像形成装置
JP2006163147A (ja) 帯電ローラ、帯電方法、プロセスカートリッジ及び電子写真装置
JP5744603B2 (ja) 帯電部材、プロセスカートリッジおよび電子写真装置
JP6376940B2 (ja) 帯電部材、プロセスカートリッジ及び電子写真装置
JP5404089B2 (ja) 帯電部材、プロセスカートリッジ及び電子写真装置
JP5730111B2 (ja) 導電性部材、プロセスカートリッジ及び電子写真装置
JP2006113377A (ja) 帯電部材、これを用いたプロセスカートリッジ及び電子写真装置
JP6080601B2 (ja) 帯電ローラ、プロセスカートリッジ及び電子写真装置
JP2004294849A (ja) 帯電部材
JP2012103337A (ja) 帯電部材、プロセスカートリッジ及び電子写真装置
JP2004212865A (ja) 半導電性ロール及び画像形成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754380

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012754380

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012754380

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137025731

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013021759

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013021759

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130826