WO2012117970A1 - 転動装置の状態監視システムおよび状態監視方法 - Google Patents

転動装置の状態監視システムおよび状態監視方法 Download PDF

Info

Publication number
WO2012117970A1
WO2012117970A1 PCT/JP2012/054592 JP2012054592W WO2012117970A1 WO 2012117970 A1 WO2012117970 A1 WO 2012117970A1 JP 2012054592 W JP2012054592 W JP 2012054592W WO 2012117970 A1 WO2012117970 A1 WO 2012117970A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
rolling device
threshold value
mixed water
water concentration
Prior art date
Application number
PCT/JP2012/054592
Other languages
English (en)
French (fr)
Inventor
松原幸生
坂中則暁
北川貴一
坂口智也
川北雅之
前田修光
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011045951A external-priority patent/JP2012181168A/ja
Priority claimed from JP2011045950A external-priority patent/JP5661512B2/ja
Priority claimed from JP2011045952A external-priority patent/JP2012181169A/ja
Priority claimed from JP2011045949A external-priority patent/JP5653795B2/ja
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN201280011533.9A priority Critical patent/CN103460009B/zh
Priority to EP12751866.0A priority patent/EP2682732B1/en
Priority to US14/002,878 priority patent/US9335317B2/en
Priority to ES12751866.0T priority patent/ES2657592T3/es
Publication of WO2012117970A1 publication Critical patent/WO2012117970A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2888Lubricating oil characteristics, e.g. deterioration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/221Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance by investigating the dielectric properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • F16C33/667Details of supply of the liquid to the bearing, e.g. passages or nozzles related to conditioning, e.g. cooling, filtering

Definitions

  • the present invention relates to an oil lubrication type rolling device, and more particularly to a state monitoring system and a state monitoring method thereof.
  • Patent Document 1 There are several bearing predictions (for example, Patent Document 1). Among them, the deterioration of the lubricant is measured to predict the life of the bearing. When the lubricant deteriorates, the oil film thickness at the contact portion in the bearing is reduced, and the wear and surface damage of the bearing are likely to occur. Therefore, the deterioration of the bearing life is monitored and predicted by measuring the deterioration state of the lubricating oil.
  • Non-Patent Documents 1 to 5 When rolling parts such as rolling bearings and gears are used under conditions in which water is mixed (Non-Patent Documents 1 to 5) or in a condition involving slipping (Non-Patent Document 6), water and lubricant are decomposed. As hydrogen is generated, it can penetrate into the steel and cause premature damage. When metal contact occurs at the contact surface between the contact elements and the new metal surface is exposed, generation of hydrogen due to decomposition of water and lubricant, and penetration into the steel are promoted. This is an experiment in which diffusible hydrogen was clearly detected in steel as a result of thermal desorption hydrogen analysis after abrasive wear of rolling parts steel with emery paper while dripping water and lubricant. This is proved by the facts (Non-patent Document 7).
  • one function of the monitoring / diagnosis system is to monitor a dielectric constant proportional to a capacitance described later and monitor / diagnose the degree of oxidation of the lubricant.
  • the concept is described, and no specific data is described.
  • it is limited to the abnormality diagnosis of a rolling bearing.
  • the moisture content in the lubricating oil must be measured not only by capacitance but also by temperature dependence.
  • the temperature inside the rolling device becomes higher than the outside air temperature, so that the inside of the rolling device becomes a positive pressure and a part of the inside air is released to the outside.
  • the inside of the rolling device becomes negative pressure, so outside air enters the rolling device.
  • the outside air that has entered is humid, dew condensation occurs in the rolling device, and moisture is mixed into the lubricating oil. In this way, even in normal use, water can be mixed into the lubricating oil.
  • the rolling device is exposed to heavy rain or heavy wind and rain, such as a wind power generator or a construction machine, it is considered that more moisture is mixed.
  • An object of the present invention is to provide an oil lubrication type rolling device having a function capable of accurately determining the concentration of moisture contained in lubricating oil and suppressing early damage caused by hydrogen embrittlement of rolling parts.
  • the present invention provides a state monitoring system and a state monitoring method for a rolling device that can be used.
  • the state monitoring system for a rolling device is a state monitoring system for monitoring the state of the rolling device, and includes a mixed water concentration monitoring device for monitoring the mixed water concentration in the lubricating oil.
  • the apparatus includes a capacitance detecting means and an oil temperature measuring means for detecting a capacitance and an oil temperature in the lubricating oil, respectively, and a capacitance and an oil detected by the capacitance detecting means and the oil temperature measuring means.
  • a water concentration calculating means for detecting the mixed water concentration from the temperature according to a predetermined rule.
  • the mixed water concentration is obtained from the capacitance and the oil temperature, so that the mixed water concentration can be obtained with high accuracy. For this reason, in the oil lubrication type rolling device, it is possible to accurately determine the concentration of water contained in the lubricating oil, and to suppress early damage due to hydrogen embrittlement of the rolling parts.
  • the “rolling device” refers to a device composed of parts including elements that roll and slide, such as rolling bearings and gears.
  • a spindle support device and a speed increaser.
  • Various types of rolling bearings are used in these spindle support devices and gearboxes and are lubricated with oil.
  • oil lubrication type rolling device include the following. Oil lubrication can be subdivided into oil bath lubrication, jet lubrication, circulation lubrication, oil mist lubrication, air oil lubrication, splash lubrication, hydraulic fluid immersion, etc. .
  • the state monitoring system of the rolling device may have a lubricating oil storage tank that performs oil bath lubrication or a circulating oil supply means that performs circulating oil supply.
  • a capacitance and oil temperature measurement chamber in which the capacitance detection means and the oil temperature measurement means are installed may be provided inside the housing of the rolling device.
  • a capacitance measurement chamber and an oil temperature measurement chamber are provided inside or outside the housing of the rolling device.
  • the electrostatic capacity detecting means and the oil temperature measuring means may be installed in the main body. If a measurement chamber for capacitance and oil temperature is provided inside the rolling device, the measurement chamber can be arranged by utilizing the empty space of the housing, and the enlargement of the rolling device due to the installation of the measurement chamber can be avoided. . If a capacitance and oil temperature measurement chamber is provided outside the rolling device, it can be applied even when there is no room to install the measurement chamber in the rolling device housing. Is less.
  • a stirring means for stirring the lubricating oil in the capacitance and oil temperature measurement chamber may be provided.
  • the amount of lubricating oil accumulated in the measurement chamber for capacitance and oil temperature is 100 mL or less, and the variation is ⁇ 5 mL or less. Is good.
  • means for facilitating discharge of water and additives having a specific gravity greater than that of the lubricating oil from the rolling device and the capacitance and oil temperature measurement chambers may be provided.
  • This means is constituted by, for example, an inclined groove on the bottom surface of the lubricating oil reservoir. The lubricating oil is allowed to flow into the measurement chamber from the lowest part of the bottom surface of the inclined groove.
  • an abnormality diagnosis means for comparing the mixed water concentration calculated by the water concentration calculation means with a threshold value and diagnosing an abnormality when the threshold value is exceeded.
  • abnormality diagnosis means abnormality diagnosis can be performed when the concentration of mixed water exceeds a threshold value, and early damage due to hydrogen embrittlement of rolling parts can be more reliably suppressed.
  • the threshold value may be obtained and set by any one of the following methods.
  • the method of setting the threshold value of the abnormality diagnosing means is to inject water into the lubricating oil, measure the capacitance and oil temperature, monitor the mixed water concentration, and feed it back to determine the mixed water concentration.
  • a threshold value of the mixed water concentration obtained by a rolling / sliding fatigue life test for controlling the water injection amount so as to maintain a certain range is obtained, and the obtained threshold value is set as a threshold value in the abnormality diagnosis means.
  • required by this test be a value used as the mixing
  • a threshold value of the mixed moisture concentration is obtained by a rolling-slip fatigue life test in which a contact surface is caused to slip by a movement mechanism between contacting elements, and the obtained threshold value is set as a threshold value in the abnormality diagnosis means. May be.
  • the threshold value of the mixed moisture concentration is obtained by a rolling-slip fatigue life test for forcibly causing a slip on the contact surface between the contacting elements, and the obtained threshold value is set as a threshold value in the abnormality diagnosis means. good.
  • Threshold value of mixed water concentration may be obtained by a rolling and sliding fatigue life test in which acceleration / deceleration operation is performed until damage occurs, and the obtained threshold value may be set as a threshold value in the abnormality diagnosis means.
  • the rolling moisture fatigue threshold test of the mechanism that directly connects the main shaft of the servo motor and the spindle of the test unit is used.
  • a value may be obtained and the obtained threshold value may be set as a threshold value in the abnormality diagnosis means.
  • Rolling-slip fatigue life test that uses ceramic rolling elements for the spindle support bearing and insulates the motor from the spindle of the test unit, in order to promote wear of the damaged object by passing current between the contact elements with the damaged object as the positive electrode side. It is also possible to obtain a threshold value of the mixed water concentration by the above and set the obtained threshold value as a threshold value in the abnormality diagnosis means.
  • a threshold value of the moisture content is determined by a rolling and sliding fatigue life tester that can perform acceleration / deceleration operation and swing motion in addition to a constant rotational speed and one-way rotation. It may be set as a value.
  • the state monitoring system further includes a vibration sensor for monitoring vibration of a bearing constituting the rolling device, and a vibration abnormality abnormality diagnosis means for determining abnormality of the bearing using an output of the vibration sensor. It may be a thing.
  • the condition monitoring system is provided with a vibration sensor for monitoring vibration of a bearing constituting the rolling device, and a vibration abnormality abnormality diagnosis means for determining abnormality of the bearing using an output of the vibration sensor, Since the concentration detection and the abnormality diagnosis by vibration detection are used in combination, a comprehensive abnormality diagnosis of the bearing can be performed.
  • the vibration abnormality abnormality diagnosis means may include first and second arithmetic units, an envelope processing unit, and a diagnostic unit.
  • the first calculation unit calculates an effective value of the vibration waveform measured using the vibration sensor.
  • the envelope processing unit generates an envelope waveform of the vibration waveform by performing envelope processing on the vibration waveform measured using the vibration sensor.
  • the second calculation unit calculates an effective value of the AC component of the envelope waveform generated by the envelope processing unit.
  • the diagnosis unit diagnoses an abnormality of the rolling bearing based on the effective value of the vibration waveform calculated by the first calculation unit and the effective value of the AC component of the envelope waveform calculated by the second calculation unit.
  • the apparatus further includes a rotation sensor for detecting a rotation speed of a shaft supported by the rolling bearing or the rolling bearing
  • the abnormality diagnosis unit for the vibration abnormality includes a corrected vibration degree calculating unit and a corrected modulation degree calculating unit. Further, it may be included.
  • the corrected vibration degree calculation unit calculates a corrected vibration degree obtained by normalizing the effective value of the vibration waveform calculated by the first calculation unit with the rotation speed.
  • the correction modulation degree calculation unit calculates a correction modulation degree obtained by normalizing the effective value of the AC component of the envelope waveform calculated by the second calculation unit with the rotation speed.
  • the diagnosis unit diagnoses an abnormality of the rolling bearing based on the corrected vibration degree and the corrected modulation degree. More preferably, the diagnosis unit diagnoses an abnormality of the rolling bearing based on a transition of a temporal change in the correction vibration degree and the correction modulation degree.
  • a displacement meter for detecting a relative displacement between the inner and outer rings in the bearing constituting the rolling device, and a displacement abnormality abnormality diagnosis means for determining abnormality of the bearing using an output of the displacement meter. May be. Then, the abnormality diagnosis means diagnoses the abnormality of the rolling bearing using the detection value of the displacement sensor.
  • an AE sensor for detecting an acoustic emission wave generated from a rolling bearing may be further provided. Then, the abnormality diagnosing means diagnoses the abnormality of the rolling bearing using the detection value of the AE sensor.
  • a sensor for measuring the amount of wear powder or other impurities in the lubricating oil of the rolling bearing may be further provided. Then, the abnormality diagnosing means diagnoses the abnormality of the rolling bearing using the measured value of the sensor.
  • the state monitoring system of the present invention uses the vibration monitoring system, injects water into the lubricating oil, measures the capacitance and oil temperature, monitors the mixed water concentration, and obtains the appropriate water content determined from the mixed water concentration.
  • the threshold value of the mixed moisture concentration obtained by the rolling sliding fatigue life test for controlling the water injection amount so as to keep the mixed water concentration within a certain range by feeding back the amount is obtained, and the obtained threshold value is determined as the mixed moisture content. Used to judge concentration abnormalities.
  • what is necessary is just to let the threshold value calculated
  • the “appropriate amount of water” is an amount determined using a relational expression or a table or the like that appropriately determines the relationship between the concentration of mixed water and the amount of water to be replenished. The same applies to each test.
  • the threshold value of the mixed moisture concentration is obtained by a rolling-slip fatigue life test that causes the contact surface to slip by the motion mechanism between the contacting elements, and this threshold value is used. It is also possible to determine the threshold value of the mixed moisture concentration by a rolling sliding fatigue life test that forcibly causes slipping on the contact surface between the contacting elements, and this threshold value may be used to cause damage.
  • the threshold value of the mixed water concentration may be obtained by a rolling and sliding fatigue life test in which acceleration / deceleration operation is performed, and that value may be used.
  • a ceramic rolling element is used for the support bearing of the spindle, and the motor and test section are A threshold value of the mixed water concentration may be obtained by a rolling and sliding fatigue life test that insulates the spindle, and the value may be used for abnormality diagnosis of the mixed water concentration.
  • a phenomenon is known in which wear of a damaged object is accelerated when a current is passed between contact elements with the damaged object as a positive electrode side.
  • a ceramic rolling element is used for the spindle support bearing, and a rolling-slip fatigue life test in which the motor and the spindle of the test section have an insulating structure is used.
  • a threshold value may be obtained and used for abnormality diagnosis of the mixed water concentration.
  • the relationship between the determined mixed water concentration and the life reduction rate of the rolling component is used to calculate the rolling device from the mixed water concentration detected by the water concentration calculating means.
  • Life reduction rate monitoring means for obtaining the life reduction rate of the rolling parts may be provided.
  • the probability of hydrogen embrittlement of rolling parts such as bearings increases as the moisture in the lubricant increases. Therefore, the relationship between the mixed water concentration and the life reduction rate of the rolling parts is obtained in advance, and is determined in the life reduction rate monitoring means, and the relationship and the detected mixed water concentration in the lubricating oil are used.
  • the life reduction rate of rolling parts such as bearings can be obtained.
  • the detection of the mixed water concentration is performed by detecting the electrostatic capacity and oil temperature in the lubricating oil, and obtaining from the detected electrostatic capacity and oil temperature according to a predetermined rule by the water concentration calculating means. Since the mixed water concentration, capacitance, and oil temperature are related, the relationship may be obtained in advance and set in the water concentration calculating means. Note that each “preliminary” means before the rolling component state monitoring device performs monitoring. Thus, the life reduction rate due to hydrogen embrittlement in rolling parts such as bearings can be obtained.
  • a remaining life estimating means for estimating the remaining life of the rolling component using the life decreasing rate output by the life decreasing rate monitoring means and a predetermined remaining life estimating formula. . Since the service life reduction rate and the remaining life are closely related, when the service life reduction rate is obtained, the service life can be estimated. For example, the occurrence timing of peeling of the bearing due to hydrogen embrittlement can be predicted. Thus, by preparing for maintenance in advance for occurrence of an abnormality, it is possible to shorten the operation stop time after the occurrence of the abnormality. The effect is particularly great in a wind power generator.
  • a static state in lubricating oil for lubricating the rolling component of a rolling device which is a device including the rolling component using a state monitoring system including the life reduction rate monitoring means.
  • the moisture concentration monitoring process detects the capacitance and oil temperature, and detects the moisture concentration in the oil from the detected capacitance and oil temperature according to the defined rules.
  • the state monitoring method of the rolling device of this invention uses the state monitoring system provided with the said lifetime reduction rate monitoring means, and the relationship between a mixing moisture concentration and the lifetime reduction rate of rolling components is the following method (A ) To (G).
  • (C) A rolling sliding fatigue life test of a steel material that forcibly causes slipping on the contact surfaces between contacting elements is used to determine the relationship between the life reduction rate and the moisture content.
  • the reduction rate monitoring means the relationship between the determined mixed water concentration and the life reduction rate of the rolling parts is set.
  • (F) A mechanism for directly connecting the spindle of the servo motor and the spindle of the test section using a test piece of steel material in order to eliminate the superposed vibration component as much as possible so that damage can be accurately detected by vibration by swinging motion.
  • the relationship between the life reduction rate and the mixed moisture concentration was obtained, and the obtained relationship was stored in the life reduction rate monitoring means with the determined mixed water concentration and the life reduction rate of the rolling parts. Set as a relationship.
  • (A) is a front view of an example of the test piece which comprises the rolling component simulation body used for the test method
  • (B) is a longitudinal cross-sectional view of the rolling component simulation body incorporating the test piece. It is a longitudinal cross-sectional view of the test apparatus used for the test of the test piece of the rolling component simulation body of FIG. 12 (A), (B). It is a graph which shows the change of the amount of mixed water measured by the same test.
  • (A), (B) is the front view and longitudinal cross-sectional view which show typically the test apparatus used for the saturated water concentration measurement of lubricating oil. It is a graph which shows the relationship between the mixing water density
  • (A), (B) is the front view which shows typically the testing apparatus used for the electrostatic capacitance measurement of water-mixed oil, and a longitudinal cross-sectional view. It is a graph which shows the relationship between the mixing water density
  • FIG. 1 shows a conceptual configuration of this rolling device state monitoring system.
  • This rolling device state monitoring system includes a rolling device 1 and a control device 2 that controls the rolling device 1.
  • the rolling device 1 refers to a portion of the state monitoring system excluding the control device 2.
  • the rolling device 1 is a device having a part including a rolling and sliding contact element such as a rolling bearing or a gear, and may be any of a reduction gear, a speed increaser, and other various devices. For example, it is configured by any one of the devices listed in [Means for Solving the Problems].
  • the rolling device 1 has a plurality of rolling parts 3 formed of rolling bearings and gears in the housing 4.
  • the “rolling part” refers to a part including a contact element that rolls and slides.
  • the lubrication method is an oil bath lubrication method among the oil lubrication methods, and a part of the housing 4 is lubricated so that all of the rolling parts 3 or any one of the rolling parts 3 is immersed.
  • a lubricating oil storage tank 4a for storing oil 5 is provided.
  • a mixed water concentration monitoring device 6 for monitoring the mixed water concentration of the lubricating oil 5 in the lubricating oil storage tank 4a.
  • the mixed water concentration monitoring device 6 includes a capacitance detecting means 7 and an oil temperature measuring means 8 for detecting a capacitance and an oil temperature in the lubricating oil 5, respectively, and a mixed water concentration detecting means 11.
  • the mixed water concentration detecting means 11 includes a water concentration calculating means 9 for detecting the mixed water concentration from the electrostatic capacity and the oil temperature detected by the electrostatic capacity detecting means 7 and the oil temperature measuring means 8 according to a predetermined rule.
  • the mixed moisture concentration calculated by the moisture concentration calculating means 9 is compared with a threshold value S, and the abnormality diagnosing means 10 for diagnosing an abnormality when the threshold value S is exceeded.
  • the abnormality diagnosis unit 10 is not necessarily provided.
  • the capacitance detection means 7 may be any device that is immersed in a liquid and capable of detecting the capacitance of the liquid, and various types of capacitance meters can be used.
  • a thermocouple or the like is used.
  • the capacitance detecting means 7 and the oil temperature measuring means 8 may be constituted by an integrated capacitance / oil temperature means 7A integrated with each other.
  • the moisture concentration calculating means 9 and the abnormality diagnosing means 10, that is, the mixed moisture concentration detecting means 11 are configured by a computer such as a microcomputer or a personal computer and a program thereof, or by a dedicated electronic circuit.
  • a computer such as a microcomputer or a personal computer and a program thereof, or by a dedicated electronic circuit.
  • it is provided as a part of the computer-type control device 2 that controls the rolling device 1 or as a device independent of the control device 2.
  • the water concentration calculation means 9 has a relationship setting means 9a in which the relationship between the capacitance and oil temperature and the mixed water concentration is set by a calculation formula or a table, and is based on the inputted capacitance and oil temperature.
  • the mixed water concentration is calculated using a rule stored in the relationship setting means 9a, that is, a predetermined rule.
  • the capacitance and oil temperature in the lubricating oil 5 are detected by the capacitance detection means 7 and the oil temperature measurement means 8, and the detected capacitance and oil are detected. From the temperature, the moisture concentration calculation means 9 detects the mixed moisture concentration. As described above, since the mixed water concentration is obtained from the capacitance and the oil temperature, the mixed water concentration can be obtained with high accuracy. Therefore, in the oil lubrication type rolling device 1, the moisture content in the lubricating oil 5 can be monitored and accurately obtained, and early damage due to hydrogen embrittlement of the rolling parts can be suppressed.
  • the abnormality diagnosis means 10 is provided and the abnormality is determined when the mixed water concentration exceeds the threshold value S, early damage due to hydrogen embrittlement of the rolling component 3 can be more reliably suppressed. Can do. The reason why the mixed water concentration can be accurately detected from the capacitance and the oil temperature will be described in the threshold value S setting method described later.
  • the electrostatic capacity and the oil temperature of the lubricating oil 5 in the lubricating oil reservoir 4a in the housing 4 are measured.
  • the measurement chamber 12 communicating with the inside of the lubricating oil storage tank 4a is provided in the section, and the capacitance detection means 7 and the oil temperature measurement means 8 are installed so as to measure the capacitance and the oil temperature in the measurement chamber 12, respectively. You may do it.
  • a stirring means 13 for stirring the lubricating oil 5 in the measurement chamber 12 may be provided.
  • the measurement chamber 12 is, for example, a partition chamber that partitions a part of the lubricating oil storage tank 4a.
  • the stirring means 13 includes, for example, a stirring blade and a motor that rotates the rotating blade.
  • the amount of lubricating oil accumulated in the measurement chamber 12 is 100 mL or less and the fluctuation amount is ⁇ 5 mL or less.
  • the other structure in 2nd Embodiment of FIG. 2 is the same as that of 1st Embodiment shown in FIG.
  • the agitating means 13 may be provided at a corner or the like in the lubricating oil storage tank 4a without providing the measurement chamber 12.
  • a higher capacitance value is measured, so that the mixed water concentration can be increased, that is, can be monitored for safety.
  • the lubricating oil and water are separated, it is considered that a higher capacitance value is measured. In such a case, it is necessary to pay attention because monitoring becomes too safe and the number and cost of maintenance may become excessive.
  • the measurement chamber 12 may be installed outside the housing 4 as in the third embodiment shown in FIG. In this case, the measurement chamber 12 may be provided in contact with the housing 4 as illustrated, or may be provided away from the housing 4. When separated, the measurement chamber 12 and the lubricating oil reservoir 4a of the housing 4 are communicated with each other through a communication pipe (not shown). If the measurement chamber 12 is provided outside the housing 4, the capacitance detection means 7 and the oil temperature can be obtained even if there is no appropriate place in the housing 4 where the measurement chamber 12, the capacitance detection means 7 and the oil temperature measurement means 8 are provided. Measurement by the measuring means 8 can be performed.
  • Other configurations and effects in the third embodiment of FIG. 3 are the same as those of the first embodiment shown in FIG.
  • the fourth embodiment shown in FIG. 4 is an example in which a circulating oil supply system is used, that is, an example in which a circulating oil supply means 14 that performs circulating oil supply to the lubricating oil storage tank 4a of the housing 4 is provided.
  • the circulating oil supply means 14 includes an oil circulation path 15 such as a pipe having both ends communicating with the lubricating oil storage tank 4 a and a pump 16 that circulates the lubricating oil 5 through the oil circulation path 15.
  • the oil circulation path 15 communicates with the discharge port 15a at the bottom of the lubricating oil storage tank 4a and the middle height position or the upper oil supply port 15b of the lubricating oil storage tank 4a.
  • Other configurations and effects are the same as those of the first embodiment shown in FIG.
  • a measurement chamber 12 communicating with the inside of the lubricating oil storage tank 4a is provided in a part of the housing 4, and the capacitance detecting means 7 and the oil temperature measuring means 8 are provided.
  • the capacitance and oil temperature in the measurement chamber 12 are respectively measured.
  • a stirring means 13 for stirring the lubricating oil 5 in the measurement chamber 12 may be provided.
  • Other configurations are the same as those of the fourth embodiment shown in FIG.
  • the sixth embodiment shown in FIG. 6 is an example in which a measurement chamber 12 is provided outside the housing 4 in the circulating oil supply system.
  • the measurement chamber 12 is provided in the middle of the oil circulation path 15.
  • the measurement chamber 12 is provided with capacitance detection means 7 and oil temperature measurement means 8 for measuring the capacitance and oil temperature of the internal lubricating oil, and stirring means 13 for stirring the lubricating oil 5 in the measurement chamber 12. Is provided.
  • the stirring means 13 By providing the stirring means 13 in this manner, the capacitance can be measured stably and accurately, and the mixed water concentration can be accurately obtained.
  • the inclined groove 17 is provided at the bottom of the lubricating oil reservoir 4a.
  • the lower end portion of the bottom surface of the inclined groove 17 is used as a lubricating oil discharge port 15a, and the lubricating oil 5 is periodically drawn into the measuring chamber 12 serving as a reserve tank equipped with the stirring means 13 by the pump 16 and stored. Therefore, the mixed water concentration may be monitored by measuring the capacitance and the oil temperature. As a result, even if water having a specific gravity greater than that of the lubricating oil is separated, the water can be taken into the measurement chamber 12 and a higher mixed water concentration is measured. In other words, safety eyes can be monitored.
  • other configurations are the same as those of the first embodiment shown in FIG.
  • FIG. 7 shows a specific example of the rolling device 1.
  • the rolling device 1 in the figure is a speed increaser in a wind power generator.
  • the rolling device 1 is provided with a planetary gear mechanism 23 serving as a primary speed increaser and a secondary speed increaser 24 between an input shaft 21 and an output shaft 22.
  • the planetary gear mechanism 23 has a planetary gear 26 installed on a carrier 25 integral with the input shaft 21, meshes the planetary gear 26 with an internal ring gear 27 and a sun gear 28, and intermediately outputs a shaft integral with the sun gear 28.
  • the axis 29 is used.
  • the secondary speed increaser 24 includes a gear train that transmits the rotation of the intermediate output shaft 29 to the output shaft 22 via a plurality of gears 31 to 34.
  • Each of the rolling parts that serve as the planetary gear 26, the bearing 35 that supports the planetary gear 26, the ring gear 27, and the gear 31 of the secondary speed increaser 24 is a lubricating oil reservoir in the housing 4 as shown in FIG. It is immersed in the lubricating oil 5 of 4a.
  • the lubricating oil storage tank 4a is circulated by circulating oil supply means (not shown) including a pump and piping.
  • the circulating oil supply means is not necessarily provided, and may be an oil bath lubrication type.
  • FIG. 8 is a conceptual diagram showing an example of a test apparatus used in this test method.
  • the rolling / sliding fatigue life test apparatus includes a test apparatus main body 140, a test apparatus main body control device 141 for controlling the test apparatus main body 140, and a moisture concentration calculating means 142.
  • the test apparatus main body 140 includes a test oil tank 101 in which the lubricating oil 5A is put in a state in which the rolling part simulation body 3 as a test object is immersed, and rolling that operates the rolling part simulation body 3 in the test oil tank 101.
  • the rolling part simulation body 3 is a part that imitates a rolling part for testing by including a test piece of a rolling part material made of a steel material as a component.
  • the rolling part simulated body 3 is a model of a thrust ball bearing which is a kind of rolling part, and is configured by providing a rolling element 3c composed of a ball between an inner ring 3a and an outer ring 3b.
  • the outer ring 3b is a device under test.
  • the outer ring 3b which is a test object in the rolling component simulated body, has a cylindrical shape and an end surface thereof becomes a rolling surface.
  • the rolling element simulated body 3 has a larger size of the rolling element 3c than a thrust bearing which is an actual rolling part.
  • the rolling element In the actual thrust bearing to be simulated, the rolling element is too small, and the maximum surface pressure of the contact surface is considerably increased by applying a slight load. Therefore, in the rolling component simulated body 3, the rolling element 3c is enlarged.
  • the inner ring 3a is specially manufactured and used having a groove in which such a large rolling element 3c can roll.
  • the moisture concentration calculating means 142 is a means for calculating the moisture concentration in the lubricating oil from the capacitance measured by the capacitance meter 105 and the oil temperature measured by the thermocouple 106 according to a predetermined rule.
  • the moisture concentration calculating means 142 has a relationship setting means 143 that defines the relationship between the capacitance and oil temperature and the mixed moisture concentration by a calculation formula, a table, etc., and from the inputted capacitance and oil temperature, The mixed water concentration is calculated using the rules set in the relationship setting means 143.
  • the test device main body control device 141 includes a rolling component simulated body control unit 144 that controls the rolling component simulated body drive device 120, a pump control unit 145 that controls the syringe pump 104, the test device main body 140, and other drive parts. And a control unit (not shown) for controlling.
  • the test apparatus main body control apparatus 141 is a computer-type sequencer or numerical control apparatus, and includes a computer such as a personal computer and a program executed on the computer.
  • the moisture concentration calculating means 142 is composed of a computer such as a personal computer and a program executed on the computer.
  • the moisture concentration calculating means 142 may be one using a computer constituting the test apparatus main body control apparatus 141 or one using a computer independent of the test apparatus main body control apparatus 141.
  • This rolling and sliding fatigue life test method is performed as follows using the test apparatus having the above-described configuration.
  • the rolling part simulated body 3 which is the test object is immersed in the lubricating oil 5A put in the test oil tank 101 and operated, and the rolling and sliding fatigue life of the outer ring 3b which is the test object constituting the rolling part simulated body 3 is operated.
  • the syringe pump 104 is used to inject water as a hydrogen source into the lubricating oil 5A, and the electrostatic capacity of the lubricating oil 5A measured by the capacitance meter 105 and the oil temperature measured by the thermocouple 106.
  • the moisture concentration calculation means 142 is used to measure the mixed moisture concentration in the lubricating oil 5A.
  • an oil bath lubrication mechanism is used as a mechanism for putting the lubricating oil 5A into the test oil tank 101, and the mixed water concentration in the lubricating oil 5A in the test oil tank 101 is measured.
  • the “oil bath lubrication mechanism” refers to a mechanism in which lubricating oil is stored in the test oil tank 101 and the rolling component simulated body is lubricated with the stored lubricating oil.
  • the measured mixed water concentration is fed back to the syringe pump 104, and the mixed water concentration is controlled by changing the water injection amount. That is, the pump control unit 145 changes the amount of injection by the syringe pump 104 according to a predetermined rule according to the mixed water concentration output by the water concentration calculation means so that the mixed water concentration falls within a predetermined range.
  • a current is passed between the contact elements of the rolling component simulated body 3 (specifically, between the pair of raceways 3a and 3b) by the energizing means 147 to measure the metal contact rate.
  • the main shaft 107 of the servo motor 107A is directly connected to the spindle 108 that is connected to the inner ring 3a that is a component of the rolling part simulated body 3 and operates the rolling part simulated body 3.
  • the spindle 108 may have the rolling part simulated body 3 as one of the components.
  • the main shaft 107 and the spindle 108 of the servo motor are connected by an insulating coupling 132.
  • a ceramic rolling element bearing 133 is used as a support bearing for the spindle 108.
  • the rolling part simulated body 3 is a part imitating a thrust ball bearing in the illustration of FIG. 8, and the outer ring 3b to be tested is fixedly installed on an installation base (not shown) or the like.
  • the inner ring 3a is fixed to the spindle 108.
  • the spindle 108 and the ceramic rolling element bearing 133 constitute a head portion 146 of the rolling component simulated body driving device 120.
  • the head unit 146 is a mechanism unit that operates one or one set of the rolling component simulated body 3 in the rolling component simulated body driving device 120. In this embodiment, only one head portion 146 is provided. However, a plurality of head portions 146 may be provided, and a plurality of rolling component simulated bodies 3 may be tested simultaneously.
  • the rolling slip fatigue life test simulating the actual machine as closely as possible can efficiently cause early damage due to hydrogen embrittlement and determine the countermeasure elements according to the use conditions.
  • the sliding fatigue life test method is effective. From the viewpoint of obtaining understanding from the user, it is desirable to carry out hydrogen embrittlement evaluation by a rolling sliding fatigue life test for steel materials.
  • a rolling sliding fatigue life test having the following functions (1) to (5) is desirable.
  • the oil bath lubrication mechanism is used for each head portion in FIG. 8 so that the head portions 146 in the test apparatus do not affect each other, a circulating oil supply mechanism may be used. Even if it is an oil bath lubrication mechanism or a circulating oil supply mechanism, different heads can be tested under different conditions if they are provided in each head portion.
  • Water as a hydrogen source is injected into the lubricating oil 5A.
  • the function of (1) there is a method of periodically replacing the lubricating oil mixed with water, but it is inefficient because it takes time and cannot be replaced on holidays. Therefore, as shown in FIG. 8, it is desirable to inject water with a syringe pump 104 or with a tube pump.
  • the syringe pump 104 is suitable for microinjection.
  • the water injection point is the test oil tank 101.
  • the circulation oil supply mechanism is used for the head portion 146
  • the test oil tank 101 or the circulation oil supply mechanism is used. Use a circulating oiling section.
  • the saturated water concentration of a mineral oil based additive-free lubricant is at most 200 ppm by weight.
  • the mixed water concentration can be measured by the capacitance and the oil temperature, but the capacitance meter 105 for measuring the capacitance is roughly classified into the following two types. One can be measured only up to a saturated water concentration or less, and the other can be measured even if the saturated water concentration is exceeded and a cloudy state occurs. The former type is more common, but some of the latter types can be measured even when the concentration of mixed water is 10% or more. As described above, the saturated water concentration of mineral oil-based lubricating oil is at most 200 ppm by weight.
  • the actual rolling component 3 is not used at a constant rotational speed and in one-way rotation. Therefore, it is desirable that acceleration / deceleration operation and swing motion can be performed in addition to constant rotation speed and one-way rotation. For acceleration / deceleration operation, it is necessary to be able to set at least a pattern as shown in FIG.
  • the main shaft 107 of the servo motor and the spindle 108 of the test mechanism having the rolling component simulated body 3 as one of the components are directly connected as shown in FIG. It is necessary to eliminate the superimposed vibration component as much as possible by performing the swing motion. Furthermore, it is necessary to increase the rigidity of the spindle 108 of the test mechanism as much as possible. As the swing motion condition, it is desirable that the swing angle and frequency can be set arbitrarily.
  • the servo motor amplifier may be controlled by a sequencer program.
  • the purpose of giving the function (5) is the following two points. One is to pass a weak current between the contact elements of the rolling element simulator 3 to measure the metal contact rate of the contact surface. The other is to apply a large current of about 1 A between the contact elements to wear the positive electrode side. By utilizing this phenomenon and making the test piece the positive electrode side, the newly formed metal surface can be positively exposed at the contact portion of the test piece, and the generation and penetration of hydrogen can be promoted. This is also disclosed in Non-Patent Document 9.
  • the rolling-slip fatigue life test method using the test apparatus of FIG. 8 satisfies all the functions (1) to (5), and assumes that the rolling component simulated body 3 is swung.
  • the main shaft 107 of 107A and the spindle 108 of the test mechanism are directly connected. When the swing operation is unnecessary, it is better to drive the spindle 108 of the test mechanism with a belt with an inexpensive induction motor or the like than an expensive servo motor with a rated rotational speed of 3000 rpm at most.
  • the conceptual diagram of the test apparatus shown in FIG. 8 shows a case where the rolling component simulated body 3 is a thrust bearing type.
  • the rotation direction and the revolution direction of the steel ball are different also in the case of the thrust bearing type, Slip occurs at the contact surface between the test piece and the steel ball in the simulated part 3.
  • the motion mechanism of the contact element may be devised.
  • the gear material is evaluated as the rolling part simulation body 3, since a larger slip acts on the gear, for example, the difference in the peripheral speed between the test piece and the object in contact with it is forcibly changed, and a large slip acts on the contact surface. It is necessary to devise it.
  • FIG. 10 and FIG. 11 show, as a conceptual diagram, another example of a test apparatus used in this rolling / sliding fatigue life test method.
  • a circulating oil supply mechanism 109 is used as a mechanism for putting the lubricating oil 5 ⁇ / b> A into the test oil tank 101.
  • the circulation oil supply mechanism 109 here is configured by providing a circulation pump 111, a capacitance meter 105, and a thermocouple 106 in the middle of the circulation path 110. Even in this case, the capacitance meter 105 and the thermocouple 106 may be provided in the test oil tank 101 as shown in FIG.
  • a reserve tank 112 is provided between the discharge port of the lubricating oil 5A of the test oil tank 101 and the circulation pump 111 in the test apparatus of FIG. Stirring is performed with a stirrer 113 or the like, and the capacitance and temperature are measured.
  • the thermocouple 106 is provided in the reserve tank 112. In order to sufficiently mix the lubricating oil 5A and water, it is better to reduce the volume of the reserve tank 112 to increase the stirring effect.
  • the amount of lubricating oil is desirably 100 mL or less. It is further desirable that water having a specific gravity greater than that of the lubricating oil 5A is easily discharged from the test oil tank 101 and the reserve tank 112. Therefore, in the test apparatus of FIG. 11, the discharge ports for the lubricating oil 5A of the test oil tank 101 and the reserve tank 112 are shown as bottom corners 101a and 112a (shown with a circle as enlarged in the figure). Yes.
  • each of the test oil tank 101 and the reserve tank 112 may be formed in a columnar shape, and groove-shaped recesses 101aa and 112aa that are recessed on the outer corner side that becomes so-called nuisance are provided continuously over the entire circumference of the bottom corners 101a and 112a. desirable. By these measures, it becomes easy to circulate an additive substance having a specific gravity larger than that of water.
  • the heat treatment was performed by heating in an RX gas atmosphere at 850 ° C. for 50 minutes, followed by tempering at 180 ° C. for 120 minutes.
  • 116 and the cage 117 were combined to perform the rolling part simulation body 3.
  • the reason why the outer ring test piece 114 is tapered is that when the steel ball 116 rotates with the contact angle, the steel ball 116 spins and slips on the contact surface with the outer ring test piece 114. When slipping occurs, the frequency of early damage due to hydrogen embrittlement increases.
  • FIG. 13 shows a schematic diagram of a test apparatus used in this specific test method.
  • the left side mechanism is the evaluation side 120a
  • the right side is the dummy side 120b.
  • the lubricating oil used additive-free turbine oil VG100 (density 0.887 g / cm 3, kinematic viscosity 100.9mm 2 /s@40°C,11.68mm 2 / s @ 100 °C), it 200 wt ppm, 5 Weight percent pure water was mixed.
  • the oil film parameter between the tapered outer ring specimen 114 and the steel ball 116 in the elastohydrodynamic lubrication calculation ignoring water contamination is about 3.
  • the calculated calculation life L10h of the tapered outer ring shape test piece 114 is 2611h when converted into a two-cylinder model. Non-patent document 10 discloses how to obtain L10h. However, the effect of slip was ignored.
  • Table 1 shows L10, L50, and e (Weibull slope) obtained by applying a 2-parameter Weibull distribution to the life when a 5% by weight water-mixed oil is periodically replaced.
  • the moisture concentration in the lubricating oil can be measured by the capacitance and temperature, and the capacitance meter 105 used therefor is roughly classified into the following two types. One is capable of measuring only up to a saturated water concentration or less, and the other is capable of measuring even when the saturated water concentration is exceeded and a white turbid state occurs.
  • the saturated moisture concentration of the lubricating oil was measured using a capacitance meter 105 that can only measure to a saturated moisture concentration or less.
  • Lubricating oil is VG100 additive-free turbine oil used in the specific example of the rolling and sliding fatigue life test.
  • a container 121 for example, the test oil tank 101 in the test apparatus of FIG. 8
  • a capacitance meter 105 was attached, and a silica gel container was provided.
  • the top lid 122 was attached, heated to 110 ° C. while stirring with a magnetic stirrer 113 capable of adjusting the temperature, and left for 1 hour.
  • FIG. 16 is a graph showing the change over time of the capacitance at that time.
  • the capacitance meter 105 outputs a value of 0 to 1 as the water activity. “0” is when the mixed water concentration is zero, and “1” is when the mixed water concentration is equal to or higher than the saturated water concentration.
  • the saturated moisture concentration inherent to the lubricating oil may be an index of hydrogen embrittlement resistance.
  • Lubricating oil is VG100 additive-free turbine oil used in the specific example of the rolling and sliding fatigue life test.
  • 70 to 80 mL of lubricating oil 5A is put into a 100 mL beaker 131 (for example, the test oil tank 101 in the test apparatus of FIG. 8), pure water is mixed, It stirred in the state hold
  • a 100 mL beaker 131 for example, the test oil tank 101 in the test apparatus of FIG. 8
  • pure water is mixed, It stirred in the state hold
  • the capacitance depends on the moisture concentration and the oil temperature.
  • the objective variable is a function of the mixed moisture concentration
  • the dependent variable is the capacitance
  • the oil temperature the capacitance
  • the mixed water concentration can be determined from the oil temperature. In obtaining the calibration curves as shown in FIG. 18 and FIG. 19, it is desirable to measure not only the new oil but also the used oil with different usage conditions.
  • the rolling component simulated body 3 including the test object as a component is immersed in the lubricating oil 5A stored in the test oil tank 101 and operated, and water is contained in the lubricating oil 5A.
  • the countermeasure elements corresponding to the use conditions of the rolling part simulated body 3 can be identified.
  • this rolling device state monitoring system 40 includes a moisture concentration calculation means 9 having a function of monitoring the mixed water concentration in the lubricating oil of the rolling device 1 and an abnormal diagnosis means 10 for mixed water concentration.
  • a vibration abnormality abnormality diagnosis means 51, a displacement abnormality abnormality diagnosis means 52, an internal crack abnormality diagnosis means 53, an impurity abnormality diagnosis means 54, and a general abnormality Diagnosis means 55 and communication means 56 are provided.
  • FIG. 21 is a diagram schematically showing the configuration of the wind turbine generator.
  • the wind power generator 400 includes a main shaft 420, a blade 430, a speed increaser 540, a power generator 550, a main shaft bearing device 461 having a main shaft bearing 460, and the data processing device 2.
  • the data processing device 30 includes a computer and a program that perform arithmetic processing in the state monitoring system 40 of the wind turbine generator.
  • the speed increaser 440, the generator 450, the main shaft bearing 460, and the data processing device 2 are stored in the nacelle 490, and the nacelle 490 is supported by the tower 500.
  • the main shaft 420 enters the nacelle 490, is connected to the input shaft of the speed increaser 440, and is rotatably supported by the main shaft bearing 460.
  • the main shaft 420 transmits the rotational torque generated by the blade 430 that receives wind force to the input shaft of the speed increaser 440.
  • the blade 430 is provided at the tip of the main shaft 420 and converts wind force into rotational torque and transmits it to the main shaft 420.
  • the main shaft bearing 460 is fixedly installed in the nacelle 490 via a bearing housing 462, and supports the main shaft 420 rotatably.
  • the bearing housing 462, the main shaft bearing 460, and a lubrication mechanism (not shown) for oil-lubricating the main shaft bearing 460 constitute one of the rolling devices 1 shown in FIG.
  • the main shaft bearing 460 is composed of a rolling bearing, for example, a self-aligning roller bearing, a tapered roller bearing, a cylindrical roller bearing, or a ball bearing. These bearings may be single row or double row.
  • the speed increaser 440 is provided between the main shaft 420 and the power generator 450, and increases the rotational speed of the main shaft 420 and outputs it to the power generator 450.
  • the generator 450 is connected to the output shaft of the speed increaser 440 and generates electric power by the rotational torque received from the speed increaser 440.
  • the generator 450 is constituted by, for example, an induction generator.
  • the generator 450 is also provided with a bearing that rotatably supports the rotor.
  • the rolling device 1 shown in FIG. 20 is a generic name for devices that cause a rotation operation in the mechanism constituting the wind power generator 400, and is, for example, a speed increaser 440.
  • the rolling device 1 may be a device including a main shaft bearing device 461 and a lubrication mechanism (not shown).
  • the mixed water concentration detection unit 11 including the water concentration calculation unit 9 and the mixed water concentration abnormality diagnosis unit 10 is provided in the data processing apparatus 30 described with FIG.
  • the abnormality diagnosis means 51 for vibration abnormality is a means for judging abnormality of the bearing using the output of the vibration sensor 70 for monitoring the vibration of any of the bearings constituting the rolling device 1.
  • the bearing whose vibration is monitored by the vibration sensor 70 is, for example, the main shaft bearing 460 and is installed in a bearing housing or the like.
  • the vibration sensor 70 is configured by an acceleration sensor using a piezoelectric element.
  • the abnormality diagnosing means 51 processes the detection signal of the vibration sensor 70, compares the processing result with a predetermined threshold value S2, and determines that it is abnormal when the threshold value S2 is exceeded.
  • the abnormality diagnosis means 51 obtains the rotation speed of the bearing or the shaft supported by the bearing by the rotation sensor 210, and uses the detected rotation speed for signal processing for abnormality determination. May be.
  • Displacement abnormality abnormality diagnosis means 52 is means for determining abnormality of the bearing using an output of a displacement sensor 240 that is a displacement meter for detecting a relative displacement between the inner and outer rings in the bearing constituting the rolling device 1. It is.
  • the abnormality diagnosis means 52 of the displacement abnormality compares the detected relative displacement or a value obtained by signal processing of the relative displacement with a predetermined threshold value S3, and determines that it is abnormal when the threshold value S3 is exceeded. To do.
  • the internal crack abnormality diagnosis means 53 uses the output of the AE sensor 250 for detecting an acoustic emission wave in the bearing constituting the rolling device 1, and determines the output or a value obtained by signal processing of the output. Is compared with the threshold value S4, and if the threshold value S4 is exceeded, it is determined that there is an abnormality
  • the impurity abnormality diagnosis means 54 uses the output of the sensor 270 that detects the amount of wear powder or other impurities in the lubricating oil of the rolling device 1, and determines this output or a value obtained by signal processing of this output. Compared with the threshold value S5, if the threshold value S5 is exceeded, it is determined that there is an abnormality.
  • the vibration abnormality abnormality diagnosis means 51, the displacement abnormality abnormality diagnosis means 52, the internal crack abnormality diagnosis means 53, and the impurity abnormality diagnosis means 54 are all mixed moisture concentrations detected by the moisture concentration calculation means 9. However, when the threshold value S1 is exceeded, the threshold values S2 to S5 that the abnormality diagnosis means 51 to 54 determine as abnormal may be changed, or the determination method may be changed.
  • the comprehensive abnormality diagnosis means 55 is a means for comprehensively judging the diagnosis results of the abnormality diagnosis means 10, 51 to 54 according to a predetermined rule.
  • the process of changing the threshold values S2 to S5 for determining that each abnormality diagnosis means 51 to 54 is abnormal or changing the determination method according to the mixed water concentration detected by the water concentration calculation means 9 is a comprehensive abnormality diagnosis. It may be performed by means 55.
  • FIG. 20 the description of the measurement chamber in which the capacitance detecting means 7 and the oil temperature measuring means 8 for monitoring the mixed water concentration are omitted, but FIGS. It is preferable to provide the measurement chamber 12 (FIGS. 22, 23, 25, and 26) as shown in FIG.
  • various rolling bearings are used inside the main shaft bearing device 461 and the speed increasing device 440 and are lubricated with oil.
  • a measurement chamber 12 is provided either inside or outside the pipeline or tank for supplying the lubricating oil, or the rolling device 1, and mixed moisture Measure the concentration.
  • the abnormality diagnosis of the mixed water concentration at the time of monitoring is performed by the abnormality diagnosis means 10 of FIG. 20 when the mixed water concentration at the time of monitoring exceeds a reference threshold value S1 as shown in FIGS. , Output a warning signal.
  • Capacitance meter 7 and oil temperature measuring means 8 consisting of a thermocouple are used to measure the mixed water concentration, but by using capacitance / oil temperature means 7A in which these are integrated, individually Man-hours for installing the sensor can be shortened.
  • a housing (not shown) for integrating two sensors serves as a cover for holding each sensor. Since the damage reduction effect can be expected, it is considered that the reliability of the sensor itself is also improved.
  • a measurement chamber in order to perform monitoring on the safe side with respect to the measurement of the mixed moisture concentration, a measurement chamber should be provided at a lower position than the tank or oil tank, and the difference in specific gravity should be used to facilitate the intake of water and additives near the sensor. Therefore, it is better to measure a higher concentration of mixed water.
  • the AE sensor 250 when the AE sensor 250 is used in combination instead of the vibration acceleration sensor, or when it is used at the same time, not only peeling of the surface but also cracks caused by hydrogen embrittlement generated in the metal can be measured. At this time, it is difficult to determine the crack by the single unit of the AE sensor 250 because AE waves of unknown cause are scattered, but when the AE wave is emitted in a state where the mixed moisture concentration is high, the occurrence of internal cracks is highly established. Therefore, it is possible to estimate the abnormality early and accurately.
  • the wear can be detected by collecting the relative displacement of the inner ring with respect to the outer ring of the bearing using the displacement sensor 240, and more comprehensive state monitoring becomes possible.
  • an impurity sensor 270 such as an oil deterioration sensor can reduce lubrication leading to bearing damage. Can be predicted.
  • the prediction of the early damage of the bearing caused by the lubricating oil becomes more accurate.
  • FIGS. 22 to 26 show modified examples of the mixed water concentration monitoring device 6.
  • FIG. 22 in the state monitoring system for the wind turbine generator according to the seventh embodiment shown in FIGS. 20 and 21 the mixed water concentration monitoring device 6 shown in FIGS. 22 to 26 may be used.
  • FIGS. 22 to 26 other configurations in the state monitoring system of the wind turbine generator are not shown.
  • the capacitance and the oil temperature of the lubricating oil 5 in the lubricating oil reservoir 4a in the housing 4 are measured, but in the eighth embodiment of FIG.
  • the configuration of the rolling device 1 excluding the above is the same as that of the second embodiment shown in FIG.
  • the actions and effects are the same as in the second embodiment, and detailed description thereof is omitted.
  • Other configurations and effects in the eighth embodiment in FIG. 22 are the same as those in the seventh embodiment shown in FIG.
  • the configuration of the rolling device 1 excluding the data processing device 30 is the same as that of the third embodiment of FIG. 3 described above. Since the operation and effect are the same as in the case of the third embodiment, detailed description is omitted.
  • the other configurations and effects in the ninth embodiment shown in FIG. 23 are the same as those in the seventh embodiment shown in FIG.
  • the configuration of the rolling device 1 excluding the data processing device 30 is the same as that of the above-described fourth embodiment of FIG.
  • the operation and effect are the same as in the case of the fourth embodiment, and detailed description thereof is omitted.
  • Other configurations and effects are the same as those of the seventh embodiment shown in FIG.
  • the configuration of the rolling device 1 excluding the data processing device 30 is the same as that of the fifth embodiment of FIG.
  • the actions and effects are the same as in the case of the fifth embodiment, and detailed description thereof is omitted.
  • Other configurations are the same as those of the tenth embodiment shown in FIG.
  • the configuration of the rolling device 1 excluding the data processing device 30 is the same as that of the sixth embodiment of FIG.
  • the actions and effects are the same as in the case of the sixth embodiment, and detailed description thereof is omitted.
  • This embodiment is the same as the seventh embodiment shown in FIG.
  • the vibration sensor 70 is installed in a bearing constituting the rolling device 1 in FIG. 20, for example, the main shaft bearing 460 in FIG.
  • the vibration sensor 70 detects the vibration of the bearing and outputs the detected value to the abnormality diagnosis device 51 for vibration abnormality in the data processing device 2.
  • the vibration sensor 70 includes an acceleration sensor using a piezoelectric element.
  • the abnormality diagnosis device 51 for vibration abnormality includes high-pass filters (hereinafter referred to as “HPF (High Pass F11ter)”) 510, 550, effective value calculation units 520, 560, an envelope processing unit 540, and a storage unit 580. And a diagnosis unit 590.
  • the effective value calculation unit 520 is a “first calculation unit” in the claims
  • the effective value calculation unit 560 is a “second calculation unit” in the claims.
  • the HPF 510 receives the detection value of the bearing vibration from the vibration sensor 70. Then, the HPF 510 passes a signal component higher than a predetermined frequency and blocks the low frequency component. The HPF 510 is provided to remove a direct current component included in the vibration waveform of the bearing. Note that the HPF 510 may be omitted if the output from the vibration sensor 70 does not include a DC component.
  • the effective value calculation unit 520 receives the vibration waveform of the bearing from which the DC component is removed from the HPF 510. Then, the effective value calculation unit 520 calculates an effective value (also referred to as “RMS (Root Mean Square) value”) of the vibration waveform of the bearing, and stores the calculated effective value of the vibration waveform to the storage unit 580. Output.
  • RMS Root Mean Square
  • Envelope processing unit 540 receives the vibration detection value of the bearing from vibration sensor 70.
  • Envelope processing section 540 generates an envelope waveform of the vibration waveform of the bearing by performing envelope processing on the received detection signal.
  • Various known methods can be applied to the envelope processing calculated in the envelope processing unit 540.
  • the vibration waveform of the bearing measured using the vibration sensor 70 is rectified to an absolute value, and low-pass By passing through a filter (LPF (Low Pass Filter)), an envelope waveform of the vibration waveform of the bearing 6 is generated.
  • LPF Low Pass Filter
  • the HPF 550 receives the envelope waveform of the vibration waveform of the bearing from the envelope processing unit 540. Then, the HPF 550 allows a signal component higher than a predetermined frequency to pass through the received envelope waveform and blocks a low-frequency component. The HPF 550 is provided to remove a direct current component included in the envelope waveform and extract an alternating current component of the envelope waveform.
  • the effective value calculator 560 receives the envelope waveform from which the DC component is removed, that is, the AC component of the envelope waveform from the HPF 550. Then, the effective value calculation unit 560 calculates the effective value (RMS value) of the AC component of the received envelope waveform, and outputs the calculated effective value of the AC component of the envelope waveform to the storage unit 580.
  • RMS value effective value
  • the storage unit 580 synchronizes and stores the effective value of the bearing vibration waveform calculated by the effective value calculation unit 520 and the effective value of the AC component of the envelope waveform calculated by the effective value calculation unit 560 from time to time.
  • the storage unit 580 is configured by, for example, a readable / writable nonvolatile memory.
  • the diagnosis unit 590 reads the effective value of the vibration waveform of the bearing and the effective value of the alternating current component of the envelope waveform, which are stored in the storage unit 580 from time to time, from the storage unit 580, and based on the two successive real values Diagnose abnormalities.
  • the threshold value S2 is used for this abnormality diagnosis.
  • the diagnosis unit 590 diagnoses an abnormality of the bearing based on a temporal change of the effective value of the vibration waveform of the bearing and the effective value of the AC component of the envelope waveform.
  • the effective value of the vibration waveform of the bearing calculated by the effective value calculation unit 520 is the effective value of the raw vibration waveform that is not subjected to the envelope processing, for example, separation occurs in a part of the raceway ring
  • the increase in the value is small for the impulse-like vibration in which the signal increases only when the rolling element passes through the separation site, and it is sustained due to rough contact or poor lubrication between the race and the rolling element. For vibration, the value increases greatly.
  • the effective value of the AC component of the envelope waveform calculated by the effective value calculation unit 560 is small and increases in some cases with respect to the continuous vibration generated when the raceway surface is rough or lubrication is poor.
  • the increase of the value becomes large for the impulse vibration. Therefore, in this specific example 1, by using the effective value of the vibration waveform of the bearing and the effective value of the AC component of the envelope waveform, it is possible to detect an abnormality that cannot be detected by only one of the effective values, and a more accurate abnormality diagnosis can be performed. It was made feasible.
  • FIG. 30 to 33 are waveform diagrams showing the vibration waveforms of the bearing measured using the vibration sensor 70.
  • FIG. 30 to 33 show vibration waveforms when the rotation speed of the main shaft 420 (FIG. 21) is constant.
  • FIG. 30 is a waveform diagram showing the vibration waveform of the bearing when no abnormality occurs in the bearing.
  • the horizontal axis represents time
  • the vertical axis represents the degree of vibration representing the magnitude of vibration.
  • FIG. 31 is a waveform diagram showing the vibration waveform of the bearing that is seen when surface roughness or poor lubrication of the bearing raceway occurs.
  • the vibration level increases and a state in which the vibration level increases continuously occurs. There are no noticeable peaks in the vibration waveform. Therefore, for such a vibration waveform, the effective value of the vibration waveform (output of the effective value calculation unit 520 (FIG. 29)) and the effective value of the AC component of the envelope waveform (effective value calculation) when no abnormality occurs in the bearing.
  • the effective value of the raw vibration waveform not subjected to the envelope processing increases, and the effective value of the AC component of the envelope waveform does not increase so much.
  • FIG. 32 is a waveform diagram showing the vibration waveform of the bearing in the initial stage when separation occurs in the track orbit transfer of the bearing.
  • the initial stage of the separation abnormality is a state in which separation occurs in a part of the raceway, and a large vibration is generated when the rolling element passes through the separation portion. Vibration occurs periodically according to the rotation of the shaft. When the rolling element passes through other than the peeled portion, the increase in vibration level is small. Therefore, when such a vibration waveform is compared with the effective value of the vibration waveform when no abnormality occurs in the bearing and the effective value of the alternating current component of the envelope waveform, the effective value of the alternating current component of the envelope waveform increases. The effective value of the vibration waveform does not increase so much.
  • FIG. 33 is a waveform diagram showing the vibration waveform of the bearing seen in the final stage of the separation abnormality.
  • the final stage of the separation abnormality is a state in which the separation is transferred to the entire area of the raceway, and the vibration degree increases as a whole compared to the initial stage of the abnormality, and the pulse vibration The tendency to become weaker. Therefore, when compared with the effective value of the vibration waveform and the effective value of the alternating current component of the envelope waveform at the initial stage of the separation abnormality, the effective value of the raw vibration waveform increases, and the alternating current component of the envelope waveform increases. The effective value decreases.
  • FIG. 34 shows the temporal values of the effective value of the vibration waveform of the bearing and the effective value of the alternating current component of the envelope waveform when separation occurs in a part of the bearing ring of the bearing and then the separation moves across the entire bearing ring. It is the graph which showed the change. Note that FIG. 34 and FIG. 35 described below show temporal changes in the respective effective values when the rotation speed of the main shaft 420 is constant.
  • a curve k1 indicates a temporal change in the effective value of the vibration waveform not subjected to the envelope processing
  • a curve k2 indicates a temporal change in the effective value of the AC component of the envelope waveform.
  • the effective value (k2) of the alternating current component of the envelope waveform greatly increases, while the effective value of the vibration waveform that is not subjected to the envelope processing. (K1) does not increase that much (near time t2).
  • FIG. 35 is a graph showing temporal changes in the effective value of the vibration waveform of the bearing and the effective value of the AC component of the envelope waveform when surface roughness or poor lubrication of the bearing ring of the bearing occurs. Also in FIG. 35, similarly to FIG. 34, the curve k1 shows the temporal change in the effective value of the vibration waveform not subjected to the envelope processing, and the curve k2 shows the temporal change in the effective value of the AC component of the envelope waveform. Show.
  • both the effective value (k1) of the vibration waveform and the effective value (k2) of the AC component of the envelope waveform are small. Note that the vibration waveform at time t11 is as shown in FIG.
  • the bearing abnormality diagnosis is more accurately performed based on the transition of the temporal change between the effective value (k1) of the raw vibration waveform not subjected to the envelope processing and the effective value (k2) of the AC component of the envelope waveform. Can be done.
  • the effective value of the vibration waveform of the bearing measured using the vibration sensor 70 and the envelope waveform generated by the envelope processing on the vibration waveform measured using the vibration sensor 70 Since the bearing abnormality is diagnosed on the basis of the effective value of the AC component, more accurate abnormality diagnosis can be realized as compared with the conventional frequency analysis technique. Further, unnecessary maintenance can be reduced, and the cost required for maintenance can be reduced.
  • FIG. 36 is a functional block diagram functionally showing the configuration of the vibration abnormality abnormality diagnosis means 51 in the specific example 2.
  • the abnormality diagnosing means 51 is the same as the abnormality diagnosing means 51 in the specific example 1 shown in FIG. 29.
  • the speed function generation unit 600 receives a detection value of the rotation speed of the main shaft 420 by the rotation sensor 210.
  • the rotation sensor 210 may output a detection value of the rotational position of the main shaft 420 and the speed function generator 600 may calculate the rotational speed of the main shaft 420.
  • the speed function generator 600 normalizes the effective value of the bearing vibration waveform calculated by the effective value calculator 120 with the rotational speed N of the main shaft 420, and an effective value calculator.
  • a speed function B (N) for normalizing the effective value of the AC component of the envelope waveform calculated by 560 with the rotational speed N of the main shaft 420 is generated.
  • the speed functions A (N) and B (N) are expressed by the following equations.
  • a (N) a ⁇ N ⁇ 0.5 (1)
  • B (N) b ⁇ N ⁇ 0.5 (2)
  • a and b are constants determined in advance by experiments or the like, and may be different values or the same values.
  • the corrected vibration degree calculation unit 530 receives the effective value of the vibration waveform of the bearing from the effective value calculation unit 520 and receives the speed function A (N) from the speed function generation unit 600. Then, the corrected vibration product calculating unit 530 uses the speed function A (N) to normalize the effective value of the vibration waveform calculated by the effective value calculating unit 520 with the rotation speed of the main shaft 420 (hereinafter referred to as “corrected vibration”). Called "degree"). Specifically, using the effective value vr of the vibration waveform calculated by the effective value calculator 520 and the speed function A (N), the corrected vibration degree vr * is calculated by the following equation.
  • Vra represents an average value of Vr at time 0 to T.
  • the corrected vibration seat calculation unit 530 outputs the corrected vibration seat Vr * calculated by Expression (3) to the storage unit 580.
  • the modified modulation degree calculation unit 570 receives the effective value of the AC component of the envelope waveform from the effective value calculation unit 560 and receives the speed function B (N) from the speed function generation unit 600. Then, the modified modulation degree calculation unit 570 uses the speed function B (N) to normalize the effective value of the alternating current component of the envelope waveform calculated by the effective value calculation unit 560 with the rotation speed of the main shaft 420 (hereinafter referred to as “the actual value”). (Referred to as “modified modulation degree”). Specifically, using the RMS value Ve and the velocity function B (N) of the alternating current component of the envelope waveform calculated by the RMS value calculation unit 560, the modified modulation degree Ve * is calculated by the following equation.
  • Vea represents the average value of Ve from time 0 to T.
  • the modified modulation degree calculation unit 570 outputs the modified modulation degree Ve * calculated by Expression (4) to the storage unit 580.
  • the corrected vibration degree calculation unit 530 outputs the corrected vibration degree Vr * calculated by Expression (3) to the storage unit 580.
  • the corrected vibration degree Vr * and the corrected modulation degree Ve * stored in the storage unit 580 are read by the diagnosis unit 590, and the read corrected vibration degree Vr * and the corrected modulation degree Ve * are temporally changed. Based on this transition, the diagnosis unit 590 performs bearing abnormality diagnosis.
  • the rotation sensor 210 may be attached to the main shaft 420, or a bearing with a rotation sensor in which the rotation sensor 210 is incorporated in the bearing may be used for the bearing to be diagnosed.
  • the correction value Vr * obtained by normalizing the effective value of the vibration waveform of the bearing by the rotation speed and the correction value obtained by normalizing the effective value of the AC component of the envelope waveform by the rotation speed Since abnormality is diagnosed based on the degree of modulation Ve *, it is possible to remove disturbance due to fluctuations in rotational speed and realize more accurate abnormality diagnosis.
  • FIG. 37 is a functional block diagram functionally showing the configuration of the abnormality diagnosis means 51 for vibration abnormality in the third specific example.
  • abnormality diagnosis unit 51 further includes frequency analysis units 620 and 630 in the configuration of abnormality diagnosis unit 51 shown in FIG.
  • the frequency analysis unit 620 receives the vibration waveform of the bearing from which the DC component is removed from the HPF 510. Then, the frequency analysis unit 620 performs frequency analysis on the received vibration waveform of the bearing, and outputs the frequency analysis result to the storage unit 580. As an example, the frequency analysis unit 620 performs a fast Fourier transform (FFT) process on the vibration waveform of the bearing received from the HPF 510 and outputs a peak frequency exceeding a preset threshold value to the storage unit 580.
  • FFT fast Fourier transform
  • the frequency analysis unit 630 receives from the HPF 550 the AC component of the envelope waveform from which the DC component has been removed. Frequency analysis unit 630 performs frequency analysis on the AC component of the received envelope waveform, and outputs the frequency analysis result to storage unit 580. As an example, frequency analysis unit 630 performs an FFT process on the AC component of the envelope waveform received from HPF 350 and outputs a peak frequency exceeding a preset threshold value to storage unit 580.
  • the diagnosis unit 590 reads out the frequency analysis results by the frequency analysis units 620 and 630 together with the corrected vibration degree Vr * and the corrected modulation degree Ve * from the storage unit 580, and temporally calculates the corrected vibration degree Vr * and the corrected modulation degree Ve *. By using the frequency analysis result together with the transition of the change, a more reliable abnormality diagnosis is performed.
  • the frequency analysis results obtained by the frequency analysis units 620 and 630 can be used to estimate a site where an abnormality has occurred when an abnormality is detected by an abnormality diagnosis based on the corrected vibration degree Vr * and the corrected modulation degree Ve *. . That is, when damage occurs inside the bearing, a vibration peak occurs at a specific frequency that is theoretically determined from the geometric structure and rotation speed inside the bearing, depending on the damaged part (inner ring, outer ring, rolling element). To do. Therefore, by using the frequency analysis results by the frequency analysis units 620 and 630 in combination with the abnormality diagnosis based on the above-described corrected vibration degree Vr * and corrected modulation degree Ve *, it becomes possible to diagnose the abnormality occurrence site more accurately. .
  • the frequency analysis units 620 and 630 are added in the specific example 2. However, the frequency analysis units 620 and 630 are added to the abnormality diagnosis unit 51 in the specific example 1 shown in FIG. May be.
  • the abnormality diagnosis based on the frequency analysis is used together, so that the reliability of the abnormality diagnosis can be further improved and the abnormality occurrence site can be diagnosed more accurately.
  • detection values of various sensors are used in combination in order to further improve the reliability of the bearing abnormality diagnosis.
  • Concrete example 4 includes vibration abnormality diagnosis means 52, internal crack abnormality diagnosis means 53, and impurity abnormality diagnosis means 54 in FIG. 20 instead of or in addition to these abnormality diagnosis means 52 to 54.
  • the abnormality abnormality diagnosis means 51 is added with functions of the displacement abnormality, internal cracks, and impurity abnormality.
  • FIG. 38 is a functional block diagram functionally showing the configuration of the vibration abnormality abnormality diagnosis unit 51 in the specific example 4.
  • abnormality diagnosis unit 51 includes a diagnosis unit 590A instead of diagnosis unit 590 in the configuration of abnormality diagnosis unit 51 shown in FIG.
  • Diagnosis unit 590A receives a detection value from at least one of displacement sensor 240, AE sensor 250, temperature sensor 260, and magnetic iron powder sensor 270 provided therein. Diagnosis unit 590A reads corrected vibration degree Vr *, corrected modulation degree Ve *, and frequency analysis results by frequency analysis units 620 and 630 from storage unit 580.
  • Diagnosis unit 590A includes displacement sensor 240, AE sensor 250, temperature sensor 260, and magnetic iron powder sensor 270 together with corrected vibration degree Vr *, corrected modulation degree Ve *, and frequency analysis results by frequency analysis units 620 and 630.
  • An abnormality diagnosis of the bearing is performed by using the detection value received from at least one together.
  • the displacement sensor 240 is attached to the bearing, detects the relative displacement of the inner ring with respect to the outer ring of the bearing 60, and outputs it to the diagnosis unit 590A.
  • the displacement sensor 240 detects the relative displacement of the inner ring with respect to the outer ring of the bearing 60, and outputs it to the diagnosis unit 590A.
  • the detection value from displacement sensor 240 exceeds a preset value (threshold value S3)
  • diagnosis unit 590A determines that an abnormality has occurred in the bearing. Since the displacement sensor 240 detects the relative displacement between the outer ring and the inner ring, it is necessary to maintain the accuracy of the non-measurement surface with high quality.
  • the AE sensor 250 is attached to the bearing, detects an acoustic emission wave (AE signal) generated from the bearing, and outputs it to the diagnosis unit 590A.
  • the AE sensor 250 is excellent in detecting internal cracks in the members constituting the bearing. By using the AE sensor 250 in combination, an abnormal peeling caused by internal cracks that are difficult to detect with the vibration sensor 70 is caused at an early stage. Can be detected.
  • Diagnosis unit 590A determines that the number of times that the amplitude of the AE signal detected by AE sensor 250 exceeds the set value exceeds threshold S4, or the detected AE signal or a signal obtained by envelope processing of AE signal is a threshold. If the value is exceeded, it is determined that an abnormality has occurred in the bearing.
  • the temperature sensor 260 is attached to the bearing, detects the temperature of the bearing, and outputs it to the diagnosis unit 590A.
  • a bearing generates heat due to poor lubrication or insufficient clearance inside the bearing, and becomes non-rotatable when it becomes seized after discoloration or softening of the rolling surface. Therefore, by detecting the temperature of the bearing with the temperature sensor 260, an abnormality such as poor lubrication can be detected at an early stage.
  • the oil temperature measuring means 8 for detecting the oil temperature may be used.
  • the diagnosis unit 590A further refers to the detection value of the temperature sensor 260 to diagnose abnormality such as a lubrication failure. To do. Diagnosis unit 590A may determine that an abnormality has occurred in the bearing only when the detected value from temperature sensor 260 exceeds a preset value.
  • the temperature sensor 260 is constituted by, for example, a thermistor, a platinum resistor, a thermocouple, or the like.
  • the magnetic iron powder sensor 270 detects the amount of iron powder contained in the lubricant of the bearing and outputs the detected value to the diagnosis unit 590A.
  • the magnetic iron powder sensor 270 is constituted by, for example, an electrode with a built-in magnet and a rod-like electrode, and is provided in a circulation route for the lubricant in the bearing.
  • the magnetic iron powder sensor 270 captures the iron powder contained in the lubricant with a magnet, and outputs a signal when the electrical resistance between the electrodes falls below a set value due to the adhesion of the iron powder. That is, when the bearing is worn, the iron powder generated by the wear is mixed with the lubricant.
  • the wear of the bearing 60 is detected by detecting the amount of iron powder contained in the bearing lubricant by the magnetic iron powder sensor 270. Can do.
  • the diagnosis unit 590A determines that an abnormality has occurred in the bearing 60.
  • an optical sensor that detects dirt on the lubricant by light transmittance may be used instead of the magnetic iron powder sensor 270.
  • the optical sensor irradiates the lubricating oil with light from the light emitting element, and detects the amount of bearing wear powder in the lubricating oil based on a change in the intensity of the light reaching the light receiving element.
  • the light transmittance is defined by the ratio between the output value of the light receiving element in a state where no foreign matter is mixed in the lubricating oil and the output value of the light receiving element when iron oxide is mixed, and the diagnosis unit 590A transmits the transmitted light. If the rate exceeds the set value, it is determined that an abnormality has occurred in the bearing.
  • the displacement sensor 240, the AE sensor 250, the temperature sensor 260, and the magnetic iron powder sensor 270 are shown. However, it is not always necessary to provide all of them. By providing at least one sensor, abnormality diagnosis can be performed. Reliability can be increased.
  • the detection values of various sensors are used in combination with the abnormality diagnosis, so that the reliability of the abnormality diagnosis can be further increased.
  • the displacement sensor 240 in combination it is possible to diagnose the wear inside the bearing, and by using the AE sensor 250 in combination, it is possible to diagnose an abnormal peeling caused by an internal crack at an early stage.
  • the temperature sensor 260 in combination it is possible to diagnose an abnormality such as poor lubrication at an early stage, and by using the magnetic iron powder sensor 270 and an optical sensor that detects contamination of the lubricant by light transmittance, etc. in combination.
  • the wear of the bearing can be diagnosed.
  • the displacement abnormality abnormality diagnosis means 52, the internal crack abnormality diagnosis means 53, and the impurity abnormality diagnosis means 54 in FIG. 20 are, in other words, the displacement abnormality abnormality diagnosis and the internal crack abnormality in the diagnosis unit 590A in FIG. Means for performing each function of diagnosis and abnormality diagnosis of impurities is provided independently of the abnormality diagnosis means 51 for vibration abnormality.
  • FIG. 39 shows an extended example of the state monitoring system of the rolling device in this wind turbine generator. Since the nacelle 490 (FIG. 21) is installed at a high place, it is desirable that the wind power generation apparatus state monitoring system is originally installed at a place away from the nacelle 490 in consideration of maintainability. However, transferring the vibration waveform of the bearing itself measured using the vibration sensor 70 to a remote place requires a transmission means having a high transfer speed, resulting in an increase in cost. Considering that the nacelle 490 is installed at a high place as described above, it is desirable to use wireless communication as a communication means from the nacelle 490 to the outside.
  • the data processing provided in the nacelle 490 is performed for the calculation of the moisture concentration, the calculation of the corrected vibration degree Vr * and the corrected modulation degree Ve *, and the frequency analysis processing (when frequency analysis is used in combination).
  • the data of the moisture concentration, the corrected vibration degree Vr * and the corrected modulation degree Ve *, and the frequency analysis result (peak frequency) which are executed in the apparatus and transmitted are transmitted from the nacelle 490 to the outside by radio.
  • the data wirelessly transmitted from the nacelle 490 is received by a communication server connected to the Internet, and transmitted to the diagnosis server via the Internet to perform bearing abnormality diagnosis.
  • FIG. 39 is a schematic diagram schematically showing an overall configuration of a rolling device state monitoring system in a wind turbine generator using communication means to a remote place.
  • the state monitoring system for a wind turbine generator includes a wind turbine generator 400, a communication server 310, the Internet 320, and a bearing condition diagnosis server 330.
  • the wind turbine generator 400 uses the detection value of the vibration sensor 70 (FIG. 20) to calculate the above-described corrected vibration degree Vr * and corrected modulation degree Ve * and the frequency analysis result (when frequency analysis is used together), The calculation result is output to communication server 310 by radio.
  • the communication server 310 is connected to the Internet 320. Then, the communication server 310 receives data transmitted from the wind power generator 400 by radio, and outputs the received data to the bearing state diagnosis server 330 via the Internet 320.
  • the bearing state diagnosis server 330 is connected to the Internet 320. Then, the bearing state diagnosis server 330 receives data from the communication server 310 via the Internet 320, and the corrected vibration degree Vr * and the corrected modulation degree Ve * calculated in the wind power generator 400 and the frequency analysis result (frequency analysis is performed). Based on the above, the abnormality diagnosis of the bearing provided in the wind turbine generator 400 is performed.
  • FIG. 40 is a functional block diagram functionally showing the configuration of the abnormality diagnosis means 51 for vibration abnormality in the data processing device included in the wind turbine generator 400 shown in FIG.
  • abnormality diagnosis unit 51 includes a wireless communication unit 280 in place of diagnosis unit 590 in the configuration of abnormality diagnosis unit 51 shown in FIG.
  • the wireless communication unit 280 continues the corrected vibration degree Vr * and the modified modulation degree Ve * and the frequency analysis results by the frequency analysis units 620 and 630 from the storage unit 580, and wirelessly transmits the continued data to the communication server 310 (FIG. 39). ).
  • abnormality diagnosis means 51 of the figure is the same as the abnormality diagnosis means 51 shown in FIG.
  • the above-described wind power generation apparatus state monitoring apparatus is configured independently of the existing power generation monitoring system. By comprising in this way, the introduction cost of the state monitoring apparatus of a wind power generator can be suppressed, without adding a change to the existing system.
  • the bearing abnormality diagnosis provided in the wind turbine generator 400 is performed in the bearing condition diagnosis server 330 provided in the remote place, the maintenance load and cost can be reduced. it can.
  • the signal output from the nacelle 490 is made wireless by providing the wireless communication unit 280 and the communication server 310, so that the wiring work in the nacelle 490 is performed. Wiring work in the tower 500 that supports the nacelle 490 can be minimized.
  • the 20 may be provided in the data processing device 2 installed in the nacelle 490, or may be provided in the bearing state diagnosis server 330 in FIG.
  • this invention is a rolling device which comprises other various machines, for example, an industrial machine, a machine tool
  • the present invention can be applied to state monitoring in a rolling device constituting a construction machine or the like.
  • the rolling device state monitoring system 6 includes a state monitoring system 40A provided in the data processing device 30A and various sensors (7, 8, 70, 210, 240, 250, 270).
  • the data processing device 30A is configured by a computer such as a microcomputer or a personal computer and its program, or by a dedicated electronic circuit.
  • the rolling device 1 in FIG. 41 may be other various devices such as a reduction mechanism or a machine tool in an industrial machine.
  • the state monitoring system 40A includes a life reduction rate monitoring unit 18 and a remaining life estimation unit 19 in addition to the moisture concentration calculating unit 9 that monitors the concentration of mixed water in the lubricating oil that lubricates the rolling component 3 of the rolling device 1. And a monitoring means 10 such as a moisture concentration / life reduction rate including a concentration abnormality diagnosis means 20, and various abnormality diagnosis means 51 to 55 are provided.
  • the life reduction rate monitoring unit 18 uses the determined relationship between the mixed water concentration c and the rolling component life reduction rate ⁇ from the mixed water concentration c detected by the water concentration calculation unit 9. This is a means for obtaining the life reduction rate ⁇ .
  • the remaining life estimation means 19 is a means for estimating the remaining life of the rolling component 3 to be monitored using the life reduction rate ⁇ output from the life reduction rate monitoring means 18 and a predetermined remaining life estimation formula.
  • the remaining life can be predicted as follows. For example, based on the mixed moisture concentration c and the amount of rotation (life) of the bearing, the concept of the minor rule (as shown in Non-Patent Document 11, in a material with various swing stress amplitudes, SN at “a certain failure probability” When the number of iterations from the diagram to failure is obtained for each stress threshold, the number of iterations for each stress is added to give a “severe failure probability”, resulting in peeling or cracking. Estimate the remaining life by applying the idea of reaching life. The method will be described below.
  • the relationship between the mixed water concentration c and the life (rotation amount) in the actual bearing is derived as shown in FIG.
  • the bearing life when the mixed water concentration is 0 is expressed as L10
  • the life of the actual bearing at any mixed water concentration is (1 ⁇ (c)) multiplied by L10 of the actual bearing.
  • the mixed water concentration c1 in the actual machine is. If the operating amount Nc1 of the bearing exceeds (1- ⁇ (c1)) L10 in this state, the bearing is expected to be damaged. That is, when Nc1 / (1- ⁇ (c1)) L10 exceeds 1, it can be considered that the lifetime is reached.
  • the remaining life estimation method introduces the concept of the minor rule that is frequently used when predicting the life of a rolling bearing under various load conditions.
  • Nc1 / (1- ⁇ (c1)) L10 when the rotation amount Nc1 is operated under a certain mixed water concentration c1 is obtained (hereinafter, this ratio is referred to as a rotation amount life ratio). That is, when operating under various moisture concentrations, the rotational life ratio is added, and when this sum exceeds 1, the bearing is considered to reach the end of its life. If the remaining life is L, it can be expressed by the following equation.
  • Nci cumulative amount of rotation in the mixing water content rank c i (i: rank number) c 0 to c R : rank of mixed water concentration (R: number of ranks)
  • Cave ⁇ may be the average mixed water concentration in the most recent time zone when the remaining life is calculated. For example, the average value for the last 10 days.
  • the mixed water concentration c detected by the water concentration calculation means 9 is used.
  • a measurement chamber is provided at a lower position than the tank or oil tank, and it is easy to take in water and additives, so that a higher mixed moisture concentration is measured. Good.
  • the above formula is set as a predetermined remaining life estimation formula, and the life reduction rate ⁇ obtained by the life reduction rate monitoring means 18 is used.
  • L 10 is L 10 in a state where hydrogen is not mixed can be obtained by the durability test. The obtained value is used.
  • the concentration abnormality diagnosis means 20 compares the water concentration detected by the water concentration calculation means 9 with a predetermined threshold value S1, and determines that it is abnormal when the threshold value S1 is exceeded.
  • the monitoring means 10A such as the moisture concentration / life reduction rate of the above configuration also detects the mixed water concentration by the water concentration calculation means 9 from the detected capacitance and oil temperature, The mixed water concentration in the lubricating oil 5 can be monitored and accurately obtained.
  • the life reduction rate ⁇ due to hydrogen embrittlement in the rolling component 3 is determined by the life reduction rate monitoring means 18 by the mixed water concentration and the life reduction of the rolling component. It is calculated from the relationship of rate. Further, the remaining life L is obtained by the remaining life estimating means 19. For example, the remaining life L can be predicted when the bearing is separated due to hydrogen embrittlement. Thus, by preparing for maintenance in advance for occurrence of an abnormality, it is possible to shorten the operation stop time after the occurrence of the abnormality. The effect is particularly great in a wind power generator. Furthermore, the abnormality diagnosis means 20 for abnormality of concentration performs abnormality determination when the mixed water concentration exceeds the threshold value S1.
  • the early damage resulting from the hydrogen embrittlement of the rolling components 3 becomes large to the extent that it is determined to be abnormal, it can be reliably detected and alerted.
  • means other than the monitoring means such as the moisture concentration / life reduction rate for detecting early damage are the same as those described in the above embodiments, and the description thereof is omitted.
  • FIG. 41 the description of the measurement chamber in which the capacitance detecting means 7 and the oil temperature measuring means 8 for monitoring the mixed water concentration are omitted, but FIGS. It is preferable to provide the measurement chamber 12 (FIGS. 44, 45, 47, and 48) as shown in FIG.
  • 44 to 48 show 14th to 18th embodiments of the mixed water concentration monitoring device 6A of the rolling device. Each of these embodiments is the same as the thirteenth embodiment of FIGS. 41 to 43 except for the items described below. 44 to 48, the means other than the monitoring means 10A such as the moisture concentration / life reduction rate among the means constituting the state monitoring system 40A are not shown.
  • the electrostatic capacity and oil temperature of the lubricating oil 5 in the lubricating oil reservoir 4a in the housing 4 are measured.
  • the configuration of the rolling device 1 excluding 30A is the same as that of the second embodiment shown in FIG. Since the operation and effect are the same as those in the second embodiment, a detailed description thereof will be omitted.
  • the configuration of the rolling device 1 excluding the data processing device 30A is the same as that of the third embodiment shown in FIG. Since the operation and effect are the same as in the case of the third embodiment, detailed description is omitted.
  • the configuration of the rolling device 1 excluding the data processing device 30A is the same as that of the above-described fourth embodiment in FIG.
  • the operation and effect are the same as in the case of the fourth embodiment, and thus detailed description thereof is omitted.
  • the configuration of the rolling device 1 excluding the data processing device 30A is the same as that of the fifth embodiment shown in FIG. Since the operation and effect are the same as those in the fifth embodiment, detailed description thereof is omitted.
  • the configuration of the rolling device 1 excluding the data processing device 30A is the same as that of the sixth embodiment of FIG. Since the operation and effect are the same as in the case of the sixth embodiment, detailed description will be omitted.
  • the rolling device may be provided with an inclined groove and a discharge port, and a reserve tank may be provided in the circulation oil supply portion.
  • the rolling and sliding fatigue life test method and test apparatus described above include the following modes 1 and 2.
  • the steel material to be tested is immersed in the lubricating oil in the test oil tank, and a load that causes the rolling and sliding contact is applied to the test material to roll the steel material.
  • a rolling sliding fatigue life test method for testing a sliding fatigue life in which water is injected into the lubricating oil, and the concentration of mixed water in the lubricating oil is measured by capacitance and oil temperature.
  • the test apparatus includes a test oil tank in which lubricating oil is put in a state in which a test object of steel material is immersed, and a means for giving a load that causes rolling and sliding contact with the test object in the test oil tank; Water injection means for injecting water into the lubricating oil in the test oil tank, electrostatic capacity measuring means for measuring the electrostatic capacity of the lubricating oil in the test oil tank, and oil for measuring the oil temperature of the lubricating oil in the test oil tank A temperature measuring means, a moisture concentration calculating means for calculating a mixed moisture concentration in the lubricating oil according to a predetermined rule from the capacitance measured by the capacitance measuring means and the oil temperature measured by the oil temperature measuring means; It is equipped with.
  • Vibration abnormality abnormality diagnosis means 52 Displacement abnormality abnormality diagnosis means 53 ... Internal crack abnormality diagnosis Means 54 ; Impurity abnormality diagnosis means 55 ... Comprehensive abnormality diagnosis means 70 ... Vibration sensor 101 ... Test oil tank 104 ; Syringe pump 105 ... Capacitance meter 106 ... Thermocouple 111 ... Circulation pump 112 ... Reserve tank 113 ... Stirrer 142 ... Water Concentration calculation means 141 ... test apparatus main body control apparatus 146 ... head part 210 ... rotation sensor 240 ... displacement sensor 250 ... AE sensor 270 ... impurity sensor 400 ... wind power generator 420 ... main shaft 430 ... blade 440 ... speed increaser 450 ...
  • Power generation Machine 460 ... Main shaft bearing 461 ... Main shaft bearing device 490 ... Nacelle 500 ... Tower 510 550 ... HPF 520, 560 ... RMS value calculation unit 530 ... Modified vibration product calculation unit 540 ... Envelope processing unit 570 ... Modified modulation degree calculation unit 580 ... Storage unit 590, 590A ... Diagnosis unit 600 ... Speed function generation unit 620, 630 ... Frequency analysis unit 680 ... Wireless communication unit S, S1 ... Threshold value

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Electrochemistry (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

 転動装置における潤滑油中の混入水分濃度を監視して、この精度良く求めることができる状態監視システムを提供するために、潤滑油(5)中の混入水分濃度を監視する混入水分濃度監視装置(6)を設ける。混入水分濃度監視装置(6)は、潤滑油(5)中の静電容量および油温をそれぞれ検出する静電容量検出手段(7)および油温測定手段(8)と、その検出された静電容量および油温から、定められた規則に従って混入水分濃度を検出する水分濃度計算手段(9)とを有する。

Description

転動装置の状態監視システムおよび状態監視方法 関連出願
 本出願は、2011年3月3日出願の特願2011-045949、特願2011-045950、特願2011-045951、および特願2011-045952優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 この発明は、油潤滑方式の転動装置に関し、特にその状態監視システムおよび状態監視方法に関する。
 軸受の異常予測がいくつかある(例えば、特許文献1)。その中で潤滑剤の劣化を測定し、軸受の寿命を予測することが行われている。潤滑剤が劣化すると軸受内の接触部の油膜厚さが減少し、軸受の摩耗や表面損傷が生じやすくなる。よって、潤滑油の劣化状態の測定により軸受の寿命低下を監視・予測している。
 転がり軸受や歯車などの転動部品は、水が混入する条件下(非特許文献1~5)、すべりを伴う条件下(非特許文献6)で使用されると、水や潤滑剤が分解して水素が発生し、それが鋼中に侵入することで早期損傷が起きることがある。接触要素間の接触面で金属接触が起き、金属新生面が露出すると、水や潤滑剤の分解による水素の発生、鋼中への侵入が促進される。このことは,水や潤滑油を滴下しながらエメリー紙で転動部品用鋼をアブレシブ摩耗させた後に昇温脱離水素分析を行った結果、鋼中から拡散性水素が明瞭に検出された実験事実によって証明されている(非特許文献7)。それによると、潤滑油よりも水を滴下した方が多くの拡散性水素が検出されている。したがって、すべりが生じる条件で用いられる転動部品の潤滑剤に水が混入すると、さらに水素が発生し,鋼中に侵入しやすくなるといえる。水素は鋼の疲労強度を著しく低下させるため(非特許文献8)、さほど大きくない最大接触面圧でも、水素が侵入すれば早期損傷が起きる。
特開2007-310611号公報 特開2006-138376号公報
エル.グランベルグ( L. Grunberg)著, Proc. Phys. Soc. (London), B66 (1953) 153-161. エル.グランベルグ、ディ.スコット( L. Grunberg and D. Scott)著, J. Inst. Petrol., 44 (1958) 406-410. エル.グランベルグ( L. Grunberg), ディ. ティ. ジャミソン、ディ.スコット(D. T. Jamieson and D. Scott)著, Philosophical magazine, 8 (1963)1553-1568. ピー.シャッツベルグ、アイ.エム.フェルセン( P. Schatzbergand I. M. Felsen)著, Wear, 12 (1968) 331-342. ピー.シャッツベルグ( P. Schatzberg)著, J. Lub. Tech., 231(1971) 231-235. ケイ.タマダ、エッチ.タナカ( K. Tamada and H. Tanaka)著, Wear, 199 (1996) 245-252. 谷本啓, 田中宏昌, 杉村丈一, トライボロジー会議予稿集, (2010-5 東京), 203-204. ワイ.マツバラ、エッチ.ハマダ( Y. Matsubara and H. Hamada)著, Bearing Steel Technology, ASTM STP1465, J. M. Beswick Ed., (2007), 153-166. エッチ.ミカミ、ティ.カワムラ( H. Mikami and T. Kawamura) 著, SAE Paper, (2007), No. 2007-01-0113. 牧野智昭,学位論文(京都大学),(2000),134p.
 上記のように、すべりが生じる条件で用いられる転動部品の潤滑剤に水が混入すると、さらに水素が発生し,鋼中に侵入し易くなるといえる。転動部品は今後ますます水素が発生し易い条件で使用される傾向にある。したがって、潤滑油中の混入水分濃度を監視し、混入水分濃度過多を診断することで、水素脆性起因の早期損傷を抑制する必要がある。
 特許文献2において、監視・診断システムの一つの機能として、後述の静電容量と比例関係にある誘電率を監視し、潤滑剤の酸化度合いを監視・診断するとある。しかしながら、概念のみが記されているだけであり、具体的なデータなどの記載はない。また転がり軸受の異常診断に限定されている。潤滑油中の混入水分濃度は静電容量だけでは求まらず,温度依存性も測定しなければならない。
 油潤滑方式の転動装置の潤滑油に水分が混入する理由を説明する。油潤滑方式の転動装置の潤滑油中の混入水分濃度は、特に風力発電装置のように屋外で用いられるものは、日々の寒暖、乾湿の変動により、マクロ的には閉鎖された領域内に潤滑油は留まっているように見えていてもミクロ的には装置内外で雰囲気は呼吸していると考えられる。転動装置の潤滑油中に水分が混入する場合として、例えば図49(油浴給油)や図50(循環給油) のような機構が考えられる。両図の上側の図のように、作動中は転動装置内の温度が外気温よりも高くなるため,転動装置内は正圧になり、内気の一部が外部に放出される。一方、両図の下側の図のように,停止して転動装置内の温度が外気温よりも低下すると,転動装置内は負圧になるため、転動装置内に外気が入り込む。入り込んだ外気が高湿の場合、転動装置内に結露が生じ、潤滑油中に水分が混入する。このように、通常の使用でも潤滑油中への水分混入が考えられる。風力発電装置や、建設機械装置のように、転動装置が豪雨や強い風雨にさらされる場合には、さらに多くの水分が混入すると考えられる。
 この発明の目的は、油潤滑方式の転動装置において、潤滑油中の混入水分濃度を監視して精度良く求めることができる機能を備え、転動部品の水素脆性起因の早期損傷を抑制することのできる転動装置の状態監視システムおよび状態監視方法を提供することである。
 この発明の転動装置の状態監視システムは、転動装置の状態を監視する状態監視システムであって、潤滑油中の混入水分濃度を監視する混入水分濃度監視装置を備え、この混入水分濃度監視装置は、前記潤滑油中の静電容量および油温をそれぞれ検出する静電容量検出手段および油温測定手段と、これら静電容量検出手段および油温測定手段で検出された静電容量および油温から、定められた規則に従って混入水分濃度を検出する水分濃度計算手段とを有する。
 この構成によると、潤滑油中の静電容量および油温を検出する静電容量検出手段および油温測定手段と、その検出された静電容量および油温から混入水分濃度を検出する水分濃度計算手段とを設け、静電容量および油温とから混入水分濃度を求めるようにしたため、精度良く混入水分濃度を求めることができる。このため、油潤滑方式の転動装置において、潤滑油中の混入水分濃度を監視して精度良く求めることができ、転動部品の水素脆性起因の早期損傷を抑制することができる。
 なお、この明細書において「転動装置」とは、転がり軸受やギヤなど転がりすべりする要素を含む部品から成る装置を言う。例えば、風力発電装置では、主軸の支持装置や増速機などがある。これら主軸支持装置や増速機には、各種の転がり軸受が用いられ、油により潤滑されている。この他、油潤滑方式の転動装置としては、例えば、以下のものが挙げられる。油潤滑は、細分化すれば油浴潤滑、ジェット給油、循環給油、オイルミスト潤滑、エアオイル潤滑、はねかけ給油、油圧作動油浸漬などがあるが、大別すると油浴潤滑か循環給油である。
・ガスタービン( ジェット給油)
・油圧ポンプ( 油圧作動油浸漬)
・印刷機( 循環給油)
・撚線機( ジェット給油または循環給油)
・製紙機械( 循環給油)
・産業機械用減速機( 循環給油)
・ロボット減速機(油浴潤滑)
・航空機エンジン( ジェット給油)
・建設機械各部( 油浴潤滑)
・鉄鋼圧延機ロールネック( オイルミスト潤滑)
・圧延機用減速機( 循環給油)
・工作機( エアオイル潤滑)
・鉄道車輌車軸( はねかけ給油)
・鉄道車輌駆動装置( 油浴潤滑)
・鉱山機械竪型ミルタイヤローラ( 循環給油または油浴潤滑)
・ミル用減速機( 循環給油または油浴潤滑)
・自動車変速機( はねかけ給油)
 この発明の転動装置の状態監視システムは、油浴潤滑を行う潤滑油貯留槽または循環給油を行う循環給油手段を有するものであっても良い。この場合に、転動装置のハウジングの内部に、前記静電容量検出手段および油温測定手段が設置された静電容量および油温の測定室を設けても良い。
 また、油浴潤滑を行う潤滑油貯留槽または循環給油を行う循環給油手段を有する場合に、転動装置のハウジングの内部または外部に静電容量および油温の測定室が設けられ、この測定室に前記静電容量検出手段および油温測定手段が設置されていても良い。転動装置の内部に静電容量および油温の測定室を設けると、ハウジングの空き空間等を利用して測定室が配置でき、測定室の設置によって転動装置が大型化することが回避できる。転動装置の外部に静電容量および油温の測定室を設けると、転動装置のハウジング内に測定室を設置する余裕がない場合にも適用でき、また既存の転動装置に対する設計変更箇所が少なくて済む。
 上記測定室を設けた場合に、前記静電容量および油温の測定室の中の潤滑油を攪拌する攪拌手段を設けても良い。潤滑油を攪拌することで、潤滑油と水の混合状態が良くなり、より一層精度良く、混入水分濃度の検出が行える。
 この発明において、前記測定室を設け、かつ前記攪拌手段を設けた場合に、静電容量および油温の測定室中に溜める潤滑油量を100mL以下とし、かつ変動量を±5mL以下とするのが良い。
 また、転動装置、並びに静電容量および油温の測定室から、潤滑油よりも比重が大きい水や添加物を排出され易くする手段を設けても良い。この手段は、例えば潤滑油貯留槽の底面の傾斜溝等によって構成される。傾斜溝の底面の最も低い部分から測定室内に潤滑油が流れるようにする。
 この発明において、前述のように、水分濃度計算手段で算出された混入水分濃度をしきい値と比較し、しきい値を超える場合に異常と診断する異常診断手段を設けることが好ましい。この異常診断手段を設けることで、混入水分濃度がしきい値を超えた場合の異常診断が可能となり、転動部品の水素脆性起因の早期損傷をより確実に抑制することができる。前記しきい値は、次のいずれかの方法で求めて設定しても良い。
 前記異常診断手段の前記しきい値を設定する方法は、潤滑油中に水を注入し、静電容量および油温を測定して混入水分濃度を監視し、それをフィードバックして混入水分濃度を一定の範囲に保つように水注入量を制御する転がりすべり疲労寿命試験によって求めた混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定する。なお、この試験で求めるしきい値は、判断に適切であるとして任意に定めた混入水分濃度となる値とすれば良い。以下、各試験の場合も同様である。
 また、接触する要素間の運動機構によって接触面にすべりを生じさせる転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定しても良い。
 接触する要素間の接触面に強制的にすべりを生じさせる転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定しても良い。
 損傷が起きるまで一定回転速度、一方向回転させる転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定しても良い。
 損傷が起きるまで加減速運転させる転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定しても良い。
 損傷が起きるまで揺動運動させる転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定しても良い。
 揺動運動で損傷を振動で精度よく検出できるよう、重畳する振動成分をなるべく排除するため、サーボモータの主軸と試験部のスピンドルを直結させる機構の転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定しても良い。
 損傷対象を正極側として接触要素間に電流を流して損傷対象の摩耗を促進するため、スピンドルの支持軸受にセラミック製の転動体を用い、モータと試験部のスピンドルを絶縁する転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定しても良い。
 一定回転速度、一方向回転に加え、加減速運転、揺動運動が可能な転がりすべり疲労寿命試験装置によって混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定しても良い。
 この発明の状態監視システムにおいて、さらに、前記転動装置を構成する軸受の振動を監視する振動センサと、この振動センサの出力を用いて前記軸受の異常を判定する振動異常の異常診断手段を有するものであっても良い。
 前記状態監視システムに、前記転動装置を構成する軸受の振動を監視する振動センサと、この振動センサの出力を用いて前記軸受の異常を判定する振動異常の異常診断手段とを設け、混入水分濃度の検出と振動検出による異常診断とを併用するため、軸受の総合的な異常診断が行える。
 前記振動異常の異常診断手段は、第1および第2の演算部と、エンベロープ処理部と、診断部とを含むものであっても良い。第1の演算部は、振動センサを用いて測定された振動波形の実効値を算出する。エンベロープ処理部は、振動センサを用いて測定された振動波形にエンベロープ処理を行なうことによって振動波形のエンベロープ波形を生成する。第2の演算部は、エンベロープ処理部によって生成されたエンベロープ波形の交流成分の実効値を算出する。診断部は、第1の演算部によって算出された振動波形の実効値および第2の演算部によって算出されたエンベロープ波形の交流成分の実効値に基づいて転がり軸受の異常を診断する。
 好ましくは、転がり軸受によって支持される軸または転がり軸受の回転速度を検出するための回転センサをさらに備え、前記振動異常の異常診断手段は、修正振動度算出部と、修正変調度算出部とをさらに含むものであっても良い。修正振動度算出部は、第1の演算部によって算出された振動波形の実効値を回転速度で正規化した修正振動度を算出する。修正変調度算出部は、第2の演算部によって算出されたエンベロープ波形の交流成分の実効値を回転速度で正規化した修正変調度を算出する。そして、診断部は、修正振動度および修正変調度に基づいて転がり軸受の異常を診断する。さらに好ましくは、診断部は、修正振動度および修正変調度の時間的変化の推移に基づいて転がり軸受の異常を診断する。
 好ましくは、前記転動装置を構成する軸受における、内外輪間の相対変位を検出する変位計と、この変位計の出力を用いて前記軸受の異常を判定する変位異常の異常診断手段とを設けても良い。そして、異常診断手段は、変位センサの検出値を用いて転がり軸受の異常を診断する。
 また、好ましくは、転がり軸受から発生するアコースティックエミッション波を検出するためのAEセンサをさらに備えるものであっても良い。そして、異常診断手段は、AEセンサの検出値を用いて転がり軸受の異常を診断する。
 また、好ましくは、転がり軸受の潤滑油の中の磨耗粉またはその他の不純物の量を測定するためのセンサをさらに備えるものであっても良い。そして、異常診断手段は、センサの測定値を用いて転がり軸受の異常を診断する。
 この発明の状態監視システムは、前記振動監視システムを用い、潤滑油中に水を注入し、静電容量および油温を測定して混入水分濃度を監視し、混入水分濃度から求められる適切な水分量をフィードバックして混入水分濃度を一定の範囲に保つように水注入量を制御する転がりすべり疲労寿命試験によって求めた混入水分濃度のしきい値を求め、この求めたしきい値を前記混入水分濃度の異常判断に用いる。なお、この試験で求めるしきい値は、判断に適切であるとして任意に定めた混入水分濃度となる値とすれば良い。また、上記の「適切な水分量」は、混入水分濃度と補給すべき水分量の関係を適宣定めた関係式やテーブル等の手段を用いて定められる量である。以下、各試験の場合も同様である。
 また、水を注入するのに代えて、接触する要素間の運動機構によって接触面にすべりを生じさせる転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、この求めたしきい値を用いても良く、接触する要素間の接触面に強制的にすべりを生じさせる転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、この求めたしきい値を用いても良く、損傷が起きるまで加減速運転させる転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、その値を用いても良い。
 また、注入するのに代えて、損傷対象を正極側として接触要素間に電流を流して損傷対象の摩耗を促進するため、スピンドルの支持軸受にセラミック製の転動体を用い、モータと試験部のスピンドルを絶縁する転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、その値を前記混入水分濃度の異常診断に用いても良い。また、損傷対象を正極側として接触要素間に電流を流した場合、損傷対象の摩耗が促進するという現象が知られている。そこで、スピンドルの支持軸受にセラミック製の転動体を用い、モータと試験部のスピンドルとの間が絶縁構造となっている転がりすべり疲労寿命試験を用い、上記と同様の試験によって混入水分濃度のしきい値を求め、その値を前記混入水分濃度の異常診断に用いても良い。
 この発明の状態監視システムにおいて、さらに、、定められた混入水分濃度と転動部品の寿命低下率の関係を用いて、前記水分濃度計算手段で検出された混入水分濃度から前記転動装置の前記転動部品の寿命低下率を求める寿命低下率監視手段とを備えていても良い。
 軸受等の転動部品の水素脆化は、潤滑剤中の水分が多くなると、発生確率が上がる。そこで、混入水分濃度と転動部品の寿命低下率の関係を予め求めておいて、寿命低下率監視手段に定めておき、前記関係と検出された滑油中の混入水分濃度とを用いることで、軸受等の転動部品の寿命低下率を求めることができる。混入水分濃度の検出は、潤滑油中の静電容量および油温を検出し、検出された静電容量および油温から、水分濃度計算手段により、定められた規則に従って求める。混入水分濃度と静電容量および油温は関係があるため、その関係を予め求めておき、水分濃度計算手段に設定すれば良い。なお、上記の各「予め」とは、この転動部品の状態監視装置により監視を行うよりも前にという意味である。このように、軸受等の転動部品における水素脆性による寿命低下率を求めることができる。
 この状態監視システムにおいて、前記寿命低下率監視手段が出力した寿命低下率と、定められた余寿命推定式とを用いて前記転動部品の余寿命を推定する余寿命推定手段を設けても良い。寿命低下率と余寿命とは密接な関係があるため、寿命低下率が求まると、余寿命を推定でき、例えば、水素脆性による軸受の剥離の発生時期を予測することができる。これにより、異常発生に備え、メンテナンスの準備を予めしておくことで、異常発生後の稼働停止時間の短縮が可能となる。特に風力発電装置においてその効果が大きい。
 この発明の他の状態監視方法は、前記寿命低下率監視手段を備えた状態監視システムを用いて前記転動部品を含む装置である転動装置の前記転動部品を潤滑する潤滑油中の静電容量および油温を検出し、これらの検出された静電容量および油温から、定められた規則に従って油中の混入水分濃度を検出する水分濃度監視過程と、定められた混入水分濃度と転動部品の寿命低下率の関係を用いて、前記水分濃度監視過程で検出された混入水分濃度から前記転動装置の前記転動部品の寿命低下率を算出する寿命低下率計算過程とを備える。この方法によると、この発明の転動部品の状態監視装置につき前述したと同様に、軸受等の転動部品における水素脆性による寿命低下率を求めることができる。
 また、この発明の転動装置の状態監視方法は、前記寿命低下率監視手段を備えた状態監視システムを用いて、混入水分濃度と転動部品の寿命低下率の関係を、つぎの方法(A)~(G)で求めて用いることができる。
 (A)鋼製材料からなる試験片を潤滑する潤滑油に対して、注水手段により潤滑油中に水を注入し、静電容量および油温を測定して混入水分濃度を監視し、この測定結果により得られた混入水分濃度を前記注水手段にフィードバックして混入水分濃度を一定の範囲に保つように水注入量を制御する鋼製材料の転がりすべり疲労寿命試験によって、混入水分濃度に対する寿命低下率の関係を求め、この求められた関係を、前記寿命低下率監視手段に、前記定められた混入水分濃度と転動部品の寿命低下率の関係として設定する。なお、上記の求められた混入水分濃度と転動部品の寿命低下率の関係は、そのまま寿命低下率監視手段に設定しても良いが、適宜の修正を加えて寿命低下率監視手段に設定しても良い。以下、各試験の場合も同様である。
 (B)接触する要素間の運動機構によって接触面にすべりを生じさせる鋼製材料の転がりすべり疲労寿命試験によって、混入水分濃度に対する寿命低下率の関係を求め、この求められた関係を、前記寿命低下率監視手段に、前記定められた混入水分濃度と転動部品の寿命低下率の関係として設定する。
 (C)接触する要素間の接触面に強制的にすべりを生じさせる鋼製材料の転がりすべり疲労寿命試験によって、混入水分濃度に対する寿命低下率の関係を求め、この求められた関係を、前記寿命低下率監視手段に、前記定められた混入水分濃度と転動部品の寿命低下率の関係として設定する。
 (D)損傷が起きるまで加減速運転させる転がりすべり鋼製材料の疲労寿命試験によって、混入水分濃度に対する寿命低下率の関係を求め、この求められた関係を、前記寿命低下率監視手段に、前記定められた混入水分濃度と転動部品の寿命低下率の関係として設定する。
 (E)損傷が起きるまで揺動運転させる鋼製材料の転がりすべり疲労寿命試験によって、混入水分濃度に対する寿命低下率の関係を求め、この求められた関係を、前記寿命低下率監視手段に、前記定められた混入水分濃度と転動部品の寿命低下率の関係として設定する。
 (F)揺動運動で損傷を振動で精度よく検出できるよう、重畳する振動成分をなるべく排除するため、サーボモータの主軸と、鋼製材料の試験片を用いた試験部のスピンドルを直結させる機構の転がりすべり疲労寿命試験によって、混入水分濃度に対する寿命低下率の関係を求め、この求められた関係を、前記寿命低下率監視手段に、前記定められた混入水分濃度と転動部品の寿命低下率の関係として設定する。
 (G)損傷対象を正極側として接触要素間に電流を流した場合、損傷対象の摩耗が促進するという現象が知られている。そこで、スピンドルの支持軸受にセラミック製の転動体を用い、モータと試験部のスピンドルの間が絶縁構造となっている転がりすべり疲労寿命試験を用い、前記と同様の試験によって混入水分濃度に対する寿命低下率の関係を求め、この求められた関係を、前記寿命低下率監視手段に、前記定められた混入水分濃度と転動部品の寿命低下率の関係として設定する。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1実施形態に係る転動装置の状態監視システムの概念構成を示すブロック図である。 この発明の第2実施形態に係る転動装置の状態監視システムの概念構成を示すブロック図である。 この発明の第3実施形態に係る転動装置の状態監視システムの概念構成を示すブロック図である。 この発明の第4実施形態に係る転動装置の状態監視システムの概念構成を示すブロック図である。 この発明の第5実施形態に係る転動装置の状態監視システムの概念構成を示すブロック図である。 この発明の第6実施形態に係る転動装置の状態監視システムの概念構成を示すブロック図である。 転動装置の具体例となる一例を示す縦断面図である。 前記各実施形態に係る転動装置の状態監視システムを用いた異常診断しきい値設定方法で定める適切なしきい値を求めるための、転がりすべり疲労寿命試験方法に用いる試験装置の一例の概念図である。 同試験方法における加減速運転の最小パターン設定の例を示すパターン図である。 試験装置の他の例を模式的に示した概念図である。 試験装置のさらに他の例を模式的に示した概念図である。 (A)は同試験方法に用いる転動部品模擬体を構成する試験片の一例の正面図、(B)は同試験片を組み込んだ転動部品模擬体の縦断面図である。 図12(A),(B)の転動部品模擬体の試験片の試験に用いる試験装置の縦断面図である。 同試験で測定した混入水分量の変化を示すグラフである。 (A),(B)は潤滑油の飽和水分濃度測定に用いる試験装置を模式的に示す正面図、および縦断面図である。 図15の試験装置で測定した混入水分濃度と静電容量の関係を示すグラフである。 (A),(B)は水混入油の静電容量測定に用いる試験装置を模式的に示す正面図、および縦断面図である。 図17(A),(B)の試験装置で測定した混入水分濃度と静電容量の関係を示すグラフである。 同試験で測定した油温と静電容量の関係を示すグラフである。 この発明の第7実施形態に係る転動装置の状態監視システムの概念構成を示すブロック図である。 同状態監視システムの監視対象となる転動装置を備えた風力発電装置の破断側面図である。 この発明の第8実施形態に係る転動装置の状態監視システムの概念構成を示す一部省略ブロック図である。 この発明の第9実施形態に係る転動装置の状態監視システムの概念構成を示す一部省略ブロック図である。 この発明の第10実施形態に係る転動装置の状態監視システムの概念構成を示す一部省略ブロック図である。 この発明の第11実施形態に係る転動装置の状態監視システムの概念構成を示す一部省略ブロック図である。 この発明の第12実施形態に係る転動装置の状態監視システムの概念構成を示す一部省略ブロック図である。 洋上や寒暖の変化が激しい地域での水分濃度(予測データ)を示すグラフである。 陸上や寒暖の変化が少ない地域での水分濃度(予測データ)を示すグラフである。 第7実施形態に係る状態監視システムを用いた振動異常の異常診断手段の具体例1を示す概念構成を示すブロック図である。 軸受に異常が発生していないときの軸受の振動波形を示した波形図である。 軸受の軌道輪の面荒れや潤滑不良が発生したときに見られる軸受の振動波形を示した波形図である。 軸受の軌道輸に剥離が発生したときの初期段階における軸受の振動波形を示した波形図である。 剥離異常の末期段階に見られる軸受の振動波形を示した波形図である。 軸受の軌道輪の一部に剥離が生じ、その後、軌道輪全域に剥離が転移していったときの軸受の振動波形の実効値およびエンベロープ波形の交流成分の実効値の時間的変化を示したグラフである。 軸受の軌道輸の面荒れや潤滑不良が発生したときの軸受の振動波形の実効値およびエンベロープ波形の交流成分の実効値の時間的変化を示したグラフである。 同振動異常の異常診断手段の具体例2を示す概念構成のブロック図である。 同振動異常の異常診断手段の具体例3を示す概念構成のブロック図である。 同振動異常の異常診断手段の具体例4を示す概念構成のブロック図である。 遠隔地への通信手段を用いた風力発電装置における転動装置の状態監視システムの全体構成を概略的に示した模式図である。 同振動異常の異常診断手段の具体例5を示す概念構成のブロック図である。 この発明の第13実施形態に係る転動装置の状態監視システムの概念構成を示すブロック図である。 予備実験での油中の混入水分濃度と寿命低下率の関係(予測データ)を示すグラフである。 実機軸受で予想される混入水分濃度と軸受寿命の関係(予測データ)を示すグラフである。 この発明の第14実施形態に係る転動装置の状態監視システムの概念構成を示す一部省略ブロック図である。 この発明の第15実施形態に係る転動装置の状態監視システムの概念構成を示す一部省略ブロック図である。 この発明の第16実施形態に係る転動装置の状態監視システムの概念構成を示す一部省略ブロック図である。 この発明の第17実施形態に係る転動装置の状態監視システムの概念構成を示す一部省略ブロック図である。 この発明の第18実施形態に係る転動装置の状態監視システムの概念構成を示す一部省略ブロック図である。
油浴潤滑形式の転動装置における潤滑油中への水分混入の形態を示す模式図である。 循環給油形式の転動装置における潤滑油中への水分混入の形態を示す模式図である。
 この発明の第1実施形態に係る転動装置の状態監視システムを図1と共に説明する。図1は、この転動装置の状態監視システムの概念構成を示す。この転動装置の状態監視システムは、転動装置1と、この転動装置1を制御する制御装置2とで構成される。転動装置1は、状態監視システムのうち、制御装置2を除く部分を言う。転動装置1は、転がり軸受やギヤ等のような転がりすべりする接触要素を含む部品を有する装置のことであって、減速機、増速機、その他の各種の機器のいずれであってもよく、例えば〔課題を解決するための手段〕で列挙した各装置のうちのいずれかで構成される。
 この実施形態では、転動装置1のハウジング4内に、転がり軸受やギヤからなる複数の転動部品3を有している。なお、この明細書において、「転動部品」とは、転がりすべりする接触要素を含む部品のことを言う。潤滑方式は、油潤滑方式のうち、油浴潤滑方式であって、ハウジング4の一部が、前記転動部品3のうちの全て、またはいずれかの転動部品3が浸漬されるように潤滑油5を溜める潤滑油貯留槽4aとされている。
 上記構成の転動装置1において、潤滑油貯留槽4a内の潤滑油5の混入水分濃度を監視する混入水分濃度監視装置6を設けている。この混入水分濃度監視装置6は、潤滑油5中の静電容量および油温をそれぞれ検出する静電容量検出手段7および油温測定手段8と、混入水分濃度検出手段11とでなる。混入水分濃度検出手段11は、前記静電容量検出手段7および油温測定手段8で検出された静電容量および油温から、定められた規則に従って混入水分濃度を検出する水分濃度計算手段9と、この水分濃度計算手段9で算出された混入水分濃度をしきい値Sと比較し、しきい値Sを超える場合に異常と診断する異常診断手段10とでなる。なお、異常診断手段10は必ずしも設けなくても良い。静電容量検出手段7は、液体中に浸漬されてその液体の静電容量の検出が可能なものであれば良く、各種の形式の静電容量計を用いることができる。油温測定手段8には、熱電対等が用いられる。前記静電容量検出手段7と油温測定手段8とは、互いに一体化された一体型の静電容量・油温手段7Aで構成されていても良い。
 水分濃度計算手段9および異常診断手段10、すなわち混入水分濃度検出手段11は、マイクロコンピュータやパーソナルコンピュータ等のコンピュータとそのプログラムとで構成され、または専用の電子回路により構成される。例えば、転動装置1を制御するコンピュータ式の制御装置2の一部として設けられ、または制御装置2とは独立した装置として設けられる。
 水分濃度計算手段9は、静電容量および油温と混入水分濃度との関係を、計算式やテーブルで設定した関係設定手段9aを有していて、入力された静電容量および油温とから、関係設定手段9aに記憶された規則、すなわち、定められた規則を用いて混入水分濃度を計算する。
 この構成の転動装置の状態監視システムによると、潤滑油5中の静電容量および油温を静電容量検出手段7および油温測定手段8により検出し、その検出された静電容量および油温から、水分濃度計算手段9により混入水分濃度を検出する。このように、静電容量および油温とから混入水分濃度を求めるようにしたため、精度良く混入水分濃度を求めることができる。したがって、油潤滑方式の転動装置1において、潤滑油5中の混入水分濃度を監視して精度良く求めることができ、転動部品の水素脆性起因の早期損傷を抑制することができる。また、異常診断手段10を有し、混入水分濃度がしきい値Sを超えた場合に異常の判定を行うようにしたため、転動部品3の水素脆性起因の早期損傷をより確実に抑制することができる。静電容量および油温とから混入水分濃度を精度良く検出できる理由については、後述するしきい値Sの設定方法で説明する。
 上記実施形態では、ハウジング4における潤滑油貯留槽4a内の潤滑油5の静電容量および油温を測定するようにしたが、図2に示す第2実施形態のように、ハウジング4内の一部に、潤滑油貯留槽4a内と連通した測定室12を設け、静電容量検出手段7および油温測定手段8は、測定室12内の静電容量および油温をそれぞれ測定するように設置しても良い。この場合に、測定室12の中の潤滑油5を攪拌する攪拌手段13を設けても良い。測定室12は、例えば潤滑油貯留槽4a内の一部を仕切った仕切室とされる。測定室12がハウジング4内であると、測定室12を設けることによる転動装置の大型化が回避できる。攪拌手段13は、例えば攪拌用の回転翼と、この回転翼を回転させるモータとでなる。測定室12を設け、攪拌手段13を設けた場合、測定室中12に溜める潤滑油量を100mL以下とし、かつ変動量を±5mL以下とするのが良い。図2の第2実施形態におけるその他の構成は、図1に示す第1実施形態と同様である。
 測定室12を設けることで、安定した静電容量および油温の測定が行える。また、攪拌手段13を設けることで、潤滑油と水の混合状態が良くなり、より安定した静電容量および油温の測定が行える。
 後に、転がりすべり疲労寿命試験と共に説明するが、潤滑油と水の混合状態が良好でない場合、混入水分濃度が高くなるにつれて、静電容量の値が不安定になる。このことは、油浴循環方式や油潤滑方式の転動装置の潤滑油中の混入水分濃度を監視する場合についても言えることである。故意に潤滑油と水の混合状態をよくする転がりすべり疲労寿命試験に対し、転動装置は停止中の場合もあるため、潤滑油と水の混合状態がよくないことは容易に想像できる。潤滑油と水が分離している場合もある。そのため、転動装置1においても、なるべく潤滑油と水をよく混合させる機構を設け、なるべく正確に静電容量を測定することが望ましい。そのため、攪拌手段13を設けて攪拌することが好ましい。
 なお、図示しないが、前記測定室12を設けずに、攪拌手段13を潤滑油貯留槽4a内の隅部等に設けても良い。しかし、潤滑油と水との混合状態をなるべく良好にするために、間仕切りをして測定室12を設けるのが良い。間仕切りしなければ、潤滑油と水との混合状態を良好にするのは困難と考えられる。しかし、潤滑油と水の混合状態がよくない場合、高めの静電容量値が測定されるため、混入水分濃度を高め、すなわち安全目に監視することができる。ただし、潤滑油と水が分離している場合、さらに高めの静電容量値が測定されると考えられる。その場合、安全目過ぎる監視となり、メンテナンスの回数や費用が過剰になる可能性があるため,留意が必要である。
 測定室12は、図3に示す第3実施形態のようにハウジング4の外部に設置しても良い。この場合に、測定室12は、図示するようにハウジング4に接して設けても、ハウジング4から離して設けても良い。離した場合は、測定室12とハウジング4の潤滑油貯留槽4aとは、連通管(図示せず)等で連通させる。測定室12をハウジング4外に設けると、ハウジング4内に測定室12や静電容量検出手段7および油温測定手段8を設ける適切な場所がなくても、静電容量検出手段7および油温測定手段8による測定が行える。なお、図3の第3実施形態におけるその他の構成,効果は、図1に示す第1実施形態と同様である。
 図4に示す第4実施形態は、循環給油方式とした例、つまりハウジング4の潤滑油貯留槽4aに対して循環給油を行う循環給油手段14を設けた例である。循環給油手段14は、潤滑油貯留槽4aに両端が連通したパイプ等による油循環路15と、この油循環路15を介して潤滑油5を循環させるポンプ16とでなる。油循環路15は、潤滑油貯留槽4aの底部の排出口15aと、潤滑油貯留槽4aの中間高さ位置または上部の給油口15bとに連通する。その他の構成,効果は、図1に示す第1実施形態と同様である。
 図5に示す第5実施形態は、循環給油方式において、ハウジング4内の一部に、潤滑油貯留槽4a内と連通した測定室12を設け、静電容量検出手段7および油温測定手段8は、測定室12内の静電容量および油温をそれぞれ測定するように設置した例である。この場合にも、測定室12の中の潤滑油5を攪拌する攪拌手段13を設けても良い。その他の構成は、図4に示す第4実施形態と同様である。
 図6に示す第6実施形態は、循環給油方式において、ハウジング4外に測定室12を設けた例である。測定室12は、油循環路15の途中に設けている。この測定室12に、内部の潤滑油の静電容量および油温を測定する静電容量検出手段7および油温測定手段8を設け、かつ測定室12内の潤滑油5を攪拌する攪拌手段13を設けている。このように攪拌手段13を設けることで、安定して正確に静電容量を測定し、混入水分濃度を正確に求めることができる。
 また、この第6実施形態では、潤滑油貯留槽4aの底部に傾斜溝17を設けている。傾斜溝17の底面の低い側の端部を潤滑油の排出口15aとし、定期的に、攪拌手段13を備えたリザーブタンクとなる測定室12中に潤滑油5をポンプ16で引き込んで溜め、そこで、静電容量および油温を測定して混入水分濃度を監視すればよい。それにより、潤滑油よりも比重が大きい水が分離していても、水を測定室12中に取り込むことができ、高めの混入水分濃度が測定される。すなわち安全目の監視ができる。この第6実施形態において、その他の構成は、図1に示す第1実施形態と同様である。
 図7は、転動装置1の一具体例を示す。同図の転動装置1は風力発電装置における増速機である。この転動装置1は、入力軸21と出力軸22との間に、一次増速機となる遊星歯車機構23と、2次増速機24とを設けたものである。遊星歯車機構23は、入力軸21と一体のキャリア25に遊星歯車26を設置し、遊星歯車26を内歯のリングギヤ27と、太陽歯車28に噛み合わせ、太陽歯車28と一体の軸を中間出力軸29とするものである。2次増速機24は、中間出力軸29の回転を出力軸22に複数の歯車31~34を介して伝達する歯車列からなる。上記遊星歯車26や、この遊星歯車26を支持する軸受35、リングギヤ27、2次増速機24の歯車31となる各転動部品が、図1で示すようなハウジング4内の潤滑油貯留槽4aの潤滑油5内に浸漬される。潤滑油貯留槽4aは、ポンプおよび配管からなる循環給油手段(図示せず)によって循環させられる。なお、循環給油手段は必ずしも設けなくても良く、油浴潤滑形式としても良い。
 次に、上記各実施形態の転動装置の状態監視システムにおいて、異常診断手段10に設定する適切なしきい値Sを求めるための試験方法について説明する。図8にこの試験方法に用いる試験装置の一例を概念図で示す。この転がりすべり疲労寿命試験装置は、試験装置本体140と、この試験装置本体140を制御する試験装置本体制御装置141と、水分濃度計算手段142とで構成される。試験装置本体140は、被試験体である転動部品模擬体3を浸漬させた状態に潤滑油5Aを入れる試験油槽101と、この試験油槽101内で転動部品模擬体3を動作させる転動部品模擬体駆動装置120と、試験油槽101の潤滑油中に水を注入する水注入手段であるシリンジポンプ104と、試験油槽101の潤滑油5Aの静電容量を測定する静電容量測定手段である静電容量計105と、試験油槽101の潤滑油5Aの油温を測定する油温測定手段である熱電対106とを有する。
 転動部品模擬体3は、鋼製材料からなる転動部品用材料の被試験体を構成要素に含めて転動部品を試験用に模した部品である。図示の例では、転動部品模擬体3は、転動部品の一種であるスラスト玉軸受を模したものであり、内輪3aと外輪3bとの間にボールからなる転動体3cを設けて構成され、外輪3bが被試験体となる。この転動部品模擬体における被試験体である外輪3bは、円筒形状で端面が転走面となる。また、この転動部品模擬体3は、実際の転動部品であるスラスト軸受に比べて、転動体3cのサイズを大きくしてある。模擬の対象となる実際のスラスト軸受では、転動体が小さすぎ、わずかな荷重を与えるだけで接触面の最大面圧がかなり大きくなるため、転動部品模擬体3では転動体3cを大きくした。内輪3aは、そのように大きな転動体3cが転動できる溝を有するものを特別に製作して用いる。
 水分濃度計算手段142は、静電容量計105で測定した静電容量と熱電対106で測定した油温から、定められた規則に従って前記潤滑油中の混入水分濃度を計算する手段である。水分濃度計算手段142は、静電容量および油温と混入水分濃度との関係を、計算式やテーブル等で定めた関係設定手段143を有し、入力された静電容量および油温とから、関係設定手段143に定められた規則を用いて混入水分濃度を計算する。
 試験装置本体制御装置141は、転動部品模擬体駆動装置120を制御する転動部品模擬体制御部144と、シリンジポンプ104を制御するポンプ制御部145と、試験装置本体140およびその他の駆動部分を制御する制御部(図示せず)とを備える。試験装置本体制御装置141は、コンピュータ式のシーケンサまたは数値制御装置であり、パーソナルコンピュータ等のコンピュータとこれに実行されるプログラムとで構成される。
 水分濃度計算手段142は、パーソナルコンピュータ等のコンピュータとこれに実行されるプログラムとで構成される。水分濃度計算手段142は、試験装置本体制御装置141を構成するコンピュータを用いたものであっても、試験装置本体制御装置141とは独立したコンピュータを用いたものであっても良い。
 この転がりすべり疲労寿命試験方法は、上記構成の試験装置を用いて、次のように行う。試験油槽101に入れた潤滑油5Aに、被試験体である転動部品模擬体3を浸漬して動作させ、転動部品模擬体3を構成する被試験体である外輪3bの転がりすべり疲労寿命の試験を行う。ここでは、シリンジポンプ104を用いて、前記潤滑油5A中に水素源としての水を注入し、静電容量計105で計測した潤滑油5Aの静電容量と、熱電対106で計測した油温とによって、水分濃度計算手段142を用いて、潤滑油5A中の混入水分濃度を測定する。
 同図の試験装置では、試験油槽101に潤滑油5Aを入れる機構として、油浴潤滑機構を用いており、試験油槽101内の潤滑油5A中の混入水分濃度を測定する。上記「油浴潤滑機構」は、試験油槽101に潤滑油を溜めておき、その溜められた潤滑油で転動部品模擬体を潤滑する機構を言う。測定した混入水分濃度はシリンジポンプ104にフィードバックし、水注入量を変化させて混入水分濃度を制御する。すなわち、ポンプ制御部145は、水分濃度計算手段により出力された混入水分濃度に応じて、定められた規則に従い、混入水分濃度が定められた範囲に納まるように、シリンジポンプ104による注入量を変化させる。
 また、転動部品模擬体3の接触要素間(具体的には一対の軌道輪3a,3b間)に、通電手段147によって電流を流して金属接触率を測定する。転動部品模擬体駆動装置120における、サーボモータ107Aの主軸107と、転動部品模擬体3の構成要素となる内輪3aに結合されて転動部品模擬体3を動作させるスピンドル108とを直結して揺動運動させる。スピンドル108は転動部品模擬体3を構成要素の一つとして持つものであっても良い。サーボモータの主軸107とスピンドル108とは絶縁カップリング132で連結する。スピンドル108の支持軸受には、セラミック転動体軸受133を用いている。
 転動部品模擬体3は、前述のように、図8の例示ではスラスト玉軸受を模した部品とされ、被試験体となる外輪3bは、設置台(図示せず)等に固定設置され、内輪3aがスピンドル108に固定されている。
 上記スピンドル108およびセラミック転動体軸受133により、転動部品模擬体駆動装置120のヘッド部146が構成される。ヘッド部146は、転動部品模擬体駆動装置120における、それぞれが1個または1組の転動部品模擬体3を動作させる機構部を言う。この実施形態ではヘッド部146を1台のみ設けたが、複数のヘッド部146を設け、複数の転動部品模擬体3を同時に試験するようにしても良い。
 ところで、転がりすべり疲労寿命試験による耐水素脆性評価では、鋼中への拡散性水素の侵入濃度は制御できない。また、厳しい条件での加速試験であり、実機条件を模擬するものではない。鋼材質の耐水素脆性評価については、拡散性水素の侵入濃度を制御しての評価がある。それに対し、潤滑油の種類,潤滑油への添加物,接触要素の接触面への表面処理などの耐水素脆性評価は、この実施形態のように拡散性水素の侵入濃度が制御できない転がりすべり疲労寿命試験で評価する必要がある。したがって、なるべく外乱が少なく、なるべく実機を忠実に模擬した転がりすべり疲労寿命試験によって、水素脆性起因の早期損傷を効率よく起こさせ、使用条件に応じた対策要素を見極めるのに、この実施形態の転がりすべり疲労寿命試験方法は有効である。なお、ユーザーからの理解を得るという点からは、鋼材質についても、転がりすべり疲労寿命試験による耐水素脆性評価を実施することが望ましい。
 水素脆性起因の早期損傷が起きる様々な転動部品の使用条件を鑑みると、以下の(1)~(5)の機能を有する転がりすべり疲労寿命試験が望ましい。なお、試験装置における各ヘッド部146間で互いに影響が及ばないように、図8では各ヘッド部に油浴潤滑機構を用いているが、循環給油機構を用いても良い。油浴潤滑機構であっても、また循環給油機構であっても、各ヘッド部に設けるのであれば、各ヘッドで異なる条件の試験ができる。
(1)潤滑油5A中に水素源としての水を注入する。
(2)潤滑油5A中の混入水分濃度を静電容量および油温で監視する。
(3)(2)で監視した混入水分濃度をフィードバックし、水注入量を変化させて混入水分濃度を制御する
(4)一定回転速度,一方向回転だけでなく、加減速運転,揺動運動ができる。
(5)通電ができる。
 (1)の機能については、水を混入した潤滑油を定期的に交換する方法もあるが、工数がかかるとか、休日は交換できないなど、効率が悪い。そのため、図8に示すように、水をシリンジポンプ104で注入したり、チューブポンプで注入するのが望ましい。シリンジポンプ104は微量注入に向いている。ヘッド部146に油浴潤滑機構を用いている図8の試験装置では、水の注入箇所は試験油槽101であるが、ヘッド部146に循環給油機構を用いる場合は試験油槽101または循環給油機構の循環給油部とする。
 (2)の機能を持たせる場合に、鉱油系で無添加の潤滑油の飽和水分濃度は高々200重量ppmであることに留意する必要がある。混入水分濃度は静電容量および油温によって測定できるが、静電容量を計測する静電容量計105は次の2タイプに大別される。1つは飽和水分濃度以下までしか測れないものであり、もう1つは飽和水分濃度を超えて白濁状態になっても測れるものである。前者のタイプの方が多いが、後者のものの中には混入水分濃度が10%以上でも測定できるものもある。上述したように、鉱油系の潤滑油の飽和水分濃度は高々200重量ppmである。200重量ppmの濃度の水混入油を定期交換した転がりすべり疲労寿命試験では、水の悪影響は見られないという結果が得られている。鉱油系で無添加の潤滑油の飽和水分濃度は微量だが、合成油系の潤滑油や鉱油系でも添加剤の種類によっては、飽和水分濃度はかなり高くなる。飽和水分濃度以下しか混入水分濃度が測れない静電容量計は、潤滑油5Aの飽和水分濃度を測るのに用いることができる。混入水分濃度と転がりすべり疲労寿命の関係を求めれば、潤滑油固有の飽和水分濃度が耐水素脆性の1つの指標になり得る可能性がある。
 (3)の機能については、潤滑油5A中に一定濃度の水を混入し、マクロ的に閉鎖系として転がりすべり寿命試験をしても、混入水分濃度は約3h経過したあたりから大幅に減少する。潤滑油5A中に水を一定流量で連続注入した場合も、混入水分濃度が変化することは容易に想像できる。(1)の機能のために水は水素源として注入するが、そのためには、(2)の機能において静電容量および油温によって監視した混入水分濃度をフィードバックし、水注入量を変化させて混入水分濃度を所定の範囲内に保つことが望ましい。
 (4)の機能について言えば、実際の転動部品3は一定回転速度,一方向回転で用いられることはない。そのため、一定回転速度,一方向回転の他に、加減速運転,揺動運動もできることが望ましい。加減速運転については、少なくとも図9のようなパターン設定ができる必要がある。すなわち、加速度(rmax-rmin)/ta,高速回転数rmax,高速回転数での保持時間tmax,減速度(rmax-rmin)/td,低速回転数rmax,低速回転数での保持時間tminの6パラメータをそれぞれ任意に設定でき、それを1パターンとして加減速を繰り返すことである。揺動運動では、回転の場合とは異なり、損傷が起きても振動が大きく変化しない。クランク機構による揺動運動では、その振動が重畳するため、損傷が起きても振動で検出することが難しい。振動で損傷を精度よく検出できるようにするには、図8のようにサーボモータの主軸107と、転動部品模擬体3を構成部品の1つとして持つ試験機構のスピンドル108とを直結して揺動運動させることで、重畳する振動成分をなるべく排除する必要がある。さらに、できる限り試験機構のスピンドル108などの剛性を高くする必要がある。揺動運動条件としては、揺動の角度と周波数を任意に設定できることが望ましい。
 なお、サーボモータの主軸107と試験機構のスピンドル108を直結すると、クランク機構のような三角関数波形の速度変化を与えることは難しい。それを可能にするためには、シーケンサのプログラムによってサーボモータのアンプを制御すれば良い。
 (5)の機能を持たせる目的は次の2点である。1つは微弱電流を転動部品模擬体3の接触要素間に流して接触面の金属接触率を測定することである。もう1つは1A程度の大電流を接触要素間に流して正極側を摩耗させることである。この現象を利用し、試験片を正極側にすることで、試験片の接触部に金属新生面を積極的に露出させ、水素の発生,侵入を促進することができる。このことは、非特許文献9にも開示されている。
 図8の試験装置を用いた転がりすべり疲労寿命試験方法では、(1)~(5)の全ての機能を満たしており、転動部品模擬体3が揺動運転することを前提とし、サーボモータ107Aの主軸107と試験機構のスピンドル108を直結した機構になっている。なお、揺動運転が不要な場合、高価で定格回転数が高々3000rpmのサーボモータよりも、安価なインダクションモータなどで試験機構のスピンドル108をベルト駆動するのが良い。この場合、サーボモータ107Aの駆動をスピンドル108に伝達する駆動伝達径にプーリ機構を設け、プーリ比を変えれば、試験機構のスピンドル108の回転速度を高めることができ、加減速運転の速度差を大きくするのにも有効である。なお、ヘッド部146に循環給油機構を用いる場合は、比較的給油速度が速いチューブポンプなどを用いるのが良い。この場合、試験油槽101の潤滑油量をなるべく一定に保つように、潤滑油の出入り量を等しくすることが望ましい。
 図8に示した試験装置の概念図では、転動部品模擬体3がスラスト軸受型である場合を示したが、スラスト軸受型の場合も鋼球の自転方向と公転方向が異なるため、転動部品模擬体3における試験片と鋼球の接触面ですべりが生じる。さらに積極的に接触面にすべりを与えるには、接触要素の運動機構を工夫すればよい。転動部品模擬体3として歯車材を評価する場合、歯車ではさらに大きなすべりが作用するため、試験片とそれに接触する物体の周速差を強制的に変えるなどし、接触面に大きなすべりを作用させる工夫が必要である。
 図10および図11は、この転がりすべり疲労寿命試験方法に用いる試験装置の他の例を概念図として示している。図10の試験装置では、試験油槽101に潤滑油5Aを入れる機構として、循環給油機構109を用いている。ここでの循環給油機構109は、循環路110の途中に循環ポンプ111、静電容量計105、および熱電対106を設けて構成される。この場合でも、静電容量計105および熱電対106は図8のように試験油槽101に設けても良い。
 ここで、潤滑油5Aへの水の混合状態が良好でない場合、混入水分濃度が高くなるにつれて、静電容量の値が不安定になる。そのため、潤滑油5Aと水がよく混合した状態で静電容量を測定することが望ましい。そこで、図11の試験装置では、図10の試験装置において、試験油槽101の潤滑油5Aの排出口と循環ポンプ111との間にリザーブタンク112を設け、そこに潤滑油5Aを溜めて磁気式攪拌機113などで攪拌し、静電容量と温度を測定するようにしている。熱電対106はリザーブタンク112に設ける。潤滑油5Aと水を十分に混合させるためには、リザーブタンク112の容積を小さくして攪拌効果を大きくする方が良い。目安として、潤滑油量は100mL以下とすることが望ましい。さらに望ましいことは、潤滑油5Aよりも比重が大きい水が、試験油槽101やリザーブタンク112から排出されやすくすることである。そのために、図11の試験装置では、試験油槽101およびリザーブタンク112のそれぞれの潤滑油5Aの排出口を底角部101a,112a(同図中に拡大したものとして○を付して示す)としている。
 さらに、試験油槽101およびリザーブタンク112のそれぞれ内部を円柱状とし、底角部101a,112aの全周に連続して、いわゆるヌスミとなる外角側に凹む溝状の凹部101aa,112aaを設けることが望ましい。これらの工夫をすることにより、水よりも比重の大きな添加物質も循環しやすくなる。
 図8,図10,図11の試験装置を用いた試験方法では、シリンジポンプ104を用いて試験油槽101に水を注入するが、以下には、試験油槽101中の水混入油を定期交換して行った転がりすべり疲労寿命試験方法の具体例を示す。
 軸受鋼SUJ2を用い、図12(A)に示すテーパ形状外輪試験片(熱処理後は研削仕上げ、内径軌道面は面粗さRq ≒0.03μm)114を製作した。熱処理は850℃のRXガス雰囲気中で50min加熱してずぶ焼入を施した後、180℃で120minの焼戻しを施した。試験は、図12(B)に示すように、テーパ形状外輪試験片114にアンギュラ玉軸受7306Bの内輪(SUJ2標準焼入焼戻品)115、鋼球(SUJ2標準焼入焼戻品,13個)116、保持器117を組み合わせて転動部品模擬体3として行った。外輪試験片114をテーパ形状にしたのは、鋼球116と接触角をもって回転することにより、鋼球116がスピンして外輪試験片114との接触面にすべりが生じるためである。すべりが生じる場合、水素脆性起因の早期損傷が起きる頻度が高くなる。
 図13には、この具体的試験方法で用いる試験装置の模式図を示す。同図における左側の機構部が評価側部120a、右側の機構部がダミー側部120bである。同図中において、損傷対象のテーパ形状外輪試験片114はハッチングして示している。アキシャル荷重Fa =2.94kNのみを作用させ、2733min-1で内輪115を回転させた。潤滑油にはVG100の無添加タービン油(密度0.887g/cm,動粘度100.9mm /s@40℃,11.68mm/s@100℃)を用い、それに200重量ppm,5重量%の純水を混入した。評価側に60mLの水混入油を入れ、潤滑油の入口(下側)と出口(上側)をチューブ118でつないで閉鎖系とした。図12(B)に矢印で示す方向にポンプ作用によって潤滑油の流れが生じるため、水混入油は循環して攪拌される。試験は20h行い、その間に損傷が起きなければ、新たに作成した水混入油に交換した。損傷が生じるまで20hの試験と水混入油の交換を繰り返した。損傷検出は振動計で行った。なお、図13に示す試験装置における中央の円筒ころ軸受119はラジアル荷重を作用させるためのもので、今回の試験には無関係である。
 アキシャル荷重Fa =2.94kNのみを作用させた場合の弾性ヘルツ接触計算での外輪試験片114と鋼球116の間の最大接触面圧は3GPaである。なお、弾性ヘルツ接触計算では、ヤング率Eとポアソン比νはSUJ2標準焼入焼戻品の実測値であるE=204GPa,ν=0.3とした。水混入を無視した弾性流体潤滑計算でのテーパ形状外輪試験片114と鋼球116の間の油膜パラメータは約3である。ただし、鋼球116の面粗さは実測値Rq =0.0178μmで一定とした。テーパ外輪形状試験片114の単体の計算寿命L10h は、2円筒モデルに変換して計算すると2611hである。L10h の求め方は非特許文献10に開示されている。ただし、すべりの影響は無視した。
 初期混入水分濃度が5重量%の試験中に、定期的に潤滑油を少量サンプリングし、混入水分濃度を電量滴定法で測定して経時変化を調べた。その結果、図14にグラフで示すように、混入水分濃度は約3h経過したあたりから大幅に減少した。上記のように閉鎖系とはいえ、それはマクロ的であって、完全に隙間をなくすことは不可能である。水分は目視ではわからない小さな隙間から蒸発したと考えられる。この転がりすべり疲労寿命試験の結果は、表1に示す通りである。
Figure JPOXMLDOC01-appb-T000001
 200重量ppmの水混入油では、試験片5個すべて1000hまで損傷は起きず、試験を打ち切った。一方、5重量%の水混入油では、試験片5個すべてに計算寿命の1/100のオーダーの早期損傷が生じた。損傷形態は、すべて表層を起点とする内部起点型剥離であった。なお、SUJ2製鋼球116にも3GPaの最大接触面圧が作用するが、剥離は生じなかった。鋼球116はテーパ形状外輪試験片114に比べて有効負荷体積が大きいためと考えられる。今回用いた潤滑油の飽和水分濃度の上限値程度の水混入では、寿命に及ばず水の影響はないといえる。一方、水が多量に混入する場合、水素が発生し、鋼中に侵入したために極めて早期に内部起点型剥離が起きたと考えられる。表1中には、5重量%の水混入油を定期交換した場合の寿命を、2母数ワイブル分布に当てはめて求めたL10,L50,およびe(ワイブルスロープ)を示した。
 次に、図8,図10,図11の試験装置のように、試験油槽101中の潤滑油5Aに水を一定流量で微量注入して行った転がりすべり疲労寿命試験方法の具体例を示す。
 前記試験方法の場合と同じ図12(A),(B)に示す試験片114、および図13に示す試験装置を用い、荷重条件、回転速度も同じとし、同じ潤滑油(水混入なし)60mLを入れ、潤滑油の入口(下側)と出口(上側)をチューブ118でつないで閉鎖系とした。試験開始と同時に、シリンジポンプ104(図8)によってチューブ118の途中から純水の連続注入を開始した。純水の注入速度は0.5mL/hとした。この場合、混入水分濃度の経時変化は測定しなかったが、図14に示すグラフの結果から、この場合も混入水分濃度が変化することは容易に想像できる。この転がりすべり疲労寿命試験の結果は、表2に示す通りである。
Figure JPOXMLDOC01-appb-T000002
 この場合も試験片6個のすべてに、先の試験方法である5重量%の水混入油を定期交換した場合と同程度の寿命の早期損傷が生じた。損傷形態は、この場合も、すべて表層を起点とする内部起点型剥離であった。また、この場合も、SUJ2製鋼球16にも3GPaの最大接触面圧が作用するが、剥離は生じなかった。表2中には、寿命を2母数ワイブル分布に当てはめて求めたL10,L50,およびe(ワイブルスロープ)を示した。
 次に、静電容量計105による潤滑油の飽和水分濃度と混入水分濃度の測定の具体例を説明する。先述したように、潤滑油中の混入水分濃度は静電容量と温度によって測定でき、これに用いる静電容量計105は次の2つのタイプに大別される。1つは飽和水分濃度以下までしか測定できないものであり、もう1つは飽和水分濃度を超えて白濁状態になっても測定できるものである。
 先ず、飽和水分濃度以下までしか測定できない静電容量計105を用い、潤滑油の飽和水分濃度を測定した。潤滑油は、先の転がりすべり疲労寿命試験の具体例で用いたVG100の無添加タービン油である。図15(A)の正面図で示すように、静電容量計105を取付けた容器121(例えば図8の試験装置における試験油槽101に見立てたもの)に潤滑油を入れ、シリカゲル入れを設けた上蓋122をして、温度調整ができる磁気式攪拌機113で攪拌しながら110℃に熱して1h放置し、その間に油中に混入していた微量水分を蒸発させて、シリカゲルに吸着させた。その後、図15(B)の縦断面図で示すように、40℃に保持して純水を、シリンジポンプ104を用いて一定速度0.05mL/hで注入した。図16には、そのときの静電容量の経時変化をグラフで示している。この静電容量計105は、水分活性として0~1の値を出力する。「0」は混入水分濃度がゼロの場合、「1」は混入水分濃度が飽和水分濃度以上の場合である。
 図16のように、167重量ppmで測定値が1になったことから、その値が飽和水分濃度になる。混入水分濃度と転がりすべり疲労寿命の関係を調べれば、潤滑油固有の飽和水分濃度が耐水素脆性の1つの指標になり得る可能性がある。
 次に、飽和水分濃度を超えて白濁状態になっても測定できる静電容量計105を用い、潤滑油中の水分濃度を変えて静電容量を測定した。潤滑油は、先の転がりすべり疲労寿命試験の具体例で用いたVG100の無添加タービン油である。図17(A)の正面図で示すように、100mLのビーカー131(例えば図8の試験装置における試験油槽101に見立てたもの)に70~80mLの潤滑油5Aを入れ、純水を混入し、十分に混合するまで温度調整ができる磁気式攪拌機113で33℃に保持した状態で攪拌した。その後、図17(B)の縦断面図で示すように、静電容量計105を取付けて静電容量を測定した。その結果を、図18にグラフで示している。このグラフから、相関が良い混入水分濃度と静電容量の線形関係が得られたことが分かる。さらに、水混入なしの潤滑油について、約25℃(室温)から約115℃まで昇温しながら静電容量を測定した。その結果を、図19にグラフで示している。このグラフから、相関が良い油温と静電容量の線形関係が得られたことが分かる。
 図18,図19のグラフから分かるように、静電容量は混入水分濃度と油温に依存する。変化し得る混入水分濃度と温度の範囲において、図18,図19のような関係を複数求め、目的変数を混入水分濃度、従属変数を静電容量,油温として関数にすれば、静電容量および油温から混入水分濃度を求めることができる。なお、図18,図19のような検量線を求めるに当たっては、新油のみだけでなく、使用状況が異なる使用後油についても測定することが望ましい。
 このように、転がりすべり疲労寿命試験方法によると、試験油槽101に溜めた潤滑油5Aに被試験体を構成部品として含む転動部品模擬体3を浸漬して動作させ、潤滑油5A中に水を注入し、潤滑油5A中の混入水分濃度を静電容量および油温によって測定するようにしているので、なるべく外乱が少なく、なるべく実機を忠実に模擬して、水素脆性起因の早期損傷を効率よく起こさせ、転動部品模擬体3の使用条件に応じた対策要素が見極められるようになる。
 以下に、この発明の第7~第18実施形態について説明する。以下の説明においては、各実施形態で先行する実施形態で説明している事項に対応している部分には同一の符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、先行して説明している実施形態と同様とする。実施形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施形態同士を部分的に組合せることも可能である。
 この発明の第7実施形態を風力発電装置に適用した場合を例に図20および図21と共に説明する。なお、前述した第1~6実施形態も風力発電装置に適用できる。図20に示すように、この転動装置の状態監視システム40は、転動装置1の潤滑油中の混入水分濃度を監視する機能を有する水分濃度計算手段9および混入水分濃度の異常診断手段10とでなる混入水分濃度検出手段11の他に、振動異常の異常診断手段51と、変位異常の異常診断手段52と、内部クラックの異常診断手段53と、不純物の異常診断手段54と、総合異常診断手段55と、通信手段56とを備えている。
 図20に示す転動装置1は、例えば、図21に示す風力発電装置400における増速機440および主軸用軸受装置461が該当する。なお、前記風力発電装置400における増速機440の内部構造は、第1実施形態の説明で用いた図7に示す転動装置1の具体例と同様であるので、詳しい説明は省略する。
 図21は、風力発電装置の構成を概略的に示した図である。風力発電装置400は、主軸420と、ブレード430と、増速機540と、発電機550と、主軸用軸受460を有する主軸用軸受装置461と、データ処理装置2とを備える。データ処理装置30は、この風力発電装置の状態監視システム40における演算処理を行うコンピュータおよびプログラムからなる。増速機440、発電機450、主軸用軸受460、およびデータ処理装置2は、ナセル490に格納され、ナセル490は、タワー500によって支持される。
 主軸420は、ナセル490内に進入して増速機440の入力軸に接続され、主軸用軸受460によって回転自在に支持される。主軸420は、風力を受けたブレード430により発生する回転トルクを増速機440の入力軸へ伝達する。ブレード430は、主軸420の先端に設けられ、風力を回転トルクに変換して主軸420に伝達する。
 主軸用軸受460は、ナセル490内において軸受ハウジング462を介して固定設置され、主軸420を回転自在に支持する。これら軸受ハウジング462と、主軸用軸受460と、この主軸用軸受460を油潤滑する潤滑機構(図示せず)とで、図20の転動装置1の一つが構成される。主軸用軸受460は、転がり軸受によって構成され、例えば、自動調芯ころ軸受や円すいころ軸受、円筒ころ軸受、玉軸受等によって構成される。なお、これらの軸受は、単列のものでも複列のものでもよい。
 増速機440は、主軸420と発電機450との間に設けられ、主軸420の回転速度を増速して発電機450へ出力する。発電機450は、増速機440の出力軸に接続され、増速機440から受ける回転トルクによって発電する。発電機450は、たとえば、誘導発電機によって構成される。なお、この発電機450内にも、ロータを回転自在に支持する軸受が設けられている。
 なお、図20に示す転動装置1は、前記風力発電装置400を構成する機構中で、回転動作を生じる装置の総称であり、例えば、増速機440である。転動装置1は、主軸用軸受装置461およびその潤滑機構(図示せず)からなる装置であっても良い。
 水分濃度計算手段9および混入水分濃度の異常診断手段10を含む混入水分濃度検出手段11は、例えば、図21と共に説明したデータ処理装置30に設けられる。
 図20に示すように、振動異常の異常診断手段51は、前記転動装置1を構成するいずれかの軸受の振動を監視する振動センサ70の出力を用い、その軸受の異常を判定する手段である。振動センサ70で振動を監視する軸受は、例えば、前記主軸用軸受460であり、軸受ハウジング等に設置される。振動センサ70は、圧電素子を用いた加速度センサによって構成される。異常診断手段51は、振動センサ70の検出信号を処理して処理結果を、定められたしきい値S2と比較し、しきい値S2を超える場合に異常と判定する。異常診断手段51は、後に説明するように、前記軸受またはこの軸受で支持される軸の回転速度を、回転センサ210によって得て、検出した回転速度を異常判断のための信号処理に用いるようにしても良い。
 変位異常の異常診断手段52は、前記転動装置1を構成する前記軸受における、内外輪間の相対変位を検出する変位計である変位センサ240の出力を用い、前記軸受の異常を判定する手段である。この変位異常の異常診断手段52は、検出された相対変位、またはこの相対変位を信号処理した値を、定められたしきい値S3と比較し、しきい値S3を超える場合に、異常と判定する。
 内部クラックの異常診断手段53は、前記転動装置1を構成する前記軸受における、アコースティックエミッション波を検出するためのAEセンサ250の出力を用い、この出力またはこの出力を信号処理した値を、定められたしきい値S4と比較し、しきい値S4を超える場合に、異常と判定する
 不純物の異常診断手段54は、前記転動装置1の潤滑油の中の摩耗粉またはその他の不純物の量を検知するセンサ270の出力を用い、この出力またはこの出力を信号処理した値を、定められたしきい値S5と比較し、しきい値S5を超える場合に、異常と判定する。
 これら振動異常の異常診断手段51、変位異常の異常診断手段52、内部クラックの異常診断手段53、および不純物の異常診断手段54は、いずれも、前記水分濃度計算手段9で検出された混入水分濃度が、定められたしきい値S1を超えた場合に、それぞれの異常診断手段51~54が異常と判定するしきい値S2~S5を変化させ、または判定方法を変化させるようにしても良い。
 総合異常診断手段55は、前記各異常診断手段10,51~54の診断結果を、定められた規則によって総合的に判定する手段である。前記の水分濃度計算手段9で検出された混入水分濃度によって、各異常診断手段51~54が異常と判定するしきい値S2~S5を変化させ、または判定方法を変化させる処理は、総合異常診断手段55によって行うようにしても良い。
 なお、図20に示す第7実施形態では、混入水分濃度の監視のための静電容量検出手段7や油温測定手段8を配置する測定室についての説明を省略したが、後に図22~26に示すように測定室12(図22,図23,図25,図26)を設けることが好ましい。
 風力発電装置では、主軸用軸受装置461や増速機440内部には各種転がり軸受が利用され、油により潤滑されている。この潤滑油を供給するための管路やタンク、あるいは転動装置1の内部または外部のいずれかに、図22,図23,図25,図26に示すように測定室12を設け、混入水分濃度を測定する。
 監視時の混入水分濃度の異常診断は、監視時の混入水分濃度が後で示す図27や図28のように、基準となるしきい値S1を超えた場合、図20の異常診断手段10により、注意を促す信号を出力する。
 混入水分濃度の測定に静電容量計7と熱電対からなる油温測定手段8とを用いているが、これらが一体となった静電容量・油温手段7Aを使用することで、個別にセンサを設置する場合の工数短縮が可能となる。また2つのセンサ(すなわち、静電容量計7および熱電対からなる油温測定手段8)を一体とするためのハウジング(図示せず)は、各センサを保持するカバーの役割であり、それらの破損低減効果が期待できることから、センサ自体の信頼性も向上すると考えられる。
 洋上や寒暖の変化が激しい地域では、混入水分濃度が高く、水素脆性による軸受損傷が多発すると考えられる。このような地域で本装置を利用した場合、図27に示すように、水分濃度が短時間でしきい値S1を超えることが予想される。なお、しきい値S1を超えた場合は、密閉性に優れるシールに変えることやヒーター等結露を防止するための加熱手段の起動などの対策をすることで水素脆性による損傷を防ぐこともできる。
 また、陸上や寒暖の変化が少ない地域で本装置を利用した場合、図28に示すように、水分濃度は日々変化しても、しきい値S1を超えることがほとんど無いと考えられる。水素脆性による剥離の発生時期については、しきい値S1を超えた運転時間または回転量の累積によって予測する。
 なお、混入水分濃度の測定に関して、安全側での監視を行うためには、タンクや油槽より低い位置に測定室を設け、比重差を利用し、水や添加物をセンサ付近に取り込みやすくすることで、高めの混入水分濃度を測定するとよい。
 他のセンサとの組み合わせについて説明する。水素脆性の影響によって対象軸受の実際の寿命が、設計上期待される寿命に到達するか否かを推定できる。しかし、実際に生じた剥離の確認や、その他の原因による軸受の損傷については検知することが困難である。そこで、以下に示す各種センサと組み合わせることで水素脆性剥離以外の軸受の損傷も同時に監視することが可能になる。例えば、振動加速度センサ等の振動センサ70を併用することで、水素脆性剥離を含めた各種の異常による振動を検知することが可能になる。
 また、AEセンサ250を振動加速度センサの代わりに併用する場合、または同時に用いることで、表面の剥離だけでなく、金属内部に発生する水素脆性が原因のクラックを測定できる。このとき、AEセンサ250の単体によるクラックの判定は、原因不明のAE波が散見されるために難しいが、混入水分濃度が高い状態でAE波が出ている場合、内部クラックの発生が高い確立で生じていると予想され、異常を早期に正確に見積もることが可能になる。
 また、種々の原因による金属接触によって軸受内部に摩耗が生じた場合、水分濃度の測定だけでは検知することが難しい。そこで、変位センサ240を用いて、軸受の外輪に対する内輪の相対変位を収集することで摩耗を検知することができ、より総合的な状態監視が可能になる。
 さらに、長時間の運用により、油の酸化やほこりの混入など潤滑油の劣化が予測されるため、油の劣化センサ等の不純物のセンサ270を併用することで、軸受の破損につながる潤滑不良を予測することができる。同時に混入水分濃度を考慮し、油劣化センサ等の不純物のセンサ270に補正を加えることで、より潤滑油が原因の軸受の早期損傷の予測が正確になる。
 上記のことから、水素脆性による軸受の剥離の発生確率あるいは、発生時期を予測することができる。これにより、風力発電装置においては、異常発生に備えメンテナンスの準備を予めしておくことで、異常発生後の稼動停止時間の削減が可能になる。
 図22~図26は、混入水分濃度監視装置6の変形例を示す。図20および図21に示す第7実施形態における風力発電装置の状態監視システムにおいて、これら図22~図26に示す混入水分濃度監視装置6を用いても良い。なお、これら図22~図26では、この風力発電装置の状態監視システムにおけるその他の構成は、図示を省略している。
 図20の第7実施形態では、ハウジング4における潤滑油貯留槽4a内の潤滑油5の静電容量および油温を測定するようにしたが、図22の第8実施形態では、データ処理装置30を除く転動装置1の構成を、前述した図2の第2実施形態と同様の構成としている。その作用・効果についても第2実施形態の場合と同様であり、詳しい説明は省略する。なお、図22の第8実施形態におけるその他の構成,効果は、図20に示す第7実施形態と同様である。
 図23の第9実施形態では、データ処理装置30を除く転動装置1の構成を、前述した図3の第3実施形態と同様の構成としている。その作用・効果についても第3実施形態の場合と同様であるので、詳しい説明は省略する。なお、図23の第9実施形態におけるその他の構成,効果は、図20に示す第7実施形態と同様である。
 図24に示す第10実施形態では、データ処理装置30を除く転動装置1の構成を、前述した図4の第4実施形態と同様の構成としている。その作用・効果についても第4実施形態の場合と同様であり、詳しい説明は省略する。その他の構成,効果は、図20に示す第7実施形態と同様である。
 図25に示す第11実施形態では、データ処理装置30を除く転動装置1の構成を、前述した図5の第5実施形態と同様の構成としている。その作用・効果についても第5実施形態の場合と同様であり、詳しい説明は省略する。その他の構成は、図24に示す第10実施形態と同様である。
 図26に示す第12実施形態では、データ処理装置30を除く転動装置1の構成を、前述した図6の第6実施形態と同様の構成としている。その作用・効果についても第6実施形態の場合と同様であり、詳しい説明は省略する。この実施形態において、特に説明した事項の他は、図20に示す第7実施形態と同様である。
 つぎに、図20の振動異常の異常診断装置51の各具体例を、図29~図40と共に説明する。
  [具体例1]
 図29において、振動センサ70は、図20の転動装置1を構成する軸受、例えば図21の主軸用軸受460に設置される。振動センサ70は、軸受の振動を検出し、その検出値をデータ処理装置2における振動異常の異常診断装置51へ出力する。振動センサ70は、前述のように、圧電素子を用いた加速度センサ等によって構成される。振動異常の異常診断装置51は、ハイパスフィルタ(以下、「HPF(High Pass F11ter)」と称する。)510,550と、実効値演算部520,560と、エンベロープ処理部540と、記憶部580と、診断部590とを含む。実効値演算部520は、請求項で言う「第1の演算部」であり、実効値演算部560は、請求項で言う「第2の演算部」である。
 HPF510は、軸受の振動の検出値を振動センサ70から受ける。そして、HPF510は、予め定められた周波数よりも高い信号成分を通過させ、低周波成分を遮断する。このHPF510は、軸受の振動波形に含まれる直流成分を除去するために設けられたものである。なお、振動センサ70からの出力が直流成分を含まないものであれば、HPF510を省略してもよい。
 実効値演算部520は、直流成分が除去された軸受の振動波形をHPF510から受ける。そして、実効値演算部520は、軸受の振動波形の実効値(「RMS(Root Mean Square)値」とも称される。)を算出し、その算出された振動波形の実効値を記憶部580へ出力する。
 エンベロープ処理部540は、軸受の振動の検出値を振動センサ70から受ける。そして、エンベロープ処理部540は、その受けた検出信号にエンベロープ処理を行なうことによって、軸受の振動波形のエンベロープ波形を生成する。なお、エンベロープ処理部540において演算されるエンベロープ処理には、種々の公知の手法を適用可能であり、一例として、振動センサ70を用いて測定される軸受の振動波形を絶対値に整流し、ローパスフィルタ(LPF(Low  Pass Filter))に通すことによって、軸受6の振動波形のエンベロープ波形が生成される。
 HPF550は、軸受の振動波形のエンベロープ波形をエンベロープ処理部540から受ける。そして、HPF550は、その受けたエンベロープ波形につき、予め定められた周波数よりも高い信号成分を通過させ、低周波成分を遮断する。このHPF550は、エンベロープ波形に含まれる直流成分を除去し、エンベロープ波形の交流成分を抽出するために設けられたものである。
 実効値演算部560は、直流成分が除去されたエンベロープ波形、すなわちエンベロープ波形の交流成分をHPF550から受ける。そして、実効値演算部560は、その受けたエンベロープ波形の交流成分の実効値(RMS値)を算出し、その算出されたエンベロープ波形の交流成分の実効値を記憶部580へ出力する。
 記憶部580は、実効値演算部520により算出された軸受の振動波形の実効値と、実効値演算部560により算出されたエンベロープ波形の交流成分の実効値とを同期させて時々刻々記憶する。この記憶部580は、たとえば、読み書き可能な不揮発性のメモリ等によって構成される。
 診断部590は、記憶部580に時々刻々記憶された、軸受の振動波形の実効値およびエンベロープ波形の交流成分の実効値を記憶部580から読出し、その続出された2つの実価値に基づいて軸受の異常を診断する。この異常診断に、しきい値S2を用いる。詳しくは、診断部590は、軸受の振動波形の実効値とエンベロープ波形の交流成分の実効値との時間的変化の推移に基づいて、軸受の異常を診断する。
 すなわち、実効値演算部520により算出される軸受の振動波形の実効値は、エンベロープ処理を行なっていない生の振動波形の実効値であるので、たとえば、軌道輪の一部に剥離が発生し、その剥離箇所を転動体が通過するときのみ信号が増加するインパルス的な振動に対しては値の増加が小さく、軌道輪と転動体との接触の面荒れや潤滑不良等に発生する持続的な振動に対しては値の増加が大きくなる。
 一方、実効値演算部560により算出されるエンベロープ波形の交流成分の実効値は、軌道輪の面荒れや潤滑不良時に発生する持続的な振動に対しては値の増加が小さく、場合によっては増加しないが、インパルス的な振動に対しては値の増加が大きくなる。そこで、この具体例1では、軸受の振動波形の実効値とエンベロープ波形の交流成分の実効値とを用いることで、一方の実効値だけでは検出できない異常を検出可能とし、より正確な異常診断を実現可能としたものである。
 図30~図33は、振動センサ70を用いて測定される軸受の振動波形を示した波形図である。なお、この図30~図33では、主軸420(図21)の回転速度が一定のときの振動波形が示されている。
 図30は、軸受に異常が発生していないときの軸受の振動波形を示した波形図である。図32において、横軸は時間を示し、縦軸は、振動の大きさを表わす振動度を示す。
 図31は、軸受の軌道輪の面荒れや潤滑不良が発生したときに見られる軸受の振動波形を示した波形図である。図31に示すように、軌道輪の面荒れや潤滑不良が発生すると、振動度が増加し、かつ、振動度の増加した状態が持続的に生じる。振動波形に目立ったピークは発生していない。したがって、このような振動波形について、軸受に異常が発生していないときの振動波形の実効値(実効値演算部520(図29)の出力)およびエンベロープ波形の交流成分の実効値(実効値演算部560(図29)の出力)と比較すると、エンベロープ処理を行なっていない生の振動波形の実効値が増加し、エンベロープ波形の交流成分の実効値はそれ程増加しない。
 図32は、軸受の軌道輸に剥離が発生したときの初期段階における軸受の振動波形を示した波形図である。図34に示すように、剥離異常の初期段階は、軌道輪の一部に剥離が発生している状態であり、その剥離箇所を転動体が通過するときに大きな振動が発生するので、パルス的な振動が軸の回転に応じて周期的に発生する。剥離箇所以外を転動体が通過しているときは、振動度の増加は小さい。したがって、このような振動波形について、軸受に異常が発生していないときの振動波形の実効値およびエンベロープ波形の交流成分の実効値と比較すると、エンベロープ波形の交流成分の実効値が増加し、生の振動波形の実効値はそれ程増加しない。
 図33は、剥離異常の末期段階に見られる軸受の振動波形を示した波形図である。図33に示すように、剥離異常の末期段階は、軌道輪の全域に剥離が転移している状態であり、異常の初期段階に比べて、振動度が全体的に増加し、パルス的な振動の傾向は弱まる。したがって、このような振動波形について、剥離異常の初期段階における振動波形の実効値およびエンベロープ波形の交流成分の実効値と比較すると、生の振動波形の実効値が増加し、エンベロープ波形の交流成分の実効値は低下する。
 図34は、軸受の軌道輪の一部に剥離が生じ、その後、軌道輪全域に剥離が転移していったときの軸受の振動波形の実効値およびエンベロープ波形の交流成分の実効値の時間的変化を示したグラフである。なお、この図34および以下に説明する図35では、主軸420の回転速度が一定のときの各実効値の時間的変化が示されている。
 図34において、曲線k1は、エンベロープ処理を行なっていない振動波形の実効値の時間的変化を示し、曲線k2は、エンベロープ波形の交流成分の実効値の時間的変化を示す。剥離が発生する前の時刻t1では、振動波形の実効値(kl)およびエンベロープ波形の交流成分の実効値(k2)のいずれも小さい。なお、時刻t1における振動波形は、前記図32に示した波形のようになる。
 軸受の軌道輪の一部に剥離が発生すると、図32で説明したように、エンベロープ波形の交流成分の実効値(k2)が大きく増加し、一方、エンベロープ処理を行なっていない振動波形の実効値(k1)はそれ程増加しない(時刻t2近傍)。
 さらにその後、軌道輪の全域に剥離が転移すると、図33で説明したように、エンベロープ処理を行なっていない振動波形の実効値(k1)が大きく増加し、一方、エンベロープ波形の交流成分の実効値(k2)は低下する(時刻t3近傍)。
 また、図35は、軸受の軌道輪の面荒れや潤滑不良が発生したときの軸受の振動波形の実効値およびエンベロープ波形の交流成分の実効値の時間的変化を示したグラフである。図35においても、図34と同様に、曲線k1は、エンベロープ処理を行なっていない振動波形の実効値の時間的変化を示し、曲線k2は、エンベロープ波形の交流成分の実効値の時間的変化を示す。
 軌道輸の面荒れや潤滑不良が発生する前の時刻t11では、振動波形の実効値(k1)およびエンベロープ波形の交流成分の実効値(k2)のいずれも小さい。なお、時刻t11における振動波形は、図30に示した波形のようになる。
 軸受の軌道輪の面荒れや潤滑不良が発生すると、図31で説明したように、エンベロープ処理を行なっていない振動波形の実効値(k1)が増加し、一方、エンベロープ波形の交流成分の実効値(k2)の増加は見られない(時刻t12近傍)。
 このように、エンベロープ処理を行なっていない生の振動波形の実効値(k1)とエンベロープ波形の交流成分の実効値(k2)との時間的変化の推移に基づいて、軸受の異常診断をより正確に行なうことが可能である。
 このように、この具体例1によれば、振動センサ70を用いて測定された軸受の振動波形の実効値、および振動センサ70を用いて測定された振動波形にエンベロープ処理によって生成されるエンベロープ波形の交流成分の実効値に基づいて、軸受の異常を診断するので、従来の周波数分析による手法に比べてより正確な異常診断を実現することができる。また、不必要なメンテナンスを削減でき、メンテナンスに要するコストを低減することができる。
  [具体例2]
 主軸420(図21)の回転速度が変化すると、主軸用軸受460等の軸受の振動の大きさが変化する。一般的には、主軸の回転速度の増加に伴い軸受の振動度は増加する。そこで、この具体例2では、軸受の振動波形の実効値およびエンベロープ波形の交流成分の実効値を主軸420の回転速度で正規化し、その正規化された各実効値を用いて軸受の異常診断が行われる。
 図36は、具体例2における振動異常の異常診断手段51の構成を機能的に示す機能ブロック図である。図36に示すように、異常診断手段51は、図29に示した具体例1における異常診断手段51の構成において、修正振動度算出部530と、修正変調度算出部570と、速度関数生成部600とをさらに含む。
 速度関数生成部600は、回転センサ210による主軸420の回転速度の検出値を受ける。なお、回転センサ210は主軸420の回転位置の検出値を出力し、速度関数生成部600において主軸420の回転速度を算出するものとしてもよい。そして、速度関数生成部600は、実効値演算部120により算出される軸受の振動波形の実効値を主軸420の回転速度Nで正規化するための速度関数A(N)、および実効値演算部560により算出されるエンベロープ波形の交流成分の実効値を主軸420の回転速度Nで正規化するための速度関数B(N)を生成する。一例として、速度関数A(N),B(N)は、次式によって表わされる。
 A(N)=a×N-0.5     …(1)
 B(N)=b×N-0.5     …(2)
  ここで、a,bは、実験等によって予め定められる定数であり、異なる値であってもよいし、同じ値であってもよい。
 修正振動度算出部530は、軸受の振動波形の実効値を実効値演算部520から受け、速度関数A(N)を速度関数生成部600から受ける。そして、修正振動産算出部530は、速度関数A(N)を用いて、実効値演算部520によって算出された振動波形の実効値を主軸420の回転速度で正規化した値(以下「修正振動度」と称する。)を算出する。具体的には、実効値演算部520によって算出された振動波形の実効値vrと速度関数A(N)とを用いて、修正振動度vr*は、次式によって算出される。
Figure JPOXMLDOC01-appb-M000003
ここで、Vraは、時間0~TにおけるVrの平均値を示す。
 そして、修正振動座算出部530は、式(3)により算出された修正振動座Vr*を記憶部580へ出力する。
 修正変調度算出部570は、エンベロープ波形の交流成分の実効値を実効値演算部560から受け、速度関数B(N)を速度関数生成部600から受ける。そして、修正変調度算出部570は、速度関数B(N)を用いて、実効値演算部560によって算出されたエンベロープ波形の交流成分の実効値を主軸420の回転速度で正規化した値(以下「修正変調度」と称する。)を算出する。具体的には、実効値演算部560によって算出されたエンベロープ波形の交流成分の実効値Veおよび速度関数B(N)を用いて、修正変調度Ve*は、次式によって算出される。
Figure JPOXMLDOC01-appb-M000004
 ここで、Veaは、時間0~TにおけるVeの平均値を示す。修正変調度算出部570は、式(4)により算出された修正変調度Ve*を記憶部580へ出力する。そして、修正振動度算出部530は、式(3)により算出された修正振動度Vr*を記憶部580へ出力する。
 そして、時々刻々と記憶部580に記憶された修正振動度Vr*および修正変調度Ve*が診断部590によって読出され、その読出された修正振動度Vr*および修正変調度Ve*の時間的変化の推移に基づいて、診断部590により軸受の異常診断が行なわれる。
 なお、上記において、回転センサ210は、主軸420に取り付けられてもよいし、軸受に回転センサ210が組み込まれた回転センサ付軸受を診断対象の前記軸受に用いてもよい。
 以上のように、この具体例2によれば、軸受の振動波形の実効値を回転速度で正規化した修正振動度Vr*と、エンベロープ波形の交流成分の実効値を回転速度で正規化した修正変調度Ve*とに基づいて異常を診断するので、回転速度の変動による外乱を除去してより正確な異常診断を実現することができる。
  [具体例3]
 この具体例3では、さらに正確な異常診断を行なうために、上記の具体例1または具体例2に加えて、周波数分析による異常診断が併用される。図37は、具体例3における振動異常の異常診断手段51の構成を機能的に示す機能ブロック図である。図37に示すように、異常診断手段51は、図36に示した異常診断手段51の構成において、周波数分析部620,630をさらに含む。
 周波数分析部620は、直流成分が除去された軸受の振動波形をHPF510から受ける。そして、周波数分析部620は、その受けた軸受の振動波形に対して周波数分析を行ない、その周波数分析結果を記憶部580へ出力する。一例として、周波数分析部620は、HPF510から受ける軸受の振動波形に対して高速フーリエ変換(FFT)処理を行ない、予め設定されたしきい値を超えるピーク周波数を記憶部580へ出力する。
 また、周波数分析部630は、直流成分が除去されたエンベロープ波形の交流成分をHPF550から受ける。そして、周波数分析部630は、その受けたエンベロープ波形の交流成分に対して周波数分析を行ない、その周波数分析結果を記憶部580へ出力する。一例として、周波数分析部630は、HPF350から受けるエンベロープ波形の交流成分に対してFFT処理を行ない、予め設定されたしきい値を超えるピーク周波数を記憶部580へ出力する。
 そして、診断部590は、修正振動度Vr*および修正変調度Ve*とともに周波数分析部620,630による周波数分析結果を記憶部580から読出し、修正振動度Vr*および修正変調度Ve*の時間的変化の推移とともに周波数分析結果を併用することによって、より信頼性の高い異常診断を行なう。
 たとえば、周波数分析部620,630による周波数分析結果は、修正振動度Vr*および修正変調度Ve*に基づく異常診断によって異常が検知されたときに異常の発生部位を推定するのに用いることができる。すなわち、軸受内部において損傷が発生すると、損傷部位(内輪、外輪、転動体)に応じて、軸受内部の幾何学的構造および回転速度から理論的に決定される特定の周波数に振動のピークが発生する。そこで、上述した修正振動度Vr*および修正変調度Ve*による異常診断に、周波数分析部620,630による周波数分析結果を併用することによって、異常発生部位をより正確に診断することが可能になる。
 なお、上記においては、具体例2において周波数分析部620,630を追加するものとしたが、図29に示した具体例1における異常診断手段51に周波数分析部620,630を追加したものであってもよい。
 以上のように、この具体例3によれば、周波数分析による異常診断が併用されるので、異常診断の信頼性をさらに高めることができるとともに異常発生部位をより正確に診断することができる。
  [具体例4]
 具体例4では、軸受の異常診断の信頼性をさらに高めるために、種々のセンサの検出値が併用される。具体例4は、図20の変位異常の異常診断手段52、内部クラックの異常診断手段53、および不純物の異常診断手段54を設ける代わりに、またはこれらの異常診断手段52~54に加えて、振動異常の異常診断手段51に、上記変位異常、内部クラック、不純物の異常の機能を付加したものである。
 図38は、具体例4における振動異常の異常診断部51の構成を機能的に示す機能ブロック図である。図38に示すように、異常診断部51は、図37に示した異常診断部51の構成において、診断部590に代えて診断部590Aを含む。
 この具体例4では、振動センサ70および回転センサ210に加えて、変位センサ240、AE(Acoustlc Emlssion)センサ250、温度センサ260、および不純物のセンサ270である磁気式鉄粉センサ(以下「磁気式鉄粉センサ270」と称す)の少なくとも一つがさらに備えられる。そして、診断部590Aは、その備えられた変位センサ240、AEセンサ250、温度センサ260および磁気式鉄粉センサ270の少なくとも一つから検出値を受ける。また、診断部590Aは、修正振動度Vr*、修正変調度Ve*および周波数分析部620,630による周波数分析結果を記憶部580から読出す。
 そして、診部590Aは、修正振動度Vr*、修正変調度Ve*および周波数分析部620,630による周波数分析結果とともに、変位センサ240、AEセンサ250、温度センサ260および磁気式鉄粉センサ270の少なくとも一つから受ける検出値を併用することによって、軸受の異常診断を行なう。
 変位センサ240は、軸受に取り付けられ、軸受60の外輪に対する内輪の相対変位を検出して診断部590Aへ出力する。振動センサ70の検出値を用いた上記の修正振動度Vr*および修正変調度Ve*ならびに周波数分析手法では、転動面の全体的な摩耗に対する異常の検出が難しいところ、外輪に対する内輪の相対変位を変位センサ240により検出することによって、軸受内部の摩耗を検出することができる。そして、診断部590Aは、変位センサ240からの検出値が予め設定された値(しきい値S3)を超えると、軸受に異常が発生したものと判定する。なお、変位センサ240は外輪および内輪間の相対変位を検出することから、非測定面の精度を高品質に保つ必要がある。
 AEセンサ250は、軸受に取り付けられ、軸受から発生するアコースティックエミッション波(AE信号)を検出して診断部590Aへ出力する。このAEセンサ250は、軸受を構成する部材の内部クラックの検出に優れており、AEセンサ250を併用することによって、振動センサ70では検出しにくい内部クラックが要因となって発生する剥離異常を早期に検出することが可能となる。そして、診断部590Aは、AEセンサ250により検出されるAE信号の振幅が設定値を超えた回数がしきい値S4を超えたり、検出されたAE信号またはAE信号をエンベロープ処理した信号がしきい値を超えたりすると、軸受に異常が発生したものと判定する。
 温度センサ260は、軸受に取り付けられ、軸受の温度を検出して診断部590Aへ出力する。一般的に、軸受は、潤滑不良や軸受内部のすきまの過少などによって発熱し、転動面の変色や軟化溶着を経て焼き付き状態になると回転不能になる。そこで、軸受の温度を温度センサ260により検出することによって、潤滑不良等の異常を早期に検出し得る。なお、軸受に取付けられた温度センサ260の代わりに、前記の油温を検出する油温測定手段8を用いても良い。
 そして、診断部590Aは、修正振動度Vr*および修正変調度Ve*が図37に示したような挙動を示した場合、温度センサ260の検出値をさらに参照することによって潤滑不良等の異常診断を行なう。なお、診断部590Aは、温度センサ260からの検出値が予め設定された値を超えた場合に、それのみをもって軸受に異常が発生したものと判定してもよい。
 なお、温度センサ260は、たとえば、サーミスタや白金抵抗体、熱電対等によって構成される。
 磁気式鉄粉センサ270は、軸受の潤滑剤に含まれる鉄粉量を検出し、その検出値を診断部590Aへ出力する。磁気式鉄粉センサ270は、たとえば、磁石を内蔵した電極と棒状電極とによって構成され、軸受の潤滑剤の循環経路に設けられる。そして、磁気式鉄粉センサ270は、潤滑剤中に含まれる鉄粉を磁石によって捕獲し、鉄粉の付着により電極間の電気抵抗が設定値以下になると信号を出力する。すなわち、軸受が摩耗すると、摩耗により生じた鉄粉が潤滑剤に混ざるので、軸受の潤滑剤に含まれる鉄粉量を磁気式鉄粉センサ270により検出することによって軸受60の摩耗を検出することができる。そして、診断部590Aは、磁気式鉄粉センサ270から信号を受けると、軸受60に異常が発生したものと判定する。
 なお、特に図示しないが、磁気式鉄粉センサ270に代えて、光の透過率により潤滑剤の汚れを検出する光学式センサを用いてもよい。たとえば、光学式センサは、発光素子の光を潤滑油に照射し、受光素子に到達する光の強度の変化によって潤滑油中の軸受磨耗粉の量を検出する。なお、潤滑油中に異物混入がない状態の受光素子の出力値と酸化鉄を混入させたときの受光素子の出力値との比によって光の透過率が定義され、診断部590Aは、その透過率が設定値を超えると、軸受に異常が発生したものと判定する。
 なお、図40では、変位センサ240、AEセンサ250、温度センサ260および磁気式鉄粉センサ270が示されているが、必ずしも全てを備える必要はなく、少なくとも一つのセンサを備えることによって異常診断の信頼性を高めることができる。
 この具体例4によれば、以上のように、種々のセンサの検出値を異常診断に併用するので、異常診断の信頼性をさらに高めることができる。特に、変位センサ240を併用することによって軸受内部の摩耗についても診断可能となり、AEセンサ250を併用することによって、内部クラックが要因となって発生する剥離異常を早期に診断可能となる。また、温度センサ260を併用することによって潤滑不良等の異常について早期に診断可能となり、磁気式鉄粉センサ270や光の透過率により潤滑剤の汚れを検出する光学式センサ等を併用することによって軸受の摩耗を診断可能となる。
 なお、図20の変位異常の異常診断手段52、内部クラックの異常診断手段53、および不純物の異常診断手段54は、いわば、図40の診断部590Aにおける、変位異常の異常診断、内部クラックの異常診断、および不純物の異常診断の各機能を行う手段を、振動異常の異常診断手段51とは独立して設けたものである。
 図39は、この風力発電装置における転動装置の状態監視システムの拡張例を示す。ナセル490(図21)は高所に設置されるので、この風力発電装置の状態監視システムは、メンテナンス性を考慮すると、本来的にはナセル490から離れた場所に設置するのが望ましい。しかしながら、振動センサ70を用いて測定される軸受の振動波形そのものを遠隔地へ転送することは、転送速度の速い送信手段が必要であり、コスト増を招く。また、上述のようにナセル490が高所に設置されていることを考慮すると、ナセル490から外部への通信手段には、無線通信を用いることが望ましい。
 そこで、図41の例では、水分濃度の算出、修正振動度Vr*および修正変調度Ve*の算出、並びに周波数分析処理(周波数分析を併用する場合)については、ナセル490内に設けられるデータ処理装置において実行され、算出された水分濃度、修正振動度Vr*および修正変調度Ve*並びに周波数分析結果(ピーク周波数)の各データが無線によってナセル490から外部へ送信される。そして、ナセル490から無線送信されたデータは、インターネットに接続された通信サーバによって受信され、インターネットを介して診断サーバに送信されて軸受の異常診断が実施される。
 図39は、遠隔地への通信手段を用いた風力発電装置における転動装置の状態監視システムの全体構成を概略的に示した模式図である。図39に示すように、風力発電装置の状態監視システムは、風力発電装置400と、通信サーバ310と、インターネット320と、軸受状態診断サーバ330とを備える。
 風力発電装置400の構成は、前述したとおりであるので、説明を省略する。なお、後述のように、この例における風力発電装置400のデータ処理装置においては、診断部に代えて無線通信部が設けられる。そして、風力発電装置400は、振動センサ70(図20)の検出値を用いて上述した修正振動度Vr*および修正変調度Ve*ならびに周波数分析結果(周波数分析を併用する場合)を算出し、その算出結果を無線により通信サーバ310へ出力する。
 通信サーバ310は、インターネット320に接続される。そして、通信サーバ310は、風力発電装置400から無線により送信されたデータを受信し、その受信したデータをインターネット320を介して軸受状態診断サーバ330へ出力する。軸受状態診断サーバ330は、インターネット320に接続される。そして、軸受状態診断サーバ330は、通信サーバ310からインターネット320を介してデータを受信し、風力発電装置400において算出された修正振動度Vr*および修正変調度Ve*ならびに周波数分析結果(周波数分析を併用する場合)に基づいて、風力発電装置400に設けられる軸受の異常診断を行なう。
  〔具体例5〕
 図40は、図39に示した風力発電装置400に含まれるデータ処理装置における振動異常の異常診断手段51の構成を機能的に示す機能ブロック図である。図40に示すように、異常診断手段51は、図37に示した異常診断手段51の構成において、診断部590に代えて無線通信部280を含む。無線通信部280は、修正振動度Vr*および修正変調度Ve*ならびに周波数分析部620,630による周波数分析結果を記憶部580から続出し、その続出されたデータを無線により通信サーバ310(図39)へ送信する。
 なお、同図の異常診断手段51のその他の構成は、図39に示した異常診断手段51と同じである。
 なお、上記においては、ナセル490と通信サーバ310との間は無線通信が行なわれるものとしたが、ナセル490と通信サーバ310との間を有線で接続することも可能である。この場合は、配線が必要となるものの、無線通信装置を別途設ける必要がなくなり、かつ、一般的には有線の方が多くの情報を伝達可能であるので、ナセル490内においてメイン基板上に処理を集約することができる。
 また、上述した風力発電装置の状態監視装置は、既存の発電監視システムとは独立して構成することが望ましい。このように構成することによって、既存のシステムに変更を加えることなく、風力発電装置の状態監視装置の導入コストを抑制することができる。
 以上のように、この具体例5によれば、風力発電装置400に設けられる軸受の異常診断を、遠隔地に設けられる軸受状態診断サーバ330において実施するので、メンテナンス負荷およびコストを低減することができる。
 また、ナセル490は高所に設置されるので作業環境が劣悪であるところ、無線通信部280および通信サーバ310を設けることによりナセル490からの信号出力を無線化したので、ナセル490における配線工事を最小限に抑えることができ、ナセル490を支持するタワー500内の配線工事も不要となる。
 図20の水分濃度算出手段9は、ナセル490に設置されたデータ処理装置2に設けても良く、また図39の軸受状態診断サーバ330に設けても良い。
 なお、上記実施形態は、風力発電装置を構成する転動装置1に適用した場合につき説明したが、この発明は、その他の各種の機械を構成する転動装置、例えば、産業機械、工作機械、建築機械等を構成する転動装置における状態監視に適用することができる。
 この発明の第13実施形態に係る転動装置の状態監視システムおよび監視方法を図41ないし図43と共に説明する。この転動装置の状態監視システム6は、データ処理装置30Aに設けられた状態監視システム40Aと、各種のセンサ類(7,8,70,210,240,250,270)で構成される。データ処理装置30Aは第1実施形態と同様、マイクロコンピュータやパーソナルコンピュータ等のコンピュータとそのプログラムとで構成され、または専用の電子回路により構成される。
 図41に示す例では風力発電装置に適用した例を示したが、同図の転動装置1は、例えば、産業機械における減速機構や工作機械等、他の種々の装置であっても良い。
 状態監視システム40Aは、転動装置1の転動部品3を潤滑する潤滑油中の混入水分濃度を監視する水分濃度計算手段9の他に、寿命低下率監視手段18と、余寿推定手段19と、濃度異常の診断手段20とを含む水分濃度・寿命低下率等監視手段10を有し、この他に各種の異常診断手段51~55が設けられている。
 寿命低下率監視手段18は、水分濃度計算手段9で検出された混入水分濃度cから、定められた混入水分濃度cと転動部品の寿命低下率αの関係を用いて、転動部品3の寿命低下率αを求める手段である。
 例えば、図42にグラフで示すように、混入水分濃度cに対する寿命低下率α〔=(1-実測寿命L/ 想定荷重下の寿命L10)〕を表す関数α(c)の関係を、実験から予め求めておく。この場合、監視対象の転動部品3が軸受であるとすると、実機に適用されている監視対象軸受における、混入水分濃度を測定し、図42より寿命の低下率αを推定する。寿命低下率αを求める実験は、後述のしきい値S1を求める方法を利用する。このようにして求められた上記関数α(c)を、寿命低下率監視手段18に、上記の定められた混入水分濃度cと転動部品の寿命低下率αの関係として設定しておく。
 余寿推定手段19は、寿命低下率監視手段18が出力した寿命低下率αと、定められた余寿命推定式とを用いて監視対象の転動部品3の余寿命を推定する手段である。転動部品3が軸受である場合、余寿命は次のように予測できる。例えば、混入水分濃度cと軸受の回転量(寿命)からマイナー則の考え方(非特許文献11で示すような、様々な両振り応力振幅が作用する材料において、“ある破損確率”におけるS-N線図から破損までの繰り返し数が応力のしきい値ごとに得られている場合において、それぞれの応力での繰り返し回数を足し合わせて“ある破損確率”になったときに剥離や亀裂が生じて寿命に至るという考え方)を応用して余寿命を推定する。以下にその方法を説明する。
 図42の予備実験での寿命低下率のデータに基づき、実機軸受での混入水分濃度cと寿命(回転量)との関係を図43のように導く。手順としては、混入水分濃度が0の場合の軸受寿命はL10で表され、任意の混入水分濃度での実機軸受の寿命は、(1-α(c))に実機軸受でのL10を乗じれば求めることができる。ここで、実機における混入水分濃度c1 がであったとする。もしも、この状態で軸受の運転量Nc1が(1-α(c1 ))L10を超えれば、軸受は破損すると予想される。すなわち、Nc1/(1-α(c1 ))L10が1を超えると、寿命に至るとみなすことができる。
 ただし、実機では、様々な混入水分濃度で軸受が運転される。その場合の余寿命推定方法には、各種荷重条件下の転がり軸受の寿命を予測する場合に多用されるマイナー則の考え方を導入する。具体的には、ある混入水分濃度c1 下で、回転量Nc1運転された場合のNc1/(1-α(c1 ))L10を求める(以降、この比を回転量寿命比と称す)。すなわち、様々な混入水分濃度下で運転する場合、回転寿命比を足していき、この和が1を超えた時点で、軸受が寿命に至るとみなす。余寿命をLとおけば、以下の式で表現できる。
Figure JPOXMLDOC01-appb-M000005
ここで、cave :今後の運転で期待される混入水分濃度
Nci:混入水分濃度ランクcにおける累積回転量(i:ランク番号)
~c:混入水分濃度のランク(R:ランク分けの数)
 cave は、余寿命を計算する時点の直近の時間帯での平均の混入水分濃度とすればよい。例えば、ここ最近10日間の平均値などである。caveの計算には、水分濃度計算手段9が検出した混入水分濃度cを用いる。なお、安全側の監視をするためには、混入水分濃度の測定時に、タンクや油槽より低い位置に測定室を設け、水や添加物を取り込みやすくすることで、高めの混入水分濃度を測定するとよい。
 余寿命推定手段19には、定められた余寿命推定式として上記の式を設定しておき、寿命低下率監視手段18で求めた寿命低下率αを用いる。L10は、水素が混入しない状態のL10であり、耐久試験によって求めることができる。その求めた値を用いる。なお、一定の混入水分濃度で耐久試験を行うことで、水素脆性により寿命が下がると予想される。この一定の混入水分濃度で耐久試験をさまざまな濃度で行うことで前掲の図14のグラフで示すような混入水分濃度に対する寿命がわかってくる。そこで、その寿命低下率の関数をαとする。図43のように回転量と混入水分濃度との関係を表せば、混入水分濃度cで軸受を回転させたときの累積の回転量が(1-α(c))L10に達すると剥離が生じることになる。ところで、実機では一定の混入水分濃度では無く、時間によって混入水分濃度が変わるため、c、c、c、…cのようにランク分けを予めしておき、それぞれのランクでの累積の回転量Nを(1-α(c))L10で割った値を足し合わせて1になった時点で剥離が生じ、寿命とするという考え方を用いる。
 図41において、濃度異常の診断手段20は、水分濃度計算手段9で検出された水分濃度を、定められたしきい値S1と比較し、しきい値S1を超える場合に異常と判断する。
 上記構成の水分濃度・寿命低下率等監視手段10Aも、前記第1実施形態の場合と同様、その検出された静電容量および油温から、水分濃度計算手段9により混入水分濃度を検出し、潤滑油5中の混入水分濃度を監視して精度良く求めることができる。
 また、上記のように求められた混入水分濃度cから、転動部品3における水素脆性による寿命低下率αが、寿命低下率監視手段18によって、定められた混入水分濃度と転動部品の寿命低下率の関係から求められる。さらに、余寿命推定手段19により、余寿命Lが求められる。余寿命Lは、例えば水素脆性による軸受の剥離の発生時期を予測することができる。これにより、異常発生に備え、メンテナンスの準備を予めしておくことで、異常発生後の稼働停止時間の短縮が可能となる。特に風力発電装置においてその効果が大きい。さらに、濃度異常の異常診断手段20は、混入水分濃度がしきい値S1を超えた場合に異常の判定を行う。また、転動部品3の水素脆性起因の早期損傷が、異常と判断される程度に大きくなった場合に、それを確実に検知し、注意を喚起することができる。以下に早期損傷を検知するための水分濃度・寿命低下率等監視手段以外の手段は、前記各実施形態で説明したものと同様であり、その説明を省略する。
 なお、図41に示す第13実施形態では、混入水分濃度の監視のための静電容量検出手段7や油温測定手段8を配置する測定室についての説明を省略したが、後に図44~48に示すように測定室12(図44,図45,図47,図48)を設けることが好ましい。
 図44~図48は、転動装置の混入水分濃度監視装置6Aの第14~18実施形態を示す。これらの各実施形態において、以下に説明する事項の他は、図41~図43の第13実施形態と同様である。また、これら図44~図48では、状態監視システム40Aを構成する各手段のうち、水分濃度・寿命低下率等監視手段10A以外の手段は、図示を省略している。
 図41の第13実施形態では、ハウジング4における潤滑油貯留槽4a内の潤滑油5の静電容量および油温を測定するようにしたが、図44に示す第14実施形態では、データ処理装置30Aを除く転動装置1の構成を、前述した図2の第2実施形態と同様の構成としている。その作用・効果についても第2実施形態の場合と同様であるので、詳しい説明は省略する。
 図45に示す第15実施形態では、データ処理装置30Aを除く転動装置1の構成を、前述した図3の第3実施形態と同様の構成としている。その作用・効果についても第3実施形態の場合と同様であるので、詳しい説明は省略する。
 図46に示す第16実施形態では、データ処理装置30Aを除く転動装置1の構成を、前述した図4の第4実施形態と同様の構成としている。その作用・効果についても第4実施形態の場合と同様であるので、詳しい説明は省略する。
 図47に示す第17実施形態では、データ処理装置30Aを除く転動装置1の構成を、前述した図5の第5実施形態と同様の構成としている。その作用・効果についても第5実施形態の場合と同様であるので、詳しい説明は省略する。
 図48に示す第18実施形態では、データ処理装置30Aを除く転動装置1の構成を、前述した図6の第6実施形態と同様の構成としている。その作用・効果についても第6実施形態の場合と同様であるので、詳しい説明は省略する。
 また、図示しないが、油浴潤滑方式の場合も、図48の循環給油方式の場合と同様に、転動装置に傾斜溝と排出口を設け、循環給油部にリザーブタンクを設ければよい。
 上述の転がりすべり疲労寿命試験方法およびその試験装置には、次の態様1、2が含まれる。
[態様1]
 態様1に係る転がりすべり疲労寿命試験方法は、試験油槽内の潤滑油に、鋼製材料の被試験体を浸漬し、前記被試験体に転がりすべり接触を生じる負荷を与えて鋼製材料の転がりすべり疲労寿命の試験を行う転がりすべり疲労寿命試験方法であって、前記潤滑油中に水を注入し、潤滑油中の混入水分濃度を静電容量および油温とによって測定するものである。
[態様2]
 態様2に係る試験装置は、鋼製材料の被試験体を浸漬させた状態に潤滑油を入れる試験油槽と、この試験油槽内で前記被試験体に転がりすべり接触を生じる負荷を与える手段と、前記試験油槽の潤滑油中に水を注入する水注入手段と、前記試験油槽の潤滑油の静電容量を測定する静電容量測定手段と、前記試験油槽の潤滑油の油温を測定する油温測定手段と、これら静電容量測定手段で測定した静電容量および油温測定手段で測定した油温から、定められた規則に従って前記潤滑油中の混入水分濃度を計算する水分濃度計算手段とを備えたものである。
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。
1…転動装置
2…制御装置
3…転動部品模擬体
4…ハウジング
4a…潤滑油貯留槽
5…潤滑油
6,6A…混入水分濃度監視装置
7…静電容量検出手段
8…油温測定手段
9…水分濃度計算手段
10…異常診断手段
11…混入水分濃度検出手段
12…測定室
13…攪拌手段
16…循環ポンプ
17…傾斜溝(比重が重い添加物を排出させ易くする手段)
18…寿命低下率監視手段
19…余寿推定手段
20…濃度異常の診断手段
40,40A…状態監視システム
51…振動異常の異常診断手段
52…変位異常の異常診断手段
53…内部クラックの異常診断手段
54…不純物の異常診断手段
55…総合異常診断手段
70…振動センサ
101…試験油槽
104…シリンジポンプ
105…静電容量計
106…熱電対
111…循環ポンプ
112…リザーブタンク
113…攪拌機
142…水分濃度計算手段
141…試験装置本体制御装置
146…ヘッド部
210…回転センサ
240…変位センサ
250…AEセンサ
270…不純物のセンサ
400…風力発電装置
420…主軸
430…ブレード
440…増速機
450…発電機
460…主軸用軸受
461…主軸用軸受装置
490…ナセル
500…タワー
510,550…HPF
520,560…実効値演算部
530…修正振動産算出部
540…エンベロープ処理部
570…修正変調度算出部
580…記憶部
590,590A…診断部
600…速度関数生成部
620,630…周波数分析部
680…無線通信部
S,S1…しきい値

Claims (37)

  1.  転動装置の状態を監視する状態監視システムであって、潤滑油中の混入水分濃度を監視する混入水分濃度監視装置を備え、この混入水分濃度監視装置は、前記潤滑油中の静電容量および油温をそれぞれ検出する静電容量検出手段および油温測定手段と、これら静電容量検出手段および油温測定手段で検出された静電容量および油温から、定められた規則に従って混入水分濃度を検出する水分濃度計算手段とを有する転動装置の状態監視システム。
  2.  請求項1において、油浴潤滑を行う潤滑油貯留槽または循環給油を行う循環給油手段を有する転動装置の状態監視システム。
  3.  請求項2において、転動装置のハウジングの内部または外部に静電容量および油温の測定室が設けられ、この測定室に前記静電容量検出手段および油温測定手段が設置された転動装置の状態監視システム。
  4.  請求項3において、前記静電容量および油温の測定室の中の潤滑油を攪拌する攪拌手段を設けた転動装置の状態監視システム。
  5.  請求項4において、静電容量および油温の測定室中に溜める潤滑油量を100mL以下とし、かつ変動量を±5mL以下とする転動装置の状態監視システム。
  6.  請求項4において、転動装置、並びに静電容量および油温の測定室から、潤滑油よりも比重が大きい水や添加物を排出され易くする手段を設けた転動装置の状態監視システム。
  7.  請求項1において、水分濃度計算手段で算出された混入水分濃度をしきい値と比較し、しきい値を超える場合に異常と診断する異常診断手段を設けた転動装置の状態監視システム。
  8.  請求項7に記載の転動装置の状態監視システムにおいて、前記異常診断手段の前記しきい値を定める方法であって、潤滑油中に水を注入し、静電容量および油温を測定して混入水分濃度を監視し、それをフィードバックして混入水分濃度を一定の範囲に保つように水注入量を制御する転がりすべり疲労寿命試験によって求めた混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定する転動装置の状態監視システムの異常診断しきい値設定方法。
  9.  請求項7に記載の転動装置の状態監視システムにおいて、前記異常診断手段の前記しきい値を定める方法であって、接触する要素間の運動機構によって接触面にすべりを生じさせる転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定する転動装置の状態監視システムの異常診断しきい値設定方法。
  10.  請求項7に記載の転動装置の状態監視システムにおいて、前記異常診断手段の前記しきい値を定める方法であって、接触する要素間の接触面に強制的にすべりを生じさせる転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定する転動装置の状態監視システムの異常診断しきい値設定方法。
  11.  請求項7に記載の転動装置の状態監視システムにおいて、前記異常診断手段の前記しきい値を定める方法であって、損傷が起きるまで一定回転速度,一方向回転させる転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定する転動装置の状態監視システムの異常診断しきい値設定方法。
  12.  請求項7に記載の転動装置の状態監視システムにおいて、前記異常診断手段の前記しきい値を定める方法であって、損傷が起きるまで加減速運転させる転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定する転動装置の状態監視システムの異常診断しきい値設定方法。
  13.  請求項7に記載の転動装置の状態監視システムにおいて、前記異常診断手段の前記しきい値を定める方法であって、損傷が起きるまで揺動運動させる転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定する転動装置の状態監視システムの異常診断しきい値設定方法。
  14.  請求項7に記載の転動装置の状態監視システムにおいて、前記異常診断手段の前記しきい値を定める方法であって、揺動運動で損傷を振動で精度よく検出できるよう,重畳する振動成分をなるべく排除するため,サーボモータの主軸と試験部のスピンドルを直結させる機構の転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定する転動装置の状態監視システムの異常診断しきい値設定方法。
  15.  請求項7に記載の転動装置の状態監視システムにおいて、前記異常診断手段の前記しきい値を定める方法であって、損傷対象を正極側として接触要素間に電流を流して損傷対象の摩耗を促進するため、スピンドルの支持軸受にセラミック製の転動体を用い、モータと試験部のスピンドルを絶縁する転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定する油潤滑方式転動装置の異常診断しきい値設定方法。
  16.  請求項7に記載の転動装置の状態監視システムにおいて、前記異常診断手段の前記しきい値を定める方法であって、一定回転速度、一方向回転に加え、加減速運転、揺動運動が可能な転がりすべり疲労寿命試験装置によって混入水分濃度のしきい値を求め、この求めたしきい値を前記異常診断手段にしきい値として設定する転動装置の状態監視システムの異常診断しきい値設定方法。
  17.  請求項1において、さらに、前記転動装置を構成する軸受の振動を監視する振動センサと、この振動センサの出力を用いて前記軸受の異常を判定する振動異常の異常診断手段を有する転動装置の状態監視システム。
  18.  請求項17において、前記振動異常の異常診断手段は、前記振動センサを用いて測定された前記振動波形の実効値を算出する第1の演算部と、前記振動センサを用いて測定された前記振動波形にエンベロープ処理を行なうことによって前記振動波形のエンベロープ波形を生成するエンベロープ処理部と、
     前記エンベロープ処理部によって生成された前記エンベロープ波形の交流成分の実効値を算出する第2の演算部と、
     前記第1の演算部によって算出された前記振動波形の実効値および前記第2の演算部によって算出された前記エンベロープ波形の交流成分の実効値に基づいて前記転がり軸受の異常を診断する診断部とを含む、転動装置の状態監視システム。
  19.  請求項18において、前記転がり軸受によって支持される軸または前記転がり軸受の回転速度を検出するための回転センサをさらに備え、
     前記振動異常の異常診断手段は、
     前記第1の演算部によって算出された前記振動波形の実効値を前記回転速度で正規化した修正振動度を算出する修正振動度算出部と、
     前記第2の演算部によって算出された前記エンベロープ波形の交流成分の実効値を前記回転速度で正規化した修正変調度を算出する修正変調度算出部とをさらに含み、
     前記診断部は、前記修正振動度および前記修正変調度の時間的変化の推移に基づいて前記転がり軸受の異常を診断する転動装置の状態監視システム。
  20.  請求項17において、前記転動装置を構成する軸受における、内外輪間の相対変位を検出する変位計と、この変位計の出力を用いて前記軸受の異常を判定する変位異常の異常診断手段とを設けた転動装置の状態監視システム。
  21.  請求項17において、前記転動装置を構成する軸受における、アコースティックエミッション波を検出するためのAEセンサと、このAEセンサの出力を用いて前記軸受の異常を判定する内部クラック異常の異常診断手段とを設けた転動装置の状態監視システム。
  22.  請求項17において、潤滑油の中の摩耗粉またはその他の不純物の量を検知するセンサを設け、このセンサの出力を用いて潤滑油の異常を判定する不純物異常の異常診断手段を設けた転動装置の状態監視システム。
  23.  請求項17に記載の転動装置の状態監視システムを用いて前記転動装置の潤滑油中の混入水分濃度を監視し、検出された混入水分濃度から異常であるか否かを判定する異常診断を行う方法であって、混入水分濃度による異常診断のしきい値を求める過程として、
     注水手段により潤滑油中に水を注入し、静電容量および油温を測定して混入水分濃度を監視し、この測定結果により得られた混入水分濃度から求められる適切な水分量を前記注水手段にフィードバックして混入水分濃度を一定の範囲に保つように水注入量を制御する転がりすべり疲労寿命試験によって、混入水分濃度のしきい値を求め、この求められたしきい値を前記混入水分濃度の異常診断に用いる転動装置の状態監視方法。
  24.  請求項17に記載の転動装置の状態監視システムを用いて前記転動装置の潤滑油中の混入水分濃度を監視し、検出された混入水分濃度から異常であるか否かを判定する異常診断を行う方法であって、混入水分濃度による異常診断のしきい値を求める過程として、
     接触する要素間の運動機構によって接触面にすべりを生じさせる転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、その値を前記混入水分濃度の異常診断に用いる転動装置の状態監視方法。
  25.  請求項17に記載の転動装置の状態監視システムを用いて前記転動装置の潤滑油中の混入水分濃度を監視し、検出された混入水分濃度から異常であるか否かを判定する異常診断を行う方法であって、混入水分濃度による異常診断のしきい値を求める過程として、
     接触する要素間の接触面に強制的にすべりを生じさせる転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、その値を前記混入水分濃度の異常診断に用いる転動装置の状態監視方法。
  26.  請求項17に記載の転動装置の状態監視システムを用いて前記転動装置の潤滑油中の混入水分濃度を監視し、検出された混入水分濃度から異常であるか否かを判定する異常診断を行う方法であって、混入水分濃度による異常診断のしきい値を求める過程として、
     損傷が起きるまで加減速運転させる転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、その値を前記混入水分濃度の異常診断に用いる転動装置の状態監視方法。
  27.  請求項17に記載の転動装置の状態監視システムを用いて前記転動装置の潤滑油中の混入水分濃度を監視し、検出された混入水分濃度から異常であるか否かを判定する異常診断を行う方法であって、混入水分濃度による異常診断のしきい値を求める過程として、
     損傷対象を正極側として接触要素間に電流を流して損傷対象の摩耗を促進するため、スピンドルの支持軸受にセラミック製の転動体を用い、モータと試験部のスピンドルを絶縁する転がりすべり疲労寿命試験によって混入水分濃度のしきい値を求め、その値を前記混入水分濃度の異常診断に用いる転動装置の状態監視方法。
  28.  請求項1において、さらに、定められた混入水分濃度と前記転動装置に含まれた転動部品の寿命低下率の関係を用いて、前記水分濃度計算手段で検出された混入水分濃度から前記転動装置の前記転動部品の寿命低下率を求める寿命低下率監視手段を有する転動装置の状態監視システム。
  29.  請求項28において、前記寿命低下率監視手段が出力した寿命低下率と、定められた余寿命推定式とを用いて前記転動部品の余寿命を推定する余寿命推定手段を設けた転動装置の状態監視システム。
  30.  請求項28に記載の状態監視システムを用いて前記転動部品を潤滑する潤滑油中の静電容量および油温を検出し、これらの検出された静電容量および油温から、定められた規則に従って油中の混入水分濃度を検出する水分濃度監視過程と、
     定められた混入水分濃度と転動部品の寿命低下率の関係を用いて、前記水分濃度監視過程で検出された混入水分濃度から前記転動装置の前記転動部品の寿命低下率を算出する寿命低下率計算過程とを含む転動装置の状態監視方法。
  31.  請求項28に記載の状態監視システムを用いて前記転動装置の潤滑油中の混入水分濃度を監視し、前記転動部品の寿命低下率を監視する方法であって、
     鋼製材料からなる試験片を潤滑する潤滑油に対して、注水手段により潤滑油中に水を注入し、静電容量および油温を測定して混入水分濃度を監視し、この測定結果により得られた混入水分濃度から得られる適切な水分量を前記注水手段にフィードバックして混入水分濃度を一定の範囲に保つように水注入量を制御する鋼製材料の転がりすべり疲労寿命試験によって、混入水分濃度に対する寿命低下率の関係を求め、この求められた関係を、前記寿命低下率監視手段に、前記定められた混入水分濃度と転動部品の寿命低下率の関係として設定する転動装置の状態監視方法。
  32.  請求項28に記載の状態監視システムを用いて前記転動装置の潤滑油中の混入水分濃度を監視し、前記転動装置の寿命低下率を監視する方法であって、
     接触する要素間の運動機構によって接触面にすべりを生じさせる鋼製材料の転がりすべり疲労寿命試験によって、混入水分濃度に対する寿命低下率の関係を求め、この求められた関係を、前記寿命低下率監視手段に、前記定められた混入水分濃度と転動部品の寿命低下率の関係として設定する転動装置の状態監視方法。
  33.  請求項28に記載の状態監視システムを用いて前記転動装置の潤滑油中の混入水分濃度を監視し、前記転動装置の寿命低下率を監視する方法であって、
     接触する要素間の接触面に強制的にすべりを生じさせる鋼製材料の転がりすべり疲労寿命試験によって、混入水分濃度に対する寿命低下率の関係を求め、この求められた関係を、前記寿命低下率監視手段に、前記定められた混入水分濃度と転動部品の寿命低下率の関係として設定する転動装置の状態監視方法。
  34.  請求項28に記載の状態監視システムを用いて前記転動装置の潤滑油中の混入水分濃度を監視し、前記転動装置の寿命低下率を監視する方法であって、
     損傷が起きるまで加減速運転させる転がりすべり鋼製材料の疲労寿命試験によって、混入水分濃度に対する寿命低下率の関係を求め、この求められた関係を、前記寿命低下率監視手段に、前記定められた混入水分濃度と転動部品の寿命低下率の関係として設定する転動装置の状態監視方法。
  35.  請求項28に記載の状態監視システムを用いて前記転動装置の潤滑油中の混入水分濃度を監視し、前記転動装置の寿命低下率を監視する方法であって、
     損傷が起きるまで揺動運転させる鋼製材料の転がりすべり疲労寿命試験によって、混入水分濃度に対する寿命低下率の関係を求め、この求められた関係を、前記寿命低下率監視手段に、前記定められた混入水分濃度と転動部品の寿命低下率の関係として設定する転動装置の状態監視方法。
  36.  請求項28に記載の状態監視システムを用いて前記転動装置の潤滑油中の混入水分濃度を監視し、前記転動装置の寿命低下率を監視する方法であって、
     揺動運動で損傷を振動で精度よく検出できるよう、重畳する振動成分をなるべく排除するため、サーボモータの主軸と、鋼製材料の試験片を用いた試験部のスピンドルを直結させる機構の転がりすべり疲労寿命試験によって、混入水分濃度に対する寿命低下率の関係を求め、この求められた関係を、前記寿命低下率監視手段に、前記定められた混入水分濃度と転動部品の寿命低下率の関係として設定する転動装置の状態監視方法。
  37.  請求項28に記載の状態監視システムを用いて前記転動装置の潤滑油中の混入水分濃度を監視し、前記転動装置の寿命低下率を監視する方法であって、
     損傷対象を正極側として接触要素間に電流を流して損傷対象の摩耗が促進することを利用し、スピンドルの支持軸受にセラミック製の転動体を用い、モータと試験部のスピンドルの間が絶縁構造となっている転がりすべり疲労寿命試験によって、混入水分濃度に対する寿命低下率の関係を求め、この求められた関係を、前記寿命低下率監視手段に、前記定められた混入水分濃度と転動部品の寿命低下率の関係として設定する転動装置の状態監視方法。
PCT/JP2012/054592 2011-03-03 2012-02-24 転動装置の状態監視システムおよび状態監視方法 WO2012117970A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280011533.9A CN103460009B (zh) 2011-03-03 2012-02-24 滚动装置的状态监视系统和状态监视方法
EP12751866.0A EP2682732B1 (en) 2011-03-03 2012-02-24 Status monitoring system for rolling device and threshold setting method for the status monitoring system
US14/002,878 US9335317B2 (en) 2011-03-03 2012-02-24 Status monitoring system and status monitoring method for rolling device
ES12751866.0T ES2657592T3 (es) 2011-03-03 2012-02-24 Sistema de supervisión de estado para dispositivo rodante y procedimiento de ajuste de umbral para el sistema de supervisión de estado

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011-045951 2011-03-03
JP2011045951A JP2012181168A (ja) 2011-03-03 2011-03-03 転動装置の状態監視装置および監視方法
JP2011045950A JP5661512B2 (ja) 2011-03-03 2011-03-03 油潤滑方式転動装置およびその潤滑油中の混入水分濃度の異常監視のしきい値設定方法
JP2011-045949 2011-03-03
JP2011045952A JP2012181169A (ja) 2011-03-03 2011-03-03 転動部品の状態監視装置および状態監視方法
JP2011-045952 2011-03-03
JP2011045949A JP5653795B2 (ja) 2011-03-03 2011-03-03 鋼製材料の転がりすべり疲労寿命試験方法
JP2011-045950 2011-03-03

Publications (1)

Publication Number Publication Date
WO2012117970A1 true WO2012117970A1 (ja) 2012-09-07

Family

ID=46757907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054592 WO2012117970A1 (ja) 2011-03-03 2012-02-24 転動装置の状態監視システムおよび状態監視方法

Country Status (5)

Country Link
US (1) US9335317B2 (ja)
EP (1) EP2682732B1 (ja)
CN (1) CN103460009B (ja)
ES (1) ES2657592T3 (ja)
WO (1) WO2012117970A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2982955A4 (en) * 2013-04-05 2016-04-20 Nsk Ltd RADIAL BEARING TEST DEVICE
WO2017150049A1 (ja) * 2016-02-29 2017-09-08 三菱重工業株式会社 機械要素の性能劣化・診断方法およびそのシステム
WO2024105971A1 (ja) * 2022-11-14 2024-05-23 日本精工株式会社 転動装置における水素発生量予測方法、これに用いられる水素発生試験装置、及び、転動装置における白色組織剥離の可能性評価方法

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015015987A1 (ja) * 2013-08-01 2015-02-05 Ntn株式会社 軸受装置の振動解析方法、軸受装置の振動解析装置、および転がり軸受の状態監視装置
JP2015151889A (ja) * 2014-02-12 2015-08-24 Ntn株式会社 風力発電装置の状態検出装置
WO2015178823A1 (en) * 2014-05-19 2015-11-26 Aktiebolaget Skf Bearing arrangement and method for determining optical properties of a lubricant in a bearing
CN106460921B (zh) * 2014-05-19 2019-04-05 斯凯孚公司 轴承中的电容测量
EP3163074B1 (en) 2014-06-24 2020-04-22 NTN Corporation Condition monitoring system and wind power generation system using same
EP3176427A4 (en) 2014-07-29 2018-03-14 NTN Corporation State monitoring system and wind power generation system provided with same
US20160054290A1 (en) * 2014-08-25 2016-02-25 General Electric Company Transportation machine lubricating oil analyzer system, computer program product and related methods
US20160054292A1 (en) * 2014-08-25 2016-02-25 General Electric Company Stored lubricating oil analyzer system, computer program product and related methods
US20160054289A1 (en) * 2014-08-25 2016-02-25 General Electric Company Industrial machine lubricating oil analyzer system, computer program product and related methods
US20160054291A1 (en) * 2014-08-25 2016-02-25 General Electric Company Reciprocating engine lubricating oil analyzer system, computer program product and related methods
US20160054288A1 (en) * 2014-08-25 2016-02-25 General Electric Company Wind turbine lubricating oil analyzer system, computer program product and related methods
US20160054287A1 (en) * 2014-08-25 2016-02-25 General Electric Company Machine oil analyzer system, computer program product and related methods
ES2689924T3 (es) * 2014-08-29 2018-11-16 Siemens Aktiengesellschaft Aerogenerador con un tren motriz
JP6174545B2 (ja) * 2014-10-17 2017-08-02 ファナック株式会社 臭気センサを用いた切削液の状態監視装置
US9695979B2 (en) * 2014-12-23 2017-07-04 Lincoln Industrial Corporation Method of controlling bearing lubrication system
US9551460B2 (en) * 2014-12-23 2017-01-24 Lincoln Industrial Corporation Bearing system with lubrication controller
DE102015010491A1 (de) * 2015-08-17 2017-02-23 Senvion Gmbh Verfahren zum Betrieb einer Windenergieanlage, Windenergieanlage und Computerprogrammprodukt
JP6747757B2 (ja) * 2016-03-25 2020-08-26 Thk株式会社 転がり案内装置の状態診断方法
US10227522B2 (en) * 2016-05-25 2019-03-12 Baker Hughes, A Ge Company, Llc Fluid efficiency for viscoelastic surfactant based fluids with nanoparticles
US9970899B2 (en) 2016-07-15 2018-05-15 Ketos, Inc. Automated smart water quality monitor and analyzer and associated methods
DE102016215099A1 (de) * 2016-08-12 2018-02-15 Zf Friedrichshafen Ag Verfahren zum Vermessen eines Schmierspaltes zwischen geschmierten Kontaktelementen
US9997047B2 (en) * 2016-10-03 2018-06-12 General Electric Company System and method for detecting lubricated bearing condition
DE102016220101A1 (de) * 2016-10-14 2018-04-19 Zf Friedrichshafen Ag Akustische Brücke
US11373286B2 (en) * 2016-11-07 2022-06-28 Nabtesco Corporation Status checking device for built-in object, operation checking device and method for checking built-in object
US20180156691A1 (en) * 2016-12-05 2018-06-07 Aktiebolaget Skf Bearing assembly including oil quality sensor
JP2018096451A (ja) 2016-12-13 2018-06-21 Ntn株式会社 転がり軸受の異常検知装置
EP3388667A1 (en) * 2017-04-12 2018-10-17 Adwen GmbH Gearbox for the drive train of a wind turbine
JP6408063B1 (ja) * 2017-04-28 2018-10-17 ファナック株式会社 複数のセンサを備える工作機械の主軸ヘッドの故障検出装置
US10760977B2 (en) 2017-05-17 2020-09-01 General Electric Company System and method for detecting lubricated bearing condition
US20180340924A1 (en) * 2017-05-23 2018-11-29 General Electric Company Turbomachine lubricating oil analyzer system, computer program product and related methods
JP6812925B2 (ja) * 2017-08-01 2021-01-13 トヨタ自動車株式会社 ロボットアーム、鉄粉量推定方法及び異常予兆判定システム
WO2019055269A1 (en) * 2017-09-15 2019-03-21 Exxonmobil Research And Engineering Company ELECTROSTATIC DETECTION OF VARNISH AND PRECURSORS IN LUBRICANTS
JP7099816B2 (ja) 2017-10-27 2022-07-12 株式会社日立製作所 潤滑油の劣化診断方法、回転機械の潤滑油の監視システムおよび方法
CN111386453B (zh) * 2017-11-22 2023-02-17 川崎重工业株式会社 机械装置的老化诊断装置、以及机械装置的老化诊断方法
JP7086578B2 (ja) * 2017-11-22 2022-06-20 ナブテスコ株式会社 センサ
JP6947656B2 (ja) * 2018-01-25 2021-10-13 トヨタ自動車株式会社 内燃機関の制御装置
CN108519414B (zh) * 2018-03-29 2020-11-17 武汉钢铁有限公司 在动态旋转条件下检测金属材料抗氢脆性能的装置及方法
JP6940820B2 (ja) * 2018-05-08 2021-09-29 オムロン株式会社 ロボット制御装置、保守管理方法、及び保守管理プログラム
JP7081319B2 (ja) 2018-06-13 2022-06-07 いすゞ自動車株式会社 推定装置及び、推定方法
JP6694016B2 (ja) 2018-07-10 2020-05-13 ファナック株式会社 寿命評価装置およびロボットシステム
CN109522650B (zh) * 2018-11-16 2022-05-10 吉林大学 一种无突发失效信息下电主轴寿命评估方法
US11555813B2 (en) * 2019-03-14 2023-01-17 Bvba Dierickx-Tools Apparatus and method for monitoring a condition of metalworking fluid of a metalworking fluid circuit of a metalworking machine
JP7179674B2 (ja) 2019-05-10 2022-11-29 株式会社日立製作所 潤滑油の診断方法および潤滑油の監視システム
JP7293090B2 (ja) * 2019-11-15 2023-06-19 山陽特殊製鋼株式会社 転がり疲れ試験方法
JP7293091B2 (ja) * 2019-11-15 2023-06-19 山陽特殊製鋼株式会社 転がり疲れ試験方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127142A (ja) * 1982-01-26 1983-07-28 Nippon Seiko Kk 軸受の傷検出装置
JPS6172667U (ja) * 1984-10-18 1986-05-17
JPS62137493A (ja) * 1985-12-11 1987-06-20 Kobe Steel Ltd 循環給油装置
JPH0712686A (ja) * 1993-06-23 1995-01-17 Koyo Seiko Co Ltd 転がり軸受の疲労試験機
JP2000009597A (ja) * 1998-06-19 2000-01-14 Nippon Seiko Kk 軸受用鋼の清浄度評価方法
JP2002181666A (ja) * 2000-12-18 2002-06-26 Nsk Ltd 鉄道車両用軸受の評価試験方法
JP2002277437A (ja) * 2001-03-19 2002-09-25 Denso Corp オイル劣化センサ
JP2004044635A (ja) * 2002-07-09 2004-02-12 Nsk Ltd センサ付軸受装置及びその製造方法
JP2006138376A (ja) 2004-11-11 2006-06-01 Ntn Corp ラジアルニードルころ軸受
JP2007310611A (ja) 2006-05-18 2007-11-29 Ntn Corp 軸受使用設備機器の監視・診断システム
JP2010005688A (ja) * 2008-06-30 2010-01-14 Jfe Steel Corp テーブルロールの軸受状態判定方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4315421A (en) * 1978-10-03 1982-02-16 National Steel Corporation Method of controlling the concentration and stability of an emulsion
US4517547A (en) * 1981-11-20 1985-05-14 Motorola, Inc. Water-in-fuel sensor circuit and method
US4498305A (en) * 1982-03-01 1985-02-12 Carrier Corporation Probe for measuring electrical conductance
GB2149117A (en) * 1983-11-04 1985-06-05 Anderson Strathclyde Plc Detection of water in oil
JPS6172667A (ja) 1984-09-14 1986-04-14 株式会社ノダ 押出し成形品及びその製造方法
JPH0752119B2 (ja) 1986-12-24 1995-06-05 株式会社小野測器 転がり軸受の転動体表面の粗さ推定方法
JPH0752479Y2 (ja) * 1990-03-19 1995-11-29 石川島播磨重工業株式会社 製紙機械のロール軸受潤滑装置
JP2634495B2 (ja) 1991-02-21 1997-07-23 エヌティエヌ 株式会社 オートマチックトランスミッション用軸受
GB9314388D0 (en) 1993-07-12 1993-08-25 Esselte Dymo Nv Tape cutting apparatus
DE19628690C2 (de) * 1996-07-17 1999-04-22 Achenbach Buschhuetten Gmbh Verfahren und Meßsysteme zur Messung physikalischer Größen von gering leitenden und nichtleitenden Fluiden
US5824889A (en) * 1997-03-06 1998-10-20 Kavlico Corporation Capacitive oil deterioration and contamination sensor
JPH10253569A (ja) 1997-03-11 1998-09-25 Japan Energy Corp 油中水分計の校正方法及び装置
US6196057B1 (en) * 1998-04-02 2001-03-06 Reliance Electric Technologies, Llc Integrated multi-element lubrication sensor and lubricant health assessment
DE19957592A1 (de) * 1999-11-30 2001-06-07 Mahle Filtersysteme Gmbh Ölsystem, insbesondere Hydrauliksystem oder Schmierölsystem
JP3855651B2 (ja) * 2000-08-29 2006-12-13 日本精工株式会社 転がり軸受の寿命予測方法、寿命予測装置、寿命予測装置を使用した転がり軸受選定装置及び記憶媒体
DE10207361B4 (de) 2001-02-22 2009-08-13 DENSO CORPORATION, Kariya-shi Ölzustandssensor und Verfahren zum Herstellen desselben
US6911830B2 (en) * 2002-08-22 2005-06-28 Delphi Technologies, Inc. Diesel engine lubricating oil contaminant sensor method
US20060169031A1 (en) * 2005-01-21 2006-08-03 Limin Song On-line monitoring of degredation and contamination of lubricant of rotating equipment
JP2006258473A (ja) 2005-03-15 2006-09-28 Nsk Ltd 転がり軸受の軸受寿命推定方法
US7370514B2 (en) * 2005-04-14 2008-05-13 Gm Global Technology Operations, Inc. Determining quality of lubricating oils in use
JP2007010643A (ja) 2005-05-30 2007-01-18 Nsk Ltd 荷重負荷装置
WO2007088701A1 (ja) * 2006-02-01 2007-08-09 Ntn Corporation 潤滑剤劣化検出装置および検出装置付き軸受
JP4781847B2 (ja) * 2006-02-28 2011-09-28 Jfeスチール株式会社 転動疲労性の優れた鋼部材の製造方法
JP2008268187A (ja) * 2007-03-26 2008-11-06 Nippon Steel Corp 極低速回転機械の異常診断方法及び装置
JP2008286662A (ja) 2007-05-18 2008-11-27 Ntn Corp 軸受試験装置および軸受試験方法
DE102007036271A1 (de) 2007-07-31 2009-02-05 Baumer Hübner GmbH Drehgeber mit Überwachung des Lagerverschleißes sowie Verfahren hierzu
ATE519902T1 (de) 2008-04-02 2011-08-15 Martin Mueller Montagemittel zur montage von naturstein und verfahren zum montieren von naturstein
US7835875B2 (en) * 2009-03-27 2010-11-16 Gm Global Technology Operations, Inc. Determination of end of life of oil by electrical means
SG10201400818WA (en) * 2009-04-06 2014-05-29 Wärtsilä Schweiz AG Monitoring device and monitoring method for monitoring a state of wear of a component of a reciprocating internal combustion engine

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127142A (ja) * 1982-01-26 1983-07-28 Nippon Seiko Kk 軸受の傷検出装置
JPS6172667U (ja) * 1984-10-18 1986-05-17
JPS62137493A (ja) * 1985-12-11 1987-06-20 Kobe Steel Ltd 循環給油装置
JPH0712686A (ja) * 1993-06-23 1995-01-17 Koyo Seiko Co Ltd 転がり軸受の疲労試験機
JP2000009597A (ja) * 1998-06-19 2000-01-14 Nippon Seiko Kk 軸受用鋼の清浄度評価方法
JP2002181666A (ja) * 2000-12-18 2002-06-26 Nsk Ltd 鉄道車両用軸受の評価試験方法
JP2002277437A (ja) * 2001-03-19 2002-09-25 Denso Corp オイル劣化センサ
JP2004044635A (ja) * 2002-07-09 2004-02-12 Nsk Ltd センサ付軸受装置及びその製造方法
JP2006138376A (ja) 2004-11-11 2006-06-01 Ntn Corp ラジアルニードルころ軸受
JP2007310611A (ja) 2006-05-18 2007-11-29 Ntn Corp 軸受使用設備機器の監視・診断システム
JP2010005688A (ja) * 2008-06-30 2010-01-14 Jfe Steel Corp テーブルロールの軸受状態判定方法

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
H. MIKAMI; T. KAWAMURA, SAE PAPER, 2007
H. TANIMOTO; H. TANAKA; J. SUGIMURA, PROCEEDINGS OF JAST TRIBOLOGY CONFERENCE, 2010, pages 203 - 204
K. TAMADA; H. TANAKA, WEAR, vol. 199, 1996, pages 245 - 252
L. GRUNBERG, PROC. PHYS. SOC. (LONDON, vol. B66, 1953, pages 153 - 161
L. GRUNBERG; D. SCOTT, J. INST. PETROL., vol. 44, 1958, pages 406 - 410
L. GRUNBERG; D.T. JAMIESON; D. SCOTT, PHILOSOPHICAL MAGAZINE, vol. 8, 1963, pages 1553 - 1568
P. SCHATZBERG, J. LUB. TECH., vol. 231, 1971, pages 231 - 235
P. SCHATZBERG; I.M. FELSEN, WEAR, vol. 12, 1968, pages 331 - 342
See also references of EP2682732A4 *
T. MAKINO, ACADEMIC DISSERTATION (KYOTO UNIVERSITY, 2000, pages 134
Y. MATSUBARA; H. HAMADA: "Bearing Steel Technology, ASTM STP1465", 2005, pages: 153 - 166

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2982955A4 (en) * 2013-04-05 2016-04-20 Nsk Ltd RADIAL BEARING TEST DEVICE
US9903786B2 (en) 2013-04-05 2018-02-27 Nsk Ltd. Radial rolling-bearing testing device
WO2017150049A1 (ja) * 2016-02-29 2017-09-08 三菱重工業株式会社 機械要素の性能劣化・診断方法およびそのシステム
JPWO2017150049A1 (ja) * 2016-02-29 2018-12-20 三菱重工業株式会社 機械要素の性能劣化・診断方法およびそのシステム
WO2024105971A1 (ja) * 2022-11-14 2024-05-23 日本精工株式会社 転動装置における水素発生量予測方法、これに用いられる水素発生試験装置、及び、転動装置における白色組織剥離の可能性評価方法

Also Published As

Publication number Publication date
EP2682732B1 (en) 2017-11-29
US20140007657A1 (en) 2014-01-09
ES2657592T3 (es) 2018-03-06
CN103460009B (zh) 2016-07-06
CN103460009A (zh) 2013-12-18
EP2682732A4 (en) 2015-04-01
US9335317B2 (en) 2016-05-10
EP2682732A1 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
WO2012117970A1 (ja) 転動装置の状態監視システムおよび状態監視方法
JP2012181169A (ja) 転動部品の状態監視装置および状態監視方法
JP5661512B2 (ja) 油潤滑方式転動装置およびその潤滑油中の混入水分濃度の異常監視のしきい値設定方法
JP2012181168A (ja) 転動装置の状態監視装置および監視方法
Dhanola et al. Tribological challenges and advancements in wind turbine bearings: A review
CN202189050U (zh) 滚动轴承润滑模拟实验装置
JP6072504B2 (ja) 転動部品の寿命評価方法および寿命評価装置
CN110107591B (zh) 确定油脂使用和/或剩余时间的轴承配置、装置及方法
CN105899945A (zh) 来自解调的声发射的粘度估算
JP2014149081A (ja) 少なくとも1つの摺動対および/または転動対の状態依存潤滑用装置
Pasaribu et al. The composition of reaction layers on rolling bearings lubricated with gear oils and its correlation with rolling bearing performance
US20200096418A1 (en) Method and device for estimating the state of wear of a journal bearing
Peng et al. Review of tribological failure analysis and lubrication technology research of wind power bearings
JP2005351363A (ja) 潤滑剤補給装置
Karabacak et al. Experimental investigation of efficiency of worm gears and modeling of power loss through artificial neural networks
JP5653795B2 (ja) 鋼製材料の転がりすべり疲労寿命試験方法
Jakubek et al. The influence of kinematic viscosity of a lubricant on broadband rolling bearing vibrations in amplitude terms
Kandeva et al. Influence of" Valena" metal-plating additive on the friction properties of ball bearings
CN102928221A (zh) 一种风机齿轮箱故障诊断方法
WO2020149233A1 (ja) 転動装置の診断方法
JP2022094088A (ja) 油膜パラメータの算出方法
Wang et al. Prediction of the friction torque in grease lubricated angular contact ball bearings using grey system theory
RU2407999C1 (ru) Способ оценивания технического состояния подшипников
CN114526437B (zh) 一种滚动轴承润滑不良判定方法
Kočiško et al. Research into Correlation between the Lubrication Mode of Contact Surfaces and Dynamic Parameters of Turbo‐Generator Transmissions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12751866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14002878

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012751866

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012751866

Country of ref document: EP