WO2012120787A1 - サセプタ及びこれを用いたエピタキシャルウェーハの製造方法 - Google Patents

サセプタ及びこれを用いたエピタキシャルウェーハの製造方法 Download PDF

Info

Publication number
WO2012120787A1
WO2012120787A1 PCT/JP2012/000928 JP2012000928W WO2012120787A1 WO 2012120787 A1 WO2012120787 A1 WO 2012120787A1 JP 2012000928 W JP2012000928 W JP 2012000928W WO 2012120787 A1 WO2012120787 A1 WO 2012120787A1
Authority
WO
WIPO (PCT)
Prior art keywords
susceptor
counterbore
wafer
back surface
substrate
Prior art date
Application number
PCT/JP2012/000928
Other languages
English (en)
French (fr)
Inventor
大西 理
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to DE112012000726T priority Critical patent/DE112012000726T5/de
Priority to KR1020137022547A priority patent/KR101746451B1/ko
Priority to US13/985,592 priority patent/US9708732B2/en
Priority to CN201280011707.1A priority patent/CN103443904B/zh
Publication of WO2012120787A1 publication Critical patent/WO2012120787A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68735Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge profile or support profile
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/12Substrate holders or susceptors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection

Definitions

  • the present invention relates to a susceptor and a method for manufacturing an epitaxial wafer, and more specifically, a susceptor capable of reducing deposits (deposition) generated on the outer periphery of the back surface of the wafer during epitaxial vapor phase growth and an epitaxial wafer using the susceptor. It relates to the manufacturing method.
  • a susceptor that penetrates to the back surface of the susceptor and is provided with an open through hole is often used for the purpose of improving the peripheral resistivity distribution and improving the back surface appearance (Patent Document 1). ).
  • Various quality improvements were achieved by the through-holes provided in the susceptor, but at the same time, local deposition (hereinafter referred to as “backside deposit”) on the outer periphery of the backside of the wafer occurred. It was.
  • the source gas is flowed to the wafer front side, but the source gas may circulate to the back surface of the susceptor due to the mechanism of the epitaxial manufacturing apparatus.
  • the source gas that has entered the back surface of the susceptor further enters the back surface of the wafer from the through hole of the susceptor and reacts on the back surface of the wafer, thereby generating back surface deposition.
  • the rear surface deposit of the wafer is locally in the vicinity of the contact portion between the susceptor and the wafer, that is, the outer peripheral portion of the back surface of the wafer (the portion having a radius of about 147 to 149 mm from the center of the wafer if the wafer has a diameter of 300 mm). It is generated and its height changes depending on the reaction time, but reaches several hundred nm.
  • the thickness shape of the epitaxial wafer increases sharply at the outer peripheral portion, which causes deterioration of the flatness.
  • the backside deposition is a great obstacle to the production of the most advanced products.
  • the backside deposit is concentrated on the part where the wafer and the susceptor overlap in close contact with each other, i.e., the part where the susceptor is placed, and the height of the backside deposit varies depending on the amount of heating on the susceptor side.
  • Patent Document 2 when a substrate is heated by an induction heating type susceptor by the CVD cold wall method, a groove is formed in the vicinity of the susceptor center, so that a high-frequency magnetic field enters the susceptor from the groove and the vicinity of the susceptor center is set as a high temperature region.
  • the susceptor Patent Document 2 that can make the temperature distribution of the contact surface between the susceptor and the wafer uniform, and a large number of irregularities are formed on the back surface of the susceptor, thereby increasing the heat absorption area from the heater.
  • Patent Document 3 A susceptor that can be used (Patent Document 3) has been conventionally used.
  • a portion that supports the outer peripheral edge of the semiconductor substrate (hereinafter referred to as an upper counterbore), and a portion that is formed below the upper counterbore and closer to the center of the susceptor and that has the through-hole (hereinafter referred to as the lower pedestal)
  • the substrate and the susceptor are in contact with each other at the outer peripheral portion of the substrate, particularly in the upper counterbore portion.
  • the temperature is higher than that of the inner peripheral portion where the backside deposit does not occur so much.
  • the present invention speculates that the back surface deposit has a close relationship with the temperature environment between the substrate and the susceptor, and corresponds to the outer periphery of the substrate and the upper counterbore portion on the back surface side of the susceptor.
  • the vapor deposition of the epitaxial layer is performed using the susceptor and the susceptor that can reduce the temperature at the position of the substrate, keep the thermal condition between the outer peripheral portion and the inner peripheral portion on the back surface of the substrate constant, and suppress the occurrence of back surface deposition on the back surface of the substrate.
  • An object is to provide a method for manufacturing an epitaxial wafer.
  • a susceptor that supports a semiconductor substrate when performing vapor phase growth of an epitaxial layer, and a counterbore in which the semiconductor substrate is disposed is formed on an upper surface of the susceptor.
  • the lower stage seat has a two-stage structure comprising an upper counterbore part that supports an outer peripheral edge of the semiconductor substrate, and a lower stage counterbore part that is lower than the upper stage counterbore part and formed on the center side.
  • the counterbore part is formed with a through hole that penetrates to the back surface of the susceptor and is open even when the vapor phase growth is performed.
  • the back surface side of the susceptor corresponds to the upper counterbore part.
  • a susceptor characterized in that a groove is provided at a position.
  • the surface area of the back surface of the susceptor is increased by the side area of the formed groove, so that heat radiation from the back surface of the susceptor increases. Furthermore, a step is created by forming the groove, and a portion that becomes a shadow with respect to heating light from a heating means such as a lamp is generated. Therefore, the temperature of the outer peripheral portion of the substrate is lowered, and the outer peripheral portion and the inner peripheral portion The thermal conditions can be made constant. As a result, the occurrence of backside deposits can be suppressed, and the nanotopology and peripheral resistivity distribution on the substrate surface can be improved to achieve high quality.
  • the groove is preferably a plurality of grooves arranged radially.
  • the grooves are arranged in this way, the temperature of the outer peripheral portion of the substrate can be lowered more efficiently and uniformly, and the thermal conditions between the outer peripheral portion and the inner peripheral portion of the substrate can be made more reliable and constant.
  • the radial grooves each have a radial length of a substrate placed on the susceptor of 1 ⁇ 4 or less of the substrate radius, a width of 5 mm or less, and a depth.
  • the length is preferably 75% or less of the thickness of the susceptor at the position corresponding to the upper counterbore.
  • the groove is formed as described above, the sufficient effect of the present invention can be obtained and the strength of the susceptor can be maintained.
  • the present invention also relates to a method for manufacturing an epitaxial wafer, wherein a substrate is placed on a counterbore of the susceptor using the susceptor of the present invention, and an epitaxial layer is grown on the substrate while flowing a source gas.
  • An epitaxial wafer manufacturing method is provided that performs the following steps.
  • the temperature of the outer peripheral portion of the substrate can be lowered, the thermal conditions of the outer peripheral portion and the inner peripheral portion on the back surface of the substrate can be made constant, and the occurrence of back surface deposition is suppressed.
  • a high-quality epitaxial wafer can be manufactured without impairing the nanotopology and peripheral resistivity distribution on the substrate surface.
  • the thermal conditions of the outer peripheral portion and the inner peripheral portion of the substrate can be made constant.
  • a susceptor capable of suppressing the occurrence of backside deposit and improving the quality of the nanotopology and peripheral resistivity distribution on the substrate surface. Further, by performing vapor phase growth of the epitaxial layer on the substrate surface using such a susceptor, it is possible to manufacture a high-quality epitaxial wafer in which the occurrence of back surface deposition is suppressed.
  • FIG. 51 A schematic view of an example of an epitaxial growth apparatus in which the susceptor of the present invention is used is shown in FIG.
  • the epitaxial growth apparatus 51 supports the chamber 52, the susceptor 71 disposed inside the chamber 52, and the susceptor support means 53, which can be rotated and moved up and down, and carries the wafer into the chamber 52, or vice versa.
  • a wafer transfer hand (not shown) for transferring the silicon wafer from the chamber 52 Consisting of, or the like.
  • the susceptor 71 may have a lift pin through-hole 73 formed therein.
  • the lift pin 75 is inserted through the lift pin through-hole 73.
  • a lift pin raising / lowering means capable of moving the lift pin 75 up and down relatively with respect to the susceptor 71 may be provided inside the chamber 52.
  • FIG. 1 An enlarged schematic view of the susceptor 71 according to the present invention is shown in FIG.
  • a counterbore 72 for positioning a silicon wafer to be placed is formed on the susceptor 71.
  • the counterbore 72 has an upper counterbore 72a that supports the outer peripheral edge of the wafer W and a lower stage than the upper counterbore.
  • a two-stage structure having a lower counterbore 72b formed on the center side is formed.
  • a large number of through holes 74 are formed in substantially the entire surface of the lower counterbore portion 72b.
  • a groove 76 is provided at a position corresponding to the upper counterbore portion 72a on the back surface of the susceptor 71.
  • the surface area of the back surface of the susceptor 71 corresponding to the upper counterbore portion 72a shown by S in FIG. 2B is increased, and heat radiation from the back surface of the wafer W is increased.
  • a shadowed portion is generated with respect to the heating light from the heating means 58 such as a lamp, the temperature of the outer peripheral portion of the wafer W is lowered, and the thermal condition between the outer peripheral portion and the inner peripheral portion of the wafer W is made constant. Can do.
  • the occurrence of backside deposits can be suppressed, and deterioration of the nanotopology and outer peripheral resistivity distribution of the main surface of the wafer W can be suppressed.
  • each of the plurality of radially provided grooves 76 is set such that the radial length of the wafer W is 1 ⁇ 4 or less of the radius of the wafer, the width is 5 mm or less, and the depth corresponds to the upper counterbore portion 72a. If the thickness of the susceptor 71 is 75% or less, it is more effective.
  • the shape of the groove 76 is not limited to a prismatic shape as shown in FIG.
  • one large ring-shaped groove may be provided so as to include the entire range of the position corresponding to the upper counterbore portion 72a of the susceptor 71, but it is more preferable to provide a plurality of grooves as described above. It is effective and hardly causes a problem in terms of strength of the susceptor.
  • an epitaxial layer is vapor-phase grown on the surface of the silicon wafer as follows.
  • FIG. 7 shows a flowchart of the procedure of the epitaxial wafer manufacturing method to which the present invention is applied.
  • a semiconductor substrate silicon wafer
  • the silicon wafer is appropriately cleaned such as RCA cleaning.
  • RCA cleaning As a cleaning method in this cleaning step, in addition to a typical RCA cleaning, a method in which the concentration and type of a chemical solution are changed within a normal range can be used.
  • the silicon wafer W is transferred into the chamber 52 using a wafer transfer means (not shown) and placed on the counterbore part 72 of the susceptor 71 of the present invention.
  • a wafer transfer means not shown
  • a commonly used placement method can be applied in addition to the method using the lift pins 75.
  • step (d) hydrogen gas is introduced into the chamber 52 from the hydrogen gas supply means through the gas introduction pipe 55 into the chamber 52 and heated by the heating means 58 to perform hydrogen treatment.
  • the natural oxide film generated in the step is removed.
  • step (e) vapor phase growth of the epitaxial layer is performed on the surface of the silicon wafer.
  • the vapor phase growth of the epitaxial layer is performed by introducing a source gas such as monosilane, trichlorosilane, or silicon tetrachloride and hydrogen gas serving as a carrier gas into the chamber 52 and heating.
  • a source gas such as monosilane, trichlorosilane, or silicon tetrachloride and hydrogen gas serving as a carrier gas
  • a source gas such as monosilane, trichlorosilane, or silicon tetrachloride and hydrogen gas serving as a carrier gas
  • a source gas such as monosilane, trichlorosilane, or silicon tetrachloride and hydrogen gas serving as a carrier gas
  • the principle of WaferSight is to measure the amount of displacement of the wafer surface from the number and width of interference fringes caused by optical interference between the reflected light from the wafer and the reflected light from the reference surface. It is a measuring instrument. In the actual measurement, the above-described measurement is performed on both surfaces of the wafer, and the total thickness change is calculated from the thickness of one specific point measured in advance.
  • the UA3P is a measuring machine that performs measurement using a stylus type surface displacement. The principle is that the probe is pressed against the object with a weak constant load, and the displacement of the moving needle according to the unevenness of the object is measured with a laser.
  • the surface area of the outer peripheral portion of the back surface is 3 with respect to the case where nothing is provided on the back surface of the susceptor, and by providing a plurality of grooves at positions corresponding to the upper counterbore portion on the back surface of the susceptor A doubled one was also prepared, and similarly, a surface area of the outer periphery of the back surface was increased five times.
  • a silicon wafer is placed as a semiconductor substrate on the susceptor countersink, heated by a lamp and flowing a source gas, and a thickness of 5 ⁇ m is formed on the surface of the silicon wafer having a diameter of 300 mm.
  • the epitaxial layer was vapor-phase grown.
  • the grooves were provided radially as a rectangular parallelepiped shape having a length in the radial direction of the wafer of 10 mm, a width of 2 mm, and a depth of 2 mm.
  • the reaction pressure was normal pressure
  • the reaction temperature was 1100 ° C.
  • the growth rate was 2.5 ⁇ m / min.
  • each epitaxial wafer manufacturing apparatus provided with the susceptor at two points having a radius of 147 mm and 149 mm from the center of the silicon wafer, which is a position corresponding to the back surface portion of the susceptor provided with the groove of the present invention.
  • the wafer thickness change amount before and after the epitaxial layer formation of the epitaxial wafer was measured by WaferSight, and the difference between the two points (wafer thickness change amount before and after the epitaxial layer formation) was obtained.
  • the result at this time is shown in FIG.
  • the deposit height on the back surface of the silicon wafer in the above range was measured using UA3P. The result at this time is shown in FIG.
  • Example 2 Using an epitaxial wafer manufacturing apparatus having a susceptor with a groove provided at a position corresponding to the upper countersunk portion on the back surface, a silicon wafer is placed as a semiconductor substrate on the counterbore of the susceptor, and a diameter of 300 mm while flowing a source gas. An epitaxial layer having a thickness of 5 ⁇ m was vapor-phase grown on the surface of the silicon wafer.
  • the groove was provided in 240 radial positions as a rectangular parallelepiped shape having a length in the wafer radial direction of 10 mm, a width of 2 mm, and a depth of 2 mm.
  • the reaction pressure was normal pressure, the reaction temperature was 1100 ° C., and the growth rate was 2.5 ⁇ m / min. At this time, it is manufactured by each epitaxial wafer manufacturing apparatus provided with the susceptor in a range of about 147 mm to 149 mm in radius from the center of the silicon wafer, that is, in a range corresponding to the back surface portion of the susceptor provided with the groove according to the present invention.
  • the wafer thickness change amount before and after the formation of the epitaxial layer of the epitaxial wafer was measured with WaferSight, and a value obtained by subtracting the average change amount from the value at each measurement point was obtained. The result at this time is shown in FIG. Moreover, the deposit height on the back surface of the silicon wafer in the above range was measured using UA3P. The result at this time is shown in FIG.
  • Vapor phase growth of an epitaxial layer having a thickness of 5 ⁇ m was performed on the surface of a silicon wafer having a diameter of 300 mm in the same manner as in the example except that no groove was provided at a position corresponding to the upper counterbore portion on the back surface of the susceptor.
  • the wafer thickness change amount before and after the formation of the epitaxial layer of the epitaxial wafer manufactured by each epitaxial wafer manufacturing apparatus including the susceptor is measured with WaferLight within a radius of about 147 mm to 149 mm from the center of the silicon wafer. The value obtained by subtracting the average amount of change from the value at each measurement point was determined.
  • the result at this time is shown in FIG.
  • the deposit height on the back surface of the silicon wafer in the above range was measured using UA3P. The result at this time is shown in FIG.
  • the surface area of the back surface of the susceptor is increased and a shadow is generated on the heating light from the lamp.
  • the temperature of the outer peripheral portion can be lowered, and the thermal condition between the wafer outer peripheral portion and the inner peripheral portion can be made constant. This also effectively suppresses the occurrence of backside deposits, and can produce a high quality epitaxial wafer without impairing the nanotopology and peripheral resistivity distribution on the wafer surface.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and exhibits the same function and effect. Are included in the technical scope.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

 本発明は、エピタキシャル層の気相成長を行う際に半導体基板を支持するサセプタであって、サセプタの上面には、内部に半導体基板が配置される座ぐりが形成され、該座ぐりは、半導体基板の外周縁部を支持する上段座ぐり部と、該上段座ぐり部よりも下段でかつ中心側に形成された下段座ぐり部とを有する二段構造を成し、下段座ぐり部には、前記サセプタの裏面まで貫通し、気相成長を行う際にも開放状態となる貫通孔が形成されており、サセプタの裏面側には、上段座ぐり部に対応する位置に溝が設けられたものであることを特徴とするサセプタである。これによって、半導体基板外周部であって、サセプタの裏面側の上段座ぐり部に対応する位置の温度を下げ、基板裏面における外周部と内周部との熱的条件を一定にし、基板裏面における裏面デポの発生を抑制できるサセプタ及びそのサセプタを用いたエピタキシャルウェーハの製造方法が提供される。

Description

サセプタ及びこれを用いたエピタキシャルウェーハの製造方法
 本発明はサセプタ及びエピタキシャルウェーハの製造方法に関し、具体的には、エピタキシャル気相成長時に、ウェーハ裏面外周に発生する析出物(デポジション)を低減することができるサセプタ及び該サセプタを用いたエピタキシャルウェーハの製造方法に関する。
 半導体基板であるシリコンウェーハのエピタキシャル成長において、外周抵抗率分布の向上や裏面外観の改善を目的として、しばしば、サセプタ裏面まで貫通し、開放された貫通孔が設けられたサセプタが用いられる(特許文献1)。サセプタに設けられた貫通孔によって、種々の品質改善が達成されたが、それと同時に、ウェーハの裏面外周部への局所的なデポジション(以下、「裏面デポ」と呼ぶ)が発生するようになった。
 通常、原料ガスはウェーハ表面側に流されるが、エピタキシャル製造装置の機構上、サセプタの裏面にも原料ガスが回り込むことがある。サセプタの裏面に回りこんだ原料ガスは、サセプタの貫通孔から更にウェーハ裏面に回り込み、ウェーハ裏面で反応し、裏面デポが発生してしまう。
 このとき、ウェーハの裏面デポは、サセプタとウェーハとの接触部近傍、即ち、ウェーハ裏面の外周部分(直径300mmのウェーハであれば、ウェーハの中心から半径147~149mm程度の部分)で局所的に発生し、その高さは反応時間に応じて変化するが、数百nmに至る。
 裏面デポが発生したエピタキシャルウェーハの平坦度を裏面基準で測定した場合、その厚み形状は、外周部分で急激に増大した形となり、平坦度悪化の要因となる。デバイスが微細化され、ウェーハ外周部分にまで高平坦度が求められる昨今において、裏面デポは最先端品の製造に対して大きな妨げとなる。
 従来、裏面デポはウェーハとサセプタとが接触または非常に近接して重なり合う部分、すなわちサセプタの載り代の部分に集中して発生し、裏面デポ高さはサセプタ側の加熱量に応じて変動することから、前記サセプタの載り代を可能な限り小さくする方法や、逆にサセプタの載り代を拡大し、裏面デポを連続的に発生させる方法、またはサセプタ下側のランプによるランプ加熱を低減するという方法などの対策が主として用いられ、対応されてきた。
 しかしながら、上記の対策方法は、裏面デポに対しては有効ながらも、スリップ転位が発生しやすい、表面のナノトポロジーや外周抵抗率分布を損ねるといった弊害もあった。
 また、CVDコールドウオール法で誘導加熱型サセプタにより基板を加熱する際に、サセプタ中心近傍に溝を形成することにより、該溝から高周波磁界をサセプタ内に侵入させ、サセプタ中心近傍を高温領域とすることによって、サセプタとウェーハとの接触面の温度分布を均一にすることができるサセプタ(特許文献2)や、サセプタ裏面に多数の凹凸を形成することによって、ヒーターからの熱の吸収面積を増大させることができるサセプタ(特許文献3)が従来から用いられていた。
特開2003-229370 特開平10-12364 実開平6-23240
 半導体基板の外周縁部を支持する部分(以下、上段座ぐり部と呼ぶ)と、該上段座ぐり部よりも下段でかつサセプタ中心側に形成され、前記貫通孔を有する部分(以下、下段座ぐり部と呼ぶ)との二段構造で形成される座ぐりを有するサセプタにおいては、基板外周部の、特に上段座ぐり部では基板とサセプタとが接触し、かつ接触部以外も基板とサセプタとが近接しているため、裏面デポがあまり発生しない内周部よりも温度が高くなっていると考えられる。
 そこで本発明は、上記事情に鑑み、裏面デポは基板とサセプタとの間の温度環境に密接な関係が有ると推察し、基板外周部であって、サセプタの裏面側の上段座ぐり部に対応する位置の温度を下げ、基板裏面における外周部と内周部との熱的条件を一定にし、基板裏面における裏面デポの発生を抑制できるサセプタ及びそのサセプタを用いてエピタキシャル層の気相成長を行うエピタキシャルウェーハの製造方法を提供することを目的とする。
 すなわち本発明では、エピタキシャル層の気相成長を行う際に半導体基板を支持するサセプタであって、該サセプタの上面には、内部に前記半導体基板が配置される座ぐりが形成され、該座ぐりは、前記半導体基板の外周縁部を支持する上段座ぐり部と、該上段座ぐり部よりも下段でかつ中心側に形成された下段座ぐり部とを有する二段構造を成し、前記下段座ぐり部には、前記サセプタの裏面まで貫通し、前記気相成長を行う際にも開放状態となる貫通孔が形成されており、前記サセプタの裏面側には、前記上段座ぐり部に対応する位置に溝が設けられたものであることを特徴とするサセプタを提供する。
 このような溝が形成されたサセプタであれば、該形成された溝の側面積の分、サセプタ裏面の表面積が増大するため、サセプタ裏面からの放熱が増える。さらに、前記溝が形成されることによって段差が生まれ、ランプ等の加熱手段からの加熱光に対して影となる部分が生じるため、基板外周部の温度が下がり、基板外周部と内周部との熱的条件を一定にすることができる。これによって裏面デポの発生を抑制し、基板表面のナノトポロジーや外周抵抗率分布を向上して高品質にすることができる。
 またこのとき、前記溝は、複数の溝が放射状に配列されたものであることが好ましい。
 このように配列された溝であれば、より効率的かつ均一に基板外周部の温度を下げ、基板外周部と内周部との熱的条件をより確実に一定にすることができる。
 またこのとき、前記放射状の複数の溝は、それぞれ前記サセプタ上に載置される基板の半径方向の長さが、該基板半径の1/4以下であり、幅が5mm以下であって、深さが前記上段座ぐり部に対応する位置のサセプタの厚みの75%以下であることが好ましい。
 このように形成された溝であれば、本発明の十分な効果を得ることができるとともに、サセプタの強度も維持することができる。
 また、本発明は、エピタキシャルウェーハの製造方法であって、本発明のサセプタを用いて、該サセプタの座ぐりに基板を載置し、原料ガスを流しながら前記基板上にエピタキシャル層の気相成長を行うことを特徴とするエピタキシャルウェーハの製造方法を提供する。
 このように気相成長を行うことによって、基板外周部の温度を下げ、基板裏面における外周部と内周部との熱的条件を一定にさせることができ、裏面デポの発生を抑制することによって基板表面のナノトポロジーや外周抵抗率分布を損ねることなく、高品質のエピタキシャルウェーハを製造することができる。
 以上説明したように、本発明によれば、半導体基板の表面上にエピタキシャル層を気相成長させる際に、基板外周部と内周部との熱的条件を一定にすることができ、これによって裏面デポの発生を抑制し、基板表面のナノトポロジーや外周抵抗率分布を高品質にすることができるサセプタが提供される。また、こういったサセプタを用いて基板表面上にエピタキシャル層の気相成長を行うことにより、裏面デポの発生が抑制された高品質のエピタキシャルウェーハを製造することができる。
本発明において用いられるエピタキシャル成長装置の概略断面図の一例を示した図である。 本発明のサセプタの概略底面図及び上段座ぐり部周辺の概略断面図の一例を示した図である。 サセプタ裏面の上段座ぐり部に対応する位置における表面積比(溝無しを1とする)と、製造されたエピタキシャルウェーハの外周部におけるエピタキシャル層の厚みの高低差との相関を示した図である。 サセプタ裏面の上段座ぐり部に対応する位置における表面積比(溝無しを1とする)と、半導体基板におけるエピタキシャル層気相成長後の最大裏面デポ高さとの相関を示した図である。 実施例及び比較例において、WaferSightを用いて測定した結果を示した図である。 実施例及び比較例において、UA3Pを用いて測定した結果を示した図である。 本発明が適用されるエピタキシャルウェーハの製造方法の処理の流れを示したフロー図を示した図である。
 以下、本発明の実施の形態を、半導体基板としてシリコンウェーハを用いた場合を例に挙げて図面を参照しながら詳細に説明するが、本発明はこれらに限定されず、シリコンカーバイドウェーハや、GaPウェーハ、GaAsウェーハなどの化合物半導体ウェーハ等にも用いることができる。
 本発明のサセプタが用いられるエピタキシャル成長装置の一例の概略図を図1に示した。
 エピタキシャル成長装置51は、チャンバー52と、チャンバー52内部に配置されたサセプタ71、サセプタを下方から支持し、回転上下動自在なサセプタ支持手段53、チャンバー52内にウェーハを搬入したり、逆に外へと搬出したりするためのウェーハ搬送口54、チャンバー52内に各種ガスを供給するガス導入管55、ガス導入管55に接続され、チャンバー52内に水素ガスを供給する図示しない水素ガス供給手段及びシラン等の原料ガスを供給する図示しない原料ガス供給手段、チャンバー52内から各種ガスを排出するガス排出管57、チャンバー52の外部に備えられた加熱手段58、チャンバー52内にシリコンウェーハを移送し、また、チャンバー52内からシリコンウェーハを移送する図示しないウェーハ移送手段等から構成される。
 尚、サセプタ71には、リフトピン用貫通孔73が形成されているものであってもよい。リフトピン用貫通孔73には、リフトピン75が挿通される。
 また、チャンバー52の内部にはリフトピン75をサセプタ71に対して相対的に上下させることができるリフトピン昇降手段を設けてもよい。
 さらに、本発明であるサセプタ71の拡大概略図を図2に示した。サセプタ71には、載置するシリコンウェーハを位置決めする座ぐり72が形成され、該座ぐり72はウェーハWの外周縁部を支持する上段座ぐり部72aと、該上段座ぐり部よりも下段でかつ中心側に形成された下段座ぐり部72bとを有する二段構造を成している。また、下段座ぐり部72bの略全面に多数の貫通孔74が形成されている。
 また、サセプタ71裏面の上段座ぐり部72aに対応する位置には溝76が設けられている。
 上記溝76を設けたことにより、図2(b)のSで示される、サセプタ71の裏面の前記上段座ぐり部72aに対応する位置の表面積が増大され、ウェーハW裏面からの放熱が増える。さらに、ランプ等の加熱手段58からの加熱光に対して影となる部分も生じるため、ウェーハW外周部の温度が下がり、ウェーハW外周部と内周部との熱的条件を一定にすることができる。これによって裏面デポの発生を抑制し、ウェーハW主表面のナノトポロジーや外周抵抗率分布の劣化を抑制することができる。
 このような溝76は、図2(a)に示したように径方向に放射状に複数設けることによって、ウェーハW裏面外周部に対応するサセプタ71裏面の表面積をさらに均一かつ効果的に増大させることができるため好ましい。また、放射状に複数設けられた溝76それぞれのサイズを、ウェーハWの半径方向の長さを該ウェーハ半径の1/4以下、幅を5mm以下、深さを上段座ぐり部72aに対応する位置のサセプタ71の厚みの75%以下とすれば、より効果的である。
 尚、溝76の形状としては、図2(a)に示したような角柱状に限定されず、例えば円柱状や半球状としても良い。また、例えばサセプタ71の前記上段座ぐり部72aに対応する位置の全ての範囲を含むようにひとつのリング状の大きな溝を設けても良いが、前述のように溝を複数設けた方がより効果的であり、サセプタの強度上も問題が生じにくい。
 このようなサセプタ71を具備したエピタキシャル成長装置51を用いて、以下のようにして、シリコンウェーハ表面上にエピタキシャル層を気相成長させる。
 本発明が適用されるエピタキシャルウェーハの製造方法の手順のフロー図を図7に示す。
 まず、工程(a)では、エピタキシャル層を成長させる半導体基板(シリコンウェーハ)を準備する。
 次に、工程(b)において、シリコンウェーハに対し、適宜RCA洗浄等の洗浄を行う。
 この洗浄工程における洗浄法は、典型的なRCA洗浄の他、薬液の濃度や種類を通常行われる範囲で変更したものを用いることもできる。
 次に、工程(c)において、図示しないウェーハ移送手段を用いてチャンバー52内にシリコンウェーハWを移送し、本発明のサセプタ71の座ぐり部72に載置する。シリコンウェーハのサセプタ71への載置方法は、リフトピン75を用いる方法の他、通常用いられる載置方法を適用できる。
 次に、工程(d)では、チャンバー52内に、水素ガス供給手段からガス導入管55を通して、チャンバー52内に水素ガスを導入し、加熱手段58によって加熱して水素処理を行い、シリコンウェーハ表面に生じた自然酸化膜を除去する。
 次に、工程(e)において、シリコンウェーハの表面に、エピタキシャル層の気相成長を行う。このエピタキシャル層の気相成長は、モノシランやトリクロロシラン、四塩化珪素などの原料ガスと、キャリアガスとなる水素ガスとをチャンバー52内に導入し、加熱することによって行う。
 このようにして、シリコンウェーハの表面上にエピタキシャル層が形成されたエピタキシャルウェーハを製造することができる。
 このとき本発明では、裏面の、上段座ぐり部に対応する位置に溝を有するサセプタを用いているので、ウェーハ外周部の裏面デポを抑制し、高品質なエピタキシャルウェーハを製造することができる。
 以下、実験例、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
 ここで、以下の実験例、実施例及び比較例において、エピタキシャルウェーハの膜厚及びシリコンウェーハの裏面デポを評価する装置として用いたWaferSight(KLA-Tencor Corporation製)及びUA3P(パナソニック(株)製)について説明する。
 WaferSightとは、ウェーハに光を入射し、ウェーハからの反射光と基準面からの反射光との光学干渉によって生じる干渉縞の数と幅から、ウェーハ表面の変位量を計測することを原理とする測定器である。実際の測定においては、ウェーハ両面に前述の計測を行い、予め測定しておいた、ある特定の1点の厚みから全体の厚み変化を算出する。
 また、UA3Pは触針式表面変位量によって測定を行う測定機である。探針を微弱な一定荷重で対象に押し当て、対象の凹凸に応じて動く針の変位量をレーザーで計測することを原理とする。
 (実験例)
 まずサセプタとして、サセプタ裏面に何も設けられていないもの、サセプタ裏面の上段座ぐり部に対応する位置に溝を複数設けることによって、何も設けなかったものに対して裏面外周部の表面積が3倍に増大されたもの、また同様にして裏面外周部の表面積が5倍に増大されたものを用意した。
 これら、サセプタを具備するエピタキシャルウェーハ製造装置を用いて、サセプタの座ぐりに半導体基板としてシリコンウェーハを載置し、ランプで加熱して原料ガスを流しながら直径300mmのシリコンウェーハ表面上に厚さ5μmのエピタキシャル層の気相成長を行った。
 このとき前記溝は、ウェーハ半径方向の長さが10mm、幅が2mm、深さが2mmである直方体状のものとして、放射状に設けた。また、反応圧力を常圧、反応温度を1100℃、成長速度を2.5μm/minとした。
 このとき、本発明の溝が設けられているサセプタの裏面部分に対応する位置であるシリコンウェーハの中心から半径147mmおよび149mmの2点において、前記サセプタを具備する各エピタキシャルウェーハ製造装置によって製造されたエピタキシャルウェーハのエピタキシャル層形成前後でのウェーハ厚さ変化量をWaferSightで測定し、前記2点間のこの値(エピタキシャル層形成前後でのウェーハ厚さ変化量)の差を求めた。このときの結果を図3に示す。
 また、上記範囲におけるシリコンウェーハ裏面のデポ高さを、UA3Pを用いて測定した。このときの結果を図4に示す。
 図3及び図4から、サセプタ裏面の上段座ぐり部に対応する位置の表面積と、そのとき発生する裏面デポの高さには相関があることがわかる。これは、サセプタ裏面の表面積が増大することによって放熱量が増加し、さらに溝が設けられたことによってランプからの加熱光に対する影が生じたためであると考えられる。
 (実施例)
 裏面の上段座ぐり部に対応する位置に溝が設けられたサセプタを具備するエピタキシャルウェーハ製造装置を用いて、サセプタの座ぐりに半導体基板としてシリコンウェーハを載置し、原料ガスを流しながら直径300mmのシリコンウェーハ表面上に厚さ5μmのエピタキシャル層の気相成長を行った。
 このとき前記溝は、ウェーハ半径方向の長さが10mm、幅が2mm、深さが2mmである直方体状のものとして、放射状に240箇所設けた。また、反応圧力を常圧、反応温度を1100℃、成長速度を2.5μm/minとした。
 このとき、シリコンウェーハの中心から半径147mm~149mm程度の範囲、すなわち、本発明である溝が設けられているサセプタの裏面部分に対応する範囲において、前記サセプタを具備する各エピタキシャルウェーハ製造装置によって製造されたエピタキシャルウェーハのエピタキシャル層形成前後でのウェーハ厚さ変化量をWaferSightで測定し、各測定点の値から平均の変化量を差し引いた値を求めた。このときの結果を図5に示す。
 また、上記範囲におけるシリコンウェーハ裏面のデポ高さを、UA3Pを用いて測定した。このときの結果を図6に示す。
 (比較例)
 サセプタ裏面の上段座ぐり部に対応する位置に溝を設けなかったこと以外は実施例と同様に、直径300mmのシリコンウェーハ表面上に厚さ5μmのエピタキシャル層の気相成長を行った。
 このとき、シリコンウェーハの中心から半径147mm~149mm程度の範囲において、前記サセプタを具備する各エピタキシャルウェーハ製造装置によって製造されたエピタキシャルウェーハのエピタキシャル層形成前後でのウェーハ厚さ変化量をWaferSightで測定し、各測定点の値から平均の変化量を差し引いた値を求めた。このときの結果を図5に示す。
 また、上記範囲におけるシリコンウェーハ裏面のデポ高さを、UA3Pを用いて測定した。このときの結果を図6に示す。
 実施例及び比較例からわかるように、サセプタ裏面の上段座ぐり部に対応する位置に溝を設けることによって、サセプタ裏面の表面積を増大させるとともにランプからの加熱光に対する影を生じさせることで、ウェーハ外周部の温度を下げ、ウェーハ外周部と内周部との熱的条件を一定にすることができる。またこれによって裏面デポの発生を効果的に抑制し、ウェーハ表面のナノトポロジーや外周抵抗率分布を損ねることなく高品質のエピタキシャルウェーハを製造することができる。
 なお、本発明は上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (4)

  1.  エピタキシャル層の気相成長を行う際に半導体基板を支持するサセプタであって、該サセプタの上面には、内部に前記半導体基板が配置される座ぐりが形成され、該座ぐりは、前記半導体基板の外周縁部を支持する上段座ぐり部と、該上段座ぐり部よりも下段でかつ中心側に形成された下段座ぐり部とを有する二段構造を成し、前記下段座ぐり部には、前記サセプタの裏面まで貫通し、前記気相成長を行う際にも開放状態となる貫通孔が形成されており、前記サセプタの裏面側には、前記上段座ぐり部に対応する位置に溝が設けられたものであることを特徴とするサセプタ。
  2.  前記溝は、複数の溝が放射状に配列されたものであることを特徴とする請求項1に記載のサセプタ。
  3.  前記放射状の複数の溝は、それぞれ前記サセプタ上に載置される基板の半径方向の長さが、該基板半径の1/4以下であり、幅が5mm以下であって、深さが前記上段座ぐり部に対応する位置のサセプタの厚みの75%以下であることを特徴とする請求項2に記載のサセプタ。
  4.  エピタキシャルウェーハの製造方法であって、前記請求項1乃至請求項3のいずれか1項に記載のサセプタを用いて、該サセプタの座ぐりに半導体基板を載置し、原料ガスを流しながら前記基板上にエピタキシャル層の気相成長を行うことを特徴とするエピタキシャルウェーハの製造方法。
PCT/JP2012/000928 2011-03-04 2012-02-13 サセプタ及びこれを用いたエピタキシャルウェーハの製造方法 WO2012120787A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112012000726T DE112012000726T5 (de) 2011-03-04 2012-02-13 Suszeptor und Verfahren zum Herstellen eines Epitaxialwafers unter Verwendung desselben
KR1020137022547A KR101746451B1 (ko) 2011-03-04 2012-02-13 서셉터 및 이를 이용한 에피택셜 웨이퍼의 제조 방법
US13/985,592 US9708732B2 (en) 2011-03-04 2012-02-13 Susceptor with groove provided on back surface and method for manufacturing epitaxial wafer using the same
CN201280011707.1A CN103443904B (zh) 2011-03-04 2012-02-13 基座及使用此基座的外延晶片的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-048159 2011-03-04
JP2011048159A JP5477314B2 (ja) 2011-03-04 2011-03-04 サセプタ及びこれを用いたエピタキシャルウェーハの製造方法

Publications (1)

Publication Number Publication Date
WO2012120787A1 true WO2012120787A1 (ja) 2012-09-13

Family

ID=46797764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000928 WO2012120787A1 (ja) 2011-03-04 2012-02-13 サセプタ及びこれを用いたエピタキシャルウェーハの製造方法

Country Status (6)

Country Link
US (1) US9708732B2 (ja)
JP (1) JP5477314B2 (ja)
KR (1) KR101746451B1 (ja)
CN (1) CN103443904B (ja)
DE (1) DE112012000726T5 (ja)
WO (1) WO2012120787A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG2014013064A (en) * 2012-11-21 2015-02-27 Ev Group Inc Accommodating device for accommodation and mounting of a wafer
KR20170102020A (ko) 2015-01-23 2017-09-06 어플라이드 머티어리얼스, 인코포레이티드 웨이퍼 내의 퇴적 계곡들을 제거하기 위한 신규한 서셉터 설계
EP3471131A4 (en) * 2016-06-14 2020-03-18 Shin-Etsu Quartz Products Co., Ltd. QUARTZ GLASS ELEMENT WITH INCREASED EXPOSED SURFACE, METHOD FOR THE PRODUCTION THEREOF AND BLADE WITH SEVERAL CIRCULAR CUTTING EDGES
US10923385B2 (en) * 2016-11-03 2021-02-16 Lam Research Corporation Carrier plate for use in plasma processing systems
KR20190122230A (ko) 2017-02-28 2019-10-29 에스지엘 카본 에스이 기판-캐리어 구조
JP6330941B1 (ja) * 2017-03-07 2018-05-30 株式会社Sumco エピタキシャル成長装置およびプリヒートリングならびにそれらを用いたエピタキシャルウェーハの製造方法
CN108728898A (zh) * 2017-04-24 2018-11-02 上海新昇半导体科技有限公司 一种外延炉硅片基座
JP7018744B2 (ja) * 2017-11-24 2022-02-14 昭和電工株式会社 SiCエピタキシャル成長装置
CN111286723A (zh) * 2018-12-10 2020-06-16 昭和电工株式会社 基座和化学气相沉积装置
CN112309950B (zh) * 2019-07-26 2023-01-17 上海宏轶电子科技有限公司 一种晶圆清洗机用机台
CN113699586B (zh) * 2021-08-27 2022-07-26 江苏第三代半导体研究院有限公司 一种带空气桥结构的托盘及外延生长方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001010894A (ja) * 1999-06-24 2001-01-16 Mitsubishi Materials Silicon Corp 結晶成長用サセプタとこれを用いた結晶成長装置、およびエピタキシャル・ウェーハとその製造方法
WO2003069029A1 (en) * 2002-02-15 2003-08-21 Lpe Spa A susceptor provided with indentations and an epitaxial reactor which uses the same
JP2009252920A (ja) * 2008-04-04 2009-10-29 Sumco Corp エピタキシャルシリコンウェーハ及びその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2922059B2 (ja) 1992-07-10 1999-07-19 オルガノ株式会社 中空糸膜濾過器の運転方法
JP2603296Y2 (ja) 1992-08-21 2000-03-06 日新電機株式会社 半導体製造装置用サセプター
JP3061755B2 (ja) 1996-06-18 2000-07-10 三菱電機株式会社 Cvd装置用サセプタ及び高周波誘導加熱装置を有するcvd装置
WO1999023691A2 (en) * 1997-11-03 1999-05-14 Asm America, Inc. Improved low mass wafer support system
JP2003229370A (ja) 2001-11-30 2003-08-15 Shin Etsu Handotai Co Ltd サセプタ、気相成長装置、エピタキシャルウェーハの製造方法およびエピタキシャルウェーハ
JP3541838B2 (ja) 2002-03-28 2004-07-14 信越半導体株式会社 サセプタ、エピタキシャルウェーハの製造装置および製造方法
JP2003197532A (ja) * 2001-12-21 2003-07-11 Sumitomo Mitsubishi Silicon Corp エピタキシャル成長方法及びエピタキシャル成長用サセプター
JP4655935B2 (ja) * 2003-10-01 2011-03-23 信越半導体株式会社 シリコンエピタキシャルウェーハの製造方法
WO2005111266A1 (ja) * 2004-05-18 2005-11-24 Sumco Corporation 気相成長装置用サセプタ
JP5156446B2 (ja) 2008-03-21 2013-03-06 株式会社Sumco 気相成長装置用サセプタ
CN103210475B (zh) * 2010-11-15 2016-04-27 信越半导体股份有限公司 衬托器和外延晶片的制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001010894A (ja) * 1999-06-24 2001-01-16 Mitsubishi Materials Silicon Corp 結晶成長用サセプタとこれを用いた結晶成長装置、およびエピタキシャル・ウェーハとその製造方法
WO2003069029A1 (en) * 2002-02-15 2003-08-21 Lpe Spa A susceptor provided with indentations and an epitaxial reactor which uses the same
JP2009252920A (ja) * 2008-04-04 2009-10-29 Sumco Corp エピタキシャルシリコンウェーハ及びその製造方法

Also Published As

Publication number Publication date
CN103443904A (zh) 2013-12-11
DE112012000726T5 (de) 2013-11-14
CN103443904B (zh) 2016-02-10
KR20140027100A (ko) 2014-03-06
US20130319319A1 (en) 2013-12-05
JP5477314B2 (ja) 2014-04-23
KR101746451B1 (ko) 2017-06-13
JP2012186306A (ja) 2012-09-27
US9708732B2 (en) 2017-07-18

Similar Documents

Publication Publication Date Title
JP5477314B2 (ja) サセプタ及びこれを用いたエピタキシャルウェーハの製造方法
JP5565472B2 (ja) サセプタ及びエピタキシャルウェーハの製造方法
JP5158093B2 (ja) 気相成長用サセプタおよび気相成長装置
US7615116B2 (en) Method for producing silicon epitaxial wafer and silicon epitaxial wafer
JP6424726B2 (ja) サセプタ及びエピタキシャル成長装置
TWI613751B (zh) 在反應器裝置中用於支撐晶圓之基座組件
WO2010013646A1 (ja) エピタキシャルウェーハの製造方法及びそれに用いられるウェーハの保持具
KR20050012936A (ko) 서셉터 및 이를 포함하는 증착 장치
JP2010040534A (ja) サセプタ、気相成長装置およびエピタキシャルウェーハの製造方法
KR20120125311A (ko) 기상 성장용 반도체 기판 지지 서스셉터, 에피택셜 웨이퍼의 제조장치 및 에피택셜 웨이퍼의 제조방법
JP5834632B2 (ja) サセプタ、該サセプタを用いた気相成長装置およびエピタキシャルウェーハの製造方法
US8038793B2 (en) Epitaxial growth method
JP2011165964A (ja) 半導体装置の製造方法
JP2009170676A (ja) エピタキシャルウェーハの製造装置及び製造方法
JP4984046B2 (ja) 気相成長用サセプタ及び気相成長装置並びに気相成長用サセプタの設計方法及び気相成長方法
JP2000012470A (ja) 気相成長装置
JP5440589B2 (ja) 気相成長装置及びエピタキシャルウェーハの製造方法
JP2009135201A (ja) 半導体製造装置および半導体製造方法
JP5754651B2 (ja) 気相成長装置の温度調整方法及びエピタキシャルウェーハの製造方法
TW201332055A (zh) 基座
KR20110087440A (ko) 반도체 제조용 서셉터 및 이를 포함하는 반도체 제조 장치
JP6841359B1 (ja) シリコンエピタキシャルウェーハ製造用サセプタの製造方法及びシリコンエピタキシャルウェーハの製造方法
JP2010040607A (ja) エピタキシャル成長用サセプタおよびエピタキシャルウェーハの製造方法
JP2013105924A (ja) シリコンエピタキシャルウェーハの製造方法
KR20220041490A (ko) 에피택셜층 증착 장비의 클리닝 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754531

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13985592

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137022547

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112012000726

Country of ref document: DE

Ref document number: 1120120007263

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12754531

Country of ref document: EP

Kind code of ref document: A1