WO2012111770A1 - 含フッ素共重合体ラテックスの製造方法、含フッ素共重合体ラテックス、電極製造用バインダー、蓄電デバイス用電極合剤および蓄電デバイス用電極 - Google Patents

含フッ素共重合体ラテックスの製造方法、含フッ素共重合体ラテックス、電極製造用バインダー、蓄電デバイス用電極合剤および蓄電デバイス用電極 Download PDF

Info

Publication number
WO2012111770A1
WO2012111770A1 PCT/JP2012/053703 JP2012053703W WO2012111770A1 WO 2012111770 A1 WO2012111770 A1 WO 2012111770A1 JP 2012053703 W JP2012053703 W JP 2012053703W WO 2012111770 A1 WO2012111770 A1 WO 2012111770A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
mass
containing copolymer
copolymer latex
latex
Prior art date
Application number
PCT/JP2012/053703
Other languages
English (en)
French (fr)
Inventor
瑞菜 鳴海
丈裕 巨勢
宏樹 長井
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2012558019A priority Critical patent/JP5853965B2/ja
Priority to EP12747057.3A priority patent/EP2676973B1/en
Priority to CN201280009077.4A priority patent/CN103391951B/zh
Priority to KR1020137021023A priority patent/KR101809782B1/ko
Publication of WO2012111770A1 publication Critical patent/WO2012111770A1/ja
Priority to US13/970,122 priority patent/US9373845B2/en
Priority to US15/160,651 priority patent/US9714336B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/26Emulsion polymerisation with the aid of emulsifying agents anionic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L19/00Compositions of rubbers not provided for in groups C08L7/00 - C08L17/00
    • C08L19/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/265Tetrafluoroethene with non-fluorinated comonomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a method for producing a fluorine-containing copolymer latex, a fluorine-containing copolymer latex, a binder for producing an electrode comprising the fluorine-containing copolymer latex, and an electrode assembly for an electricity storage device containing the fluorine-containing copolymer latex.
  • the present invention relates to an agent and an electrode for an electricity storage device formed using the electrode mixture for an electricity storage device.
  • an organic solvent-based binder obtained by dissolving a binder polymer in an organic solvent, or a binder polymer dissolved in water or A dispersed aqueous binder is used. Since the organic solvent-based binder contains an organic solvent, it has a high environmental load and has a problem of working environment.
  • Patent Document 1 describes a method of preparing an electrode coating paste without using a solvent by using an aqueous dispersion in which a copolymer of propylene and tetrafluoroethylene is emulsified or dispersed in water. There is no description about the manufacturing method of this copolymer.
  • Patent Document 2 as a method for copolymerizing propylene and tetrafluoroethylene in an aqueous medium, water-soluble persulfate, water-soluble iron salt, hydroxymethanesulfinate, and ethylenediaminetetraacetic acid or a combination thereof are used.
  • a method for carrying out a copolymerization reaction in the presence of a redox catalyst is described.
  • the metal content is low.
  • the method of using is not preferred.
  • the binder used to manufacture the secondary battery electrode contains a metal such as iron, copper, or sodium, the initial capacity of the battery may be deteriorated or the performance may deteriorate due to deposition on the electrode. Therefore, it is required to reduce the metal content as much as possible.
  • Patent Document 3 relates to a method of producing a fluorine-containing copolymer latex by emulsion polymerization in an aqueous medium, recovering the polymer from the latex, and using it as a raw material for a crosslinked fluororubber.
  • a fluorine-containing copolymer latex can be produced using a reaction by thermal decomposition of a thermal decomposition radical initiator without using a reaction by a redox catalyst.
  • Patent Document 3 it is possible to obtain a fluorinated copolymer latex having a low metal content without using a redox catalyst, but water and tert-butanol can be used as an aqueous medium. A mixture is used. It is preferable not to use an organic solvent such as tert-butanol as much as possible from the viewpoint of the working environment.
  • an organic solvent such as tert-butanol
  • the stability of the obtained fluorine-containing copolymer latex is reduced. Sex is reduced. Therefore, there is a problem that when the latex is stirred, the particles of the fluorinated copolymer are easily united, and the rate of destruction of the latex increases.
  • the present invention has been made in view of the above circumstances, and provides a method for producing a fluorinated copolymer latex in which the content of metal is small and the stability of the latex is good even when the content of the organic solvent is small.
  • the purpose is to provide.
  • the present invention provides a fluorine-containing copolymer latex having good stability despite the low content of metal and low content of organic solvent, and production of an electrode comprising the fluorine-containing copolymer latex
  • the electrode binder for electrical storage devices containing this binder, this fluorine-containing copolymer latex, and the electrode for electrical storage devices using this electrode mixture for electrical storage devices are provided.
  • the present inventors have used an anionic property when synthesizing a fluorine-containing copolymer by emulsion polymerization using a reaction by thermal decomposition of a thermal decomposition radical initiator without using a redox catalyst.
  • the present inventors have found that the stability of the resulting fluorinated copolymer latex is improved even when the aqueous medium is composed only of water, and the present invention has been achieved.
  • the present invention includes the following [1] to [14].
  • [1] A monomer mixture containing tetrafluoroethylene and propylene is emulsion-polymerized at a polymerization temperature in the range of 50 ° C. to 100 ° C. in the presence of an aqueous medium, an anionic emulsifier, and a thermal decomposition type radical polymerization initiator.
  • a method for producing a latex of a fluorinated copolymer The aqueous medium consists of water alone or water and a water-soluble organic solvent, and the content of the water-soluble organic solvent is less than 1 part by mass with respect to 100 parts by mass of water,
  • [2] The method for producing a fluorinated copolymer latex according to [1], wherein the anionic emulsifier is sodium lauryl sulfate.
  • [3] The method for producing a fluorinated copolymer latex of [1] or [2], wherein the monomer mixture is composed of tetrafluoroethylene and propylene.
  • [4] The method for producing a fluorinated copolymer latex according to any one of [1] to [3], wherein the emulsion polymerization is performed in the absence of a pH adjuster.
  • a fluorine-containing copolymer latex containing particles of a fluorine-containing copolymer and an anionic emulsifier in an aqueous medium The aqueous medium consists of water alone or water and a water-soluble organic solvent, and the content of the water-soluble organic solvent is less than 1 part by mass with respect to 100 parts by mass of water, The content of the anionic emulsifier is 1.5 to 5.0 parts by mass with respect to 100 parts by mass of the fluorine-containing copolymer, The fluorine-containing copolymer latex in which the metal content in the fluorine-containing copolymer latex is 0.2% by mass or less in 100% by mass of the fluorine-containing copolymer latex.
  • a binder for producing an electrode for an electricity storage device comprising the fluorine-containing copolymer latex of any one of [7] to [11].
  • An electrode mixture for an electricity storage device comprising the fluorine-containing copolymer latex of any one of [7] to [11] and an electrode active material.
  • An electrode for an electricity storage device having an electrode active material layer formed on the current collector using the electrode mixture for an electricity storage device according to [13].
  • a fluorine-containing copolymer latex having a low content of metal, a low content of organic solvent, and good stability can be obtained.
  • that the stability of the latex is good means that the copolymer particles in the latex are hardly changed even when subjected to an external force.
  • the latex is subjected to a shearing force such as stirring.
  • it means that coalescence of the fluorinated copolymer particles hardly occurs.
  • coalescence of the copolymer particles occurs, the desired effect cannot be obtained because the particle size distribution of the copolymer particles cannot be obtained as designed.
  • the copolymer particles are used as the binder polymer of the electrode mixture, if the coalescence of the copolymer particles occurs, the binder polymer is unevenly distributed in the electrode mixture, and the electrode active material and the current collector Adhesiveness with is easily impaired.
  • the fluorine-containing copolymer latex of the present invention has a low metal content, a low organic solvent content, and good stability.
  • the binder for producing an electrode comprising the fluorine-containing copolymer latex of the present invention has a low metal content, a low organic solvent content, good stability, and it is difficult for coalescence of copolymer particles to occur.
  • the active material can be well dispersed.
  • the electrode mixture for an electricity storage device containing the fluorine-containing copolymer latex of the present invention has a low content of metal, a low content of organic solvent, good stability, and coalescence of copolymer particles occurs. It is difficult, the dispersibility of the electrode active material is good, and good adhesion between the electrode active material and the current collector can be obtained.
  • the electrode for an electricity storage device using the electrode mixture for an electricity storage device of the present invention has good adhesion between the electrode active material and the current collector, and an electricity storage device having excellent charge / discharge characteristics can be obtained.
  • the method for producing a fluorinated copolymer latex of the present invention comprises emulsion polymerization of a monomer mixture containing tetrafluoroethylene and propylene in the presence of an aqueous medium, an anionic emulsifier, and a thermal decomposition type radical polymerization initiator. And a method for producing a fluorinated copolymer latex.
  • the fluorine-containing copolymer in the present invention is a copolymer of a monomer mixture containing tetrafluoroethylene (hereinafter referred to as TFE) and propylene (hereinafter referred to as P). That is, the fluorine-containing copolymer has a repeating unit based on TFE (hereinafter referred to as TFE unit) and a repeating unit based on P (hereinafter referred to as P unit).
  • TFE unit tetrafluoroethylene
  • P unit propylene
  • the composition (ratio of repeating units) of the fluorinated copolymer can be controlled by the ratio of monomers present in the system during emulsion polymerization.
  • the molar ratio of TFE unit / P unit is preferably 30/70 to 70/30, more preferably 45/55 to 65/35, and particularly preferably 50/50 to 60/40.
  • the fluorine-containing copolymer has excellent chemical resistance and mechanical properties, and when used as a binder polymer for electrode production, The swelling is small, and the adhesion between the electrode active materials and the adhesion between the electrode active materials and the current collector are excellent.
  • the fluorine-containing copolymer may contain repeating units based on other monomers as long as the effects of the present invention are not impaired.
  • Other monomers include fluorinated olefins (vinylidene fluoride, hexafluoropropylene, chlorotrifluoroethylene, perfluoro (butylethylene), etc.), fluorinated vinyl ethers (perfluoro (propyl vinyl ether), perfluoro (methyl vinyl ether), etc.
  • the total content of repeating units based on other monomers in the fluorinated copolymer is preferably 10 mol% or less, more preferably 5 mol% or less, and particularly preferably zero. That is, it is particularly preferable that the monomer mixture used for producing the fluorinated copolymer comprises TFE and P.
  • the aqueous medium in the present invention is water alone or a mixture of water and a water-soluble organic solvent.
  • a well-known thing can be used suitably for a water-soluble organic solvent. Alcohols are preferable, and tert-butanol is particularly preferable.
  • the content of the water-soluble organic solvent in the aqueous medium is preferably small.
  • the water-soluble organic solvent is less than 1 part by mass with respect to 100 parts by mass of water, preferably 0.5 parts by mass or less, more preferably 0.1 parts by mass or less, and particularly preferably zero. That is, it is particularly preferable to use water that does not contain a water-soluble organic solvent alone as the aqueous medium.
  • anionic emulsifier those known in the emulsion polymerization method can be used. Specific examples include hydrocarbon emulsifiers such as sodium lauryl sulfate, sodium dodecylbenzene sulfonate, sodium alkyl sulfonate, sodium alkyl benzene sulfonate, sodium dialkyl ester succinate, sodium alkyl diphenyl ether disulfonate; Examples thereof include fluorine-containing alkyl carboxylates such as ammonium fluorooctanoate and ammonium perfluorohexanoate; compounds represented by the following formula (I) (hereinafter referred to as compound (I)), and the like.
  • hydrocarbon emulsifiers such as sodium lauryl sulfate, sodium dodecylbenzene sulfonate, sodium alkyl sulfonate, sodium alkyl benzene sulfonate, sodium dialkyl ester succinate
  • X represents a fluorine atom or a perfluoroalkyl group having 1 to 3 carbon atoms
  • A represents a hydrogen atom, an alkali metal atom, or —NH 4
  • p represents an integer of 1 to 10
  • Q represents 0 or an integer of 1 to 3;
  • Examples of compound (I) include the following compounds. F (CF 2 ) 2 OCF 2 CF 2 OCF 2 COONH 4 , F (CF 2 ) 2 O (CF 2 CF 2 O) 2 CF 2 COONH 4 , F (CF 2 ) 3 O (CF (CF 3 ) CF 2 O) 2 CF (CF 3 ) COONH 4 , F (CF 2 ) 3 OCF 2 CF 2 OCF 2 COONH 4 , F (CF 2 ) 3 O (CF 2 CF 2 O) 2 CF 2 COONH 4 , F (CF 2 ) 4 OCF 2 CF 2 OCF 2 COONH 4 , F (CF 2 ) 4 OCF 2 CF 2 OCF 2 COONH 4 , F (CF 2 ) 4 O (CF 2 CF 2 O) 2 CF 2 COONH 4 , F (CF 2 ) 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COONH 4 , F (CF 2 ) 2 OCF 2 CF 2
  • the anionic emulsifier one kind may be used alone, or two or more kinds may be used in combination.
  • sodium lauryl sulfate is particularly preferable because of excellent dispersion stability of the fluorinated copolymer latex.
  • the amount of the anionic emulsifier used is 1.5 to 5.0 parts by weight, preferably 1.5 to 3.8 parts by weight, based on 100 parts by weight of the fluorinated copolymer produced by emulsion polymerization. 1.7 to 3.2 parts by mass are particularly preferred.
  • the content of the anionic emulsifier in the fluorine-containing copolymer latex is within this range, the stability of the latex is excellent, and excellent charge / discharge characteristics are obtained when the latex is used as a binder for electrode production.
  • thermo decomposition type radical polymerization initiator As the thermal decomposition type radical polymerization initiator in the production method of the present invention, a water-soluble one having a one-hour half-life temperature of 50 to 100 ° C. is used. It can be appropriately selected from water-soluble polymerization initiators used in ordinary emulsion polymerization. Specific examples include persulfates such as ammonium persulfate, sodium persulfate, and potassium persulfate; disuccinic acid peroxide; organic initiators such as azobisisobutylamidine dihydrochloride, and the like.
  • the amount of the thermal decomposition type radical polymerization initiator used is preferably 0.0001 to 3 parts by mass, more preferably 0.001 to 1 part by mass with respect to 100 parts by mass of the fluorinated copolymer produced by emulsion polymerization. preferable.
  • the pH adjuster in the present invention means an inorganic salt.
  • a known inorganic salt can be used as a pH adjuster.
  • Specific examples include phosphates such as disodium hydrogen phosphate and sodium dihydrogen phosphate; carbonates such as sodium hydrogen carbonate and sodium carbonate; and the like. More preferable specific examples of the phosphate include disodium hydrogen phosphate dihydrate and disodium hydrogen phosphate dodecahydrate.
  • the polymerization rate and the stability of the resulting latex can be improved.
  • bases such as sodium hydroxide and potassium hydroxide
  • Acids such as a sulfuric acid, hydrochloric acid, and nitric acid
  • the amount of pH used is preferably as small as possible. Therefore, the emulsion polymerization is preferably performed in the absence of a pH adjuster.
  • the thermal decomposition type radical polymerization initiator and the pH adjuster when a compound containing an alkali metal component such as a sodium salt is used, in the fluorine-containing copolymer latex in which the alkali metal component is produced, Included in metal. Therefore, when using the obtained fluorine-containing copolymer latex for uses such as a binder for producing an electrode for an electricity storage device, it is preferable that the amount of alkali metal derived from these compounds is small.
  • the fluorine-containing copolymer latex obtained by the production method of the present invention is not necessarily used as it is for applications such as a binder for producing an electrode of an electricity storage device.
  • the metal content in the fluorinated copolymer latex obtained by the production method of the present invention remains as it is as a binder for electrode production unless a treatment for particularly reducing the metal content in the obtained fluorinated copolymer latex is performed. It tends to be a metal component in the fluorine-containing copolymer latex used for such applications. Although it is possible to reduce to some extent the metal content in the latex obtained by a method such as diluting the fluorine-containing copolymer latex obtained by the production method of the present invention with an aqueous medium or the like, In the method for producing a copolymer latex, it is preferable to produce a latex having a low metal content.
  • the metal content in the fluorinated copolymer latex used for applications such as binders for electrode production is preferably 0.2% by mass or less in 100% by mass of the fluorinated copolymer latex. 0.15% by mass or less is more preferable, 0.1% by mass or less is more preferable, and 0.05% by mass or less is particularly preferable. For this reason, it is preferable to manufacture the fluorine-containing copolymer latex so that the upper limit of the metal content in the fluorine-containing copolymer latex obtained by the production method of the present invention also has these values.
  • the fluorine copolymer latex obtained including the alkali metal component is used. It is preferable to produce the fluorine copolymer latex so that the content of the metal is 0.2% by mass or less of 100% by mass of the fluorine-containing copolymer latex.
  • the anionic emulsifiers, thermal decomposition type radical polymerization initiators and pH adjusters it is particularly preferable to use a compound containing an alkali metal as an anionic emulsifier.
  • an alkali metal salt is used as the anionic emulsifier, and the content of the metal content of the obtained fluorocopolymer latex including the alkali metal content of the anionic emulsifier is 0 in 100% by mass of the fluorocopolymer latex. More preferably, the fluorocopolymer latex is produced so as to be 2% by mass or less.
  • the emulsion polymerization can be performed by a known emulsion polymerization method. For example, it can be performed by the following procedure. First, after degassing the pressure-resistant reactor, an aqueous medium, an anionic emulsifier, and a thermal decomposition type radical polymerization initiator are charged into the reactor. Next, after raising the temperature to a predetermined polymerization temperature, a monomer mixture containing TFE and P is injected so as to have a predetermined polymerization pressure. Immediately after the supply of the monomer mixture is started, the polymerization reaction does not occur, and the monomer is dissolved in the liquid in the reaction vessel. No copolymer is produced.
  • the pressure in the reactor starts to drop. That is, the start of the polymerization reaction (starting point of reaction time) can be confirmed by the pressure drop in the reactor.
  • a monomer mixture containing TFE and P is additionally supplied, and while maintaining a predetermined polymerization temperature and a predetermined polymerization pressure, a polymerization reaction is performed to produce a copolymer. .
  • the period from the start of supplying the monomer mixture until the pressure drop in the reactor is confirmed and immediately before the additional supply of the monomer mixture is referred to as the initial activation period in this specification.
  • the period during which a copolymer is produced by additionally supplying is called a polymerization reaction period.
  • the composition of the monomer mixture additionally supplied into the reactor is the same as the ratio of the repeating units (target composition) in the copolymer to be obtained.
  • the inside of the reactor is cooled to stop the polymerization reaction (end of reaction time), and the fluorine-containing copolymer latex is added. obtain.
  • the total amount of monomers additionally supplied during the polymerization reaction period is equal to the amount of the fluorinated copolymer produced by emulsion polymerization.
  • the polymerization temperature during the polymerization reaction period is 50 ° C. to 100 ° C., and the upper limit is preferably less than 100 ° C. A more preferred range is 60 ° C. to 90 ° C., and a particularly preferred range is 65 ° C. to 80 ° C. When the polymerization temperature is within this range, the polymerization rate is appropriate and easy to control, the productivity is excellent, and good stability of the latex is easily obtained.
  • the polymerization pressure during the polymerization reaction period is preferably 1.0 to 10 MPaG, more preferably 1.5 to 5.0 MPaG, and particularly preferably 1.7 to 3.0 MPaG. When the polymerization pressure is less than 1.0 MPaG, the polymerization rate may be too slow.
  • the polymerization rate per unit time / unit volume during the polymerization reaction period is preferably 10 to 150 g / L ⁇ hour, more preferably 30 to 100 g / L ⁇ hour, and more preferably 50 to 80 g / L ⁇ hour.
  • the polymerization rate is not less than the lower limit of the above range, good productivity is easily obtained, and when it is not more than the upper limit, the polymerization is not likely to be unstable and good stability of the latex is easily obtained.
  • the composition of the monomer mixture fed into the reactor during the initial activation period is calculated from the monomer reactivity ratio. Specifically, the composition is preferably set so that the molar ratio of TFE / P is 5/95 to 98/2. More preferably, it is 40/60 to 95/5, and most preferably 50/50 to 93/7.
  • the polymerization temperature in the initial activation period is preferably the same as the polymerization temperature in the polymerization reaction period.
  • the polymerization pressure in the initial activation period is preferably the same as the polymerization pressure in the polymerization reaction period.
  • the fluorinated copolymer In the fluorinated copolymer latex obtained by emulsion polymerization, the fluorinated copolymer is dispersed in the form of particles (sometimes referred to as “copolymer particles” in this specification) in an aqueous dispersion. .
  • the weight average molecular weight of the fluorinated copolymer is preferably 10,000 to 300,000, more preferably 20,000 to 250,000, still more preferably 20,000 to 200,000, and 30,000 to 190,000. Particularly preferred.
  • the mass average molecular weight is 10,000 or more, it hardly swells in the electrolyte when used as a binder polymer for electrode production, and when it is 300,000 or less, good binding properties of the electrode active material can be obtained. It is easy to be done.
  • the mass average molecular weight can be adjusted by a known method such as addition of a chain transfer agent, control of polymerization temperature, control of polymerization pressure, and the like.
  • the mass average molecular weight (Mw) in the present specification is a molecular weight in terms of polystyrene obtained by measuring with gel permeation chromatography using a calibration curve prepared using a standard polystyrene sample having a known molecular weight.
  • the average particle size of the fluorinated copolymer particles is preferably 20 to 200 nm, more preferably 30 to 150 nm, still more preferably 50 to 150 nm, and particularly preferably 50 to 100 nm.
  • the average particle size is smaller than 10 nm, the entire surface of the electrode active material is densely covered and the internal resistance tends to increase when the fluorine-containing copolymer is used as a binder polymer for electrode production. is there. When the internal resistance increases, the battery characteristics deteriorate. On the other hand, when the average particle diameter is 200 nm or less, a good binding force of the electrode active material is easily obtained.
  • the average particle size of the copolymer particles can be adjusted by a known method such as the type of emulsifier and the amount added.
  • the average particle size of the fluorine-containing copolymer particles in the present invention is a value measured by a dynamic light scattering method using a laser zeta electrometer ELS-8000 manufactured by Otsuka Electronics Co., Ltd.
  • the content of the fluorine-containing copolymer in the fluorine-containing copolymer latex obtained by emulsion polymerization is preferably 5 to 40% by mass, more preferably 10 to 40% by mass, further preferably 15 to 35% by mass, and more preferably 25 to 35% by mass is particularly preferred.
  • the content of the fluorine-containing copolymer in the fluorine-containing copolymer latex is not less than the lower limit of the above range, when the electrode mixture is prepared using the latex as a binder for electrode production of an electricity storage device, the electrode A good viscosity of the mixture can be easily obtained, and a thick coating can be performed on the current collector.
  • the content of the fluorinated copolymer is not more than the upper limit of the above range, when preparing an electrode mixture by dispersing an electrode active material or the like in the latex, it is easy to obtain good dispersion stability, Good coatability of the electrode mixture is easily obtained.
  • the fluorine-containing copolymer latex of the present invention may be the fluorine-containing copolymer latex itself obtained by the production method of the present invention, and the fluorine-containing copolymer latex obtained by the production method of the present invention may be used. It may be processed.
  • the fluorine-containing copolymer latex obtained by the production method of the present invention is diluted with an aqueous medium, or is newly blended with an additive such as an emulsifier.
  • the fluorine-containing copolymer latex obtained by the production method of the present invention is the fluorine-containing copolymer latex of the present invention.
  • the fluorine-containing copolymer latex obtained by the production method of the present invention may be diluted with the same aqueous medium as that used in the emulsion polymerization or may be diluted with a different aqueous medium. It is preferable to dilute substantially only with water.
  • the lower limit of the content of the fluorinated copolymer in the diluted fluorocopolymer latex is preferably the lower limit of the above range. That is, the lower limit of the content of the fluorinated copolymer is preferably 5% by mass, more preferably 10% by mass, further preferably 15% by mass, and particularly preferably 25% by mass.
  • An emulsifier may be further added to the fluorine-containing copolymer latex obtained by the production method of the present invention. That is, an anionic emulsifier may be contained by emulsion polymerization of a fluorinated copolymer to obtain a fluorinated copolymer latex, and then an emulsifier may be further added.
  • the emulsifier added after the emulsion polymerization is not limited to the above-mentioned anionic emulsifier, and various known emulsifiers can be used. Further, the emulsifier added after the emulsion polymerization may be the same as the emulsifier used for the emulsion polymerization or may be different.
  • the fluorine-containing copolymer latex of the present invention may contain solids other than the particles of the fluorine-containing copolymer as long as the effects of the present invention are not impaired. Is preferably made of particles of a fluorinated copolymer.
  • the solid content concentration of the fluorine-containing copolymer latex is preferably 5 to 40% by mass. % By mass is more preferred, 15 to 35% by mass is more preferred, and 25 to 35% by mass is particularly preferred.
  • the problem of coalescence of the copolymer particles in the latex due to the stirring force when dispersing the electrode active material or the like in the fluorine-containing copolymer latex is that the viscosity of the latex is high and stirring necessary for dispersion is required.
  • the viscosity of the latex tends to increase.
  • coalescence tends to occur when the particle size of the fluorinated copolymer particles is large. Since the fluorine-containing copolymer latex of the present invention is excellent in stability, the effect is particularly great when the viscosity of the latex is high and the stirring force required for dispersion is large.
  • the metal content in the fluorine-containing copolymer latex means components of sodium, potassium, magnesium, iron, copper, calcium, chromium, manganese, nickel, cobalt, and zinc. Therefore, the metal content is the total content of the components of sodium, potassium, iron, copper, calcium, magnesium, chromium, manganese, nickel, cobalt, and zinc.
  • the metal content in the fluorinated copolymer latex is mainly derived from the raw materials used in the emulsion polymerization.
  • iron is mainly derived from the redox catalyst, but in the present invention, the iron derived from the catalyst is small by not using the redox catalyst.
  • Sodium is mainly derived from anionic emulsifiers.
  • metal impurities derived from a reactor such as a polymerization kettle are also conceivable.
  • the content of metal is preferably 0.2% by mass or less, more preferably 0.15% by mass or less, still more preferably 0.1% by mass or less, out of 100% by mass of the fluorinated copolymer latex. 05 mass% or less is especially preferable.
  • the metal content in the fluorine-containing copolymer latex is sodium.
  • the content of sodium is preferably less than 0.2% by mass, more preferably less than 0.15% by mass, and less than 0.1% by mass or less, out of 100% by mass of the fluorinated copolymer latex. More preferred is less than 0.05% by mass.
  • the iron content is preferably 100 ppm or less, more preferably 50 ppm or less, still more preferably less than 20 ppm, particularly preferably less than 10 ppm, in 100% by mass of the fluorinated copolymer latex.
  • the potassium content is small in the fluorine-containing copolymer latex unless a potassium salt is used in the anionic emulsifier, the thermal decomposition type radical polymerization initiator and the pH adjuster.
  • the content of potassium is preferably 100 ppm or less in 100% by mass of the fluorinated copolymer latex.
  • Magnesium, copper, calcium, chromium, manganese, nickel, cobalt, and zinc have less effect on the electricity storage device than iron, and their content in the fluorinated copolymer latex is usually about the same as iron It is as follows.
  • the content of each of these metals may be equal to or less than that of iron, and the content of these metals is preferably 100 ppm or less, and less than 20 ppm, out of 100% by mass of the fluorine-containing copolymer latex. Is more preferred and less than 10 ppm is particularly preferred.
  • the metal content contained in the fluorinated copolymer latex can be reduced by using raw materials with a low content of the metal content and by reducing the addition amount of inorganic salts and the like added as a pH preparation during polymerization as much as possible.
  • the sodium content and the iron content are preferably in the above ranges.
  • the fluorine-containing copolymer latex of the present invention can be used as it is as a binder for electrode production. Further, a flocculant can be added to the obtained fluorine-containing copolymer latex, and the fluorine-containing copolymer in the latex can be aggregated and isolated. Any flocculant can be used as long as it is usually used for agglomeration of a fluorine-containing polymer latex. Specific examples include water-soluble salts such as calcium chloride, magnesium chloride, aluminum chloride and aluminum nitrate; acids such as nitric acid, hydrochloric acid and sulfuric acid; water-soluble organic liquids such as alcohol and acetone; and the like. Also, the fluorinated copolymer can be frozen and aggregated.
  • Examples of the electricity storage device include a lithium ion primary battery, a lithium ion secondary battery, a lithium polymer battery, an electric double layer capacitor, and a lithium ion capacitor.
  • a lithium ion secondary battery it is preferable to use it for a lithium ion secondary battery because it can effectively exhibit adhesiveness, electrolytic solution resistance, battery characteristics and the like.
  • the electrode mixture for an electricity storage device of the present invention (sometimes referred to simply as “electrode mixture” in the present specification) contains the fluorinated copolymer latex of the present invention as a binder for electrode production, Contains substances.
  • a conductive material may be contained as necessary, and other components other than these may be contained.
  • the electrode mixture used for the production of the positive electrode preferably contains a conductive material.
  • the conductive material examples include conductive carbon such as acetylene black, ketjen black, carbon black, graphite, vapor grown carbon fiber, and carbon nanotube.
  • the content of the conductive material in the electrode mixture is preferably 0.1 to 30 parts by mass and more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the electrode active material.
  • the electrode mixture contains a conductive material with a content in this range, the effect of reducing electrical resistance is increased by adding a small amount of the conductive material, which is preferable.
  • known components in the electrode mixture can be used. Specific examples include water-soluble polymers such as carboxymethyl cellulose, polyvinyl alcohol, polyacrylic acid, and polymethacrylic acid.
  • the electrode for an electricity storage device of the present invention has a current collector and an electrode active material layer formed on the current collector using the electrode mixture for an electricity storage device of the present invention.
  • the electrode for an electricity storage device of the present invention is obtained by applying the electrode mixture of the present invention to at least one surface, preferably both surfaces of a current collector, and drying to form an electrode active material layer. If necessary, the electrode active material layer after drying may be pressed to have a desired thickness.
  • the current collector is not particularly limited as long as it is made of a conductive material, but generally includes metal foils such as aluminum, nickel, stainless steel, copper, metal nets, metal porous bodies, and the like. Aluminum is preferably used as the positive electrode current collector, and copper is preferably used as the negative electrode current collector.
  • the thickness of the current collector is preferably 1 to 100 ⁇ m.
  • the method for applying the electrode mixture to the current collector various application methods can be mentioned. Examples thereof include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
  • the coating temperature is not particularly limited, but usually a temperature around room temperature is preferable. Drying can be performed using various drying methods, for example, drying by warm air, hot air, low-humidity air, vacuum drying, drying by irradiation with (far) infrared rays, electron beams, or the like.
  • the drying temperature is not particularly limited, but is usually preferably room temperature to 200 ° C. in a heating vacuum dryer or the like.
  • a pressing method a mold press, a roll press or the like can be used.
  • the lithium ion secondary battery as the electricity storage device preferably comprises the electricity storage device electrode of the present invention as at least one of a positive electrode and a negative electrode, and further comprises an electrolyte and a separator.
  • Solvents for the electrolyte include aprotic organic solvents such as dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), and methyl ethyl carbonate (MEC).
  • esters such as ⁇ -butyrolactone and methyl formate
  • ethers such as 1,2-dimethoxyethane and tetrahydrofuran
  • sulfur-containing compounds such as sulfolane and dimethyl sulfoxide
  • dimethyl carbonate, ethylene carbonate, propylene carbonate, diethyl carbonate, and methyl ethyl carbonate are preferable because high ion conductivity is easily obtained and the use temperature range is wide.
  • the electrolyte include lithium salts such as LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 5 , CF 3 SO 3 Li, and (CF 3 SO 2 ) 2 NLi.
  • Mass average molecular weight The mass average molecular weight of the fluorinated copolymer was measured by gel permeation chromatography (GPC) under the following conditions.
  • GPC apparatus Tosoh Corporation HLC-8220. Columns: shodex KF-806M (two), shodex KF-802 (one) manufactured by Showa Denko KK Detector: RI detector (differential refractometer). Solvent: tetrahydrofuran. Temperature: 40 ° C. Flow rate: 1.0 mL / min. Concentration: 0.5 mass. Standard material: polystyrene.
  • the average particle diameter of the copolymer particles in the fluoropolymer latex was measured by a dynamic light scattering method using a laser zeta electrometer ELS-8000 manufactured by Otsuka Electronics Co., Ltd.
  • Adhesion peel strength
  • An electrode produced by applying an electrode mixture on a current collector was cut into a strip shape having a width of 2 cm and a length of 10 cm, and fixed with the coating surface of the electrode mixture facing up.
  • Cellophane tape was affixed to the coating surface of the electrode mixture, and the strength (N) when the tape was peeled in the 90 ° C. direction at a speed of 10 mm / min was measured five times, and the average value was taken as the peel strength. It shows that it is excellent in adhesiveness (binding property), so that this value is large.
  • Example 1 The main formulations and production conditions are shown in Table 1 (the same applies hereinafter). After degassing the inside of a 3200 mL stainless steel pressure-resistant reactor equipped with an anchoring blade for stirring, 1700 g of ion exchange water, 13.3 g of sodium lauryl sulfate, 4.4 g of excess pressure were added to the reactor. Ammonium sulfate (1 hour half-life temperature 82 ° C.) was added.
  • the anchor blade was rotated at 300 rpm to initiate the polymerization reaction. As the polymerization proceeds, the pressure in the reactor decreases.
  • An electrode mixture was prepared using the obtained fluorinated copolymer A latex as a binder. That is, 100 parts by mass of LiCoO 2 (manufactured by AGC Seimi Chemical Co., Ltd., trade name “Serion C”, tap density 2.4 g / cm 3 , average particle size: 12 ⁇ m) as the positive electrode active material, 7 masses of acetylene black as the conductive material After mixing 40 parts by weight of a carboxymethyl cellulose aqueous solution having a concentration of 1% by mass as a viscosity modifier, 10 parts by weight of fluorinated copolymer A latex was added to obtain an electrode mixture 1. The coating property and adhesion of the electrode mixture were evaluated by the above methods. The evaluation results are shown in Table 2.
  • Example 2 Polymerization was carried out in the same manner as in Example 1 except that 17.7 g of sodium lauryl sulfate was used to obtain a latex containing the fluorinated copolymer B.
  • the polymerization rate was 60 g / L ⁇ hour.
  • the content of the fluorinated copolymer B in the latex was 29% by mass, and the average particle size of the fluorinated copolymer B particles was 67 nm.
  • an electrode mixture 2 was prepared in the same manner as in Example 1 and evaluated in the same manner. The evaluation results are shown in Table 2.
  • the polymerization rate was 75 g / L ⁇ hour.
  • the content of the fluorinated copolymer C in the latex was 29% by mass, and the average particle size of the fluorinated copolymer C particles was 69 nm.
  • an electrode mixture 3 was prepared in the same manner as in Example 1 and evaluated in the same manner. The evaluation results are shown in Table 2.
  • Example 4 Latex containing fluorinated copolymer D by polymerizing in the same manner as in Example 2 except that the polymerization reaction was stopped when the total amount of the TFE / P monomer mixture gas reached 900 g. Got.
  • the polymerization rate was 60 g / L ⁇ hour.
  • the content of the fluorinated copolymer D in the latex was 35% by mass, and the average particle size of the fluorinated copolymer D particles was 76 nm.
  • an electrode mixture 4 was prepared in the same manner as in Example 1 and evaluated in the same manner. The evaluation results are shown in Table 2.
  • Example 1 Polymerization was performed in the same manner as in Example 1 except that 8.9 g of sodium lauryl sulfate was changed to obtain a latex containing the fluorinated copolymer H.
  • the polymerization rate was 80 g / L ⁇ hour.
  • the content of the fluorinated copolymer E in the latex was 28% by mass, and the average particle size of the fluorinated copolymer H particles was 80 nm.
  • an electrode mixture 8 was obtained in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • the anchor blade was rotated at 300 rpm, and a 2.5% by mass aqueous solution of sodium hydroxymethanesulfinate dihydrate (hereinafter also referred to as Rongalite) whose pH was adjusted to 10.0 with sodium hydroxide was added. Started. Thereafter, a 2.5% by mass aqueous solution of Rongalite was continuously added using a high-pressure pump.
  • Example 2 Thereafter, polymerization was carried out in the same manner as in Example 1 to obtain a latex containing the fluorinated copolymer I.
  • the polymerization rate was 80 g / L ⁇ hour.
  • the content of the fluorinated copolymer I in the latex was 30% by mass, and the average particle size of the fluorinated copolymer I particles was 100 nm.
  • an electrode mixture 9 was prepared in the same manner as in Example 1 and evaluated in the same manner. The evaluation results are shown in Table 2.
  • This example is a method of carrying out copolymerization by generating radicals by a reaction with a redox catalyst. That is, although it contains ammonium sulfate which is a thermal decomposition type radical polymerization initiator, the polymerization temperature is as low as 40 ° C., which is different from the method in which the ammonium sulfate is thermally decomposed to generate radicals.
  • the content of the fluorinated copolymer J in the latex was 30% by mass, and the average particle size of the fluorinated copolymer J particles was 98 nm.
  • an electrode mixture 10 was prepared in the same manner as in Example 1 and evaluated in the same manner. The evaluation results are shown in Table 2.
  • Examples 1 to 7 and Comparative Example 1 are examples in which a redox catalyst is not used and tert-butanol which is a water-soluble organic solvent is not used, but an anionic emulsifier is included.
  • Examples 1 to 7 in which 1.5 parts by mass or more were used with respect to 100 parts by mass of the fluorine copolymer, a fluorine-containing copolymer latex having good stability was obtained.
  • Comparative Example 1 in which the amount of the anionic emulsifier used is as small as 1.27 parts by mass with respect to 100 parts by mass of the fluorinated copolymer, the stability of the latex is inferior, and when the latex is stirred A large proportion of the fluorine-containing copolymer particles were coalesced and the latex was broken.
  • Example 1 and Comparative Example 1 are compared, the amount of the anionic emulsifier used relative to 100 parts by mass of the fluorinated copolymer is changed from 1.27 parts by mass of Comparative Example 1 to 13.3 parts by mass of Example 1. It can be seen that the ratio of the broken latex was greatly reduced from 54% to 3% by changing to the part.
  • Comparative Example 3 and Comparative Example 1 are compared, when a redox catalyst is not used, if the water-soluble organic solvent is not used as in Comparative Example 1, the stability of the fluorinated copolymer latex may deteriorate. Recognize.
  • Electrode mixture 1 prepared in Example 1, on the aluminum foil (thickness 20 ⁇ m) as a current collector, the electrode mixture was about 20 cm ⁇ It was applied to an area of about 20 cm so that the thickness after drying was 50 ⁇ m, dried for 30 minutes, and further dried in a vacuum dryer at 120 ° C., and then the coating layer was 40 ⁇ m with a roll press at room temperature. And then cut into a circular shape with a diameter of 18 mm to form a positive electrode 1.
  • a lithium metal foil having the same area was used as the negative electrode, and a polyethylene separator was laminated in the order of the lithium metal foil, the separator, and the LiCoO 2 positive electrode in the 2016 type coin cell to produce a battery element, and 1M-LiPF 6 ethyl
  • a coin-type non-aqueous electrolyte secondary battery was manufactured by adding a non-aqueous electrolyte of methyl carbonate-ethylene carbonate (volume ratio of 1: 1) and sealing it. At 25 ° C., the battery is charged at a constant current corresponding to 0.2 C to 4.3 V (the voltage represents a voltage with respect to lithium), and further charged until the current value reaches 0.02 C at the upper limit voltage for charging.
  • a cycle of discharging to 3 V with a constant current corresponding to 2 C was performed, and the capacity retention rate (unit:%) of the discharge capacity at the 20th cycle relative to the discharge capacity at the 1st cycle discharge was determined, and the charge / discharge measurement of the battery It was used as an index.
  • 1 C represents a current value for discharging the reference capacity of the battery in one hour
  • 0.5 C represents a half current value.
  • the capacity retention was 96%.
  • a latex of a fluorine-containing copolymer having a small amount of metal such as alkali metal or iron and little or no water-soluble organic solvent can be obtained.
  • a fluorine-containing copolymer latex is suitable as a binder for producing an electrode of an electricity storage device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 金属分の含有量が少なく、有機溶剤の含有量が少なくてもラテックスの安定性が良好となる、含フッ素共重合体ラテックスの製造方法を提供する。 水性媒体、アニオン性乳化剤、および熱分解型ラジカル重合開始剤の存在下で、テトラフルオロエチレンとプロピレンとを含む単量体混合物を、重合温度50℃~100℃の範囲で乳化重合して、含フッ素共重合体のラテックスを製造する方法であって、水性媒体が、水単独、または水と水溶性有機溶剤とからなり、水溶性有機溶剤の含有量が水100質量部に対して1質量部未満であり、アニオン性乳化剤の使用量が、生成する含フッ素共重合体100質量部に対して、1.5~5.0質量部である、含フッ素共重合体ラテックスの製造方法。

Description

含フッ素共重合体ラテックスの製造方法、含フッ素共重合体ラテックス、電極製造用バインダー、蓄電デバイス用電極合剤および蓄電デバイス用電極
 本発明は、含フッ素共重合体ラテックスの製造方法、含フッ素共重合体ラテックス、該含フッ素共重合体ラテックスからなる電極製造用バインダー、該含フッ素共重合体ラテックスを含有する蓄電デバイス用電極合剤、および該蓄電デバイス用電極合剤を用いて形成された蓄電デバイス用電極に関する。
 従来から、テトラフルオロエチレンとプロピレンからなる含フッ素共重合体は、耐熱性や耐薬品性に著しく優れるゴム材料として、通常のゴム材料が耐えられないような過酷な環境に適用されている。
 近年では、その耐電圧性、耐酸化性、耐薬品性を活かして、高出力、高容量、および優れたサイクル特性が要求される、電子機器用または電気自動車用の、キャパシタ、一次電池または二次電池等の蓄電デバイスにおける電極を製造するためのバインダーポリマーとしての展開がなされている。
 蓄電デバイスの電極を製造するために使用されるバインダー(以下、電極製造用バインダーという)としては、主に、バインダーポリマーを有機溶剤に溶解させた有機溶剤系バインダー、またはバインダーポリマーを水に溶解または分散させた水系バインダーが使用される。有機溶剤系バインダーは、有機溶剤を含有するために環境負荷が高く、作業環境面の問題があることから、水系バインダーが最近特に注目されている。
 特許文献1には、プロピレンとテトラフルオロエチレンの共重合体が水に乳化または分散した水性分散体を用いることにより、溶剤を使用せずに電極塗布用ペーストを調製する方法が記載されている。該共重合体の製造方法についての記載はない。
 特許文献2には、プロピレンとテトラフルオロエチレンとを水性媒体中で共重合させる方法として、水溶性過硫酸塩、水溶性鉄塩、ヒドロキシメタンスルフィン酸塩、及びエチレンジアミン四酢酸又はその塩の組み合わせからなる酸化還元系触媒(いわゆるレドックス触媒)の存在下に、共重合反応を行わせる方法が記載されている。
 しかしながら、半導体製造装置のシール材や、二次電池の電極を製造するためのバインダー等の電子工業用材料にあっては、金属分の含有量が少ないことが求められるため、鉄を含むレドックス触媒を使用する方法は好ましくない。
 特に二次電池の電極を製造するためのバインダーに鉄、銅、ナトリウム等の金属分が含まれていると、電池の初期容量の悪化や、電極への析出による性能低下をもたらすおそれがあることから、金属分の含有量を極力低減することが求められる。
 特許文献3は、水性媒体中で乳化重合して含フッ素共重合体ラテックスを製造し、該ラテックスから重合体を回収して、架橋フッ素ゴムの原料として用いる方法に関する。乳化重合工程では、レドックス触媒による反応を使用しなくても、熱分解ラジカル開始剤の熱分解による反応を使用して、含フッ素共重合体ラテックスを製造できることが記載されている。
特開平9-306474号公報 特開昭55-127412号公報 特開2007-211233号公報
 特許文献3に記載の方法によれば、レドックス触媒を使用しないで、金属分の含有量が少ない含フッ素共重合体ラテックスを得ることが可能であるが、水性媒体として、水とtert-ブタノールの混合液が使用されている。tert-ブタノール等の有機溶剤は作業環境面からできるだけ用いないことが好ましい。
 しかしながら、本発明者等の知見によれば、特許文献3に記載の方法において、乳化重合を行う水性媒体中のtert-ブタノールの含有量を減らすと、得られた含フッ素共重合体ラテックスの安定性が低下する。そのため、該ラテックスを撹拌したときに含フッ素共重合体の粒子が合一されやすくなり、ラテックスが破壊する割合が多くなるという問題がある。
 本発明は、前記事情に鑑みてなされたもので、金属分の含有量が少なく、有機溶剤の含有量が少なくてもラテックスの安定性が良好となる、含フッ素共重合体ラテックスの製造方法を提供することを目的とする。
 また本発明は、金属分の含有量が少なくて、有機溶剤の含有量が少ないにもかかわらず、安定性が良好である含フッ素共重合体ラテックス、該含フッ素共重合体ラテックスからなる電極製造用バインダー、該含フッ素共重合体ラテックスを含有する蓄電デバイス用電極合剤、および該蓄電デバイス用電極合剤を用いた蓄電デバイス用電極を提供する。
 本発明者等は鋭意研究を行った結果、レドックス触媒を使用せず、熱分解ラジカル開始剤の熱分解による反応を使用して、乳化重合により含フッ素共重合体を合成する際に、アニオン性乳化剤の使用量を制御することによって、水性媒体が水のみからなる場合であっても、得られる含フッ素共重合体ラテックスの安定性が良好となることを見出して本発明に至った。
 本発明は以下の[1]~[14]である。
[1]水性媒体、アニオン性乳化剤、および熱分解型ラジカル重合開始剤の存在下で、テトラフルオロエチレンとプロピレンとを含む単量体混合物を、重合温度50℃~100℃の範囲で乳化重合して、含フッ素共重合体のラテックスを製造する方法であって、
 前記水性媒体が、水単独、または水と水溶性有機溶剤とからなり、該水溶性有機溶剤の含有量が水100質量部に対して1質量部未満であり、
 前記アニオン性乳化剤の使用量が、生成する含フッ素共重合体100質量部に対して、1.5~5.0質量部であることを特徴とする、含フッ素共重合体ラテックスの製造方法。
[2]前記アニオン性乳化剤が、ラウリル硫酸ナトリウムである、[1]の含フッ素共重合体ラテックスの製造方法。
[3]前記単量体混合物が、テトラフルオロエチレンとプロピレンからなる、[1]または[2]の含フッ素共重合体ラテックスの製造方法。
[4]前記乳化重合を、pH調整剤の非存在下で行う、[1]~[3]のいずれかの含フッ素共重合体ラテックスの製造方法。
[5]得られる含フッ素共重合体ラテックスの用途が、蓄電デバイスの電極を製造するためのバインダーである、[1]~[4]のいずれかの含フッ素共重合体ラテックスの製造方法。
[6]アニオン性乳化剤としてアルカリ金属塩を使用し、該アニオン性乳化剤のアルカリ金属分を含め、得られるフッ素共重合体ラテックスの金属分の含有量を含フッ素共重合体ラテックス100質量%のうち0.2質量%以下とする、[1]~[5]のいずれかの含フッ素共重合体ラテックスの製造方法。
[7]水性媒体中に、含フッ素共重合体の粒子、およびアニオン性乳化剤を含有する含フッ素共重合体ラテックスであって、
 前記水性媒体が、水単独、または水と水溶性有機溶剤とからなり、該水溶性有機溶剤の含有量が、水100質量部に対して1質量部未満であり、
 前記アニオン性乳化剤の含有量が、前記含フッ素共重合体の100質量部に対して、1.5~5.0質量部であり、
 該含フッ素共重合体ラテックスにおける金属分の含有量が、含フッ素共重合体ラテックス100質量%のうち、0.2質量%以下である、含フッ素共重合体ラテックス。
[8]前記含フッ素共重合体ラテックスに含まれる鉄分が、含フッ素共重合体ラテックス100質量%のうち100ppm以下である、[7]の含フッ素共重合体ラテックス。
[9]前記含フッ素共重合体ラテックス100質量%のうち、前記含フッ素共重合体の含有量が5~40質量%である、[7]または[8]の含フッ素共重合体ラテックス。
[10]前記含フッ素共重合体の質量平均分子量が10,000~300,000である、[7]~[9]のいずれかの含フッ素共重合体ラテックス。
[11]前記含フッ素共重合体の粒子の平均粒子径が20~200nmである、[7]~[10]のいずれかの含フッ素共重合体ラテックス。
[12]前記[7]~[11]のいずれかの含フッ素共重合体ラテックスからなる蓄電デバイスの電極製造用バインダー。
[13]前記[7]~[11]のいずれかの含フッ素共重合体ラテックスと、電極活物質とを含有する蓄電デバイス用電極合剤。
[14]集電体上に、[13]の蓄電デバイス用電極合剤を用いて形成された電極活物質層を有する、蓄電デバイス用電極。
 本発明の製造方法によれば、金属分の含有量が少なく、有機溶剤の含有量が少なく、安定性が良好である、含フッ素共重合体ラテックスが得られる。
 本発明において、ラテックスの安定性が良好であるとは、外力を受けた場合にもラテックス中の共重合体粒子が変化しにくいことを意味し、例えば該ラテックスが撹拌等のせん断力を受けた場合に、含フッ素共重合体粒子の合一が生じにくいことを意味する。共重合体粒子の合一が生じると、該共重合体粒子の粒度分布が設計通りに得られないために、所期の効果が得られなくなる。
 例えば、該共重合体粒子を電極合剤のバインダーポリマーとして用いる場合に、共重合体粒子の合一が生じると、電極合剤内でのバインダーポリマーの偏在を招いて電極活物質と集電体との密着性が損われ易くなる。
 本発明の含フッ素共重合体ラテックスは、金属分の含有量が少なく、有機溶剤の含有量が少なく、安定性が良好である。
 本発明の含フッ素共重合体ラテックスからなる電極製造用バインダーは、金属分の含有量が少なく、有機溶剤の含有量が少なく、安定性が良好で共重合体粒子の合一が生じ難く、電極活物質を良好に分散させることができる。
 本発明の含フッ素共重合体ラテックスを含有する蓄電デバイス用電極合剤は、金属分の含有量が少なく、有機溶剤の含有量が少なく、安定性が良好で共重合体粒子の合一が生じ難く、電極活物質の分散性が良好で、電極活物質と集電体との良好な密着性が得られる。
 本発明の蓄電デバイス用電極合剤を用いた蓄電デバイス用電極は、電極活物質と集電体との密着性が良好であり、充放電特性に優れる蓄電デバイスが得られる。
<含フッ素共重合体ラテックスの製造方法>
 本発明の含フッ素共重合体ラテックスの製造方法は、水性媒体、アニオン性乳化剤、および熱分解型ラジカル重合開始剤の存在下で、テトラフルオロエチレンとプロピレンとを含む単量体混合物を、乳化重合して含フッ素共重合体ラテックスを製造する方法である。
[単量体混合物]
 本発明における含フッ素共重合体は、テトラフルオロエチレン(以下、TFEという。)およびプロピレン(以下、Pという)を含む単量体混合物の共重合体である。すなわち、含フッ素共重合体は、TFEに基づく繰り返し単位(以下、TFE単位という。)とPに基づく繰り返し単位(以下、P単位という。)を有する。
 含フッ素共重合体の組成(繰り返し単位の比率)は、乳化重合時に系内に存在する単量体の比率で制御することができる。
 含フッ素共重合体における、TFE単位/P単位のモル比は30/70~70/30が好ましく、45/55~65/35がより好ましく、50/50~60/40が特に好ましい。TFE単位/P単位のモル比が上記の範囲内であると、含フッ素共重合体は耐薬品性と機械物性に優れ、電極製造用のバインダーポリマーとして用いた場合に、高温においても電解液に対する膨潤が小さく、電極活物質間の密着性、及び電極活物質と集電体との密着性に優れる。
 含フッ素共重合体には、TFEとPのほかに本発明の効果を損なわない範囲で、その他の単量体に基づく繰り返し単位を含有させてもよい。その他の単量体としては、含フッ素オレフィン(フッ化ビニリデン、六フッ化プロピレン、クロロトリフルオロエチレン、パーフロ(ブチルエチレン)等)、含フッ素ビニルエーテル(パーフルオロ(プロピルビニルエーテル)、パーフルオロ(メチルビニルエーテル)等)等の含フッ素単量体;α-オレフィン(エチレン、1-ブテン等)、ビニルエーテル類(エチルビニルエーテル、ブチルビニルエーテル、ヒドロキシブチルビニルエーテル等)、ビニルエステル類(酢酸ビニル、安息香酸ビニル、クロトン酸ビニル、メタクリル酸ビニル等)の炭化水素系単量体;等が挙げられる。その他の単量体は1種でもよく、2種以上を組み合わせて用いてもよい。
 含フッ素共重合体における、その他の単量体に基づく繰り返し単位の合計の含有量は、10モル%以下が好ましく、5モル%以下がより好ましく、ゼロが特に好ましい。すなわち、含フッ素共重合体の製造に用いる単量体混合物が、TFEとPとからなることが特に好ましい。
[水性媒体]
 本発明における水性媒体は水単独、または水と水溶性有機溶剤との混合物である。水溶性有機溶剤は公知のものを適宜用いることができる。好ましくはアルコール類であり、tert-ブタノールが特に好ましい。
 水性媒体中の水溶性有機溶剤の含有量は少ない方が好ましい。具体的には、水の100質量部に対して、水溶性有機溶剤は1質量部未満であり、0.5質量部以下が好ましく、0.1質量部以下がより好ましく、ゼロが特に好ましい。
 すなわち、水性媒体として水溶性有機溶剤を含まない水を単独で用いることが特に好ましい。
 水溶性有機溶剤の含有量が上記の範囲であると、得られる含フッ素共重合体ラテックスを電極製造用バインダーとして用いた場合、蓄電デバイス用の電極の製造工程において作業環境対策等の取扱いの問題が生じる可能性が低減でき、好ましい。
[アニオン性乳化剤]
 アニオン性乳化剤としては、乳化重合法において公知のものが使用できる。具体例としては、ラウリル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、アルキルスルホン酸ナトリウム塩、アルキルベンゼンスルホン酸ナトリウム塩、コハク酸ジアルキルエステルスルホン酸ナトリウム塩、アルキルジフェニルエーテルジスルホン酸ナトリウム塩等の炭化水素系乳化剤;パーフルオロオクタン酸アンモニウム、パーフルオロヘキサン酸アンモニウム等の含フッ素アルキルカルボン酸塩;下記式(I)で表される化合物(以下、化合物(I)と記す。)等が挙げられる。
 F(CF)pO(CF(X)CFO)qCF(X)COOA ・・・(I)。
 式(I)中、Xはフッ素原子または炭素原子数1~3のパーフルオロアルキル基を表し、Aは、水素原子、アルカリ金属原子、または-NHを表し、pは1~10の整数を表し、qは0または1~3の整数を表す。
 化合物(I)の例としては、下記の化合物が挙げられる。
 F(CFOCFCFOCFCOONH
 F(CFO(CFCFO)CFCOONH
 F(CFO(CF(CF)CFO)CF(CF)COONH
 F(CFOCFCFOCFCOONH
 F(CFO(CFCFO)CFCOONH
 F(CFOCFCFOCFCOONH
 F(CFO(CFCFO)CFCOONH
 F(CFOCF(CF)CFOCF(CF)COONH
 F(CFOCFCFOCFCOONa、
 F(CFO(CFCFO)CFCOONa、
 F(CFOCFCFOCFCOONa、
 F(CFO(CFCFO)CFCOONa、
 F(CFOCFCFOCFCOONa、
 F(CFO(CFCFO)CFCOONa等。
 アニオン性乳化剤としては、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。アニオン性乳化剤としては、含フッ素共重合体ラテックスの分散安定性に優れることより、ラウリル硫酸ナトリウムが特に好ましい。
 アニオン性乳化剤の使用量は、乳化重合で生成される含フッ素共重合体の100質量部に対して、1.5~5.0質量部であり、1.5~3.8質量部が好ましく、1.7~3.2質量部が特に好ましい。
 含フッ素共重合体ラテックスにおけるアニオン性乳化剤の含有量がこの範囲であると、ラテックスの安定性に優れ、該ラテックスを電極製造用バインダーとして用いた場合に優れた充放電特性が得られる。
[熱分解型ラジカル重合開始剤]
 本発明の製造方法における熱分解型ラジカル重合開始剤としては、水溶性であって、1時間半減期温度が50~100℃のものが用いられる。通常の乳化重合に用いられる水溶性重合開始剤から適宜選択して使用することができる。具体例としては、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等の過硫酸類;ジコハク酸過酸化物;アゾビスイソブチルアミジン二塩酸塩等の有機系開始剤等が挙げられる。適切な重合速度が得られ、重合安定性に優れており、かつ生産性が高いことより、これらのうちで過硫酸類が好ましく、過硫酸アンモニウム塩が特に好ましい。
 熱分解型ラジカル重合開始剤の使用量は、乳化重合で生成される含フッ素共重合体の100質量部に対して、0.0001~3質量部が好ましく、0.001~1質量部がより好ましい。
[pH調整剤]
 乳化重合においてpH調整剤を添加してもよい。本発明におけるpH調整剤は、無機塩を意味する。乳化重合法において、pH調整剤として公知の無機塩を用いることができる。具体例としてはリン酸水素二ナトリウム、リン酸二水素ナトリウムなどのリン酸塩;炭酸水素ナトリウム、炭酸ナトリウムなどの炭酸塩;などが挙げられる。リン酸塩のより好ましい具体例としては、リン酸水素二ナトリウム2水和物、リン酸水素二ナトリウム12水和物等が挙げられる。また、所望のpHに調整するために、水酸化ナトリウム、水酸化カリウムなどの塩基類;硫酸、塩酸、硝酸などの酸類;などを併用してもよい。
 pH調整剤を添加することにより、重合速度や、得られるラテックスの安定性を向上させることができる。
 含フッ素共重合体ラテックス中の金属分の含有量を低減させるためには、pHの使用量はできるだけ少ない方が好ましい。そのために、乳化重合はpH調整剤の非存在下で行うことが好ましい。
 上記アニオン性乳化剤、熱分解型ラジカル重合開始剤およびpH調整剤において、ナトリウム塩などのアルカリ金属分を含む化合物を使用する場合は、そのアルカリ金属分が製造される含フッ素共重合体ラテックス中の金属分に含まれる。したがって、得られる含フッ素共重合体ラテックスを蓄電デバイス用の電極を製造するためのバインダー等の用途に使用する場合は、それら化合物に由来するアルカリ金属分は少ないことが好ましい。本発明の製造方法で得られる含フッ素共重合体ラテックスはそのまま蓄電デバイスの電極製造用バインダー等の用途に使用されるとは限られない。しかし、得られた含フッ素共重合体ラテックス中の金属分を特に減少させる処理を行わない限り、本発明の製造方法で得られた含フッ素共重合体ラテックス中の金属分はそのまま電極製造用バインダー等の用途に使用される含フッ素共重合体ラテックス中の金属分となりやすい。本発明の製造方法で得られた含フッ素共重合体ラテックスを水性媒体などで希釈するなどの方法で得られたラテックス中の金属分の含有量を低減させることがある程度可能であるが、含フッ素共重合体ラテックスの製造方法において金属分の少ないラテックスを製造することが好ましい。
 後述のように、電極製造用バインダー等の用途に使用される含フッ素共重合体ラテックスにおける金属分の含有量は、含フッ素共重合体ラテックス100質量%のうち、0.2質量%以下が好ましく、0.15質量%以下がより好ましく、0.1質量%以下がさらに好ましく、0.05質量%以下が特に好ましい。このため、本発明の製造方法で得られた含フッ素共重合体ラテックスにおける金属分の含有量の上限もこれら値となるように、含フッ素共重合体ラテックスを製造することが好ましい。
 従って、上記アニオン性乳化剤、熱分解型ラジカル重合開始剤およびpH調整剤において、ナトリウム塩などのアルカリ金属分を含む化合物を使用する場合は、それらアルカリ金属分を含め、得られるフッ素共重合体ラテックスの金属分の含有量を含フッ素共重合体ラテックス100質量%のうち0.2質量%以下となるように、フッ素共重合体ラテックスを製造することが好ましい。
 上記アニオン性乳化剤、熱分解型ラジカル重合開始剤およびpH調整剤のうち特にアニオン性乳化剤としてアルカリ金属分を含む化合物を使用することが好ましい。よって、アニオン性乳化剤としてアルカリ金属塩を使用し、該アニオン性乳化剤のアルカリ金属分を含め、得られるフッ素共重合体ラテックスの金属分の含有量を含フッ素共重合体ラテックス100質量%のうち0.2質量%以下となるように、フッ素共重合体ラテックスを製造することがより好ましい。
[乳化重合]
 乳化重合は、公知の乳化重合法により行うことができる。例えば以下の手順で行うことができる。
 まず耐圧反応器を脱気した後、該反応器内に水性媒体、アニオン性乳化剤、および熱分解型ラジカル重合開始剤を仕込む。次いで、所定の重合温度に昇温させた後、TFEおよびPを含む単量体混合物を、所定の重合圧力になるように圧入する。単量体混合物の供給を開始した直後は、重合反応が生じず、単量体が反応容器内の液に溶解する。共重合体は生成されない。重合開始剤が活性化されて重合反応が開始されると、反応器内の圧力が低下し始める。すなわち重合反応の開始(反応時間の始点)は反応器内の圧力低下によって確認できる。
 反応器内の圧力低下を確認してから、TFEおよびPを含む単量体混合物を追加供給し、所定の重合温度および所定の重合圧力を保ちながら、重合反応を行って共重合体を生成させる。
 単量体混合物を供給しはじめてから、反応器内の圧力低下を確認した後、単量体混合物を追加供給する直前までの期間を、本明細書では初期活性化期間といい、単量体混合物を追加供給して共重合体を生成させる期間を重合反応期間という。
 重合反応期間において、反応器内に追加供給される単量体混合物の組成は、得ようとする共重合体における繰り返し単位の比率(目標組成)と同じとする。
 重合反応期間で追加供給される単量体混合物の合計量が所定の値に達したら、反応器内を冷却して重合反応を停止させて(反応時間の終点)、含フッ素共重合体ラテックスを得る。
 本発明において、重合反応期間で追加供給される単量体の合計量と、乳化重合で生成される含フッ素共重合体の量とは等しいとみなす。
 重合反応期間における重合温度は50℃~100℃であり、上限は100℃未満が好ましい。より好ましい範囲は60℃~90℃であり、特に好ましい範囲は65℃~80℃である。重合温度がこの範囲であると、重合速度が適切で制御しやすく、また生産性に優れ、ラテックスの良好な安定性が得られやすい。
 重合反応期間における重合圧力は1.0~10MPaGが好ましく、1.5~5.0MPaGがより好ましく、1.7~3.0MPaGが特に好ましい。重合圧力が1.0MPaG未満であると、重合速度が遅すぎる場合がある。上記の範囲であると重合速度が適切で制御しやすく、また生産性に優れる。
 重合反応期間における、単位時間・単位体積当たりの重合速度は10~150g/L・時間が好ましく、30~100g/L・時間がより好ましく、50~80g/L・時間が得に好ましい。重合速度が上記範囲の下限値以上であると、良好な生産性が得られやすく、上限値以下であると、重合が不安定になりにくく、ラテックスの良好な安定性が得られやすい。
 初期活性化期間において反応器内に供給される単量体混合物の組成は、単量体反応性比より計算される。該組成は、具体的には、TFE/Pのモル比が5/95~98/2となるように設定することが好ましい。より好ましくは40/60~95/5、最も好ましくは50/50~93/7である。
 初期活性化期間における重合温度は、重合反応期間における重合温度と同じであることが好ましい。
 初期活性化期間における重合圧力は、重合反応期間における重合圧力と同じであることが好ましい。
[含フッ素共重合体]
 乳化重合で得られた含フッ素共重合体ラテックスにおいて、含フッ素共重合体は水分散液中に粒子(本明細書では「共重合体粒子」ということもある。)の状態で分散している。
 含フッ素共重合体の質量平均分子量は10,000~300,000が好ましく、20,000~250,000がより好ましく、20,000~200,000がさらに好ましく、30,000~190,000が特に好ましい。該質量平均分子量が10,000以上であると、電極製造用のバインダーポリマーとして用いた場合に電解液に膨潤し難く、300,000以下であると、電極活物質の良好な結着性が得られやすい。該質量平均分子量は、例えば連鎖移動剤の添加、重合温度の制御、重合圧力の制御等、公知の方法により調整することができる。
 本明細書における質量平均分子量(Mw)は、分子量既知の標準ポリスチレン試料を用いて作成した検量線を用い、ゲルパーミエーションクロマトグラフィーで測定することによって得られるポリスチレン換算分子量である。
 含フッ素共重合体粒子の平均粒子径は20~200nmが好ましく、30~150nmがより好ましく、50~150nmがさらに好ましく、50~100nmが特に好ましい。該平均粒子径が10nmより小さいと、該含フッ素共重合体を電極製造用のバインダーポリマーとして用いた場合に、電極活物質表面全体が密に覆われて、内部抵抗が増加し易くなる場合がある。内部抵抗が増加すると電池特性が低下する。一方、該平均粒子径が200nm以下であると、電極活物質の良好な結着力が得られやすい。該共重合体粒子の平均粒子径は、乳化剤の種類、添加量等、公知の方法にて調節することができる。
 なお、本発明における含フッ素共重合体の粒子の平均粒子径は、大塚電子社製レーザーゼータ電位計ELS-8000等を使用して、動的光散乱法により測定した値である。
 乳化重合で得られた含フッ素共重合体ラテックスにおける含フッ素共重合体の含有量は5~40質量%が好ましく、10~40質量%がより好ましく、15~35質量%がさらに好ましく、25~35質量%が特に好ましい。含フッ素共重合体ラテックス中の含フッ素共重合体の含有量が上記範囲の下限値以上であると、該ラテックスを蓄電デバイスの電極製造用バインダーとして用いて電極合剤を調製したときに、電極合剤の良好な粘度が得られやすく、集電体上に厚みの高い塗工を行うことができる。該含フッ素共重合体の含有量が上記範囲の上限値以下であると、該ラテックスに電極活物質等を分散させて電極合剤を調製する際に、良好な分散安定性が得らやすく、電極合剤の良好な塗工性が得られやすい。
<含フッ素共重合体ラテックス>
 本発明の含フッ素共重合体ラテックスは、前記本発明の製造方法で得られた含フッ素共重合体ラテックスそのものであってもよく、本発明の製造方法で得られた含フッ素共重合体ラテックスに加工等を施したものであってもよい。たとえば、本発明の製造方法で得られた含フッ素共重合体ラテックスを水性媒体で希釈したもの、新たに乳化剤等の添加剤を配合したもの、などが挙げられる。好ましくは、前記本発明の製造方法で得られた含フッ素共重合体ラテックスを、本発明の含フッ素共重合体ラテックスとする。
 本発明の製造方法で得られた含フッ素共重合体ラテックスを希釈する場合、乳化重合で使用した水性媒体と同じ水性媒体で希釈してもよく、異なる水性媒体で希釈してもよい。好ましくは実質的に水のみで希釈することが好ましい。希釈後のフッ素共重合体ラテックスにおける含フッ素共重合体の含有量の下限は前記範囲の下限であることが好ましい。すなわち、含フッ素共重合体の含有量の下限は、5質量%が好ましく、10質量%がより好ましく、15質量%がさらに好ましく、25質量%が特に好ましい。
 前記本発明の製造方法で得られた含フッ素共重合体ラテックス中にさらに乳化剤を添加してもよい。すなわち、含フッ素共重合体の乳化重合でアニオン性乳化剤を含有させて、含フッ素共重合体ラテックスを得たのち、さらに乳化剤を添加してもよい。乳化重合後に添加する乳化剤としては、上述のアニオン性乳化剤に限定されず、公知の種々の乳化剤を用いることができる。また、乳化重合後に添加する乳化剤は、乳化重合に使用した乳化剤と同じものであってもよく、別のものであってもよい。
 本発明の含フッ素共重合体ラテックスは、本発明の効果を損なわない範囲で、含フッ素共重合体の粒子以外の固形分を含んでいてもよいが、含フッ素共重合体ラテックス中の固形分が、含フッ素共重合体の粒子からなることが好ましい。
 含フッ素共重合体ラテックスが、含フッ素共重合体の粒子以外の固形分を含む場合は、含フッ素共重合体ラテックスの固形分濃度が、5~40質量%であることが好ましく、10~40質量%がより好ましく、15~35質量%がさらに好ましく、25~35質量%が特に好ましい。
 本発明において、含フッ素共重合体ラテックスに電極活物質等を分散させる際の撹拌力によって、ラテックス中の共重合体粒子に合一が生じる問題は、ラテックスの粘度が高くて分散に必要な撹拌力が大きいほど、より生じやすい。例えば、該ラテックス中における含フッ素共重合体の含有量が多いほど、または含フッ素共重合体の質量平均分子量が大きいほど、ラテックスの粘度が高くなりやすい。また、含フッ素共重合体粒子の粒子径が大きいと合一が生じやすい。
 本発明の含フッ素共重合体ラテックスは安定性に優れているため、ラテックスの粘度が高くて分散に必要な撹拌力が大きい場合に、特に効果が大きい。
[金属分の含有量]
 本発明において、含フッ素共重合体ラテックス中の金属分とは、ナトリウム、カリウム、マグネシウム、鉄、銅、カルシウム、クロム、マンガン、ニッケル、コバルト及び亜鉛の成分を意味する。したがって、金属分の含有量とは、ナトリウム、カリウム、鉄、銅、カルシウム、マグネシウム、クロム、マンガン、ニッケル、コバルト、亜鉛の成分の合計の含有量である。
 含フッ素共重合体ラテックス中の金属分は主に前記乳化重合に使用した原材料に由来する。たとえば、鉄は主にレドックス触媒に由来するが、本発明ではレドックス触媒を使用しないことにより触媒由来の鉄は少ない。ナトリウムは主にアニオン性乳化剤に由来する。そのほか、重合釜等の反応装置に由来する金属不純物も考えられる。
 金属分の含有量は、含フッ素共重合体ラテックス100質量%のうち、0.2質量%以下が好ましく、0.15質量%以下がより好ましく、0.1質量%以下がさらに好ましく、0.05質量%以下が特に好ましい。
 含フッ素共重合体ラテックス中の金属分の大部分はナトリウムである。ナトリウム分の含有量は、含フッ素共重合体ラテックスの100質量%のうち、0.2質量%未満であることが好ましく、0.15質量%未満がより好ましく、0.1質量%未満以下がさらに好ましく、0.05質量%未満が特に好ましい。
 また鉄分の含有量は、含フッ素共重合体ラテックス100質量%のうち、100ppm以下が好ましく、50ppm以下がより好ましく、20ppm未満がさらに好ましく、10ppm未満が特に好ましい。
 他の金属分のうち、カリウム分はアニオン性乳化剤、熱分解型ラジカル重合開始剤およびpH調整剤においてカリウム塩を使用しない限り、含フッ素共重合体ラテックス中のその含有量は少ない。カリウム分の含有量は含フッ素共重合体ラテックス100質量%のうち、100ppm以下が好ましい。
 また、マグネシウム、銅、カルシウム、クロム、マンガン、ニッケル、コバルト及び亜鉛は、鉄に比較して蓄電デバイスに対する影響は少なく、また含フッ素共重合体ラテックス中のそれらの含有量は通常鉄と同程度以下である。したがって、これら金属分それぞれの含有量は上記鉄と同程度以下であればよく、これら金属分の含有量は、それぞれ、含フッ素共重合体ラテックス100質量%のうち、100ppm以下が好ましく、20ppm未満がよりに好ましく、10ppm未満が特に好ましい。
 金属分の含有量が上記範囲であると、含フッ素共重合体ラテックスを電極製造用バインダーとして用いた場合に、電池特性が低下しにくい。含フッ素共重合体ラテックスに含まれる金属分は、該金属分の含有量が少ない原材料を使用し、かつ重合時のpH調剤として添加する無機塩類等の添加量を、できるだけ少なくすることで低減できる。特に、ナトリウム分の含有量と鉄分の含有量は前記範囲であることが好ましい。
<電極製造用バインダー>
 本発明の含フッ素共重合体ラテックスは、そのままの状態で電極製造用バインダーとして使用できる。
 また得られた含フッ素共重合体ラテックスに凝集剤を添加して、該ラテックス中の含フッ素共重合体を凝集させて単離させることもできる。凝集剤としては、含フッ素ポリマーラテックスの凝集に通常使用されているものであれば、いずれも使用できる。具体例としては、塩化カルシウム、塩化マグネシウム、塩化アルミニウム、硝酸アルミニウム等の水溶性塩;硝酸、塩酸、硫酸等の酸類;アルコール、アセトン等の水溶性有機液体類;等が挙げられる。また、含フッ素共重合体を凍結させて凝集させることもできる。
 蓄電デバイスとしては、リチウムイオン一次電池、リチウムイオン二次電池、リチウムポリマー電池、電気二重層キャパシタ、リチウムイオンキャパシタ等が挙げられる。特にリチウムイオン二次電池に用いることが、密着性、耐電解液性、電池特性等をより効果的に発現でき好ましい。
<蓄電デバイス用電極合剤>
 本発明の蓄電デバイス用電極合剤(本明細書において、単に「電極合剤」ということもある。)は、電極製造用バインダーとして本発明の含フッ素共重合体ラテックスを含有するほか、電極活物質を含有する。必要に応じて導電材を含有してもよく、これら以外のその他の成分を含有してもよい。
 特に、正極の製造に使用する電極合剤には導電材を含有させることが好ましい。導電材を含有させることにより、電極活物質同士の電気的接触が向上し、活物質層内の電気抵抗を下げることができ、非水系二次電池の放電レート特性を改善することができる。
 導電材としては、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト、気相成長カーボン繊維、およびカーボンナノチューブ等の導電性カーボンが挙げられる。電極合剤における導電材の含有量は、電極活物質100質量部に対し、0.1~30質量部が好ましく、1~10質量部がより好ましい。
 電極合剤が、この範囲の含有量で導電材を含有すると、少量の導電材の添加で電気抵抗の低減効果が大きくなり好ましい。
 その他の成分としては、電極合剤において公知の成分を用いることができる。具体例としては、カルボキシメチルセルロース、ポリビニルアルコール、ポリアクリル酸、ポリメタクリル酸等の水溶性ポリマー等が挙げられる。
<蓄電デバイス用電極>
 本発明の蓄電デバイス用電極は、集電体と、該集電体上に、本発明の蓄電デバイス用電極合剤を用いて形成された電極活物質層を有する。
 本発明の蓄電デバイス用電極は、本発明の電極合剤を集電体の少なくとも片面、好ましくは両面に塗布し、乾燥して電極活物質層を形成することにより得られる。必要に応じて、乾燥後の電極活物質層をプレスして、所望の厚みに成形してもよい。
 集電体としては、導電性材料からなるものであれば特に限定されないが、一般的には、アルミニウム、ニッケル、ステンレススチール、銅等の金属箔、金属網状物、金属多孔体等が挙げられ、正極集電体としては、アルミニウムが好適に、負極集電体としては銅が好適に用いられる。集電体の厚さは1~100μmであることが好ましい。
 電極合剤を集電体に塗布する方法としては、種々の塗布方法が挙げられる。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、およびハケ塗り法等の方法が挙げられる。塗布温度は、特に制限ないが、通常は常温付近の温度が好ましい。乾燥は、種々の乾燥法を用いて行うことができ、例えば、温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線等の照射による乾燥法が挙げられる。乾燥温度は、特に制限ないが、加熱式真空乾燥機等では通常室温~200℃が好ましい。プレス方法としては金型プレスやロールプレス等を用いて行うことができる。
<リチウムイオン二次電池>
 蓄電デバイスとしてのリチウムイオン二次電池は、本発明の蓄電デバイス用電極を正極および負極の少なくとも一方の電極として備え、さらに電解液およびセパレーターを備えてなることが好ましい。
 電解液の溶媒としては、非プロトン性有機溶媒、例ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、およびメチルエチルカーボネート(MEC)等のアルキルカーボネート類やアルキレンカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類、1,2-ジメトキシエタン、およびテトラヒドロフラン等のエーテル類;スルホラン、およびジメチルスルホキシド等の含硫黄化合物類;が用いられる。特に高いイオン伝導性が得易く、使用温度範囲が広いため、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、メチルエチルカーボネートが好ましい。これらは、単独、または2種以上を混合して用いることができる。
 電解質としては、LiClO、LiBF、LiPF、LiAsF、CFSOLi、(CFSONLi等のリチウム塩が挙げられる。
 以下に本発明の実施例を説明する。但し、本発明は、これらの実施例に限定されない。実施例及び比較例中の試験および評価は以下の方法で行った。
(1)質量平均分子量
 含フッ素共重合体の質量平均分子量は、下記条件にてゲルパーミエーションクロマトグラフィー(GPC)により測定した。
 GPC装置: 東ソー社 HLC-8220。
 カラム:昭和電工社製 shodex KF-806M(2本)、shodex KF-802(1本)。
 検出器:RI検出器(示差屈折計)。
 溶媒:テトラヒドロフラン。
 温度:40℃。
 流量:1.0mL/min。
 濃度:0.5質量。
 標準物質:ポリスチレン。
(2)平均粒子径
 含フッ素重合体ラテックス中の共重合体粒子の平均粒子径は、大塚電子社製レーザーゼータ電位計ELS-8000を使用して、動的光散乱法により測定した。
(3)共重合組成
 含フッ素共重合体を重水素化テトラヒドロフランに溶解し、13C-NMRを測定して含フッ素共重合体の共重合組成を分析した。
(4)重合速度
重合圧力が低下し始めた時点を重合開始時点とし、重合進行中に一定圧力になるべく、単量体混合ガスを自圧で圧入し、重合終了までに圧入した、重合開始後に圧入した単量体混合ガスの総量を、全重合時間と反応機内の水性媒体量の積で割った値を、単位時間、単位体積当たりの重合速度(単位:g/L・時間)とした。
(5)含フッ素共重合体の含有量(質量%)
 熱風循環式オーブンを用いて、含フッ素共重合体ラテックスを120℃3時間乾燥後、デシケーター中で冷却した。乾燥後の含フッ素共重合体の質量を、乾燥前の含フッ素ラテックス質量で除し、ラテックス中の含フッ素共重合体の含有量とした。
(6)ラテックス中の金属分
 含フッ素共重合体ラテックスを硫酸灰化法により前処理し、ICP-AES法により定量した。カリウムでは5ppm未満(<5.0ppm)、カリウム以外の金属分では0.5ppm未満(<0.5ppm)がそれぞれ検出限界より少ないことを示す。
(7)ラテックス安定性
 含フッ素重合体ラテックスの20gを、プライミクス社製 薄膜旋回型高速ミキサー「T.K.フィルミックス40-40」に入れ、25℃にて15m/sの周速度にて150秒攪拌後、200メッシュ金網を用いてろ過し、金網上の含フッ素共重合体の質量(a)から下記式により破壊ラテックス割合を算出した。この値が少ないほど、ラテックスの安定性に優れていることを示す。
 破壊ラテックス割合(質量%)=(a)/{20×含フッ素共重合体の含有量(質量%)}×100
(8)電極合剤の塗工性
 集電体上に電極合剤を塗布して乾燥後、電極表面(を目視にて観察し、塗工スジ、ピンホールを確認し、電極(15cm×15cm)表面での存在量から、下記の基準にて評価した。
◎(優):電極表面に0.5mm幅以上の塗工スジ、ピンホールが全く認められない
○(良):電極表面に0.5mm幅以上の塗工スジ、ピンホールが2つ以下
△(不良):電極表面に0.5mm幅以上の塗工スジ、ピンホールが2つ以上認められる
(9)密着性(剥離強度)
 集電体上に電極合剤を塗布して製造した電極を幅2cm×長さ10cmの短冊状に切り、電極合剤の塗膜面を上にして固定した。電極合剤の塗膜面にセロハンテープを貼り付け、テープを10mm/minの速度で90℃方向に剥離したときの強度(N)を5回測定し、その平均値を剥離強度とした。この値が大きいほど密着性(結着性)に優れていることを示す。
[実施例1]
 主要な配合と製造条件を表1に示す(以下、同様。)
 撹拌用アンカー翼を備えた内容積3200mLのステンレス鋼製の耐圧反応器の内部を脱気した後、該反応器に、1700gのイオン交換水、13.3gのラウリル硫酸ナトリウム、4.4gの過硫酸アンモニウム(1時間半減期温度82℃)を加えた。ついで、75℃で、四フッ化エチレン(以下、TFEと記す)/プロピレン(以下、Pと記す)=88/12(モル比)の単量体混合ガスを、反応器の内圧が2.50MPaGになるように圧入した。アンカー翼を300rpmで回転させ、重合反応を開始させた。
 重合の進行に伴い、反応器内の圧力が低下するので、反応器の内圧が2.49MPaGに降下した時点で、TFE/P=56/44(モル比)の単量体混合ガスを自圧で圧入し、反応器の内圧を2.51MPaGまで昇圧させた。この操作を繰り返し、反応器の内圧を2.49~2.51MPaGに保持し、重合反応を続けた。TFE/Pの単量体混合ガスの圧入量の総量が700gとなった時点で、反応器の内温を10℃まで冷却し、重合反応を停止し、含フッ素共重合Aを含むラテックスを得た。
 重合速度は73g/L・時間であった。ラテックス中の含フッ素共重合体Aの含有量は29質量%であり、含フッ素共重合体A粒子の平均粒子径は75nmであった。含フッ素共重合Aの質量平均分子量は13万であり、共重合組成は、TFEに基づく繰り返し単位/Pに基づく繰り返し単位=56/44(モル比)であった。またラテックス中の金属分の含有量を測定した。これらの測定結果を表2に示す(以下同様)。
 得られた含フッ素共重合体Aラテックスをバインダーとして用いて、電極合剤を調製した。
 すなわち、正極活物質としてLiCoO(AGCセイミケミカル社製、商品名「セリオンC」、タップ密度2.4g/cm、平均粒子径:12μm)の100質量部、導電材としてアセチレンブラックの7質量部を混合し、粘度調整剤とし濃度1質量%のカルボキシメチルセルロース水溶液を40質量部加えて混練したのち、含フッ素共重合体Aラテックスを10質量部加えて電極合剤1を得た。
 上記の方法で電極合剤の塗工性および密着性を評価した。評価結果を表2に示す。
[実施例2]
 ラウリル硫酸ナトリウムを17.7gとした以外は実施例1と同様の方法で重合を行い、含フッ素共重合体Bを含むラテックスを得た。重合速度は60g/L・時間であった。ラテックス中の含フッ素共重合体Bの含有量は29質量%であり、含フッ素共重合体B粒子の平均粒子径は67nmであった。
 含フッ素共重合体Bの質量平均分子量は12万であり、共重合組成は、TFEに基づく繰り返し単位/Pに基づく繰り返し単位=56/44(モル比)であった。
 また、実施例1と同様にして電極合剤2を調製し、同様に評価した。評価結果を表2に示す。
[実施例3]
 実施例1と同様の反応器に、1700gのイオン交換水、13.3gのラウリル硫酸ナトリウム、2.0gの水酸化ナトリウム、4gのリン酸水素二ナトリウム・12水和物、4.4gの過硫酸アンモニウムを加えた。ついで、75℃で、TFE/P=88/12(モル比)の単量体混合ガスを、反応器の内圧が2.50MPaGになるように圧入した。アンカー翼を300rpmで回転させ、重合反応を開始させた。
 以降は実施例1と同様にして、重合を行い、含フッ素共重合体Cを含むラテックスを得た。重合速度は75g/L・時間であった。ラテックス中の含フッ素共重合体Cの含有量は29質量%であり、含フッ素共重合体C粒子の平均粒子径は69nmであった。
 含フッ素共重合体Cの質量平均分子量は13万であり、共重合組成は、TFEに基づく繰り返し単位/Pに基づく繰り返し単位=56/44(モル比)であった。
 また、実施例1と同様にして電極合剤3を調製し、同様に評価した。評価結果を表2に示す。
[実施例4]
 TFE/Pの単量体混合ガスの圧入量の総量が900gとなった時点で重合反応を停止した以外は、実施例2と同様の方法で重合を行い、含フッ素共重合体Dを含むラテックスを得た。重合速度は60g/L・時間であった。ラテックス中の含フッ素共重合体Dの含有量は35質量%であり、含フッ素共重合体D粒子の平均粒子径は76nmであった。
 含フッ素共重合体Dの質量平均分子量は15万であり、共重合組成は、TFEに基づく繰り返し単位/Pに基づく繰り返し単位=56/44(モル比)であった。
 また、実施例1と同様にして電極合剤4を調製し、同様に評価した。評価結果を表2に示す。
[実施例5]
 実施例1において、反応器に最初に圧入するモノマー混合ガスの割合をTFE/P=88/12(モル比)から、TFE/P=91/9(モル比)に変更し、重合の進行時に圧入するモノマー混合ガスの割合をTFE/P=56/44(モル比)から、TFE/P=58/42(モル比)に変更した以外は、実施例2と同様にして、含フッ素共重合体Eのラテックスを得た。重合速度は75g/L・時間であった。ラテックス中の含フッ素共重合体Eの含有量は29質量%であり、含フッ素共重合体E粒子の平均粒子径は68nmであった。
 含フッ素共重合体Eの質量平均分子量は12万であり、共重合組成は、TFEに基づく繰り返し単位/Pに基づく繰り返し単位=58/42(モル比)であった。
 また、実施例1と同様にして電極合剤5を調製し、同様に評価した。評価結果を表2に示す。
[実施例6]
 実施例1において、反応器に最初に圧入するモノマー混合ガスの割合をTFE/P=88/12(モル比)から、TFE/P=84/16(モル比)に変更し、重合の進行時に圧入するモノマー混合ガスの割合をTFE/P=54/44(モル比)から、TFE/P=54/46(モル比)に変更した以外は、実施例2と同様にして、含フッ素共重合体Fのラテックスを得た。重合速度は58g/L・時間であった。ラテックス中の含フッ素共重合体Fの含有量は29質量%であり、含フッ素共重合体F粒子の平均粒子径は69nmであった。
 含フッ素共重合体Fの質量平均分子量は13万であり、共重合組成は、TFEに基づく繰り返し単位/Pに基づく繰り返し単位=54/46(モル比)であった。
  また、実施例1と同様にして電極合剤6を調製し、同様に評価した。評価結果を表2に示す。
[実施例7]
 実施例1において、反応器に最初に圧入するモノマー混合ガスの割合をTFE/P=88/12(モル比)から、TFE/P=76/24(モル比)に変更し、重合の進行時に圧入するモノマー混合ガスの割合をTFE/P=56/44(モル比)から、TFE/P=52/48(モル比)に変更した以外は、実施例2と同様にして、含フッ素共重合体G のラテックスを得た。重合速度は56g/L・時間であった。ラテックス中の含フッ素共重合体Gの含有量は29質量%であり、含フッ素共重合体G粒子の平均粒子径は67nmであった。
 含フッ素共重合体Gの質量平均分子量は12万であり、共重合組成は、TFEに基づく繰り返し単位/Pに基づく繰り返し単位=52/48モル比)であった。
  また、実施例1と同様にして電極合剤7を調製し、同様に評価した。評価結果を表2に示す。
[比較例1]
 ラウリル硫酸ナトリウムを8.9gとした以外は実施例1と同様の方法で重合を行い、含フッ素共重合体Hを含むラテックスを得た。重合速度は80g/L・時間であった。ラテックス中の含フッ素共重合体Eの含有量は28質量%であり、含フッ素共重合体H粒子の平均粒子径は80nmであった。
 含フッ素共重合体Hの質量平均分子量は15万であり、共重合組成は、TFEに基づく繰り返し単位/Pに基づく繰り返し単位=56/44(モル比)であった。
 また、実施例1と同様にして電極合剤8を得た。評価結果を表2に示す。
[比較例2]
 実施例1と同様の反応器に、1579gのイオン交換水、8.9gのラウリル硫酸ナトリウム、2.0gの水酸化ナトリウム、58gのリン酸水素二ナトリウム・12水和物、4.2gの過硫酸アンモニウム、100gのtert-ブタノールを加えた。さらに予め200gのイオン交換水に0.27gのエチレンジアミン四酢酸2ナトリウム塩・2水和物および0.36gの硫酸第一鉄7水和物を溶解させた水溶液を投入した。ついで、40℃で、TFE/P=88/12(モル比)の単量体混合ガスを、反応器の内圧が2.50MPaGになるように圧入した。アンカー翼を300rpmで回転させ、水酸化ナトリウムでpHを10.0に調整したヒドロキシメタンスルフィン酸ナトリウム2水和物(以下、ロンガリットともいう。)2.5質量%水溶液を添加し、重合反応を開始させた。以降、高圧ポンプを用いて、ロンガリット2.5質量%水溶液を連続的に添加した。
 以降は実施例1と同様にして、重合を行い、含フッ素共重合体Iを含むラテックスを得た。重合速度は80g/L・時間であった。ラテックス中の含フッ素共重合体Iの含有量は30質量%であり、含フッ素共重合体I粒子の平均粒子径は100nmであった。
 含フッ素共重合体Iの質量平均分子量は20万であり、共重合組成は、TFEに基づく繰り返し単位/Pに基づく繰り返し単位=56/44(モル比)であった。
 また、実施例1と同様にして電極合剤9を調製し、同様に評価した。評価結果を表2に示す。
 なお、本例は、レドックス触媒による反応でラジカルを生成させて共重合を行う方法である。すなわち、熱分解型ラジカル重合開始剤である硫酸アンモニウムを含有しているが、重合温度が40℃と低く、該硫酸アンモニウムを熱分解してラジカルを生成させる方法とは異なる。
[比較例3]
 実施例1と同様の反応器に、1579gのイオン交換水、8.9gのラウリル硫酸ナトリウム、100gのt-ブタノール、4.4gの過硫酸アンモニウムを加えた。ついで、75℃で、TFE/P=88/12(モル比)の単量体混合ガスを、反応器の内圧が2.50MPaGになるように圧入した。アンカー翼を300rpmで回転させ、重合反応を開始させた。
 以降は実施例1と同様にして、重合を行い、含フッ素共重合体Jを含むラテックスを得た。重合速度は85g/L・時間であった。ラテックス中の含フッ素共重合体Jの含有量は30質量%であり、含フッ素共重合体J粒子の平均粒子径は98nmであった。
 含フッ素共重合体Jの質量平均分子量は16万であり、共重合組成は、TFEに基づく繰り返し単位/Pに基づく繰り返し単位=56/44(モル比)であった。
 また、実施例1と同様にして電極合剤10を調製し、同様に評価した。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1、2に示されるように、実施例1~7と比較例1は、レドックス触媒を用いず、かつ水溶性有機溶剤であるtert-ブタノールも使用しない例であるが、アニオン性乳化剤を含フッ素共重合体の100質量部に対して1.5質量部以上使用した実施例1~7では、安定性が良好な含フッ素共重合体ラテックスが得られた。
 これに対して、アニオン性乳化剤の使用量が含フッ素共重合体100質量部に対して1.27質量部と少ない比較例1では、ラテックスの安定性が劣っており、ラテックスを撹拌したときに含フッ素共重合体の粒子が合一し、ラテックスが破壊する割合が多かった。
 特に実施例1と比較例1とを比べると、含フッ素共重合体の100質量部に対するアニオン性乳化剤の使用量を、比較例1の1.27質量部から、実施例1の13.3質量部に変更したことにより、破壊ラテックス割合が54%から3%へと大幅に減少したことがわかる。
 比較例2はレドックス触媒を用いた例であり、安定性が良好な含フッ素共重合体ラテックスが得られるものの、ラテックス中に金属分が多く含まれる。
 比較例3はレドックス触媒を用いず、水性媒体として水とtert-ブタノールの混合液を使用した例である。安定性が良好な含フッ素共重合体ラテックスが得られたものの、水溶性有機溶剤であるtert-ブタノールの使用が必須である。
 また比較例3と比較例1とを比べると、レドックス触媒を用いない場合に、比較例1のように水溶性有機溶剤を使用しないと、含フッ素共重合体ラテックスの安定性が悪くなることがわかる。
[製造例1:二次電池の製造]
 実施例1で作成した電極合剤1を用いて、60℃に加熱したプレート上で、集電体であるアルミ箔(厚さ20μm)上に、ドクターブレードにて、電極合剤を約20cm×約20cmの面積で乾燥後の厚さが50μmとなるように塗布し、30分乾燥した後に、さらに120℃の真空乾燥機に入れて乾燥させたのち、室温下ロールプレスにて塗布層が40μmとなるように圧延し、次いで直径18mmの円状に切り出し正極1とした。
 これと同面積のリチウム金属箔を負極とし、およびポリエチレン製のセパレーターを、リチウム金属箔、セパレーター、LiCoO正極の順に2016型コインセル内に積層して電池要素を作製し、1M-LiPFのエチルメチルカーボネート-エチレンカーボネート(体積比1:1)の非水電解液を添加し、これを密封することによりコイン型非水電解液二次電池を製造した。
 25℃において、0.2Cに相当する定電流で4.3V(電圧はリチウムに対する電圧を表す)まで充電し、さらに充電上限電圧において電流値が0.02Cになるまで充電を行い、しかる後に0.2Cに相当する定電流で3Vまで放電するサイクルを行い、1サイクル目放電時の放電容量に対する、20サイクル目の放電容量の容量維持率(単位:%)を求め、電池の充放電測定の指標とした。
 なお、1Cとは電池の基準容量を1時間で放電する電流値を表し、0.5Cとはその1/2の電流値を表す。容量保持率は96%であった。
[比較製造例1]
 比較例2で作成した電極合剤9を用いて、製造例1と同様に正極2と得た。
 以降、製造例1と同様にコイン型非水電解液二次電池を製造し、同様の条件で20サイクル目の放電容量の容量維持率を測定したところ、88%であった。
 本発明の製造方法によりアルカリ金属や鉄などの金属分が少なく、水溶性有機溶剤が少ないかまたは含まない含フッ素共重合体のラテックスが得られる。このような含フッ素共重合体ラテックスは、蓄電デバイスの電極を製造するためのバインダーとして適している。
 なお、2011年2月18日に出願された日本特許出願2011-033410号の明細書、特許請求の範囲及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (14)

  1.  水性媒体、アニオン性乳化剤、および熱分解型ラジカル重合開始剤の存在下で、テトラフルオロエチレンとプロピレンとを含む単量体混合物を、重合温度50℃~100℃の範囲で乳化重合して、含フッ素共重合体のラテックスを製造する方法であって、
     前記水性媒体が、水単独、または水と水溶性有機溶剤とからなり、該水溶性有機溶剤の含有量が水100質量部に対して1質量部未満であり、
     前記アニオン性乳化剤の使用量が、生成する含フッ素共重合体100質量部に対して、1.5~5.0質量部であることを特徴とする、含フッ素共重合体ラテックスの製造方法。
  2.  前記アニオン性乳化剤が、ラウリル硫酸ナトリウムである、請求項1に記載の含フッ素共重合体ラテックスの製造方法。
  3.  前記単量体混合物が、テトラフルオロエチレンとプロピレンからなる、請求項1または2に記載の含フッ素共重合体ラテックスの製造方法。
  4.  前記乳化重合を、pH調整剤の非存在下で行う、請求項1~3のいずれか一項に記載の含フッ素共重合体ラテックスの製造方法。
  5.  得られる含フッ素共重合体ラテックスの用途が、蓄電デバイスの電極を製造するためのバインダーである、請求項1~4のいずれか一項に記載の含フッ素共重合体ラテックスの製造方法。
  6.  アニオン性乳化剤としてアルカリ金属塩を使用し、該アニオン性乳化剤のアルカリ金属分を含め、得られるフッ素共重合体ラテックスの金属分の含有量を含フッ素共重合体ラテックス100質量%のうち0.2質量%以下とする、請求項1~5のいずれか一項に記載の含フッ素共重合体ラテックスの製造方法。
  7.  水性媒体中に、含フッ素共重合体の粒子、およびアニオン性乳化剤を含有する含フッ素共重合体ラテックスであって、
     前記水性媒体が、水単独、または水と水溶性有機溶剤とからなり、該水溶性有機溶剤の含有量が、水100質量部に対して1質量部未満であり、
     前記アニオン性乳化剤の含有量が、前記含フッ素共重合体の100質量部に対して、1.5~5.0質量部であり、
     該含フッ素共重合体ラテックスにおける金属分の含有量が、含フッ素共重合体ラテックス100質量%のうち、0.2質量%以下である、含フッ素共重合体ラテックス。
  8.  前記含フッ素共重合体ラテックスに含まれる鉄分が、含フッ素共重合体ラテックス100質量%のうち100ppm以下である、請求項7に記載の含フッ素共重合体ラテックス。
  9.  前記含フッ素共重合体ラテックス100質量%のうち、前記含フッ素共重合体の含有量が5~40質量%である、請求項7または8に記載の含フッ素共重合体ラテックス。
  10.  前記含フッ素共重合体の質量平均分子量が10,000~300,000である、請求項7~9のいずれか一項に記載の含フッ素共重合体ラテックス。
  11.  前記含フッ素共重合体の粒子の平均粒子径が20~200nmである、請求項7~10のいずれか一項に記載の含フッ素共重合体ラテックス。
  12.  請求項7~11のいずれか一項に記載の含フッ素共重合体ラテックスからなる蓄電デバイスの電極製造用バインダー。
  13.  請求項7~11のいずれか一項に記載の含フッ素共重合体ラテックスと、電極活物質とを含有する蓄電デバイス用電極合剤。
  14.  集電体上に、請求項13に記載の蓄電デバイス用電極合剤を用いて形成された電極活物質層を有する、蓄電デバイス用電極。
PCT/JP2012/053703 2011-02-18 2012-02-16 含フッ素共重合体ラテックスの製造方法、含フッ素共重合体ラテックス、電極製造用バインダー、蓄電デバイス用電極合剤および蓄電デバイス用電極 WO2012111770A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012558019A JP5853965B2 (ja) 2011-02-18 2012-02-16 含フッ素共重合体ラテックスの製造方法、含フッ素共重合体ラテックス、電極製造用バインダー、蓄電デバイス用電極合剤および蓄電デバイス用電極
EP12747057.3A EP2676973B1 (en) 2011-02-18 2012-02-16 Method for producing fluorine-containing copolymer latex, fluorine-containing copolymer latex, binder for electrode production, electrode mixture for electricity storage devices, and electrode for electricity storage devices
CN201280009077.4A CN103391951B (zh) 2011-02-18 2012-02-16 含氟共聚物胶乳的制造方法、含氟共聚物胶乳、电极制造用粘结剂、蓄电装置用电极合剂以及蓄电装置用电极
KR1020137021023A KR101809782B1 (ko) 2011-02-18 2012-02-16 함불소 공중합체 라텍스의 제조 방법, 함불소 공중합체 라텍스, 전극 제조용 바인더, 축전 디바이스용 전극 합제 및 축전 디바이스용 전극
US13/970,122 US9373845B2 (en) 2011-02-18 2013-08-19 Method for producing fluorinated copolymer latex, fluorinated copolymer latex, binder for producing electrode, electrode mixture for storage battery device, and electrode for storage battery device
US15/160,651 US9714336B2 (en) 2011-02-18 2016-05-20 Method for producing fluorinated copolymer latex, fluorinated copolymer latex, binder for producing electrode, electrode mixture for storage battery device, and electrode for storage battery device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011033410 2011-02-18
JP2011-033410 2011-02-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/970,122 Continuation US9373845B2 (en) 2011-02-18 2013-08-19 Method for producing fluorinated copolymer latex, fluorinated copolymer latex, binder for producing electrode, electrode mixture for storage battery device, and electrode for storage battery device

Publications (1)

Publication Number Publication Date
WO2012111770A1 true WO2012111770A1 (ja) 2012-08-23

Family

ID=46672682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053703 WO2012111770A1 (ja) 2011-02-18 2012-02-16 含フッ素共重合体ラテックスの製造方法、含フッ素共重合体ラテックス、電極製造用バインダー、蓄電デバイス用電極合剤および蓄電デバイス用電極

Country Status (7)

Country Link
US (2) US9373845B2 (ja)
EP (1) EP2676973B1 (ja)
JP (1) JP5853965B2 (ja)
KR (1) KR101809782B1 (ja)
CN (1) CN103391951B (ja)
TW (1) TWI513712B (ja)
WO (1) WO2012111770A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018664A1 (ja) * 2011-07-29 2013-02-07 旭硝子株式会社 蓄電デバイス用バインダー
WO2013161828A1 (ja) * 2012-04-27 2013-10-31 旭硝子株式会社 蓄電デバイス用バインダー
WO2014061803A1 (ja) * 2012-10-19 2014-04-24 旭硝子株式会社 蓄電デバイス用バインダー組成物の製造方法
KR20170009890A (ko) * 2014-05-19 2017-01-25 다우 글로벌 테크놀로지스 엘엘씨 리튬 이온 배터리 전극용 조성물
JPWO2017069069A1 (ja) * 2015-10-20 2018-08-09 旭硝子株式会社 フッ素樹脂およびその製造方法
US10068717B2 (en) * 2014-04-01 2018-09-04 Sumitomo Seika Chemicals Co., Ltd. Binder for electric double-layer capacitor electrode, electric double-layer capacitor electrode comprising same binder, electric double-layer capacitor using same electrode, and electric apparatus
WO2021010443A1 (ja) 2019-07-16 2021-01-21 ダイキン工業株式会社 含フッ素エラストマーの製造方法および組成物
US10947378B2 (en) 2016-03-14 2021-03-16 3M Innovative Properties Company Fluoropolymer compositions with high content of inorganic material
JP2023051888A (ja) * 2021-09-30 2023-04-11 ダイキン工業株式会社 ポリテトラフルオロエチレン粉末、電極用バインダー、電極合剤、電極、及び、二次電池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9156930B2 (en) 2010-09-22 2015-10-13 Daikin Industries, Ltd. Film for use in film capacitors, and film capacitors
CN103391951B (zh) * 2011-02-18 2015-08-05 旭硝子株式会社 含氟共聚物胶乳的制造方法、含氟共聚物胶乳、电极制造用粘结剂、蓄电装置用电极合剂以及蓄电装置用电极
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086585A (ja) * 1973-12-01 1975-07-11
JPS55127412A (en) 1979-03-23 1980-10-02 Asahi Glass Co Ltd Preparation of propylene-tetrafluoroethylene copolymer
JPH09306474A (ja) 1996-05-14 1997-11-28 Kazuo Tagawa 電極用塗布ペースト及び非水系二次電池電極
JPH11171934A (ja) * 1996-10-29 1999-06-29 Asahi Glass Co Ltd 含フッ素共重合体
JP2006036986A (ja) * 2004-07-28 2006-02-09 Asahi Glass Co Ltd 含フッ素ポリマーラテックス、その製造方法および含フッ素ポリマー
JP2007211233A (ja) 2006-01-13 2007-08-23 Asahi Glass Co Ltd 含フッ素弾性共重合体の製造方法および架橋フッ素ゴム
JP2009146871A (ja) * 2007-11-20 2009-07-02 Asahi Glass Co Ltd 環境負荷の小さな蓄電素子電極形成用水性ペースト
JP2010070741A (ja) * 2008-03-21 2010-04-02 Daikin Ind Ltd 含フッ素ポリマー水性分散液

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5856417A (en) * 1996-10-29 1999-01-05 Asahi Glass Company Ltd. Fluorine-containing copolymer
EP2065409B1 (en) * 2006-09-28 2015-04-01 Asahi Glass Company, Limited Novel fluorine-containing polymer
JP2010010741A (ja) * 2008-06-24 2010-01-14 Kyocera Mita Corp 光電変換ユニット、画像読み取り装置及び画像形成装置
JP2010287497A (ja) * 2009-06-12 2010-12-24 Panasonic Corp 非水電解質二次電池用正極、非水電解質二次電池用正極の製造方法及び非水電解質二次電池
WO2011055760A1 (ja) * 2009-11-06 2011-05-12 旭硝子株式会社 二次電池用バインダー組成物、それを用いた二次電池用電極合剤、及び二次電池
CN103140964B (zh) * 2010-09-30 2016-04-27 旭硝子株式会社 非水系二次电池用正极合剂、使用其的非水系二次电池用正极及二次电池
CN103391951B (zh) * 2011-02-18 2015-08-05 旭硝子株式会社 含氟共聚物胶乳的制造方法、含氟共聚物胶乳、电极制造用粘结剂、蓄电装置用电极合剂以及蓄电装置用电极
CN104247108A (zh) * 2012-04-27 2014-12-24 旭硝子株式会社 蓄电装置用粘合剂

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086585A (ja) * 1973-12-01 1975-07-11
JPS55127412A (en) 1979-03-23 1980-10-02 Asahi Glass Co Ltd Preparation of propylene-tetrafluoroethylene copolymer
JPH09306474A (ja) 1996-05-14 1997-11-28 Kazuo Tagawa 電極用塗布ペースト及び非水系二次電池電極
JPH11171934A (ja) * 1996-10-29 1999-06-29 Asahi Glass Co Ltd 含フッ素共重合体
JP2006036986A (ja) * 2004-07-28 2006-02-09 Asahi Glass Co Ltd 含フッ素ポリマーラテックス、その製造方法および含フッ素ポリマー
JP2007211233A (ja) 2006-01-13 2007-08-23 Asahi Glass Co Ltd 含フッ素弾性共重合体の製造方法および架橋フッ素ゴム
JP2009146871A (ja) * 2007-11-20 2009-07-02 Asahi Glass Co Ltd 環境負荷の小さな蓄電素子電極形成用水性ペースト
JP2010070741A (ja) * 2008-03-21 2010-04-02 Daikin Ind Ltd 含フッ素ポリマー水性分散液

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2676973A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018664A1 (ja) * 2011-07-29 2013-02-07 旭硝子株式会社 蓄電デバイス用バインダー
WO2013161828A1 (ja) * 2012-04-27 2013-10-31 旭硝子株式会社 蓄電デバイス用バインダー
JPWO2013161828A1 (ja) * 2012-04-27 2015-12-24 旭硝子株式会社 蓄電デバイス用バインダー
US9590251B2 (en) 2012-04-27 2017-03-07 Asahi Glass Company, Limited Binder for storage battery device
US9786917B2 (en) 2012-10-19 2017-10-10 Asahi Glass Company, Limited Method for producing binder composition for storage battery device
WO2014061803A1 (ja) * 2012-10-19 2014-04-24 旭硝子株式会社 蓄電デバイス用バインダー組成物の製造方法
US20150188140A1 (en) * 2012-10-19 2015-07-02 Asahi Glass Company, Limited Method for producing binder composition for storage battery device
JPWO2014061803A1 (ja) * 2012-10-19 2016-09-05 旭硝子株式会社 蓄電デバイス用バインダー組成物の製造方法
US10068717B2 (en) * 2014-04-01 2018-09-04 Sumitomo Seika Chemicals Co., Ltd. Binder for electric double-layer capacitor electrode, electric double-layer capacitor electrode comprising same binder, electric double-layer capacitor using same electrode, and electric apparatus
JP2017520885A (ja) * 2014-05-19 2017-07-27 ダウ グローバル テクノロジーズ エルエルシー リチウムイオン電池電極用組成物
KR20170009890A (ko) * 2014-05-19 2017-01-25 다우 글로벌 테크놀로지스 엘엘씨 리튬 이온 배터리 전극용 조성물
KR102193848B1 (ko) * 2014-05-19 2020-12-22 다우 글로벌 테크놀로지스 엘엘씨 리튬 이온 배터리 전극용 조성물
JPWO2017069069A1 (ja) * 2015-10-20 2018-08-09 旭硝子株式会社 フッ素樹脂およびその製造方法
US10947378B2 (en) 2016-03-14 2021-03-16 3M Innovative Properties Company Fluoropolymer compositions with high content of inorganic material
WO2021010443A1 (ja) 2019-07-16 2021-01-21 ダイキン工業株式会社 含フッ素エラストマーの製造方法および組成物
JP2023051888A (ja) * 2021-09-30 2023-04-11 ダイキン工業株式会社 ポリテトラフルオロエチレン粉末、電極用バインダー、電極合剤、電極、及び、二次電池
JP7303470B2 (ja) 2021-09-30 2023-07-05 ダイキン工業株式会社 ポリテトラフルオロエチレン粉末、電極用バインダー、電極合剤、電極、及び、二次電池

Also Published As

Publication number Publication date
CN103391951A (zh) 2013-11-13
KR20140056143A (ko) 2014-05-09
EP2676973B1 (en) 2018-04-04
EP2676973A1 (en) 2013-12-25
CN103391951B (zh) 2015-08-05
KR101809782B1 (ko) 2017-12-15
US20130330621A1 (en) 2013-12-12
TW201238978A (en) 2012-10-01
JP5853965B2 (ja) 2016-02-09
US9714336B2 (en) 2017-07-25
JPWO2012111770A1 (ja) 2014-07-07
EP2676973A4 (en) 2016-04-20
US20160264764A1 (en) 2016-09-15
US9373845B2 (en) 2016-06-21
TWI513712B (zh) 2015-12-21

Similar Documents

Publication Publication Date Title
JP5853965B2 (ja) 含フッ素共重合体ラテックスの製造方法、含フッ素共重合体ラテックス、電極製造用バインダー、蓄電デバイス用電極合剤および蓄電デバイス用電極
CA2763635C (en) Aqueous polyvinylidene fluoride composition
JP5733314B2 (ja) 非水系二次電池用正極合剤、それを用いた非水系二次電池用正極および二次電池
WO2019087652A1 (ja) 二次電池用結着剤、二次電池用電極合剤、二次電池用電極及び二次電池
JP5637142B2 (ja) 二次電池用バインダー組成物、それを用いた二次電池用電極合剤、及び二次電池
JP6222098B2 (ja) 蓄電デバイス用バインダー組成物の製造方法
WO2013018664A1 (ja) 蓄電デバイス用バインダー
JP2013178926A (ja) 非水系二次電池用正極合剤
WO2013147077A1 (ja) 蓄電デバイス用バインダー
WO2016076369A1 (ja) 蓄電デバイス用バインダー組成物及びその製造方法
JP6070699B2 (ja) 蓄電デバイス用バインダー
WO2015111724A1 (ja) 蓄電デバイス用バインダー、バインダー組成物、電極合剤、電極および二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747057

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012558019

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137021023

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012747057

Country of ref document: EP