WO2023119773A1 - 光学部材の製造方法、光学部材及び眼鏡 - Google Patents

光学部材の製造方法、光学部材及び眼鏡 Download PDF

Info

Publication number
WO2023119773A1
WO2023119773A1 PCT/JP2022/035740 JP2022035740W WO2023119773A1 WO 2023119773 A1 WO2023119773 A1 WO 2023119773A1 JP 2022035740 W JP2022035740 W JP 2022035740W WO 2023119773 A1 WO2023119773 A1 WO 2023119773A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
optical member
laser
refractive index
film
Prior art date
Application number
PCT/JP2022/035740
Other languages
English (en)
French (fr)
Inventor
繁樹 大久保
Original Assignee
ホヤ レンズ タイランド リミテッド
繁樹 大久保
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホヤ レンズ タイランド リミテッド, 繁樹 大久保 filed Critical ホヤ レンズ タイランド リミテッド
Priority to KR1020247005325A priority Critical patent/KR20240036057A/ko
Publication of WO2023119773A1 publication Critical patent/WO2023119773A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C1/00Assemblies of lenses with bridges or browbars
    • G02C1/06Bridge or browbar secured to or integral with closed rigid rims for the lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses

Definitions

  • the present invention relates to an optical member manufacturing method, an optical member, and spectacles.
  • Some spectacle lenses are constructed by coating the optical surface of a lens substrate with a thin film such as a hard coat film or an antireflection film.
  • a thin film such as a hard coat film or an antireflection film.
  • An object of the present disclosure is to provide a technique for marking an optical member without degrading the quality of the optical member.
  • a first aspect of the present invention is An antireflection film having a multilayer structure including a lamination of a low refractive index layer and a high refractive index layer, which is formed so as to cover the optical surface of an optical substrate, is irradiated with an ultrashort pulse laser to obtain the multilayer structure.
  • a method for producing an optical member by partially removing a predetermined layer including the outermost layer of the optical member, wherein the desired laser processing is performed
  • the ultrashort pulse laser has a pulse width of 10 femtoseconds or more and less than 100 picoseconds
  • the antireflection film includes a reaction layer that is relatively more reactive than other layers included in the multilayer structure to irradiation of the ultrashort pulse laser
  • the laser processing visible with visible light is performed by at least partially removing the reaction layer by the irradiation. It is a manufacturing method of an optical member.
  • a second aspect of the present invention is In the removal of the reaction layer, the reaction layer disappears by at least partial sublimation or evaporation in the thickness direction, and other layers stacked above the reaction layer are removed along with the disappearance. , It is a manufacturing method of the optical member according to the first aspect.
  • a third aspect of the present invention is A high refractive index layer included in the multilayer structure is exposed in the irradiated portion where the reaction layer has been removed by the irradiation.
  • a fourth aspect of the present invention is The reaction layer is a conductive layer having higher conductivity than other layers constituting the multilayer structure, A method for manufacturing an optical member according to any one of the first to third aspects.
  • a fifth aspect of the present invention is wherein the reaction layer contains Sn and O; A method for manufacturing an optical member according to any one of the first to fourth aspects.
  • a sixth aspect of the present invention is The optical member is a spectacle lens, A method for manufacturing an optical member according to any one of the first to fifth aspects.
  • a seventh aspect of the present invention is The ultrashort pulse laser has a pulse width of 0.1 picoseconds or more and less than 50 picoseconds.
  • An eighth aspect of the present invention is an optical substrate having an optical surface; and an antireflection film covering the optical surface of the optical substrate,
  • the antireflection film has a multilayer structure including a lamination of a low refractive index layer and a high refractive index layer,
  • the antireflection film includes a reaction layer whose reactivity to irradiation with an ultrashort pulse laser is relatively higher than other layers included in the antireflection film, At the removed portion formed by at least partially removing a predetermined layer including the outermost layer of the multilayer structure, the high refractive index layer on the lower layer side of the reaction layer or the partially remaining reaction layer is exposed,
  • the optical member is processed so that the removed portion can be visually recognized with visible light.
  • a ninth aspect of the present invention is The high refractive index layer exposed by removing the low refractive index layer has a ratio t1/t2 of the thickness t1 of the removed portion of the low refractive index layer to the thickness t2 of the unremoved portion of the low refractive index layer. belongs to the range of 0.90 or more and 1.00 or less, It is an optical member according to the eighth aspect.
  • a tenth aspect of the present invention is The visible processing is visible from the processed surface side of the optical member and also visible from the back side of the processed surface.
  • An eleventh aspect of the present invention is The visibility of the visible processing changes depending on the relative position or angle of the observer and the illumination light with respect to the optical member.
  • the optical member according to any one of the eighth to tenth aspects.
  • a twelfth aspect of the present invention is The optical member is a spectacle lens, The optical member according to any one of the eighth to eleventh aspects.
  • a thirteenth aspect of the present invention is A spectacle lens that is an optical member manufactured by the method for manufacturing an optical member according to any one of the first to seventh aspects, or a spectacle lens that is an optical member according to any one of the eighth to twelfth aspects. are fitted into the frame.
  • marking can be performed on the optical member without deteriorating the quality of the optical member.
  • FIG. 4 is a plan view showing a processing example of the spectacle lens according to one embodiment of the present invention
  • 1 is a flowchart showing an example of the procedure of a method for manufacturing a spectacle lens according to an embodiment of the present invention
  • FIG. 1 is a side cross-sectional view showing an example of a layered structure of thin films in a spectacle lens according to an embodiment of the present invention
  • FIG. 1 is an explanatory diagram showing a schematic configuration example of a laser processing apparatus used in a spectacle lens manufacturing method according to an embodiment of the present invention, including a laser light source unit, an AOM (Acousto Optics Modulator) system unit, a beam shaper unit, and a galvanometer.
  • FIG. 1 is an explanatory diagram showing a schematic configuration example of a laser processing apparatus used in a spectacle lens manufacturing method according to an embodiment of the present invention, including a laser light source unit, an AOM (Acousto Optics Modulator
  • FIG. 4 is a diagram showing a state in which a scanner section and an optical system are provided, and laser light is irradiated onto an AR film through these sections;
  • 1 is an explanatory diagram showing an example of the schematic configuration of a laser processing apparatus used in a method for manufacturing a spectacle lens according to an embodiment of the present invention, in which a laser beam (that is, an ultrashort pulse laser) is directed to an AR film via an optical system or the like.
  • FIG. 10 is a diagram showing a configuration in which irradiation can be performed with a defocus setting; BRIEF DESCRIPTION OF THE DRAWINGS FIG.
  • FIG. 1 is an explanatory diagram showing an example configuration of a main portion of a spectacle lens according to an embodiment of the present invention, and an explanatory diagram showing an example configuration of a main portion of the spectacle lens according to the present embodiment
  • FIG. 2 is an explanatory diagram showing a configuration example of a main part of a spectacle lens according to an embodiment of the present invention, and showing a specific example of observation results of a cross section of an AR film with an electron microscope.
  • a micrograph (magnification is 200 times).
  • a micrograph (magnification is 200 times).
  • a micrograph (200x magnification) showing the results of a dot pattern formation test performed on the AR film of the spectacle lens 1 shown in FIG. is.
  • a micrograph (200x magnification) showing the results of a dot pattern formation test performed on the AR film of the spectacle lens 1 shown in FIG. is.
  • a micrograph (200x magnification) showing the results of a dot pattern formation test performed on the AR film of the spectacle lens 1 shown in FIG. is.
  • a micrograph (magnification: 50 times) showing the results of a test of forming a dot pattern on the AR film of the spectacle lens 1 shown in FIG. is.
  • a microscope photograph showing the results of a test of forming a dot pattern on the AR film of the spectacle lens 1 shown in FIG. 50 times, and the right four images are 500 times).
  • the optical member is a spectacle lens.
  • a spectacle lens has an object-side surface and an eyeball-side surface as optical surfaces.
  • the "object-side surface” is the surface that is located on the object side when spectacles with spectacle lenses are worn by the wearer.
  • the "eye-side surface” is the opposite, ie the surface that lies on the eye-side when the spectacles with the spectacle lenses are worn by the wearer.
  • the object-side surface is convex and the eye-side surface is concave, that is, the spectacle lens is generally a meniscus lens.
  • FIG. 1 is a plan view showing an example of processing a spectacle lens according to this embodiment.
  • the spectacle lens 1 having a circular shape (for example, an outer diameter of ⁇ 60 to 80 mm) in plan view is subjected to edging (frame shaping) in which the outer shape of the lens is cut to match the frame shape 2 of the spectacle frame worn by the wearer. cutting), and before or after that, marking on the optical surface of the decorative pattern 3 representing letters, symbols, patterns, etc. such as logos and house marks so that it is located in the lens area after frame cutting. Assumed to be performed.
  • edging frame shaping
  • the marking of the decorative pattern 3 can be performed, for example, by using laser irradiation processing that can precisely control the irradiation position based on digital data, but the marking causes deterioration in lens quality and function. I don't like it. Therefore, in this embodiment, the marking of the decorative pattern 3 is performed according to the processing procedure described below.
  • FIG. 2 is a flowchart showing an example of the procedure of the spectacle lens manufacturing method according to this embodiment.
  • a lens base material which is an optical base material
  • the lens base material is polished according to the prescription information of the spectacle wearer, and if necessary, dyed.
  • step 101 hereinafter step is abbreviated as "S"
  • the lens base material for example, a resin material having a refractive index (nD) of about 1.50 to 1.74 is used.
  • resin materials include allyl diglycol carbonate, urethane-based resins, polycarbonates, thiourethane-based resins, and episulfide resins.
  • resin materials instead of these resin materials, other resin materials that can obtain a desired refractive index may be used, or inorganic glass may be used.
  • the lens substrate has an optical surface for forming a predetermined lens shape on each of the object-side surface and the eyeball-side surface.
  • the predetermined lens shape may constitute a single focal lens, a multifocal lens, a progressive power lens, or the like. is composed of curved surfaces
  • the optical surface is formed by polishing, for example, but may be a cast (molded) product that does not require polishing.
  • the polishing treatment and the dyeing treatment for the lens substrate may be performed using known techniques, and detailed description thereof will be omitted here.
  • a hard coat film is formed on at least one optical surface of the lens substrate, preferably on both optical surfaces (S102).
  • the HC film is made of, for example, a curable material containing a silicon compound, and is a film having a thickness of about 3 ⁇ m to 4 ⁇ m.
  • the refractive index (nD) of the HC film is close to the refractive index of the lens substrate material described above, for example, about 1.49 to 1.74, and the film structure is selected according to the lens substrate material.
  • the HC film may be formed, for example, by a dipping method using a solution in which a curable material containing a silicon compound is dissolved.
  • an antireflection film is formed so as to overlap the HC film (S103).
  • the AR film has a multi-layered structure in which films with different refractive indices are laminated, and is a film that prevents reflection of light by an interference effect.
  • the AR film has a multilayer structure in which a low refractive index layer and a high refractive index layer are laminated.
  • the low refractive index layer is made of silicon dioxide (SiO 2 ) having a refractive index of about 1.43 to 1.47, for example.
  • the high refractive index layer is made of a material having a higher refractive index than the low refractive index layer, such as zirconium oxide (ZrO 2 ), tin oxide (SnO 2 ), niobium oxide (Nb 2 O 5 ), tantalum oxide. (Ta 2 O 5 ), titanium oxide (TiO 2 ), yttrium oxide (Y 2 O 3 ), aluminum oxide (Al 2 O 3 ), mixtures thereof (for example, indium tin oxide (ITO)), etc. be.
  • ZrO 2 zirconium oxide
  • SnO 2 tin oxide
  • Nb 2 O 5 niobium oxide
  • tantalum oxide tantalum oxide.
  • Ti 2 O 5 titanium oxide
  • TiO 2 yttrium oxide
  • Al 2 O 3 aluminum oxide
  • mixtures thereof for example, indium tin oxide (ITO)
  • the high-refractive layer containing Sn and O functions as a reactive layer because it has a higher reactivity to an ultrashort pulse laser, which will be described later, than the other layers.
  • SnO 2 and ITO mentioned above correspond to this.
  • a “reactive layer” as used herein refers to a layer with low excitation energy when subjected to laser irradiation.
  • an ultrashort pulsed laser is applied.
  • the SnO 2 layer which can be a reaction layer, has extremely low excitation energy due to multiphoton absorption (for example, two-photon absorption) and is highly reactive. This is the same for the ITO layer, and the ITO layer can also be the reaction layer in this specification.
  • the SnO2 layer (or ITO layer) sublimes or evaporates and disappears from the irradiated site together with the overlying SiO2 layer.
  • a reactive layer that is relatively more reactive than other layers in the multilayer structure refers to a SnO 2 layer or an ITO layer in one embodiment of the present invention.
  • the reactive layer may be set as the reactive layer with the highest reactivity as compared to other layers included in the multilayer structure.
  • the outermost layer of the multi-layered AR film is configured to be a low refractive index layer (eg, SiO 2 layer).
  • a low refractive index layer eg, SiO 2 layer.
  • the lowest layer (substrate side) of the multilayer structure is also a low refractive index layer (for example, a SiO 2 layer).
  • the formation of the AR film may be performed by applying, for example, ion-assisted vapor deposition.
  • a water-repellent film may be formed on the low refractive index layer, which is the outermost layer of the AR film.
  • the water-repellent film may be called an antifouling film.
  • the formation of the water-repellent film may be performed before the marking according to the present embodiment is performed, or may be performed after the marking is performed.
  • the water-repellent film is a film that imparts water repellency to the surface, and can be formed by applying a fluorine-based compound solution such as meta-xylene hexafluoride.
  • the water-repellent film may be formed by applying ion-assisted vapor deposition, for example, in the same manner as in the case of the AR film.
  • another functional layer may be formed on the AR film. There is no problem whether such a functional layer contains a metal component or not, as long as the effect of precise processing by laser irradiation can be obtained. Also, such a functional layer may be a uniform film or may be scattered over the surface.
  • a thin film having a laminated structure as shown in FIG. 3 is formed on the optical surface of the lens substrate.
  • FIG. 3 is a side cross-sectional view showing an example of a laminated structure of thin films according to this embodiment.
  • the laminated structure of the illustrated example is constructed by laminating an HC film 12 , an AR film 13 , and a water-repellent film 14 in this order on the optical surface of a lens substrate 11 .
  • the AR film 13 has a multilayer structure in which a SiO 2 layer 13a as a low refractive index layer and a SnO 2 layer 13b and a ZrO 2 layer 13c as high refractive index layers are laminated.
  • the surface layer on the side of the water-repellent film 14) is configured to be the SiO 2 layer 13a.
  • the SnO 2 layer is both a high refractive index layer and a reaction layer.
  • the spectacle lens on which the thin film is formed is subjected to frame cutting and decoration pattern marking.
  • one optical surface of the spectacle lens to be processed (specifically, an optical surface not subjected to decoration processing described later) ) is mounted on a dedicated jig (S105).
  • the blocked spectacle lens is set in an edging machine, edging (frame cutting) is performed on the spectacle lens, and the outer shape of the spectacle lens is cut into a frame shape (S106). Since jig blocking and frame cutting may be performed using known techniques, detailed description thereof is omitted here.
  • decoration processing that is, marking of a decoration pattern
  • the surface to be processed specifically, the optical surface on the side that is not blocked
  • the eyeglass lens to be processed specifically, the optical surface on the side that is not blocked
  • the lens height That is, the three-dimensional shape of the processing area on the surface to be processed is measured (S107).
  • the measurement method is not particularly limited, it is conceivable to use, for example, a non-contact type three-dimensional measuring machine.
  • the processing area is an area including a laser scanning area, which will be described later.
  • laser processing is performed by irradiating the processing area with laser light, and raster scanning is performed to move the irradiation position of the laser light based on pattern data prepared in advance ( S108). It may be a vector scan instead of a raster scan. As a result, the area to be processed on the surface to be processed of the spectacle lens is marked with a decorative pattern. Details of the laser processing for marking the decorative pattern will be described later.
  • jig deblocking is performed to remove the spectacle lens from the dedicated jig (S109), and the detached spectacle lens is used to remove residuals and adherents (foreign matter) during marking. Washing is performed (S110). After the final lens appearance inspection (S111), the manufacture of spectacle lenses is completed.
  • the lens height of the processing area (that is, the processing surface ) is measured (S112).
  • the measurement method is the same as in the above-described case of performing decoration processing after frame cutting.
  • laser processing is performed by irradiating the processing area with laser light, and raster scanning is performed to move the irradiation position of the laser light based on pattern data prepared in advance ( S113). It may be a vector scan instead of a raster scan. As a result, the area to be processed on the surface to be processed of the spectacle lens is marked with a decorative pattern. Details of the laser processing for marking the decorative pattern will be described later.
  • frame cutting is performed on the marked eyeglass lens.
  • one optical surface of the spectacle lens to be processed is mounted on a dedicated jig for jig blocking (S114), and then the blocked spectacle lens is set in the edging machine.
  • edging is performed on the spectacle lens, and the outer shape of the spectacle lens is cut into a frame shape (S115).
  • jig deblocking is performed to remove the spectacle lens from the dedicated jig (S116), and the removed spectacle lens is cleaned to remove residuals and adherents (foreign matter) during processing. It does (S117).
  • the manufacture of spectacle lenses is completed.
  • the AR film 13 covering the optical surface of the lens substrate 11 is irradiated with a laser beam, thereby partially removing a predetermined layer including the SiO 2 layer 13a which is the outermost layer of the AR film 13.
  • the marking of the decorative pattern can be performed by removing the Specifically, when the laser light transmitted through the outermost SiO 2 layer reaches the SnO 2 layer on the lower layer side, the SnO 2 layer sublimates or evaporates due to the energy of the irradiation, and the SiO 2 layer on the upper layer side It disappears from the irradiated part together with the layer. That is, a predetermined layer including the outermost SiO 2 layer 13a is partially removed by laser processing that irradiates laser light.
  • the irradiated portion is marked with a decorative pattern through a removing step for exposing the high refractive index layer on the lower layer side.
  • the exposed high refractive index layer is, for example, the ZrO 2 layer 13c.
  • the SnO 2 layer 13b can be formed thin (for example, 3 to 20 nm, more preferably 3 to 10 nm). In this embodiment, it is set to 5 nm.
  • SnO 2 functions as a reaction layer with the highest reactivity to laser irradiation.
  • This reaction layer preferably contains Sn and O, and SnO 2 and ITO can be used.
  • SnO 2 is removed by sublimation or evaporation, and ZrO 2 as a high refractive index layer on the lower layer side is exposed at the irradiation site, but the reaction layer does not necessarily have to be completely removed. , a part may remain in the irradiated part.
  • the reaction layer may be at least partially removed through the thickness of the layer.
  • the reaction layer partially remains at the laser irradiation location not only in the thickness direction of the layer but also when viewed from the laser irradiation direction (when viewed from above). I don't mind.
  • ZrO 2 may be only partially exposed.
  • SnO 2 (or ITO) is also a high refractive index material, and even if SnO 2 partially remains when the removed portion is viewed from above, there is no problem with visibility. Therefore, the high refractive index layer on the lower layer side of the reaction layer or the partially remaining reaction layer may be exposed.
  • the reactive layer (SnO 2 , ITO, etc.) is preferably a conductive layer having a higher electrical conductivity than other layers included in the laminate structure.
  • the reaction layer made of SnO 2 is more effective than the SiO 2 layer on the upper layer side (outermost surface side) and the ZrO 2 layer on the lower layer side when subjected to laser irradiation under the conditions described later.
  • the energy corresponding to the bandgap where excitation occurs is small. For this reason, it tends to disappear most rapidly due to sublimation/evaporation compared to the adjacent layers on the upper and lower layers.
  • the lower layer ZrO 2 may be damaged by evaporation or dissolution due to the energy of the irradiation, so the irradiation conditions should be controlled to take advantage of the delay until such damage occurs. can substantially remove only the reaction layer and the layers above it. It was found that it is advantageous to select an ultrashort pulse laser, which will be described later, for such precise processing control accompanied by the phenomenon of polymolecular absorption.
  • FIG. 4 is an explanatory diagram showing a schematic configuration example of a laser processing apparatus used in the spectacle lens manufacturing method according to the present embodiment.
  • the laser processing apparatus used in this embodiment includes a laser light source unit 21, an AOM (Acousto Optics Modulator) system unit 22, a beam shaper unit 23, a galvanometer scanner unit 24, and an optical system 25. , and is configured to irradiate the AR film 13 with laser light through these respective portions 21 to 25 .
  • AOM Acoustic Optics Modulator
  • the laser light source unit 21 emits a laser beam used for laser processing, and is configured to emit an ultrashort pulse laser.
  • the lower limit of the pulse width of the ultrashort pulse laser is not particularly limited as long as it exceeds 0 femtoseconds.
  • 0.1 picosecond or more is advantageous in terms of maintenance and cost of the device, and is more suitable for commercial use.
  • the pulse width is 0.01 picoseconds (10 femtoseconds) or more and less than 100 picoseconds, preferably 0.01 picoseconds or more and less than 50 picoseconds, more preferably 0.01 picoseconds or more and less than 50 picoseconds. 01 picoseconds or more and less than 15 picoseconds can also be used.
  • a pulse width of 0.1 picoseconds or more and less than 100 picoseconds preferably a pulse width of 0.1 picoseconds or more and less than 50 picoseconds, more preferably a pulse width of 0.1 picoseconds or more. Seconds or more and less than 15 picoseconds can be used.
  • a pulse width of 0.01 picoseconds or more and less than 1 picoseconds (or less than 0.1 picoseconds) can also be used.
  • the wavelength of the ultrashort pulse laser for example, THG (Third Harmonic Generation) of 355 nm or SHG (Second Harmonic Generation) of 532 nm, as well as a fundamental wavelength of 1064 nm can be used.
  • the irradiation beam diameter can be selected according to the desired processing design. In order to process a fine design with high resolution, it is effective to narrow down the beam diameter. is more preferred. Alternatively, 266 nm FHG (Forth Harmonic Generation) is also suitable.
  • the pulse energy of the ultrashort pulse laser is, for example, 0.1 ⁇ J or more and 30 ⁇ J or less (up to about 60 ⁇ J) at 50 kHz.
  • the beam diameter of the ultrashort pulse laser is, for example, 10 ⁇ m or more and 30 ⁇ m or less.
  • the pulse width of the ultrashort pulse laser is less than 0.1 picoseconds Good processing can be performed at any wavelength of 266 to 1064 nm. Shorter wavelengths are more advantageous in microfabrication. However, the production load is large, such as initial equipment investment and running costs.
  • the pulse width of the ultrashort pulse laser is 0.1 picosecond or more and less than 1 picosecond Good processing can be performed at any wavelength of 266 to 1064 nm. Shorter wavelengths are more advantageous in microfabrication.
  • the pulse width of the ultrashort pulse laser is 1 picosecond or more and less than 100 picoseconds Good processing can be performed at any wavelength of 266 to 1064 nm. It is also suitable in terms of equipment cost and stability of production conditions.
  • the pulse width of the ultrashort pulse laser is 100 picoseconds or more and less than 1 nanosecond
  • the applied wavelength causes non-uniformity in processing stability. For example, if 266 nm, which is on the short wavelength side, is used as the applicable wavelength, the reaction of SnO 2 and damage to the lower layer tend to occur. Moreover, even at 355 nm, even a slight change in the irradiation conditions may cause the uniformity of the processing to be lost, and the phenomenon that the removal processing reaches the lower layer side of SnO 2 cannot be prevented.
  • the pulse width of the ultra-short pulse laser is 1 nanosecond or more SnO 2 and the layer on the surface side thereof cannot be selectively and stably removed.
  • the visibility of the processed pattern is affected.
  • spectacle lenses run the risk of interfering with the wearer's vision.
  • the lens when observing the formed decorative pattern, when the pattern is not clearly visible to the observer, except for predetermined lighting conditions, the lens may be recognized as a foreign object or a dirty lens instead of a clear lens. poor visibility is likely to occur.
  • the removal processing by the ultrashort pulse laser is uniform in processing diameter and processing depth, and for that purpose, a predetermined ultrashort pulse width is applied
  • a predetermined ultrashort pulse width is applied
  • the specific configuration of the laser light source unit 21 or the combination of the wavelength and the pulse width is not particularly limited.
  • the AOM system unit 22 cancels the beam output of the laser light immediately after the operation of the galvanometer scanner unit 24 starts and just before the operation ends, thereby suppressing excessive irradiation of the laser light that causes processing unevenness during laser processing. is.
  • the beam shaper unit 23 converts the Gaussian energy distribution of the laser light from the laser light source unit 21 into a top hat energy distribution, thereby enabling laser processing with laser light having a uniform energy distribution. is.
  • a top-hat distribution is applied, a plurality of beam spots are partially overlapped to form a processing region of a predetermined area, and stable and uniform processing can be performed. This is because local excessive energy addition due to superimposition of spots is suppressed.
  • the galvanometer scanner unit 24 moves the irradiation position of the laser light from the laser light source unit 21 two-dimensionally or three-dimensionally, thereby enabling scanning with the laser light, thereby marking a desired pattern by laser processing. It is intended to It should be noted that the scannable range of laser light by the galvanometer scanner unit 24 (that is, the maximum laser processing area) 4 is set to a size and shape that can completely encompass the outer shape of the spectacle lens to be processed. (See Figure 1).
  • the optical system 25 is configured by combining an optical lens such as a telecentric lens and a mirror, and guides the laser light from the laser light source unit 21 so that the laser light reaches the processed part of the spectacle lens. be.
  • the laser processing apparatus used in the present embodiment irradiates the AR film 13 with a laser beam (that is, an ultrashort pulse laser) through the optical system 25 or the like with a defocus setting.
  • a laser beam that is, an ultrashort pulse laser
  • Defocus setting means that the focal position F of the laser beam to be irradiated is set to be a predetermined defocus distance away from the surface of the AR film 13, which is the portion to be processed by the laser beam.
  • it is not necessarily limited to the defocus setting.
  • Laser light irradiation may be performed in the focus setting in which the focus position F matches the surface of the AR film 13, or in the infocus setting in which the focus position F is separated in the opposite direction to the defocus setting.
  • the spectacle lens to be processed is set in the laser processing device.
  • the spectacle lens is set so that the optical surface of the spectacle lens, more specifically, the surface of the AR film 13 on the optical surface is the surface to be processed.
  • the optical surface to be processed may be either the object-side surface or the eyeball-side surface.
  • the eyeball-side surface is the surface to be processed.
  • the laser light source unit 21 and the galvanometer scanner unit 24 are operated based on pattern data prepared in advance (that is, pattern data with a predetermined resolution created based on the decorative pattern to be obtained). make it work.
  • pattern data prepared in advance that is, pattern data with a predetermined resolution created based on the decorative pattern to be obtained.
  • the processing area of the surface to be processed of the spectacle lens is irradiated with the ultrashort pulse laser in a pattern shape corresponding to the decorative pattern.
  • the ultrashort pulse laser When the ultrashort pulse laser is irradiated, the ultrashort pulse laser penetrates the water-repellent film 14 on the surface to be processed of the spectacle lens and reaches the AR film 13 on the surface to be processed. When the ultrashort pulse laser reaches the AR film 13, non-heating processing is performed by the ultrashort pulse laser.
  • the ablation processing of this mode is a technology that enables processing with high energy efficiency due to the multiphoton absorption phenomenon of an ultrashort pulse laser. More specifically, it is a removal process performed by minimizing the influence of heat around the processed area and instantaneously melting, evaporating, or sublimating and scattering the irradiated area of the laser beam. According to such non-heating processing, the highly reactive material is instantly removed from the irradiated area, so there is little thermal effect on the area around the processed area, and processing that suppresses thermal damage (deformation due to heat, etc.). It can be performed.
  • the laser processing according to this embodiment can be ablation processing as non-thermal processing.
  • Such processing can give rise to multiphoton absorption processes (eg, two-photon absorption processes) that lead to the multiphoton absorption phenomena listed above. Therefore, multiphoton absorption enables efficient and good processing even for materials that are relatively transparent (high transmittance) to lasers.
  • the range of applicable laser wavelengths is wide, and 355 nm (THG), 532 nm (SHG), and 1064 nm can be advantageously used as the wavelength of the laser light.
  • the pulse width can be less than 100 picoseconds, preferably less than 50 picoseconds, and more preferably less than 1 picosecond (that is, femtoseconds).
  • the AR film 13 passes through SiO 2 in the multilayer structure constituting the AR film 13 and reaches the reaction layer (SnO 2 in this embodiment).
  • the SiO 2 layer 13a which is the outermost layer, is removed as the reaction layer instantaneously reacts and sublimes/evaporates.
  • the corresponding portion of the water-repellent film 14 is also removed.
  • the ZrO 2 layer 13c located on the lower layer side of the SnO 2 layer 13b is exposed at the irradiated portion.
  • FIG. 5A is an explanatory diagram showing a configuration example of a main part of the spectacle lens according to this embodiment.
  • FIG. 5B shows a specific example of observation results of the cross section of the AR film 13 with an electron microscope.
  • the example of the figure is an enlarged display of parts A and B in FIG.
  • the spectacle lens according to this embodiment is constructed by laminating an HC film 12, an AR film 13, and a water-repellent film 14 in this order on the optical surface of a lens substrate 11.
  • the AR film 13 has a multilayer structure in which a SiO 2 layer 13a as a low refractive index layer and a SnO 2 layer 13b and a ZrO 2 layer 13c as high refractive index layers are laminated.
  • a predetermined layer including the SiO 2 layer 13a as the outermost layer specifically, the SnO 2 layer as the reaction layer and the layer on the surface side thereof
  • Layer 13c is configured to be exposed.
  • the spectacle lens according to the present embodiment includes the unprocessed region 15 in which the optical surface of the lens substrate 11 is covered with the HC film 12, the AR film 13, and the water-repellent film 14, and the SiO film as the outermost layer of the AR film 13.
  • 2 layer 13a, SnO 2 layer 13b and water-repellent film 14, which are the layers immediately below it, are partially removed to expose the ZrO 2 layer 13c, which is a high refractive index layer (patterned region). ) 16.
  • the non-processing area 15 and the laser scanning area 16 are covered with a SiO 2 layer 13a on one side and a ZrO 2 layer 13c on the other side (or when the reaction layer partially remains, the reaction layer which is a high refractive layer). Since it is exposed, the light reflectance differs depending on the presence or absence of the SiO 2 layer 13a. Therefore, the pattern shape formed by the laser scanning area 16 can be visually recognized when the spectacle lens is irradiated with the illumination light and viewed from the outside. That is, if the laser scan area 16 is formed in a pattern shape corresponding to the decorative pattern, the decorative pattern can be visually recognized. In this manner, the removed portion of the predetermined layer of the AR film 13 can be used as one constituting the decorative pattern.
  • a laser scanning area 16 forming a decorative pattern is formed by removing the SiO 2 layer 13a, which is the outermost layer of the AR film 13, and the SnO 2 layer 13b, which is the layer immediately below it. That is, the removal target is stopped at a predetermined layer containing SnO 2 which is the reaction layer. Therefore, it is possible to suppress peeling due to the formation of the laser scan area 16 for each layer of the multilayer structure that constitutes the AR film 13 .
  • the removal of the SiO 2 layer 13a, which is the outermost layer of the AR film 13, can be realized by non-heating processing by irradiation with an ultrashort pulse laser, as described above. According to such non-heating processing, there is little thermal influence on the periphery of the processed portion, and it is possible to suppress the occurrence of thermal damage. Moreover, by applying the predetermined pulse width, stable processing can be performed while suppressing damage to the layers below the reaction layer. As a result, the ZrO 2 layer 13c as the high refractive index layer is exposed, but damage to the exposed surface of the ZrO 2 layer 13c can be suppressed.
  • the ZrO 2 layer 13c can also suppress reduction in film thickness due to removal processing.
  • the film thicknesses of the SiO 2 layer 13a, SnO 2 layer 13b, ZrO 2 layer 13c, etc. can be specified by acquiring an electron microscope image of the cross section of the AR film 13 and analyzing the acquired image.
  • FIG. 5B shows a specific example of observation results of the cross section of the AR film 13 with an electron microscope.
  • the example of the figure is an enlarged display of parts A and B in FIG.
  • the SiO 2 layer 13a, the SnO 2 layer 13b and the ZrO 2 layer 13c are laminated, but since the SnO 2 layer 13b is thin (for example, about 5 nm), it is difficult to recognize it in the image. It's becoming On the other hand, in the laser scan area 16, the SnO 2 layer 13b and the SiO 2 on the surface side are removed, thereby exposing the ZrO 2 layer 13c.
  • the thickness t1 of the portion of the laser scanning region 16 and the thickness of the non-processing region 15 It can be seen that there is no significant difference between the thickness t2 of the portion and the thickness t2 of the portion. More specifically, the ratio t1/t2 between the thickness t1 of the removed portion and the thickness t2 of the non-removed portion is, for example, in the range of 0.90 or more and 1.00 or less, preferably 0.95 or more and 1.00. 00 or less, more preferably 0.99 or more and 1.00 or less.
  • the ZrO 2 layer 13c which is the exposed high refractive index layer, does not decrease in film thickness due to removal processing, or even if it does, it is suppressed so that the amount of decrease is extremely small. ing.
  • the laser scanning region 16 is formed by non-heating processing by irradiation with an ultrashort pulse laser, and no damage occurs in the underlying ZrO 2 layer 13c.
  • the thickness ratio t1/t2 of the exposed ZrO 2 layer 13c is within the above range, the laser scanning region 16 is formed without damaging the ZrO 2 layer 13c. This means that the formation of the laser scan area 16 can be presumed to have been performed using non-heating processing using an ultrashort pulse laser.
  • the reason why the ZrO 2 layer 13 is not damaged is that the reactivity of the reaction layer (here, the SnO 2 layer) with the ultrashort pulse laser is higher than that of ZrO 2 . As will be described later, this difference in reactivity is significantly obtained by applying an ultrashort pulse laser with a predetermined pulse width.
  • the thickness of the ZrO 2 layer is 10 times or more, preferably 15 times or more, that of the SnO 2 layer, even if the ZrO 2 layer is slightly reduced after the SnO 2 layer disappears, , There is no risk of film peeling and no impact on the visibility of decorative patterns.
  • the fact that the melting point of SnO 2 is lower than that of SiO 2 on the upper layer side and significantly lower than that of ZrO 2 on the lower layer side is also considered to contribute to the ease of control of ablation.
  • the spectacle lens configured as described above, even if the decorative pattern is marked, it is possible to suppress the peeling of each layer constituting the AR film 13 of the multilayer structure, and the exposed ZrO 2 layer 13c will not be damaged. Therefore, even when applied to spectacle lens products, it is possible to mark the spectacle lens with a decorative pattern without deteriorating the quality of the product.
  • the white portion (eg dot pattern) is the laser scanning area 16 and the blue (black) portion is the non-processing area 15 .
  • marking is also called laser processing.
  • a laser processing test was performed with a pulse width of 100 femtoseconds or more and less than 1 picosecond for the AR film 13 in the non-processing area 15 of the spectacle lens 1 (here, a double-sided flat plano lens) shown in FIG. 5B. At that time, each test was performed after setting the wavelength of the laser light to 1064 nm (infrared region, first harmonic) and 532 nm (green region, second harmonic).
  • FIG. 6A shows the results of a dot pattern formation test performed on the AR film 13 of the spectacle lens 1 shown in FIG. It is a photomicrograph (200x magnification) shown.
  • FIG. 6B shows the results of a dot pattern formation test performed on the AR film 13 of the spectacle lens 1 shown in FIG. It is a photomicrograph (200x magnification) shown.
  • the diameter processed by laser light is about 27 ⁇ m.
  • a laser processing test was performed on the AR film 13 of the spectacle lens 1 shown in FIG. 5B with a pulse width of ten and several picoseconds.
  • the wavelength of the laser light is set to 1064 nm (infrared region, first harmonic), 532 nm (green region, second harmonic), and 355 nm (ultraviolet (UV) region, third harmonic).
  • each test was conducted.
  • "10 number" of "tens of picoseconds” is a value in the range of more than 10 and less than 20.
  • FIG. 7A is a micrograph ( magnification is 200 times).
  • FIG. 7B is a micrograph ( magnification is 200 times).
  • FIG. 7C is a micrograph ( magnification is 200 times).
  • the AR film 13 of the spectacle lens 1 shown in FIG. 5B was subjected to a test in which the laser beam wavelength was set to 355 nm and the pulse width was set to 10-odd picoseconds, and dot patterns were overlapped to remove without gaps. It is a micrograph (magnification is 200 times) which shows the result. The SnO 2 reaction layer and the SiO 2 layer on the surface side of the SnO 2 layer were uniformly removed, and good processing was performed.
  • the AR film 13 of the spectacle lens 1 shown in FIG. 5B is subjected to removal processing without gaps by overlapping dot patterns with a laser beam wavelength of 532 nm and a pulse width of "several tens" picoseconds. It is a microphotograph (magnification is 200 times) which shows the result of having conducted the test.
  • a laser processing test was performed on the AR film 13 of the spectacle lens 1 shown in FIG. 5B with a pulse width of ten and several nanoseconds. At that time, each test was performed after setting the wavelength of the laser light to 355 nm (ultraviolet (UV) region, third harmonic) and 266 nm (deep ultraviolet (DUV) region, fourth harmonic).
  • UV ultraviolet
  • DUV deep ultraviolet
  • FIG. 9A is a micrograph ( magnification is 50 times).
  • FIG. 9B is a micrograph ( The magnification is 50 times for the left side and 500 times for the four images on the right side).
  • the decorative pattern is visually recognized by the wearer of the spectacle lens himself compared to the spectacle lens 1 of the present embodiment, blocking the field of vision. There is a risk of impairing the function of In addition, film peeling is more likely to occur in the processed portion than in the spectacle lens 1 of the present embodiment, and weather resistance and chemical resistance may deteriorate.
  • the reaction layer (SnO 2 in the above embodiment) of the AR film 13 and the layer on the surface side thereof are partially removed by performing non-heating processing by irradiating an ultrashort pulse laser, By exposing the ZrO 2 layer 13c, which is a high refractive index layer, a decorative pattern is marked on the spectacle lens.
  • non-heating processing since removal processing is performed by the pulse width effect rather than the absorption energy effect of the laser beam, only a predetermined layer including the SiO 2 layer 13a which is the outermost layer of the AR film 13 is selectively removed. In addition, uniform removal becomes possible.
  • a predetermined layer including the outermost layer of the AR film 13 is removed using an ultrashort pulse laser to expose the high refractive index layer, thereby forming a spectacle lens. Mark the decoration pattern. Therefore, according to the present embodiment, peeling of each layer of the AR film 13 can be suppressed, and the exposed ZrO 2 layer 13c is not damaged. Even in such a case, it becomes possible to mark the spectacle lens with a decorative pattern without deteriorating the quality of the product.
  • the pulse width of the ultrashort pulse laser may exceed 0 femtoseconds, preferably 0.01 picoseconds (10 femtoseconds) or more and less than 100 picoseconds.
  • Use of 1 picosecond or more (including 1 picosecond or more) is advantageous in terms of maintenance and cost of the device, and is more suitable for commercial use.
  • the laser irradiation conditions have the following advantages depending on the pulse width: (1) When the pulse width of the ultrashort pulse laser is less than 0.1 picoseconds, even at any wavelength of 266 to 1064 nm , good processing can be performed. Shorter wavelengths are more advantageous in microfabrication. However, the production load is large in terms of equipment maintenance and cost.
  • the AR film 13 in the non-heating processing by irradiation with an ultrashort pulse laser, the AR film 13 is irradiated with an ultrashort pulse laser in a defocus setting.
  • the beam energy can be dispersed on the surface of the AR film 13 irradiated with the laser beam, thereby realizing uniform film removal processing. becomes. This is particularly useful when the surface shape of the AR film 13 can cause variations in the height of the irradiated portion.
  • non-heated processing is performed by irradiation with an ultrashort pulse laser under predetermined conditions. Damage to the exposed surface of the ZrO 2 layer 13c can be suppressed.
  • the ratio t1/t2 between the thickness t1 of the ZrO 2 layer 13c at the removed portion and the thickness t2 of the ZrO 2 layer 13c at the unremoved portion such as the SiO 2 layer 13a is, for example, 0.90 or more. It falls within the range of 1.00 or less, preferably within the range of 0.95 or more and 1.00 or less, more preferably within the range of 0.99 or more and 1.00 or less.
  • the ZrO 2 layer 13c is not reduced in film thickness due to the removal process, or even if it is reduced, the amount of reduction is suppressed to be extremely small. Therefore, when it is applied to spectacle lens products, it is very preferable for marking a decorative pattern on the spectacle lens without degrading the quality of the product.
  • the optical member is a spectacle lens, but the present invention is not limited to this. In other words, it can be applied in exactly the same way to optical members other than spectacle lenses.
  • non-heating processing using an ultrashort pulse laser may be used for some patterning on the optical surface of the optical member, and can be applied in exactly the same way other than marking of decorative patterns.
  • the outermost layer of the AR film 13 is the SiO 2 layer 13a as the low refractive index layer, and the layer below the SiO 2 layer 13a is the SnO 2 layer 13b as the reaction layer as the high refractive index layer. Furthermore, there is a ZrO 2 layer 13c as a high refractive index layer on the lower layer side . Although the case where the ZrO 2 layer 13c as the index layer is exposed has been described as an example, the present invention is not limited to this.
  • the AR film 13 may be formed by stacking layers other than the SiO 2 layer 13a, the SnO 2 layer 13b, and the ZrO 2 layer 13c.
  • the outermost layer of the AR film 13 may be a layer other than the SiO 2 layer 13a as long as it is a low refractive index layer.
  • the high refractive index layer may be a layer other than the SnO2 layer 13b or the ZrO2 layer 13c.
  • the SnO 2 layer 13b as the reaction layer may be replaced with a conductive thin ITO layer instead of the SnO 2 layer 13b.
  • the SnO 2 layer, which is the reaction layer included in the AR film 13, and the SiO 2 layer 13a, which is the outermost layer immediately above it, are removed by non-heating processing using an ultrashort pulse laser.
  • the case is given as an example.
  • non-heating processing using an ultrashort pulse laser can be implemented so as to remove predetermined multiple layers including the outermost layer. Even when removing multiple layers including the outermost layer, non-heating processing using an ultrashort pulse laser can suppress damage to the exposed surface of the layer that will be exposed by removal. It is also possible to suppress the decrease in the film thickness associated with this.
  • the ratio t1/t2 between the thickness t1 of the removed portion and the thickness t2 of the non-removed portion for the layer immediately below the removed layer is, for example, , within the range of 0.90 to 1.00, preferably within the range of 0.95 to 1.00, and more preferably within the range of 0.99 to 1.00.
  • the present disclosure includes the following inventive concepts.
  • the antireflection film has a multilayer structure, and is configured by partially removing at least one layer constituting the multilayer structure, In the layer immediately below the at least one layer, the ratio t1/t2 of the thickness t1 of the removed portion of the at least one layer to the thickness t2 of the unremoved portion of the at least one layer is 0.90 or more1.
  • Antireflection films may be provided on both surfaces of the spectacle lens before laser processing in this embodiment.
  • a specific example of the spectacle lens is described in International Publication WO2020/067407. All of the descriptions in the publication can be referred to in the present specification.
  • the spectacle lenses of Examples 1 and 2 described in the publication (if only one of them is given, Example 1) may be employed as a specific example.
  • a specific example of the spectacle lens before decoration in this embodiment is as follows.
  • the spectacle lens is A spectacle lens comprising a multilayer film on both sides of a lens substrate, The sum of the average reflectances in the wavelength band of 360 to 400 nm on each surface of the spectacle lens is 6.0% or less, The sum of the average reflectances in the wavelength band of 400 to 440 nm on each surface of the spectacle lens is 20.0% or more, The spectacle lens, wherein the sum of the average reflectances in the wavelength band of 480 to 680 nm on each surface of the spectacle lens is 2.0% or less.
  • the sum of the average reflectances of each surface is 20.0% or more (preferably more than 20.0%, more preferably 25.0% or more). That is, the reflectance is locally increased in the purple region.
  • the sum of the average reflectance of each surface is 6.0% or less (preferably less than 6.0%, more preferably 5.0% below) to locally reduce the reflectance, contrary to the case of the violet region (400 to 440 nm).
  • the sum of the average reflectances of each surface is 2.0% or less (preferably less than 2.0%, more preferably 1 .5% or less), and in order to transmit visible light, the reflectance is locally reduced particularly in the main wavelength bands of visible light.
  • the spectacle lens of this specific example ensures an effect of blocking light in the blue region, that is, has a high reflectance for light in the blue region. Therefore, when the spectacle lens 1 is viewed from a third party facing the front of the wearer of the spectacle lens 1, the spectacle lens appears blue.
  • the laser-processed portion appears to have the color of the layer exposed by the laser processing (in this specific example, the color of the ZrO 2 layer, yellow to gold).
  • the decorative pattern 3 appears to emerge on the blue background of the spectacle lens 1 fitted in the frame.
  • the spectacle lens 1 may be green or pearly when viewed from a third party facing the front of the spectacle lens 1 wearer.
  • the mode of good contrast when the decorative pattern 3 is viewed is laser processing for each multilayer film on the object side surface of the spectacle lens, and laser processing for each multilayer film on the eyeball side surface. is also feasible.
  • the decorative pattern 3 can be clearly recognized when the wearer's lens is at a predetermined relative position (or angle) with respect to indoor illumination light or sunlight.
  • a predetermined relative position or angle
  • the lenses carry desired characters, symbols, or patterns, or have desired designs without affecting the function of the spectacles. It can be applied to lenses.
  • the decorative pattern 3 of this embodiment is processed so that it can be visually recognized from both the processed surface side and the rear surface side of the lens.
  • the designed antireflection property is reduced at the removed portion where a part is removed (in this embodiment, SnO 2 and SiO 2 on the upper layer side are removed), and between the non-removed portion , and the contrast of the amount of reflected light can be obtained.
  • the technical idea of the present invention is that a spectacle lens that is an optical member manufactured by the method for manufacturing an optical member according to this embodiment, or a spectacle lens that is an optical member according to this embodiment is fitted into a frame. It also extends to eyeglasses.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Laser Beam Processing (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Eyeglasses (AREA)

Abstract

光学基材の光学面を被覆するように形成された、低屈折率層と高屈折率層の積層を含む多層構造の反射防止膜に対して、超短パルスレーザの照射を行い、多層構造の最表層を含む所定の層を部分的に除去することにより、所望のレーザ加工を施す光学部材の製造方法であって、超短パルスレーザは、パルス幅が10フェムト秒以上100ピコ秒未満であり、反射防止膜は、超短パルスレーザの照射に対して、多層構造に含まれる他の層よりも相対的に反応性の高い反応層を含み、照射によって、反応層が少なくとも部分的に除去されることによって、可視光により視認しうるレーザ加工が施される、光学部材の製造方法及びその関連技術を提供する。

Description

光学部材の製造方法、光学部材及び眼鏡
 本発明は、光学部材の製造方法、光学部材及び眼鏡に関する。
 眼鏡レンズとして、レンズ基材の光学面上がハードコート膜や反射防止膜等の薄膜に被覆されて構成されたものがある。近年では、薄膜に対するレーザ照射によって、薄膜の一部の層を部分的に除去することで、眼鏡レンズにマーキングを行うことが提案されている(例えば、特許文献1参照)。
特表2019-523447号公報
 従来のレーザ照射によるマーキングでは、薄膜の一部の層のみを、精緻に除去することが容易でなく、当該薄膜を構成する他の層や、レンズ基材など、除去する層の下層部分にダメージを与えてしまうおそれもある。そのため、眼鏡レンズの製品に適用すると、品質の低下が懸念される。
 本開示は、光学部材の品質の低下を招くことなく当該光学部材にマーキングを行える技術を提供することを目的とする。
 本発明の第1の態様は、
 光学基材の光学面を被覆するように形成された、低屈折率層と高屈折率層の積層を含む多層構造の反射防止膜に対して、超短パルスレーザの照射を行い、前記多層構造の最表層を含む所定の層を部分的に除去することにより、所望のレーザ加工を施す光学部材の製造方法であって、
 前記超短パルスレーザは、パルス幅が10フェムト秒以上100ピコ秒未満であり、
 前記反射防止膜は、前記超短パルスレーザの照射に対して、前記多層構造に含まれる他の層よりも相対的に反応性の高い反応層を含み、
 前記照射によって、前記反応層が少なくとも部分的に除去されることによって、可視光により視認しうる前記レーザ加工が施される、
 光学部材の製造方法である。
 本発明の第2の態様は、
 前記反応層の除去においては、前記反応層が厚み方向に少なくとも部分的に昇華、又は蒸発することによって消失し、前記消失に伴い、前記反応層より上層側に積層する他の層が除去される、
 第1の態様に記載の光学部材の製造方法である。
 本発明の第3の態様は、
 前記照射によって、前記反応層の除去が生じた照射部には、前記多層構造に含まれる、高屈折率層が露出する、
 第1又は第2の態様に記載の光学部材の製造方法である。
 本発明の第4の態様は、
 前記反応層は、前記多層構造を構成する他の層よりも導電性が高い導電層である、
 第1から第3のいずれか1態様に記載の光学部材の製造方法である。
 本発明の第5の態様は、
 前記反応層は、SnとOを含む、
 第1から第4のいずれか1態様に記載の光学部材の製造方法である。
 本発明の第6の態様は、
 前記光学部材は、眼鏡レンズである、
 第1から第5のいずれか1態様に記載の光学部材の製造方法である。
 本発明の第7の態様は、
 前記超短パルスレーザは、パルス幅が0.1ピコ秒以上50ピコ秒未満である、
 第1から第6のいずれか1態様に記載の光学部材の製造方法である。
 本発明の第8の態様は、
 光学面を有する光学基材と、
 前記光学基材の前記光学面を被覆する反射防止膜と、を備え、
 前記反射防止膜は、低屈折率層と高屈折率層の積層を含む多層構造を有し、
 前記反射防止膜は、超短パルスレーザの照射に対する反応性が、前記反射防止膜に含まれる他の層よりも相対的に高い反応層を含み、
 前記多層構造の最表層を含む所定の層が少なくとも部分的に除去されて形成された除去箇所には、前記反応層の下層側にある前記高屈折率層、又は、一部残留する前記反応層が露出していることにより、
 前記除去箇所が可視光により視認しうる加工が施されている、光学部材である。
 本発明の第9の態様は、
 前記低屈折率層の除去によって露出する前記高屈折率層は、前記低屈折率層の除去箇所の厚さt1と前記低屈折率層の非除去箇所の厚さt2との比t1/t2が0.90以上1.00以下の範囲内に属する、
 第8の態様に記載の光学部材である。
 本発明の第10の態様は、
 前記視認しうる加工は、前記光学部材の前記加工が施された被加工面側から視認しうるとともに、前記被加工面の裏面側からも視認しうる、
 第8又は第9の態様に記載の光学部材である。
 本発明の第11の態様は、
 前記視認しうる加工は、前記光学部材に対する観察者及び照明光との相対位置又は角度によって、視認性が変わる、
 第8から第10のいずれか1態様に記載の光学部材である。
 本発明の第12の態様は、
 前記光学部材は、眼鏡レンズである、
 第8から第11のいずれか1態様に記載の光学部材である。
 本発明の第13の態様は、
 第1から第7のいずれか1態様に記載の光学部材の製造方法で製造された光学部材である眼鏡レンズ、又は、第8から第12のいずれか1態様に記載の光学部材である眼鏡レンズを、フレームに嵌め入れた
 眼鏡である。
 本発明によれば、光学部材の品質の低下を招くことなく、当該光学部材にマーキングを行うことができる。
本発明の一実施形態に係る眼鏡レンズの加工例を示す平面図である。 本発明の一実施形態に係る眼鏡レンズの製造方法の手順の一例を示すフロー図である。 本発明の一実施形態に係る眼鏡レンズにおける薄膜の積層構造の一例を示す側断面図である。 本発明の一実施形態に係る眼鏡レンズの製造方法で用いるレーザ加工装置の概略構成例を示す説明図であり、レーザ光源部と、AOM(Acousto Optics Modulator)システム部と、ビームシェイパー部と、ガルバノスキャナ部と、光学系とを備え、これらの各部を経てレーザ光をAR膜に対して照射するように構成されている様子を示す図である。 本発明の一実施形態に係る眼鏡レンズの製造方法で用いるレーザ加工装置の概略構成例を示す説明図であり、光学系等を経て行うAR膜へのレーザ光(すなわち、超短パルスレーザ)の照射を、デフォーカス設定で行い得るように構成されている様子を示す図である。 本発明の一実施形態に係る眼鏡レンズの要部構成例を示す説明図であり、本実施形態に係る眼鏡レンズの要部構成例を示す説明図である。 本発明の一実施形態に係る眼鏡レンズの要部構成例を示す説明図であり、AR膜の断面の電子顕微鏡による観察結果の一具体例を示している。 図5Bに示す眼鏡レンズ1のAR膜に対し、レーザ光の波長を1064nmとし、パルス幅を100フェムト秒以上1ピコ秒未満として、ドットパターンを形成する試験を行った結果を示す顕微鏡写真(倍率は200倍)である。 図5Bに示す眼鏡レンズ1のAR膜に対し、レーザ光の波長を532nmとし、パルス幅を100フェムト秒以上1ピコ秒未満として、ドットパターンを形成する試験を行った結果を示す顕微鏡写真(倍率は200倍)である。 図5Bに示す眼鏡レンズ1のAR膜に対し、レーザ光の波長を1064nmとし、パルス幅を10数ピコ秒として、ドットパターンを形成する試験を行った結果を示す顕微鏡写真(倍率は200倍)である。 図5Bに示す眼鏡レンズ1のAR膜に対し、レーザ光の波長を532nmとし、パルス幅を10数ピコ秒として、ドットパターンを形成する試験を行った結果を示す顕微鏡写真(倍率は200倍)である。 図5Bに示す眼鏡レンズ1のAR膜に対し、レーザ光の波長を355nmとし、パルス幅を10数ピコ秒として、ドットパターンを形成する試験を行った結果を示す顕微鏡写真(倍率は200倍)である。 図5Bに示す眼鏡レンズ1のAR膜に対し、レーザ光の波長を355nmとし、パルス幅を10数ピコ秒として、ドットパターンを重複させてべたパターンを形成する試験を行った結果を示す顕微鏡写真(倍率は50倍)である。 図5Bに示す眼鏡レンズ1のAR膜に対し、レーザ光の波長を532nmとし、パルス幅を数10ピコ秒として、ドットパターンを重複させてべたパターンを形成する試験を行った結果を示す顕微鏡写真(倍率は200倍)である。 図5Bに示す眼鏡レンズ1のAR膜に対し、レーザ光の波長を355nmとし、パルス幅を10数ナノ秒として、ドットパターンを形成する試験を行った結果を示す顕微鏡写真(倍率は50倍)である。 図5Bに示す眼鏡レンズ1のAR膜に対し、レーザ光の波長を266nmとし、パルス幅を10数ナノ秒として、ドットパターンを形成する試験を行った結果を示す顕微鏡写真(左側像の倍率は50倍、右側4画像は500倍)である。
 以下、本発明の実施形態を、図面に基づいて説明する。
 本実施形態では、光学部材が眼鏡レンズである場合を例に挙げて、以下の説明を行う。
 眼鏡レンズは、光学面として、物体側の面と眼球側の面とを有する。「物体側の面」は、眼鏡レンズを備えた眼鏡が装用者に装用された際に物体側に位置する表面である。「眼球側の面」は、その反対、すなわち眼鏡レンズを備えた眼鏡が装用者に装用された際に眼球側に位置する表面である。物体側の面は凸面であり、眼球側の面は凹面であること、つまり眼鏡レンズはメニスカスレンズであることが一般的である。
 図1は、本実施形態に係る眼鏡レンズの加工例を示す平面図である。
 本実施形態においては、平面視円形状(例えば、外径φ60~80mm)の眼鏡レンズ1に対して、装用者が装用する眼鏡フレームのフレーム形状2に合わせてレンズ外形を削る玉形加工(フレームカット加工)を行うとともに、その前または後に、フレームカット後のレンズ領域内に位置するようにロゴやハウスマーク等、文字、記号、図柄などを表す加飾パターン3の光学面上へのマーキングを行うものとする。
 加飾パターン3のマーキングは、例えば、デジタルデータに基づいて照射位置を精緻に制御可能なレーザ照射加工を利用して行うことが考えられるが、マーキングに起因してレンズ品質や機能の低下を招いてしまうことは好ましくない。そこで、本実施形態においては、加飾パターン3のマーキングを、以下に説明する加工手順によって行う。
(1)眼鏡レンズの製造方法
 ここで、加飾パターンのマーキングを含む眼鏡レンズの加工手順、すなわち本実施形態に係る眼鏡レンズの製造方法の手順について、具体的に説明する。
 図2は、本実施形態に係る眼鏡レンズの製造方法の手順の一例を示すフロー図である。
 眼鏡レンズの製造にあたっては、まず、光学基材であるレンズ基材を用意し、そのレンズ基材に対して眼鏡装用者の処方情報に応じた研磨処理を行うとともに、必要に応じて染色処理を行う(ステップ101、以下ステップを「S」と略す。)。
 レンズ基材としては、例えば、屈折率(nD)1.50~1.74程度の樹脂材料が用いられる。具体的には、樹脂材料として、例えば、アリルジグリコールカーボネート、ウレタン系樹脂、ポリカーボネート、チオウレタン系樹脂及びエピスルフィド樹脂が例示される。ただし、これらの樹脂材料ではなく、所望の屈折度が得られる他の樹脂材料によって構成してもよいし、また無機ガラスによって構成したものであってもよい。また、レンズ基材は、所定のレンズ形状を構成するための光学面を、物体側の面と眼球側の面とのそれぞれに有する。所定のレンズ形状は、単焦点レンズ、多焦点レンズ、累進屈折力レンズ等のいずれを構成するものであってもよいが、いずれの場合も各光学面が眼鏡装用者の処方情報を基に特定される曲面によって構成される。光学面は、例えば研磨処理によって形成されるが、研磨処理を要さないキャスト(成形)品であってもよい。
 尚、レンズ基材に対する研磨処理及び染色処理については、公知技術を利用して行えばよく、ここではその詳細な説明を省略する。
 その後は、レンズ基材の少なくとも一方の光学面上、好ましくは両方の光学面上に、ハードコート膜(HC膜)を成膜する(S102)。
 HC膜は、例えば、ケイ素化合物を含む硬化性材料を用いて構成されたもので、3μm~4μm程度の厚さで形成された膜である。HC膜の屈折率(nD)は、上述したレンズ基材の材料の屈折率に近く、例えば1.49~1.74程度であり、レンズ基材の材料に応じて膜構成が選択される。このようなHC膜の被覆によって、眼鏡レンズの耐久性向上が図れるようになる。
 HC膜の成膜は、例えば、ケイ素化合物を含む硬化性材料を溶解させた溶液を用いた浸漬法(Dipping method)によって行えばよい。
 HC膜の成膜後は、続いて、そのHC膜に重ねるように、反射防止膜(AR膜)を成膜する(S103)。
 AR膜は、屈折率の異なる膜を積層させた多層構造を有し、干渉作用によって光の反射を防止する膜である。具体的には、AR膜は、低屈折率層と高屈折率層とが積層された多層構造を有して構成されている。低屈折率層は、例えば、屈折率1.43~1.47程度の二酸化珪素(SiO2)からなる。
 また、高屈折率層は、低屈折率層よりも高い屈折率を有する材料からなり、例えば、酸化ジルコニウム(ZrO2)、酸化錫(SnO2)、酸化ニオブ(Nb25)、酸化タンタル(Ta25)、酸化チタン(TiO2)、酸化イットリウム(Y23)、酸化アルミニウム(Al23)、これらの混合物(例えば酸化インジウムスズ(ITO))等を用いて構成される。
 このうち、SnとOを含む高屈折層は、後述の超短パルスレーザに対する反応性が、他の層に比べて大きいため、反応層として機能する。具体的には、上記のSnO2や、ITOがこれにあたる。
 本明細書における「反応層」は、レーザ照射を受けたときに励起エネルギーが低い層を指す。本発明の一実施例では、超短パルスレーザを照射する。そして、反応層となり得るSnO2層は、多光子吸収(例えば2光子吸収)により、励起エネルギーが極めて低くなり、反応性に富む。これは、ITO層でも同様であり、ITO層も、本明細書における反応層となり得る。
 その結果、本発明の一実施例では、該SnO2層(或いはITO層)は昇華又は蒸発し、上層側にあるSiO2層とともに、照射箇所から消失する。多層構造に含まれる他の層よりも相対的に反応性の高い反応層とは、本発明の一実施例ではSnO2層又はITO層を指す。該反応層を、多層構造に含まれる他の層よりも最も反応性の高い反応層と設定してもよい。
 尚、多層構造のAR膜の最表層は、低屈折率層(例えば、SiO2層)となるように構成されている。このようなAR膜の被覆によって、本態様のレーザ加工によるパターンは、照明光の照射により生じる可視光の反射性の差異によって、視認性向上が図れるようになる。
 また、多層構造の最下層(基材側)の層も低屈折率層(例えばSiO2層)であることが好ましい。
 AR膜の成膜は、例えば、イオンアシスト蒸着を適用して行えばよい。
 AR膜の最表層である低屈折率層上には、撥水膜を成膜するようにしてもよい。撥水膜を防汚膜と称しても構わない。尚、撥水膜の成膜は、本実施形態に係るマーキングを行う前に実施してもよいし、マーキングを行った後に実施してもよい。
 撥水膜は、表面に撥水性を与える膜で、例えばメタキシレンヘキサフロライド等のフッ素系化合物溶液を塗布することによって構成することができる。
 撥水膜の成膜は、AR膜の場合と同様に、例えば、イオンアシスト蒸着を適用して行えばよい。
 また、AR膜上には他の機能性層が成膜されていてもかまわない。かかる機能性層は、金属成分を含んでいても、含まなくても、レーザ照射による精緻な加工の効果が得られる限りにおいて問題はない。また、かかる機能層は、均一な膜であっても、表面上に散在したものであってもかまわない。
 以上のような成膜処理を経ることで、レンズ基材の光学面上には、図3に示すような積層構造の薄膜が形成される。
 図3は、本実施形態に係る薄膜の積層構造の一例を示す側断面図である。
 図例の積層構造は、レンズ基材11の光学面上に、HC膜12、AR膜13、撥水膜14が順に積層されて構成されている。そして、AR膜13は、低屈折率層であるSiO2層13aと高屈折率層であるSnO2層13b及びZrO2層13cとが積層された多層構造を有しており、最表層(すなわち撥水膜14の側の表層)がSiO2層13aとなるように構成されている。
 ここで、SnO2層は、高屈折率層であるとともに、反応層でもある。
 薄膜形成後は、続いて、図2に示すように、その薄膜が形成された眼鏡レンズに対して、フレームカット加工及び加飾パターンのマーキングを行う。例えば、フレームカット後に加飾加工を行う場合であれば(S104:カット後)、まず、加工対象となる眼鏡レンズの一方の光学面(具体的には、後述する加飾加工が施されない光学面)を専用治具に装着する治具ブロッキングを行う(S105)。そして、ブロッキングされた眼鏡レンズを玉形加工機にセットして、その眼鏡レンズに対する玉形加工(フレームカット加工)を行い、その眼鏡レンズの外形をフレーム形状にカットする(S106)。治具ブロッキング及びフレームカット加工については、公知技術を利用して行えばよいため、ここでは詳細な説明を省略する。
 フレームカット加工後は、次いで、加飾加工(すなわち、加飾パターンのマーキング)を行う。加飾加工にあたっては、まず、ブロッキングされた状態のまま、加工対象となる眼鏡レンズの被加工面(具体的には、ブロッキングされていない側の光学面)について、その加工エリアのレンズ高さ(すなわち、被加工面における加工エリアの三次元形状)を計測する(S107)。計測手法は特に限定されないが、例えば非接触タイプの三次元測定機を用いて行うことが考えられる。
 加工エリアとは、後述するレーザスキャン領域を含む領域である。
 加工エリアのレンズ高さの計測後は、続いて、加工エリアにレーザ光を照射するレーザ加工を行うとともに、レーザ光の照射位置を予め用意されたパターンデータに基づいて移動させるラスタースキャンを行う(S108)。ラスタースキャンではなく、ベクタースキャンであってもよい。これにより、眼鏡レンズの被加工面の加工エリアには、加飾パターンのマーキングがされることになる。尚、加飾パターンのマーキングのためのレーザ加工の詳細については後述する。
 加飾パターンのマーキング後は、専用治具から眼鏡レンズを取り外す治具デブロッキングを行い(S109)、取り外した眼鏡レンズについてマーキングの際の残存物や付着物(異物)等を除去するためのレンズ洗浄を行う(S110)。そして、最終的なレンズ外観検査(S111)を経て、眼鏡レンズの製造が完了する。
 一方、例えば、加飾加工後にフレームカットを行う場合であれば(S104:カット前)、まず、加工対象となる眼鏡レンズの被加工面について、その加工エリアのレンズ高さ(すなわち、被加工面における加工エリアの三次元形状)を計測する(S112)。計測手法は、上述したフレームカット後に加飾加工を行う場合と同様である。
 加工エリアのレンズ高さの計測後は、続いて、加工エリアにレーザ光を照射するレーザ加工を行うとともに、レーザ光の照射位置を予め用意されたパターンデータに基づいて移動させるラスタースキャンを行う(S113)。ラスタースキャンではなく、ベクタースキャンであってもよい。これにより、眼鏡レンズの被加工面の加工エリアには、加飾パターンのマーキングがされることになる。尚、加飾パターンのマーキングのためのレーザ加工の詳細については後述する。
 加飾パターンのマーキング後は、そのマーキング後の眼鏡レンズに対してフレームカット加工を行う。フレームカット加工にあたっては、まず、加工対象となる眼鏡レンズの一方の光学面を専用治具に装着する治具ブロッキングを行った上で(S114)、ブロッキングされた眼鏡レンズを玉形加工機にセットして、その眼鏡レンズに対する玉形加工(フレームカット加工)を行い、その眼鏡レンズの外形をフレーム形状にカットする(S115)。フレームカット加工後は、専用治具から眼鏡レンズを取り外す治具デブロッキングを行い(S116)、取り外した眼鏡レンズについて加工の際の残存物や付着物(異物)等を除去するためのレンズ洗浄を行う(S117)。そして、最終的なレンズ外観検査(S118)を経て、眼鏡レンズの製造が完了する。
(2)レーザ加工の詳細
 次に、加飾パターンをマーキングする際のレーザ加工について、更に詳しく説明する。
 本実施形態においては、レンズ基材11の光学面を被覆するAR膜13に対してレーザ光を照射し、これによりAR膜13の最表層であるSiO2層13aを含む所定の層を部分的に除去することで、加飾パターンのマーキングを行うことができる。
 具体的には、最表層のSiO2層を透過したレーザ光が、その下層側にあるSnO2層に到達すると、SnO2層が照射のエネルギーによって昇華、又は蒸発し、上層側にあるSiO2層とともに、照射箇所から消失する。つまり、レーザ光を照射するレーザ加工によって最表層のSiO2層13aを含む所定層を部分的に除去する。このとき、照射箇所には、その下層側の高屈折率層を露出させる除去工程を経て、加飾パターンのマーキングがされるようになっている。ここで、露出させる高屈折率層は、例えば、ZrO2層13cである。
 SnO2層13bについては、薄厚(例えば、3~20nm、より好ましくは、3~10nm)に形成することが可能となる。本態様では5nmとした。
 尚、上記においてSnO2は、レーザ照射に対して最も反応性の高い、反応層として機能する。この反応層は、SnとOが含まれていることが好ましく、SnO2のほか、ITOが使用できる。
 また、上記においては、SnO2が昇華又は蒸発によって除去され、その下層側にある高屈折率層としてのZrO2が照射箇所に露出するが、反応層は、必ずしも完全に除去される必要はなく、照射箇所に一部が残留していてもよい。例えば、レーザ照射によって、反応層は、層の厚み方向に、少なくとも部分的に除去されてもよい。また、部分的な除去の他の一例として、レーザ照射によって、層の厚み方向のみならず、レーザ照射方向から見たとき(平面視したとき)、レーザ照射箇所において反応層が一部残存しても構わない。本段落の例で言うと、ZrO2が部分的にのみ露出していても構わない。なぜなら、ZrO2と同様、SnO2(或いはITO)も高屈折率材料であり、除去箇所を平面視した時にSnO2が一部残存していても視認性に問題は生じないためである。そのため、反応層の下層側にある高屈折率層、又は、一部残留する反応層が露出していればよい。
 レーザ照射の際に生じる現象は以下のように考えられる。反応層(SnO2やITOなど)は、積層構造に含まれる他の層にくらべて導電性の高い、導電層であることが好ましい。
 発明者の検討によると、SnO2からなる反応層は、上層側(最表面側)のSiO2よりも、また下層側のZrO2層よりも、後述する条件でのレーザ照射を受けた際に励起が生じるバンドギャップに対応するエネルギーが小さい。このため、上層側、下層側の隣接層に比べて、最も迅速に昇華/蒸発による消失を生じやすい。
 この際、いわゆる多光子吸収(例えば2光子吸収)と呼ばれる現象が生じていると考えられ、非常に高いエネルギー効率で、加工が行い得る。そして、この際にSnO2が導電層であることが有利に作用するとみられる。
 尚、SnO2が消失後、下層側のZrO2が照射のエネルギーによって、蒸発や溶解などによるダメージを受ける懸念については、かかるダメージの発生段階までの遅延を利用すべく、照射条件を制御することにより、実質的に反応層及びそれより上層側の層のみを除去することができる。そして、上記多分子吸収の現象を伴う、このような精緻な加工制御には、後述する超短パルスレーザを選択することが有利であることが見いだされた。
 ここで、レーザ加工に用いるレーザ加工装置について簡単に説明する。
 図4は、本実施形態に係る眼鏡レンズの製造方法で用いるレーザ加工装置の概略構成例を示す説明図である。
 本実施形態において用いるレーザ加工装置は、図4Aに示すように、レーザ光源部21と、AOM(Acousto Optics Modulator)システム部22と、ビームシェイパー部23と、ガルバノスキャナ部24と、光学系25とを備え、これらの各部21~25を経てレーザ光をAR膜13に対して照射するように構成されている。
 レーザ光源部21は、レーザ加工に用いるレーザ光を出射するものであり、超短パルスレーザを出射するように構成されている。
 本実施形態において、超短パルスレーザのパルス幅の下限値については、特に限定されるものではなく0フェムト秒を超えるものであればよいが、0.01ピコ(10フェムト)秒以上のものが好ましく、0.1ピコ秒以上のもの(1ピコ秒以上のものを含む。)を用いると、装置の維持管理やコストの点で有利であり、商業的な利用により好適である。
 例えば、パルス幅が0.01ピコ(10フェムト)秒以上100ピコ秒未満であるもの、好ましくはパルス幅が0.01ピコ秒以上50ピコ秒未満であるもの、より好ましくはパルス幅が0.01ピコ秒以上15ピコ秒未満であるものも使用可能である。
 更に、例えば、パルス幅が0.1ピコ秒以上100ピコ秒未満であるもの、好ましくはパルス幅が0.1ピコ秒以上50ピコ秒未満であるもの、より好ましくはパルス幅が0.1ピコ秒以上15ピコ秒未満下であるものを用いることができる。
 また、パルス幅が0.01ピコ秒以上1ピコ秒未満(又は、0.1ピコ秒未満)であるものも使用可能である。
 超短パルスレーザの波長は、例えば、355nmのTHG(Third Harmonic Generation)又は532nmのSHG(Second Harmonic Generation)のほか、1064nmの基本波長を用いることができる。照射においては所望の加工デザインに応じて、照射ビーム径を選択することができる。微細なデザインを解像度高く加工するために、ビーム径を小さく絞ることが有効であるが、その際には、短波長側の方が有利であるので、上記の波長のうち、532nmが好ましく、355nmがより好ましい。又は266nmのFHG(Forth Harmonic Generation)も好適である。
 超短パルスレーザのパルスエネルギーは、例えば、50kHzで0.1μJ以上30μJ以下(最大60μJ程度)である。超短パルスレーザのビーム径は、例えば、10μm以上30μm以下である。
 本検討によると、レーザ照射条件について以下のことが判明した。
(1)超短パルスレーザのパルス幅が0.1ピコ秒未満の場合
 266~1064nmの波長のいずれかにおいても、良好な加工が行える。波長が短い方が微細加工においてより有利。但し、装置の初期投資やランニングコストなど、生産負荷が大きい。
(2)超短パルスレーザのパルス幅が0.1ピコ秒以上、1ピコ秒未満の場合
 266~1064nmの波長のいずれかにおいても、良好な加工が行える。波長が短い方が微細加工においてより有利である。
(3)超短パルスレーザのパルス幅が1ピコ秒以上、100ピコ秒未満の場合
 266~1064nmの波長のいずれかにおいても、良好な加工が行える。装置のコスト、生産条件の安定性などにおいても好適。この波長範囲の中では波長が短い方が微細加工においてより有利。
(4)超短パルスレーザのパルス幅が100ピコ秒以上、1ナノ秒未満の場合
 適用波長により、加工安定性に不均一が生じる。例えば適用波長として、短波長側の266nmを用いると、SnO2の反応とともに、下層側にダメージが生じやすい。また、355nmでもわずかな照射条件変動によって、加工の均一性が失われ、除去加工がSnO2より下層側に到達してしまう現象を防止できない。
(5)超短パルスレーザのパルス幅が1ナノ秒以上
 SnO2及びそれより表面側の層を選択的に安定して除去する加工ができない。
 上記(4)、(5)の場合には、加工されたパターンの視認性に影響が生じる。例えば、眼鏡レンズにおいて、装用者の視界に干渉するリスクが生じる。また、形成された加飾パターンを観察する際、観察者に対してパターンが明瞭に視認できる所定の照明条件以外の場合に、クリアなレンズではなく異物や汚れのあるレンズ認識されうる、不完全な視認状態が生じやすい。
 上記のような不都合を防止するためには、超短パルスレーザによる除去加工が、加工径や加工深さにおいて均一であることが肝要であり、そのためには、所定の超短パルス幅を適用することで、照射によるエネルギーの持続時間、及び、下層側材料のアブレーションの遅延を制御、利用することが有用であると考えられる。
 このような超短パルスレーザを出射可能であれば、レーザ光源部21の具体的な構成或いは波長とパルス幅との組み合わせについては、特に限定されるものではない。
 AOMシステム部22は、ガルバノスキャナ部24の動作開始直後及び動作終了間際におけるレーザ光のビーム出力をキャンセルすることで、レーザ加工の際の加工ムラの原因となるレーザ光の過大照射を抑制するものである。
 ビームシェイパー部23は、レーザ光源部21からのレーザ光について、ガウシアン型のエネルギー分布からトップハット型のエネルギー分布に変換することで、均一なエネルギー分布のレーザ光によるレーザ加工を実現可能にするものである。
 特に、トップハット型の分布を適用すると、複数のビームスポットを部分的に重畳させて、所定面積の加工領域を形成しようとするときに、安定して均一な加工が行える。スポットの重畳に起因する局所的なエネルギーの過剰付加が抑制されるためである。
 ガルバノスキャナ部24は、レーザ光源部21からのレーザ光の照射位置を二次元又は三次元で移動させることで、そのレーザ光による走査を実現可能にし、これにより所望パターンのマーキングをレーザ加工によって行えるようにするものである。尚、ガルバノスキャナ部24によるレーザ光の走査可能範囲(すなわち、レーザ最大加工エリア)4は、加工対象となる眼鏡レンズの外形を完全に包含し得る大きさ及び形状に設定されているものとする(図1参照)。
 光学系25は、テレセントリックレンズ等の光学レンズやミラーを組み合わせて構成されたもので、レーザ光源部21からのレーザ光が眼鏡レンズの被加工箇所に到達するように、そのレーザ光を導くものである。
 また、本実施形態において用いるレーザ加工装置は、図4Bに示すように、光学系25等を経て行うAR膜13へのレーザ光(すなわち、超短パルスレーザ)の照射を、デフォーカス設定で行い得るように構成されている。デフォーカス設定とは、照射するレーザ光の焦点位置Fが、当該レーザ光による被加工箇所であるAR膜13の表面から所定のデフォーカス距離の分だけ離れて設定されていることをいう。このようなデフォーカス設定でレーザ光の照射を行えば、当該レーザ光が照射されるAR膜13の表面ではビームエネルギーを分散させることができ、これにより均一な膜除去加工を行うことが実現可能となる。このことは、特に、AR膜13の表面形状の影響で被照射箇所の高さに変動が生じ得る場合に非常に有用である。ただし、必ずしもデフォーカス設定に限定されることはなく、例えば、焦点位置FがAR膜13の表面に合致するフォーカス設定、又はデフォーカス設定とは逆方向に焦点位置Fが離れるインフォーカス設定で、レーザ光の照射を行うようにしても構わない。
 続いて、以上のような構成のレーザ加工装置を用いて行うレーザ加工の手順について説明する。
 レーザ加工にあたっては、まず、加工対象となる眼鏡レンズをレーザ加工装置にセットする。このとき、眼鏡レンズの光学面、更に詳しくは当該光学面におけるAR膜13の表面が被加工面となるように、当該眼鏡レンズのセットを行う。被加工面となる光学面は物体側の面と眼球側の面とのいずれであってもよいが、ここでは例えば眼球側の面を被加工面とする。
 眼鏡レンズのセット後は、予め用意されたパターンデータ(すなわち、得ようとする加飾パターンに基づいて作成された、所定解像度のパターンデータ)に基づいて、レーザ光源部21及びガルバノスキャナ部24を動作させる。これにより、眼鏡レンズの被加工面の加工エリアには、加飾パターンに対応するパターン形状で、超短パルスレーザが照射される。
 超短パルスレーザが照射されると、その超短パルスレーザは、眼鏡レンズの被加工面における撥水膜14を透過し、その被加工面におけるAR膜13に到達する。超短パルスレーザが到達すると、AR膜13では、超短パルスレーザによる非加熱加工が行われることになる。
 本態様のアブレーション加工は、超短パルスレーザの多光子吸収現象により、エネルギー効率の高い加工を行える技術である。更に詳しくは、加工箇所周辺の熱の影響を極力抑え、レーザ光の照射箇所が瞬時に溶融、蒸発、又は昇華し、飛散することで行われる除去加工である。このような非加熱加工によれば、反応性の高い材料が、照射箇所においてが瞬時に除去されるため、加工箇所周辺への熱影響が少なく、熱損傷(熱による変形等)を抑えた加工を行うことができる。
 本実施形態に係るレーザ加工は、非熱加工としてのアブレーション加工とすることができる。このような加工は、先に挙げた多光子吸収現象をもたらす多光子吸収過程(例えば2光子吸収過程)を生じさせうる。このため、レーザに対して比較的透明な(透過率が高い)材料に対しても、多光子吸収によれば、効率的で良好な加工ができる。この場合、適用できるレーザ波長の範囲は広く、レーザ光の波長としては、355nm(THG)、532nm(SHG)のほか、1064nmを有利に用いることができる。
 そして上記にて触れたとおり、上記多光子吸収を誘起するためには、パルス幅の短いピコ秒レーザ、フェムト秒レーザが有利である。具体的な数値としては、例えば、パルス幅が100ピコ秒未満、好ましくは50ピコ秒未満、更に好ましくは1ピコ秒未満(すなわちフェムト秒)とすることができる。
 超短パルスレーザの照射による非加熱加工が行われると、AR膜13では、そのAR膜13を構成する多層構造のうちのSiO2を透過して反応層(本態様ではSnO2)に到達し、反応層が瞬時に反応して昇華/蒸発することに伴い、最表層であるSiO2層13aが、除去される。このようにして、加飾パターンに対応するパターン形状で、反射防止膜の差異表面層を含む所定の層のみが、部分的に除去される。また、これに伴って、撥水膜14の対応部分についても除去される。これにより、照射箇所では、SnO2層13bの下層側に位置するZrO2層13cが露出することになる。
 以上のようなレーザ加工を行うことで、AR膜13の最表層であるSiO2層13aを含む所定の層が部分的に除去されて(除去箇所が形成されて)、高屈折率層としてのZrO2層13cが露出するので、これにより眼鏡レンズの被加工面に対して加飾パターンのマーキングがされることになる。
 以上のように、所定のレーザ照射が行われた照射箇所が、被加工面の内において部分的に加工されることとなる。
(3)眼鏡レンズの構成
 次に、以上の説明した手順の製造方法によって得られる眼鏡レンズの構成、すなわち本実施形態に係る眼鏡レンズの構成について、具体的に説明する。
 図5Aは、本実施形態に係る眼鏡レンズの要部構成例を示す説明図である。
 図5Bは、AR膜13の断面の電子顕微鏡による観察結果の一具体例を示している。図例は、図5A中におけるA部及びB部を拡大表示したものでレーザスキャン領域16及び非加工領域15の電子顕微鏡画像を示している。
 図5Aに示すように、本実施形態に係る眼鏡レンズは、レンズ基材11の光学面上に、HC膜12、AR膜13、撥水膜14が順に積層されて構成されている。そして、AR膜13は、低屈折率層であるSiO2層13aと高屈折率層であるSnO2層13b及びZrO2層13cとが積層された多層構造を有しており、その多層構造の最表層であるSiO2層13aを含む所定層(具体的には、反応層であるSnO2層、及びそれより表面側の層)が部分的に除去されて、高屈折率層であるZrO2層13cが露出するように構成されている。つまり、本実施形態に係る眼鏡レンズは、レンズ基材11の光学面がHC膜12、AR膜13及び撥水膜14によって被覆されている非加工領域15と、AR膜13における最表層のSiO2層13a、その直下の層であるSnO2層13b及び撥水膜14が部分的に除去されて、高屈折率層であるZrO2層13cが露出することになるレーザスキャン領域(パターン化領域)16と、を備えて構成されている。
 非加工領域15とレーザスキャン領域16とは、一方はSiO2層13aで覆われ他方はZrO2層13c(又は反応層が一部残留する場合には、高屈折層である該反応層)が露出しているので、SiO2層13aの有無により、それぞれにおける光の反射率が相違する。そのため、眼鏡レンズに照明光が照射した状態を外観視したときに、レーザスキャン領域16が形成するパターン形状を視認し得るようになる。つまり、加飾パターンに対応するパターン形状でレーザスキャン領域16が形成されていれば、その加飾パターンを視認することができる。このように、AR膜13の所定層の除去箇所は、加飾パターンを構成するものとして利用することが可能となる。
 加飾パターンを構成するレーザスキャン領域16は、AR膜13の最表層であるSiO2層13aと、その直下の層であるSnO2層13bとが除去されて形成されている。つまり、除去対象が、反応層であるSnO2を含む所定の層に止められている。そのため、AR膜13を構成する多層構造の各層について、レーザスキャン領域16の形成に起因して剥がれが生じてしまうのを抑制することができる。
 AR膜13の最表層であるSiO2層13aの除去は、既述のように、超短パルスレーザの照射による非加熱加工によって実現可能である。このような非加熱加工によれば、加工箇所周辺への熱影響が少なく、熱損傷が生じてしまうのを抑えることができる。また、上記所定のパルス幅を適用することにより、反応層より下層側へのダメージを抑止しつつ、安定した加工が行える。これにより高屈折率層としてのZrO2層13cが露出することになるが、そのZrO2層13cの露出表面にダメージが生じるのを抑制することができる。
 ZrO2層13cの露出表面へのダメージを抑制できれば、そのZrO2層13cでは、除去加工に伴う膜厚の減少についても抑制することができる。SiO2層13a、SnO2層13b、ZrO2層13c等の膜厚については、AR膜13の断面の電子顕微鏡画像を取得し、その取得画像を解析することによって特定することが可能である。
 図5Bは、AR膜13の断面の電子顕微鏡による観察結果の一具体例を示している。図例は、図5A中におけるA部及びB部を拡大表示したものでレーザスキャン領域16及び非加工領域15の電子顕微鏡画像を示している。尚、非加工領域15では、SiO2層13a、SnO2層13b及びZrO2層13cが積層されているが、SnO2層13bが薄厚(例えば5nm程度)のため、画像中においては認識し難くなっている。一方、レーザスキャン領域16では、SnO2層13b及びそれより表面側のSiO2が除去されて、これによりZrO2層13cが露出している。
 図例の電子顕微鏡画像によれば、SnO2及びそれより表面側の層の除去によって露出することになるZrO2層13cにおいて、レーザスキャン領域16の部分の厚さt1と、非加工領域15の部分の厚さt2とで、それぞれに大きな違いがないことが分かる。更に具体的には、除去箇所の厚さt1と非除去箇所の厚さt2との比t1/t2が、例えば、0.90以上1.00以下の範囲内、好ましくは0.95以上1.00以下の範囲内、より好ましくは0.99以上1.00以下の範囲内に属するようになっている。
 このように、露出する高屈折率層であるZrO2層13cでは、除去加工に伴う膜厚の減少が生じていないか、又は減少が生じていてもその減少量が極めて小さくなるように抑制されている。レーザスキャン領域16が超短パルスレーザの照射による非加熱加工によって形成され、下層であるZrO2層13cにダメージが生じないからである。このことは、露出するZrO2層13cの厚さの比t1/t2が上述の範囲内に属していれば、そのZrO2層13cにダメージが及ぶことなくレーザスキャン領域16が形成されており、そのレーザスキャン領域16の形成が超短パルスレーザによる非加熱加工を利用して行われたものと推定できることを意味する。
 ZrO2層13へのダメージが生じないのは、超短パルスレーザによる反応層(ここではSnO2層)の反応性が、ZrO2より高いためである。そして、この反応性の差異は、後述するように、所定のパルス幅の超短パルスレーザの適用によって、顕著に得られる。
 尚、SnO2層に対して、ZrO2層の厚さが10倍以上、好ましくは15倍以上であることにより、SnO2層が消失したのち、ZrO2層がわずかに減膜した場合においても、膜剥れのリスクや加飾パターンの視認性に影響はない。
 更に、SnO2の融点は、上層側のSiO2よりも低く、また、下層側のZrO2よりも大幅に低いことも、アブレーションの制御の容易さに関与していると考えられる。
 以上のように構成された眼鏡レンズによれば、加飾パターンがマーキングされていても、多層構造のAR膜13を構成する各層の剥がれが生じてしまうのを抑制でき、また露出するZrO2層13cにダメージが生じてしまうこともない。そのため、眼鏡レンズの製品に適用した場合であっても、その製品の品質の低下を招くことなく、眼鏡レンズに対する加飾パターンのマーキングを行うことが実現可能である。
 以下、パルス幅の違いと、光学部材の品質の低下を招くことなく当該光学部材にマーキングを行えるか否かとの間の関係を説明する。以降の図において、白色部分(例:ドットパターン)がレーザスキャン領域16であり、青色(黒色)部分が非加工領域15である。以降、マーキングを行うことをレーザ加工ともいう。
(フェムト秒のパルス幅)
 図5Bに示す眼鏡レンズ1(ここでは両面平板のplanoレンズ)の非加工領域15におけるAR膜13に対し、パルス幅を100フェムト秒以上1ピコ秒未満としてレーザ加工試験を行った。その際、レーザ光の波長を、1064nm(赤外領域、第一高調波)、532nm(緑色領域、第二高調波)と各々設定したうえで各試験を行った。
 図6Aは、図5Bに示す眼鏡レンズ1のAR膜13に対し、レーザ光の波長を1064nmとし、パルス幅を100フェムト秒以上1ピコ秒未満として、ドットパターンを形成する試験を行った結果を示す顕微鏡写真(倍率は200倍)である。
 図6Bは、図5Bに示す眼鏡レンズ1のAR膜13に対し、レーザ光の波長を532nmとし、パルス幅を100フェムト秒以上1ピコ秒未満として、ドットパターンを形成する試験を行った結果を示す顕微鏡写真(倍率は200倍)である。レーザ光による加工径は約27μmである。
 図6A及び図6Bに示すように、パルス幅を100フェムト秒以上1ピコ秒未満とした場合、安定して径と深さが均一となる除去加工が行えた。特に、図6Bに示すように、レーザ光の波長が低波長である場合、小径の加工が行いやすく、効果がより顕著であった。
(ピコ秒のパルス幅)
 図5Bに示す眼鏡レンズ1のAR膜13に対し、パルス幅を10数ピコ秒としてレーザ加工試験を行った。その際、レーザ光の波長を、1064nm(赤外領域、第一高調波)、532nm(緑色領域、第二高調波)に加え、355nm(紫外(UV)領域、第三高調波)と各々設定したうえで各試験を行った。
 なお、「10数ピコ秒」の「10数」とは、10を超え、20未満の範囲の値である。
 図7Aは、図5Bに示す眼鏡レンズ1のAR膜13に対し、レーザ光の波長を1064nmとし、パルス幅を10数ピコ秒として、ドットパターンを形成する試験を行った結果を示す顕微鏡写真(倍率は200倍)である。
 図7Bは、図5Bに示す眼鏡レンズ1のAR膜13に対し、レーザ光の波長を532nmとし、パルス幅を10数ピコ秒として、ドットパターンを形成する試験を行った結果を示す顕微鏡写真(倍率は200倍)である。
 図7Cは、図5Bに示す眼鏡レンズ1のAR膜13に対し、レーザ光の波長を355nmとし、パルス幅を10数ピコ秒として、ドットパターンを形成する試験を行った結果を示す顕微鏡写真(倍率は200倍)である。
 図7A、図7B及び図7Cに示すように、パルス幅を数10ピコ秒とした場合、安定した深さの除去加工を行い、当該光学部材にマーキングを行えた。尚、図7A、図7Bは、デフォーカスを+3mmとしている。通常、デフォーカスの条件としては、±1mmまでは十分に適用可能である。つまり、本実施形態ならば、フォーカス変動に対しても安定して光学部材の品質の低下を招くことなく当該光学部材にマーキングを行える。
 なお、「数10」は、20以上、90未満の範囲の値である。
 図8Aは、図5Bに示す眼鏡レンズ1のAR膜13に対し、レーザ光の波長を355nmとし、パルス幅を10数ピコ秒として、ドットパターンを重複させて隙間なく除去加工を行う試験を行った結果を示す顕微鏡写真(倍率は200倍)である。SnO2の反応層及びそれより表面側のSiO2層が均一に除去されて、良好な加工が行えた。
 図8Bは、図5Bに示す眼鏡レンズ1のAR膜13に対し、レーザ光の波長を532nmとし、パルス幅を"数10"ピコ秒として、ドットパターンを重複させて隙間のない除去加工を行う試験を行った結果を示す顕微鏡写真(倍率は200倍)である。
 図8A及び図8Bに示すように、パルス幅を10数ピコ秒又は数10ピコ秒とした場合、当該光学部材にマーキングを行えた。特に、図8Bには、局所的に、SnO2層の下層側にダメージが生じたが、図8Aに示すように、パルス幅を10数ピコ秒とした場合、均一な除去加工が行えた。
(ナノ秒のパルス幅)
 図5Bに示す眼鏡レンズ1のAR膜13に対し、パルス幅を10数ナノ秒としてレーザ加工試験を行った。その際、レーザ光の波長を、355nm(紫外(UV)領域、第三高調波)、266nm(深紫外(DUV)領域、第四高調波)と各々設定したうえで各試験を行った。
 図9Aは、図5Bに示す眼鏡レンズ1のAR膜13に対し、レーザ光の波長を355nmとし、パルス幅を10数ナノ秒として、ドットパターンを形成する試験を行った結果を示す顕微鏡写真(倍率は50倍)である。
 図9Bは、図5Bに示す眼鏡レンズ1のAR膜13に対し、レーザ光の波長を266nmとし、パルス幅を10数ナノ秒として、ドットパターンを形成する試験を行った結果を示す顕微鏡写真(倍率は左側50倍、右側4画像500倍)である。
 図9Aに示すように、パルス幅を10数ナノ秒とした場合、レーザ出力が小さい場合、加工自体が行えなかった。加工が行える程度にまでレーザ出力を上げると、下層のZrO2にダメージが生じた。
 加工条件が安定せず、下層にダメージが生じることにより、本実施形態の眼鏡レンズ1に比べ、加飾パターンが、眼鏡レンズの装用者自身に視認されてしまい、視界を遮ることから、眼鏡としての機能を損なうリスクがある。また、加工部分が、本実施形態の眼鏡レンズ1に比べ、膜剥れが生じやすく、耐候性、耐薬性も劣化しかねない。
 図9Bに示すように、レーザ光のフォーカスを変化させることにより加工自体は行えたものの、加工ムラが大きく、フォーカスによっては想定よりも下層にダメージが生じた。所望の深さに均一に安定して加工することが困難であった。
 本実施形態によれば、以下に示す1つ又は複数の効果が得られる。
(a)本実施形態においては、レンズ基材11の光学面を被覆する薄膜の一つであるAR膜13に対して、そのAR膜13の反応層(上記態様ではSnO2)及びそれより表面側の層を部分的に除去し、これにより高屈折率層であるZrO2層13cを露出させることで、眼鏡レンズに加飾パターンのマーキングを行う。
(b)本実施形態においては、超短パルスレーザの照射による非加熱加工を行って、AR膜13の反応層(上記態様ではSnO2)及びそれより表面側の層を部分的に除去し、これにより高屈折率層であるZrO2層13cを露出させることで、眼鏡レンズに加飾パターンのマーキングを行う。このような非加熱加工によれば、レーザ光の吸収エネルギー効果よりもパルス幅の効果によって除去加工を行うため、AR膜13の最表層であるSiO2層13aを含む所定の層のみを選択的に、均一に除去することが可能となる。しかも、非加熱加工であるが故に、加工箇所周辺に熱損傷が生じてしまうのを抑えることができ、これにより反応層の下層側にあるZrO2層13cの露出表面にダメージが生じるのを抑制することができる。
(c)以上のように、本実施形態においては、超短パルスレーザを利用しつつAR膜13の最表層を含む所定の層を除去し、高屈折率層を露出させることで、眼鏡レンズに加飾パターンのマーキングを行う。従って、本実施形態によれば、AR膜13の各層に剥がれが生じてしまうことを抑制でき、また露出するZrO2層13cにダメージが生じてしまうこともないので、眼鏡レンズの製品に適用した場合であっても、その製品の品質の低下を招くことなく、眼鏡レンズに対する加飾パターンのマーキングを行うことが実現可能となる。
(d)本実施形態においては、超短パルスレーザのパルス幅は、0フェムト秒を超えるものであればよいが、0.01ピコ(10フェムト)秒以上100ピコ秒未満のものが好ましく、0.1ピコ秒以上のもの(1ピコ秒以上のものを含む。)を用いると、装置の維持管理やコストの点で有利であり、商業的な利用により好適である。
 より具体的には、レーザ照射条件について、パルス幅に応じて以下の利点がある(1)超短パルスレーザのパルス幅が0.1ピコ秒未満の場合
 266~1064nmの波長のいずれかにおいても、良好な加工が行える。波長が短い方が微細加工においてより有利。但し、装置の維持管理やコストの点で、生産負荷が大きい。
(2)超短パルスレーザのパルス幅が0.1ピコ秒以上、1ピコ秒未満の場合
 266~1064nmの波長のいずれかにおいても、良好な加工が行える。波長が短い方が微細加工においてより有利である。
(3)超短パルスレーザのパルス幅が1ピコ秒以上、100ピコ秒未満の場合
 266~1064nmの波長のいずれかにおいても、良好な加工が行える。波長が短い方が微細加工においてより有利。装置の維持管理、コスト、生産条件の安定性などにおいて好適。
(e)本実施形態においては、超短パルスレーザの照射による非加熱加工にあたり、AR膜13に対する超短パルスレーザの照射をデフォーカス設定で行う。このようなデフォーカス設定でレーザ光の照射を行えば、当該レーザ光が照射されるAR膜13の表面ではビームエネルギーを分散させることができ、これにより均一な膜除去加工を行うことが実現可能となる。このことは、特に、AR膜13の表面形状の影響で被照射箇所の高さに変動が生じ得る場合に非常に有用である。
(f)本実施形態においては、所定条件にて超短パルスレーザの照射による非加熱加工を行うので、SnO2及びそれより表面側の層の除去によって露出することになる高屈折率層としてのZrO2層13cの露出表面のダメージを抑制することができる。具体的には、かかる除去箇所におけるZrO2層13cの厚さt1とSiO2層13a等の非除去箇所におけるZrO2層13cの厚さt2との比t1/t2が、例えば、0.90以上1.00以下の範囲内、好ましくは0.95以上1.00以下の範囲内、より好ましくは0.99以上1.00以下の範囲内に属するようになる。このように、ZrO2層13cでは、上記除去加工に伴う膜厚の減少が生じていないか、又は減少が生じていてもその減少量が極めて小さくなるように抑制されている。従って、眼鏡レンズの製品に適用した場合に、その製品の品質の低下を招くことなく、眼鏡レンズに対する加飾パターンのマーキングを行う上で、非常に好ましいものとなる。
(5)変形例等
 以上に本発明の実施形態を説明したが、上述した開示内容は、本発明の例示的な実施形態を示すものである。すなわち、本発明の技術的範囲は、上述の例示的な実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である
 上述の実施形態では、光学部材が眼鏡レンズである場合を例に挙げたが、本発明がこれに限定されることはない。つまり、眼鏡レンズ以外の光学部材についても、全く同様に適用することが可能である。
 上述の実施形態では、超短パルスレーザを用いた非加熱加工によって加飾パターンのマーキングを行う場合を例に挙げたが、本発明がこれに限定されることはない。つまり、超短パルスレーザを用いた非加熱加工は、光学部材の光学面に何らかのパターニングを行うためのものであればよく、加飾パターンのマーキング以外にも全く同様に適用することが可能である。
 上述の実施形態では、AR膜13の最表層が低屈折率層としてのSiO2層13aであり、SiO2層13aの下方側の層が高屈折率層としての反応層であるSnO2層13bであり、更に下層側に高屈折率層としてのZrO2層13cがあり、SnO2がレーザ照射によって反応し、部分的に除去されると、これに伴いSiO2も除去され、これにより高屈折率層としてのZrO2層13cが露出する場合を例に挙げたが、本発明がこれに限定されることはない。AR膜13は、SiO2層13a、SnO2層13b、ZrO2層13c以外の各層が積層されて構成されたものであってもよい。また、AR膜13の最表層は、低屈折率層であれば、SiO2層13a以外の物であってもよい。高屈折率層としては、SnO2層13b又はZrO2層13c以外の物であってもよい。例えば、反応層としてのSnO2層13bについては、該SnO2層13bに代わって導電性を有する薄厚のITO層としてもよい。
 上述の実施形態では、超短パルスレーザを用いた非加熱加工によって、AR膜13に含まれる反応層であるSnO2層と、その直上であって最表層であるSiO2層13aが除去される場合を例に挙げている。これにより、既述のように、膜剥がれを抑制できるという効果を奏する。このように、超短パルスレーザを用いた非加熱加工は、最表層を含む所定の複数層を除去するように行うことが実現可能である。最表層を含む複数層を除去する場合であっても、超短パルスレーザを用いた非加熱加工によれば、除去によって露出することになる層の露出表面へのダメージを抑制できるので、除去加工に伴う膜厚の減少についても抑制することができる。つまり、最表層を含む複数層を除去する場合であっても、除去された層の直下の層について、除去箇所の厚さt1と非除去箇所の厚さt2との比t1/t2が、例えば、0.90以上1.00以下の範囲内、好ましくは0.95以上1.00以下の範囲内、より好ましくは0.99以上1.00以下の範囲内に属するようになる。このことは、本開示が以下のような発明概念を含むことを意味する。
 すなわち、本開示によれば、
 光学面を有する光学基材と、
 前記光学基材の前記光学面を被覆する反射防止膜と、を備え、
 前記反射防止膜は、多層構造を有するとともに、前記多層構造を構成する少なくとも一つの層が部分的に除去されて構成されており、
 前記少なくとも一つの層の直下の層は、前記少なくとも一つの層の除去箇所の厚さt1と前記少なくとも一つの層の非除去箇所の厚さt2との比t1/t2が0.90以上1.00以下の範囲内に属するように構成されている
 光学部材。
 本実施形態におけるレーザ加工前の眼鏡レンズは、両面に反射防止膜が設けられてもよい。該眼鏡レンズの一具体例としては国際公開公報WO2020/067407号に記載の内容が挙げられる。該公報の記載は本明細書にて全て参照可能である。特に該公報に記載の実施例1、2の構成(いずれか一つを挙げるとするならば実施例1)の眼鏡レンズを一具体例として採用してもよい。本実施形態における加飾前の眼鏡レンズの一具体例としては以下の通りである。
 一具体例の眼鏡レンズは、
 レンズ基材の両面に多層膜を備える眼鏡レンズであって、
 前記眼鏡レンズの各面における360~400nmの波長帯域での平均反射率の和は6.0%以下であり、
 前記眼鏡レンズの各面における400~440nmの波長帯域での平均反射率の和は20.0%以上であり、
 前記眼鏡レンズの各面における480~680nmの波長帯域での平均反射率の和は2.0%以下である、眼鏡レンズである
 つまり、青色領域の光のうち、特に遮断すべき紫色領域(400~440nm)では各面の平均反射率の和を20.0%以上(好適には20.0%を超え、更に好適には25.0%以上)とする。つまり、前記紫色領域にて局所的に反射率を増大させる。
 その代わり、紫外領域ないし紫色領域の低波長側(360~400nm)では各面の平均反射率の和を6.0%以下(好適には6.0%未満、更に好適には5.0%以下)とし、紫色領域(400~440nm)の場合とは逆に、局所的に反射率を減少させる。
 更に、青色の波長領域のうちの高波長側ないし赤色領域(480~680nm)では各面の平均反射率の和を2.0%以下(好適には2.0%未満、更に好適には1.5%以下)とし、可視光線の透過を狙うべく、可視光の主な波長帯域では特に局所的に反射率を減少させる。
 このような一具体例ならば、前記青色領域の光に対する遮断効果を確保しつつも可視光線の透過も確保できる。
 この一具体例の眼鏡レンズに対して本実施形態に係るレーザ加工が行われると、以下の有利な効果を奏する。この一具体例の眼鏡レンズは、青色領域の光に対する遮断効果が確保されている、つまり青色領域の光の反射率が高い。そのため、眼鏡レンズ1の装用者の正面に相対する第三者から前記眼鏡レンズ1を見た時、眼鏡レンズは青色に見える。その一方、レーザ加工が行われた箇所(加飾パターン3)は、レーザ加工により露出した層の色(この一具体例においてはZrO2層の色である黄色ないし金色)に見える。その結果、眼鏡レンズ1の装用者の正面に相対する第三者にとっては、フレームに嵌め入れられた眼鏡レンズ1において、加飾パターン3が、青色の背景に浮かび上がるように見える。その場合、意匠的な効果が高い加飾パターン3が得らえる。これは、青色の背景ではない場合、すなわち青色領域の光の反射率が高いのではなく他の色の領域の光の反射率が高い場合でも同様である。背景となる色の一例としては、眼鏡レンズ1の装用者の正面に相対する第三者から前記眼鏡レンズ1を見た時、眼鏡レンズ1は緑色又はパール色が挙げられる。
 上記の加飾パターン3の視認時の良好なコントラストの態様は、眼鏡レンズの物体側の面の各多層膜に対するレーザ加工であっても、眼球側の面の各多層膜に対するレーザ加工であっても、実現可能である。
 尚、いずれの面の各多層膜に対するレーザ加工であっても、加飾パターンが装用者の視野に入ることによる視界の干渉は実質的に生じない。すなわち本態様の加飾パターン3が施された眼鏡レンズは、装用者のクリアな視界を阻害しない。
 また、他人から装用者のレンズを観察する際には、室内の照明光や太陽光に対して所定の相対位置(又は角度)に装用者のレンズがあるとき、加飾パターン3が明瞭に視認されるが、上記相対位置にない場合には、視認されにくくなる。従って、所定の加飾パターン3が明瞭に現れたり、ほぼ消失したりという、視認性の変化による、デザイン上の付加価値をレンズに付与することができる。
 一方、上記の所定の相対位置関係にないときには、他人から見たとき、通常のクリアなレンズ(又は、所定のカラーレンズ、調光レンズ、偏光レンズ)として認識される。
 本態様の加飾パターン3は、フレームカットされたレンズ領域内に形成しても、眼鏡の機能に影響せずに、所望の文字や記号、又は図柄をレンズに担持させたり、所望のデザインをレンズに施すことができる。
 本態様の加飾パターン3は、レンズの加工面側からでも、裏面側からでも視認しうる加工である。多層構造の反射防止膜において、一部を除去(本態様ではSnOおよびその上層側のSiOを除去)した除去箇所においては、設計された反射防止性が低減し、非除去箇所との間で、反射光量のコントラストが得られるからである。
 そのため、本発明の技術的思想は、本実施形態に係る光学部材の製造方法で製造された光学部材である眼鏡レンズ、又は、本実施形態に係る光学部材である眼鏡レンズを、フレームに嵌め入れた眼鏡にも及ぶ。
 1…眼鏡レンズ(光学部材)、2…フレーム形状、3…加飾パターン、4…走査可能範囲、11…レンズ基材(光学基材)、12…HC膜、13…AR膜、13a…SiO2層(低屈折率層)、13b…SnO2層(高屈折率層)、13c…ZrO2層(高屈折率層)、14…撥水膜、15…非加工領域、16…レーザスキャン領域(パターン化領域)、21…レーザ光源部、22…AOMシステム部、23…ビームシェイパー部、24…ガルバノスキャナ部、25…光学系

Claims (13)

  1.  光学基材の光学面を被覆するように形成された、低屈折率層と高屈折率層の積層を含む多層構造の反射防止膜に対して、超短パルスレーザの照射を行い、前記多層構造の最表層を含む所定の層を部分的に除去することにより、所望のレーザ加工を施す光学部材の製造方法であって、
     前記超短パルスレーザは、パルス幅が10フェムト秒以上100ピコ秒未満であり、
     前記反射防止膜は、前記超短パルスレーザの照射に対して、前記多層構造に含まれる他の層よりも相対的に反応性の高い反応層を含み、
     前記照射によって、前記反応層が少なくとも部分的に除去されることによって、可視光により視認しうる前記レーザ加工が施される、光学部材の製造方法。
  2.  前記反応層の除去においては、前記反応層が厚み方向に少なくとも部分的に昇華、又は蒸発することによって消失し、前記消失に伴い、前記反応層より上層側に積層する他の層が除去される、請求項1に記載の光学部材の製造方法。
  3.  前記照射によって、前記反応層の除去が生じた照射部には、前記多層構造に含まれる、高屈折率層が露出する、請求項1又は2に記載の光学部材の製造方法。
  4.  前記反応層は、前記多層構造を構成する他の層よりも導電性が高い導電層である、請求項1から3のいずれか1項に記載の光学部材の製造方法。
  5.  前記反応層は、SnとOを含む、請求項1から4のいずれか1項に記載の光学部材の製造方法。
  6.  前記光学部材は、眼鏡レンズである、請求項1から5のいずれか1項に記載の光学部材の製造方法。
  7.  前記超短パルスレーザは、パルス幅が0.1ピコ秒以上50ピコ秒未満である、請求項1から6のいずれか1項に記載の光学部材の製造方法。
  8.  光学面を有する光学基材と、
     前記光学基材の前記光学面を被覆する反射防止膜と、を備え、
     前記反射防止膜は、低屈折率層と高屈折率層の積層を含む多層構造を有し、
     前記反射防止膜は、超短パルスレーザの照射に対する反応性が、前記反射防止膜に含まれる他の層よりも相対的に高い反応層を含み、
     前記多層構造の最表層を含む所定の層が少なくとも部分的に除去されて形成された除去箇所には、前記反応層の下層側にある前記高屈折率層、又は、一部残留する前記反応層が露出していることにより、前記除去箇所が可視光により視認しうる加工が施されている、光学部材。
  9.  前記低屈折率層の除去によって露出する前記高屈折率層は、前記低屈折率層の除去箇所の厚さt1と前記低屈折率層の非除去箇所の厚さt2との比t1/t2が0.90以上1.00以下の範囲内に属する、請求項8に記載の光学部材。
  10.  前記視認しうる加工は、前記光学部材の前記加工が施された被加工面側から視認しうるとともに、前記被加工面の裏面側からも視認しうる、請求項8又は9に記載の光学部材。
  11.  前記視認しうる加工は、前記光学部材に対する観察者及び照明光との相対位置又は角度によって、視認性が変わる、請求項8から10のいずれか1項に記載の光学部材。
  12.  前記光学部材は、眼鏡レンズである、請求項8から11のいずれか1項に記載の光学部材。
  13.  請求項1から7のいずれか1項に記載の光学部材の製造方法で製造された光学部材である眼鏡レンズ、又は、請求項8から12のいずれか1項に記載の光学部材である眼鏡レンズを、フレームに嵌め入れた、眼鏡。
PCT/JP2022/035740 2021-12-22 2022-09-26 光学部材の製造方法、光学部材及び眼鏡 WO2023119773A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247005325A KR20240036057A (ko) 2021-12-22 2022-09-26 광학 부재의 제조 방법, 광학 부재 및 안경

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-207963 2021-12-22
JP2021207963A JP2023092764A (ja) 2021-12-22 2021-12-22 光学部材の製造方法、光学部材及び眼鏡

Publications (1)

Publication Number Publication Date
WO2023119773A1 true WO2023119773A1 (ja) 2023-06-29

Family

ID=86901895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035740 WO2023119773A1 (ja) 2021-12-22 2022-09-26 光学部材の製造方法、光学部材及び眼鏡

Country Status (3)

Country Link
JP (1) JP2023092764A (ja)
KR (1) KR20240036057A (ja)
WO (1) WO2023119773A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116502A (ja) * 1990-09-06 1992-04-17 Konica Corp 導電性反射防止コート
JP3081395B2 (ja) * 1992-12-28 2000-08-28 ホーヤ株式会社 レーザマーキング方法
JP2001293818A (ja) * 2000-04-11 2001-10-23 Oike Ind Co Ltd 反射防止性ハードコートフイルム
WO2005001552A1 (ja) * 2003-06-27 2005-01-06 Seiko Epson Corporation 眼鏡レンズの製造方法、マーキング装置、マーキングシステム、眼鏡レンズ
JP2015232614A (ja) * 2014-06-09 2015-12-24 大日本印刷株式会社 反射防止フィルム及びディスプレイ
JP2016007612A (ja) * 2014-06-23 2016-01-18 株式会社エツミ光学 多層蒸着体のマーキング法及び多層蒸着体
JP2016187911A (ja) * 2015-03-30 2016-11-04 リンテック株式会社 透明導電性フィルム
JP2017516155A (ja) * 2014-03-26 2017-06-15 インディセン オプティカル テクノロジーズ、エセ.エレ 多層加法的技術によるアイウェア・レンズの作成
JP2019070809A (ja) * 2011-12-28 2019-05-09 コルポラシオン ドゥ レコール ポリテクニーク ドゥ モントリオール 経時的に安定している性質を有する干渉コーティングでコートされた物品
JP2019523447A (ja) 2016-07-18 2019-08-22 エシロール アンテルナショナルEssilor International 光学製品の永久的可視マーキングの方法及びマーキングされた光学製品
WO2020067407A1 (ja) 2018-09-28 2020-04-02 ホヤ レンズ タイランド リミテッド 眼鏡レンズ
JP2021012224A (ja) * 2017-10-27 2021-02-04 株式会社ニコン 光学素子、光学系、及び、光学装置
JP2021182165A (ja) * 2017-06-28 2021-11-25 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd 眼鏡レンズの製造方法、眼鏡レンズの製造システム、眼鏡レンズ

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116502A (ja) * 1990-09-06 1992-04-17 Konica Corp 導電性反射防止コート
JP3081395B2 (ja) * 1992-12-28 2000-08-28 ホーヤ株式会社 レーザマーキング方法
JP2001293818A (ja) * 2000-04-11 2001-10-23 Oike Ind Co Ltd 反射防止性ハードコートフイルム
WO2005001552A1 (ja) * 2003-06-27 2005-01-06 Seiko Epson Corporation 眼鏡レンズの製造方法、マーキング装置、マーキングシステム、眼鏡レンズ
JP2019070809A (ja) * 2011-12-28 2019-05-09 コルポラシオン ドゥ レコール ポリテクニーク ドゥ モントリオール 経時的に安定している性質を有する干渉コーティングでコートされた物品
JP2017516155A (ja) * 2014-03-26 2017-06-15 インディセン オプティカル テクノロジーズ、エセ.エレ 多層加法的技術によるアイウェア・レンズの作成
JP2015232614A (ja) * 2014-06-09 2015-12-24 大日本印刷株式会社 反射防止フィルム及びディスプレイ
JP2016007612A (ja) * 2014-06-23 2016-01-18 株式会社エツミ光学 多層蒸着体のマーキング法及び多層蒸着体
JP2016187911A (ja) * 2015-03-30 2016-11-04 リンテック株式会社 透明導電性フィルム
JP2019523447A (ja) 2016-07-18 2019-08-22 エシロール アンテルナショナルEssilor International 光学製品の永久的可視マーキングの方法及びマーキングされた光学製品
JP2021182165A (ja) * 2017-06-28 2021-11-25 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd 眼鏡レンズの製造方法、眼鏡レンズの製造システム、眼鏡レンズ
JP2021012224A (ja) * 2017-10-27 2021-02-04 株式会社ニコン 光学素子、光学系、及び、光学装置
WO2020067407A1 (ja) 2018-09-28 2020-04-02 ホヤ レンズ タイランド リミテッド 眼鏡レンズ

Also Published As

Publication number Publication date
JP2023092764A (ja) 2023-07-04
KR20240036057A (ko) 2024-03-19

Similar Documents

Publication Publication Date Title
US11275285B2 (en) Second surface laser ablation
US11347078B2 (en) Method for permanent visible marking of an optical article and marked optical article
US6857744B2 (en) Method of marking ophhalmic lens by using laser radiation of femtosecond pulse width
US9278492B2 (en) Method for producing optical lens
US9651801B2 (en) Optical lens
US20190258836A1 (en) Spectacle lens provided with a permanent marking
US20150050468A1 (en) Laser systems and methods for internally marking thin layers, and articles produced thereby
WO2023119773A1 (ja) 光学部材の製造方法、光学部材及び眼鏡
US11940595B2 (en) Method for producing optical member and optical member
WO2023120117A1 (ja) 眼鏡レンズの製造方法、眼鏡レンズ、及び眼鏡
WO2024034341A1 (ja) 眼鏡レンズ及び眼鏡
JP2023022149A (ja) 光学部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910499

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247005325

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247005325

Country of ref document: KR