WO2012120583A1 - 物体検出装置およびナビゲーション装置 - Google Patents

物体検出装置およびナビゲーション装置 Download PDF

Info

Publication number
WO2012120583A1
WO2012120583A1 PCT/JP2011/007310 JP2011007310W WO2012120583A1 WO 2012120583 A1 WO2012120583 A1 WO 2012120583A1 JP 2011007310 W JP2011007310 W JP 2011007310W WO 2012120583 A1 WO2012120583 A1 WO 2012120583A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
object detection
distance information
vertical direction
signal
Prior art date
Application number
PCT/JP2011/007310
Other languages
English (en)
French (fr)
Inventor
崇志 三上
敬 平野
摩梨花 新山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2013503238A priority Critical patent/JP5787978B2/ja
Priority to DE112011105005.4T priority patent/DE112011105005B4/de
Priority to CN201180066881.1A priority patent/CN103348259B/zh
Priority to US13/981,920 priority patent/US8666656B2/en
Publication of WO2012120583A1 publication Critical patent/WO2012120583A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3626Details of the output of route guidance instructions
    • G01C21/3629Guidance using speech or audio output, e.g. text-to-speech
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3697Output of additional, non-guidance related information, e.g. low fuel level
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/87Combinations of sonar systems
    • G01S15/876Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/168Driving aids for parking, e.g. acoustic or visual feedback on parking space
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2015/932Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles for parking operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2015/937Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles sensor installation details
    • G01S2015/939Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles sensor installation details vertical stacking of sensors, e.g. to enable obstacle height determination

Definitions

  • the present invention relates to an object detection device that detects an object based on a reflection result of a transmission signal and a navigation device to which the device is applied.
  • Patent Document 1 discloses a mobile machine including an ultrasonic sensor that creates a two-dimensional distance image on a specific horizontal plane by receiving reflection of ultrasonic waves with a plurality of sensors and delay-adding them.
  • Patent Document 2 has a configuration in which the number of ultrasonic sensors to be arranged is increased and arranged in a close array to reduce noise, and information on the vertical direction of an object is obtained. It is disclosed.
  • Patent Document 2 requires a large number of ultrasonic sensors, which increases the cost.
  • the present invention has been made to solve the above-described problems, and provides an object detection device that creates a two-dimensional distance image in which noise is suppressed with a small number of sensors and acquires three-dimensional object information. For the purpose.
  • An object detection apparatus includes: at least one transmission sensor that transmits a signal; at least two or more reception sensors that receive a reflection signal of the transmission signal; and a plurality of preset reference planes, A delay addition processing unit that generates two-dimensional distance information obtained by delay-adding two or more received reflection signals, and two-dimensional distance information on a plurality of reference planes generated by the delay addition processing unit in a vertical direction with respect to the reference plane An aggregation unit that generates the added aggregate distance information, and a detection unit that refers to the vertical strength of the aggregate distance information generated by the aggregate unit and detects an object at a position where the vertical strength is equal to or greater than a threshold value It is.
  • two-dimensional distance information with suppressed noise can be generated with a small number of sensors, and three-dimensional object information in consideration of information in the vertical direction with respect to the reference plane can be acquired.
  • FIG. 1 is a block diagram illustrating a configuration of an object detection device according to Embodiment 1.
  • FIG. 3 is a flowchart illustrating an operation of the object detection device according to the first embodiment. It is a figure which shows the unprocessed signal input into the signal processing part of the object detection apparatus by Embodiment 1. It is a figure which shows the signal which performed the matched filter process by the signal processing part of the object detection apparatus by Embodiment 1. FIG. It is the figure which showed the signal after an envelope process by the signal processing part of the object detection apparatus by Embodiment 1.
  • FIG. It is the figure which looked at the structure which the object detection apparatus by Embodiment 1 detects the obstruction A from the side.
  • FIG. 3 is an example illustrating a distance image of an obstacle A of the object detection device according to the first embodiment. It is the figure which looked at the structure which the object detection apparatus by Embodiment 1 detects the obstruction B from the side. 3 is an example showing a distance image of an obstacle B of the object detection device according to the first embodiment.
  • FIG. 6 is a block diagram illustrating a configuration of an object detection device according to a second embodiment. It is a figure which shows the object detection spherical surface with respect to the obstruction A of the object detection apparatus by Embodiment 2.
  • FIG. It is a figure which shows the object detection circle by the ultrasonic wave u2 with respect to the obstruction A of the object detection apparatus by Embodiment 2.
  • FIG. It is a figure which shows the change of the detection peak of the obstruction A of the object detection apparatus by Embodiment 2.
  • FIG. It is a figure which shows the object detection circle by the ultrasonic wave u1 with respect to the obstruction B of the object detection apparatus by Embodiment 2.
  • FIG. It is a figure which shows the change of the detection peak of the obstruction B of the object detection apparatus by Embodiment 2.
  • FIG. It is a block diagram which shows the structure of the navigation apparatus to which the object detection apparatus by Embodiment 1 is applied.
  • FIG. 1 is a block diagram showing a configuration of an object detection apparatus according to Embodiment 1 of the present invention.
  • the object detection apparatus 100 includes an ultrasonic sensor 1, an amplifier 2, an A / D conversion unit 3, a signal processing unit 4, a delay addition processing unit 5, a distance information aggregation unit 6, a memory unit 7, and an object detection unit. 8, the display part 9 and the transmission signal generation part 10 are comprised.
  • Ultrasonic sensors 1a, 1b, 1c, ..., 1n are sensors that transmit and receive ultrasonic waves.
  • the ultrasonic sensor 1 is composed of a sensor that transmits at least one ultrasonic wave and a sensor that receives reflected waves of at least two transmission waves. Note that a sensor that transmits ultrasonic waves may be configured to receive reflected waves.
  • the attachment position of the ultrasonic sensor 1 is assumed to be known, and the ultrasonic sensor 1 is attached to a position where ultrasonic waves can be transmitted in a range where an object is desired to be detected.
  • Amplifiers 2a, 2b, 2c,..., 2n (hereinafter collectively referred to as amplifier 2) amplify the signal received by the corresponding ultrasonic sensor 1.
  • a / D converters 3a, 3b, 3c,..., 3n (hereinafter collectively referred to as A / D converter 3) are analog signals received by ultrasonic sensor 1 and amplified by amplifier 2. Converts a value signal into a digital signal.
  • the signal processing unit 4 performs pre-processing before performing delay addition on the digital signal obtained from each A / D conversion unit 3. Details of the preprocessing will be described later.
  • the delay addition processing unit 5 delay-adds the plurality of signals that have been preprocessed by the signal processing unit 4 to generate distance information on a specific plane.
  • the distance information may be a distance image or the like, and the following description shows a configuration in which processing is performed using the generated distance image.
  • the distance information aggregating unit 6 aggregates the distance images created by the delay addition processing unit 5 in the vertical direction with respect to a specific plane and stores them in the memory unit 7.
  • the object detection unit 8 detects an object from the aggregated distance image (aggregated distance information) data aggregated by the distance information aggregating unit 6.
  • the display unit 9 presents the object detected by the object detection unit 8 to the user.
  • the transmission signal generation unit 10 drives a signal transmitted from the ultrasonic sensor 1.
  • FIG. 2 is a flowchart showing the operation of the object detection apparatus according to the first embodiment.
  • the object detection apparatus 100 an example in which ultrasonic waves are transmitted from the ultrasonic sensor 1b and reflected waves are received by the ultrasonic sensors 1a, 1b, and 1c will be described. Further, description will be made assuming that the object detected by the object detection unit 8 is an obstacle.
  • the signal encoded by the transmission signal generation unit 10 is driven, and ultrasonic waves are transmitted from the ultrasonic sensor 1b (step ST1).
  • a Barker code or the like is used for signal encoding.
  • All the ultrasonic sensors 1a, 1b, 1c receive the reflection of the ultrasonic wave transmitted in step ST1 for a predetermined time (step ST2).
  • the reflected wave signal received in step ST2 is amplified by the amplifiers 2a, 2b, and 2c, converted into digital signals by the A / D conversion units 3a, 3b, and 3c, and output to the signal processing unit 4 (step ST3). .
  • the signal processing unit 4 performs matched filter processing on the digital signal input from the A / D conversion unit 3 to suppress noise as preprocessing for delay addition. Further, the envelope processing is performed on the signal in which noise is suppressed by performing absolute value processing so that all signals are in the positive direction (step ST4).
  • 3 shows an unprocessed signal input to the signal processing unit 4
  • FIG. 4 shows a signal after matched filter processing
  • FIG. 5 shows a signal after envelope processing.
  • 3 to 5 show the signal intensity with respect to the distance from the installation position of the ultrasonic sensor 1.
  • the delay addition processing unit 5 uses the aperture synthesis method to draw a grid on a specific plane (here, a plane that is horizontal with respect to the ground on which the obstacle is provided, hereinafter referred to as a specific horizontal plane).
  • a specific plane here, a plane that is horizontal with respect to the ground on which the obstacle is provided, hereinafter referred to as a specific horizontal plane.
  • the signals obtained in step ST4 are delayed and added for all the ultrasonic sensors 1, and a distance image on a specific horizontal plane is created (step ST5).
  • the process of step ST5 is performed on a plurality of specific horizontal surfaces.
  • the aperture synthesis method when adding a signal value, if it is decided to mesh a specific range on a specific horizontal plane, it is used that the distance between each ultrasonic sensor 1 and the center point of each cell of the mesh is uniquely determined. That is, if the distance of each path
  • the distance information aggregating unit 6 adds distance images created on a plurality of specific horizontal planes in the vertical direction with respect to the specific horizontal plane (step ST6).
  • step ST6 When creating a three-dimensional distance image, it is necessary to have obstacle resolution in the vertical direction with respect to a specific horizontal plane, and instead of adding, the two-dimensional distance images are arranged by cutting the mesh in the vertical direction.
  • the distance image added in step ST6 is stored in the memory unit 7 (step ST7). Further, the object detection unit 8 refers to the distance image added in step ST6, identifies a position having a signal intensity equal to or higher than a preset detection threshold, detects an obstacle, and displays the detection result via the display unit 9. To the user (step ST8).
  • FIG. 6 is a side view of the configuration in which the object detection device according to the first embodiment detects the obstacle A.
  • h the height of the placement position P of the ultrasonic sensor 1 from the ground O
  • HA the height of the obstacle A from the ground O.
  • the heights of the specific horizontal planes L1, L2, and L3 are z1, z2, and z3, respectively. It is assumed that the relationship of the following formula (1) is satisfied.
  • z1 ⁇ h z2 ⁇ z3 ⁇ HA (1)
  • the ultrasonic waves u1, u2, u3 are reflected by the obstacle A at the position in the horizontal direction x1, and the obstacle A is detected. .
  • FIG. 7 is a diagram illustrating an example of a distance image in the specific horizontal plane L1, the specific horizontal plane L2, and the specific horizontal plane L3 illustrated in FIG.
  • the ultrasonic wave ub transmitted from the ultrasonic sensor 1b is reflected by the obstacle A, and the reflected ultrasonic waves ua, ub ′, uc are received by the ultrasonic sensors 1a, 1b, 1c, and the obstacle A is detected. .
  • the obstacle A is detected on each of the specific horizontal planes L1, L2, and L3, if the distance images on these specific horizontal planes L1, L2, and L3 are added in the vertical direction with respect to the specific horizontal planes L1, L2, and L3, the obstacle is detected.
  • Object A is further emphasized and detected. This makes it easier for the object detection unit 8 to detect the obstacle A as an object.
  • FIG. 8 is a side view of the configuration in which the object detection apparatus according to the first embodiment detects the obstacle B.
  • L1, L2, and L3 where h is the height of the position P of the ultrasonic sensor 1 from the ground O and HB is the height of the obstacle B from the ground O.
  • the heights of the specific horizontal planes L1, L2, and L3 are z1, z2, and z3, respectively. It is assumed that the relationship of the following formula (2) is satisfied.
  • z1 ⁇ HB ⁇ h z2 ⁇ z3 (2)
  • FIG. 9A is a diagram illustrating an example of a distance image on the specific horizontal plane L1 illustrated in FIG. 8, and FIG. 9B is an example of a distance image on the specific horizontal plane L2 and the specific horizontal plane L3 illustrated in FIG. FIG.
  • the ultrasonic wave ub transmitted from the ultrasonic sensor 1b is reflected by the obstacle B, and the reflected ultrasonic waves ua, ub ′, uc are received by the ultrasonic sensors 1a, 1b, 1c, Obstacle B is detected.
  • FIG. 9B the ultrasonic wave ub transmitted from the ultrasonic sensor 1b is not reflected by the obstacle B, and the obstacle B is not detected. Therefore, when the three distance images of the specific horizontal planes L1, L2, and L3 are added, the signal corresponding to the obstacle B becomes relatively weak. Thereby, it becomes difficult for the object detection unit 8 to detect the obstacle B as an object.
  • a plurality of ultrasonic sensors 1 that receive ultrasonic waves and a reflected wave of the transmitted ultrasonic waves, and the reflected waves received by the plural ultrasonic sensors 1
  • Delay addition processing unit 5 for delay-adding signals to create a distance image on a specific plane, and distance information for adding and summing distance images generated on a plurality of specific planes in a vertical direction with respect to the specific plane Since it is configured to include the aggregating unit 6, information correlated in the vertical direction with respect to the specific plane is emphasized, and a small object having a predetermined detection threshold or less has a certain size without being detected. It becomes easy to detect an object. In addition, it is possible to smooth electrical noise and reflected wave fluctuations that have no correlation in the vertical direction, and it is possible to generate a highly accurate distance image with a small number of ultrasonic sensors.
  • the delay addition processing unit 5 delays and adds reflected wave signals to create a distance image on a specific plane.
  • the data to be created is limited to an image. It can be changed appropriately without any problem.
  • FIG. 10 is a block diagram showing the configuration of the object detection apparatus according to the second embodiment.
  • the same or corresponding parts as those of the constituent elements of the object detection apparatus according to the first embodiment are denoted by the same reference numerals as those used in the first embodiment, and description thereof is omitted or simplified.
  • the object detection device 100 shown in FIG. 10 is provided with a distance information change amount acquisition unit 11 and an object height detection unit 12 in addition to the object detection device 100 described with reference to FIG. 1 in the first embodiment.
  • the distance information change amount acquisition unit 11 acquires the change amount of the detected position of the object and the signal intensity from the difference between the plurality of distance images created by the delay addition processing unit 5.
  • the object height detection unit 12 acquires the height information of the object from the detected position of the object and the change amount of the signal intensity acquired by the distance information change amount acquisition unit 11.
  • the ultrasonic sensor 1 is composed of a sensor that transmits at least one ultrasonic wave and a sensor that receives reflected waves of at least three transmission waves. As in the first embodiment, a sensor that transmits ultrasonic waves may be configured to receive reflected waves.
  • the attachment position of the ultrasonic sensor 1 is assumed to be known, and the ultrasonic sensor 1 is attached to a position where ultrasonic waves can be transmitted in a range where an object is desired to be detected.
  • FIG. 11 is a diagram illustrating an object detection spherical surface for the obstacle A of the object detection device according to the second embodiment.
  • the ultrasonic sensor 1 that receives the reflected wave is composed of at least three or more.
  • the delay addition processing unit 5 acquires a delay time from the transmission time of the reflected wave signal received by the ultrasonic sensor 1, and calculates the distance between the ultrasonic sensor 1 and the obstacle A using the delay time.
  • FIG. 12 is an object detection circle by the ultrasonic wave u2 output in the horizontal direction with respect to the specific horizontal plane L2, and shows the intersection of the two spherical surfaces of the ultrasonic sensor 1a and the ultrasonic sensor 1b shown in FIG. Yes.
  • an object detection circle based on the ultrasonic wave u1 and an object detection circle based on the ultrasonic wave u3 are similarly generated.
  • the distance information aggregating unit 6 generates an aggregated distance image in which noise is suppressed by adding these object detection circles generated by the delay addition processing unit 5 in the vertical direction with respect to the specific horizontal planes L1, L2, and L3.
  • the reflected wave of the ultrasonic wave u2 output from the front with respect to the obstacle A is observed to be the largest. This is because the directivity of transmission / reception of a general ultrasonic sensor is highest in the front direction.
  • the obstacle A is observed at a position x1 that is an intersection of the object detection circle by the ultrasonic wave u2 of the ultrasonic sensor 1a and the specific horizontal plane L2.
  • the object detection spherical surface of the other ultrasonic sensor 1b also intersects at the intersection to strengthen the signals.
  • FIG. 13 is a diagram showing signal peaks of distance images created on the specific horizontal planes L1, L2, and L3.
  • the position x2 appears at a position farther than the position x1, and this is because the object detection circle by the ultrasonic wave u1 intersects at a position farther from the position x1 in the specific horizontal plane L2.
  • FIG. 15 is a diagram showing signal peaks when the distance image is created on each of the specific horizontal planes L1, L2, and L3 of the obstacle B.
  • the distance information change amount acquisition unit 11 creates a distance image on each of the specific horizontal planes L1, L2, and L3 and calculates an obstacle detection position by the above-described processing. Furthermore, the difference of the vertical distance image is calculated with respect to the specific horizontal planes L1, L2, and L3, and the change amount of the signal strength in the vertical direction is calculated. In addition, when calculating the difference of the distance image of a perpendicular direction, the difference calculation reference plane is set, for example, a difference is calculated on the basis of the specific horizontal plane L1 of the lowest position.
  • the object height detection unit 12 refers to the detected position of the object in the distance image acquired by the distance information change amount acquisition unit 11 and the change amount of the signal intensity in the vertical direction, and acquires the height information of the obstacle.
  • the acquired height information may be displayed on the display unit 9 or may be output to the object detection unit 8.
  • the object detection unit 8 detects an obstacle in consideration of the acquired height information.
  • Condition 1 Strength at specific horizontal plane L1, strength at specific horizontal plane L3 ⁇ strength at specific horizontal plane L2
  • Condition 2 strength at specific horizontal plane L2 ⁇ strength at specific horizontal plane L1 and position x2 at specific horizontal plane L2> specific horizontal plane L1 Position x1 at When the obstacle satisfies the above condition 1, it is determined that the obstacle is higher than the installation position height h of the ultrasonic sensor 1. Conversely, when the obstacle satisfies the above condition 2, it is determined that the obstacle is lower than the installation position height h of the ultrasonic sensor 1.
  • the distance image change amount acquisition unit that acquires the change amount of the signal intensity in the vertical direction with respect to the detection position of the object and the specific horizontal plane of the object, and the change amount of the signal intensity
  • an object height detecting unit that detects the height of the object from the object, and from the amount of change in the detected position of the object and the signal intensity, The object having a height less than the height of the installation position of the ultrasonic sensor 1 can be discriminated.
  • Embodiment 3 FIG.
  • the three ultrasonic sensors 1a, 1b, and 1c are arranged on the same plane, and the object is lower than the installation position height h of the ultrasonic sensor 1 and higher than the installation position height h.
  • a configuration that only distinguishes from an object is shown. Therefore, an object that exists only at a position higher than the installation position height h of the ultrasonic sensor 1, that is, a floating object, an object whose shape is lower than the installation position height h, and is difficult to detect is also described above. Since the same tendency as the thing A and the obstacle B is shown, it was difficult to distinguish.
  • At least one ultrasonic sensor among the plurality of ultrasonic sensors is arranged on a horizontal plane different from the installation surface of the other ultrasonic sensors, thereby eliminating vertical symmetry.
  • the structure which detects the height of an object on a finer condition is shown. For example, when one of the three ultrasonic sensors is installed at a position lower than the installation positions of the other two ultrasonic sensors, the object is determined by determining whether the following conditions are met More detailed height can be detected.
  • Condition 3 Strength at specific horizontal plane L1 ⁇ Strength at specific horizontal plane L2 ⁇ Strength at specific horizontal plane L3
  • Condition 4 Strength at specific horizontal plane L3 ⁇ Strength at specific horizontal plane L2 ⁇ Strength at specific horizontal plane L1
  • the object exists only at a position higher than the installation position of the two ultrasonic sensors.
  • the condition 4 is satisfied, the object is an object having a height lower than the installation position height of the one ultrasonic sensor. Can be determined.
  • At least one of the plurality of ultrasonic sensors is configured to be arranged on a horizontal plane different from the installation surface of the other ultrasonic sensors. Therefore, an object that exists only at a position higher than the installation position height of the ultrasonic sensor or an object having a height lower than the installation position height of the ultrasonic sensor can be discriminated. As a result, when the object detection device is used for monitoring the rear of the vehicle, it is possible to determine that an object that exists only at a low position is a curb or a car stop, and notify the user as another object that is not an object. .
  • FIG. 16 is a block diagram showing a configuration of a navigation device equipped with the object detection device according to the first embodiment.
  • the navigation device 200 includes, for example, an ultrasonic sensor 1, an amplifier 2, an A / D conversion unit 3, a signal processing unit 4, a delay addition processing unit 5, a distance information aggregation unit 6, and a memory having the same functions as those in the first embodiment.
  • a position information acquisition unit 201 that acquires the current position of the host vehicle, and map data that stores map data as a navigation function.
  • a storage unit 202, a route guide unit 203 that guides the route of the host vehicle using the host vehicle position information and map data, and a notification unit 204 that presents the route to be guided to the user are provided.
  • the object information can be provided in cooperation with route guidance.
  • parking assistance navigation is possible.
  • the traveling safety of the host vehicle can be enhanced.
  • the object detection apparatus 100 may include the display unit 9.
  • the configurations of Embodiment 2 and Embodiment 3 may be applied to navigation device 200 shown in FIG.
  • an output unit (not shown) for notifying that the object detection unit 8 has detected an object by sound or voice may be provided in addition to the configuration of the first to third embodiments described above.
  • At least one of the two-dimensional distance images acquired by the delay addition processing unit 5 may be displayed on the display unit.
  • the specific plane is a plane that is horizontal to the ground where the obstacle is provided.
  • the specific plane is perpendicular to the gravity.
  • a plane extending in the direction and a plane extending in the direction of gravity can be set as appropriate.
  • the object detection device and the navigation device generate two-dimensional distance information that suppresses noise with a small number of sensors, and at the same time, add three-dimensional information to the reference plane in consideration of information in the vertical direction. Since the object information can be acquired, it is suitable for use in an object detection device that detects an object based on a reflection result of a transmission signal, a navigation device to which the device is applied, and the like.

Abstract

 信号を送信し、さらに送信された信号の反射信号を受信する超音波センサ1と、あらかじめ設定された複数の基準平面において、超音波センサ1が受信した反射信号を遅延加算した2次元距離情報を生成する遅延加算処理部5と、遅延加算処理部5が生成した複数の基準平面における2次元距離情報を、基準平面に対して鉛直方向に加算した集約距離情報を生成する距離情報集約部6と、距離情報集約部6が生成した集約距離情報の鉛直方向の強度を参照し、鉛直方向の強度が閾値以上である位置に物体を検出する物体検出部8とを備えた。

Description

物体検出装置およびナビゲーション装置
 この発明は、送信信号の反射結果に基づいて物体を検出する物体検出装置および当該装置を適用したナビゲーション装置に関するものである。
 従来より、センサから送信した超音波の反射波が戻ってくるまでの時間を計測することによって物体からセンサまでの距離を検出し、複数の超音波センサの信号を遅延加算することによって物体の2次元的位置を取得する障害物検出装置が開示されている。例えば、特許文献1では、超音波の反射を複数のセンサで受信して遅延加算することにより、特定の水平面における2次元距離画像を作成する超音波センサを備えた移動機械が開示されている。
 しかし、従来の障害物検出手法では、特定の水平面における2次元距離画像を作成する場合に、ノイズや虚像が出現するという問題があった。この問題を解決する方法として、例えば特許文献2には、配置する超音波センサの数を増加させて密接なアレイ状に配置してノイズを軽減すると共に、物体の鉛直方向の情報を得る構成が開示されている。
特開2006-154975号公報 特開2009-264872号公報
 しかしながら、上述した特許文献2に開示された技術では、多くの超音波センサが必要となり、コストが増大するという課題があった。
 この発明は、上記のような課題を解決するためになされたもので、少ないセンサ数でノイズを抑制した2次元距離画像を作成すると共に、3次元の物体情報を取得する物体検出装置を提供することを目的とする。
 この発明に係る物体検出装置は、信号を送信する少なくとも1つの送信センサと、送信信号の反射信号を受信する少なくとも2つ以上の受信センサと、あらかじめ設定された複数の基準平面において、受信センサが受信した2以上の反射信号を遅延加算した2次元距離情報を生成する遅延加算処理部と、遅延加算処理部が生成した複数の基準平面における2次元距離情報を、基準平面に対して鉛直方向に加算した集約距離情報を生成する集約部と、集約部が生成した集約距離情報の鉛直方向の強度を参照し、鉛直方向の強度が閾値以上である位置に物体を検出する検出部とを備えるものである。
 この発明によれば、少ないセンサ数で、ノイズを抑制した2次元距離情報を生成すると共に、基準平面に対して鉛直方向の情報を加味した3次元の物体情報を取得することができる。
実施の形態1による物体検出装置の構成を示すブロック図である。 実施の形態1による物体検出装置の動作を示すフローチャートである。 実施の形態1による物体検出装置の信号処理部に入力される未処理の信号を示す図である。 実施の形態1による物体検出装置の信号処理部により整合フィルタ処理を行った信号を示す図である。 実施の形態1による物体検出装置の信号処理部により包絡線処理後の信号を示した図である。 実施の形態1による物体検出装置が障害物Aを検出する構成を横から見た図である。 実施の形態1による物体検出装置の障害物Aの距離画像を示す一例である。 実施の形態1による物体検出装置が障害物Bを検出する構成を横から見た図である。 実施の形態1による物体検出装置の障害物Bの距離画像を示す一例である。 実施の形態2による物体検出装置の構成を示すブロック図である。 実施の形態2による物体検出装置の障害物Aに対する物体検知球面を示す図である。 実施の形態2による物体検出装置の障害物Aに対する超音波u2による物体検出円を示す図である。 実施の形態2による物体検出装置の障害物Aの検出ピークの変化を示す図である。 実施の形態2による物体検出装置の障害物Bに対する超音波u1による物体検出円を示す図である。 実施の形態2による物体検出装置の障害物Bの検出ピークの変化を示す図である。 実施の形態1による物体検出装置を適用したナビゲーション装置の構成を示すブロック図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、この発明の実施の形態1の物体検出装置の構成を示すブロック図である。
 実施の形態1の物体検出装置100は、超音波センサ1、アンプ2、A/D変換部3、信号処理部4、遅延加算処理部5、距離情報集約部6、メモリ部7、物体検出部8、表示部9および送信信号生成部10で構成されている。
 超音波センサ1a,1b,1c,・・・,1n(以下、総称する場合は超音波センサ1と表記する)は超音波の送信および受信を行うセンサである。超音波センサ1は少なくとも1つの超音波を送信するセンサと、少なくとも2つ以上の送信波の反射波を受信するセンサで構成される。なお、超音波を送信するセンサが反射波の受信をするように構成することも可能である。超音波センサ1の取り付け位置は既知とし、物体を検出したい範囲に超音波が発信可能な位置に取り付ける。アンプ2a,2b,2c,・・・,2n(以下、総称する場合はアンプ2と表記する)は、対応する超音波センサ1で受信した信号を増幅する。A/D変換部3a,3b,3c,・・・,3n(以下、総称する場合はA/D変換部3と表記する)は、超音波センサ1で受信し、アンプ2で増幅されたアナログ値の信号をデジタル信号に変換する。
 信号処理部4は、各A/D変換部3から得られたデジタル信号に対して、遅延加算を行う前の前処理を行う。前処理の詳細については後述する。遅延加算処理部5は、信号処理部4において前処理が行われた複数の信号を遅延加算し、ある特定の平面上での距離情報を生成する。なお、距離情報は距離画像などでもよく、以下の説明では生成した距離画像を用いて処理を行う構成を示す。距離情報集約部6は、遅延加算処理部5で作成された距離画像をある特定の平面上に対して垂直方向に集約し、メモリ部7に格納する。物体検出部8は、距離情報集約部6で集約された集約距離画像(集約距離情報)データから物体を検出する。表示部9は、物体検出部8で検出された物体をユーザに提示する。送信信号生成部10は、超音波センサ1から送信する信号を駆動する。
 次に動作について説明する。
 図2は、実施の形態1による物体検出装置の動作を示すフローチャートである。なお、物体検出装置100の動作の説明では、超音波センサ1bから超音波を送信し、超音波センサ1a,1b,1cで反射波を受信する場合を例に説明する。さらに、物体検出部8が検出する物体が障害物であるとして説明する。
 まず、送信信号生成部10により符号化された信号が駆動され、超音波センサ1bから超音波を送信する(ステップST1)。なお、信号の符号化にはBarker符号などを用いる。全ての超音波センサ1a,1b,1cは、ステップST1で送信した超音波の反射を所定時間受信する(ステップST2)。ステップST2で受信した反射波の信号は、アンプ2a,2b,2cで増幅され、A/D変換部3a,3b,3cでデジタル信号に変換され、信号処理部4に出力される(ステップST3)。
 信号処理部4は、遅延加算の前処理として、A/D変換部3から入力されるデジタル信号に対して整合フィルタ処理を行ってノイズを抑制する。さらにノイズを抑制した信号に対して絶対値処理を行って全て正方向の信号とする包絡線処理を行う(ステップST4)。図3は信号処理部4に入力される未処理の信号を示し、図4は整合フィルタ処理後の信号を示し、図5は包絡線処理後の信号を示した図である。図3から図5は、超音波センサ1の設置位置からの距離に対する信号強度を示している。
 遅延加算処理部5は、開口合成法を用いて、特定平面(ここでは、障害物が設けられている地面に対して水平となる平面とする。以下、特定水平面と表記する。)上で方眼上のメッシュ上に、ステップST4で得られた信号を全ての超音波センサ1について遅延加算し、特定水平面上での距離画像を作成する(ステップST5)。なお、ステップST5の処理は複数の特定水平面上について行われる。
 開口合成法では信号値を加算する際、特定水平面上の特定の範囲をメッシュ化すると決めれば、各超音波センサ1とメッシュの各セルの中心点との距離は一意に決まることを利用する。すなわち、超音波センサ1bから送信した超音波の反射波が3つの超音波センサ1a,1b,1cに受信されるまでのそれぞれの経路の距離を求め、当該距離を音速で除算すれば、3つの信号それぞれについて反射波の遅延時間が求まる。求めた反射波の遅延時間を差し引いてメッシュ上で信号を加算すれば、3つの超音波センサで受信した反射波を同期して見ることができる。これにより、障害物が存在するセル上でしか信号は強め合わないので、障害物の位置を特定することができる。
 距離情報集約部6は、複数の特定水平面上で作成された距離画像を当該特定水平面に対して鉛直方向に加算する(ステップST6)。なお、3次元の距離画像を作成する場合には、特定水平面に対して鉛直方向の障害物分解能が必要であり、加算処理ではなく、鉛直方向にメッシュを切って2次元の距離画像を並べることにより画像を作成するが、この実施の形態1では、障害物の存在の有無が判断可能であればよく、ステップST6の処理のように加算することによりノイズの少ない距離画像を生成することができる。
 ステップST6で加算された距離画像は、メモリ部7に格納される(ステップST7)。さらに物体検出部8は、ステップST6で加算された距離画像を参照し、あらかじめ設定された検出閾値以上の信号強度を有する位置を特定して障害物を検出し、検出結果を表示部9を介してユーザに提示する(ステップST8)。
 物体検出部8が、ステップST6で加算された距離画像から障害物を検出する方法について、図6から図9を参照しながら詳細に説明する。
 図6は、実施の形態1による物体検出装置が障害物Aを検出する構成を横から見た図である。超音波センサ1の配置位置Pの地面Oからの高さをh、障害物Aの地面Oからの高さをHAとし、3つの特定水平面L1,L2,L3を考える。特定水平面L1,L2,L3の高さはそれぞれz1,z2,z3とする。また、以下の式(1)の関係を満たしているものとする。
 z1<h=z2<z3<HA   ・・・(1)
 図6では、いずれの特定水平面L1,L2,L3で距離画像を生成した場合でも、水平方向x1の位置において超音波u1,u2,u3が障害物Aで反射され、障害物Aが検出される。
 図7は、図6で示した特定水平面L1、特定水平面L2、特定水平面L3における距離画像の一例を示す図である。超音波センサ1bから送信された超音波ubが障害物Aで反射され、反射された超音波ua,ub´,ucが超音波センサ1a,1b,1cで受信され、障害物Aが検出される。さらに各特定水平面L1,L2,L3で障害物Aが検出されることから、これら各特定水平面L1,L2,L3における距離画像を、特定水平面L1,L2,L3に対して鉛直方向に加算すると障害物Aはさらに強調されて検出される。これにより、物体検出部8において障害物Aが物体として検出され易くなる。
 一方、図8は、実施の形態1による物体検出装置が障害物Bを検出する構成を横から見た図である。
 超音波センサ1の配置位置Pの地面Oからの高さをh、障害物Bの地面Oからの高さをHBとし、3つの特定水平面L1,L2,L3を考える。特定水平面L1,L2,L3の高さはそれぞれz1,z2,z3とする。また、以下の式(2)の関係を満たしているものとする。
 z1<HB<h=z2<z3   ・・・(2)
 図8では、特定水平面L1上の距離画像を生成した場合のみ、水平方向x1の位置において超音波u1が障害物Bで反射され、障害物Bが検出される。特定水平面L2および特定水平面L3の距離画像では水平方向x1位置に障害物Bは検出されない。
 図9(a)は、図8で示した特定水平面L1における距離画像の一例を示す図であり、図9(b)は図8で示した特定水平面L2および特定水平面L3における距離画像の一例を示す図である。図9(a)では、超音波センサ1bから送信された超音波ubが障害物Bで反射され、反射された超音波ua,ub´,ucが超音波センサ1a,1b,1cで受信され、障害物Bが検出される。一方、図9(b)では、超音波センサ1bから送信された超音波ubは障害物Bに反射されず、障害物Bは検出されない。そのため、特定水平面L1,L2,L3の3つの距離画像を加算すると、障害物Bに該当する信号は相対的に弱くなる。これにより、物体検出部8において障害物Bは物体として検出され難くなる。
 以上のように、この実施の形態1によれば、超音波の送信および送信された超音波の反射波を受信する複数の超音波センサ1と、複数の超音波センサ1が受信した反射波の信号を遅延加算して特定平面上での距離画像を作成する遅延加算処理部5と、複数の特定平面上で作成された距離画像を特定平面に対して鉛直方向に加算して集約する距離情報集約部6とを備えるように構成したので、特定平面に対して鉛直方向に相関のある情報が強調され、あらかじめ設定された検出閾値以下の小さい物体は検出することなく、ある程度の大きさを有する物体を検出し易くなる。また、鉛直方向に相関を持たない電気ノイズや反射波のゆらぎをスムージングすることができ、少ない超音波センサで精度の高い距離画像を生成することができる。
 なお、上述した実施の形態1では、遅延加算処理部5が反射波の信号を遅延加算して特定平面上での距離画像を作成する構成を示したが、作成するデータは画像に限定されることなく適宜変更可能である。
実施の形態2.
 上述した実施の形態1では、特定平面に対して鉛直方向に相関関係を加算して物体を強調し、ノイズを抑制した距離画像を用いて物体を検出する構成を示したが、この実施の形態2では、特定平面に対して鉛直方向の信号の変化量を用いて物体の高さ情報を得る構成を示す。図10は、実施の形態2による物体検出装置の構成を示すブロック図である。なお、以下では、実施の形態1による物体検出装置の構成要素と同一または相当する部分には実施の形態1で使用した符号と同一の符号を付して説明を省略または簡略化する。図10に示す物体検出装置100は、上記実施の形態1で図1を用いて説明した物体検出装置100に距離情報変化量取得部11および物体高さ検出部12を追加して設けている。
 距離情報変化量取得部11は、遅延加算処理部5で作成された複数の距離画像の差分から、物体の検出位置と信号強度の変化量を取得する。物体高さ検出部12は、距離情報変化量取得部11が取得した物体の検出位置と信号強度の変化量から、物体の高さ情報を取得する。超音波センサ1は少なくとも1つの超音波を送信するセンサと、少なくとも3つ以上の送信波の反射波を受信するセンサで構成される。なお、実施の形態1と同様に、超音波を送信するセンサが反射波の受信をするように構成することも可能である。超音波センサ1の取り付け位置は既知とし、物体を検出したい範囲に超音波が発信可能な位置に取り付ける。
 次に、距離情報変化量取得部11および物体高さ検出部12の処理動作について図11から図15を参照しながら説明する。なお、実施の形態1と同様に検出する物体は障害物であるとして説明する。
 図11は、実施の形態2による物体検出装置の障害物Aに対する物体検知球面を示す図である。なお、この実施の形態2では反射波を受信する超音波センサ1は少なくとも3つ以上で構成すると上述したが、図11では説明のために例外的に2つの超音波センサ1a,1bが反射波を受信する構成を示している。
 まず遅延加算処理部5が、超音波センサ1が受信した反射波の信号の発信時刻から遅延時間を取得し、当該遅延時間を用いて超音波センサ1と障害物Aとの距離を算出する。算出した距離と、超音波センサ1からの半径とが等しい球面状のどこかに障害物Aが存在する。また、図11に示すように2つの超音波センサ1a,1bを中心とし、算出した距離を半径とする球を2つ描くと、当該2つの球の交線上(円周)に障害物Aが存在することが分かる。
 図12は、特定水平面L2に対して水平方向に出力された超音波u2による物体検出円であり、図11において示した超音波センサ1aと超音波センサ1bの2つの球面の交線を示している。また、図12では図示していないが、超音波u1による物体検出円および超音波u3による物体検出円も同様に生成される。距離情報集約部6は、遅延加算処理部5で生成されたこれらの物体検出円を特定水平面L1,L2,L3に対して鉛直方向に加算することでノイズを抑制した集約距離画像を生成した。
 一方で、各超音波u1,u2,u3のピーク強度を参照すると、障害物Aに対して正面から出力される超音波u2の反射波が最も大きく観測される。これは一般的な超音波センサの送受信の指向性が正面方向で最も高いためである。特定水平面L2で距離画像を作成した場合、超音波センサ1aの超音波u2による物体検出円と特定水平面L2との交点である位置x1に障害物Aが観測される。もう一つの超音波センサ1bの物体検知球面も当該交点で交わり、信号を強め合う。
 一方、超音波u1による特定水平面L1での距離画像、および超音波u3による特定水平面L3での距離画像を作成すると、いずれの場合も位置x1に像が出現するが、超音波センサの送受信の指向性の影響でその信号強度は弱くなる。図13は、特定水平面L1,L2,L3で作成した距離画像の信号のピークを示した図である。
 次に、図14に示す超音波センサ1の配置位置よりも低い高さの障害物Bが存在する場合を考える。この場合、超音波センサ1の正面に障害物Bが存在しないため、超音波u1による物体検出円が最も強く観測され、特定水平面L1で距離画像を作成すると位置x1に障害物Bが検出される。特定水平面L2で距離画像を作成すると、3つの超音波センサの信号は重ならず、像が出現しない。しかし、実際には超音波u1による2つの超音波センサ間での物体検出円が特定水平面L2と交わった位置x2にピークが出現する。ただし、特定水平面L2では3つ全ての超音波センサ間で物体検出円が重なる点は存在しないため、特定水平面L1のピークと比較すると強度の低いピークとなる。また、位置x2は、位置x1よりも遠い位置に出現するが、これは超音波u1による物体検出円が特定水平面L2では位置x1より遠い位置で交わることによるものである。
 同様に、特定水平面L3での距離画像を作成すると、位置x2より超音波センサ1側寄りの位置x3にピークが出現する。この位置x3におけるピークは、3つの超音波センサの焦点がさらにずれるため、さらに強度の低いピークとなる。図15は障害物Bの、それぞれの特定水平面L1,L2,L3で距離画像を作成した場合の信号のピークを示した図である。
 距離情報変化量取得部11は、上述の処理により、各特定水平面L1,L2,L3における距離画像を作成して障害物の検出位置を算出する。さらに、特定水平面L1,L2,L3に対して鉛直方向の距離画像の差分を算出して当該鉛直方向の信号強度の変化量を算出する。なお、鉛直方向の距離画像の差分を算出する場合、最も低い位置の特定水平面L1を基準として差分を算出するなど、差分算出の基準平面を設定する。物体高さ検出部12は、距離情報変化量取得部11において取得された距離画像における物体の検出位置と、鉛直方向の信号強度の変化量を参照し、障害物の高さ情報を取得する。取得した高さ情報は、表示部9に表示してもよいし、物体検出部8に出力してもよい。物体検出部8は、取得した高さ情報も加味して障害物の検出を行う。
 図13および図15で示した結果を参照しながら、具体的な高さ情報の取得について説明する。まず、超音波センサ1の設置位置高さh以上の高さを有する障害物Aと、超音波センサ1の設置位置高さh未満の高さである障害物Bとでは、ピーク強度の変化の仕方が異なる。従って、超音波センサ1の設置位置高さhよりも低い位置に存在する特定水平面L1、超音波センサ1の設置位置高さhと同程度の高さの特定水平面L2、超音波センサ1の設置位置高さhよりも高い特定水平面L3における信号強度が、以下に示す2つの条件のどちらに該当するか判定することにより、障害物の高さを検出する。
 条件1:特定水平面L1での強度、特定水平面L3での強度<特定水平面L2での強度
 条件2:特定水平面L2での強度<特定水平面L1での強度
     かつ
     特定水平面L2における位置x2>特定水平面L1における位置x1
 障害物が上記条件1を満たす場合、超音波センサ1の設置位置高さhよりも高い障害物であると判定する。逆に障害物が上記条件2を満たす場合、超音波センサ1の設置位置高さhよりも低い障害物であると判定する。
 以上のように、この実施の形態2によれば、物体の検出位置および物体の特定水平面に対して鉛直方向の信号強度の変化量を取得する距離画像変化量取得器と、信号強度の変化量から物体の高さを検出する物体高さ検出部とを備えるように構成したので、物体の検出位置および信号強度の変化量から、超音波センサの設置位置高さ以上の高さを有する物体と、超音波センサ1の設置位置高さ未満の高さを有する物体とを判別することができる。
実施の形態3.
 上述した実施の形態2では、3つの超音波センサ1a,1b,1cを同一平面上に並べる構成とし、超音波センサ1の設置位置高さhよりも低い物体と設置位置高さhよりも高い物体との区別のみを行う構成を示した。そのため、超音波センサ1の設置位置高さhより高い位置にのみ存在する物体、つまり浮いている物体や、設置位置高さhより低い部分の形状が細かく検出困難な物体なども、上述した障害物Aや障害物Bと同一の傾向を示すため区別することが困難であった。
 そこで、この実施の形態3では、複数の超音波センサのうち少なくとも1つの超音波センサを、他の超音波センサの設置面とは異なる水平面上に配置し、これにより上下方向の対称性がなくなり、より細かい条件で物体の高さを検出する構成を示す。
 例えば、3つの超音波センサのうち1つの超音波センサが他の2つの超音波センサの設置位置よりも低い位置に設置されている場合に、以下に示す条件に該当するか判定することにより物体のより詳細な高さを検出することができる。
 条件3:特定水平面L1での強度<特定水平面L2での強度<特定水平面L3での強度
 条件4:特定水平面L3での強度<特定水平面L2での強度<特定水平面L1での強度
 条件3を満たす場合、物体は2つの超音波センサの設置位置より高い位置にのみ存在するものと判別でき、条件4を満たす場合、物体は1つの超音波センサの設置位置高さより低い高さを有する物体であると判別することができる。
 以上のように、この実施の形態3によれば、複数の超音波センサのうち、少なくとも1つの超音波センサを、他の超音波センサの設置面とは異なる水平面上に配置するように構成したので、超音波センサの設置位置高さより高い位置にのみ存在する物体あるいは、超音波センサの設置位置高さより低い高さを有する物体を判別することができる。これにより、当該物体検出装置を車両の後方監視などに利用する場合、低い位置にのみ存在する物体は縁石や車止めなどと判断し、物体ではない別のオブジェクトとしてユーザに通知することが可能となる。
 また、上述した実施の形態1から実施の形態3の構成を有する物体検出装置100をナビゲーション装置に適用してもよい。図16は、実施の形態1による物体検出装置を搭載したナビゲーション装置の構成を示すブロック図である。ナビゲーション装置200は、例えば、実施の形態1と同様の機能を有する超音波センサ1、アンプ2、A/D変換部3、信号処理部4、遅延加算処理部5、距離情報集約部6、メモリ部7、物体検出部8、および送信信号生成部10を備えた物体検出装置100を備えると共に、ナビゲーション機能として、自車両の現在位置を取得する位置情報取得部201、地図データを記憶する地図データ記憶部202と、自車位置情報および地図データを用いて自車両の経路を案内する経路案内部203と、案内する経路をユーザに提示する報知部204を備えている。
 物体検出装置100の物体検出部8が検出した物体に関する情報をナビゲーション装置200の報知部204によりユーザ提示することにより、経路案内に協調させて物体情報を提供することができる。また、駐車支援ナビゲーションが可能になる。さらに、自車両が発車する際の障害物報知や、自車両の右左折時の巻き込み検知および報知を行うことができる。これらにより自車両の走行安全性を高めることができる。また、物体検出装置100が表示部9を備えていてもよい。さらに実施の形態2および実施の形態3の構成を図16に示すナビゲーション装置200に適用してもよい。
 また、上述した実施の形態1から実施の形態3の構成に、物体検出部8が物体を検出した旨を音または音声で通知する出力部(不図示)を追加して設けてもよい。
 また、上述した実施の形態1から実施の形態3の構成において、遅延加算処理部5が取得した2次元距離画像の少なくとも1つを表示部に表示するように構成してもよい。
 なお、上述した実施の形態1から実施の形態3では、特定平面を障害物が設けられている地面に対して水平となる平面とする構成を示したが、当該特定平面は重力に対して垂直方向に広がる平面や、重力方向に広がる平面など適宜設定可能である。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 以上のように、この発明に係る物体検出装置およびナビゲーション装置は、少ないセンサ数で、ノイズを抑制した2次元距離情報を生成すると共に、基準平面に対して鉛直方向の情報を加味した3次元の物体情報を取得することができるように構成したので、送信信号の反射結果に基づいて物体を検出する物体検出装置および当該装置を適用したナビゲーション装置等に用いるのに適している。
 1 超音波センサ、2 アンプ、3 A/D変換部、4 信号処理部、5 遅延加算処理部、6 距離情報集約部、7 メモリ部、8 物体検出部、9 表示部、10 送信信号生成部、11 距離情報変化量取得部、12 物体高さ検出部、100 物体検出装置、200 ナビゲーション装置、201 位置情報取得部、202 地図データ記憶部、203 経路案内部、204 報知部。

Claims (7)

  1.  信号を送信し、物体により反射した前記送信信号の反射信号の受信結果に基づいて、前記物体を検出する物体検出装置において、
     前記信号を送信する少なくとも1つの送信センサと、
     前記送信センサから送信された信号の反射信号を受信する少なくとも2つ以上の受信センサと、
     あらかじめ設定された複数の基準平面において、前記受信センサが受信した2以上の反射信号を遅延加算した2次元距離情報を生成する遅延加算処理部と、
     前記遅延加算処理部が生成した前記複数の基準平面における2次元距離情報を、前記基準平面に対して鉛直方向に加算した集約距離情報を生成する集約部と、
     前記集約部が生成した集約距離情報の前記鉛直方向の強度を参照し、前記鉛直方向の強度が閾値以上である位置に物体を検出する検出部とを備えたことを特徴とする物体検出装置。
  2.  前記受信センサは、少なくとも3つ以上で構成され、
     前記遅延加算処理部は、あらかじめ設定された複数の基準平面において、前記受信センサが受信した3以上の反射信号を遅延加算した2次元距離情報を生成し、
     前記遅延加算処理部が生成した前記複数の基準平面における2次元距離情報の差分を算出し、当該差分から前記物体の検出位置および前記反射信号の前記複数の基準平面に対して鉛直方向の変化量を取得する変化量取得部と、
     前記変化量取得部が取得した前記物体の検出位置および前記反射信号の前記鉛直方向の変化量に基づいて、前記物体の前記鉛直方向の高さを検出する高さ検出部とを備えたことを特徴とする請求項1記載の物体検出装置。
  3.  前記検出部は、前記高さ検出部が取得した前記物体の高さが予め設定した閾値以上である場合に物体として検出することを特徴とする請求項2記載の物体検出装置。
  4.  前記遅延加算処理部は、前記2次元距離情報として、前記複数の基準平面のうち少なくとも1つの基準平面における2次元距離画像を生成することを特徴とする請求項1記載の物体検出装置。
  5.  前記検出部が検出した物体を表示する表示部を備えたことを特徴とする請求項1記載の物体検出装置。
  6.  前記検出部における前記物体の検出を音または音声により通知する出力部を備えたことを特徴とする請求項1記載の物体検出装置。
  7.  請求項1記載の物体検出装置を搭載し、
     前記車両の現在位置を取得する位置情報取得部と、
     地図データを記憶する地図データ記憶部と、
     前記地図データ記憶部に格納された地図データおよび前記位置情報取得部で取得された前記車両の現在位置を用いて、前記車両の経路を案内する経路案内部と、
     前記経路案内部の経路案内を報知すると共に、前記物体検出装置が検出した前記物体を報知する報知部とを備えたことを特徴とするナビゲーション装置。
PCT/JP2011/007310 2011-03-04 2011-12-27 物体検出装置およびナビゲーション装置 WO2012120583A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013503238A JP5787978B2 (ja) 2011-03-04 2011-12-27 物体検出装置およびナビゲーション装置
DE112011105005.4T DE112011105005B4 (de) 2011-03-04 2011-12-27 Objekterfassungsvorrichtung und Navigationsvorrichtung
CN201180066881.1A CN103348259B (zh) 2011-03-04 2011-12-27 物体检测装置以及导航装置
US13/981,920 US8666656B2 (en) 2011-03-04 2011-12-27 Object detection device and navigation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011047694 2011-03-04
JP2011-047694 2011-03-04

Publications (1)

Publication Number Publication Date
WO2012120583A1 true WO2012120583A1 (ja) 2012-09-13

Family

ID=46797595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/007310 WO2012120583A1 (ja) 2011-03-04 2011-12-27 物体検出装置およびナビゲーション装置

Country Status (5)

Country Link
US (1) US8666656B2 (ja)
JP (1) JP5787978B2 (ja)
CN (1) CN103348259B (ja)
DE (1) DE112011105005B4 (ja)
WO (1) WO2012120583A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083787A1 (ja) * 2012-11-27 2014-06-05 日産自動車株式会社 車両用加速抑制装置及び車両用加速抑制方法
JP2015166705A (ja) * 2014-03-04 2015-09-24 パナソニックIpマネジメント株式会社 障害物検知装置
WO2019053812A1 (ja) * 2017-09-13 2019-03-21 三菱電機株式会社 障害物検出装置および障害物検出方法
WO2019058507A1 (ja) * 2017-09-22 2019-03-28 三菱電機株式会社 障害物検出装置および障害物検出方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201201230D0 (en) * 2012-01-25 2012-03-07 Univ Delft Tech Adaptive multi-dimensional data decomposition
US8949012B2 (en) * 2012-04-05 2015-02-03 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Automated multi-vehicle position, orientation and identification system and method
JP6299583B2 (ja) * 2014-12-18 2018-03-28 三菱電機株式会社 エレベータの群管理装置
DE102015003584A1 (de) * 2015-03-19 2016-09-22 Alexander Rudoy Verfahren und Vorrichtung zur 3D-Positionsbestimmung
JP6544284B2 (ja) * 2016-04-01 2019-07-17 株式会社デンソー 検知装置、及び検知システム
US11733377B2 (en) 2018-05-07 2023-08-22 Texas Instruments Incorporated Time of flight and code signature detection for coded ultrasonic transmission
EP3579020B1 (de) * 2018-06-05 2021-03-31 Elmos Semiconductor SE Verfahren zur erkennung eines hindernisses mit hilfe von reflektierten ultraschallwellen
CN108845033B (zh) * 2018-06-06 2021-02-26 北京电子工程总体研究所 一种微型探测装置
US11644555B2 (en) 2018-07-27 2023-05-09 Texas Instruments Incorporated Threshold generation for coded ultrasonic sensing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006154975A (ja) * 2004-11-25 2006-06-15 Matsushita Electric Works Ltd 超音波センサを備えた移動機械
JP2006317221A (ja) * 2005-05-11 2006-11-24 Nec Corp 対象物認識装置及び認識方法
JP2007248146A (ja) * 2006-03-14 2007-09-27 Omron Corp レーダ装置
JP2008204281A (ja) * 2007-02-21 2008-09-04 Nippon Soken Inc 物体検出装置、および車車間通信システム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784377A (en) * 1980-11-14 1982-05-26 Nippon Denso Co Ltd Device for detecting obstacle
US5026153A (en) * 1989-03-01 1991-06-25 Mitsubishi Denki K.K. Vehicle tracking control for continuously detecting the distance and direction to a preceding vehicle irrespective of background dark/light distribution
US5111401A (en) * 1990-05-19 1992-05-05 The United States Of America As Represented By The Secretary Of The Navy Navigational control system for an autonomous vehicle
DE69124726T2 (de) * 1990-10-25 1997-07-03 Mitsubishi Electric Corp Vorrichtung zur Abstandsdetektion für ein Kraftfahrzeug
US8538636B2 (en) * 1995-06-07 2013-09-17 American Vehicular Sciences, LLC System and method for controlling vehicle headlights
DE59809476D1 (de) * 1997-11-03 2003-10-09 Volkswagen Ag Autonomes Fahrzeug und Verfahren zur Steuerung eines autonomen Fahrzeuges
JP4114292B2 (ja) * 1998-12-03 2008-07-09 アイシン・エィ・ダブリュ株式会社 運転支援装置
US6832137B2 (en) * 2003-04-17 2004-12-14 Ford Motor Company Leaky cable based method and system for automotive parking aid, reversing aid, and pre-collision sensing
JP5129435B2 (ja) * 2005-02-23 2013-01-30 パナソニック株式会社 超音波センサを用いた物体検知方法
JP2007315892A (ja) 2006-05-25 2007-12-06 Aisin Seiki Co Ltd 障害物検出装置および受信時刻推測方法
US20090273456A1 (en) * 2008-04-16 2009-11-05 Andre Albertini Freeway safety device
JP5228602B2 (ja) 2008-04-24 2013-07-03 株式会社日本自動車部品総合研究所 物体検出装置
CN101324669A (zh) * 2008-07-25 2008-12-17 杭州电子科技大学 多路超声波传感器信号处理方法
JP2010175471A (ja) * 2009-01-30 2010-08-12 Hitachi Automotive Systems Ltd レーダ装置
JP5418770B2 (ja) * 2009-07-29 2014-02-19 トヨタ自動車株式会社 レーダ装置
WO2012008573A1 (ja) * 2010-07-15 2012-01-19 株式会社日立メディコ 超音波撮像装置
JP5683232B2 (ja) * 2010-11-25 2015-03-11 キヤノン株式会社 被検体情報取得装置
KR101340014B1 (ko) * 2011-12-09 2013-12-10 에스엘 주식회사 위치 정보 제공 장치 및 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006154975A (ja) * 2004-11-25 2006-06-15 Matsushita Electric Works Ltd 超音波センサを備えた移動機械
JP2006317221A (ja) * 2005-05-11 2006-11-24 Nec Corp 対象物認識装置及び認識方法
JP2007248146A (ja) * 2006-03-14 2007-09-27 Omron Corp レーダ装置
JP2008204281A (ja) * 2007-02-21 2008-09-04 Nippon Soken Inc 物体検出装置、および車車間通信システム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083787A1 (ja) * 2012-11-27 2014-06-05 日産自動車株式会社 車両用加速抑制装置及び車両用加速抑制方法
JP5846316B2 (ja) * 2012-11-27 2016-01-20 日産自動車株式会社 車両用加速抑制装置及び車両用加速抑制方法
US9409574B2 (en) 2012-11-27 2016-08-09 Nissan Motor Co., Ltd. Vehicle acceleration suppression device and vehicle acceleration suppression method
JPWO2014083787A1 (ja) * 2012-11-27 2017-01-05 日産自動車株式会社 車両用加速抑制装置及び車両用加速抑制方法
JP2015166705A (ja) * 2014-03-04 2015-09-24 パナソニックIpマネジメント株式会社 障害物検知装置
WO2019053812A1 (ja) * 2017-09-13 2019-03-21 三菱電機株式会社 障害物検出装置および障害物検出方法
WO2019058507A1 (ja) * 2017-09-22 2019-03-28 三菱電機株式会社 障害物検出装置および障害物検出方法
JPWO2019058507A1 (ja) * 2017-09-22 2019-12-12 三菱電機株式会社 障害物検出装置

Also Published As

Publication number Publication date
JPWO2012120583A1 (ja) 2014-07-07
DE112011105005B4 (de) 2017-11-02
CN103348259A (zh) 2013-10-09
US8666656B2 (en) 2014-03-04
US20130311083A1 (en) 2013-11-21
CN103348259B (zh) 2015-06-03
JP5787978B2 (ja) 2015-09-30
DE112011105005T5 (de) 2013-11-28

Similar Documents

Publication Publication Date Title
JP5787978B2 (ja) 物体検出装置およびナビゲーション装置
JP5919328B2 (ja) 車両用衝突警告装置および車両用衝突警告方法
JP5710000B2 (ja) 物体検知装置
JP6333412B2 (ja) 障害物検知装置
JP6146228B2 (ja) 物体検知装置及び物体検知システム
JP6021755B2 (ja) 障害物検知装置
JP2007333486A (ja) 車両用障害物検知装置
JPWO2011013284A1 (ja) 車両用物体検知装置及び車両用物体検知方法
JP2016080649A (ja) 物体検知装置
JP6410614B2 (ja) 障害物検出装置および障害物検出方法
JP6403055B2 (ja) 物体検知装置
US20180100921A1 (en) Ultrasonic sensor device and sensing method of ultrasonic sensor device
JP4936755B2 (ja) 衝突防止装置
JP5436652B1 (ja) 車両の周辺監視装置及び車両の周辺監視方法
JP6485538B2 (ja) 信号処理装置、処理方法とプログラム、ならびに、目標検出装置、検出方法
CN109229015B (zh) 基于超声波传感器实现车辆360度障碍物报警提示的方法
KR102131450B1 (ko) 주차 보조 장치 및 그 동작 방법
JP2012146149A (ja) 死角車両検知システム、死角車両検知装置、死角車両検知方法およびそのプログラム
JP2019095302A (ja) 物体検出装置
WO2017141757A1 (ja) 物体検知システム
JP5074178B2 (ja) 運転者支援装置
JP6311230B2 (ja) 目標物検出装置、目標物検出方法、プログラム及び記録媒体
KR20130067648A (ko) 차량용 충돌 감지 시스템 및 그 방법
WO2021033354A1 (ja) 自律走行車両の衝突回避装置、衝突回避方法、衝突回避プログラム
JP2015210138A (ja) 車両用障害物検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860362

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013503238

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13981920

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120111050054

Country of ref document: DE

Ref document number: 112011105005

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11860362

Country of ref document: EP

Kind code of ref document: A1