WO2012117960A1 - 半導体素子および表示パネル - Google Patents

半導体素子および表示パネル Download PDF

Info

Publication number
WO2012117960A1
WO2012117960A1 PCT/JP2012/054549 JP2012054549W WO2012117960A1 WO 2012117960 A1 WO2012117960 A1 WO 2012117960A1 JP 2012054549 W JP2012054549 W JP 2012054549W WO 2012117960 A1 WO2012117960 A1 WO 2012117960A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
electrode
sub
semiconductor element
functional
Prior art date
Application number
PCT/JP2012/054549
Other languages
English (en)
French (fr)
Inventor
松井 隆司
塩田 素二
元 長岡
康生 森
裕喜 中濱
弘規 宮崎
圭司 青田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2013502285A priority Critical patent/JPWO2012117960A1/ja
Publication of WO2012117960A1 publication Critical patent/WO2012117960A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13454Drivers integrated on the active matrix substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13012Shape in top view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/1401Structure
    • H01L2224/1403Bump connectors having different sizes, e.g. different diameters, heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/1405Shape
    • H01L2224/14051Bump connectors having different shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/141Disposition
    • H01L2224/1412Layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/141Disposition
    • H01L2224/1412Layout
    • H01L2224/1415Mirror array, i.e. array having only a reflection symmetry, i.e. bilateral symmetry
    • H01L2224/14152Mirror array, i.e. array having only a reflection symmetry, i.e. bilateral symmetry being non uniform, i.e. having a non uniform pitch across the array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/141Disposition
    • H01L2224/1412Layout
    • H01L2224/1415Mirror array, i.e. array having only a reflection symmetry, i.e. bilateral symmetry
    • H01L2224/14154Mirror array, i.e. array having only a reflection symmetry, i.e. bilateral symmetry covering only portions of the surface to be connected
    • H01L2224/14155Covering only the peripheral area of the surface to be connected, i.e. peripheral arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/1451Function
    • H01L2224/14515Bump connectors having different functions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Definitions

  • the present invention relates to a semiconductor element and a display panel, and more particularly to a semiconductor element and a display panel provided with a plurality of electrodes arranged in a row.
  • FIG. 12 is a cross-sectional view illustrating a structure of a display panel including a semiconductor element according to a conventional example.
  • FIG. 13 is a plan view showing the structure of the semiconductor device of FIG.
  • a display panel 101 includes a semiconductor element 110 and a panel (element mounting member) 120 formed of a transparent substrate on which the semiconductor element 110 is mounted.
  • the semiconductor element 110 includes a rectangular main surface 111 having two long sides 111a and 111b and two short sides 111c and 111d.
  • a plurality (for example, several hundreds) of bump electrodes 112 and a plurality of bump electrodes 113 are arranged along the long sides 111a and 111b.
  • the plurality of bump electrodes 112 are arranged at a narrow pitch, and the distance between the bump electrodes 112 is, for example, about 15 ⁇ m.
  • an ACF anisotropic conductive film (not shown) is disposed between the semiconductor element 110 and the panel 120, and the semiconductor element 110 is mounted on the panel 120 by thermocompression bonding.
  • the semiconductor element 110 warps due to thermal contraction after thermocompression bonding, as shown in FIG. This warpage becomes the largest at the corner portion (particularly, the short side portion) of the semiconductor element 110, the pressing force against the conductive particles becomes small, and the deformation (compression) rate of the conductive particles becomes insufficient. For this reason, there is a disadvantage that sufficient connection may not be obtained between the semiconductor element 110 and the panel 120.
  • a bump electrode 114 electrically connected to the adjacent bump electrode 112 is added outside the bump electrode 112 of the semiconductor element 110.
  • the connection reliability between the semiconductor element 110 and the panel 120 is increased. Can be suppressed to some extent.
  • the fluidity of the conductive particles contained in the ACF is reduced when the semiconductor element 110 is thermocompression bonded to the panel 120 via the ACF. That is, the plurality of bump electrodes 112 are arranged at a narrow pitch, and originally the conductive particles hardly pass between the bump electrodes 112 (the fluidity of the conductive particles tends to decrease).
  • the bump electrode 114 since the bump electrode 114 is disposed outside the bump electrode 112, the region where the conductive particles are difficult to pass through (between the bump electrodes 112 and between the bump electrodes 114) becomes long. . For this reason, as shown in FIG. 15, the conductive particles 130 easily aggregate, and there is a problem that a short circuit may occur between the bump electrodes 112 or between the bump electrodes 114.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a semiconductor element and a display panel capable of suppressing a decrease in connection reliability. is there.
  • a semiconductor device of the present invention comprises a main surface having four sides, a plurality of functional electrodes arranged along at least two opposing sides of the four sides, and a plurality of functional electrodes.
  • a plurality of sub-electrodes arranged outside or inside and arranged along at least a part of the plurality of functional electrodes, the sub-electrodes being electrically connected to the functional electrodes or formed by dummy electrodes And has a smaller area than the functional electrode.
  • the adhesion area between the electrodes (functional electrodes and sub-electrodes) around the functional electrodes and the electrodes of the element mounting member is increased.
  • the sub-electrode has a smaller area than the functional electrode, it is possible to suppress the narrowing of the region (between the sub-electrodes) through which the conductive particles contained in the anisotropic conductive layer pass.
  • the plurality of sub-electrodes are disposed outside the plurality of functional electrodes. If comprised in this way, before the connection between a sub electrode and an element mounting member deteriorates, it can suppress that the connection between a functional electrode and an element mounting member deteriorates.
  • the width in the arrangement direction of the sub-electrodes is smaller than the width in the arrangement direction of the functional electrodes. If comprised in this way, it can suppress that the distance between sub-electrodes becomes small.
  • the length in the direction intersecting with the arrangement direction of the sub-electrodes is smaller than the length in the direction intersecting with the arrangement direction of the functional electrodes. If comprised in this way, it can suppress easily that the area
  • the main surface is formed in a rectangular shape having two long sides and two short sides, and the plurality of functional electrodes are arranged along the long sides, A plurality of sub-electrodes arranged along the short-side electrode row, including a short-side electrode row arranged along the short side. If comprised in this way, the degradation of the connection of a short side part (short side electrode row
  • the plurality of sub-electrodes are preferably arranged along at least the end portion of the short-side electrode row. If comprised in this way, the deterioration of the connection of the edge part of a short side part (short side electrode row
  • the main surface is formed in a rectangular shape having two long sides and two short sides, and the plurality of functional electrodes includes a long side electrode array arranged along the long side, The sub-electrodes may be arranged along the long-side electrode row.
  • the plurality of sub-electrodes are arranged along the long-side electrode row, preferably, the plurality of sub-electrodes are arranged along at least the end portion of the long-side electrode row. If comprised in this way, the deterioration of the connection of the edge part of a long side electrode row
  • the plurality of functional electrodes include a plurality of first area electrodes having a first area, and a plurality of second area electrodes having a second area smaller than the first area,
  • the sub-electrodes are not arranged along the first area electrode, but are arranged along the second area electrode. If comprised in this way, the connection area between the electrode (2nd area electrode and subelectrode) in the periphery of a 2nd area electrode and the electrode of an element mounting member will become large.
  • the plurality of functional electrodes are a plurality of first pitch electrodes arranged at a first pitch, and a plurality of second pitch electrodes arranged at a second pitch smaller than the first pitch.
  • the sub-electrodes are not arranged along the first pitch electrodes, but are arranged along the second pitch electrodes. If comprised in this way, the connection area between the electrode (2nd pitch electrode and subelectrode) in the periphery of a 2nd pitch electrode and the electrode of an element mounting member will become large.
  • the plurality of functional electrodes include an outer electrode row and an inner electrode row arranged in two rows along at least one of the four sides, and the sub-electrode is an outer electrode row along the outer electrode row. It may be arranged outside.
  • the sub electrode is electrically connected to the functional electrode.
  • the functional electrode and the sub electrode include a bump electrode protruding from the main surface.
  • the functional electrode and the sub electrode are connected to the element mounting member via an anisotropic conductive layer.
  • the display panel of the present invention includes the semiconductor element having the above-described configuration.
  • the present invention by arranging a plurality of sub-electrodes along a plurality of functional electrodes, between the electrodes (functional electrodes and sub-electrodes) around the functional electrodes and the electrodes of the element mounting member
  • the adhesion area of becomes larger.
  • the sub electrode has a smaller area than the functional electrode, it is possible to suppress the narrowing of the region (between the sub electrodes) through which the conductive particles pass.
  • the semiconductor element is thermocompression bonded to the element mounting member via the anisotropic conductive layer, the fluidity of the conductive particles between the functional electrodes and between the sub-electrodes is prevented from being reduced and aggregated. can do.
  • FIG. 1 is a side view illustrating a structure of a liquid crystal display panel including a semiconductor device according to a first embodiment of the present invention. It is the top view which showed the structure of the semiconductor element of FIG.
  • FIG. 2 is an enlarged plan view showing structures of output bump electrodes and sub-electrodes of the semiconductor element of FIG. 1. It is the top view which showed the structure of the panel of FIG.
  • FIG. 6 is a plan view illustrating a structure of a semiconductor device according to a second embodiment of the present invention.
  • FIG. 6 is a plan view illustrating a structure of a semiconductor device according to a third embodiment of the present invention. It is the enlarged plan view which showed the structure of the output bump electrode and subelectrode of the semiconductor element by the 1st modification of this invention.
  • FIG. 15 is an enlarged plan view showing the structure of the bump electrode of FIG. 14.
  • the liquid crystal display panel (display panel) 1 is used for a liquid crystal display device (not shown). As shown in FIG. 1, the liquid crystal display panel 1 is disposed between the semiconductor element 10, a panel (element mounting member) 40 made of a glass substrate on which the semiconductor element 10 is mounted, and the semiconductor element 10 and the panel 40. ACF (anisotropic conductive film (anisotropic conductive layer)) 70.
  • the panel 40 includes an AM substrate (active matrix substrate) 41 on which the semiconductor element 10 is mounted, and a counter substrate 42 disposed to face the AM substrate 41. Further, liquid crystal (not shown) is sealed between the AM substrate 41 and the counter substrate 42.
  • the semiconductor element 10 includes a rectangular main surface 11 having two long sides 11a and 11b and two short sides 11c and 11d.
  • a plurality (for example, several hundreds) of output bump electrodes 12 and a plurality of input bump electrodes 13 arranged along (adjacent to) the long sides 11a and 11b are provided.
  • a plurality of output bump electrodes 14 and a plurality of output bump electrodes 15 arranged along the short sides 11 c and 11 d are provided. That is, the output bump electrode 12, the input bump electrode 13, the output bump electrode 14, and the output bump electrode 15 are disposed on the peripheral edge of the main surface 11.
  • the bump electrodes (12 to 15) are formed so as to protrude from the main surface 11.
  • the output bump electrodes 12, 14, 15 and the input bump electrode 13 are examples of the “functional electrode” and “bump electrode” of the present invention.
  • a plurality of output bump electrodes 12 constitutes a long side electrode array 22, and a plurality of input bump electrodes 13 configures a long side electrode array 23.
  • a plurality of output bump electrodes 14 constitute a short side electrode array 24, and a plurality of output bump electrodes 15 constitute a short side electrode array 25.
  • the output bump electrodes (second area electrodes) 12, 14 and 15 have an area (second area) smaller than the area (first area) of the input bump electrode (first area electrode) 13.
  • the output bump electrodes (second pitch electrodes) 12, 14 and 15 are arranged at a pitch (second pitch) smaller than the pitch (first pitch) of the input bump electrodes (first pitch electrodes) 13. Yes.
  • the output bump electrodes 12, 14 and 15 are arranged at a narrow pitch, and the distance between the output bump electrodes is, for example, about 15 ⁇ m.
  • a plurality of sub-electrodes 32, 34 and 35 are arranged on the main surface 11 along the output bump electrodes 12, 14 and 15, respectively. Specifically, a plurality of sub-electrodes 32 are arranged outside the plurality of output bump electrodes 12 (on the long side 11a side). A plurality of sub-electrodes 34 are arranged outside the plurality of output bump electrodes 14 (short side 11c side), and a plurality of sub-electrodes 35 are arranged outside the plurality of output bump electrodes 15 (short side 11d side). Has been.
  • the sub electrodes 32, 34 and 35 are also formed by bump electrodes protruding from the main surface 11.
  • the sub electrode 32 is electrically connected to the adjacent output bump electrode 12.
  • the sub electrode 34 is electrically connected to the adjacent output bump electrode 14, and the sub electrode 35 is electrically connected to the adjacent output bump electrode 15.
  • the sub-electrodes 32, 34, and 35 may be dummy electrodes (electrodes that do not contribute to driving the liquid crystal display panel 1).
  • the sub-electrodes 32 are arranged at the same pitch as the output bump electrodes 12.
  • the sub electrodes 34 are arranged at the same pitch as the output bump electrodes 14, and the sub electrodes 35 are arranged at the same pitch as the output bump electrodes 15.
  • the width W34 in the arrangement direction (A direction) of the sub electrodes 34 is smaller than the width W14 in the arrangement direction (A direction) of the output bump electrodes 14 and intersects the arrangement direction of the sub electrodes 34.
  • the length L34 in the direction (B direction) is smaller than the length L14 in the direction (B direction) intersecting the arrangement direction of the output bump electrodes 14.
  • the width in the arrangement direction (B direction) of the sub electrodes 32 is smaller than the width in the arrangement direction (B direction) of the output bump electrodes 12, and the direction intersecting the arrangement direction of the sub electrodes 32.
  • the length in the (A direction) is smaller than the length in the direction (A direction) intersecting the arrangement direction of the output bump electrodes 12.
  • the width in the arrangement direction (A direction) of the sub electrodes 35 is smaller than the width in the arrangement direction (A direction) of the output bump electrodes 15, and the length in the direction (B direction) intersecting the arrangement direction of the sub electrodes 35 is The length is smaller than the length in the direction (B direction) intersecting the arrangement direction of the output bump electrodes 15. For this reason, the sub-electrodes 32, 34, and 35 have areas smaller than the output bump electrodes 12, 14, and 15, respectively.
  • the width W34 of the sub-electrode 34 is made smaller than the width W14 of the output bump electrode 14 as shown in FIG. 3, it is possible to suppress the distance between the sub-electrodes 34 from being reduced. is there. Thereby, when the semiconductor element 10 is thermocompression bonded to the panel 40 via the ACF 70, it is possible to prevent the conductive particles contained in the ACF 70 from easily passing between the sub-electrodes 34. Further, by making the length L34 of the sub electrode 34 smaller than the length L14 of the output bump electrode 14, the region through which the conductive particles pass (between the output bump electrodes 14 and between the sub electrodes 34) becomes longer. Can be suppressed.
  • the AM substrate 41 of the panel 40 is provided with a plurality of pad electrodes corresponding to the electrodes of the semiconductor element 10 as shown in FIG.
  • the AM substrate 41 has pad electrodes 52, 53, 54, at positions corresponding to the output bump electrode 12, the input bump electrode 13, the output bump electrodes 14, 15, and the sub electrodes 32, 34, and 35, respectively. 55, 62, 64 and 65 are provided.
  • the pad electrode 52 is formed with the same pitch, the same width, and the same area as the output bump electrode 12, for example. The same applies to the pad electrodes 53 to 55, 62, 64 and 65. Since the semiconductor element 10 is mounted face-down on the AM substrate 41, the pad electrodes 52 to 55, 62, 64 and 65 are positions where the electrodes (12 to 15, 32, 34 and 35) of the semiconductor element 10 are inverted. Is formed.
  • the ACF 70 When mounting the semiconductor element 10 on the AM substrate 41 (panel 40), the ACF 70 is sandwiched between the semiconductor element 10 and the AM substrate 41 and thermocompression bonded. At this time, some of the conductive particles contained in the ACF 70 pass between the bump electrodes (12 to 15) and between the sub-electrodes (32, 34 and 35) by being pressed by the semiconductor element 10. And then pushed out.
  • the sub-electrodes 32 are arranged along the output bump electrode 12 as described above.
  • the adhesion area between the electrodes (output bump electrode 12 and sub-electrode 32) around the output bump electrode 12 and the electrodes (pad electrodes 52 and 62) of the panel 40 can be increased and the adhesive strength can be increased. can do.
  • the sub electrode 32 smaller in area than the output bump electrode 12, it is possible to suppress the narrowing of the region (between the sub electrodes 32) through which the conductive particles contained in the ACF 70 pass.
  • the semiconductor element 10 is thermocompression bonded to the panel 40 via the ACF 70, the fluidity of the conductive particles is prevented from being reduced and aggregated between the output bump electrodes 12 and between the sub electrodes 32. it can.
  • the sub-electrodes 34 and 35 smaller in area than the output bump electrodes 14 and 15, respectively, it is possible to further suppress the connection reliability of the semiconductor element 10 from being lowered.
  • the output bump electrode 12 (14 and 15) and the sub electrode 32 (34 and 35) are formed by conductive particles. Are electrically connected, the semiconductor element 10 does not malfunction. Thereby, since the sub electrode 32 (34 and 35) can be formed close to the output bump electrode 12 (14 and 15), it is possible to prevent the electrode formation region from being widened. This effect can be similarly obtained when the sub electrode 32 (34 and 35) is formed of a dummy electrode.
  • the sub-electrode 32 (34 and 35) is arranged outside the output bump electrode 12 (14 and 15). This suppresses the deterioration of the connection between the output bump electrode 12 (14 and 15) and the panel 40 before the connection between the sub electrode 32 (34 and 35) and the panel 40 deteriorates. Can do. If the connection between the output bump electrode 12 (14 and 15) and the panel 40 does not deteriorate, there is no problem even if the connection between the sub electrode 32 (34 and 35) and the panel 40 deteriorates.
  • a part of the sub-electrode 32 (34 and 35) may be missing, for example, so that the sub-electrode 32 (34 and 35) can be brought close to the long side 11a (short side 11c and 11d) of the main surface 11. .
  • the semiconductor element 10 it is possible to suppress the semiconductor element 10 from becoming large.
  • the sub electrode 32 by disposing the sub electrode 32 outside the output bump electrode 12, a gap can be formed between the sub electrode 32 and the output bump electrode 12. Thereby, when peeling or a crack arises in the connection part of sub electrode 32, it can control that the peeling or crack is transmitted to the connection part of output bump electrode 12. For this reason, the connection of the output bump electrode 12 can be prevented from being deteriorated by arranging the sub electrode 32 outside the output bump electrode 12 rather than simply increasing the output bump electrode 12.
  • the presence of the resin (ACF 70) between the sub electrode 32 and the output bump electrode 12 causes an anchor effect to improve the adhesiveness of the connecting portion at each electrode, thereby suppressing a decrease in reliability. it can. Similar effects can be obtained by disposing the sub-electrodes 34 and 35 outside the output bump electrodes 14 and 15, respectively.
  • the distance between the sub electrodes 32 (34 and 35) is made smaller by making the width of the sub electrodes 32 (34 and 35) in the arrangement direction smaller than the width of the output bump electrodes 12 (14 and 15) in the arrangement direction. Can be suppressed. Thereby, it can suppress that it becomes difficult for a conductive particle to pass between sub-electrodes 32 (34 and 35).
  • the length in the direction intersecting with the arrangement direction of the sub-electrodes 32 (34 and 35) is made smaller than the length in the direction intersecting with the arrangement direction of the output bump electrodes 12 (14 and 15). Therefore, it can suppress easily that the area
  • connection between the semiconductor element 10 and the panel 40 tends to deteriorate from the short sides 11c and 11d. Therefore, by arranging the sub-electrodes 34 and 35 along the short-side electrode rows 24 and 25 (output bump electrodes 14 and 15), respectively, the short-side 11c and 11d portions (short-side electrode rows 24 and 25) It is possible to suppress the deterioration of the connection, which is particularly effective.
  • connection between the semiconductor element 10 and the panel 40 tends to deteriorate particularly from the end portions (corner portions of the semiconductor element 10) of the short side electrode rows 24 and 25.
  • the sub-electrodes 34 and 35 along at least the end portions of the short-side electrode rows 24 and 25, respectively, it is possible to suppress the deterioration of the connection of the end portions of the short-side electrode rows 24 and 25. Can be more effective.
  • a plurality of output bump electrodes 12 and a plurality of output bump electrodes 16 are arranged along the long side 11a.
  • a plurality of output bump electrodes 17 are arranged along the short side 11d.
  • the plurality of output bump electrodes 12 and 16 constitute a long side electrode row 26, and the plurality of output bump electrodes 17 constitute a short side electrode row 27.
  • the output bump electrodes 16 and 17 are examples of the “functional electrode” and the “bump electrode” in the present invention.
  • the output bump electrode 16 (first area electrode) has an area (first area) larger than the area (second area) of the output bump electrode (second area electrode) 12.
  • the output bump electrodes (first pitch electrodes) 16 are arranged at a pitch (first pitch) larger than the pitch (second pitch) of the output bump electrodes (second pitch electrodes) 12.
  • the sub electrode 32 is not disposed outside the output bump electrode 16. For this reason, the formation region of the output bump electrode 16 is narrower than the formation region of the output bump electrode 12 and the sub electrode 32, and the output bump electrode 16 is disposed outside the output bump electrode 12.
  • the output bump electrode 17 (first area electrode) has an area (first area) larger than the area (second area) of the output bump electrode (second area electrode) 14.
  • the output bump electrodes (first pitch electrodes) 17 are arranged at a pitch (first pitch) larger than the pitch (second pitch) of the output bump electrodes (second pitch electrodes) 14.
  • the sub electrode 35 is not disposed outside the output bump electrode 17. For this reason, the formation region of the output bump electrode 17 is narrower than the formation region of the output bump electrode 14 and the sub electrode 34, and the output bump electrode 17 is disposed outside the output bump electrode 14.
  • the circuit formation region 10a around the output bump electrodes 16 and 17 is formed to the outside of the circuit formation region 10b around the output bump electrodes 12 and 14. That is, the circuit formation area of the second embodiment is wider than that of the first embodiment.
  • the remaining structure of the second embodiment is the same as that of the first embodiment.
  • the sub-electrodes 32 are not arranged along the output bump electrode 16 but are arranged along the output bump electrode 12 having a smaller area than the output bump electrode 16.
  • the output bump electrode 12 has a smaller bonding area between the output bump electrode 16 and the panel 40 than the output bump electrode 16, and the connection with the panel 40 is likely to deteriorate.
  • the circuit formation region 10a around the output bump electrode 16 can be widened. Thereby, it can suppress that the semiconductor element 10 enlarges.
  • a plurality of output bump electrodes 12, a plurality of output bump electrodes 18, and a plurality of output bump electrodes 12 are arranged along the long side 11a.
  • a plurality of output bump electrodes 12 and 18 constitute a long side electrode row 26a.
  • the output bump electrode 18 is an example of the “functional electrode” and “bump electrode” in the present invention.
  • the area and pitch of the output bump electrode 18 are formed to the same size as the output bump electrode 12.
  • the area and pitch of the output bump electrode 18 may be the same size as the output bump electrode 16 of the second embodiment.
  • the sub electrode 32 is not disposed outside the output bump electrode 18. That is, the sub-electrodes 32 are arranged only along the end portions of the long-side electrode row 26a.
  • the circuit formation region 10 c around the output bump electrode 18 is formed to the outside of the circuit formation region 10 d around the output bump electrode 12.
  • the remaining structure of the third embodiment is the same as that of the first and second embodiments.
  • the plurality of sub-electrodes 32 are arranged along only the end portion of the long-side electrode row 26a.
  • the connection between the long side electrode row 26a and the panel 40 tends to deteriorate particularly from the end portion (corner portion of the semiconductor element 10) of the long side electrode row 26a.
  • the sub-electrodes 32 along the end portions of the long-side electrode row 26a, it is possible to suppress deterioration of connection at the end portions of the long-side electrode row 26a, which is particularly effective.
  • the present invention is not limited to this and may be applied to a display panel other than the liquid crystal display panel.
  • the present invention is not limited to this. You may mount a semiconductor element in element mounting members other than a panel.
  • the functional electrodes (output bump electrode and input bump electrode) are arranged along four sides, but the present invention is not limited to this.
  • the functional electrodes may be arranged along only two opposite sides (for example, two long sides). Further, the functional electrodes may be arranged on only three sides, and in this case, dummy electrodes may be arranged on the remaining one side.
  • the width and the length of the sub electrode are made smaller than the width and the length of the output bump electrode, but the present invention is not limited to this. Only one of the width and length of the sub electrode may be smaller than one of the width and length of the output bump electrode.
  • the output bump electrodes 12 are arranged in a line, but the present invention is not limited to this.
  • the sub-electrodes 32 may be arranged outside the outer electrode row 12a along the outer electrode row 12a. Further, the sub-electrodes 32 may be arranged along both the outer electrode row 12a and the inner electrode row 12b as in the semiconductor element according to the second modification of the present invention shown in FIG.
  • a circuit formation area can be enlarged compared with a 2nd modification.
  • the output bump electrode 16 is formed in a larger area than the output bump electrode 12
  • the present invention is not limited to this.
  • the output bump electrode 16 is formed in the same area as the output bump electrode 12, and the pitch of the output bump electrode 16 (first pitch electrode).
  • the (first pitch) may be larger than the pitch (second pitch) of the output bump electrode 12 (second pitch electrode).
  • the output bump electrode 16 When the output bump electrode 16 is formed in the same area as the output bump electrode 12 and the pitch of the output bump electrode 16 is larger than the pitch of the output bump electrode 12, the output bump electrode 12 becomes the output bump electrode 16. Compared with the panel 40, the connection is likely to be deteriorated for the following reason. That is, since the output bump electrodes 12 are arranged at a narrow pitch, the amount of ACF 70 surrounding (holding) one output bump electrode 12 is smaller than the amount of ACF 70 surrounding one output bump electrode 16. For this reason, since the adhesive strength per output bump electrode 12 is smaller than the adhesive strength per output bump electrode 16, the connection between the output bump electrode 12 and the panel 40 is deteriorated compared to the output bump electrode 16. It is thought that it becomes easy to do.
  • the sub-electrodes are arranged along the three sides, but the present invention is not limited to this.
  • the sub electrodes may be arranged along the four sides.
  • the sub-electrodes (34 and 35) may be arranged along only two sides (for example, two short sides) like the semiconductor element 10 according to the fourth modification of the present invention shown in FIG.
  • the sub-electrodes are arranged outside the functional electrodes (output bump electrode and input bump electrode), but the present invention is not limited to this.
  • the sub-electrodes (32, 34 and 35) may be arranged inside the functional electrode. In this case, it is preferable to electrically connect the sub-electrodes (32, 34 and 35) to the adjacent functional electrodes. If the sub electrode is electrically connected to the functional electrode, even if the connection between the functional electrode and the panel is deteriorated, the semiconductor element 10 does not malfunction unless the connection between the sub electrode and the panel is deteriorated.
  • ACF anisotropic conductive paste (anisotropic conductive layer)
  • a bump electrode is provided in a semiconductor element and a pad electrode is provided in a panel (element mounting member) has been described.
  • the present invention is not limited thereto, and a pad electrode is provided in a semiconductor element. Bump electrodes may be provided on the mounting member.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)
  • Liquid Crystal (AREA)

Abstract

 接続信頼性が低下するのを抑制することが可能な半導体素子を提供する。この半導体素子(10)は、辺に沿って配列される複数の出力バンプ電極(12、14および15)と、複数の出力バンプ電極(12、14および15)に沿ってそれぞれ配列される複数のサブ電極(32、34および35)と、を備える。サブ電極(32、34および35)はそれぞれ出力バンプ電極(12、14および15)に比べて小さい面積を有する。

Description

半導体素子および表示パネル
 この発明は、半導体素子および表示パネルに関し、特に、列状に配置される複数の電極を備えた半導体素子および表示パネルに関する。
 従来、列状に配置される複数の電極を有する半導体素子を備えた表示パネルが知られている。図12は、従来の一例による半導体素子を備えた表示パネルの構造を示した断面図である。図13は、図12の半導体素子の構造を示した平面図である。
 従来の一例による表示パネル101は図12に示すように、半導体素子110と、半導体素子110が実装された透明基板からなるパネル(素子実装部材)120とを備えている。この半導体素子110は図13に示すように、2つの長辺111aおよび111bと、2つの短辺111cおよび111dとを有する長方形状の主表面111を含んでいる。主表面111上には、長辺111aおよび111bに沿って複数(例えば数百個)のバンプ電極112および複数のバンプ電極113がそれぞれ配列されている。複数のバンプ電極112は狭ピッチで配置されており、バンプ電極112同士の間の距離は例えば15μm程度である。
 また、半導体素子110とパネル120との間にはACF(異方性導電フィルム)(図示せず)が配置されており、熱圧着により半導体素子110がパネル120に実装されている。
 しかしながら、半導体素子110には図12に示すように、熱圧着後の熱収縮により反りが発生する。この反りは半導体素子110のコーナー部(特に短辺部分)で最も大きくなり、導電粒子に対する押圧力が小さくなるとともに導電粒子の変形(圧縮)率が不足する。このため、半導体素子110とパネル120との間で十分な接続が得られない場合があるという不都合がある。
 この不都合を解消するためにはバンプ電極の面積を大きくすることが効果的であり、例えば以下のような構造にすることが考えられる。具体的には図14に示すように、半導体素子110のバンプ電極112の外側に、隣接するバンプ電極112に電気的に接続されたバンプ電極114を追加する。このように構成すれば、半導体素子110のバンプ電極112および114とパネル120の電極(図示せず)との間の接着面積が大きくなるので、半導体素子110とパネル120との間の接続信頼性が低下するのをある程度抑制することが可能である。
 なお、半導体素子のバンプ電極の外側にバンプ電極を追加した構造は、例えば特許文献1に開示されている。
特開2003-303852号公報
 しかしながら、半導体素子110を図14に示した構造にすると、ACFを介して半導体素子110をパネル120に熱圧着する際に、ACFに含有された導電粒子の流動性が低下する。すなわち、複数のバンプ電極112は狭ピッチで配置されており、もともと導電粒子はバンプ電極112同士の間を通過しにくい(導電粒子の流動性が低下しやすい)。この上、図14の構造にすると、バンプ電極112の外側にバンプ電極114が配置されるので、導電粒子が通過しにくい領域(バンプ電極112同士の間およびバンプ電極114同士の間)が長くなる。このため、図15に示すように導電粒子130が凝集しやすくなり、バンプ電極112同士の間やバンプ電極114同士の間で短絡が発生する場合があるという問題点がある。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の目的は、接続信頼性が低下するのを抑制することが可能な半導体素子および表示パネルを提供することである。
 上記目的を達成するために、この発明の半導体素子は、4辺を有する主表面と、4辺のうちの少なくとも対向する2辺に沿って配列される複数の機能電極と、複数の機能電極よりも外側または内側に配置され、複数の機能電極の少なくとも一部に沿って配列される複数のサブ電極と、を備え、サブ電極は機能電極に電気的に接続され、または、ダミー電極により形成されているとともに、機能電極に比べて小さい面積を有する。
 この半導体素子では、複数の機能電極に沿って複数のサブ電極を配列することによって、機能電極の周辺における電極(機能電極およびサブ電極)と素子実装部材の電極との間の接着面積が大きくなる。
 また、サブ電極は機能電極に比べて小さい面積を有するので、異方性導電層に含有される導電粒子が通過する領域(サブ電極同士の間)が狭くなるのを抑制することができる。
 上記半導体素子において、好ましくは、複数のサブ電極は複数の機能電極よりも外側に配置されている。このように構成すれば、サブ電極と素子実装部材との間の接続が劣化する前に、機能電極と素子実装部材との間の接続が劣化するのを抑制することができる。
 上記半導体素子において、好ましくは、サブ電極の配列方向の幅は機能電極の配列方向の幅よりも小さい。このように構成すれば、サブ電極同士の間の距離が小さくなるのを抑制することができる。
 上記半導体素子において、好ましくは、サブ電極の配列方向と交差する方向の長さは機能電極の配列方向と交差する方向の長さよりも小さい。このように構成すれば、導電粒子が通過する領域(機能電極同士の間およびサブ電極同士の間)が長くなるのを容易に抑制することができる。
 上記半導体素子において、好ましくは、主表面は2つの長辺および2つの短辺を有する長方形状に形成されており、複数の機能電極は長辺に沿って配列される長辺側電極列と、短辺に沿って配列される短辺側電極列とを含み、複数のサブ電極は短辺側電極列に沿って配列されている。このように構成すれば、短辺部分(短辺側電極列)の接続の劣化が抑制される。
 上記複数のサブ電極が短辺側電極列に沿って配列されている半導体素子において、好ましくは、複数のサブ電極は短辺側電極列の少なくとも端部に沿って配列されている。このように構成すれば、短辺部分(短辺側電極列)の端部の接続の劣化が抑制される。
 上記半導体素子において、主表面は2つの長辺および2つの短辺とを有する長方形状に形成されており、複数の機能電極は長辺に沿って配列される長辺側電極列を含み、複数のサブ電極は長辺側電極列に沿って配列されていてもよい。
 上記複数のサブ電極が長辺側電極列に沿って配列されている半導体素子において、好ましくは、複数のサブ電極は長辺側電極列の少なくとも端部に沿って配列されている。このように構成すれば、長辺側電極列の端部の接続の劣化が抑制される。
 上記半導体素子において、好ましくは、複数の機能電極は第1の面積を有する複数の第1面積電極と、第1の面積よりも小さい第2の面積を有する複数の第2面積電極とを含み、サブ電極は第1面積電極に沿って配列されておらず、第2面積電極に沿って配列されている。このように構成すれば、第2面積電極の周辺における電極(第2面積電極およびサブ電極)と素子実装部材の電極との間の接続面積が大きくなる。
 上記半導体素子において、好ましくは、複数の機能電極は第1のピッチで配列された複数の第1ピッチ電極と、第1のピッチよりも小さい第2のピッチで配列された複数の第2ピッチ電極とを含み、サブ電極は第1ピッチ電極に沿って配列されておらず、第2ピッチ電極に沿って配列されている。このように構成すれば、第2ピッチ電極の周辺における電極(第2ピッチ電極およびサブ電極)と素子実装部材の電極との間の接続面積が大きくなる。
 上記半導体素子において、複数の機能電極は4辺のうちの少なくとも1辺に沿って2列状に配列された外側電極列および内側電極列を含み、サブ電極は外側電極列に沿って外側電極列の外側に配列されていてもよい。
 上記半導体素子において、好ましくは、サブ電極は機能電極に電気的に接続されている。
 上記半導体素子において、好ましくは、機能電極およびサブ電極は主表面から突出したバンプ電極を含む。
 上記半導体素子において、好ましくは、機能電極およびサブ電極は素子実装部材に異方性導電層を介して接続される。
 この発明の表示パネルは、上記の構成の半導体素子を備える。
 以上のように、本発明によれば、複数の機能電極に沿って複数のサブ電極を配列させることによって、機能電極の周辺における電極(機能電極およびサブ電極)と素子実装部材の電極との間の接着面積が大きくなる。これにより、機能電極の周辺における電極と素子実装部材の電極との間の接着強度を大きくすることができるので、半導体素子と素子実装部材との間の接続信頼性が低下するのを抑制することができる。
 また、サブ電極は機能電極に比べて小さい面積を有するので、導電粒子が通過する領域(サブ電極同士の間)が狭くなるのを抑制することができる。これにより、異方性導電層を介して半導体素子を素子実装部材に熱圧着する際に、機能電極同士の間やサブ電極同士の間で導電粒子の流動性が低下して凝集するのを抑制することができる。その結果、機能電極同士の間やサブ電極同士の間で短絡が発生するのを抑制することができるので、半導体素子の接続信頼性が低下するのを抑制することができる。
本発明の第1実施形態による半導体素子を備えた液晶表示パネルの構造を示した側面図である。 図1の半導体素子の構造を示した平面図である。 図1の半導体素子の出力バンプ電極およびサブ電極の構造を示した拡大平面図である。 図1のパネルの構造を示した平面図である。 本発明の第2実施形態による半導体素子の構造を示した平面図である。 本発明の第3実施形態による半導体素子の構造を示した平面図である。 本発明の第1変形例による半導体素子の出力バンプ電極およびサブ電極の構造を示した拡大平面図である。 本発明の第2変形例による半導体素子の出力バンプ電極およびサブ電極の構造を示した拡大平面図である。 本発明の第3変形例による半導体素子の構造を示した平面図である。 本発明の第4変形例による半導体素子の構造を示した平面図である。 本発明の第5変形例による半導体素子の構造を示した平面図である。 従来の一例による半導体素子を備えた表示パネルの構造を示した断面図である。 図12の半導体素子の構造を示した平面図である。 バンプ電極の外側にバンプ電極を追加した半導体素子の構造を示した平面図である。 図14のバンプ電極の構造を示した拡大平面図である。
 以下、本発明の実施形態について図面を参照して説明する。
(第1実施形態)
 図1~図4を参照して、本発明の第1実施形態による半導体素子10を備えた液晶表示パネル1の構造について説明する。
 本発明の第1実施形態による液晶表示パネル(表示パネル)1は液晶表示装置(図示せず)に用いられるものである。また、液晶表示パネル1は図1に示すように、半導体素子10と、半導体素子10が実装されたガラス基板からなるパネル(素子実装部材)40と、半導体素子10およびパネル40の間に配置されるACF(異方性導電フィルム(異方性導電層))70とを備えている。パネル40は、半導体素子10が実装されるAM基板(アクティブマトリックス基板)41と、AM基板41に対向配置される対向基板42とを含んでいる。また、AM基板41と対向基板42との間には、図示しない液晶が封入されている。
 半導体素子10は図2に示すように、2つの長辺11aおよび11bと2つの短辺11cおよび11dとを有する長方形状の主表面11を含んでいる。主表面11上には、長辺11aおよび11bに沿って(隣接して)それぞれ配列された複数(例えば数百個)の出力バンプ電極12および複数の入力バンプ電極13が設けられている。また、主表面11上には、短辺11cおよび11dに沿ってそれぞれ配列された複数の出力バンプ電極14および複数の出力バンプ電極15が設けられている。すなわち、出力バンプ電極12、入力バンプ電極13、出力バンプ電極14および出力バンプ電極15は、主表面11の周縁部に配置されている。バンプ電極(12~15)は主表面11から突出するように形成されている。なお、出力バンプ電極12、14、15および入力バンプ電極13は本発明の「機能電極」および「バンプ電極」の一例である。
 そして、複数の出力バンプ電極12により長辺側電極列22が構成されており、複数の入力バンプ電極13により長辺側電極列23が構成されている。また、複数の出力バンプ電極14により短辺側電極列24が構成されており、複数の出力バンプ電極15により短辺側電極列25が構成されている。
 出力バンプ電極(第2面積電極)12、14および15は、入力バンプ電極(第1面積電極)13の面積(第1の面積)よりも小さい面積(第2の面積)を有する。また、出力バンプ電極(第2ピッチ電極)12、14および15は、入力バンプ電極(第1ピッチ電極)13のピッチ(第1のピッチ)よりも小さいピッチ(第2のピッチ)で配列されている。なお、出力バンプ電極12、14および15は狭ピッチで配置されており、出力バンプ電極同士の間の距離は例えば15μm程度である。
 ここで、主表面11上には、出力バンプ電極12、14および15に沿って複数のサブ電極32、34および35がそれぞれ配列されている。具体的には、複数の出力バンプ電極12の外側(長辺11a側)に複数のサブ電極32が配列されている。また、複数の出力バンプ電極14の外側(短辺11c側)に複数のサブ電極34が配列されており、複数の出力バンプ電極15の外側(短辺11d側)に複数のサブ電極35が配列されている。なお、サブ電極32、34および35も、主表面11から突出したバンプ電極により形成されている。
 サブ電極32は隣接する出力バンプ電極12に電気的に接続されている。サブ電極34は隣接する出力バンプ電極14に電気的に接続されており、サブ電極35は隣接する出力バンプ電極15に電気的に接続されている。これにより、例えばサブ電極32および出力バンプ電極12の一方の、パネル40に対する接続が劣化したとしても、他方がパネル40に電気的に接続されていれば、液晶表示パネル1が誤動作するのを抑制することが可能である。なお、サブ電極32、34および35はダミー電極(液晶表示パネル1の駆動に寄与しない電極)であってもよい。
 サブ電極32は出力バンプ電極12と同じピッチで配列されている。サブ電極34は出力バンプ電極14と同じピッチで配列されており、サブ電極35は出力バンプ電極15と同じピッチで配列されている。
 また、図3に示すように、サブ電極34の配列方向(A方向)の幅W34は出力バンプ電極14の配列方向(A方向)の幅W14よりも小さく、サブ電極34の配列方向と交差する方向(B方向)の長さL34は出力バンプ電極14の配列方向と交差する方向(B方向)の長さL14よりも小さい。同様に、図2に示すように、サブ電極32の配列方向(B方向)の幅は出力バンプ電極12の配列方向の幅(B方向)よりも小さく、サブ電極32の配列方向と交差する方向(A方向)の長さは出力バンプ電極12の配列方向と交差する方向(A方向)の長さよりも小さい。また、サブ電極35の配列方向(A方向)の幅は出力バンプ電極15の配列方向(A方向)の幅よりも小さく、サブ電極35の配列方向と交差する方向(B方向)の長さは出力バンプ電極15の配列方向と交差する方向(B方向)の長さよりも小さい。このため、サブ電極32、34および35はそれぞれ出力バンプ電極12、14および15よりも小さい面積を有する。
 このように、図3に示すようにサブ電極34の幅W34を出力バンプ電極14の幅W14よりも小さくすることによって、サブ電極34同士の間の距離が小さくなるのを抑制することが可能である。これにより、ACF70を介して半導体素子10をパネル40に熱圧着する際に、ACF70に含有される導電粒子がサブ電極34同士の間を通過しにくくなるのを抑制することが可能である。また、サブ電極34の長さL34を出力バンプ電極14の長さL14よりも小さくすることによって、導電粒子が通過する領域(出力バンプ電極14同士の間およびサブ電極34同士の間)が長くなるのを抑制することが可能である。これにより、出力バンプ電極14同士の間やサブ電極34同士の間で導電粒子の流動性が低下して凝集するのを抑制することが可能である。このことは、サブ電極32および35も同様である。なお、図3の矢印はACF70に含有される導電粒子の、熱圧着時の動きを示している。
 パネル40のAM基板41には図4に示すように、半導体素子10の電極に対応する複数のパッド電極が設けられている。具体的には、AM基板41には、出力バンプ電極12、入力バンプ電極13、出力バンプ電極14、15、サブ電極32、34および35にそれぞれ対応する位置に、パッド電極52、53、54、55、62、64および65が設けられている。パッド電極52は出力バンプ電極12と例えば同じピッチ、同じ幅、同じ面積で形成されている。パッド電極53~55、62、64および65も同様である。なお、半導体素子10はフェイスダウンでAM基板41に実装されるので、パッド電極52~55、62、64および65は半導体素子10の電極(12~15、32、34および35)を反転した位置に形成されている。
 このAM基板41(パネル40)に半導体素子10を実装する場合、半導体素子10とAM基板41との間にACF70を挟み込んで熱圧着する。このとき、ACF70に含有される導電粒子の一部は、半導体素子10に押圧されることにより、バンプ電極(12~15)同士の間やサブ電極(32、34および35)同士の間を通過して外側に押し出される。
 本実施形態では、上記のように、出力バンプ電極12に沿ってサブ電極32を配列する。これにより、出力バンプ電極12の周辺における電極(出力バンプ電極12およびサブ電極32)とパネル40の電極(パッド電極52および62)との間の接着面積を大きくすることができるとともに接着強度を大きくすることができる。その結果、半導体素子10とパネル40との間の接続信頼性が低下するのを抑制することができる。同様に、出力バンプ電極14および15に沿ってサブ電極34および35をそれぞれ配列することによって、半導体素子10とパネル40との間の接続信頼性が低下するのをより抑制することができる。
 また、サブ電極32を出力バンプ電極12に比べて小さい面積にすることによって、ACF70に含有される導電粒子が通過する領域(サブ電極32同士の間)が狭くなるのを抑制することができる。これにより、ACF70を介して半導体素子10をパネル40に熱圧着する際に、出力バンプ電極12同士やサブ電極32同士の間で導電粒子の流動性が低下して凝集するのを抑制することができる。その結果、出力バンプ電極12同士の間やサブ電極32同士の間で短絡が発生するのを抑制することができるので、半導体素子10の接続信頼性が低下するのを抑制することができる。同様に、サブ電極34および35をそれぞれ出力バンプ電極14および15に比べて小さい面積にすることによって、半導体素子10の接続信頼性が低下するのをより抑制することができる。
 また、サブ電極32(34および35)を出力バンプ電極12(14および15)に電気的に接続することによって、導電粒子により出力バンプ電極12(14および15)とサブ電極32(34および35)とが電気的につながったとしても、半導体素子10が誤動作することがない。これにより、サブ電極32(34および35)を出力バンプ電極12(14および15)に近づけて形成することができるので、電極の形成領域が広くなるのを抑制することができる。この効果は、サブ電極32(34および35)をダミー電極により形成した場合も同様に得られる。
 また、サブ電極32(34および35)を出力バンプ電極12(14および15)よりも外側に配置している。これにより、サブ電極32(34および35)とパネル40との間の接続が劣化する前に、出力バンプ電極12(14および15)とパネル40との間の接続が劣化するのを抑制することができる。なお、出力バンプ電極12(14および15)とパネル40との間の接続が劣化しなければ、サブ電極32(34および35)とパネル40との間の接続が劣化しても問題ない。このため、サブ電極32(34および35)の一部が例えば欠けてもよいので、サブ電極32(34および35)を主表面11の長辺11a(短辺11cおよび11d)に近づけることができる。その結果、半導体素子10が大型化するのを抑制することができる。
 また、サブ電極32を出力バンプ電極12の外側に配置することによって、サブ電極32と出力バンプ電極12との間に隙間を形成することができる。これにより、サブ電極32の接続部分に剥がれや亀裂が生じた場合に、その剥がれや亀裂が出力バンプ電極12の接続部分に伝わるのを抑制することができる。このため、単に出力バンプ電極12を大きくするよりも出力バンプ電極12の外側にサブ電極32を配置した方が、出力バンプ電極12の接続が劣化するのを抑制することができる。また、サブ電極32と出力バンプ電極12との間に樹脂(ACF70)が存在することにより、アンカー効果が働きそれぞれの電極での接続部の密着性が向上し、信頼性低下を抑制することができる。また、サブ電極34および35をそれぞれ出力バンプ電極14および15よりも外側に配置することによって、同様の効果が得られる。
 また、サブ電極32(34および35)の配列方向の幅を出力バンプ電極12(14および15)の配列方向の幅よりも小さくすることによって、サブ電極32(34および35)同士の間の距離が小さくなるのを抑制することができる。これにより、サブ電極32(34および35)同士の間を導電粒子が通過しにくくなるのを抑制することができる。
 また、サブ電極32(34および35)の配列方向と交差する方向の長さを出力バンプ電極12(14および15)の配列方向と交差する方向の長さよりも小さくする。これにより、導電粒子が通過する領域(出力バンプ電極12(14および15)同士の間およびサブ電極32(34および35)同士の間)が長くなるのを容易に抑制することができる。その結果、導電粒子の流動性が低下するのを抑制することができる。
 また、半導体素子10とパネル40との間の接続は短辺11cおよび11d部分から劣化しやすい。このため、サブ電極34および35を短辺側電極列24および25(出力バンプ電極14および15)に沿ってそれぞれ配列することによって、短辺11cおよび11d部分(短辺側電極列24および25)の接続の劣化を抑制することができ、特に効果的である。
 また、半導体素子10とパネル40との間の接続は特に短辺側電極列24および25の端部(半導体素子10のコーナー部)から劣化しやすい。このため、サブ電極34および35を短辺側電極列24および25の少なくとも端部に沿ってそれぞれ配列することによって、短辺側電極列24および25の端部の接続の劣化を抑制することができ、より効果的である。
 同様に、サブ電極32を長辺側電極列22の少なくとも端部に沿って配列することによって、長辺側電極列22の端部の接続の劣化を抑制することができ、より効果的である。
(第2実施形態)
 この第2実施形態では図5を参照して、上記第1実施形態に比べて電極の形成領域を狭くする(回路形成領域を広くする)場合について説明する。
 本発明の第2実施形態による半導体素子10では図5に示すように、長辺11aに沿って複数の出力バンプ電極12および複数の出力バンプ電極16が配列されている。また、短辺11dに沿って複数の出力バンプ電極17が配列されている。そして、複数の出力バンプ電極12および16により長辺側電極列26が構成されており、複数の出力バンプ電極17により短辺側電極列27が構成されている。なお、出力バンプ電極16および17は本発明の「機能電極」および「バンプ電極」の一例である。
 出力バンプ電極16(第1面積電極)は出力バンプ電極(第2面積電極)12の面積(第2の面積)よりも大きい面積(第1の面積)を有する。また、出力バンプ電極(第1ピッチ電極)16は出力バンプ電極(第2ピッチ電極)12のピッチ(第2のピッチ)よりも大きいピッチ(第1のピッチ)で配列されている。また、出力バンプ電極16の外側にはサブ電極32が配置されていない。このため、出力バンプ電極16の形成領域は出力バンプ電極12およびサブ電極32の形成領域に比べて狭くなっているとともに、出力バンプ電極16は出力バンプ電極12よりも外側に配置されている。
 出力バンプ電極17(第1面積電極)は出力バンプ電極(第2面積電極)14の面積(第2の面積)よりも大きい面積(第1の面積)を有する。また、出力バンプ電極(第1ピッチ電極)17は出力バンプ電極(第2ピッチ電極)14のピッチ(第2のピッチ)よりも大きいピッチ(第1のピッチ)で配列されている。また、出力バンプ電極17の外側にはサブ電極35が配置されていない。このため、出力バンプ電極17の形成領域は出力バンプ電極14およびサブ電極34の形成領域に比べて狭くなっているとともに、出力バンプ電極17は出力バンプ電極14よりも外側に配置されている。
 これにより、出力バンプ電極16および17の周辺の回路形成領域10aは、出力バンプ電極12および14の周辺の回路形成領域10bよりも外側まで形成されている。すなわち、第2実施形態は第1実施形態に比べて回路形成領域が広くなっている。
 なお、第2実施形態のその他の構造は、上記第1実施形態と同様である。
 本実施形態では、上記のように、サブ電極32を、出力バンプ電極16に沿って配列せず、出力バンプ電極16よりも小さい面積を有する出力バンプ電極12に沿って配列する。出力バンプ電極12は出力バンプ電極16に比べてパネル40との間の接着面積が小さく、パネル40との接続が劣化しやすい。このため、サブ電極32を出力バンプ電極12に沿って配列することによって、半導体素子10の接続信頼性が低下するのを抑制することができる。また、サブ電極32を出力バンプ電極16に沿って配列しないことによって、出力バンプ電極16の周辺の回路形成領域10aを広くすることができる。これにより、半導体素子10が大型化するのを抑制することができる。
 なお、第2実施形態のその他の効果は、上記第1実施形態と同様である。
(第3実施形態)
 この第3実施形態では図6を参照して、上記第2実施形態と異なり、サブ電極32を長辺側電極列26aの端部のみに沿って配列する場合について説明する。
 本発明の第3実施形態による半導体素子10では図6に示すように、長辺11aに沿って複数の出力バンプ電極12、複数の出力バンプ電極18および複数の出力バンプ電極12が配列されている。そして、複数の出力バンプ電極12および18により長辺側電極列26aが構成されている。なお、出力バンプ電極18は本発明の「機能電極」および「バンプ電極」の一例である。
 出力バンプ電極18の面積およびピッチは出力バンプ電極12と同じ大きさに形成されている。なお、出力バンプ電極18の面積およびピッチは上記第2実施形態の出力バンプ電極16と同じ大きさであってもよい。また、出力バンプ電極18の外側にはサブ電極32が配置されていない。すなわち、サブ電極32は長辺側電極列26aの端部のみに沿って配列されている。そして、出力バンプ電極18の周辺の回路形成領域10cは、出力バンプ電極12の周辺の回路形成領域10dよりも外側まで形成されている。
 なお、第3実施形態のその他の構造は、上記第1および第2実施形態と同様である。
 本実施形態では、上記のように、複数のサブ電極32を長辺側電極列26aの端部のみに沿って配列する。長辺側電極列26aとパネル40との間の接続は特に長辺側電極列26aの端部(半導体素子10のコーナー部)から劣化しやすい。このため、サブ電極32を長辺側電極列26aの端部に沿って配列することによって、長辺側電極列26aの端部の接続の劣化を抑制することができ、特に効果的である。
 第3実施形態のその他の効果は、上記第1および第2実施形態と同様である。
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく請求の範囲によって示され、さらに請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 たとえば、上記実施形態では、表示パネルを液晶表示パネルに適用した例について示したが、本発明はこれに限らず、液晶表示パネル以外の表示パネルに適用してもよい。
 また、上記実施形態では、半導体素子をパネルに実装する例について示したが、本発明はこれに限らない。半導体素子をパネル以外の素子実装部材に実装してもよい。
 また、上記実施形態では、機能電極(出力バンプ電極および入力バンプ電極)が4辺に沿って配列されている例について示したが、本発明はこれに限らない。機能電極は対向する2辺(例えば2つの長辺)のみに沿って配列されていてもよい。また、機能電極は3辺のみに配列されていてもよく、この場合、残りの1辺にダミー電極が配列されていてもよい。
 また、上記実施形態では、サブ電極の幅および長さを出力バンプ電極の幅および長さよりも小さくした例について示したが、本発明はこれに限らない。サブ電極の幅および長さの一方のみを、出力バンプ電極の幅および長さの一方よりも小さくしてもよい。
 また、例えば上記第1実施形態では、出力バンプ電極12(14および15も同様)を1列状に配列した例について示したが、本発明はこれに限らない。例えば図7に示した本発明の第1変形例による半導体素子のように構成してもよい。すなわち、出力バンプ電極12を2列状(千鳥状)に配列し、外側電極列(長辺側電極列)12aおよび内側電極列(長辺側電極列)12bを形成する。そして、サブ電極32を外側電極列12aに沿って外側電極列12aの外側に配列してもよい。また、図8に示した本発明の第2変形例による半導体素子のように、サブ電極32を外側電極列12aおよび内側電極列12bの両方に沿って配列してもよい。なお、第1変形例のように構成すれば、第2変形例に比べて、回路形成領域を広くすることができる。
 また、上記第2実施形態では、出力バンプ電極16を出力バンプ電極12よりも大きい面積に形成した例について示したが、本発明はこれに限らない。例えば図9に示した本発明の第3変形例による半導体素子10のように、出力バンプ電極16を出力バンプ電極12と同じ面積に形成するとともに、出力バンプ電極16(第1ピッチ電極)のピッチ(第1のピッチ)を出力バンプ電極12(第2ピッチ電極)のピッチ(第2のピッチ)よりも大きくしてもよい。このように、出力バンプ電極16を出力バンプ電極12と同じ面積に形成し、出力バンプ電極16のピッチを出力バンプ電極12のピッチよりも大きくした場合、出力バンプ電極12は出力バンプ電極16に比べてパネル40との接続が劣化しやすい。このため、サブ電極32を出力バンプ電極12に沿って配列することは、効果的である。
 なお、出力バンプ電極16を出力バンプ電極12と同じ面積に形成し、出力バンプ電極16のピッチを出力バンプ電極12のピッチよりも大きくした場合に、出力バンプ電極12の方が出力バンプ電極16に比べてパネル40との接続が劣化しやすいのは以下の理由によるものと考えられる。すなわち、出力バンプ電極12は狭ピッチで配列されているので、1つの出力バンプ電極12を囲う(保持する)ACF70の量が1つの出力バンプ電極16を囲うACF70の量に比べて少なくなる。このため、1つの出力バンプ電極12当りの接着強度が1つの出力バンプ電極16当りの接着強度に比べて小さくなるので、出力バンプ電極12が出力バンプ電極16に比べてパネル40との接続が劣化しやすくなると考えられる。
 また、上記実施形態では、サブ電極を3辺に沿って配列した例について示したが、本発明はこれに限らない。サブ電極を4辺に沿って配列してもよい。また、例えば図10に示した本発明の第4変形例による半導体素子10のように、サブ電極(34および35)を2辺(例えば2つの短辺)のみに沿って配列してもよい。
 また、上記実施形態では、サブ電極を機能電極(出力バンプ電極および入力バンプ電極)の外側に配列した例について示したが、本発明はこれに限らない。例えば図11に示した本発明の第5変形例による半導体素子10のように、サブ電極(32、34および35)を機能電極の内側に配列してもよい。この場合、サブ電極(32、34および35)を隣接する機能電極と電気的に接続するのが好ましい。サブ電極を機能電極と電気的に接続すれば、機能電極とパネルとの接続が劣化したとしても、サブ電極とパネルとの接続が劣化していなければ、半導体素子10が誤動作することがない。
 また、上記実施形態では、半導体素子を液晶表示パネルに実装する場合に、ACFを用いた例について示したが、本発明はこれに限らない。半導体素子を液晶表示パネルに実装する場合に、ACP(異方性導電ペースト(異方性導電層))を用いてもよい。
 また、上記実施形態では、半導体素子にバンプ電極を設け、パネル(素子実装部材)にパッド電極を設けた例について示したが、本発明はこれに限らず、半導体素子にパッド電極を設け、素子実装部材にバンプ電極を設けてもよい。なお、半導体素子にバンプ電極を形成する方がパネルにパッド電極を形成するよりも簡単にできるので、半導体素子にバンプ電極を形成する方が好ましい。
 1 液晶表示パネル(表示パネル)
 10 半導体素子
 11 主表面
 11a、11b 長辺
 11c、11d 短辺
 12 出力バンプ電極(機能電極、バンプ電極、第2面積電極、第2ピッチ電極)
 12a 外側電極列(長辺側電極列)
 12b 内側電極列(長辺側電極列)
 13 入力バンプ電極(機能電極、バンプ電極、第1面積電極、第1ピッチ電極)
 14 出力バンプ電極(機能電極、バンプ電極、第2面積電極、第2ピッチ電極)
 15 出力バンプ電極(機能電極、バンプ電極、第2面積電極、第2ピッチ電極)
 16 出力バンプ電極(機能電極、バンプ電極、第1面積電極、第1ピッチ電極)
 17 出力バンプ電極(機能電極、バンプ電極、第1面積電極、第1ピッチ電極)
 18 出力バンプ電極(機能電極、バンプ電極)
 22、23、26、26a 長辺側電極列
 24、25、27 短辺側電極列
 32、34、35 サブ電極
 40 パネル(素子実装部材)
 70 ACF(異方性導電層)
 L14、L34 長さ
 W14、W34 幅

Claims (15)

  1.  4辺を有する主表面と、
     前記4辺のうちの少なくとも対向する2辺に沿って配列される複数の機能電極と、
     前記複数の機能電極よりも外側または内側に配置され、前記複数の機能電極の少なくとも一部に沿って配列される複数のサブ電極と、
     を備え、
     前記サブ電極は前記機能電極に電気的に接続され、または、ダミー電極により形成されているとともに、前記機能電極に比べて小さい面積を有することを特徴とする半導体素子。
  2.  前記複数のサブ電極は前記複数の機能電極よりも外側に配置されていることを特徴とする請求項1に記載の半導体素子。
  3.  前記サブ電極の配列方向の幅は前記機能電極の配列方向の幅よりも小さいことを特徴とする請求項1または2に記載の半導体素子。
  4.  前記サブ電極の配列方向と交差する方向の長さは前記機能電極の配列方向と交差する方向の長さよりも小さいことを特徴とする請求項1~3のいずれか1項に記載の半導体素子。
  5.  前記主表面は2つの長辺および2つの短辺を有する長方形状に形成されており、
     前記複数の機能電極は前記長辺に沿って配列される長辺側電極列と、前記短辺に沿って配列される短辺側電極列とを含み、
     前記複数のサブ電極は前記短辺側電極列に沿って配列されていることを特徴とする請求項1~4のいずれか1項に記載の半導体素子。
  6.  前記複数のサブ電極は前記短辺側電極列の少なくとも端部に沿って配列されていることを特徴とする請求項5に記載の半導体素子。
  7.  前記主表面は2つの長辺および2つの短辺とを有する長方形状に形成されており、
     前記複数の機能電極は前記長辺に沿って配列される長辺側電極列を含み、
     前記複数のサブ電極は前記長辺側電極列に沿って配列されていることを特徴とする請求項1~6のいずれか1項に記載の半導体素子。
  8.  前記複数のサブ電極は前記長辺側電極列の少なくとも端部に沿って配列されていることを特徴とする請求項7に記載の半導体素子。
  9.  前記複数の機能電極は第1の面積を有する複数の第1面積電極と、前記第1の面積よりも小さい第2の面積を有する複数の第2面積電極とを含み、
     前記サブ電極は前記第1面積電極に沿って配列されておらず、前記第2面積電極に沿って配列されていることを特徴とする請求項1~8のいずれか1項に記載の半導体素子。
  10.  前記複数の機能電極は第1のピッチで配列された複数の第1ピッチ電極と、前記第1のピッチよりも小さい第2のピッチで配列された複数の第2ピッチ電極とを含み、
     前記サブ電極は前記第1ピッチ電極に沿って配列されておらず、前記第2ピッチ電極に沿って配列されていることを特徴とする請求項1~9のいずれか1項に記載の半導体素子。
  11.  前記複数の機能電極は前記4辺のうちの少なくとも1辺に沿って2列状に配列された外側電極列および内側電極列を含み、
     前記サブ電極は前記外側電極列に沿って前記外側電極列の外側に配列されていることを特徴とする請求項1~10のいずれか1項に記載の半導体素子。
  12.  前記サブ電極は前記機能電極に電気的に接続されていることを特徴とする請求項1~11のいずれか1項に記載の半導体素子。
  13.  前記機能電極および前記サブ電極は前記主表面から突出したバンプ電極を含むことを特徴とする請求項1~12のいずれか1項に記載の半導体素子。
  14.  前記機能電極および前記サブ電極は素子実装部材に異方性導電層を介して接続されることを特徴とする請求項1~13のいずれか1項に記載の半導体素子。
  15.  請求項1~14のいずれか1項に記載の半導体素子を備えることを特徴とする表示パネル。
PCT/JP2012/054549 2011-03-02 2012-02-24 半導体素子および表示パネル WO2012117960A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013502285A JPWO2012117960A1 (ja) 2011-03-02 2012-02-24 半導体素子および表示パネル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-044827 2011-03-02
JP2011044827 2011-03-02

Publications (1)

Publication Number Publication Date
WO2012117960A1 true WO2012117960A1 (ja) 2012-09-07

Family

ID=46757897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054549 WO2012117960A1 (ja) 2011-03-02 2012-02-24 半導体素子および表示パネル

Country Status (2)

Country Link
JP (1) JPWO2012117960A1 (ja)
WO (1) WO2012117960A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104299947A (zh) * 2013-07-19 2015-01-21 瑞萨电子株式会社 半导体器件及其制造方法
JP2020190588A (ja) * 2019-05-20 2020-11-26 株式会社ジャパンディスプレイ 表示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308413A (ja) * 1997-05-07 1998-11-17 Casio Comput Co Ltd 電子部品及び電子部品搭載モジュール
JP2002196353A (ja) * 2000-12-25 2002-07-12 Hitachi Ltd 液晶表示装置
JP2004252466A (ja) * 2003-02-20 2004-09-09 Samsung Electronics Co Ltd 駆動ic及びこれを具備したディスプレイ装置
JP2005026682A (ja) * 2003-06-30 2005-01-27 Innolux Display Corp Cog実装方式の構造
JP2008172117A (ja) * 2007-01-15 2008-07-24 Epson Imaging Devices Corp 電気光学装置、電気光学装置用基板、半導体素子、及び電子機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308413A (ja) * 1997-05-07 1998-11-17 Casio Comput Co Ltd 電子部品及び電子部品搭載モジュール
JP2002196353A (ja) * 2000-12-25 2002-07-12 Hitachi Ltd 液晶表示装置
JP2004252466A (ja) * 2003-02-20 2004-09-09 Samsung Electronics Co Ltd 駆動ic及びこれを具備したディスプレイ装置
JP2005026682A (ja) * 2003-06-30 2005-01-27 Innolux Display Corp Cog実装方式の構造
JP2008172117A (ja) * 2007-01-15 2008-07-24 Epson Imaging Devices Corp 電気光学装置、電気光学装置用基板、半導体素子、及び電子機器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104299947A (zh) * 2013-07-19 2015-01-21 瑞萨电子株式会社 半导体器件及其制造方法
JP2015023159A (ja) * 2013-07-19 2015-02-02 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
JP2020190588A (ja) * 2019-05-20 2020-11-26 株式会社ジャパンディスプレイ 表示装置
JP7267837B2 (ja) 2019-05-20 2023-05-02 株式会社ジャパンディスプレイ 表示装置

Also Published As

Publication number Publication date
JPWO2012117960A1 (ja) 2014-07-07

Similar Documents

Publication Publication Date Title
JP3730037B2 (ja) 液晶表示装置
WO2012121113A1 (ja) 電子回路基板、表示装置および配線基板
WO2010024015A1 (ja) 半導体素子およびそれを備えた表示装置
JP4820372B2 (ja) 回路部材、電極接続構造及びそれを備えた表示装置
CN110286531B (zh) 显示装置及其制作方法
JP5539346B2 (ja) 半導体チップおよびその実装構造
JP5110349B2 (ja) 液晶表示装置およびその製造方法
WO2014024440A1 (ja) 表示装置
KR102413480B1 (ko) 표시 장치 및 이의 제조 방법
TWI434383B (zh) 電性連接墊結構及包含有複數個電性連接墊結構的積體電路
JP2012227480A (ja) 表示装置及び半導体集積回路装置
TWI446314B (zh) 畫素陣列基板、導電結構以及顯示面板
JP4572376B2 (ja) 半導体装置の製造方法および電子デバイスの製造方法
JP2009054833A (ja) 電子デバイスとその製造方法、電気光学装置および電子機器
WO2012117960A1 (ja) 半導体素子および表示パネル
JP7267837B2 (ja) 表示装置
JP5472557B1 (ja) 複合電子部品及びそれを備える電子装置
JP2010027847A (ja) 半導体素子の実装構造およびそれを備えた表示装置
US10048550B2 (en) Driver chip structure and liquid crystal display device
JP2014082282A (ja) 半導体チップおよびそれを備えた表示パネル
TW200923494A (en) Liquid crystal display device
WO2012117959A1 (ja) 半導体素子および表示パネル
CN110703521A (zh) 液晶显示面板
JP5105103B2 (ja) 半導体装置
WO2019169879A1 (zh) 驱动芯片及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752481

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013502285

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12752481

Country of ref document: EP

Kind code of ref document: A1