WO2012118089A1 - 光学レンズの製造方法 - Google Patents

光学レンズの製造方法 Download PDF

Info

Publication number
WO2012118089A1
WO2012118089A1 PCT/JP2012/054963 JP2012054963W WO2012118089A1 WO 2012118089 A1 WO2012118089 A1 WO 2012118089A1 JP 2012054963 W JP2012054963 W JP 2012054963W WO 2012118089 A1 WO2012118089 A1 WO 2012118089A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
masking layer
lens
film
optical lens
Prior art date
Application number
PCT/JP2012/054963
Other languages
English (en)
French (fr)
Inventor
繁樹 大久保
政仁 山之内
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to AU2012224048A priority Critical patent/AU2012224048B2/en
Priority to CN201280019458.0A priority patent/CN103502877B/zh
Priority to KR1020137025168A priority patent/KR101639114B1/ko
Priority to EP12751953.6A priority patent/EP2682807A4/en
Priority to US14/001,291 priority patent/US9278492B2/en
Publication of WO2012118089A1 publication Critical patent/WO2012118089A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/06Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00317Production of lenses with markings or patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00865Applying coatings; tinting; colouring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00865Applying coatings; tinting; colouring
    • B29D11/00923Applying coatings; tinting; colouring on lens surfaces for colouring or tinting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/021Lenses; Lens systems ; Methods of designing lenses with pattern for identification or with cosmetic or therapeutic effects
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/16Laminated or compound lenses

Definitions

  • the present invention relates to a method for manufacturing an optical lens, and more particularly to a method for manufacturing an optical lens having a step of providing a pattern on a lens surface.
  • Spectacle lenses have various films covering the surface of the lens substrate.
  • a hard coat film for preventing scratches on the lens base material an antireflection film for preventing light reflection on the lens surface, and a water repellent film for preventing water scuffing of the lens Etc.
  • a water repellent film for preventing water scuffing of the lens Etc.
  • a film for suppressing the amount of light incident on the eye a configuration in which a semi-transparent thin film is coated in a dot shape on the entire surface of the lens and this upper part is covered with an antireflection film has been proposed (for example, the following patent Reference 1).
  • plastic lenses that are lightweight and excellent in dyeability are preferably used as lenses for eyeglasses with high fashionability, and for the purpose of further improving the design, the lenses are applied to the lenses by applying a colored paint using an inkjet method.
  • the structure which gives a pattern is also proposed (for example, refer to the following patent document 2).
  • the method of simply applying a colored paint to the lens by an inkjet method can control the position where the pattern is applied.
  • the material constituting the pattern is limited to a material applicable to the ink jet method.
  • the formation of the pattern (pattern) by the ink jet method is a method lacking versatility because a material unsuitable for ink formation such as an inorganic material cannot be used.
  • an object of the present invention is to provide an optical lens manufacturing method capable of forming a processing pattern on a lens surface with good accuracy at a predetermined position on a lens base material without limiting the material.
  • the method of manufacturing an optical lens of the present invention for achieving such an object is characterized by performing the following steps. First, a step of forming a mark for alignment outside the lens region set on the lens substrate is performed. Next, a process of patterning a masking layer having an opening at a predetermined position in the lens region is performed above the one main surface side of the lens substrate while controlling the printing position with reference to the previously formed mark. Then, the process which performs a selective process with respect to the exposed surface of the opening bottom part of the said masking layer by the process from the upper direction of a masking layer is performed. Thereafter, the masking layer is removed from the lens base material, and a process pattern is formed on the one main surface side of the lens base material by the selective processing described above.
  • the processing pattern is formed on the exposed surface of the opening bottom of the masking layer by processing from above the patterned masking layer.
  • the pattern formation of the masking layer is performed by a method having a good position and shape accuracy, for example, an inkjet method, so that the process for forming the treatment pattern is limited to a method having a good position and shape accuracy.
  • the processing pattern with high accuracy can be obtained while applying the processing method with a wide selection range.
  • the transparent material film is formed in the above-described selective process.
  • the transparent material film formed on the masking layer is removed together with the masking layer.
  • the transparent pattern which consists of a transparent material film is formed as an above-mentioned process pattern only on the exposed surface of the opening bottom part of a masking layer.
  • a dyeing process may be performed on the bottom of the opening of the masking layer.
  • a staining pattern is formed as the processing pattern.
  • the masking layer can be formed as a homogeneous continuous film, and when processing is performed from the top of this masking layer, the processing pattern can be accurately formed only in the opening of the masking layer. It becomes possible to form.
  • a processing pattern can be formed with high accuracy at a predetermined position on a lens base material by applying a processing method with a wide selection range without limiting the material. Is possible.
  • FIG. 2 is a plan view and a cross-sectional view showing a configuration of an optical lens obtained by the method of the first embodiment. It is a flowchart which shows the manufacture procedure of the optical lens of 1st Embodiment.
  • FIG. 6 is a manufacturing process diagram (part 1) illustrating a manufacturing procedure of the optical lens according to the first embodiment;
  • FIG. 6 is a manufacturing process diagram (No. 2) showing a manufacturing procedure of the optical lens of the first embodiment.
  • FIG. 6 is a manufacturing process diagram (No. 3) showing a manufacturing procedure of the optical lens of the first embodiment.
  • First Embodiment Example in which an island-shaped transparent pattern is provided between an antireflection film and a lens substrate
  • Second Embodiment Example of providing a transparent pattern having an opening between an antireflection film and a lens substrate
  • Third Embodiment Example in which an island-shaped transparent pattern is provided on the antireflection film
  • Fourth Embodiment Example in which an island-shaped staining pattern is provided on the surface layer of a lens substrate
  • FIG. 1 is a plan view (FIG. 1A) for explaining the configuration of the optical lens of the first embodiment, and an aa ′ sectional view (FIG. 1B) in the plan view.
  • the optical lens 1a of the first embodiment shown in these drawings is suitably used for an optical lens for spectacles, for example, and is configured as follows.
  • the optical lens 1a of the first embodiment is characterized in that an island-shaped transparent pattern 19a is provided as a processing pattern between the hard coat film 13 and the antireflection film 15 on the lens substrate 11. is there.
  • an island-shaped transparent pattern 19a is provided as a processing pattern between the hard coat film 13 and the antireflection film 15 on the lens substrate 11. is there.
  • the lens base 11 is made of a general plastic material used for optical lenses, and is molded into a predetermined lens shape.
  • a plastic material having a refractive index (nD) of about 1.50 to 1.74 is used.
  • plastic materials include allyl diglycol carbonate, urethane resin, polycarbonate, thiourethane resin, and episulfide resin.
  • the outer surface of the spectacles configured using the optical lens 1 a is one main surface, and the hard coat film 13 to the water repellent film 17 described above are formed on the one main surface, and Each layer of the transparent pattern 19a is laminated.
  • the hard coat film 13 is a film used as a base of the antireflection film 15, and is made of, for example, a material containing an organosilicon compound.
  • the hard coat film 13 has a refractive index close to the refractive index of the plastic material described above. Specifically, the refractive index (nD) of the hard coat film 13 is about 1.49 to 1.70, and the film configuration is selected according to the material of the lens substrate 11.
  • the antireflection film 15 has a multilayer structure in which material films having different refractive indexes are stacked, and is a film that prevents reflection of light by an interference action.
  • An example of such an antireflection film 15 is a multilayer structure in which low refractive index films 15a and high refractive index films 15b are alternately stacked.
  • the low refractive index film 15a is made of, for example, silicon dioxide (SiO2) having a refractive index of about 1.43 to 1.47.
  • the high refractive index film 15b is made of a material having a higher refractive index than that of the low refractive index film 15a.
  • niobium oxide Nb2O5
  • tantalum oxide Ta2O5
  • titanium oxide TiO2
  • zirconium oxide ZrO2
  • oxidized A metal oxide such as yttrium (Y2O3) and aluminum oxide (Al2O3) is used at an appropriate ratio.
  • the number of layers of the antireflection film 15 including the low refractive index film 15a and the high refractive index film 15b as described above is not limited.
  • Each of these low refractive index films 15a and each high refractive index film 15b has a film thickness corresponding to each refractive index so as to have a predetermined phase difference.
  • the phase difference of the three layers of the low refractive index film 15a-1 / high refractive index film 15b-2 / low refractive index film 15a-3 in order from the lens substrate 11 side is [ ⁇ / 4]
  • the phase difference of the three layers of high refractive index film 15b-4 / low refractive index film 15a-5 / high refractive index film 15b-6 is [ ⁇ / 2]
  • one layer of low refractive index film 15a-7 is formed.
  • a film configuration in which the film thickness of each low refractive index film 15a and each high refractive index film 15b is set according to each refractive index so that the phase difference is [ ⁇ / 4] can be mentioned.
  • the water repellent film 17 is made of, for example, a fluorine-substituted alkyl group-containing organosilicon compound.
  • the water repellent film 17 has a film thickness set so as to exhibit an antireflection function in combination with the antireflection film 15.
  • the transparent pattern 19a is provided as, for example, a decorative pattern, a logo mark, or a character, and is configured as an island pattern made of a light-transmitting material.
  • the transparent pattern 19a used in the first embodiment may be, for example, light transmissive with respect to visible light.
  • the refractive index is higher than the refractive index of each layer arranged with the transparent pattern 19a interposed therebetween. It is preferable to have a rate.
  • the film thickness of the transparent pattern 19a is appropriately adjusted according to the refractive index of the material constituting the transparent pattern 19a and the visibility required for the transparent pattern 19a when viewed from the water repellent film 17 side.
  • the transparent pattern 19a may be a laminate of different material layers.
  • a material having a higher refractive index than that of the hard coat film 13 and the low refractive index film 15a-1 disposed with the transparent pattern 19a interposed therebetween is used.
  • a material similar to the material constituting the high refractive index film 15b used for the antireflection film 15 is preferably used.
  • the transparent pattern 19a is formed using these materials, the transparent pattern 19a is formed with a film thickness of about 10 nm. Thereby, high visibility can be obtained in the transparent pattern 19a when viewed from the water repellent film 17 side. Even if the transparent pattern 19a is given low visibility, the refractive index and the film thickness of the transparent pattern 19a may be adjusted.
  • the optical lens 1a having the above-described configuration is a hard coat film in order from the lens base material 11 side on the inner side of the glasses configured using the optical lens 1a, that is, on the surface arranged toward the wearer side.
  • the antireflection film and the water repellent film may be provided in this order.
  • FIG. 2 is a flowchart showing a manufacturing procedure of the optical lens according to the first embodiment having the above-described configuration.
  • 3 to 5 are manufacturing process diagrams showing a manufacturing procedure of the optical lens according to the first embodiment having the above-described configuration. A manufacturing procedure when the optical lens of the first embodiment is applied to glasses will be described below based on these drawings.
  • alignment reference marks m1 to m4 are formed outside the lens region of the lens substrate (S1). This process is performed as follows.
  • FIG. 3A First, as shown in FIG. 3A, a lens substrate 11 is prepared. As an example of the lens base material, a single focus lens for spectacles will be described.
  • the geometric center G.G. C, and the optical center O.D. C is determined by measurement.
  • Temporary point marks M1 to M3 indicating optical coordinates including C are marked on one main surface side of the lens substrate 11.
  • the point marks M1 to M3 are marked using, for example, red ink.
  • the optical center O.D. With C as the center point mark M2, point marks M1 and M3 are arranged at equal intervals on the left and right.
  • FIG. 3B Next, as shown in FIG. 3B, from the data of the three-dimensional outer shape F relating to the optical lens created according to the order and the optical coordinates indicated by the point marks M1 to M3 on the lens substrate 11, the lens base is obtained.
  • the center of the outer shape F (the center of the frame) F.
  • the position that becomes C is detected.
  • FIG. 3C Thereafter, as shown in FIG. C and frame center F.F. From the relationship with C, the outer shape F of the lens region is determined for the lens substrate 11. Then, based on the point marks M1 to M3 indicating the optical coordinates, reference marks m1 to m4 serving as a reference for the outer shape F are formed on the lens base 11. These reference marks m1 to m4 can be identified vertically and horizontally. Moreover, it is preferable that it is a design which can identify whether it is the right lens or left lens of spectacles. For example, the reference marks m2 and m4 indicating the left and right are formed as arrows pointing toward the center of the glasses.
  • reference marks m1 to m4 are marked outside the lens region surrounded by the outer shape F. Thereby, after the lens base material 11 is shape-cut according to the outer shape F, the reference marks m1 to m4 are not left on the lens.
  • the reference marks m1 to m4 are optical centers O.D.
  • the case where the layout is based on C is shown. However, the reference marks m1 to m4 have the frame center F.D.
  • the layout may be based on C.
  • the reference marks m1 to m4 as described above are directly formed on one main surface of the lens substrate 11 by, for example, a laser marker. At this time, laser irradiation is performed on the lens base material 11 with a power setting that does not cause the lens base material 11 to be destroyed due to heat.
  • the formation of the reference marks m1 to m4 is not limited to the laser marker, and for example, an ink jet method may be applied. At this time, it is important to select and use an ink used for the marker that is not removed at the same time as the masking layer in the step of removing the masking layer described later. Further, the fiducial marks m1 to m4 may be formed, for example, by marking handwritten marks.
  • the lens substrate 11 is not limited to a single focus lens, and may be a multifocal lens, a progressive lens, or another lens. If a multifocal lens is used, the frame center F.R. C is detected to determine the outer shape F, and the reference marks m1 to m4 are formed. In the case of using a progressive lens, the frame center F.D. is determined based on the hidden mark (layout reference mark). C is detected to determine the outer shape F, and the reference marks m1 to m4 are formed.
  • the prism reference point is the central point mark M2, and point marks M1 and M3 are arranged at equal intervals on the left and right sides, and the reference marks m1 to m4 are laid out based on these point marks M1 to M3. Just do it.
  • FIGS. 4A and 4B After the fiducial marks m1 to m4 are formed as described above, as shown in the plan view of FIG. 4A and the cross-sectional view of FIG. 4B (corresponding to the cross section aa ′ of FIG. 4A), on the lens substrate 11 A hard coat film 13 is formed (S2).
  • the hard coat film 13 is formed by, for example, an immersion method using a solution in which an organosilicon compound is dissolved.
  • the surface of the hard coat film 13 is modified (S3).
  • a process for ensuring the wettability of the surface of the hard coat film 13 is performed on the ink used in the next masking layer formation.
  • a treatment method that does not damage the surface of the hard coat film 13 for example, plasma treatment using oxygen plasma is performed.
  • the modification treatment for ensuring wettability is not limited to plasma treatment as long as it does not damage the hard coat film 13, and for example, ion irradiation treatment, corona discharge, and the like. You may perform a process, an alkali treatment, etc.
  • the masking layer 21 is patterned on the surface of the base material 11 above, that is, the hard coat film 13 that has been subjected to the modification treatment.
  • Form (S4) The masking layer 21 formed here entirely covers the outer shape F of the optical lens determined on the one main surface side of the lens substrate 11, and includes an opening pattern 21a corresponding to the transparent pattern formed on the optical lens. Yes.
  • the masking layer 21 is preferably formed in a shape that is several mm or more larger than the outer shape F, and thereby absorbs errors when the lens base material 11 is shape-cut according to the outer shape F.
  • an opening pattern 21a is provided at a predetermined position on the lens base material 11 set in advance based on the previously created reference marks m1 to m4, and the masking layer 21 is provided. It is important to form a print. For this reason, the masking layer 21 to which the inkjet method is applied is formed here.
  • the ink jet method applied here is not limited in type or method, and may be a continuous type or an on-demand type, and if it is an on-demand type, it may be a piezo type or a thermal type. There may be.
  • the formation of the masking layer 21 by the inkjet method here uses, for example, ultraviolet curable ink (UV cure ink).
  • UV cure ink ultraviolet curable ink
  • ink that can be selectively removed with respect to the hard coat film 13 is used even after curing.
  • examples of such inks include so-called hard UV inks and soft UV inks for non-absorbing materials with high adhesion and high adhesion that can be dissolved and removed in ethanol or acetone after curing.
  • the masking layer 21 As a continuous film without coating unevenness by adjusting printing conditions.
  • printing conditions include the moving speed of the lens substrate relative to the print head, the resolution in the moving direction, the resolution in the width direction perpendicular to the moving direction, the size of the ink droplet, the drop frequency of the ink droplet, and the same landing point. The number of ink droplets to be dropped. Since these printing conditions are related to each other, the masking layer 21 that prevents printing unevenness is formed by adjusting as appropriate.
  • the ink constituting the masking layer 21 is cured by irradiating the masking layer 21 with ultraviolet rays (UV).
  • UV ultraviolet rays
  • a transparent material film 19 is formed from above the masking layer 21 (S5).
  • the hard coat film 13 is selectively subjected to a film forming process on the exposed surface at the bottom of the opening pattern 21 a of the masking layer 21.
  • a transparent material film 19 having a refractive index of 2.05 to 2.15 made of, for example, tantalum oxide (Ta2O5) is formed with a predetermined film thickness (for example, 10 nm) by vapor deposition.
  • FIG. 5B Next, as shown in FIG. 5B, a process of removing the masking layer 21 from the hard coat film 13 is performed, and the transparent material film 19 on the upper side is selectively removed together with the masking layer 21 (S6).
  • the masking layer 21 is removed by wet processing using a solvent (ethanol or acetone) that dissolves the masking layer 21.
  • a solvent ethanol or acetone
  • the transparent material film 19 portion formed in the opening pattern 21a of the masking layer 21 is left on the lens substrate 11 through the hard coat film 13, and the remaining transparent material film 19 portion is transparent pattern. It is formed on the lens substrate 11 as 19a.
  • the transparent pattern 19a formed in this manner has the same shape formed at the same position as the opening pattern 21a formed in the masking layer 21.
  • the antireflective film 15 is formed by applying ion-assisted deposition, so that the layers from the low refractive index film 15a-1 on the lower layer side to the low refractive index film 15a-7 are changed to each composition and each film. The film is formed with a thickness.
  • FIG. 1A, FIG. 1B After the above, as shown in FIG. 1A and FIG. 1B, the lens base material 11 on which the water repellent film 17 is formed is cut into an outer shape F determined for the lens base material 11. (S8). At this time, referring to FIG. 4A, the processing jig is attracted to a predetermined position aligned based on the reference marks m1 to m4 formed outside the outer shape F of the lens base material 11, and the lens base material 11 is attached. Fix to the processing jig.
  • the lens base material 11 is shape cut to the outer shape F aligned based on the reference marks m1 to m4, and then the processing jig is removed to complete the optical lens 1a. Let Thereafter, the optical lens 1a is shipped after an appearance inspection.
  • the transparent pattern 19 a as a processing pattern is formed in the opening of the masking layer 21 by the film forming process from the top of the masking layer 21. Is forming. For this reason, the transparent pattern 19a can be comprised with the material suitable for vapor deposition film-forming. Moreover, the transparent pattern 19a (processing pattern) is formed on the lens substrate 11 exposed at the bottom of the opening pattern 21a formed in the masking layer 21. Therefore, it is possible to obtain a transparent pattern 19a (processing pattern) with high positional accuracy and shape accuracy following the accuracy of forming the masking layer 21 by the ink jet method.
  • a transparent pattern 19a made of a material suitable for film formation such as vapor deposition film formation at a predetermined position on the lens substrate 11 is not suitable for a high-accuracy pattern formation method such as an ink jet method. It becomes possible to form a processing pattern with good accuracy.
  • the optical lens 1a having the configuration of the first embodiment obtained in this manner is obtained by laminating the transparent pattern 19a on the antireflection film 15 having a multilayer structure, so that the arrangement portion of the transparent pattern 19a and the others are not provided.
  • the light reflection characteristics of the light incident on the optical lens 1a from the antireflection film 15 side are different from each other. Thereby, when the lens 1a is viewed from the antireflection film 15 side through the water repellent film 17, the antireflection function in the antireflection film 15 is maintained, and the transparent pattern 19a is changed as the difference in the light reflection characteristics described above. It can be easily visually recognized.
  • the transparent pattern 19a is easily visually recognized. It will never be done.
  • this optical lens 1a As a result, by using this optical lens 1a, the wearer's field of view can be ensured without any discomfort, but a transparent pattern 19a that can be seen from the outside can be obtained by, for example, a decorative pattern, logo mark, or character. For example, it is possible to configure spectacles with excellent design.
  • the transparent pattern 19a is formed between the lens substrate 11 and the antireflection film 15, more specifically, between the hard coat film 13 and the low refractive index film 15a-1 constituting the antireflection film 15. Arranged between.
  • a normal lens configuration in which the surface on the one main surface side of the lens base 11 is uniformly covered with the antireflection film 15 without impairing the continuity of the layer structure in the antireflection film 15 can be obtained. it can.
  • the surface of the antireflection film 15 can be uniformly covered with a low refractive index film 15a-7 such as silicon dioxide (SiO2) having excellent friction resistance, and a lens configuration that is not easily damaged is obtained. it can.
  • a low refractive index film 15a-7 such as silicon dioxide (SiO2) having excellent friction resistance
  • the transparent pattern 19a has a refractive index higher than the refractive index of each layer of the hard coat film 13 and the low refractive index film 15a-1 disposed therebetween, the transparent pattern 19a Even when the optical lens 1a is viewed from the antireflection film 15 side, the visibility of the transparent pattern 19a can be improved.
  • the transparent pattern 19a composed of a tantalum oxide (Ta2O5) single layer having a thickness of 10 nm is disposed
  • the single-sided luminous reflectance viewed from the antireflection film 15 side is 1.624 at the portion where the transparent pattern 19a is disposed.
  • %, 0.545% at the non-arranged portion of the transparent pattern 19a and it was confirmed that sufficiently high visibility of the transparent pattern 19a was obtained.
  • FIG. 6 is a plan view (FIG. 6A) for explaining the configuration of the optical lens of the second embodiment, and an aa ′ sectional view (FIG. 6B) in the plan view.
  • the optical lens 1b of the second embodiment shown in these drawings is different from the optical lens (1a) of the first embodiment, for example, as a processing pattern constituting a decorative pattern, a logo mark, or a character.
  • the transparent pattern 19b is configured as a blank pattern having an opening h, and the other configuration is the same as that of the first embodiment.
  • the transparent pattern 19b having such an opening h may have the same configuration as the island-shaped transparent pattern (19a) described in the first embodiment except for the planar shape. That is, the transparent pattern 19b only needs to have a light-transmitting property with respect to visible light, for example.
  • the transparent pattern 19b preferably has a refractive index higher than the refractive index of each layer disposed with the transparent pattern 19b interposed therebetween.
  • the transparent pattern 19b has a film thickness adjusted appropriately depending on the refractive index of the material constituting the transparent pattern 19b and the visibility required for the transparent pattern 19b when viewed from the water-repellent film 17 side. Further, different material layers may be laminated.
  • the manufacturing method of the optical lens 1b of the second embodiment configured as described above is the same as that of the first embodiment.
  • the masking layer having a reversed pattern may be formed by applying a highly accurate forming method such as an inkjet method.
  • the optical lens 1b of the second embodiment has the same configuration as that of the optical lens of the first embodiment, and is between the hard coat film 13 and the low refractive index film 15a-1 of the antireflection film 15.
  • the transparent pattern 19b is laminated.
  • the transparent pattern 19b that can be visually recognized from the outside can be obtained, for example, for decoration, while the wearer's field of view can be secured without a sense of incongruity.
  • a logo mark, a character, etc. it becomes possible to constitute glasses having excellent design properties, and a process for forming the antireflection film 15 having a multilayer structure by providing the transparent pattern 19b. Is not disturbed.
  • the transparent pattern 19b has a higher refractive index than the low refractive index film 15a-1 of the hard coat film 13 and the antireflection film 15 disposed therebetween is described in the first embodiment. Similarly to the above, even if the transparent pattern 19b has a thin single layer structure, it is possible to improve the visibility of the transparent pattern 19b when the optical lens 1b is viewed from the antireflection film 15 side.
  • FIG. 7 is a plan view (FIG. 7A) for explaining the configuration of the optical lens of the third embodiment, and an aa ′ sectional view (FIG. 7B) in the plan view.
  • the optical lens 1c of the third embodiment shown in these drawings differs from the optical lenses (1a, 1b) of the other embodiments in, for example, an island-like shape that constitutes a decorative pattern, a logo mark, a character, or the like.
  • the transparent pattern 29c (processing pattern) is provided on the top of the antireflection film 15, and the other configuration is the same as that of the first embodiment.
  • Such a transparent pattern 29c is arranged closer to the surface of the optical lens 1c than the transparent pattern arranged in the optical lens of the first embodiment and the second embodiment.
  • the transparent pattern 29c is preferably configured using a low refractive index material such as silicon dioxide (SiO2) having excellent friction resistance.
  • the transparent pattern 29c has a film thickness adjusted appropriately according to the refractive index of the material constituting the transparent pattern 29c and the visibility required for the transparent pattern 29c when viewed from the water repellent film 17 side. It is the same as that of other embodiment that it may have what further has different material layers.
  • the transparent pattern 29c has a laminated structure, it is preferable that the uppermost layer portion constituting the transparent pattern 29c is formed using a low refractive index material such as silicon dioxide (SiO2) having excellent friction resistance.
  • FIG. 8 is a flowchart showing a manufacturing procedure of the optical lens of the third embodiment having the above-described configuration.
  • 9 and 10 are manufacturing process diagrams showing the manufacturing procedure of the optical lens of the third embodiment having the above-described configuration. Based on these drawings, the characteristic part of the manufacturing procedure when the optical lens of the third embodiment is applied to glasses will be described below.
  • FIG. 9A First, reference marks (m1 to m4) not shown here are provided on one main surface side of the lens substrate 11 in the same manner as the procedure described with reference to FIGS. 3A to 3C in the first embodiment. It is formed (S11). Thereafter, a hard coat film 13 is first formed on one main surface of the lens substrate 11 (S12), and then a modification process is performed to ensure wettability of the surface of the hard coat film 13 (S13). An antireflection film 15 having a multilayer structure is formed (S14).
  • the hard coat film 13 is formed by, for example, an immersion method using a solution in which an organosilicon compound is dissolved.
  • plasma treatment using oxygen plasma is performed on the surface of the hard coat film 13.
  • the antireflection film 15 is formed by applying ion-assisted deposition, so that the layers from the low refractive index film 15a-1 on the lower layer side to the low refractive index film 15a-7 in order are changed to the respective compositions and films.
  • the film is formed with a thickness.
  • the film thickness of the uppermost low-refractive index film 15a-7 may be adjusted separately in consideration of laminating a transparent pattern.
  • the masking layer 21 is patterned on the low refractive index film 15a-7 of the antireflection film 15 by applying, for example, an ink jet method in the same manner as in the first embodiment (S15). .
  • the masking layer 21 formed here is the same as in the first embodiment, and covers the entire outer shape of the lens determined on the one main surface side of the lens substrate 11 and corresponds to the transparent pattern formed on the optical lens.
  • An opening pattern 21a is provided.
  • the ink used in the ink jet method is the same as that in the first embodiment, and for example, UV cure ink that can be dissolved and removed in ethanol or acetone after curing is used.
  • a modification process for ensuring wettability of the surface of the antireflection film 15 may be performed before the masking layer 21 is formed. This reforming process is performed by an appropriate method. Further, after the masking layer 21 is formed by the ink jet method, the UV cure ink constituting the masking layer 21 is cured by irradiating the masking layer 21 with ultraviolet rays (UV), as in the first embodiment. It is.
  • UV ultraviolet rays
  • a transparent material film 29 is formed from above the masking layer 21 (S16).
  • the antireflection film 15 is selectively subjected to a film forming process on the exposed surface at the bottom of the opening pattern 21 a of the masking layer 21.
  • the transparent material film 29 made of silicon dioxide (SiO 2) and having a refractive index of 1.43 to 1.47 is formed with a preset film thickness (for example, 10 nm).
  • the transparent material film 29 is formed with good film quality and good adhesion by performing ion-assisted vapor deposition as necessary.
  • FIG. 10B Thereafter, as shown in FIG. 10B, a process of removing the masking layer 21 from the antireflection film 15 is performed, and the transparent material film 29 on the upper side is selectively removed together with the masking layer 21 (S17).
  • the masking layer 21 is removed by wet treatment using a solvent (ethanol or acetone) that dissolves the ink constituting the masking layer 21, and the transparent material film 29 on the upper side together with the masking layer 21 is selectively removed.
  • a solvent ethanol or acetone
  • the water repellent film 17 is formed on the antireflection film 15 so as to cover the transparent pattern 29c (S18).
  • the lens base material 11 on which the water repellent film 17 has been formed is cut into an outer shape F determined for the lens base material 11 (S19).
  • the lens base material 11 is placed on the outer shape F aligned based on the reference marks m1 to m4 formed outside the outer shape F of the lens base material 11. Cut the shape.
  • the bottom of the opening pattern 21a of the masking layer 21 is processed by the film forming process from the top of the masking layer 21 as described with reference to FIG. 10A.
  • a transparent pattern 29c as a pattern is formed. Therefore, as in the first embodiment, it is not suitable for a high-precision pattern forming method such as an inkjet method at a predetermined position on the lens substrate 11, but is suitable for film formation such as vapor deposition.
  • the transparent pattern 29c made of a material can be formed as a processing pattern with good accuracy.
  • the transparent pattern 29c is laminated on the antireflection film 15 having the multilayer structure, similarly to the configuration of the optical lens of the other embodiments. ing.
  • the transparent pattern 29c that can be visually recognized from the outside can be secured while the wearer's field of view can be secured without a sense of incongruity.
  • a logo mark, a character, or the like it is possible to configure glasses with excellent design.
  • the configuration in which the island-shaped transparent pattern 29c is laminated on the antireflection film 15 has been described.
  • a transparent pattern having an opening may be used as the transparent pattern laminated on the antireflection film 15 as in the second embodiment, and even in this case, the same effect as in the third embodiment can be obtained. Can do.
  • the transparent pattern may be disposed between layers of the antireflection film 15 having a multilayer structure.
  • the transparent pattern has a film thickness appropriately adjusted according to the refractive index of the material constituting the transparent pattern and the visibility required for the transparent pattern when viewed from the water-repellent film 17 side.
  • different material layers may be laminated.
  • FIG. 11 is a plan view (FIG. 11A) for explaining the configuration of the optical lens of the fourth embodiment, and an aa ′ sectional view (FIG. 11B) in the plan view.
  • the difference between the optical lens 1d of the fourth embodiment shown in these drawings and the optical lenses (1a to 1c) of the first to third embodiments is that an island-shaped staining pattern 31d is provided as a processing pattern.
  • the other configuration is the same as that of the first embodiment.
  • the dyeing pattern 31d provided as a processing pattern has one of the concave surface and the convex surface of the lens substrate 11 as one main surface, and is provided on the surface layer on the one main surface side.
  • the dyed pattern 31d has a depth d in the surface layer of the lens substrate 11 and the concentration of the dye constituting the dyed pattern 31d depending on the visibility required for the dyed pattern 31d when viewed from the water repellent film 17 side.
  • the staining pattern 31d is dyed so as not to be easily visually recognized when the optical lens 1d is viewed from a close distance opposite to the water repellent film 17. It is preferable that the depth of the pattern 31d and the concentration of the dye are adjusted.
  • the dye constituting the dyeing pattern 31d may be any dye that can dye the lens substrate 11 made of a plastic material, and an appropriate material is used depending on the dyeing method for forming the dyeing pattern 31d.
  • a sublimable dye is used as the dye.
  • a dye for the immersion method is used.
  • the hard coat film 13 having the same configuration as that of the other embodiments, the antireflection film 15 having a multilayer structure, and the water repellent film 17 are provided. Are stacked in this order.
  • FIG. 12 is a flowchart showing a manufacturing procedure of the optical lens of the fourth embodiment having the above-described configuration.
  • 13 to 14 are manufacturing process diagrams showing a manufacturing procedure of the optical lens of the fourth embodiment having the above-described configuration. Based on these drawings, the characteristic part of the manufacturing procedure when the optical lens of the fourth embodiment is applied to glasses will be described below.
  • FIGS. 13A and 13B First, as shown in the plan view of FIG. 13A and the cross-sectional view of FIG. 13B (corresponding to the aa ′ cross-section of FIG. 13A), the outer shape F of the lens in the lens base 11 is determined in advance.
  • the reference marks m1 to m4 serving as the reference for the outer shape F are formed on one main surface side (S21). This step is performed in the same manner as the procedure described with reference to FIGS. 3A to 3C in the first embodiment.
  • a surface modification process is performed on the one principal surface side of the lens substrate 11 (S22).
  • a process for ensuring the wettability of the surface of the lens substrate 11 is performed on the ink used in the subsequent masking layer formation.
  • a processing method that does not damage the surface of the lens substrate 11 for example, plasma processing using, for example, oxygen plasma is performed.
  • any other method that does not damage the lens substrate 11 is not limited to the plasma process. Treatment or corona discharge treatment may be performed.
  • an inkjet method is applied, and the lens base material 11 subjected to the modification treatment is used as a base, and the masking layer 21 is patterned on the base surface in the same procedure as described in the first embodiment.
  • the lens base material set in advance based on the reference marks m1 to m4 previously produced without being influenced by the curve of the lens base material 11 is used. It is important to print and form the masking layer 21 so that the opening pattern 21 a is provided at a predetermined position on the substrate 11.
  • the lens substrate 11 is dyed from above the masking layer 21 (S24).
  • the lens substrate 11 is selectively dyed on the exposed surface of the bottom of the opening pattern 21 a of the masking layer 21.
  • sublimation dyeing is performed.
  • a printing sheet is prepared by applying an ink in which a sublimable dye is dispersed in an aqueous solvent on a substrate.
  • the ink application surface of this printing sheet and the surface on which the masking layer 21 is formed on the lens substrate 11 are arranged to face each other, and the printing sheet is heated in a predetermined reduced pressure atmosphere.
  • the sublimable dye of the printing sheet is sublimated, and the lens substrate 11 exposed at the bottom of the opening pattern 21a of the masking layer 21 is dyed.
  • the portion of the lens substrate 11 covered with the masking layer 21 is not dyed.
  • the dyeing pattern 31d formed by dyeing the surface layer of the lens substrate 11 is formed only at the bottom of the opening pattern 21a.
  • the dyed pattern 31 d formed in this way has the same shape formed at the same position as the opening pattern 21 a formed in the masking layer 21.
  • the dyeing process is performed in which the depth d in the surface layer of the lens substrate 11 and the concentration of the dye constituting the dyeing pattern 31d are controlled by the visibility required for the dyeing pattern 31d.
  • the depth d and the dye concentration in such a dyeing process are controlled by adjusting the concentration of the sublimation dye constituting the printing sheet and the dyeing process time for each material of the lens substrate 11.
  • the concentration can be controlled by the time of immersion in the liquid dye, the dye temperature, and the like.
  • staining is also possible, and it is also possible to control the shading of a masking image by single-sided dyeing and double-sided dyeing.
  • FIG. 14B a process of removing the masking layer 21 from the lens substrate 11 is performed (S25).
  • the dyed masking layer 21 is removed by wet treatment using a solvent (ethanol or acetone) that dissolves the masking layer 21.
  • the hard coat film 13 and the multilayer structure in which the low refractive index film 15a and the high refractive index film 15b are alternately laminated are formed on the lens substrate 11 on which the dyed pattern 31d is formed.
  • the antireflection film 15 is formed in this order, and the water repellent film 17 is formed on the antireflection film 15 (S26).
  • the antireflective film 15 is formed by applying ion-assisted deposition, so that the layers from the low refractive index film 15a-1 on the lower layer side to the low refractive index film 15a-7 are changed to each composition and each film.
  • the film is formed with a thickness.
  • the lens base material 11 on which the water repellent film 17 is formed is cut into an outer shape F determined for the lens base material 11. (S27).
  • the lens base material 11 is shaped into the outer shape F aligned based on the reference marks m1 to m4 formed on the lens base material 11 in the same manner as described in the first embodiment. Cut to obtain the optical lens 1d of the fourth embodiment.
  • the bottom of the opening pattern 21a of the masking layer 21 is dyed as a processing pattern by the dyeing process from the top of the masking layer 21.
  • a pattern 31d is formed. That is, the processing pattern can be formed as a dyeing pattern 31d by dyeing.
  • the dyeing pattern 31 d (processing pattern) is formed in the opening pattern 21 a formed in the masking layer 21. For this reason, the dyeing pattern 31d (processing pattern) with high shape accuracy can be obtained following the formation accuracy of the masking layer 21 by the ink jet method.
  • a dyeing pattern 31d as a decorative pattern, logo mark, or character with high shape accuracy as a processing pattern visible from the outside at a predetermined position on the surface layer of the lens substrate 11. become.
  • FIG. 15 is a plan view (FIG. 15A) for explaining the configuration of the optical lens of the fifth embodiment, and an aa ′ sectional view (FIG. 15B) in the plan view.
  • the optical lens 1e of the fifth embodiment shown in these figures differs from the optical lens (1d) of the fourth embodiment in that the dyeing pattern 31e is configured as a blank pattern having an opening h.
  • Other configurations are the same as those of the fourth embodiment.
  • the dyeing pattern 31e having such an opening h may have the same configuration as the island-like dyeing pattern (31d) described in the fourth embodiment except for the planar shape. That is, the dyeing pattern 31e has a depth d in the surface layer of the lens substrate 11 and the dye constituting the dyeing pattern 31e depending on the visibility required for the dyeing pattern 31e when viewed from the water repellent film 17 side. It is assumed that the concentration is appropriately adjusted. In particular, when the optical lens 1e is used as an optical lens for spectacles, when the optical lens 1e is viewed from a close distance opposite to the water repellent film 17, the staining pattern 31e is not easily visible. It is preferable that the depth of the pattern 31e and the concentration of the dye are adjusted.
  • the manufacturing method of the optical lens of 5th Embodiment configured as described above is the same as that of the fourth embodiment.
  • a masking layer having an inverted pattern may be formed by application of an ink jet method.
  • the configuration in which the dyeing pattern is formed on the surface layer on the one principal surface side of the lens substrate 11 by the sublimation dyeing method from above the masking layer 21 has been described.
  • the formation of the dyeing pattern is not limited to sublimation dyeing, and other dyeing methods such as an immersion method and a transfer method may be applied.
  • the entire lens base material 11 is dyed in a state where the masking layer 21 is formed only on one main surface side of the lens base material 11, for example, by an immersion method.
  • the dyeing process is performed by applying the exposure method, the entire other main surface side of the lens substrate 11 on which the masking layer 21 is not formed is dyed.
  • the dyeing conditions are controlled so that dyeing from the other main surface side does not reach one main surface side where the masking layer 21 is provided. It is important to perform the dyeing.
  • the dyeing process is performed to prevent the other main surface side of the lens base material 11 from being dyed. Also good.
  • the optical lens manufacturing method of the present invention is not limited to the case of applying to the manufacture of optical lenses for spectacles, and a processing pattern as, for example, a decorative pattern, a logo mark, or a character in a predetermined lens region. It can be widely applied when forming.
  • the masking layer 21 is formed by the ink jet method.
  • the formation of the masking layer 21 is not limited to the application of the ink jet method, and the masking layer 21 may be formed by a printing method or tape attachment. Even in this case, by forming the masking layer 21 with good position and shape accuracy, it is possible to form a transparent pattern or a dyed pattern made of a transparent material film on the lens surface with good accuracy without limiting the material. become.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Eyeglasses (AREA)

Abstract

 レンズ基材上の所定位置に、材料を限定することなく処理パターンを形成することが可能な光学レンズの製造方法を提供する。 レンズ基材11に設定されたレンズ領域の外側に、位置合わせ用のマークを形成する。インクジェット法により、レンズ基材11の一主面側の上方に、マークを基準として印刷位置を制御しながらレンズ領域の所定位置に開口パターン21aを有するマスキング層21をパターン形成する。マスキング層21の上方からの処理により、マスキング層21の開口パターン21aから露出する露出面に対して選択的な処理を施す。レンズ基材11上からマスキング層21を除去し、レンズ基材11の一主面側に前述の選択的な処理による処理パターンとして透明パターン19aを形成する。

Description

光学レンズの製造方法
 本発明は、光学レンズの製造方法に関し、特にはレンズ面にパターンを設ける工程を有する光学レンズの製造方法に関する。
 眼鏡用のレンズは、レンズ基材の表面を覆う様々な膜を備えている。例えば、レンズ基材に対して傷が入ることを防止するためのハードコート膜、レンズ面での光反射を防止するための反射防止膜、さらにはレンズの水ヤケを防止するための撥水膜などである。この他にも、眼に入射する光量を抑えるための膜として、レンズの全面に半透過性薄膜をドット状にコーティングし、この上部を反射防止膜で覆う構成が提案されている(例えば下記特許文献1参照)。
 また近年では、ファッション性の高い眼鏡用のレンズとして、軽量で染色性に優れたプラスチックレンズが好ましく用いられており、さらに意匠性を高める目的で、インクジェット法を適用した着色塗料の塗布によりレンズに模様を施す構成も提案されている(例えば下記特許文献2参照)。
特開2008-55253号公報 国際公開WO00/67051(特に第7頁)
 しかしながら、例えば意匠性を高める目的でレンズに模様を施す場合において、上述のように、単にレンズに対してインクジェット法によって着色塗料を塗布する方法では、模様を施す位置を制御することは可能なものの、模様を構成する材料がインクジェット法に適用可能な材料に限定されてしまう。このため、インクジェット法による模様(パターン)の形成は、無機材料のようなインクの形成に不向きな材料を用いることができず、汎用性に欠ける方法であった。
 そこで本発明は、レンズ基材上の所定位置に、材料を限定することなく精度良好にレンズ面に処理パターンを形成することが可能な光学レンズの製造方法を提供することを目的とする。
 このような目的を達成するための本発明の光学レンズの製造方法は、次の工程を行うことを特徴としている。先ず、レンズ基材に設定されたレンズ領域の外側に、位置合わせ用のマークを形成する工程を行う。次いで、レンズ基材の一主面側の上方に、先に形成したマークを基準として印刷位置を制御しながらレンズ領域の所定位置に開口を有するマスキング層をパターン形成する工程を行う。その後、マスキング層の上方からの処理により、当該マスキング層の開口底部の露出面に対して選択的な処理を施す工程を行う。しかる後、レンズ基材上からマスキング層を除去し、当該レンズ基材の一主面側に、上述した選択的な処理による処理パターンを形成する工程を行う。
 このような製造方法によれば、パターン形成されたマスキング層の上方からの処理によって、マスキング層の開口底部の露出面に処理パターンを形成している。このため、マスキング層のパターン形成を、例えばインクジェット法のような位置および形状精度の良好な方法によって行うことにより、処理パターンを形成するための処理が、位置および形状精度が良好な方法に限定されることはなく、選択範囲の広い処理方法を適用しつつも、精度の高い処理パターンを得ることができる。
 以上の製造方法において、上述した選択的な処理を施す工程では、透明材料膜の成膜処理を行う。この場合、マスキング層を除去する工程では、当該マスキング層上に成膜された透明材料膜を当該マスキング層と共に除去する。これにより、マスキング層の開口底部の露出面上のみに、上述した処理パターンとして透明材料膜からなる透明パターンを形成する。このような処理を行うことにより、レンズ基材上に精度良好に透明パターンを形成することができる。
 また以上の製造方法において、上述した選択的な処理を施す工程の別の例として、マスキング層の開口底部に対する染色処理を行っても良い。この場合、処理パターンとして染色パターンを形成する。このような処理を行うことにより、レンズ基材の少なくとも表面層に精度良好に染色パターンを形成することができる。
 また以上の製造方法において、インクジェット法によってマスキング層を形成する工程の前に、マスキング層の下地表面に対してマスキング層を構成するインクに対する濡れ性を確保するための改質処理を行うことが好ましい。これにより、次に行うインクジェット法において、均質な連続膜としてマスキング層を形成することができ、このマスキング層の上部から処理を施した場合において、マスキング層の開口内のみに精度良好に処理パターンを形成することが可能になる。
 以上説明したように本発明の光学レンズ製造方法によれば、レンズ基材上の所定位置に、選択範囲の広い処理方法を適用して材料を限定することなく精度良好に処理パターンを形成することが可能になる。
第1実施形態の方法によって得られる光学レンズの構成を示す平面図および断面図である。 第1実施形態の光学レンズの製造手順を示すフローチャートである。 第1実施形態の光学レンズの製造手順を示す製造工程図(その1)である。 第1実施形態の光学レンズの製造手順を示す製造工程図(その2)である。 第1実施形態の光学レンズの製造手順を示す製造工程図(その3)である。 第2実施形態の方法によって得られる光学レンズの構成を示す平面図および断面図である。 第3実施形態の方法によって得られる光学レンズの構成を示す平面図および断面図である。 第3実施形態の光学レンズの製造手順を示すフローチャートである。 第3実施形態の光学レンズの製造手順を示す製造工程図(その1)である。 第3実施形態の光学レンズの製造手順を示す製造工程図(その2)である。 第4実施形態の方法によって得られる光学レンズの構成を示す平面図および断面図である。 第4実施形態の光学レンズの製造手順を示すフローチャートである。 第4実施形態の光学レンズの製造手順を示す製造工程図(その1)である。 第4実施形態の光学レンズの製造手順を示す製造工程図(その2)である。 第5実施形態の方法によって得られる光学レンズの構成を示す平面図および断面図である。
 以下、本発明の実施の形態を、図面に基づいて次に示す順に説明する。
1.第1実施形態(反射防止膜とレンズ基材との間に島状の透明パターンを設ける例)
2.第2実施形態(反射防止膜とレンズ基材との間に開口部を有する透明パターンを設ける例)
3.第3実施形態(反射防止膜の上部に島状の透明パターンを設ける例)
4.第4実施形態(レンズ基材の表面層に島状の染色パターンを設ける例)
5.第5実施形態(レンズ基材の表面層に開口部を有する染色パターンを設ける例)
 尚、各実施形態において共通の構成要素には同一の符号を付し、重複する説明は省略する。
≪1.第1実施形態≫
<第1実施形態の光学レンズの構成>
 図1は、第1実施形態の光学レンズの構成を説明するための平面図(図1A)と、当該平面図におけるa-a’断面図(図1B)である。これらの図に示す第1実施形態の光学レンズ1aは、例えば眼鏡用の光学レンズに好適に用いられるものであって、次のように構成されている。
 すなわち光学レンズ1aは、レンズ基材11の一主面上に、ハードコート膜13、反射防止膜15、および撥水膜17をこの順に積層させている。また特に本第1実施形態の光学レンズ1aは、レンズ基材11上におけるハードコート膜13と反射防止膜15との間に、処理パターンとして島状の透明パターン19aを備えているところが特徴的である。以下、光学レンズ1aを構成する各部材の詳細な構成を、レンズ基材11側から順に説明する。
[レンズ基材11]
 レンズ基材11は、光学レンズ用に用いられる一般的なプラスチック材料からなり、所定のレンズ形状に成形されている。プラスチック材料は、例えば屈折率(nD)1.50~1.74程度のものが用いられる。このようなプラスチック材料としては、例えばアリルジグリコールカーボネート、ウレタン系樹脂、ポリカーボネート、チオウレタン系樹脂及びエピスルフィド樹脂が例示される。このようなレンズ基材11において、この光学レンズ1aを用いて構成される眼鏡の外側となる面を一主面とし、この一主面上に上述したハードコート膜13~撥水膜17、および透明パターン19aの各層が積層されている。
[ハードコート膜13]
 ハードコート膜13は、反射防止膜15の下地として用いられる膜であり、例えば有機珪素化合物を含む材料を用いて構成されている。このハードコート膜13は、上述したプラスチック材料の屈折率に近い屈折率である。具体的には、ハードコート膜13の屈折率(nD)は1.49~1.70程度であり、レンズ基材11の素材に応じて膜構成が選択される。
[反射防止膜15]
 反射防止膜15は、屈折率の異なる材料膜を積層させた多層構造を有し、干渉作用によって光の反射を防止する膜である。このような反射防止膜15は、一例として低屈折率膜15aと高屈折率膜15bとを交互に積層してなる多層構造が挙げられる。低屈折率膜15aは、例えば屈折率1.43~1.47程度の二酸化珪素(SiO2)からなる。また高屈折率膜15bは、低屈折率膜15aよりも高い屈折率を有する材料からなり、例えば酸化ニオブ(Nb2O5)、酸化タンタル(Ta2O5)、酸化チタン(TiO2)、酸化ジルコニウム(ZrO2)、酸化イットリウム(Y2O3)、さらには酸化アルミニウム(Al2O3)等の金属酸化物を、適宜の割合で用いて構成される。
 以上のような低屈折率膜15aと高屈折率膜15bとからなる反射防止膜15は、積層数が限定されることはない。一例として、レンズ基材11側から順に、低屈折率膜15a-1,高屈折率膜15b-2,…低屈折率膜15a-7の順に、7層を積層させた反射防止膜15が挙げられる。また、これらの各低屈折率膜15aおよび各高屈折率膜15bは、所定の位相差となるように各屈折率に応じた各膜厚を有している。
 一例として、レンズ基材11側から順に、低屈折率膜15a-1/高屈折率膜15b-2/低屈折率膜15a-3の3層を合わせた位相差が[λ/4]となり、高屈折率膜15b-4/低屈折率膜15a-5/高屈折率膜15b-6の3層を合わせた位相差が[λ/2]となり、低屈折率膜15a-7の1層の位相差が[λ/4]となるように、各低屈折率膜15aおよび各
高屈折率膜15bの膜厚が各屈折率に応じて設定されている膜構成が挙げられる。
[撥水膜17]
 撥水膜17は、例えばフッ素置換アルキル基含有有機ケイ素化合物からなる。この撥水膜17は、反射防止膜15と合わせて反射防止機能を奏するように設定された膜厚を有している。
[透明パターン19a]
 透明パターン19aは、例えば装飾用の模様、ロゴマーク、または文字等として設けられたものであって、光透過性を有する材料で構成された島状パターンとして構成されている。本第1実施形態で用いられる透明パターン19aは、例えば可視光に対して光透過性を有していれば良いが、特には透明パターン19aを挟んで配置される各層の屈折率よりも高い屈折率を有することが好ましい。またこの透明パターン19aの膜厚は、透明パターン19aを構成する材料の屈折率と、撥水膜17側から見た場合の透明パターン19aに対して求められる視認性とによって、適宜に調整される。尚、透明パターン19aは、異なる材料層を積層させたものであっても良い。
 このような透明パターン19aには、透明パターン19aを挟んで配置されたハードコート膜13および低屈折率膜15a-1よりも高い屈折率の材料を用いられている。このような材料には、反射防止膜15に用いられる高屈折率膜15bを構成する材料と同様の材料が好適に用いられる。これらの材料を用いて透明パターン19aを構成する場合、膜厚10nm程度で透明パターン19aを形成する。これにより、撥水膜17側から見た場合の透明パターン19aに高い視認性を得ることができる。尚、透明パターン19aに対して、あえて低い視認性を持たせる場合であっても、透明パターン19aの屈折率と膜厚とを調整すれば良い。
 以上のような構成の光学レンズ1aは、この光学レンズ1aを用いて構成された眼鏡の内側、すなわち装着者側に向かって配置される面上にも、レンズ基材11側から順にハードコート膜、反射防止膜、および撥水膜がこの順に設けられても良い。
<第1実施形態の光学レンズの製造方法>
 図2は、上述した構成を有する第1実施形態の光学レンズの製造手順を示すフローチャートである。図3~図5は、上述した構成を有する第1実施形態の光学レンズの製造手順を示す製造工程図である。以下にこれらの図に基づいて、第1実施形態の光学レンズを眼鏡用に適用する場合の製造手順を説明する。
 先ず、図3A~図3Cに示すように、レンズ基材におけるレンズ領域の外側に位置合わせ用の基準マークm1~m4を形成する(S1)。この工程は、以下のように行う。
[図3A]
 先ず、図3Aに示すように、レンズ基材11を用意する。レンズ基材の一例として、眼鏡用単焦点レンズを挙げて説明する。
 このレンズ基材11に対して、幾何学中心G.C、および光学中心O.Cを計測によって確定する。そして、光学中心O.Cを含む光学座標を示す仮の点マークM1~M3を、レンズ基材11の一主面側にマーク付けする。この点マークM1~M3は、例えば赤色のインクを用いてマーク付けされる。一例として、光学中心O.Cを中央の点マークM2として、この左右に等間隔で点マークM1,M3を配置する。
[図3B]
 次に、図3Bに示すように、オーダーに応じて作成された光学レンズに関する三次元の外形形状Fのデータと、レンズ基材11において点マークM1~M3で示される光学座標とから、レンズ基材11において外形形状Fの中心(フレーム中心)F.Cとなる位置を検出する。
[図3C]
 その後、図3Cに示すように、光学中心O.Cとフレーム中心F.Cとの関係から、レンズ基材11に対して、レンズ領域の外形形状Fを確定する。そして、光学座標を示す点マークM1~M3に基づいて、レンズ基材11上に外形形状Fの基準となる基準マークm1~m4を形成する。これらの基準マークm1~m4は、上下左右を識別可能である。また、眼鏡の右側レンズであるか左側レンズであるかを識別可能なデザインであると好ましい。例えば、左右を示す基準マークm2、m4を、眼鏡の中央に向く矢印として形成する。
 また、このような基準マークm1~m4は、外形形状Fで囲まれたレンズ領域の外側にマーキングする。これにより、外形形状Fに合わせてレンズ基材11をシェイプカットした後には、レンズ上に基準マークm1~m4が残らない構成とする。尚、ここでは、基準マークm1~m4は、光学中心O.Cを基準としてレイアウトした場合を図示した。しかしながら、基準マークm1~m4は、フレーム中心F.Cを基準としてレイアウトしても良い。
 以上のような基準マークm1~m4は、例えばレーザマーカによって、レンズ基材11の一主面に対して直接形成される。この際、レンズ基材11が熱の影響で破壊されない程度のパワー設定で、レンズ基材11に対してレーザ照射を行う。尚、基準マークm1~m4の形成は、レーザマーカに限定されることはなく、例えばインクジェット法を適用しても良い。この際、マーカに用いるインクは、後に説明するマスキング層を除去する工程において、マスキング層と同時に除去されることのない材質を選択して用いることが重要である。さらに基準マークm1~m4の形成は、例えばケガキマークを手書きで形成しても良い。
 以上においては、レンズ基材11が単焦点レンズである場合においての基準マークm1~m4の形成を説明した。しかしながら、レンズ基材11は、単焦点レンズである場合に限定されることはなく、多焦点レンズ、累進レンズ、さらには他のレンズであっても良い。多焦点レンズを用いる場合であれば、セグメント(小玉)と呼ばれる部分の頂点を基準にフレーム中心F.Cを検出して外形形状Fを確定し、基準マークm1~m4を形成すれば良い。また累進レンズを用いる場合であれば、隠しマーク(レイアウト基準マーク)を基準にフレーム中心F.Cを検出して外形形状Fを確定し、基準マークm1~m4を形成すれば良い。また累進レンズを用いる場合、プリズムリファレンスポイントを中央の点マークM2とし、その左右に等間隔で点マークM1,M3を配置し、これらの点マークM1~M3に基づいて基準マークm1~m4をレイアウトすれば良い。
 基準マークm1~m4の形成後には、点マークM1~M3をふき取り除去する。
[図4A,図4B]
 以上のようにして基準マークm1~m4を形成した後、図4Aの平面図、および図4Bの断面図(図4Aのa-a’断面に相当)に示すように、レンズ基材11上にハードコート膜13を成膜する(S2)。ハードコート膜13の成膜は、例えば有機珪素化合物を溶解させた溶液を用いた浸漬法によって成膜する。
 次いで、ハードコート膜13表面の改質処理を行う(S3)。この改質処理としては、次に行うマスキング層の形成において用いるインクに対して、ハードコート膜13表面の濡れ性を確保するための処理を行う。ここでは、ハードコート膜13の表面にダメージを与えることのない処理方法として、例えば酸素プラズマを用いたプラズマ処理を行う。尚、濡れ性を確保するための改質処理としては、ハードコート膜13に対してダメージを与えることのない方法であれば、プラズマ処理に限定されることはなく、例えばイオン照射処理、コロナ放電処理、アルカリ処理等を行っても良い。
 次に、例えばインクジェット法を適用して、レンズ基材11の一主面側の上方、すなわちここでは改質処理を施したハードコート膜13を下地として、この下地表面上にマスキング層21をパターン形成する(S4)。ここで形成するマスキング層21は、レンズ基材11の一主面側に確定した光学レンズの外形形状Fを全体的に覆うと共に、光学レンズに形成する透明パターンに対応する開口パターン21aを備えている。尚、マスキング層21は、外形形状Fよりも数mm以上大きい形状で形成することが好ましく、これによって外形形状Fに合わせてレンズ基材11をシェイプカットする際の誤差を吸収する。
 この際、レンズ基材11のカーブに影響されることなく、先に作成した基準マークm1~m4に基づいて予め設定されたレンズ基材11上の所定位置に開口パターン21aを設けてマスキング層21を印刷形成することが重要である。このためここでは、インクジェット法を適用したマスキング層21の形成を行う。ここで適用されるインクジェット法は、型式や方式が限定されることはなく、連続型であってもオンデマンド型であっても良く、オンデマンド型であればピエゾ方式であってもサーマル方式であっても良い。
 ここでのインクジェット法によるマスキング層21の形成は、例えば紫外線硬化型インキ(UVキュアインキ)を用いる。中でも、硬化後であっても、ハードコート膜13に対して選択的に除去可能なインクが用いられる。このようなインクとしては、例えば硬化後にエタノールやアセトンに溶解して除去することが可能である高付着性・高接着性の非吸収性素材用のいわゆる硬質UVインクや軟質UVインクが挙げられる。
 このようなインクを用いたインクジェット法においては、印刷条件を調整することにより、塗布ムラのない連続膜としてマスキング層21を形成することが重要である。このような印刷条件としては、印刷ヘッドに対するレンズ基材の移動速度、移動方向の解像度、移動方向に垂直な幅方向の解像度、インク液滴のサイズ、インク液滴のドロップ周波数、同一着弾点に滴下するインク液滴数などである。これらの印刷条件は、相互に関連性を有しているため、適宜調整することによって、印刷ムラを防止したマスキング層21の成膜を行う。
 以上のようなインクジェット法によるマスキング層21の成膜後には、マスキング層21に対して紫外線(UV)照射を行うことにより、マスキング層21を構成するインクを硬化させる。
[図5A]
 次に図5Aに示すように、マスキング層21の上方から透明材料膜19の成膜を行う(S5)。これにより、ハードコート膜13に対しては、マスキング層21の開口パターン21aの底部の露出面に対して選択的に成膜処理を施す。ここでは、蒸着法によって、例えば酸化タンタル(Ta2O5)からなる屈折率2.05~2.15の透明材料膜19を、予め設定された膜厚(例えば10nm)で成膜する。この成膜においては、イオンアシスト蒸着を行うことにより、膜質および密着性良好に透明材料膜19を成膜することが好ましい。
[図5B]
 次いで図5Bに示すように、ハードコート膜13上からマスキング層21を除去する処理を行い、マスキング層21と共にこの上部の透明材料膜19を選択的に除去する(S6)。ここでは、例えばマスキング層21を溶解する溶剤(エタノールやアセトン)を用いたウェット処理により、マスキング層21の除去を行う。これにより、マスキング層21の開口パターン21a内に成膜された透明材料膜19部分のみを、ハードコート膜13を介してレンズ基材11上に残し、残された透明材料膜19部分を透明パターン19aとしてレンズ基材11上に形成する。このようにして形成された透明パターン19aは、マスキング層21に形成した開口パターン21aと同一の位置に形成された同一形状のものとなる。
[図5C]
 次に図5Cに示すように、透明パターン19aが形成されたハードコート膜13上に、低屈折率膜15aと高屈折率膜15bとを交互に積層成膜した多層構造の反射防止膜15を成膜し、さらに反射防止膜15上に撥水膜17を成膜する(S7)。反射防止膜15の成膜は、イオンアシスト蒸着を適用して行うことにより、下層側の低屈折率膜15a-1から順に、低屈折率膜15a-7までの各層を、各組成および各膜厚で成膜する。
[図1A,図1B]
 以上の後には、先の図1Aおよび図1Bに示したように、撥水膜17までが成膜されたレンズ基材11を、レンズ基材11に対して確定された外形形状Fにシェイプカットする(S8)。この際、図4Aを参照し、レンズ基材11における外形形状Fの外側に形成した基準マークm1~m4に基づいて位置合わせされた所定位置に加工用治具を吸着させ、レンズ基材11を加工用治具に固定する。この状態で、シェイプカット加工機を用い、基準マークm1~m4に基づいて位置合わせされた外形形状Fに、レンズ基材11をシェイプカットし、その後加工用治具を取り外して光学レンズ1aを完成させる。その後は、外観検査を経て光学レンズ1aを出荷する。
<第1実施形態の効果>
 以上説明した第1実施形態の光学レンズ製造方法では、図5Aを用いて説明したように、マスキング層21の上部からの成膜処理によって、マスキング層21の開口内に処理パターンとしての透明パターン19aを形成している。このため、透明パターン19aを蒸着成膜に適する材料で構成することができる。しかも透明パターン19a(処理パターン)は、マスキング層21に形成された開口パターン21aの底部に露出するレンズ基材11上に形成される。このため、インクジェット法によるマスキング層21の形成精度に倣って、位置精度および形状精度の高い透明パターン19a(処理パターン)を得ることができる。この結果、レンズ基材11上の所定位置に、例えばインクジェット法のような高精度なパターン形成法には適さないが、蒸着成膜のような成膜には適する材料からなる透明パターン19aを、精度良好な処理パターンとして形成することが可能になる。
 またこのようにして得られた第1実施形態の構成を有する光学レンズ1aは、多層構造の反射防止膜15に対して透明パターン19aを積層させたことにより、透明パターン19aの配置部分とそれ以外の部分とで、反射防止膜15側から光学レンズ1aに入射した光の光反射特性が異なるものとなる。これにより、撥水膜17を介して反射防止膜15側からレンズ1aを見た場合には、反射防止膜15における反射防止機能が維持され、かつ上述した光反射特性の違いとして透明パターン19aを容易に視認することができる。一方、この光学レンズ1aを眼鏡用とし、眼鏡の装着者側となる反射防止膜15および撥水膜17とは反対側の至近距離から光学レンズ1aを見た場合、透明パターン19aが容易に視認されることはない。
 この結果、この光学レンズ1aを用いることにより、装着者の視界を違和感なく確保することが可能でありながらも、外側から視認可能な透明パターン19aを、例えば装飾用の模様、ロゴマーク、または文字等として備えることでデザイン性に優れた眼鏡を構成することが可能になる。
 また本第1実施形態では、透明パターン19aを、レンズ基材11と反射防止膜15との間、より詳しくはハードコート膜13と反射防止膜15を構成する低屈折率膜15a-1との間に配置した。これにより、反射防止膜15においての層構造の連続性を損なうことなく、レンズ基材11の一主面側の表面を、反射防止膜15で一様に覆った通常のレンズ構成とすることができる。したがって、反射防止膜15の表面を、耐摩擦性に優れた二酸化珪素(SiO2)のような低屈折率膜15a-7で一様に覆うことができ、損傷を受けにくいレンズ構成とすることができる。また、多層構造の反射防止膜15を成膜する際のプロセスの連続性が阻害されることもない。
 さらにこのような構成において、透明パターン19aが、これを挟んで配置されるハードコート膜13および低屈折率膜15a-1各層の屈折率よりも高い屈折率を有する場合であれば、透明パターン19aが薄膜の単層構造であっても、反射防止膜15側から光学レンズ1aを見た場合の透明パターン19aの視認性の向上を図ることができる。例えば10nmの膜厚の酸化タンタル(Ta2O5)単層で構成された透明パターン19aを配置した場合、反射防止膜15側から見た片面視感反射率は、透明パターン19aの配置部で1.624%、透明パターン19aの未配置部で0.545%であり、十分に高い透明パターン19aの視認性が得られていることが確認された。
≪2.第2実施形態≫
<第2実施形態の光学レンズの構成>
 図6は、第2実施形態の光学レンズの構成を説明するための平面図(図6A)と、当該平面図におけるa-a’断面図(図6B)である。これらの図に示す第2実施形態の光学レンズ1bが、第1実施形態の光学レンズ(1a)と異なるところは、例えば装飾用の模様、ロゴマーク、または文字等を構成する処理パターンとして設けられた透明パターン19bが、開口部hを有する抜きパターンとして構成されているところにあり、他の構成は第1実施形態と同様である。
 このような開口部hを有する透明パターン19bは、平面形状以外は第1実施形態で説明した島状の透明パターン(19a)と同様の構成であって良い。すなわち、透明パターン19bは、例えば可視光に対して光透過性を有していれば良いが、特には透明パターン19bを挟んで配置される各層の屈折率よりも高い屈折率を有することが好ましい。またこの透明パターン19bは、透明パターン19bを構成する材料の屈折率と、撥水膜17側から見た場合の透明パターン19bに対して求められる視認性とによって、適宜に調整された膜厚を有し、さらに異なる材料層を積層させたものであっても良い。
<第2実施形態の光学レンズの製造方法>
 以上のような構成の第2実施形態の光学レンズ1bの製造方法は、第1実施形態と同様である。ただし、図4を用いて説明したマスキング層21の形成においては、パターンを反転させたマスキング層を、例えばインクジェット法のような精度の高い形成方法の適用によって形成すれば良い。
<第2実施形態の効果>
 このような第2実施形態であっても、第1実施形態と同様の方法が適用されるため、第1実施形態の製造方法と同様に、レンズ基材11上の所定位置に、例えばインクジェット法のような高精度なパターン形成方法には適さないが、蒸着成膜のような成膜には適する材料からなる透明パターン19bを、精度良好な処理パターンとして形成することが可能になる。
 また第2実施形態の光学レンズ1bであっても、第1実施形態の光学レンズの構成と同様の構成で、ハードコート膜13と反射防止膜15の低屈折率膜15a-1との間に、透明パターン19bを積層させている。これにより、第1実施形態と同様に、この光学レンズ1bを用いることにより、装着者の視界を違和感なく確保することが可能でありながらも、外側から視認可能な透明パターン19bを例えば装飾用の模様、ロゴマーク、または文字等として備えることでデザイン性に優れた眼鏡を構成することが可能になると共に、透明パターン19bを設けたことによって多層構造の反射防止膜15を成膜する際のプロセスの連続性が阻害されることもない。さらに透明パターン19bが、これを挟んで配置されているハードコート膜13と反射防止膜15の低屈折率膜15a-1よりも高い屈折率を有する場合であれば、第1実施形態で説明したと同様に、透明パターン19bが薄膜の単層構造であっても、反射防止膜15側から光学レンズ1bを見た場合の透明パターン19bの視認性の向上を図ることができる。
≪3.第3実施形態≫
<第3実施形態の光学レンズの構成>
 図7は、第3実施形態の光学レンズの構成を説明するための平面図(図7A)と、当該平面図におけるa-a’断面図(図7B)である。これらの図に示す第3実施形態の光学レンズ1cが、他の実施形態の光学レンズ(1a,1b)と異なるところは、例えば装飾用の模様、ロゴマーク、または文字等を構成する島状の透明パターン29c(処理パターン)が、反射防止膜15の上部に積層して設けられているところにあり、他の構成は第1実施形態と同様である。
 このような透明パターン29cは、第1実施形態および第2実施形態の光学レンズに配置した透明パターンと比較して、より光学レンズ1cの表面近くに配置されることになる。このため、透明パターン29cは、耐摩擦性に優れた二酸化珪素(SiO2)のような低屈折率材料を用いて構成することが好ましい。またこの透明パターン29cは、透明パターン29cを構成する材料の屈折率と、撥水膜17側から見た場合の透明パターン29cに対して求められる視認性とによって、適宜に調整された膜厚を有すること、さらに異なる材料層を積層させたものであっても良いことは、他の実施形態と同様である。尚、透明パターン29cを積層構造とする場合、透明パターン29cを構成する最上層部分が、耐摩擦性に優れた二酸化珪素(SiO2)のような低屈折率材料を用いて構成することが好ましい。
<第3実施形態の光学レンズの製造方法>
 図8は、上述した構成を有する第3実施形態の光学レンズの製造手順を示すフローチャートである。図9および図10は、上述した構成を有する第3実施形態の光学レンズの製造手順を示す製造工程図である。以下にこれらの図面に基づいて、第3実施形態の光学レンズを眼鏡用に適用する場合の製造手順の特徴部を説明する。
[図9A]
 先ず予め、第1実施形態において図3A~図3Cを用いて説明した手順と同様にして、レンズ基材11の一主面側に、ここでの図示を省略した基準マーク(m1~m4)を形成しておく(S11)。その後、先ずこのレンズ基材11の一主面上にハードコート膜13を成膜し(S12)、次いでハードコート膜13表面の濡れ性を確保するための改質処理を行い(S13)、その後多層構造の反射防止膜15を成膜する(S14)。
 以上の成膜および処理は、第1実施形態で説明した手順と同様であり、ハードコート膜13の成膜は、例えば有機珪素化合物を溶解させた溶液を用いた浸漬法によって成膜する。ハードコート膜13表面の改質処理は、例えば酸素プラズマを用いたプラズマ処理を行う。さらに反射防止膜15の成膜は、イオンアシスト蒸着を適用して行うことにより、下層側の低屈折率膜15a-1から順に低屈折率膜15a-7までの各層を、各組成および各膜厚で成膜する。ただし、最上層の低屈折率膜15a-7は、透明パターンを積層することを考慮し、別途膜厚を調整しても良い。
[図9B]
 次に図9Bに示すように、反射防止膜15における低屈折率膜15a-7の上部に、第1実施形態と同様に、例えばインクジェット法を適用してマスキング層21をパターン形成する(S15)。ここで形成するマスキング層21は、第1実施形態と同様であり、レンズ基材11の一主面側に確定したレンズの外形形状を全体的に覆うと共に、光学レンズに形成する透明パターンに対応する開口パターン21aを備えている。またこのインクジェット法において用いるインクは、第1実施形態と同様であって、例えば硬化後にエタノールやアセトンに溶解して除去することが可能なUVキュアインクを用いる。
 尚、マスキング層21の形成前には、反射防止膜15表面の濡れ性を確保するための改質処理を行っても良い。この改質処理は、適宜の方法で行われる。またインクジェット法によるマスキング層21の成膜後には、マスキング層21に対して紫外線(UV)照射を行うことにより、マスキング層21を構成するUVキュアインクを硬化させることも、第1実施形態と同様である。
[図10A]
 次いで図10Aに示すように、マスキング層21の上方から透明材料膜29の成膜を行う(S16)。これにより、反射防止膜15に対しては、マスキング層21の開口パターン21aの底部の露出面に対して選択的に成膜処理を施す。ここでは、蒸着法によって、二酸化珪素(SiO2)からなる屈折率1.43~1.47の透明材料膜29を、予め設定された膜厚(例えば10nm)で成膜する。この成膜においては、必要に応じてイオンアシスト蒸着を行うことにより、膜質および密着性良好に透明材料膜29の成膜を行う。
[図10B]
 その後、図10Bに示すように、反射防止膜15上からマスキング層21を除去する処理を行い、マスキング層21と共にこの上部の透明材料膜29を選択的に除去する(S17)。ここでは、例えばマスキング層21を構成するインクを溶解する溶剤(エタノールやアセトン)を用いたウェット処理により、マスキング層21を除去し、マスキング層21と共に上部の透明材料膜29の選択的な除去を行う。これにより、マスキング層21の開口パターン21a内に成膜された透明材料膜29部分のみを、ハードコート膜13および反射防止膜15を介してレンズ基材11上に残し、残された透明材料膜29部分を透明パターン29cとしてレンズ基材11上に形成する。このようにして形成された透明パターン29cは、マスキング層21に形成した開口パターン21aと同一の位置に同一形状で形成されたものとなる。
[図7A,図7B]
 以上の後には、先の図7に示したように、透明パターン29cを覆う状態で、反射防止膜15上に撥水膜17を成膜する(S18)。次いで、撥水膜17までが成膜されたレンズ基材11を、レンズ基材11に対して確定された外形形状Fにシェイプカットする(S19)。この際、第1実施形態で説明した手順と同様に、レンズ基材11における外形形状Fの外側に形成した基準マークm1~m4に基づいて位置合わせされた外形形状Fに、レンズ基材11をシェイプカットする。
<第3実施形態の効果>
 以上説明した第3実施形態の光学レンズ製造方法であっても、図10Aを用いて説明したように、マスキング層21の上部からの成膜処理によって、マスキング層21の開口パターン21aの底部に処理パターンとしての透明パターン29cを形成している。このため、第1実施形態と同様に、レンズ基材11上の所定位置に、例えばインクジェット法のような高精度なパターン形成法には適さないが、蒸着成膜のような成膜には適する材料からなる透明パターン29cを、精度良好な処理パターンとして形成することが可能になる。
 またこのようにして得られた第3実施形態の光学レンズ1cであっても、他の実施形態の光学レンズの構成と同様に、多層構造の反射防止膜15に対して透明パターン29cを積層させている。これにより、他の実施形態と同様に、この光学レンズ1cを用いることにより、装着者の視界を違和感なく確保することが可能でありながらも、外側から視認可能な透明パターン29cを装飾用の模様、ロゴマーク、または文字等として備えることでデザイン性に優れた眼鏡を構成することが可能になる。
 尚、本第3実施形態では、反射防止膜15上に島状の透明パターン29cを積層させた構成を説明した。しかしながら、第2実施形態のように反射防止膜15上に積層する透明パターンとして開口部を有する透明パターンを用いても良く、この場合であっても本第3実施形態と同様の効果を得ることができる。
 さらに、上述した第1実施形態~第3実施形態では、反射防止膜15の上部または下部に透明パターンを積層する構成を説明した。しかしながら、透明パターンは、多層構造の反射防止膜15の層間に配置されても良い。この場合、透明パターンは、これを構成する材料の屈折率と、撥水膜17側から見た場合の透明パターンに対して求められる視認性とによって、適宜に調整された膜厚を有すること、さらに異なる材料層を積層させたものであっても良いことは、上述した各実施形態と同様である。
≪4.第4実施形態≫
<第4実施形態の光学レンズの構成>
 図11は、第4実施形態の光学レンズの構成を説明するための平面図(図11A)と、当該平面図におけるa-a’断面図(図11B)である。これらの図に示す第4実施形態の光学レンズ1dが、先の第1~第3実施形態の光学レンズ(1a~1c)と異なるところは、処理パターンとして島状の染色パターン31dが設けられているところにあり、他の構成は第1実施形態と同様である。
 すなわち処理パターンとして設けられる染色パターン31dは、レンズ基材11の凹面及び凸面のどちらか一方の面を一主面とし、この一主面側の表面層に設けられている。この染色パターン31dは、撥水膜17側から見た場合の染色パターン31dに対して求められる視認性によって、レンズ基材11の表面層における深さdと、染色パターン31dを構成する染料の濃度とが、適宜に調整されていることとする。特に、この光学レンズ1dが、眼鏡用の光学レンズとして用いられる場合、撥水膜17と反対側の至近距離から光学レンズ1dを見た場合に、染色パターン31dが容易に視認されない程度に、染色パターン31dの深さと染料の濃度とが調整されていることが好ましい。
 このような染色パターン31dを構成する染料は、プラスチック材料からなるレンズ基材11を染色可能なものであれば良く、染色パターン31dを形成する染色方法によって適宜な材料が用いられる。例えば昇華染色法によるレンズ基材11の染色によって染色パターン31dを形成する場合であれば、染料としては昇華性染料が用いられる。また、浸漬法による染色の場合には、浸漬法用の染料が用いられる。
 以上のような染色パターン31dが設けたれたレンズ基材11における一主面上には、他の実施形態と同様の構成のハードコート膜13、多層構造の反射防止膜15、および撥水膜17がこの順に積層されている。
<第4実施形態の光学レンズの製造方法>
 図12は、上述した構成を有する第4実施形態の光学レンズの製造手順を示すフローチャートである。図13~図14は、上述した構成を有する第4実施形態の光学レンズの製造手順を示す製造工程図である。以下にこれらの図面に基づいて、第4実施形態の光学レンズを眼鏡用に適用する場合の製造手順の特徴部を説明する。
[図13A,図13B]
 先ず図13Aの平面図、および図13Bの断面図(図13Aのa-a’断面に相当)に示すように、予め、レンズ基材11におけるレンズの外形形状Fを確定し、レンズ基材11の一主面側に外形形状Fの基準となる基準マークm1~m4を形成する(S21)。この工程は、第1実施形態において図3A~図3Cを用いて説明した手順と同様に行う。
 次に、レンズ基材11の一主面側における表面の改質処理を行う(S22)。この改質処理としては、次に行うマスキング層の形成において用いるインクに対して、レンズ基材11表面の濡れ性を確保するための処理を行う。ここでは、例えばレンズ基材11の表面にダメージを与えることのない処理方法として、例えば酸素プラズマを用いたプラズマ処理を行う。尚、濡れ性を確保するための改質処理としては、この他にもレンズ基材11に対してダメージを与えることのない方法であれば、プラズマ処理に限定されることはなく、例えばイオン照射処理やコロナ放電処理を行っても良い。
 次に、例えばインクジェット法を適用して、改質処理を施したレンズ基材11を下地として、この下地表面上に、第1実施形態で説明した手順と同様の手順でマスキング層21をパターン形成する(S23)。ここでは、第1実施形態と同様にインクジェット法を適用することにより、レンズ基材11のカーブに影響されることなく、先に作製した基準マークm1~m4に基づいて予め設定されたレンズ基材11上の所定位置に開口パターン21aが設けられるようにマスキング層21を印刷形成することが重要である。
[図14A]
 次に図14Aに示すように、マスキング層21の上方からレンズ基材11の染色処理を行う(S24)。これにより、レンズ基材11に対しては、マスキング層21の開口パターン21aの底部の露出面に対して選択的に染色処理を施す。ここでは、例えば昇華染色を行う。この場合、例えば昇華性染料を水系溶媒に分散させたインクを基板上に塗布してなる印刷シートを用意する。この印刷シートのインク塗布面と、レンズ基材11におけるマスキング層21の形成面とを対向させて配置し、所定の減圧雰囲気下において印刷シートを加熱する。これにより、印刷シートの昇華性染料を昇華させ、マスキング層21の開口パターン21aの底部に露出するレンズ基材11を染色する。この際、マスキング層21も染色されるが、マスキング層21で覆われているレンズ基材11部分は染色されることはない。このため、開口パターン21aの底部のみに、レンズ基材11の表面層を染色処理してなる染色パターン31dが形成される。このようにして形成された染色パターン31dは、マスキング層21に形成した開口パターン21aと同一の位置に形成された同一形状のものとなる。
 ここでは、染色パターン31dに求められる視認性によって、レンズ基材11の表面層における深さdと、染色パターン31dを構成する染料の濃度とを制御した染色処理を行う。このような染色処理における深さdおよび染料の濃度は、レンズ基板11の材質毎に、印刷シートを構成する昇華性染料の濃度、および染色の処理時間の調整によって制御される。
 なお、浸漬法の場合、液体染料に浸漬させる時間や染料温度等で、濃度の制御をすることが可能である。また、浸漬法の場合、凹凸両面染色も可能であり、片面染色と両面染色でマスキングイメージの濃淡制御をすることも可能である。
[図14B]
 次いで図14Bに示すように、レンズ基材11上からマスキング層21を除去する処理を行う(S25)。ここでは、例えばマスキング層21を溶解する溶剤(エタノールやアセトン)を用いたウェット処理により、染色されたマスキング層21の除去を行う。
[図14C]
 その後図14Cに示すように、染色パターン31dが形成されたレンズ基材11上に、ハードコート膜13、および低屈折率膜15aと高屈折率膜15bとを交互に積層成膜した多層構造の反射防止膜15とをこの順に成膜し、さらに反射防止膜15上に撥水膜17を成膜する(S26)。反射防止膜15の成膜は、イオンアシスト蒸着を適用して行うことにより、下層側の低屈折率膜15a-1から順に、低屈折率膜15a-7までの各層を、各組成および各膜厚で成膜する。
[図11A,図11B]
 以上の後には、先の図11Aおよび図11Bに示したように、撥水膜17までが成膜されたレンズ基材11を、レンズ基材11に対して確定された外形形状Fにシェイプカットする(S27)。この際、図13を参照し、第1実施形態で説明した手順と同様にレンズ基材11に形成した基準マークm1~m4に基づいて位置合わせされた外形形状Fに、レンズ基材11をシェイプカットし、第4実施形態の光学レンズ1dを得る。
<第4実施形態の効果>
 以上説明した第4実施形態の光学レンズ製造方法では、図14Aを用いて説明したように、マスキング層21の上部からの染色処理によって、マスキング層21の開口パターン21aの底部に処理パターンとしての染色パターン31dを形成している。つまり、処理パターンを、染色による染色パターン31dとして形成することができる。しかも染色パターン31d(処理パターン)は、マスキング層21に形成された開口パターン21a内に形成される。このため、インクジェット法によるマスキング層21の形成精度に倣って、形状精度の高い染色パターン31d(処理パターン)を得ることができる。この結果、レンズ基材11の表面層の所定位置に、形状精度の高い装飾用の模様、ロゴマーク、または文字等としての染色パターン31dを、外側から視認可能な処理パターンとして形成することが可能になる。
≪5.第5実施形態≫
<第5実施形態の光学レンズの構成>
 図15は、第5実施形態の光学レンズの構成を説明するための平面図(図15A)と、当該平面図におけるa-a’断面図(図15B)である。これらの図に示す第5実施形態の光学レンズ1eが、第4実施形態の光学レンズ(1d)と異なるところは、染色パターン31eが、開口部hを有する抜きパターンとして構成されているところにあり、他の構成は第4実施形態と同様である。
 このような開口部hを有する染色パターン31eは、平面形状以外は第4実施形態で説明した島状の染色パターン(31d)と同様の構成であって良い。すなわち、染色パターン31eは、撥水膜17側から見た場合の染色パターン31eに対して求められる視認性によって、レンズ基材11の表面層における深さdと、染色パターン31eを構成する染料の濃度とが、適宜に調整されていることとする。特に、この光学レンズ1eが、眼鏡用の光学レンズとして用いられる場合、撥水膜17と反対側の至近距離から光学レンズ1eを見た場合に、染色パターン31eが容易に視認されない程度に、染色パターン31eの深さと染料の濃度とが調整されていることが好ましい。
<第5実施形態の光学レンズの製造方法>
 以上のような構成の第5実施形態の光学レンズ1eの製造方法は、第4実施形態と同様である。ただし、図13を用いて説明したマスキング層21の形成においては、パターンを反転させたマスキング層を、インクジェット法の適用によって形成すれば良い。
<第5実施形態の効果>
 このような第5実施形態であっても、第4実施形態と同様の方法が適用されるため、第4実施形態の製造方法と同様の効果を得ることができる。
 尚、以上説明した第4実施形態および第5実施形態においては、マスキング層21の上方からの昇華染色法によってレンズ基材11の一主面側の表面層に染色パターンを形成する構成を説明した。しかしながら、染色パターンの形成が昇華染色に限定されることはなく、浸漬法や転写法のような他の染色方法を適用しても良い。
 ただし、第4実施形態および第5実施形態において説明したように、レンズ基材11の一主面側のみにマスキング層21を形成した状態で、例えば浸漬法のようにレンズ基材11全体を染料にさらす方法を適用して染色処理を行った場合、マスキング層21が形成されていないレンズ基材11の他主面側は全面が染色処理されることになる。この場合、マスキング層21側からの染色処理によって染色パターンを形成するには、他主面側からの染色がマスキング層21を設けた一主面側に達することのないように、染色条件を制御した染色を行うことが重要である。尚、レンズ基材11の一主面側と共に、他主面側におけるレンズ領域の全面をマスキング層で覆って染色処理を行うことで、レンズ基材11の他主面側の染色を防止しても良い。
 また以上説明した第1~第5実施形態においては、眼鏡用の光学レンズに処理パターンを設ける場合を想定した説明を行った。しかしながら本発明の光学レンズ製造方法は、眼鏡用の光学レンズの製造に適用する場合に限定されることはなく、所定のレンズ領域に例えば装飾用の模様、ロゴマーク、または文字等としての処理パターンを形成する場合に広く適用可能である。
 さらに以上説明した第1~第5実施形態においては、マスキング層21の形成をインクジェット法によって行う場合を説明した。しかしながら、マスキング層21の形成はインクジェット法の適用に限定されることはなく、印刷法やテープの貼り付けによってマスキング層21を形成しても良い。この場合であっても、マスキング層21を位置および形状精度良好に形成することにより、材料を限定することなく精度良好にレンズ面に透明材料膜からなる透明パターンや染色パターンを形成することが可能になる。
 1a,1b,1c,1d,1e…光学レンズ、11…レンズ基材、F…外形形状(レンズ領域)、m1,m2,m3,m4…基準マーク、21…マスキング層、19,29…透明材料膜、19a,19b,29c…透明パターン(処理パターン)、31d,31e…染色パターン(処理パターン)

Claims (8)

  1.  レンズ基材に設定されたレンズ領域の外側に、位置合わせ用のマークを形成する工程と、
     前記レンズ基材の一主面側の上方に、前記マークを基準として形成位置を制御しながら前記レンズ領域の所定位置に開口を有するマスキング層をパターン形成する工程と、
     前記マスキング層の上方からの処理により、当該マスキング層の開口底部の露出面に対して選択的な処理を施す工程と、
     前記レンズ基材上から前記マスキング層を除去し、当該レンズ基材の一主面側に前記選択的な処理による処理パターンを形成する工程とを行う、
     光学レンズの製造方法。
  2.  前記選択的な処理を施す工程では、透明材料膜の成膜処理を行い、
     前記マスキング層を除去する工程では、当該マスキング層上に成膜された前記透明材料膜を当該マスキング層と共に除去することにより、当該マスキング層の開口底部の露出面上のみに当該透明材料膜からなる透明パターンを前記処理パターンとして形成する
     請求項1記載の光学レンズの製造方法。
  3.  前記位置合わせ用のマークを形成した後でマスキング層をパターン形成する前、または前記処理パターンを形成した後に、前記レンズ基材の一主面側の上方に反射防止膜を形成する工程を行う
     請求項2に記載の光学レンズの製造方法。
  4.  前記選択的な処理を施す工程では、前記マスキング層の開口底部に対する染色処理を行うことにより、前記処理パターンとして染色パターンを形成する
     請求項1記載の光学レンズの製造方法。
  5.  前記処理パターンとして染色パターンを形成した後に、前記レンズ基材の一主面側の上方に反射防止膜を形成する工程を行う
     請求項4に記載の光学レンズの製造方法。
  6.  前記マスキング層を形成する工程の前に、当該マスキング層の下地表面に対して当該マスキング層を構成するインクに対する濡れ性を確保するための改質処理を行う
     請求項1~5の何れかに記載の光学レンズの製造方法。
  7.  前記処理パターンが形成された前記レンズ基材から前記レンズ領域を切り出す工程を行う
     請求項1~6の何れかに記載の光学レンズの製造方法。
  8.  前記マスキング層をパターン形成する工程では、インクジェット法によるパターン形成を行う
     請求項1~7の何れかに記載の光学レンズの製造方法。
     
PCT/JP2012/054963 2011-02-28 2012-02-28 光学レンズの製造方法 WO2012118089A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2012224048A AU2012224048B2 (en) 2011-02-28 2012-02-28 Method for producing optical lens
CN201280019458.0A CN103502877B (zh) 2011-02-28 2012-02-28 光学透镜的制造方法
KR1020137025168A KR101639114B1 (ko) 2011-02-28 2012-02-28 광학렌즈의 제조방법
EP12751953.6A EP2682807A4 (en) 2011-02-28 2012-02-28 Method for producing optical lens
US14/001,291 US9278492B2 (en) 2011-02-28 2012-02-28 Method for producing optical lens

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011041427 2011-02-28
JP2011-041427 2011-02-28
JP2012-041679 2012-02-28
JP2012041679A JP6113412B2 (ja) 2011-02-28 2012-02-28 光学レンズの製造方法

Publications (1)

Publication Number Publication Date
WO2012118089A1 true WO2012118089A1 (ja) 2012-09-07

Family

ID=46758020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054963 WO2012118089A1 (ja) 2011-02-28 2012-02-28 光学レンズの製造方法

Country Status (7)

Country Link
US (1) US9278492B2 (ja)
EP (1) EP2682807A4 (ja)
JP (1) JP6113412B2 (ja)
KR (1) KR101639114B1 (ja)
CN (1) CN103502877B (ja)
AU (1) AU2012224048B2 (ja)
WO (1) WO2012118089A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013121763A1 (ja) * 2012-02-17 2013-08-22 セイコーエプソン株式会社 光学部材および光学部材の製造方法
CN105026133A (zh) * 2013-03-01 2015-11-04 埃西勒国际通用光学公司 用于向光学镜片构件提供参考元件的方法
CN108700757A (zh) * 2016-02-22 2018-10-23 艾亮有限公司 具有可选择地调节的屈光力透镜的眼镜的改进或者与该眼镜有关的改进
EP3779570A4 (en) * 2018-03-30 2022-01-26 Hoya Lens Thailand Ltd. SPECTACLE GLASS, SPECTACLES AND METHOD FOR MAKING SPECTACLE GLASS
US11994754B2 (en) 2016-02-22 2024-05-28 Adlens Ltd Glasses with selectively adjustable optical power lenses

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017111141A1 (ja) * 2015-12-22 2018-08-30 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd 眼鏡レンズ、光学部材の製造方法、及びインク
RU2645613C1 (ru) * 2016-08-25 2018-02-26 Общество с ограниченной ответственностью "БИГПРИНТЕР ЦИФРОВЫЕ ИННОВАЦИИ" Способ печати оптических линз на подложке для создания стереоэффекта
EP3339940B1 (de) * 2016-12-22 2020-11-04 Carl Zeiss Vision International GmbH Verfahren zur erzeugung einer beschichtung auf einem brillenglas und brillenglas
JP2018180168A (ja) * 2017-04-07 2018-11-15 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd 処理パターンが形成された光学部材の製造方法
WO2018211405A2 (en) * 2017-05-16 2018-11-22 3M Innovative Properties Company Optical system
KR20190096190A (ko) 2018-02-08 2019-08-19 엘지이노텍 주식회사 광학 렌즈
JP7323972B2 (ja) * 2018-09-28 2023-08-09 ホヤ レンズ タイランド リミテッド 眼鏡レンズの製造方法
JP2020052323A (ja) * 2018-09-28 2020-04-02 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd 眼鏡レンズの製造方法
CN109590845B (zh) * 2018-11-01 2020-02-04 浦江凯瑞车镜有限公司 一种棱镜的生产工艺及抛光模具
US11536875B2 (en) * 2019-04-02 2022-12-27 Kh9100 Llc Method for sublimation coating on optical lens
CN111778483B (zh) * 2019-04-04 2023-05-09 北京小米移动软件有限公司 镀膜处理方法、基底及电子设备
EP3812142A1 (de) * 2019-10-23 2021-04-28 Carl Zeiss Vision International GmbH Verfahren zur herstellung eines brillenglases sowie ein erzeugnis umfassend ein brillenglas
EP3936927A1 (en) * 2020-07-08 2022-01-12 Essilor Italia Spa Method for tinting an ophtalmic article and related ophtalmic article
EP3988288A1 (en) * 2020-10-23 2022-04-27 Carl Zeiss Vision International GmbH Method of manufacturing a spectacle lens
EP3988289A1 (en) * 2020-10-23 2022-04-27 Carl Zeiss Vision International GmbH Method of manufacturing a spectacle lens
EP3988290A1 (en) 2020-10-23 2022-04-27 Carl Zeiss Vision International GmbH Method for manufacturing a spectacle lens
EP4147863A1 (en) 2021-09-10 2023-03-15 Carl Zeiss Vision International GmbH Method and composition for tinting a spectacle lens substrate
WO2024023701A1 (en) * 2022-07-29 2024-02-01 Luxottica S.R.L. Lens for selective mirroring glasses and method for realizing a selective mirroring lens

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000067051A1 (fr) 1999-04-28 2000-11-09 Asahi Lite Optical Co., Ltd. Lentille en plastic et son procede de traitement
JP2002258002A (ja) * 2001-03-02 2002-09-11 Nidek Co Ltd プラスチックレンズの染色方法及び該方法を用いて得られるプラスチックレンズ
JP2004321928A (ja) * 2003-04-24 2004-11-18 Kato Hachi:Kk 隠しマークを有する物品およびその製造方法
JP2006138887A (ja) * 2004-11-10 2006-06-01 Hoya Corp 液晶パネル用対向基板の製造方法
JP2006178160A (ja) * 2004-12-22 2006-07-06 Hoya Corp マイクロレンズ付基板の製造方法、液晶表示パネルの対向基板の製造方法及び液晶パネルの製造方法
JP2007041569A (ja) * 2005-06-30 2007-02-15 Hoya Corp プラスチック眼鏡レンズ及びその製造方法並びにマーキング方法及びマーキング装置
JP2008055253A (ja) 2006-08-29 2008-03-13 Nidek Co Ltd コーティング方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3233590A1 (de) * 1982-09-10 1984-03-15 Fa. Carl Zeiss, 7920 Heidenheim Brillenlinse mit kennzeichnung und/oder markierung und verfahren zur herstellung der kennzeichnung und/oder markierung
EP0677764B1 (en) * 1994-04-12 2002-01-23 Jax Holdings, Inc. An optical filter arrangement
WO1998052074A1 (fr) * 1997-05-16 1998-11-19 Hoya Kabushiki Kaisha Composant optique en plastique pourvu d'une pellicule empechant la reflexion et mecanisme servant a uniformiser l'epaisseur de cette pellicule
JP2000153698A (ja) * 1998-11-19 2000-06-06 Seiko Epson Corp 刻印装置
EP1762337A4 (en) * 2004-06-30 2009-11-25 Hoya Corp METHOD OF MANUFACTURING GLASSES OF GLASSES
GB0424005D0 (en) * 2004-10-29 2004-12-01 Eastman Kodak Co Method of coating
JP4963977B2 (ja) * 2006-04-27 2012-06-27 Hoya株式会社 眼鏡レンズの製造システム及びマーク検出装置
US7811628B2 (en) * 2006-12-22 2010-10-12 Roger Wen-Yi Hsu Layered lenses and method of layering lenses

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000067051A1 (fr) 1999-04-28 2000-11-09 Asahi Lite Optical Co., Ltd. Lentille en plastic et son procede de traitement
JP2002258002A (ja) * 2001-03-02 2002-09-11 Nidek Co Ltd プラスチックレンズの染色方法及び該方法を用いて得られるプラスチックレンズ
JP2004321928A (ja) * 2003-04-24 2004-11-18 Kato Hachi:Kk 隠しマークを有する物品およびその製造方法
JP2006138887A (ja) * 2004-11-10 2006-06-01 Hoya Corp 液晶パネル用対向基板の製造方法
JP2006178160A (ja) * 2004-12-22 2006-07-06 Hoya Corp マイクロレンズ付基板の製造方法、液晶表示パネルの対向基板の製造方法及び液晶パネルの製造方法
JP2007041569A (ja) * 2005-06-30 2007-02-15 Hoya Corp プラスチック眼鏡レンズ及びその製造方法並びにマーキング方法及びマーキング装置
JP2008055253A (ja) 2006-08-29 2008-03-13 Nidek Co Ltd コーティング方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2682807A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013121763A1 (ja) * 2012-02-17 2013-08-22 セイコーエプソン株式会社 光学部材および光学部材の製造方法
CN105026133A (zh) * 2013-03-01 2015-11-04 埃西勒国际通用光学公司 用于向光学镜片构件提供参考元件的方法
CN108700757A (zh) * 2016-02-22 2018-10-23 艾亮有限公司 具有可选择地调节的屈光力透镜的眼镜的改进或者与该眼镜有关的改进
US11194174B2 (en) 2016-02-22 2021-12-07 Adlens Ltd Glasses with selectively adjustable optical power lenses
US11994754B2 (en) 2016-02-22 2024-05-28 Adlens Ltd Glasses with selectively adjustable optical power lenses
EP3779570A4 (en) * 2018-03-30 2022-01-26 Hoya Lens Thailand Ltd. SPECTACLE GLASS, SPECTACLES AND METHOD FOR MAKING SPECTACLE GLASS
US11422387B2 (en) 2018-03-30 2022-08-23 Hoya Lens Thailand Ltd. Eyeglass lens, eyeglass, and method for producing eyeglass lens

Also Published As

Publication number Publication date
US9278492B2 (en) 2016-03-08
CN103502877A (zh) 2014-01-08
US20140099439A1 (en) 2014-04-10
JP6113412B2 (ja) 2017-04-12
EP2682807A1 (en) 2014-01-08
AU2012224048B2 (en) 2015-05-14
EP2682807A4 (en) 2017-12-20
KR101639114B1 (ko) 2016-07-22
JP2012194547A (ja) 2012-10-11
AU2012224048A1 (en) 2013-09-12
CN103502877B (zh) 2015-03-25
KR20130128462A (ko) 2013-11-26

Similar Documents

Publication Publication Date Title
JP6113412B2 (ja) 光学レンズの製造方法
JP6105205B2 (ja) 光学レンズ
JP5100850B2 (ja) 外装部品およびその製造方法ならびに電子機器
CN113260901B (zh) 眼镜镜片
JP2007103915A5 (ja)
JP5137830B2 (ja) アポダイズされた壁を有するピクセル化された光学部品、該光学部品を製造する方法、および透明な光学素子の製造における該光学部品の使用
KR20190029598A (ko) 광학 물품의 영구적 시인성 마킹을 위한 방법 및 마킹된 광학 물품
KR20190086457A (ko) 안경 렌즈 및 이를 제조하기 위한 방법
KR20150009518A (ko) 광학 부재 및 광학 부재의 제조 방법
US20080160297A1 (en) Workpiece Comprising Detachable Optical Products and Method for Manufacturing the Same
JP2013073108A (ja) プラスチックレンズ用膜形成装置
KR20180011371A (ko) 광학렌즈
JP7202397B2 (ja) 光学部材の製造方法および光学部材
CN111465492A (zh) 装饰元件及其制备方法
CN110770015B (zh) 装饰构件及其制造方法
TWI841367B (zh) 高抗刮及防霧組合式光學透鏡裝置及其製造方法
WO2023120117A1 (ja) 眼鏡レンズの製造方法、眼鏡レンズ、及び眼鏡
JP2009210677A (ja) 眼鏡レンズ及びその製造方法
WO2023119773A1 (ja) 光学部材の製造方法、光学部材及び眼鏡
JP2020052352A (ja) 眼鏡レンズ
JP2012185349A (ja) レンズ及びレンズの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12751953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012224048

Country of ref document: AU

Date of ref document: 20120228

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012751953

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137025168

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14001291

Country of ref document: US