WO2012118073A1 - 溶融Zn-Al-Mg系めっき鋼板および製造方法 - Google Patents

溶融Zn-Al-Mg系めっき鋼板および製造方法 Download PDF

Info

Publication number
WO2012118073A1
WO2012118073A1 PCT/JP2012/054926 JP2012054926W WO2012118073A1 WO 2012118073 A1 WO2012118073 A1 WO 2012118073A1 JP 2012054926 W JP2012054926 W JP 2012054926W WO 2012118073 A1 WO2012118073 A1 WO 2012118073A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
molten
hot
mass
Prior art date
Application number
PCT/JP2012/054926
Other languages
English (en)
French (fr)
Inventor
健太郎 平田
幸男 片桐
藤原 進
和昭 細見
将明 浦中
Original Assignee
日新製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新製鋼株式会社 filed Critical 日新製鋼株式会社
Priority to CA2826225A priority Critical patent/CA2826225C/en
Priority to EP18209034.0A priority patent/EP3470541A1/en
Priority to MX2013009332A priority patent/MX363471B/es
Priority to US14/001,928 priority patent/US9592772B2/en
Priority to ES12752196T priority patent/ES2712631T3/es
Priority to AU2012224032A priority patent/AU2012224032B2/en
Priority to PL12752196T priority patent/PL2682495T3/pl
Priority to CN201280010578.4A priority patent/CN103415641B/zh
Priority to EP12752196.1A priority patent/EP2682495B1/en
Priority to KR1020137022238A priority patent/KR102099588B1/ko
Publication of WO2012118073A1 publication Critical patent/WO2012118073A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Definitions

  • the present invention relates to a molten Zn—Al—Mg-based plated steel sheet having excellent resistance to molten metal embrittlement cracking, suitable for various arc welded structural members such as suspension members of automobiles such as suspension arms and suspension members, and production thereof Regarding the method.
  • Suspension members such as suspension arms and suspension members of automobiles are conventionally used by forming hot-rolled steel sheets into a predetermined shape by press forming, etc., joining them by arc welding, and then applying cationic electrodeposition coating Provided.
  • Fe scale is generated on the surface of the steel sheet by welding heat input during arc welding. Due to the vibration of a traveling automobile, the scale may be peeled off together with the cationic electrodeposition coating film due to fatigue, and in this case, corrosion may proceed from that part and the thickness may be reduced. For this reason, it is necessary to design the strength of the undercarriage member in anticipation of a reduction in the thickness due to corrosion.
  • a hot rolled steel plate with a tensile strength of 340 to 440 MPa and a thickness of 3 to 4 mm is used. It was often used.
  • the underbody member is also required to have burring properties (hole expanding properties).
  • the burring property is a characteristic that indicates that a hole formed by punching or the like can be formed without a crack in the subsequent forming process.
  • Patent Document 1 discloses a high-strength galvannealed steel sheet excellent in burring properties.
  • the plating layer evaporates and disappears in the vicinity of the weld bead toe exposed to a high temperature, and Fe scale is generated in that portion. For this reason, the fault of the conventional hot-rolled steel sheet that a coating film is easy to peel with Fe scale is not improved even if it uses a zinc-based plated steel sheet.
  • Patent Document 2 discloses a hot-dip Zn—Al—Mg alloy-plated steel sheet having higher corrosion resistance than a general hot-dip galvanized steel sheet.
  • the metal structure is a two-phase structure composed of ferrite of the main phase and one or more of pearlite, bainite, and martensite, and since the hardness difference between these two phases is significantly different, good burring properties can be obtained. difficult.
  • Patent Document 3 discloses a sensitivity index E value of liquid metal embrittlement determined on the basis of the composition of alloy components for the purpose of stably suppressing liquid metal embrittlement cracking during welding in a zinc-based alloy plated steel material. Has been proposed. However, according to the study by the inventors, it is not always easy to stably avoid the molten metal embrittlement cracking during welding using the molten Zn—Al—Mg alloy-plated steel sheet even according to the method of this document. I understood.
  • the present invention is a molten Zn—Al—Mg-based plating that significantly improves all of burring, molten metal embrittlement cracking resistance and corrosion resistance of welded parts as a steel material suitable for arc welded structural members.
  • An object is to provide a steel sheet.
  • the corrosion resistance of the welded portion can be improved by using a molten Zn—Al—Mg-based plated steel sheet as a welded structural member assembled by arc welding.
  • the requirement of a material steel plate excellent in resistance to molten metal embrittlement cracking can be defined by the “molten metal embrittlement cracking sensitivity index” which is a function of the plate thickness.
  • the burring property is improved by making the metal structure of the material steel plate a structure in which a Ti-containing precipitate having an average particle diameter of 20 nm or less is dispersed in a matrix composed of a ferrite phase. The present invention has been completed based on these findings.
  • Patent Document 3 proposes a sensitivity index E value for liquid metal embrittlement, this document does not disclose that liquid metal embrittlement is affected by the thickness of the material, There is no knowledge of controlling liquid metal embrittlement cracking by controlling the metal structure during weld solidification.
  • a plated steel sheet having a molten Zn—Al—Mg-based plating layer on the surface of the material steel sheet C: 0.010 to 0.100%, Si: 0.01 to 1.00%, Mn: 0.50 to 2.50%, P: 0.005 to 0.050%, S: 0.001 to 0.020%, N: 0.001 to 0.005%, Ti: 0.02 to 0.20%, B: 0.0005 to 0.0100%, Al: 0.005 to 0.100%, Cr: 0 to 1.00%, Mo: 0 to 1.00%, Nb: 0 to 0 .10%, V: 0 to 0.10%, a metal structure having a chemical composition consisting of the balance Fe and inevitable impurities, and a Ti-containing precipitate having an average particle diameter of 20 nm or less dispersed in a matrix composed of a ferrite phase Apply steel plate with material.
  • H1 value C / 0.2 + Si / 5.0 + Mn / 1.3 + 0.4t
  • H2 value C / 0.2 + Si / 5.0 + Mn / 1.3 + Cr / 1.0 + Mo / 1.2 + 0.4t
  • the following expression (3) may be applied instead of the above expression (1) or (2).
  • the material steel plate which has the relationship between the steel component content and the plate thickness t (mm) at which the molten metal embrittlement cracking sensitivity index H3 value represented by the formula (3) is 2.90 or less is targeted.
  • the H3 value in the formula (3) is a molten metal embrittlement cracking sensitivity index that can be applied regardless of whether Cr or Mo is contained.
  • H3 value C / 0.2 + Si / 5.0 + Mn / 1.3 + Cr / 1.0 + Mo / 1.2 + 0.4t ⁇ 0.7 (Cr + Mo) 1/2 (3)
  • the content (mass%) of the element in the raw steel plate is substituted for the element symbol in the formulas (1) to (3).
  • 0 (zero) is substituted for the element symbol.
  • the plating composition of the hot-dip Zn—Al—Mg based steel sheet is, for example, mass%, Al: 3.0 to 22.0%, Mg: 0.05 to 10.0%, Ti: 0 to 0.10% B: 0 to 0.05%, Si: 0 to 2.0%, Fe: 0 to 2.0%, the balance Zn and inevitable impurities.
  • the above-described chemical composition steel material is subjected to a process of sequentially performing hot rolling, pickling, annealing in a continuous hot-dip plating line, and hot-dip Zn—Al—Mg-based plating.
  • hot rolling the molten metal embrittlement crack sensitivity index H1 value represented by the formula (1) is 2.84 or less, and the molten metal embrittlement crack sensitivity index H2 value represented by the formula (2) is 3.
  • a method for producing a hot-dip Zn—Al—Mg-based plated steel sheet for welded structure members in which the annealing temperature in the hot dipping line is 500 to 700 ° C.
  • the plate thickness t is, for example, 1.5 to 6.0 mm, preferably 2.0 to 4.0 mm.
  • molten Zn—Al—Mg-based plated steel sheet for welded structures that has good burring workability, does not cause molten metal embrittlement cracking during arc welding, and has excellent corrosion resistance at the arc weld zone.
  • the perspective view explaining the shape of a boss welding test material Sectional drawing explaining the procedure which produces a boss
  • % in the steel composition and plating composition means “mass%” unless otherwise specified.
  • C is an element that forms a carbide containing Ti and finely precipitates in a ferrite phase as a matrix, thereby ensuring the strength of the steel. If the C content is less than 0.01%, it may be difficult to obtain high strength (for example, 590 MPa or more) suitable for welded structural members such as automobile undercarriage members, and if it exceeds 0.10%, precipitates become coarse. A second phase structure such as bainite or bainite is likely to be formed, which causes a reduction in burring properties.
  • Si is also an element that plays a role of ensuring the strength of steel.
  • it is an element effective for increasing the strength because it is difficult to deteriorate the workability even if the amount added is increased compared to other elements effective for increasing the strength.
  • it is necessary to add 0.01% or more of Si.
  • it exceeds 1.00% an oxide tends to be formed on the surface of the steel sheet during heating in the hot dipping line, and the plating property is hindered.
  • Mn is an element effective for solid solution strengthening. If the Mn content is less than 0.50%, it is difficult to stably obtain a strength of 590 MPa or more, and if it exceeds 2.50%, segregation tends to occur and the burring property may be lowered.
  • P is also an element effective for solid solution strengthening, and its content of 0.005% or more is effective. However, if it exceeds 0.050%, segregation tends to occur and the burring property may be lowered.
  • S easily forms sulfides with Ti and Mn, and these sulfides reduce the burring properties of the steel sheet.
  • S needs to be made 0.020% or less.
  • excessive desulfurization increases the inability to produce, and therefore, the S content is usually 0.001% or more.
  • N 0.001 to 0.005%>
  • N remains as solid solution N in the steel
  • BN is generated, leading to a decrease in the amount of B effective for resistance to molten metal embrittlement cracking.
  • the N content is limited to 0.005% or less, but normally there is no problem even if N of about 0.001% is present.
  • Ti has a high affinity with N and fixes N in the steel as TiN, the addition of Ti is extremely effective in securing an amount of B that increases the resistance to molten metal embrittlement cracking.
  • Ti is necessary for forming fine carbides by bonding with C, and is one of important elements in the present invention. In order to obtain these effects sufficiently, a Ti content of 0.02% or more is necessary. However, if it exceeds 0.20%, workability may be reduced.
  • B is an element that segregates at the grain boundaries to increase the interatomic bonding force and is effective in suppressing molten metal embrittlement cracking. The effect is exhibited when the B content is 0.0005% or more. On the other hand, if the B content exceeds 0.0100%, a boride is generated and the workability is liable to be deteriorated.
  • Al 0.005 to 0.100%> Al is added as a deoxidizer during steelmaking. In order to obtain this effect, 0.005% or more of Al is desired. However, if the Al content exceeds 0.100%, ductility may be reduced.
  • Cr segregates at the austenite grain boundaries in the heat-affected zone during the arc welding cooling process, and exhibits the effect of suppressing molten metal embrittlement cracking. For this reason, it can be made to contain as needed. When Cr is contained, it is more effective to secure a content of 0.10% or more. However, since excessive Cr content causes a decrease in workability, the Cr content is limited to 1.00% or less.
  • Mo like Cr and B, segregates at the austenite grain boundary in the heat-affected zone during the arc welding cooling process and exhibits the effect of suppressing molten metal embrittlement cracking. For this reason, it can be made to contain as needed. When Mo is contained, it is more effective to secure a content of 0.05% or more. However, since Mo is an expensive element, when adding Mo, it is performed within a range of 1.00% or less.
  • Nb prevents the austenite crystal grains from becoming coarse during heating and hot rolling, and is effective for refining ferrite crystal grains after cooling. Moreover, the composite carbide containing C is formed and contributes also to an increase in strength. For this reason, Nb can be contained as needed. When Nb is contained, it is more effective to secure a content of 0.01% or more. However, since excessive Nb content is uneconomical, when Nb is added, it is performed in the range of 0.10% or less.
  • V like Nb, prevents coarsening of the austenite crystal grains during heating and hot rolling, and is effective in refining ferrite crystal grains. Further, similarly to Ti, a composite carbide containing C is formed, which contributes to an increase in strength. For this reason, it can contain as needed. When V is contained, it is more effective to secure a content of 0.05% or more. However, since excessive V content is uneconomical, when adding V, it is performed within a range of 0.10% or less.
  • the H1 value is a molten metal embrittlement cracking sensitivity index applied when Cr and Mo which are selective elements are not contained. A material having a large value increases the maximum crack depth generated by molten metal embrittlement cracking.
  • the H1 value is a function of the steel component content of the material steel plate (plating original plate) and the plate thickness t (mm), and is defined by the equation (1).
  • H1 value C / 0.2 + Si / 5.0 + Mn / 1.3 + 0.4t (1)
  • the content (mass%) of the element in the material steel plate is substituted for the element symbol in the formula (1), and the average thickness of the material steel plate as the plating original plate is 0.1 mm at the location t. Substituted in units (the same applies to equations (2) and (3) described later).
  • Molten metal embrittlement cracking occurs when the base metal surface is in the molten state when tensile stress due to thermal shrinkage occurs in the weld metal and the base metal heat-affected zone during the cooling process of welding. This is a phenomenon that enters the crystal grain boundary and causes cracking. In particular, cracks are likely to occur from the surface of the base material very close to the weld toe.
  • the Zn—Al—Mg based plating metal remains in a molten state until about 400 ° C. For this reason, it is effective in reducing the molten metal embrittlement cracking to reduce the tensile stress when the material temperature is about 400 ° C. or higher in the cooling process after welding.
  • volume expansion due to martensitic transformation or the like of the base material is used as a method for reducing the tensile stress.
  • the steel types targeted in the present invention are those in which the matrix is adjusted to a ferrite single phase as described above. However, since the steel is rapidly cooled during arc welding, martensitic transformation occurs in the heat affected zone.
  • C, Si, and Mn in the formula (1) are elements that have a large effect of shifting the martensite transformation start temperature (Ms point) to the low temperature side among the steel components. The content of these elements is regulated so that martensitic transformation occurs in a region of 400 ° C. or higher where molten metal embrittlement cracking is likely to occur.
  • the volumetric expansion associated with the martensitic transformation is used to relieve the tensile stress that causes molten metal embrittlement cracking.
  • the term of the plate thickness t on the right side of the equation (1) indicates that the cooling rate decreases as the plate thickness increases and the tensile stress increases, so that the requirement for “contribution to the reduction of the Ms point by the steel component” becomes more severe. It is taken into consideration. Conventionally, many attempts have been made to adjust the content of steel components as a technique for improving the resistance to molten metal embrittlement cracking of zinc-based alloy plated steel sheets. However, even if these methods are followed, there are cases where molten metal embrittlement cracks cannot be sufficiently avoided and become problematic.
  • the inventors have taken into consideration that the occurrence of tensile stress varies depending on the thickness of the raw steel plate, and the molten metal embrittlement cracking sensitivity index H1 value and H2 value described later can be applied to various plate thicknesses. To set the H3 value.
  • the material steel sheet is adjusted so that the H1 value is 2.84 or less.
  • the molten metal embrittlement cracking resistance has a maximum crack depth of 0.1 mm or less by a strict evaluation method by a molten metal embrittlement cracking test described later, and has practically excellent characteristics.
  • H2 value is a molten metal embrittlement cracking sensitivity index applied when one or more of Cr and Mo as selective elements are contained, and is defined by the equation (2).
  • a material having a large value increases the maximum crack depth generated by molten metal embrittlement cracking.
  • H2 value C / 0.2 + Si / 5.0 + Mn / 1.3 + Cr / 1.0 + Mo / 1.2 + 0.4t (2)
  • the H2 value is a function of the steel component content of the raw steel plate (plating original plate) and the plate thickness t (mm), similar to the above H1 value. Although it differs from the H1 value in that it has Cr and Mo terms that have the effect of shifting the Ms point to the low temperature side, the technical meaning of the H2 value is common to the H1 value. In the case of a hot-dip Zn-Al-Mg plated steel sheet in which the content of each steel component is in the above-mentioned range and the raw steel sheet containing one or more of Cr and Mo is used as the plating base plate, the H2 value is 3.24 or less.
  • the molten metal embrittlement cracking resistance is a strict evaluation method based on a molten metal embrittlement cracking test described later, and the maximum base metal cracking depth is 0.1 mm or less, and has practically excellent characteristics.
  • H3 value is a molten metal embrittlement cracking sensitivity index that can be applied regardless of the presence or absence of Cr, Mo as selective elements, and is defined by the equation (3).
  • a material having a large value increases the maximum crack depth generated by molten metal embrittlement cracking.
  • H3 value C / 0.2 + Si / 5.0 + Mn / 1.3 + Cr / 1.0 + Mo / 1.2 + 0.4t ⁇ 0.7 (Cr + Mo) 1/2 (3)
  • H3 value is the same as that of the H1 value and H2 value, but if the H3 value is used, the molten metal is embrittled with a certain upper limit value of 2.90 regardless of the presence or absence of the selection elements Cr and Mo.
  • the crackability can be evaluated.
  • H3 value ⁇ 2.90 when containing one or more of Cr and Mo, the specification of H2 value ⁇ 3.24 is actually excellent even though it is out of the specified range in form.
  • a material steel plate exhibiting resistance to molten metal embrittlement cracking can be employed within the specified range with higher accuracy.
  • the H1 value cannot be formally applied, and the definition of H2 ⁇ 3.24 is a case where Cr and Mo are contained in a relatively large amount. Since the upper limit is raised from the H1 value of 2.84 to 3.24 so that it can be safely evaluated, it is actually from H2 ⁇ 3.24 despite exhibiting excellent resistance to molten metal embrittlement cracking. It may be out of form.
  • the H3 value is an improved molten metal embrittlement cracking sensitivity index that allows such a steel sheet to be judged as acceptable without waste.
  • Ti-containing precipitates having an average particle size of 20 nm or less dispersed in the ferrite phase is a ferrite single phase matrix, precipitates containing Ti are precipitated during hot rolling, the strength is increased by the precipitation strengthening action, and a tensile strength of about 600 MPa or more is obtained. Show. In order to improve the burring property, it is effective that the Ti-containing precipitates are finely dispersed in the ferrite matrix. As a result of various studies, it is extremely effective that the average particle size of the Ti-containing precipitates dispersed in the ferrite phase is 20 nm or less in order to achieve both burring properties and high strength of about 600 MPa or higher. It is. Such a metal structure can be obtained by optimizing the coiling temperature in hot rolling and the annealing temperature in the hot dipping line.
  • the above-mentioned hot-dip Zn-Al-Mg-based plated steel sheets with excellent resistance to molten metal embrittlement cracking and burring are hot rolled, pickled, continuously hot-dip plated, for example, on steel materials (continuous cast slabs, etc.) with adjusted components. It can be manufactured by a process of sequentially performing annealing in a line and hot-dip Zn—Al—Mg plating. Hereinafter, the manufacturing conditions in that case will be exemplified.
  • ⁇ Thickness adjustment in hot rolling> In order to control the molten metal embrittlement cracking sensitivity index H1 value, H2 value or H3 value within the above-mentioned range, it is necessary to adjust the component at the time of melting the steel and adjust the thickness at the time of rolling. . Since cold rolling is not performed in the above manufacturing process, the thickness adjustment of the raw steel plate (plating original plate) is basically performed in hot rolling. Specifically, the sheet thickness t (mm) is controlled by hot rolling so as to satisfy the H1 value ⁇ 2.84, the H2 value ⁇ 3.24, or the H3 value ⁇ 2.90.
  • the coiling temperature is set to 550 to 680 ° C. in order to make the metal structure of the raw steel plate a ferrite single phase and to ensure a sufficient amount of precipitation of Ti-containing precipitates having an average particle diameter of 20 nm or less.
  • the coiling temperature is less than 550 ° C.
  • the amount of Ti-containing precipitates is insufficient and the strength is lowered.
  • the coiling temperature exceeds 680 ° C., the precipitates become coarse, resulting in a decrease in strength and a decrease in burring properties.
  • ⁇ Annealing temperature in continuous hot dipping line 550 to 700 ° C> If the annealing temperature is less than 550 ° C., the surface of the steel sheet is not sufficiently reduced and the plateability is lowered. On the other hand, when the annealing temperature exceeds 700 ° C., the precipitates become coarse, resulting in a decrease in strength and a decrease in burring properties.
  • a known hot-dip Zn—Al—Mg-based plating method can be applied.
  • Al in a plating layer has the effect
  • the Al content of hot-dip plating needs to be 3.0% or more, and more preferably 4.0% or more.
  • the Al content exceeds 22.0%, the growth of the Fe—Al alloy layer becomes remarkable at the interface between the plating layer and the material steel plate, resulting in poor plating adhesion.
  • the Al content is preferably 15.0% or less, more preferably 10.0% or less.
  • Mg in the plating layer exhibits an effect of significantly increasing the corrosion resistance of the plated steel sheet by generating a uniform corrosion product on the surface of the plating layer.
  • the Mg content of the hot-dip plating needs to be 0.05% or more, and it is desirable to ensure 2.0% or more.
  • the Mg content exceeds 10.0%, an adverse effect that Mg oxide-based dross is easily generated increases.
  • the Mg content is preferably 5.0% or less, and more preferably 4.0% or less.
  • Si in the plating layer is effective in preventing the black change of the plating layer and maintaining the gloss of the surface.
  • it is effective to set the Si content of the hot dipping to 0.005% or more.
  • Si is added excessively, the amount of dross in the hot dipping bath increases, so when Si is contained in the plating bath, the content range is 2.0% or less.
  • Fe is mixed into the hot dipping bath from the raw steel plate and pot components.
  • Fe in the plating bath is allowed to be contained up to about 2.0%.
  • the plating bath as other elements, for example, one or more of Ca, Sr, Na, rare earth elements, Ni, Co, Sn, Cu, Cr and Mn may be mixed, but their total content Is desirably 1% by mass or less.
  • the hot dip bath composition is almost directly reflected in the hot dip plated steel plate composition.
  • Example 1 Each steel having the composition shown in Table 1 was melted and the slab was heated to 1250 ° C. and then hot-rolled at a finish rolling temperature of 880 ° C. and a winding temperature of 530 to 700 ° C. to obtain a hot-rolled steel strip.
  • the plate thickness of the hot-rolled steel strip and the aforementioned H1 value or H2 value are shown in Table 1, and the coiling temperature is shown in Table 4.
  • the hot-rolled steel strip After pickling the hot-rolled steel strip, it is annealed in a hydrogen-nitrogen mixed gas at 550 to 730 ° C in a continuous hot dipping line, and cooled to about 420 ° C at an average cooling rate of 5 ° C / sec. After that, the steel plate surface is immersed in a molten Zn-Al-Mg plating bath having the following plating bath composition with the surface of the steel plate not exposed to the air, and then pulled up, and the amount of plating adhered per side is measured by gas wiping. A hot-dip Zn—Al—Mg based steel sheet adjusted to about 90 g / m 2 was obtained. The plating bath temperature was about 410 ° C. The annealing temperature of each steel is also shown in Table 4. [Plating bath composition (mass%)] Al: 6.0%, Mg: 3.0%, Ti: 0.002%, B: 0.0005%, Si: 0.01%, Fe: 0.1%, Zn: balance
  • a thin film prepared from the collected hot-dip Zn—Al—Mg-based plated steel sheet sample is observed with a transmission electron microscope (TEM), and the precipitate in a certain region containing 30 or more Ti-containing precipitates.
  • the particle diameter (major axis) was measured, and the average value was taken as the average particle diameter of the Ti-containing precipitate.
  • a 90 ⁇ 90 mm sample was taken from the molten Zn—Al—Mg-based plated steel sheet and used as a base plate (blank material) for the hole expansibility test.
  • a punched hole was made in the center of the base plate using a punch and a die.
  • a punch having a diameter D 0 of 10.0 mm and a die having a clearance of 12% of the plate thickness was selected.
  • a punch having an apex angle of 60 ° was pushed into the punched hole from the opposite side of the burr to enlarge the initial hole. At that time, the moving speed of the punch was set to 10 mm / min.
  • molten metal embrittlement cracking The molten metal embrittlement characteristics were evaluated by conducting a welding test according to the following procedure. A sample of 100 mm ⁇ 75 mm was cut out from the molten Zn—Al—Mg-based plated steel sheet, and this was used as a test piece for evaluating the maximum crack depth due to molten metal embrittlement. In the welding test, “boss welding” was performed to create a boss weld material having the appearance shown in FIG. 1, and the cross section of the weld was observed to examine the occurrence of cracks.
  • a boss (projection) 1 made of a steel bar (SS400 material defined in JIS) having a diameter of 20 mm and a length of 25 mm is vertically set at the center of the plate surface of the test piece 3, and this boss 1 is arc welded to the test piece 3. It joined with.
  • the welding wire is YGW12.
  • the welding bead 6 goes around the boss from the welding start point around the boss, and after passing the welding start point, welding is further advanced to pass the welding start point and the weld bead overlap portion 8 is formed. At that point, welding was finished.
  • the welding conditions were 190 A, 23 V, welding speed 0.3 m / min, shielding gas: Ar-20 vol.% CO 2 , and shielding gas flow rate: 20 L / min.
  • a test piece 3 previously joined with a restraint plate 4 was used.
  • a constrained plate 4 (SS400 material stipulated in JIS) 120 mm ⁇ 95 mm ⁇ 4 mm thick is prepared, and the test piece 3 is placed at the center of the plate surface. It is welded to the restraint plate 4.
  • the boss weld material is manufactured by fixing the joined body (the test piece 3 and the restraint plate 4) on the horizontal test bench 5 with the clamp 2, and performing boss welding in this state.
  • the boss 1 / test piece 3 / restraint plate 4 joined body is cut at a cut surface 9 passing through the central axis of the boss 1 and passing through the overlapping portion 8 of the beads. Observation was performed, the maximum depth of cracks observed in the test piece 3 was measured, and this was taken as the maximum base material crack depth. This crack corresponds to a molten metal embrittlement crack.
  • the maximum base metal cracking depth was evaluated to be 0.1 mm or less as a pass, and those exceeding 0.1 mm as a reject.
  • CCT composite corrosion test
  • the examples of the present invention all have a hole expansion ratio ⁇ of 70% or more and a maximum base material crack depth of 0.1 mm or less, and have both excellent burring properties and resistance to molten metal embrittlement cracking. Further, it has a high strength with a tensile strength TS of 590 MPa or more and good corrosion resistance at the welded portion, and is suitable as a material for automobile underbody members.
  • No. 22 has a large amount of Ti and thus has a large precipitate particle size and a low hole expanding property.
  • No. 23 has a low C content, so a sufficient tensile strength is not obtained.
  • No. 24 has a low amount of P because of its large P content.
  • No. 25 has a large maximum base metal cracking depth because the amount of B is low.
  • Nos. 26, 27, 29, 31, and 32 have a high maximum base metal cracking depth because the H1 value or the H2 value is high. Since No. 28 has a high C content and H1 value, and No. 30 has a high Mn content and H1 value, both have poor hole expansibility and a large maximum base material crack depth.
  • No. 33 has a low tempering temperature in hot rolling, so that a bainite phase is generated and the hole expandability is low.
  • No. 34 has a high coiling temperature in hot rolling, and
  • No. 35 has a high annealing temperature in a continuous hot dipping line. Is low.
  • FIG. 5 shows the relationship between the molten metal embrittlement cracking sensitivity index H1 and the maximum base metal cracking depth.
  • FIG. 6 shows the relationship between the molten metal embrittlement cracking sensitivity index H2 and the maximum base metal cracking depth.
  • Example 2 Each steel having the composition shown in Table 5 was melted, and a molten Zn—Al—Mg based steel sheet was obtained under the same production conditions as in Example 1.
  • the plate thickness of the hot-rolled steel strip and the aforementioned H3 are shown in Table 5, and the coiling temperature is shown in Table 6.
  • the examples of the present invention all have a hole expansion ratio ⁇ of 70% or more and a maximum base material crack depth of 0.1 mm or less, and have both excellent burring properties and resistance to molten metal embrittlement cracking. Further, it has a high strength with a tensile strength TS of 590 MPa or more and good corrosion resistance at the welded portion, and is suitable for materials for various welded structural members including automobile underbody members.
  • No. 72 has a large amount of Ti, so the particle size of the precipitate is large and the hole expandability is low.
  • No. 73 does not have sufficient tensile strength because of its low C content.
  • No. 74 has a low amount of P because of its large P content.
  • No. 75 has a large maximum base metal cracking depth because the amount of B is low.
  • Nos. 76, 77, 79, 81 and 82 have a high maximum base material cracking depth because of their high H3 values.
  • No. 78 has a high C content and a high H3 value
  • No. 80 has a high Mn content and a high H3 value, both of which have poor hole expansibility and a large maximum base metal crack depth.
  • No. 83 has a low winding temperature in hot rolling, so a bainite phase is generated and the hole expanding property is low.
  • No. 84 has a high coiling temperature in hot rolling, and
  • No. 85 has a high annealing temperature in a continuous hot dipping line. Is low.
  • FIG. 7 shows the relationship between the molten metal embrittlement cracking sensitivity index H3 and the maximum base metal cracking depth. It can be seen that the susceptibility to molten metal embrittlement cracking can be accurately evaluated by satisfying H3 ⁇ 2.90 regardless of the presence or absence of the selection elements Cr and Mo.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

 本発明は、アーク溶接構造部材に好適な鋼材として、バーリング性、耐溶融金属脆化割れ性および溶接部の耐食性の全てを顕著に向上させた溶接構造部材用溶融Zn-Al-Mg系めっき鋼板を提供するものである。 本発明の溶接構造部材用溶融Zn-Al-Mg系めっき鋼板は、素材鋼板の表面に溶融Zn-Al-Mg系めっき層を有し、素材鋼板が所定の化学組成を有し、フェライト相からなるマトリクス中に平均粒子径20nm以下のTi含有析出物が分散した金属組織を有し、下記(3)式で表される溶融金属脆化割れ感度指数H3値が2.90以下となる鋼成分含有量と板厚t(mm)の関係を有するものである。 H3値=C/0.2+Si/5.0+Mn/1.3+Cr/1.0+Mo/1.2+0.4t-0.7(Cr+Mo)1/2 …(3)

Description

溶融Zn-Al-Mg系めっき鋼板および製造方法
 本発明は、サスペンションアームやサスペンションメンバー等の自動車足回り部材をはじめとする各種アーク溶接構造部材に適した、耐溶融金属脆化割れ性に優れる溶融Zn-Al-Mg系めっき鋼板、およびその製造方法に関する。
 自動車のサスペンションアームやサスペンションメンバーなどの足回り部材は、従来、熱延鋼板をプレス成形等により所定の形状に成形し、それらをアーク溶接法で接合した後、カチオン電着塗装を施して使用に供される。しかし、溶接ビード部およびビード止端部近傍部では、アーク溶接時の溶接入熱により鋼板表面にFeスケールが生成する。走行する自動車の振動により、そのスケールが疲労によってカチオン電着塗膜とともに剥離してしまうことがあり、その場合には、その部位から腐食が進行して板厚減少が起こることがある。このため、足回り部材では腐食による板厚減少量を見込んで強度設計する必要があり、従来、衝突安全性の観点から、引張強さ340~440MPa級の板厚3~4mmの熱延鋼板を使用することが多かった。
 近年、更なる衝突安全性の向上と軽量化が望まれるようになり、足回り部材の鋼板には590MPa以上の高強度鋼板を使用するニーズが高まっている。また、長寿命化のための防錆性能向上も求められている。さらに、足回り部材には前述の高強度、耐食性の他に、バーリング性(穴広げ性)も要求されている。バーリング性は打抜き加工等により形成された穴がその後の成形過程において亀裂なく成形可能であることを示す特性である。
 特許文献1には、バーリング性に優れた高強度合金化溶融亜鉛めっき鋼板が開示されている。しかしながら、亜鉛系めっき鋼板にアーク溶接を施すと、特に高温に曝される溶接ビード止端部の近くではめっき層が蒸発して消失し、その部分にFeスケールが生成してしまう。このためFeスケールごと塗膜が剥離しやすいという従前の熱延鋼板の欠点は、亜鉛系めっき鋼板を用いても改善されない。
 特許文献2には、一般的な溶融亜鉛めっき鋼板よりも耐食性の高い溶融Zn-Al-Mg系合金めっき鋼板が開示されている。この例では、金属組織が、主相のフェライトと、パーライト、ベイナイト、マルテンサイトの1種以上からなる2相組織であり、それら2相間の硬度差が著しく異なるので良好なバーリング性は得ることは難しい。
 特許文献3には、亜鉛系合金めっき鋼材において溶接時の液体金属脆化割れを安定して抑制することを目的として、合金成分の組成に基づいて決定される液体金属脆化の感度指数E値が提案されている。しかし発明者らの検討によれば、この文献の手法に従っても、溶融Zn-Al-Mg系合金めっき鋼板を用いた溶接時の溶融金属脆化割れを安定して回避することは必ずしも容易でないことがわかった。
特開平5-263145号公報 特開2009-228080号公報 特開2006-249521号公報
 上述のように、アーク溶接で組み立てられる自動車足回り部材等の溶接構造部材に高強度合金化溶融亜鉛めっき鋼板を用いると溶接部の耐食性が不十分であるため薄肉化の設計が困難である。また、素材鋼板の金属組織が2相組織である場合にはバーリング性が良好でない。さらに、溶融Zn-Al-Mg系めっき鋼板の耐溶融金属脆化割れ性に関しては更なる改善が望まれる。
 本発明はこれらの問題に鑑み、アーク溶接構造部材に好適な鋼材として、バーリング性、耐溶融金属脆化割れ性および溶接部の耐食性の全てを顕著に向上させた溶融Zn-Al-Mg系めっき鋼板を提供することを目的とする。
 発明者らは詳細な研究の結果、以下の知見を得た。
(i)アーク溶接で組み立てられる溶接構造部材に溶融Zn-Al-Mg系めっき鋼板を用いることで溶接部の耐食性を向上させることができる。
(ii)溶融Zn-Al-Mg系めっき鋼板で問題となりやすいアーク溶接時の溶融金属脆化割れを抑止するためには、めっき原板である素材鋼板の成分設計に加えて当該素材鋼板の板厚の影響を考慮すること、および溶接施工時の冷却過程でマルテンサイト変態等による体積膨張をうまく利用して冷却時の熱収縮に起因する引張応力を緩和することが極めて有効であり、化学組成と板厚の関数である「溶融金属脆化割れ感度指数」によって耐溶融金属脆化割れに優れた素材鋼板の要件を規定することができる。
(iii)バーリング性は、素材鋼板の金属組織を、フェライト相からなるマトリクス中に平均粒子径20nm以下のTi含有析出物が分散した組織とすることによって改善される。
 本発明はこれらの知見に基づいて完成したものである。なお、上記特許文献3には液体金属脆化の感度指数E値が提案されているが、この文献には液体金属脆化が素材の板厚の影響を受けることは開示されておらず、また溶接凝固時の金属組織を制御することにより液体金属脆化割れを抑制する知見も示されていない。
 本発明では、素材鋼板の表面に溶融Zn-Al-Mg系めっき層を有するめっき鋼板において、質量%で、C:0.010~0.100%、Si:0.01~1.00%、Mn:0.50~2.50%、P:0.005~0.050%、S:0.001~0.020%、N:0.001~0.005%、Ti:0.02~0.20%、B:0.0005~0.0100%、Al:0.005~0.100%、Cr:0~1.00%、Mo:0~1.00%、Nb:0~0.10%、V:0~0.10%、残部Feおよび不可避的不純物からなる化学組成を有し、かつフェライト相からなるマトリクス中に平均粒子径20nm以下のTi含有析出物が分散した金属組織を有する素材鋼板を適用する。
 選択元素であるCr、Moを含有しない素材鋼板としては、下記(1)式で表される溶融金属脆化割れ感度指数H1値が2.84以下となる鋼成分含有量と板厚t(mm)の関係を有するものが対象となる。
 H1値=C/0.2+Si/5.0+Mn/1.3+0.4t …(1)
 選択元素であるCr、Moの1種以上を含有する素材鋼板としては、下記(2)式で表される溶融金属脆化割れ感度指数H2値が3.24以下となる鋼成分含有量と板厚t(mm)の関係を有するものが対象となる。
 H2値=C/0.2+Si/5.0+Mn/1.3+Cr/1.0+Mo/1.2+0.4t …(2)
 また、上記(1)式や(2)式に代えて下記(3)式を適用してもよい。その場合、(3)式で表される溶融金属脆化割れ感度指数H3値が2.90以下となる鋼成分含有量と板厚t(mm)の関係を有する素材鋼板が対象となる。(3)式のH3値はCr、Mo含有の有無にかかわらず適用することかできる溶融金属脆化割れ感度指数である。
 H3値=C/0.2+Si/5.0+Mn/1.3+Cr/1.0+Mo/1.2+0.4t-0.7(Cr+Mo)1/2 …(3)
 なお、(1)~(3)式の元素記号の箇所には素材鋼板中における当該元素の含有量(質量%)が代入される。また、(2)式あるいは(3)式の適用に際しCr、Moのうち無添加の元素がある場合は、その元素記号の箇所に0(ゼロ)が代入される。
 前記溶融Zn-Al-Mg系めっき鋼板のめっき組成は、例えば質量%で、Al:3.0~22.0%、Mg:0.05~10.0%、Ti:0~0.10%、B:0~0.05%、Si:0~2.0%、Fe:0~2.0%、残部Znおよび不可避的不純物からなる。
 上記の溶融Zn-Al-Mg系めっき鋼板の製造方法として、上記化学組成鋼材にの熱間圧延、酸洗、連続溶融めっきラインでの焼鈍および溶融Zn-Al-Mg系めっきを順次行う工程により、素材鋼板の表面に溶融Zn-Al-Mg系めっき層を有するめっき鋼板を製造するに際し、
 熱間圧延にて前記(1)式で表される溶融金属脆化割れ感度指数H1値が2.84以下、前記(2)式で表される溶融金属脆化割れ感度指数H2値が3.24以下、または前記(3)式で表される溶融金属脆化割れ感度指数H3値が2.90以下となる板厚t(mm)に圧延し、巻取温度を550~680℃とし、連続溶融めっきラインでの焼鈍温度を500~700℃とする、溶接構造部材用溶融Zn-Al-Mg系めっき鋼板の製造方法が提供される。ここで、上記(1)~(3)式のいずれを適用するかについては上述したとおりである。板厚tは例えば1.5~6.0mm、好ましくは2.0~4.0mmである。
 本発明によれば、バーリング加工性が良好で、アーク溶接時に溶融金属脆化割れが起こらず、アーク溶接部の耐食性に優れる溶接構造用溶融Zn-Al-Mg系めっき鋼板が提供できる。
ボス溶接試験材の形状を説明する斜視図。 ボス溶接試験材を作製する手順を説明する断面図。 重ねすみ肉溶接継手の模式図。 複合サイクル腐食試験の条件。 溶融金属脆化割れ感度指数H1と最大母材割れ深さの関係を示すグラフ。 溶融金属脆化割れ感度指数H2と最大母材割れ深さの関係を示すグラフ。 溶融金属脆化割れ感度指数H3と最大母材割れ深さの関係を示すグラフ。
 以下、鋼組成およびめっき組成における「%」は特に断らない限り「質量%」を意味する。
〔素材鋼板の成分〕
<C:0.01~0.10%>
 Cは、Tiを含む炭化物を形成し、マトリクスであるフェライト相中に微細析出することで、鋼の強度を確保する役割を担う元素である。C含有量が0.01%未満では自動車足回り部材等の溶接構造部材に適した高強度(例えば590MPa以上)を得ることが難しい場合があり、0.10%を超えると析出物の粗大化やベイナイト等の第2相組織が形成されやすくバーリング性の低下要因となる。
<Si:0.01~1.00%>
Siも、鋼の強度を確保する役割を担う元素である。しかも、高強度化に有効な他の元素に比べ添加量を増やしても加工性を劣化させにくいため、高強度化にとって有効な元素である。これらの作用を十分得るためには0.01%以上のSi添加が必要である。ただし1.00%を超えると溶融めっきラインでの加熱時に鋼板表面に酸化物が形成しやすくなり、めっき性を阻害する。
<Mn:0.50~2.50%>
 Mnは、固溶強化に有効な元素である。Mn含有量が0.50%未満では590MPa以上の強度を安定して得るのが難しく、2.50%を超えると偏析が生じやすくなりバーリング性が低下することがある。
<P:0.005~0.050%>
 Pも、固溶強化に有効な元素であり、0.005%以上の含有が効果的である。ただし0.050%を超えると偏析が生じやすくなりバーリング性が低下することがある。
<S:0.001~0.020%>
 Sは、TiやMnと硫化物を形成しやく、これらの硫化物は鋼板のバーリング性を低下させる。種々検討の結果、Sは0.020%以下とする必要がある。ただし、過剰な脱硫は製造不可を増大させるため、通常は0.001%以上のS含有量とすればよい。
<N:0.001~0.005%>
 Nは、鋼中に固溶Nとして残存するとBNを生成し、耐溶融金属脆化割れ性に有効なB量の減少につながる。検討の結果、N含有量は0.005%以下に制限されるが、通常は0.001%程度のNが存在していても問題ない。
<Ti:0.02~0.20%>
 Tiは、Nとの親和性が高く、鋼中のNをTiNとして固定するため、Tiを添加することは耐溶融金属脆化割れ性を高めるB量を確保する上で極めて有効である。また、TiはCと結合して微細な炭化物を形成させるのに必要であり、本発明における重要な元素の一つである。これらの作用を十分得るためには0.02%以上のTi含有が必要である。ただし、0.20%を超えると加工性の低下を招く場合がある。
<B:0.0005~0.0100%>
 Bは、結晶粒界に偏析して原子間結合力を高め、溶融金属脆化割れの抑制に有効な元素である。その作用は0.0005%以上のB含有によって発揮される。一方、B含有量が0.0100%を超えるとホウ化物を生成し加工性の劣化を招きやすくなる。
<Al:0.005~0.100%>
Alは、製鋼時に脱酸材として添加される。その作用を得るためには0.005%以上のAl含有が望まれる。ただしAl含有量が0.100%を超えると延性の低下を招く恐れがある。
<Cr:0~1.00%>
 Crは、Bと同様に、アーク溶接の冷却過程で熱影響部のオーステナイト粒界に偏析して溶融金属脆化割れを抑制する作用を呈する。このため必要に応じて含有させることができる。Crを含有させる場合は0.10%以上の含有量を確保することがより効果的である。ただし、過剰のCr含有は加工性を低下させる要因となるのでCr含有量は1.00%以下に制限される。
<Mo:0~1.00%>
 Moは、Cr、Bと同様に、アーク溶接の冷却過程で熱影響部のオーステナイト粒界に偏析して溶融金属脆化割れを抑制する作用を呈する。このため必要に応じて含有させることができる。Moを含有させる場合は0.05%以上の含有量を確保することがより効果的である。ただし、Moは高価な元素であるためMoを添加する場合は1.00%以下の範囲で行う。
<Nb:0~0.10%>
 Nbは、加熱および熱延中のオーステナイト結晶粒の粗大化を防止し、冷却後のフェライト結晶粒の微細化に有効である。また、Cを含む複合炭化物を形成し強度上昇にも寄与する。このためNbは必要に応じて含有することができる。Nbを含有させる場合は0.01%以上の含有量を確保することがより効果的である。ただし、過剰のNb含有は不経済であるためNbを添加する場合は0.10%以下の範囲で行う。
<V:0~0.10%>
 Vは、Nbと同様に加熱および熱延中のオーステナイト結晶粒の粗大化を防止し、フェライト結晶粒の微細化に有効となる。また、Tiと同様にCを含む複合炭化物を形成し強度上昇にも寄与する。このため必要に応じて含有することができる。Vを含有させる場合は0.05%以上の含有量を確保することがより効果的である。ただし、過剰のV含有は不経済であるためVを添加する場合は0.10%以下の範囲で行う。
〔H1値〕
 H1値は、選択元素であるCr、Moを含有しない場合に適用される溶融金属脆化割れ感度指数である。この値が大きい材料は溶融金属脆化割れにより発生する最大割れ深さが大きくなる。H1値は素材鋼板(めっき原板)の鋼成分含有量と板厚t(mm)の関数であり、(1)式によって定義される。
 H1値=C/0.2+Si/5.0+Mn/1.3+0.4t …(1)
 ここで(1)式の元素記号の箇所には素材鋼板中における当該元素の含有量(質量%)が代入され、tの箇所にはめっき原板である素材鋼板の平均板厚が0.1mmの単位で代入される(後述(2)式および(3)式において同様)。
 溶融金属脆化割れは、溶接の冷却過程で溶接金属および母材熱影響部に熱収縮に起因する引張応力が生じているときに、その母材表面に溶融状態で存在するめっき金属が母材の結晶粒界に侵入して割れを引き起こす現象である。特に溶接止端部に極めて近い母材表面から割れが発生しやすい。Zn-Al-Mg系めっき金属は約400℃程度になるまでは溶融状態を保っている。そのため溶接後の冷却過程で材料温度が約400℃以上であるときの引張応力をできるだけ緩和することが溶融金属脆化割れを抑制するうえで有効となる。
 本発明では、その引張応力の緩和手法として、母材(素材鋼板)のマルテンサイト変態等による体積膨張を利用する。本発明で対象とする鋼種は上述のようにマトリクスがフェライト単相に調整されたものであるが、アーク溶接時には急冷されるので熱影響部でマルテンサイト変態が起きる。(1)式のC、Si、Mnは鋼成分の中でもマルテンサイト変態開始温度(Ms点)を低温側に移行させる作用が大きい元素である。それらの元素の含有量を規制してマルテンサイト変態が溶融金属脆化割れの生じやすい400℃以上の領域で起きるようにする。マルテンサイト変態に伴う体積膨張を利用して溶融金属脆化割れの原因となる引張応力を緩和するのである。
 (1)式右辺の板厚tの項は、板厚が大きくなるほど冷却速度が低下することや引張応力が増大するので「鋼成分によるMs点低下への寄与」に対する要求が一層厳しくなることを考慮したものである。従来、亜鉛系合金めっき鋼板の耐溶融金属脆化割れ性を改善する手法として鋼成分の含有量を調整する試みは多くなされてきた。しかし、それらの手法に従った場合でも溶融金属脆化割れを十分に回避しきれず問題となる場合があった。発明者らは詳細な検討の結果、素材鋼板の板厚によって引張応力の発生状況が変わることを考慮することによって種々の板厚に対応できる溶融金属脆化割れ感度指数H1値および後述のH2値、H3値を設定するに至った。
 各鋼成分の含有量が前述の範囲にありCr、Moを含有しない素材鋼板をめっき原板とする溶融Zn-Al-Mg系めっき鋼板の場合、H1値が2.84以下となるように素材鋼板の鋼成分含有量と板厚の関係を調整することによって、アーク溶接における溶融金属脆化割れを顕著に抑制することができる。その耐溶融金属脆化割れ性は後述の溶融金属脆化割れ試験による厳しい評価方法で最大割れ深さが0.1mm以下となるものであり、実用上優れた特性を有する。
〔H2値〕
 H2値は、選択元素であるCr、Moの1種以上を含有する場合に適用される溶融金属脆化割れ感度指数であり、(2)式により定義される。この値が大きい材料は溶融金属脆化割れにより発生する最大割れ深さが大きくなる。
 H2値=C/0.2+Si/5.0+Mn/1.3+Cr/1.0+Mo/1.2+0.4t …(2)
 H2値は上述のH1値と同様、素材鋼板(めっき原板)の鋼成分含有量と板厚t(mm)の関数である。Ms点を低温側に移行させる作用があるCr、Moの項を有する点でH1値と相違するが、H2値の技術的意味はH1値と共通である。各鋼成分の含有量が前述の範囲にありCr、Moの1種以上を含有する素材鋼板をめっき原板とする溶融Zn-Al-Mg系めっき鋼板の場合、H2値が3.24以下となるように素材鋼板の化学組成と板厚の関係を調整することによって、アーク溶接における溶融金属脆化割れを顕著に抑制することができる。その耐溶融金属脆化割れ性は後述の溶融金属脆化割れ試験による厳しい評価方法で最大母材割れ深さが0.1mm以下となるものであり、実用上優れた特性を有する。
〔H3値〕
 H3値は、選択元素であるCr、Moの含有の有無にかかわらず適用可能な溶融金属脆化割れ感度指数であり、(3)式により定義される。この値が大きい材料は溶融金属脆化割れにより発生する最大割れ深さが大きくなる。
 H3値=C/0.2+Si/5.0+Mn/1.3+Cr/1.0+Mo/1.2+0.4t-0.7(Cr+Mo)1/2 …(3)
 H3値の技術的意味はH1値、H2値と共通するが、H3値を使用すれば選択元素であるCr、Moの含有の有無にかかわらず一定の上限値2.90によって耐溶融金属脆化割れ性を評価することができる。H3値≦2.90の規定に従えば、Cr、Moの1種以上を含有する場合、H2値≦3.24の規定では形式的に規定範囲外となるにもかかわらず実際には優れた耐溶融金属脆化割れ性を呈する素材鋼板を、より精度良く規定範囲内として採用することができる。例えば、Cr、Moの1種以上を微量に含有する場合、H1値は形式的に適用することができず、またH2≦3.24の規定はCr、Moが比較的多量に含まれる場合を安全に評価できるように上限値をH1値の2.84から3.24に引き上げている関係で、実際には優れた耐溶融金属脆化割れ性を呈するにもかかわらずH2≦3.24から形式的に外れてしまうことがある。H3値は、そのような素材鋼板もできるだけ無駄なく合格と判定することを可能にするための、改善された溶融金属脆化割れ感度指数である。
〔金属組織〕
<マトリクス>
 バーリング性を向上させるため、素材鋼板の金属組織はマトリクス(鋼素地)が延性の良好なフェライト単相であることが有効である。
<フェライト相中に分散している平均粒子径20nm以下のTi含有析出物>
 本発明に従う鋼板の金属組織はマトリクスがフェライト単相であるが、Tiを含む析出物が熱間圧延時に析出し、その析出強化作用によって強度が上昇しており、およそ600MPa程度以上の引張強度を示す。また、バーリング性の向上には、このTi含有析出物がフェライトのマトリクス中に微細に分散していることが有効である。種々検討の結果、バーリング性と引張強さ約600MPaレベル以上の高強度を両立させるためには、フェライト相中に分散しているTi含有析出物の平均粒子径が20nm以下であることが極めて有効である。このような金属組織は熱間圧延の巻取温度および溶融めっきラインでの焼鈍温度を適正化することによって得られる。
〔製造方法〕
 上記の耐溶融金属脆化割れ性とバーリング性に優れた溶融Zn-Al-Mg系めっき鋼板は、例えば成分調整された鋼材(連続鋳造スラブなど)に、熱間圧延、酸洗、連続溶融めっきラインでの焼鈍および溶融Zn-Al-Mg系めっきを順次行う工程により製造することができる。以下、その場合の製造条件を例示する。
<熱間圧延での板厚調整>
 溶融金属脆化割れ感度指数H1値、H2値またはH3値を上述の範囲にコントロールするためには、鋼を溶製する時点での成分調整と、圧延する時点での板厚調整が必要である。上記の製造工程では冷間圧延を経ないので、素材鋼板(めっき原板)の板厚調整は基本的に熱間圧延において行う。具体的にはH1値≦2.84、H2値≦3.24またはH3値≦2.90を満たすように熱間圧延で板厚t(mm)をコントロールする。
<熱間圧延での巻取温度:550~680℃>
 素材鋼板の金属組織をフェライト単相とするため、および平均粒子径20nm以下のTi含有析出物の析出量を十分に確保するため、巻取温度は550~680℃とする。巻取温度が550℃未満では、Ti含有析出物の析出量が不十分となり強度が低下する。また、ベイナイト等の第2相組織が生成しやすくなりバーリング性を低下させる要因となる。一方、巻取温度が680℃を超えると析出物の粗大化が起こり、強度低下およびバーリング性低下を招く。
<連続溶融めっきラインでの焼鈍温度:550~700℃>
 焼鈍温度が550℃未満では鋼板表面が十分に還元せずめっき性が低下する。一方、焼鈍温度が700℃を超えると析出物の粗大化が起こり、強度低下およびバーリング性低下を招く。
<溶融Zn-Al-Mg系めっき>
 本発明では、公知の溶融Zn-Al-Mg系めっきの手法を適用することができる。
 めっき層中のAlは、めっき鋼板の耐食性を向上させる作用を有する。また、めっき浴中にAlを含有させることでMg酸化物系ドロス発生を抑制する作用もある。これらの作用を十分に得るには溶融めっきのAl含有量を3.0%以上とする必要があり、4.0%以上とすることがより好ましい。一方、Al含有量が22.0%を超えると、めっき層と素材鋼板との界面でFe-Al合金層の成長が著しくなり、めっき密着性が悪くなる。優れためっき密着性を確保するには15.0%以下のAl含有量とすることが好ましく、10.0%以下とすることがより好ましい。
 めっき層中のMgは、めっき層表面に均一な腐食生成物を生成させて当該めっき鋼板の耐食性を著しく高める作用を呈する。その作用を十分に発揮させるには溶融めっきのMg含有量を0.05%以上とする必要があり、2.0%以上を確保することが望ましい。一方、Mg含有量が10.0%を超えるとMg酸化物系ドロスが発生し易くなる弊害が大きくなる。より高品質のめっき層を得るには5.0%以下のMg含有量とすることが好ましく、4.0%以下とすることがより好ましい。
 溶融めっき浴中にTi、Bを含有させると、溶融Zn-Al-Mg系めっき鋼板において斑点状の外観不良を与えるZn11Mg2相の生成・成長が抑制される。Ti、Bはそれぞれ単独で含有させてもZn11Mg2相の抑制効果は生じるが、製造条件の自由度を大幅に緩和させる上で、TiおよびBを複合で含有させることが望ましい。これらの効果を十分に得るには、溶融めっきのTi含有量は0.0005%以上、B含有量は0.0001%以上とすることが効果的である。ただし、Ti含有量が多くなりすぎると、めっき層中にTi-Al系の析出物が生成し、めっき層に「ブツ」と呼ばれる凹凸が生じて外観を損なうようになる。このため、めっき浴にTiを添加する場合は0.10%以下の含有量範囲とする必要があり、0.01%以下とすることがより好ましい。また、B含有量が多くなりすぎると、めっき層中にAl-B系あるいはTi-B系の析出物が生成・粗大化し、やはり「ブツ」と呼ばれる凹凸が生じて外観を損なうようになる。このため、めっき浴にBを添加する場合は0.05%以下の含有量範囲とする必要があり、0.005%以下とすることがより好ましい。
 溶融めっき浴中にSiを含有させると前記Fe-Al合金層の成長が抑制され、溶融Zn-Al-Mg系めっき鋼板の加工性が向上する。また、めっき層中のSiはめっき層の黒変化を防止し、表面の光沢性を維持する上でも有効である。このようなSiの作用を十分に引き出すためには溶融めっきのSi含有量を0.005%以上とすることが効果的である。ただし、過剰にSiを添加すると溶融めっき浴中のドロス量が多くなるので、めっき浴にSiを含有させる場合は2.0%以下の含有量範囲とする。
 溶融めっき浴中には素材鋼板やポット構成部材などからある程度のFeが混入してくる。Zn-Al-Mg系めっきにおいて、めっき浴中のFeは2.0%程度まで含有が許容される。めっき浴中には、その他の元素として例えば、Ca、Sr、Na、希土類元素、Ni、Co、Sn、Cu、Cr、Mnの1種以上が混入しても構わないが、それらの合計含有量は1質量%以下であることが望ましい。なお、溶融めっき浴組成はほぼそのまま溶融めっき鋼板のめっき層組成に反映される。
《実施例1》
 表1に組成を示す各鋼を溶製し、そのスラブを1250℃に加熱した後、仕上圧延温度880℃、巻取温度530~700℃で熱間圧延し、熱延鋼帯を得た。熱延鋼帯の板厚と、前述のH1値またはH2値は表1中に、巻取温度は表4中にそれぞれ示してある。
Figure JPOXMLDOC01-appb-T000001
 熱延鋼帯を酸洗した後、連続溶融めっきラインにて、水素-窒素混合ガス中550~730℃で焼鈍行い、約420℃まで平均冷却速度5℃/secで冷却して素材鋼板(めっき原板)とし、その後、鋼板表面が大気に触れない状態のまま下記のめっき浴組成を有する溶融Zn-Al-Mg系めっき浴中に浸漬した後引き上げ、ガスワイピング法にてめっき付着量を片面あたり約90g/m2に調整した溶融Zn-Al-Mg系めっき鋼板を得た。めっき浴温は約410℃であった。各鋼の焼鈍温度も、表4に併せて示してある。
〔めっき浴組成(質量%)〕
 Al:6.0%、Mg:3.0%、Ti:0.002%、B:0.0005%、Si:0.01%、Fe:0.1%、Zn:残部
〔析出物の平均粒子径〕
 採取した溶融Zn-Al-Mg系めっき鋼板サンプルから作製した薄膜を透過型電子顕微鏡(TEM)により観察し、Ti含有析出物が30個以上の析出物が含まれる一定の領域内の当該析出物の粒子径(長径)を測定し、その平均値をTi含有析出物の平均粒子径とした。
〔引張特性〕
 試験片の長手方向が素材鋼板の圧延方向に対し直角になるように採取したJIS5号試験片を用い、JISZ2241に準拠して引張強さTS、全伸びT.ELを求めた。
〔穴広げ性〕
 溶融Zn-Al-Mg系めっき鋼板から90×90mmのサンプルを採取し、これを穴広げ性試験のための素板(ブランク材)とした。この素板の中央にポンチとダイスを用いて打抜き穴を開けた。ポンチの直径D0は10.0mm、ダイスはクリアランスが板厚の12%となるものを選んだ。打ち抜きままの穴に、バリの反対側から頂角60°のポンチを押し込み、初期穴を拡大した。その際、ポンチの移動速度は10mm/minとした。鋼板の穴が拡大して板厚方向に割れが貫通した時点でポンチを止め、穴の内径Dbを測定した。そして、(Db-D0)/D0×100(%)で定義される穴広げ率λを求めた。λが60%以上であれば溶接構造部材の多くの用途において問題のないバーリング性を有すると評価できるが、ここではより厳しい基準としてλが70%以上であるものを合格と判定した。
〔溶融金属脆化割れ性の評価〕
 溶融金属脆化特性は、次の手順により溶接試験を行って評価した。
 溶融Zn-Al-Mg系めっき鋼板から100mm×75mmのサンプルを切り出し、これを溶融金属脆化に起因する最大割れ深さを評価するための試験片とした。溶接試験は、図1に示す外観のボス溶接材を作成する「ボス溶接」を行い、その溶接部断面を観察して割れの発生状況を調べた。すなわち、試験片3の板面中央部に直径20mm×長さ25mmの棒鋼(JISに規定されるSS400材)からなるボス(突起)1を垂直に立て、このボス1を試験片3にアーク溶接にて接合した。溶接ワイヤーはYGW12を用い、溶接開始点から溶接ビード6がボスの周囲を1周し、溶接始点を過ぎた後もさらに少し溶接を進めて溶接開始点を過ぎて溶接ビードの重なり部分8ができたところで溶接を終了とした。溶接条件は、190A,23V,溶接速度0.3m/min、シールドガス:Ar-20vol.%CO2、シールドガス流量:20L/minとした。
 なお、溶接に際しては、図2に示すように、あらかじめ試験片3を拘束板4と接合しておいたものを用いた。接合体は、まず120mm×95mm×板厚4mmの拘束板4(JISに規定されるSS400材)を用意し、この板面中央部に試験片3を置き、その後、試験片3の全周を拘束板4に溶接したものである。上記のボス溶接材の作製は、この接合体(試験片3と拘束板4)を水平な実験台5の上にクランプ2にて固定し、この状態でボス溶接を行ったものである。
 ボス溶接後、ボス1の中心軸を通り、かつ前記のビードの重なり合う部分8を通る切断面9で、ボス1/試験片3/拘束板4の接合体を切断し、その切断面9について顕微鏡観察を行い、試験片3に観察された割れの最大深さを測定し、これを最大母材割れ深さとした。この割れは溶融金属脆化割れに該当するものである。最大母材割れ深さが0.1mm以下を合格、0.1mmを超えるものを不合格として評価した。
〔溶接部の耐食性評価〕
 溶融Zn-Al-Mg系めっき鋼板から100mm×100mmのサンプルを採取し、同種のサンプル2枚を下記に示す溶接条件で、図3に模式的に示すように重ねすみ肉アーク溶接にて接合した。その後、表2に示す条件で表面調整とリン酸塩処理を施し、表3に示す条件でカチオン電着塗装を施した。カチオン電着塗装したサンプルに、振動による疲労をシミュレートするために溶接方向と垂直方向に応力50N/mm2、試験回数1×105回の試験条件で疲労試験を施した後、図4に示す条件の複合腐食試験(CCT)に供し、CCT250サイクル後の赤錆発生有無を調査した。溶接部に赤錆の発生が認められないものを○(良好)、それ以外を×(不良)と判定した。
 溶接条件は以下のとおりである。
・溶接電流:150A
・アーク電圧:20V
・溶接速度:0.4m/min
・溶接ワイヤー:YGW14
・シールドガス:Ar-20vol.%CO2、流量20L/min
 以上の試験結果を表4に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本発明例のものは、いずれも穴広げ率λが70%以上、最大母材割れ深さが0.1mm以下であり、優れたバーリング性と耐溶融金属脆化割れ性を兼ね備えている。また、引張強さTSが590MPa以上の高強度と溶接部での良好な耐食性を有し、自動車足回り部材用の材料に適している。
 これに対し、No.22はTi量が多いため析出物粒子径が大きく、穴広げ性が低い。No.23はC量が低いため十分な引張強さが得られていない。No.24はP量が多いため穴広げ性が低い。No.25はB量が低いため最大母材割れ深さが大きい。No.26、27、29、31、32はH1値またはH2値が高いため最大母材割れ深さが大きい。No.28はC含有量とH1値が高いため、またNo.30はMn含有量とH1値が高いため、これらはいずれも穴拡げ性に劣り最大母材割れ深さも大きい。No.33は熱間圧延での巻取り温度が低いためベイナイト相が生成し、穴広げ性が低い。No.34は熱間圧延での巻取り温度が高いため、またNo.35は連続溶融めっきラインでの焼鈍温度が高いため、これらはいずれもTi含有析出物の粒子径が大きく、穴広げ性が低い。
 図5に、溶融金属脆化割れ感度指数H1と最大母材割れ深さの関係を示す。
 図6に、溶融金属脆化割れ感度指数H2と最大母材割れ深さの関係を示す。
《実施例2》
 表5に組成を示す各鋼を溶製し、実施例1と同様の製造条件にて溶融Zn-Al-Mg系めっき鋼板を得た。熱延鋼帯の板厚と、前述のH3は表5中に、巻取温度は表6中にそれぞれ示してある。
Figure JPOXMLDOC01-appb-T000005
 各溶融Zn-Al-Mg系めっき鋼板について、実施例1と同様の手法で各種試験を行い、特性を評価した。その結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 本発明例のものは、いずれも穴広げ率λが70%以上、最大母材割れ深さが0.1mm以下であり、優れたバーリング性と耐溶融金属脆化割れ性を兼ね備えている。また、引張強さTSが590MPa以上の高強度と溶接部での良好な耐食性を有し、自動車足回り部材をはじめとする各種溶接構造部材用の材料に適している。
 これに対し、No.72はTi量が多いため析出物粒子径が大きく、穴広げ性が低い。No.73はC量が低いため十分な引張強さが得られていない。No.74はP量が多いため穴広げ性が低い。No.75はB量が低いため最大母材割れ深さが大きい。No.76、77、79、81、82はH3値が高いため最大母材割れ深さが大きい。No.78はC含有量とH3値が高いため、またNo.80はMn含有量とH3値が高いため、これらはいずれも穴拡げ性に劣り最大母材割れ深さも大きい。No.83は熱間圧延での巻取り温度が低いためベイナイト相が生成し、穴広げ性が低い。No.84は熱間圧延での巻取り温度が高いため、またNo.85は連続溶融めっきラインでの焼鈍温度が高いため、これらはいずれもTi含有析出物の粒子径が大きく、穴広げ性が低い。
 図7に、溶融金属脆化割れ感度指数H3と最大母材割れ深さの関係を示す。選択元素であるCr、Moの含有の有無にかかわらず、H3≦2.90を満たすことにより溶融金属脆化割れ感受性を精度良く評価できることがわかる。
 1  ボス
 2  クランプ
 3  試験片
 4  拘束板
 5  実験台
 6  溶接ビード
 7  試験片全周溶接部の溶接ビード
 8  溶接ビードの重なり部分
 9  切断面
 18  溶融Zn-Al-Mg系めっき鋼板サンプル
 19  溶接金属

Claims (10)

  1.  素材鋼板の表面に溶融Zn-Al-Mg系めっき層を有するめっき鋼板において、素材鋼板が、質量%で、C:0.010~0.100%、Si:1.00%以下、Mn:1.00~2.50%、P:0.050%以下、S:0.020%以下、N:0.005%以下、Ti:0.02~0.20%、B:0.0005~0.0100%、Al:0.100%以下を含有し、残部Feおよび不可避的不純物からなる化学組成を有し、フェライト相およびそのフェライト相中に分散している平均粒子径20nm以下のTi含有析出物からなる金属組織を有し、下記(1)式で表される溶融金属脆化割れ感度指数H1値が2.84以下となる鋼成分含有量と板厚t(mm)の関係を有する自動車足回り部材用溶融Zn-Al-Mg系めっき鋼板。
     H1値=C/0.2+Si/5.0+Mn/1.3+0.4t …(1)
     ただし、(1)式の元素記号の箇所には素材鋼板中における当該元素の含有量(質量%)が代入される。
  2.  素材鋼板の表面に溶融Zn-Al-Mg系めっき層を有するめっき鋼板において、素材鋼板が、質量%で、C:0.010~0.100%、Si:1.00%以下、Mn:1.00~2.50%、P:0.050%以下、S:0.020%以下、N:0.005%以下、Ti:0.02~0.20%、B:0.0005~0.0100%、Al:0.100%以下を含有し、さらにCr:1.00%以下、Mo:1.00%以下の1種以上を含有し、残部Feおよび不可避的不純物からなる化学組成を有し、フェライト相およびそのフェライト相中に分散している平均粒子径20nm以下のTi含有析出物からなる金属組織を有し、下記(2)式で表される溶融金属脆化割れ感度指数H2値が3.24以下となる鋼成分含有量と板厚t(mm)の関係を有する自動車足回り部材用溶融Zn-Al-Mg系めっき鋼板。
     H2値=C/0.2+Si/5.0+Mn/1.3+Cr/1.0+Mo/1.2+0.4t …(2)
     ただし、(2)式の元素記号の箇所には素材鋼板中における当該元素の含有量(質量%)が代入される。
  3.  素材鋼板が、さらに、質量%で、Nb:0.10%以下、V:0.10%以下の1種以上を含有する請求項1または2に記載の自動車足回り部材用溶融Zn-Al-Mg系めっき鋼板。
  4.  素材鋼板の表面に溶融Zn-Al-Mg系めっき層を有するめっき鋼板において、素材鋼板が、質量%で、C:0.010~0.100%、Si:0.01~1.00%、Mn:0.50~2.50%、P:0.005~0.050%、S:0.001~0.020%、N:0.001~0.005%、Ti:0.02~0.20%、B:0.0005~0.0100%、Al:0.005~0.100%、Cr:0~1.00%、Mo:0~1.00%、Nb:0~0.10%、V:0~0.10%、残部Feおよび不可避的不純物からなる化学組成を有し、フェライト相からなるマトリクス中に平均粒子径20nm以下のTi含有析出物が分散した金属組織を有し、下記(3)式で表される溶融金属脆化割れ感度指数H3値が2.90以下となる鋼成分含有量と板厚t(mm)の関係を有する溶接構造部材用溶融Zn-Al-Mg系めっき鋼板。
     H3値=C/0.2+Si/5.0+Mn/1.3+Cr/1.0+Mo/1.2+0.4t-0.7(Cr+Mo)1/2 …(3)
     ただし、(3)式の元素記号の箇所には素材鋼板中における当該元素の含有量(質量%)が代入される。
  5.  前記溶融Zn-Al-Mg系めっき鋼板のめっき組成は、質量%で、Al:3.0~22.0%、Mg:0.05~10.0%、Ti:0~0.10%、B:0~0.05%、Si:0~2.0%、Fe:0~2.0%、残部Znおよび不可避的不純物からなる請求項1~4のいずれかに記載の溶融Zn-Al-Mg系めっき鋼板。
  6.  質量%で、C:0.010~0.100%、Si:1.00%以下、Mn:1.00~2.50%、P:0.050%以下、S:0.020%以下、N:0.005%以下、Ti:0.02~0.20%、B:0.0005~0.0100%、Al:0.100%以下を含有し、残部Feおよび不可避的不純物からなる鋼材に、熱間圧延、酸洗、連続溶融めっきラインでの焼鈍および溶融Zn-Al-Mg系めっきを順次行う工程により、素材鋼板の表面に溶融Zn-Al-Mg系めっき層を有するめっき鋼板を製造するに際し、
     熱間圧延にて下記(1)式で表される溶融金属脆化割れ感度指数H1値が2.84以下となる板厚t(mm)に圧延し、巻取温度を550~680℃とし、連続溶融めっきラインでの焼鈍温度を500~700℃とする、自動車足回り部材用溶融Zn-Al-Mg系めっき鋼板の製造方法。
     H1値=C/0.2+Si/5.0+Mn/1.3+0.4t …(1)
     ただし、(1)式の元素記号の箇所には素材鋼板中における当該元素の含有量(質量%)が代入される。
  7.  質量%で、C:0.010~0.100%、Si:1.00%以下、Mn:1.00~2.50%、P:0.050%以下、S:0.020%以下、N:0.005%以下、Ti:0.02~0.20%、B:0.0005~0.0100%、Al:0.100%以下を含有し、さらにCr:1.00%以下、Mo:1.00%以下の1種以上を含有し、残部Feおよび不可避的不純物からなる鋼材に、熱間圧延、酸洗、連続溶融めっきラインでの焼鈍および溶融Zn-Al-Mg系めっきを順次行う工程により、素材鋼板の表面に溶融Zn-Al-Mg系めっき層を有するめっき鋼板を製造するに際し、
     熱間圧延にて下記(2)式で表される溶融金属脆化割れ感度指数H2値が3.24以下となる板厚t(mm)に圧延し、巻取温度を550~680℃とし、連続溶融めっきラインでの焼鈍温度を500~700℃とする、自動車足回り部材用溶融Zn-Al-Mg系めっき鋼板の製造方法。
     H2値=C/0.2+Si/5.0+Mn/1.3+Cr/1.0+Mo/1.2+0.4t …(2)
     ただし、(2)式の元素記号の箇所には素材鋼板中における当該元素の含有量(質量%)が代入される。
  8.  前記素材鋼板の化学組成範囲が、さらに、質量%で、Nb:0.10%以下、V:0.10%以下の1種以上を含有する組成範囲である請求項6または7に記載の自動車足回り部材用溶融Zn-Al-Mg系めっき鋼板の製造方法。
  9.  質量%で、C:0.010~0.100%、Si:0.01~1.00%、Mn:0.50~2.50%、P:0.005~0.050%、S:0.001~0.020%、N:0.001~0.005%、Ti:0.02~0.20%、B:0.0005~0.0100%、Al:0.005~0.100%、Cr:0~1.00%、Mo:0~1.00%、Nb:0~0.10%、V:0~0.10%、残部Feおよび不可避的不純物からなる鋼材に、熱間圧延、酸洗、連続溶融めっきラインでの焼鈍および溶融Zn-Al-Mg系めっきを順次行う工程により、素材鋼板の表面に溶融Zn-Al-Mg系めっき層を有するめっき鋼板を製造するに際し、
     熱間圧延にて下記(3)式で表される溶融金属脆化割れ感度指数H3値が2.90以下となる板厚t(mm)に圧延し、巻取温度を550~680℃とし、連続溶融めっきラインでの焼鈍温度を500~700℃とする、溶接構造部材用溶融Zn-Al-Mg系めっき鋼板の製造方法。
     H3値=C/0.2+Si/5.0+Mn/1.3+Cr/1.0+Mo/1.2+0.4t-0.7(Cr+Mo)1/2 …(3)
     ただし、(3)式の元素記号の箇所には素材鋼板中における当該元素の含有量(質量%)が代入される。
  10.  前記溶融Zn-Al-Mg系めっき鋼板のめっき組成は、質量%で、Al:3.0~22.0%、Mg:0.05~10.0%、Ti:0~0.10%、B:0~0.05%、Si:0~2.0%、Fe:0~2.0%、残部Znおよび不可避的不純物からなる請求項6~9のいずれかに記載の溶融Zn-Al-Mg系めっき鋼板の製造方法。
PCT/JP2012/054926 2011-02-28 2012-02-28 溶融Zn-Al-Mg系めっき鋼板および製造方法 WO2012118073A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CA2826225A CA2826225C (en) 2011-02-28 2012-02-28 Zn-al-mg based alloy hot-dip plated steel sheet, and method for producing the same
EP18209034.0A EP3470541A1 (en) 2011-02-28 2012-02-28 Zn-al-mg-based alloy hot-dip plated steel, and method for producing the same
MX2013009332A MX363471B (es) 2011-02-28 2012-02-28 Lamina de acero enchapada por inmersion en caliente con aleacion basada en zn-al-mg y metodo para producir la misma.
US14/001,928 US9592772B2 (en) 2011-02-28 2012-02-28 Zn—Al—Mg based alloy hot-dip plated steel sheet, and method for producing the same
ES12752196T ES2712631T3 (es) 2011-02-28 2012-02-28 Chapa de acero revestida por inmersión en caliente con un sistema a base de Zn-Al-Mg y procedimiento de fabricación de la misma
AU2012224032A AU2012224032B2 (en) 2011-02-28 2012-02-28 Steel sheet hot-dip-coated with Zn-Al-Mg-based system, and process of manufacturing same
PL12752196T PL2682495T3 (pl) 2011-02-28 2012-02-28 Blacha stalowa powlekana zanurzeniowo systemem na bazie Zn-Al-Mg i sposób jej wytwarzania
CN201280010578.4A CN103415641B (zh) 2011-02-28 2012-02-28 热浸镀Zn-Al-Mg系的钢板及制造方法
EP12752196.1A EP2682495B1 (en) 2011-02-28 2012-02-28 STEEL SHEET HOT-DIP-COATED WITH Zn-Al-Mg-BASED SYSTEM, AND PROCESS OF MANUFACTURING SAME
KR1020137022238A KR102099588B1 (ko) 2011-02-28 2012-02-28 용융 Zn-Al-Mg계 도금 강판 및 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-043334 2011-02-28
JP2011043334 2011-02-28

Publications (1)

Publication Number Publication Date
WO2012118073A1 true WO2012118073A1 (ja) 2012-09-07

Family

ID=46758004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054926 WO2012118073A1 (ja) 2011-02-28 2012-02-28 溶融Zn-Al-Mg系めっき鋼板および製造方法

Country Status (12)

Country Link
US (1) US9592772B2 (ja)
EP (2) EP3470541A1 (ja)
JP (1) JP5936390B2 (ja)
KR (1) KR102099588B1 (ja)
CN (1) CN103415641B (ja)
AU (1) AU2012224032B2 (ja)
CA (1) CA2826225C (ja)
ES (1) ES2712631T3 (ja)
HU (1) HUE043883T2 (ja)
PL (1) PL2682495T3 (ja)
TR (1) TR201903572T4 (ja)
WO (1) WO2012118073A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3085805A4 (en) * 2013-12-19 2017-06-28 Nisshin Steel Co., Ltd. Steel sheet hot-dip-coated with zn-al-mg-based system having excellent workability and method for manufacturing same
JP2021508771A (ja) * 2017-12-26 2021-03-11 ポスコPosco 加工後耐食性に優れた亜鉛合金めっき鋼材及びその製造方法
JP2022095822A (ja) * 2014-12-24 2022-06-28 ポスコ 溶接性及び加工部耐食性に優れた亜鉛合金めっき鋼材及びその製造方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5372217B2 (ja) * 2012-02-24 2013-12-18 日新製鋼株式会社 アーク溶接構造部材の製造法
JP6049516B2 (ja) * 2013-03-26 2016-12-21 日新製鋼株式会社 溶接構造部材用高強度めっき鋼板およびその製造法
US20150231726A1 (en) * 2014-02-19 2015-08-20 Nisshin Steel Co., Ltd. METHOD FOR PRODUCING ARC-WELDED Zn-Al-Mg ALLOY COATED STEEL PLATE STRUCTURAL MEMBER
KR101758529B1 (ko) * 2014-12-24 2017-07-17 주식회사 포스코 인산염 처리성과 스폿 용접성이 우수한 아연합금도금강판 및 그 제조방법
JP6209175B2 (ja) * 2015-03-03 2017-10-04 日新製鋼株式会社 めっき表面外観およびバーリング性に優れた溶融Zn−Al−Mg系めっき鋼板の製造方法
MY165610A (en) 2015-04-08 2018-04-16 Nippon Steel & Sumitomo Metal Corp Zn-Al-Mg COATED STEEL SHEET, AND METHOD OF PRODUCING Zn-Al-Mg COATED STEEL SHEET
JP6114785B2 (ja) * 2015-05-29 2017-04-12 日新製鋼株式会社 溶接部外観と溶接強度に優れた溶融Zn系めっき鋼板のアーク溶接方法、および溶接部材の製造方法
CN105256196A (zh) * 2015-10-23 2016-01-20 首钢总公司 一种铝锌镁镀层钢板及其制备方法
JP2017145441A (ja) * 2016-02-16 2017-08-24 日新製鋼株式会社 黒色表面被覆高強度鋼板およびその製造方法
KR101899674B1 (ko) * 2016-12-19 2018-09-17 주식회사 포스코 저온역 버링성이 우수한 고강도 강판 및 이의 제조방법
WO2018234839A1 (en) 2017-06-20 2018-12-27 Arcelormittal ZINC COATED STEEL SHEET HAVING HIGH STRENGTH POINTS WELDABILITY
KR102010079B1 (ko) 2017-09-13 2019-08-12 주식회사 포스코 도장 후 선영성이 우수한 강판 및 그 제조방법
KR102142766B1 (ko) 2018-08-31 2020-08-07 주식회사 포스코 내식성 및 가공성이 우수한 용융도금강판 및 이의 제조방법
KR102276742B1 (ko) 2018-11-28 2021-07-13 주식회사 포스코 도금 밀착성 및 내부식성이 우수한 아연도금강판 및 이의 제조방법
JP2021055135A (ja) * 2019-09-27 2021-04-08 日本製鉄株式会社 溶融Zn−Al−Mg系めっき鋼板およびその製造方法
KR20220124766A (ko) * 2020-02-13 2022-09-14 닛폰세이테츠 가부시키가이샤 접합 부품 및 그 제조 방법
CN112575275A (zh) * 2020-12-03 2021-03-30 攀钢集团研究院有限公司 高成形性的热浸镀锌铝镁合金镀层钢板及其制备方法
US11441039B2 (en) * 2020-12-18 2022-09-13 GM Global Technology Operations LLC High temperature coatings to mitigate weld cracking in resistance welding
CN115074576A (zh) * 2022-06-13 2022-09-20 首钢集团有限公司 一种锌铝镁合金锭、镀层、镀层钢及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263145A (ja) 1992-03-05 1993-10-12 Nippon Steel Corp バーリング性の優れた高強度合金化溶融亜鉛メッキ鋼板の製造方法
JP2003003238A (ja) * 2001-06-22 2003-01-08 Nisshin Steel Co Ltd 耐食性に優れたZn−Al−Mg系溶融めっき鋼材
JP2003321736A (ja) * 2002-04-30 2003-11-14 Jfe Steel Kk 溶接性に優れた溶融亜鉛系めっき高張力熱延鋼板ならびにその製造方法および加工方法
JP2006097129A (ja) * 2004-09-01 2006-04-13 Nisshin Steel Co Ltd 耐溶融金属脆化割れ性に優れたZn−Al−Mg合金めっき鋼板
JP2006249521A (ja) 2005-03-11 2006-09-21 Nippon Steel Corp 溶接性に優れた亜鉛系合金めっき鋼材
JP2009228080A (ja) 2008-03-24 2009-10-08 Nisshin Steel Co Ltd 耐溶融金属脆化割れ性に優れた高降伏比型Zn−Al−Mg系めっき鋼板およびその製造方法
WO2010104086A1 (ja) * 2009-03-10 2010-09-16 日新製鋼株式会社 耐溶融金属脆化割れ性に優れた亜鉛系合金めっき鋼材

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3392154B2 (ja) * 1991-03-29 2003-03-31 日新製鋼株式会社 耐火用高張力溶融Zn−A1合金めっき鋼板の製造方法
KR100257900B1 (ko) * 1995-03-23 2000-06-01 에모토 간지 인성이 우수한 저항복비 고강도 열연강판 및 그 제조방법
BR0107195B1 (pt) * 2000-09-12 2011-04-05 chapa de aço imersa a quente de alta resistência à tração e método para produzì-la.
ES2690275T3 (es) * 2000-10-31 2018-11-20 Jfe Steel Corporation Chapa de acero laminado en caliente de alta resistencia y método para la fabricación de la misma
AU2003284496A1 (en) * 2002-12-24 2004-07-22 Nippon Steel Corporation High strength steel sheet exhibiting good burring workability and excellent resistance to softening in heat-affected zone and method for production thereof
JP4635525B2 (ja) * 2003-09-26 2011-02-23 Jfeスチール株式会社 深絞り性に優れた高強度鋼板およびその製造方法
EP1918396B1 (en) * 2005-08-05 2014-11-12 JFE Steel Corporation High-tension steel sheet and process for producing the same
BRPI0822700A2 (pt) * 2008-05-15 2015-07-07 Siemens Vai Metals Technologies S A S Sistema e método para orientação de um dispositivo de secagem de um produto de galvanização

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263145A (ja) 1992-03-05 1993-10-12 Nippon Steel Corp バーリング性の優れた高強度合金化溶融亜鉛メッキ鋼板の製造方法
JP2003003238A (ja) * 2001-06-22 2003-01-08 Nisshin Steel Co Ltd 耐食性に優れたZn−Al−Mg系溶融めっき鋼材
JP2003321736A (ja) * 2002-04-30 2003-11-14 Jfe Steel Kk 溶接性に優れた溶融亜鉛系めっき高張力熱延鋼板ならびにその製造方法および加工方法
JP2006097129A (ja) * 2004-09-01 2006-04-13 Nisshin Steel Co Ltd 耐溶融金属脆化割れ性に優れたZn−Al−Mg合金めっき鋼板
JP2006249521A (ja) 2005-03-11 2006-09-21 Nippon Steel Corp 溶接性に優れた亜鉛系合金めっき鋼材
JP2009228080A (ja) 2008-03-24 2009-10-08 Nisshin Steel Co Ltd 耐溶融金属脆化割れ性に優れた高降伏比型Zn−Al−Mg系めっき鋼板およびその製造方法
WO2010104086A1 (ja) * 2009-03-10 2010-09-16 日新製鋼株式会社 耐溶融金属脆化割れ性に優れた亜鉛系合金めっき鋼材

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3085805A4 (en) * 2013-12-19 2017-06-28 Nisshin Steel Co., Ltd. Steel sheet hot-dip-coated with zn-al-mg-based system having excellent workability and method for manufacturing same
US10266910B2 (en) 2013-12-19 2019-04-23 Nisshin Steel Co., Ltd. Steel sheet hot-dip-coated with Zn—Al—Mg-based system having excellent workability and method for manufacturing same
JP2022095822A (ja) * 2014-12-24 2022-06-28 ポスコ 溶接性及び加工部耐食性に優れた亜鉛合金めっき鋼材及びその製造方法
JP7359894B2 (ja) 2014-12-24 2023-10-11 ポスコホールディングス インコーポレーティッド 溶接性及び加工部耐食性に優れた亜鉛合金めっき鋼材及びその製造方法
JP2021508771A (ja) * 2017-12-26 2021-03-11 ポスコPosco 加工後耐食性に優れた亜鉛合金めっき鋼材及びその製造方法
JP7244722B2 (ja) 2017-12-26 2023-03-23 ポスコ カンパニー リミテッド 加工後耐食性に優れた亜鉛合金めっき鋼材及びその製造方法

Also Published As

Publication number Publication date
US9592772B2 (en) 2017-03-14
ES2712631T3 (es) 2019-05-14
JP5936390B2 (ja) 2016-06-22
JP2012193452A (ja) 2012-10-11
CA2826225C (en) 2020-07-21
AU2012224032A1 (en) 2013-09-12
CN103415641A (zh) 2013-11-27
EP3470541A1 (en) 2019-04-17
HUE043883T2 (hu) 2019-09-30
CN103415641B (zh) 2016-01-06
KR20140002740A (ko) 2014-01-08
AU2012224032B2 (en) 2017-03-16
EP2682495A4 (en) 2016-03-16
CA2826225A1 (en) 2012-09-07
TR201903572T4 (tr) 2019-04-22
KR102099588B1 (ko) 2020-04-10
EP2682495A1 (en) 2014-01-08
PL2682495T3 (pl) 2019-06-28
US20130337287A1 (en) 2013-12-19
EP2682495B1 (en) 2019-01-02

Similar Documents

Publication Publication Date Title
JP5936390B2 (ja) 溶融Zn−Al−Mg系めっき鋼板および製造方法
JP6751766B2 (ja) 優れた成形性を有する高強度鋼板及びこれを製造する方法
JP6238474B2 (ja) 加工性に優れた溶融Zn−Al−Mg系めっき鋼板及びその製造方法
JP6777173B2 (ja) スポット溶接用高強度亜鉛めっき鋼板
US7608155B2 (en) High strength, hot dip coated, dual phase, steel sheet and method of manufacturing same
JPWO2019116531A1 (ja) 鋼板、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板
TWI618816B (zh) 焊接構造構件用高強度鍍覆鋼板及其製造方法
JP6394812B2 (ja) 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
JP6308333B2 (ja) 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
CA2786381C (en) High-strength galvanized steel sheet having excellent formability and spot weldability and method for manufacturing the same
WO2011122030A1 (ja) 加工性に優れた高張力溶融亜鉛めっき鋼板およびその製造方法
JP4949497B2 (ja) 耐溶融金属脆化割れ性に優れた亜鉛系合金めっき鋼材
JP6950826B2 (ja) 高強度鋼板、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法および高強度鋼板の製造方法
US20120138194A1 (en) High strength, hot dip coated, dual phase, steel sheet and method of manufacturing same
WO2018062342A1 (ja) 高強度めっき鋼板及びその製造方法
JP2019504205A (ja) めっき性及び溶接性に優れたオーステナイト系溶融アルミニウムめっき鋼板及びその製造方法
JP5264234B2 (ja) 耐溶融金属脆化割れ性に優れたZn−Al−Mg系めっき鋼板およびその製造方法
JP2010235989A (ja) 耐溶融金属脆化特性に優れた高強度Zn−Al−Mg系めっき鋼板およびその製造方法
JP6801496B2 (ja) 曲げ加工性に優れた高強度溶融Zn−Al−Mg系めっき鋼板及びその製造方法
JP4580403B2 (ja) 深絞り用溶融めっき高強度鋼板及びその製造方法
JP2021055135A (ja) 溶融Zn−Al−Mg系めっき鋼板およびその製造方法
JP2014169503A (ja) 耐溶融金属脆化特性に優れた高強度Zn−Al−Mg系めっき鋼板およびその製造方法
JP6958459B2 (ja) 溶融Zn−Al−Mg合金めっき鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752196

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2826225

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/009332

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20137022238

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301004731

Country of ref document: TH

Ref document number: 14001928

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012224032

Country of ref document: AU

Date of ref document: 20120228

Kind code of ref document: A