WO2012111669A1 - 被処理体の搬送方法及び被処理体処理装置 - Google Patents

被処理体の搬送方法及び被処理体処理装置 Download PDF

Info

Publication number
WO2012111669A1
WO2012111669A1 PCT/JP2012/053405 JP2012053405W WO2012111669A1 WO 2012111669 A1 WO2012111669 A1 WO 2012111669A1 JP 2012053405 W JP2012053405 W JP 2012053405W WO 2012111669 A1 WO2012111669 A1 WO 2012111669A1
Authority
WO
WIPO (PCT)
Prior art keywords
processed
transfer
chamber
pick
processing
Prior art date
Application number
PCT/JP2012/053405
Other languages
English (en)
French (fr)
Inventor
博充 阪上
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to US14/000,286 priority Critical patent/US20140052286A1/en
Priority to KR1020137024276A priority patent/KR101813309B1/ko
Publication of WO2012111669A1 publication Critical patent/WO2012111669A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/4189Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by the transport system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/0095Manipulators transporting wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67201Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the load-lock chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67745Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber characterized by movements or sequence of movements of transfer devices

Definitions

  • the present invention relates to a method for conveying a target object and a target object processing apparatus.
  • An object to be processed is used for manufacturing an electronic device, and the object to be processed is subjected to processing such as film formation and etching.
  • processing such as film formation and etching.
  • a semiconductor wafer is used as an object to be processed, and a process such as film formation or etching is performed on the semiconductor wafer.
  • These processes are generally performed by processing apparatuses independent of each other.
  • the film forming process is performed in a film forming apparatus provided with a film forming process chamber
  • the etching process is performed in an etching process apparatus including an etching process chamber.
  • multi-chamber (cluster tool) type processing object in which a plurality of processing chambers are arranged around a transfer chamber in order to achieve consistent processing and suppress an increase in footprint due to an increase in processing apparatuses. Processing devices are increasingly used.
  • a typical example of the multi-chamber type object processing apparatus is described in Patent Document 1, for example.
  • a transfer device using an articulated robot is used for transferring the object to be processed between the transfer chamber and the plurality of processing chambers. Yes.
  • the present invention provides a method for transporting an object to be processed and an apparatus for processing the object to be processed, which can suppress the situation where the productivity reaches a peak even if the processing time in the process is shortened.
  • a method for transporting an object to be processed according to a first aspect of the present invention includes a transfer chamber in which a transfer device for transferring an object to be processed is disposed, and a periphery of the transfer chamber to perform the process on the object to be processed.
  • a method of transporting a target object of a target object processing apparatus comprising two first and second picks, wherein (0) the first and second transfer arms are swung to hold the target object Before the first pick A position where the second pick that holds the first object to be processed before the movement is moved to the first delivery position set before the first treatment chamber among the plurality of treatment chambers and adjacent to the first delivery position.
  • the first transfer arm is extended toward the first processing chamber, and the processed second object to be processed accommodated in the first processing chamber is received by the first pick.
  • rotating the first and second transfer arms to move the second pick holding the first object to be processed before the first delivery position.
  • the first pick holding the processed second object to be processed is positioned adjacent to the second delivery position set in front of the first load lock chamber among the plurality of load lock chambers.
  • Retracting the second transfer arm (4) turning the second transfer arm and moving the second pick not holding the object to be processed to the second transfer position, and (5) the second transfer arm.
  • the arm is extended toward the first load lock chamber, the third workpiece to be processed before being accommodated in the first load lock chamber is received by the second pick, and then the second transfer arm is retracted.
  • a method for transporting an object to be processed according to a second aspect of the present invention includes a method for transporting an object to be processed that simultaneously replaces the object to be processed and the object to be processed, and the object to be processed according to the first aspect.
  • the body transfer method is switched according to the length of the process recipe time.
  • a target object processing apparatus includes a transfer chamber in which a transfer apparatus for transferring an object to be processed is disposed, and a plurality of objects to be processed around the transfer chamber.
  • a plurality of load lock chambers arranged around the transfer chamber and converting an environment around the object to be processed into an environment inside the transfer chamber; and a process controller for controlling at least the transfer device;
  • the transfer device is attached to each of at least two first and second transfer arms and each of the at least two first and second transfer arms capable of independently extending, retracting and turning.
  • at least two first and second picks that hold the object to be processed, and the process controller performs the transfer method of the object to be processed according to the second aspect. To control the device.
  • the top view which shows roughly an example of the to-be-processed object processing apparatus which can perform the conveyance method of the to-be-processed object which concerns on 1st Embodiment of this invention Enlarged view of the transport device Enlarged view of the transport device Enlarged view of the transport device Enlarged view of the transport device
  • the top view which shows an example of the conveying method of the to-be-processed object which concerns on 1st Embodiment of this invention for every conveyance procedure The top view which shows an example of the conveying method of the to-be-processed object which concerns on 1st Embodiment of this invention for every conveyance procedure
  • Time chart of an example of a method for conveying an object to be processed according to a reference example The time chart which shows an example of the conveyance method of the to-be-processed object which can be utilized for 2nd Embodiment of this invention
  • the top view which shows an example of the conveying method of the to-be-processed object which concerns on the reference example of this invention for every conveyance procedure
  • the top view which shows an example of the conveying method of the to-be-processed object which concerns on the reference example of this invention for every conveyance procedure
  • the top view which shows an example of the conveying method of the to-be-processed object which concerns on the reference example of this invention for every conveyance procedure
  • the top view which shows
  • FIG. 1 is a plan view schematically showing an example of a target object processing apparatus capable of executing the target object conveying method according to the first embodiment of the present invention.
  • a multi-chamber (cluster tool) type semiconductor manufacturing apparatus that handles a semiconductor wafer as an object to be processed is illustrated as an example of an object processing apparatus.
  • a semiconductor manufacturing apparatus 1 performs processing on a wafer loading / unloading unit 2 for loading / unloading a semiconductor wafer (hereinafter referred to as a wafer) W, which is an object to be processed, with the outside of the semiconductor manufacturing apparatus 1.
  • the processing unit 3 to be applied, the load lock unit 4 that carries in / out between the carry-in / out unit 2 and the processing unit 3, and the control unit 5 that controls the semiconductor manufacturing apparatus 1 are provided.
  • the loading / unloading unit 2 includes a loading / unloading chamber 21.
  • the loading / unloading chamber 21 can be adjusted to a positive pressure slightly with respect to the atmospheric pressure or substantially atmospheric pressure, for example, with respect to the external atmospheric pressure.
  • the plane shape of the carry-in / out chamber 21 is a rectangle having a long side and a short side perpendicular to the long side. One side of the long side of the rectangle faces the processing unit 3 through the load lock unit 4.
  • a load port 22 in which a wafer W is accommodated or an empty carrier C is attached is provided on the other side of the long side.
  • three load ports 22a to 22c are provided.
  • the number of load ports 22 is not limited to three, and the number is arbitrary.
  • Each of the load ports 22a to 22c is provided with a shutter (not shown).
  • the shutter is released.
  • the inside of the carrier C communicates with the inside of the carry-in / out chamber 21 while preventing the intrusion of outside air.
  • An orienter 23 for aligning the orientation of the wafer W taken out from the carrier C is provided at the position of the short side of the rectangle.
  • the processing unit 3 includes a transfer chamber 31 and a plurality of processing chambers 32 for processing the wafer W.
  • one transfer chamber 31 and four processing chambers 32 a to 32 d provided around one transfer chamber 31 are provided.
  • Each of the processing chambers 32a to 32d is configured as a vacuum container that can be depressurized to a predetermined degree of vacuum, and processing such as film formation or etching is performed inside.
  • the processing chambers 32a to 32d are connected to the transfer chamber 31 via gate valves G1 to G4, respectively.
  • the load lock unit 4 includes a plurality of load lock chambers 41.
  • two load lock chambers 41 a and 41 b provided around one transfer chamber 31 are provided.
  • Each of the load lock chambers 41a and 41b is configured as a vacuum container that can be depressurized to a predetermined degree of vacuum, and is configured to be capable of pressure conversion between the predetermined degree of vacuum and atmospheric pressure or almost atmospheric pressure. ing.
  • the load lock chambers 41a and 41b are connected to the transfer chamber 31 via gate valves G5 and G6, respectively, and are connected to the loading / unloading chamber 21 via gate valves G7 and G8.
  • a loading / unloading device 24 is arranged inside the loading / unloading chamber 21.
  • the loading / unloading device 24 loads / unloads the wafer W between the carrier C and the loading / unloading chamber 21, loads / unloads the wafer W between the loading / unloading chamber 21 and the orienter 23, and the loading / unloading chamber 21.
  • the wafer W is loaded and unloaded between the load lock chambers 41a and 41b.
  • the carry-in / out device 24 includes a plurality of articulated arms 25 and is configured to be able to travel on a rail 26 extending along the long side direction of the carry-in / out chamber 21. In this example, two articulated arms 25a and 25b are provided.
  • Hands 27a and 27b are attached to the tips of the articulated arms 25a and 25b.
  • the wafer W is loaded on the hand 27 a or 27 b, unloaded from the carrier C, and loaded into the orienter 23.
  • the wafer W is loaded on the hand 27a or 27b, unloaded from the orienter 23, and loaded into the load lock chamber 41a or 41b.
  • the wafer W is loaded on the hand 27a or 27b, unloaded from the load lock chamber 41a or 41b, and loaded into the carrier C.
  • the control unit 5 includes a process controller 51, a user interface 52, and a storage unit 53.
  • the process controller 51 includes a microprocessor (computer).
  • the user interface 52 includes a keyboard on which an operator inputs commands for managing the semiconductor manufacturing apparatus 1, a display that visualizes and displays the operating status of the semiconductor manufacturing apparatus 1, and the like.
  • the storage unit 53 causes the semiconductor manufacturing apparatus 1 to execute processing according to a control program, various data, and processing conditions for realizing processing performed in the semiconductor manufacturing apparatus 1 under the control of the process controller 51. Recipe is stored.
  • the recipe is stored in a storage medium in the storage unit 53.
  • the storage medium can be read by a computer, and can be, for example, a hard disk or a portable medium such as a CD-ROM, a DVD, or a flash memory.
  • Arbitrary recipes are called from the storage unit 53 by an instruction from the user interface 52 and executed by the process controller 51, so that processing on the wafer W is performed in the semiconductor manufacturing apparatus 1 under the control of the process controller 51. Is done.
  • a transfer device 33 is arranged inside the transfer chamber 31.
  • the transfer device 33 carries in / out the wafer W between the plurality of load lock chambers 41a and 41b and the transfer chamber 31, and carries in / out between the transfer chamber 31 and the plurality of processing chambers 32a to 32d.
  • the transfer device 33 is disposed approximately at the center of the transfer chamber 31.
  • the transport device 33 includes a plurality of transfer arms 34 that can be extended, retracted, and swiveled. In this example, it has two transfer arms 34a and 34b. Picks 35a and 35b are attached to the tips of the transfer arms 34a and 34b.
  • the wafer W is held by the pick 35a or 35b, and the wafer W is carried in and out between the plurality of load lock chambers 41a and 41b and the transfer chamber 31, and between the transfer chamber 31 and the plurality of processing chambers 32a to 32d.
  • the wafer W is carried in and out between them.
  • FIG. 2A to 2D are enlarged views of the transfer device 33 shown in FIG.
  • the transport device 33 has a ⁇ 1 axis and a ⁇ 2 axis as rotation axes.
  • the ⁇ 1 axis is an axis that rotates both the transfer arms 34a and 34b together.
  • the ⁇ 1 axis can be rotated infinitely. For example, as shown in FIG. 2B, it is possible to rotate about 180 ° clockwise or counterclockwise from the state shown in FIG. 2A, or from the state shown in FIG. Further, it can be rotated clockwise or counterclockwise by about 180 ° to return to the state shown in FIG. 2A.
  • the ⁇ 2 axis is an axis that rotates the transfer arm 34b.
  • the ⁇ 2 axis can rotate, for example, at a maximum rotation angle of 240 ° or more and 270 ° or less. In this example, the maximum rotation angle is 240 °.
  • the minimum angle ⁇ pmin formed by the pick 35a and the pick 35b is set to 45 °.
  • 2C shows a case where the transfer arm 34b is rotated 60 ° clockwise using the ⁇ 2 axis and the inter-pick angle ⁇ p is increased to 120 ° clockwise.
  • FIG. 2D shows the transfer arm 34b using the ⁇ 2 axis. A case is shown in which the angle between the picks ⁇ p is increased to 300 ° clockwise by turning clockwise by 240 °.
  • the transfer device 33 can individually turn the transfer arms 34a and 34b independently.
  • the ⁇ 2 axis is an axis for rotating the transfer arm 34b, but may be an axis for rotating the transfer arm 34a.
  • FIGS. 3A to 3L are plan views showing an example of a method for conveying an object to be processed according to the first embodiment of the present invention for each conveyance procedure
  • FIG. 4A is a time chart of an example of the conveyance method.
  • the load ports 22a to 22c and the orienter 23 are not shown.
  • “Pick 35a or 35b holding wafer” Time to extend transfer arms 34a, 34b 2a seconds Time to contract transfer arms 34a, 34b 2a seconds Time to rotate transfer arms 34a, 34b 3a seconds
  • “Pick 35a or 35b does not hold wafer” Time for extending the transfer arms 34a, 34b 1a seconds Time for retracting the transfer arms 34a, 34b 1a seconds Time for turning the transfer arms 34a, 34b 2a seconds Time for receiving the wafer by the pick 35a or 35b 1a seconds
  • the pick 35a or 35b is the wafer Delivery time 1a seconds
  • “a” is a parameter that depends on the type of transfer arm, and is a predetermined time that is different for each type of transfer arm.
  • the sequence is stored in the storage unit 53 together with the process recipe, and the transport method is executed under the control of the process controller 51.
  • the transport method is executed under the control of the process controller 51. The same applies to the second embodiment described later.
  • the transfer arms 34a and 34b are turned, and the pick 35a not holding the wafer is moved to the wafer transfer position set in front of the process chamber 32a among the four process chambers. Move. At the same time, the pick 35b holding the unprocessed wafer (1) is moved to a position adjacent to the delivery position. In this example, it is moved in front of the processing chamber 32b adjacent to the processing chamber 32a as an adjacent position.
  • the transfer arm 34a is extended toward the processing chamber 32a and the processed wafer (a) accommodated in the processing chamber 32a is received by the pick 35a.
  • the transfer arm 34a is extended, and the pick 35a is advanced from the transfer chamber 31 to the processing chamber 32a.
  • the time required so far is about 1a seconds.
  • the processed wafer (a) accommodated in the processing chamber 32a is received by the pick 35a.
  • the transfer arm 34 a is degenerated, and the processed wafer (a) is carried out to the transfer chamber 31.
  • the time required so far is about 4a seconds.
  • the transfer arms 34a and 34b are pivoted to move the pick 35b holding the unprocessed wafer (1) to the wafer transfer position set in front of the process chamber 32a and hold the processed wafer (a).
  • a procedure for moving the pick 35a to a position adjacent to the delivery position set in front of the load lock chamber 41b is entered.
  • the front of the processing chamber 32d adjacent to the load lock chamber 41b is selected as the adjacent position.
  • the transfer arms 34a and 34b are turned counterclockwise using the ⁇ 1 axis, and the pick 35b is moved to the delivery position in front of the processing chamber 32a.
  • the transfer arm 34a is further rotated counterclockwise using the ⁇ 1 axis.
  • the transfer arm 34b may be stopped using the ⁇ 2 axis so that the pick 35b does not move from the front of the processing chamber 32a.
  • the transfer arm 34a that continues to rotate is finally moved until the pick 35a passes in front of the load lock chamber 41b and is positioned in front of the adjacent processing chamber 32d. This is to prevent the pick 35a from obstructing the pick 35b when the pick 35b moves to the load lock chamber 41b.
  • the time required so far is about 7a seconds.
  • the transfer arm 34b is extended toward the processing chamber 32a, and the pre-processing wafer (1) held by the pick 35b is entered into the processing chamber 32a.
  • the transfer arm 34b is extended, and the pick 35b is advanced from the transfer chamber 31 to the processing chamber 32a.
  • the unprocessed wafer (1) is transferred from the pick 35b to a mounting table (not shown) in the processing chamber 32a.
  • the time required so far is about 10 a seconds.
  • the transfer arm 34 b is retracted, and the pick 35 b is returned from the processing chamber 32 a to the transfer chamber 31.
  • the time required so far is about 11a seconds.
  • the transfer arm 34b is turned, and the pick 35b not holding the wafer is moved to a wafer transfer position set in front of the load lock chamber 41b.
  • the transfer arm 34b is turned counterclockwise using the ⁇ 2 axis, and the pick 35b is moved to the wafer transfer position set in front of the load lock chamber 41b. Let At this time, since the pick 35b does not hold the wafer, the transfer arm 34b can be rotated faster than the case where the pick 35b holds the wafer. If the pick 35b holds the wafer, the transfer arm 34b must be slowly swiveled so that the wafer does not slip in order to prevent the wafer from being displaced or dropped. In this case, the turn requires, for example, 3a seconds.
  • the transfer arm 34b is extended toward the load lock chamber 41b, and the pre-processing wafer (2) accommodated in the load lock chamber 41b is received by the pick 35b.
  • the transfer arm 34b is extended, and the pick 35b is advanced from the transfer chamber 31 to the load lock chamber 41b.
  • the time required so far is about 14a seconds.
  • the unprocessed wafer (2) in the load lock chamber 41b is received by the pick 35b.
  • the transfer arm 34 b is degenerated, and the unprocessed wafer (2) is carried out to the transfer chamber 31.
  • the time required so far is about 17a seconds.
  • the transfer arms 34a and 34b are swung to move the pick 35a holding the processed wafer (a) to the wafer transfer position set in front of the load lock chamber 41b and to hold the unprocessed wafer (2).
  • the procedure for moving the pick 35b to the position adjacent to the delivery position is entered.
  • the transfer arms 34a and 34b are rotated clockwise using the ⁇ 1 axis, and the pick 35a is moved to the wafer transfer position set in front of the load lock chamber 41b.
  • the pick 35b is moved in front of the load lock chamber 41a, for example.
  • the time required so far is about 20 a seconds.
  • the transfer arm 34a is extended toward the load lock chamber 41b, and a procedure for accommodating the processed wafer (a) held by the pick 35a in the load lock chamber 41b is started.
  • the transfer arm 34a is extended, and the pick 35a is advanced from the transfer chamber 31 to the load lock chamber 41b.
  • the processed wafer (a) is transferred from the pick 35a to a mounting table (not shown) in the load lock chamber 41b.
  • the time required so far is about 23a seconds.
  • the transfer arm 34 a is retracted, and the pick 35 a is returned from the load lock chamber 41 b to the transfer chamber 31.
  • the time required so far is about 24a seconds.
  • the following replacement operation is performed to replace the processed wafer (b) and the unprocessed wafer (2).
  • the pick 35a is moved to the wafer transfer position set in front of the processing chamber 32b, but the pick 35a does not hold the wafer. For this reason, using the ⁇ 1 axis, the pick 35b holding the unprocessed wafer (2) can be rotated faster.
  • the pick 35b may be rotated more slowly than the pick 35a using the ⁇ 2 axis.
  • the time required for the pick 35a to move in front of the processing chamber 32b is about 2a seconds as shown in FIG. 4A.
  • the time from the start of the replacement operation to the start of the next replacement operation is about 26a seconds.
  • a processed wafer can be replaced with a wafer before processing in about 26 a seconds.
  • FIG. 5A to FIG. 5L are plan views showing an example of a method for conveying an object according to a reference example of the present invention for each conveyance procedure
  • FIG. 4B is a time chart of the conveyance method according to the reference example. 5A to 5L, the load ports 22a to 22c and the orienter 23 are not shown.
  • the transfer device used in the present reference example is a transfer device in which the angles of the transfer arms 34a and 34b are fixed, and the transfer arms 34a and 34b cannot individually operate.
  • the difference between the object conveying method according to the reference and the object conveying method according to the first embodiment is the procedure shown in FIGS. 5D to 5G.
  • the procedures shown in FIGS. 5A to 5C and FIGS. 5H to 5L are the same as the procedures shown in FIGS. 3A to 3C and FIGS. 3H to 3L. Therefore, only different procedures will be described.
  • the transfer arms 34a and 34b are turned counterclockwise, and the pick 35b is moved in front of the processing chamber 32a.
  • the transfer arm 34a has a fixed angle with the transfer arm 34b. For this reason, for example, the pick 35a is located in front of the load lock chamber 41a.
  • the transfer arm 34b is extended, and the pick 35b is advanced from the transfer chamber 31 to the processing chamber 32a.
  • the unprocessed wafer (1) is transferred from the pick 35b to a mounting table (not shown) in the processing chamber 32a.
  • the transfer arm 34b is retracted, and the pick 35b is returned from the processing chamber 32a to the transfer chamber 31.
  • the time required up to this point is about 11a seconds, the same as in the first embodiment.
  • the transfer arms 34a and 34b are turned counterclockwise, and the pick 35a is moved in front of the processing chamber 32d and the pick 35b is moved in front of the load lock chamber 41b.
  • the pick 35a holds the processed wafer (a).
  • the transfer arms 34a and 34b must be rotated slowly in order to prevent the processed wafer (a) from being displaced or dropped. Therefore, the turn requires 3a seconds.
  • the unprocessed wafer (2) is received by the pick 35b, and the processed wafer (a) is loaded in the load lock chamber 41b (not shown). Hand it over to the table. The time required so far is about 25a seconds.
  • the following replacement operation is performed in which the processed wafer (b) and the unprocessed wafer (2) are replaced.
  • the pick 35a In the next replacement operation, the pick 35a must be moved to the front of the processing chamber 32b, but the pick 35b holds the unprocessed wafer (2). At this time as well, the wafer (2) before processing must be rotated slowly so as not to be displaced or fall. That is, this turn also takes 3a seconds.
  • FIG. 6 is a diagram showing the relationship between process recipe time and throughput. Note that “b” in FIG. 6 is a parameter depending on the type of process, and is a predetermined time that is different for each process.
  • the process recipe time in which the above reference example changes from process-limited to transfer rate is 100b, and the throughput when transfer rate is limited is 100%, and compared with the throughput of the first embodiment.
  • the process recipe time for changing from the process rate limitation to the conveyance rate limitation is shorter than that in the reference example. This is because the time from the start of the replacement operation to the start of the next replacement operation is about 26a seconds, which is shortened by about 2a seconds compared to the reference example. Further, as described above, the throughput is improved by about 8% even after the transfer rate is limited.
  • both the first embodiment and the reference example become processing rate-limiting. For this reason, the throughput does not change both in the first embodiment and the reference example. That is, the first embodiment is advantageous for application in a process with a short process recipe time.
  • the transfer arms 34a and 34b are configured to be able to operate independently. Further, the pick holding the processed wafer is moved to a position that does not interfere with the pick when the pick that does not hold the wafer reaches the wafer transfer position set in front of the load lock chamber. By providing this procedure, it is possible to prevent the pick holding the processed wafer from turning when the pick that does not hold the wafer is turned to the wafer delivery position in front of the load lock chamber. For this reason, when the pick that does not hold the wafer is swung to the front of the load lock chamber, it can be swung faster than the case where the pick is held.
  • the first embodiment it is possible to improve the throughput, and it is possible to obtain a method for transporting an object to be processed that can suppress the situation where productivity reaches a peak even if the processing time in various processes is shortened. Benefits can be gained.
  • the transfer device 33 is configured such that the transfer arms 34a and 34b can be independently operated. By using such a transfer device 33, it is possible to perform a transfer method for simultaneously exchanging the processed wafer and the unprocessed wafer.
  • the transfer method for simultaneously exchanging the processed wafer and the unprocessed wafer and the transfer method according to the first embodiment are switched according to the process recipe time.
  • FIG. 7A to FIG. 7F are plan views showing an example of a method for conveying an object to be used that can be used in the second embodiment of the present invention for each conveyance procedure, and FIG. It is a time chart.
  • the load ports 22a to 22c and the orienter 23 are not shown.
  • the transfer arms 34a and 34b are turned, and the pick 35a not holding the wafer is moved in front of the load lock chamber 41a.
  • the pick 35b not holding the wafer is moved to a wafer transfer position set in front of the processing chamber 32a among the four processing chambers.
  • the transfer arm 34a is extended toward the load lock chamber 41a, the pre-processing wafer (1) accommodated in the load lock chamber 41a is received by the pick 35a, and the transfer arm 34b is processed.
  • a procedure for simultaneously expanding the wafer 32a toward the chamber 32a and causing the pick 35b to receive the processed wafer (a) accommodated in the processing chamber 32a is started.
  • the transfer arms 34a and 34b are extended, the pick 35a is advanced from the transfer chamber 31 to the load lock chamber 41a, and the pick 35b is transferred from the transfer chamber 31 to the processing chamber 32a. And proceed.
  • the time required so far is about 1a seconds.
  • the unprocessed wafer (1) accommodated in the load lock chamber 41a is received by the pick 35a, and the processed wafer (a) accommodated in the process chamber 32a is received by the pick 35b.
  • the transfer arms 34 a and 34 b are degenerated, and the unprocessed wafer (1) and the processed wafer (a) are respectively transferred to the transfer chamber 31.
  • the time required so far is about 4a seconds.
  • the transfer arms 34a and 34b are swung to move the pick 35a holding the unprocessed wafer (1) to the wafer transfer position set in front of the process chamber 32a and hold the processed wafer (a).
  • a procedure for moving the pick 35b to a delivery position set in front of the load lock chamber 41a is entered.
  • the transfer arms 34a and 34b are turned counterclockwise using the ⁇ 1 axis, and the pick 35a is moved to the delivery position in front of the processing chamber 32a.
  • the transfer arm 34b is further rotated counterclockwise using the ⁇ 2 axis, and the pick 35b is moved to the delivery position in front of the load lock chamber 41a.
  • the time required so far is about 7a seconds.
  • the transfer arm 34a is extended toward the processing chamber 32a, the pre-processing wafer (1) held by the pick 35a is accommodated in the processing chamber 32a, and the transfer arm 34b is extended toward the load lock chamber 41a. Then, a procedure for simultaneously storing the processed wafer (a) held by the pick 35b in the load lock chamber 41a is entered.
  • the transfer arms 34a and 34b are extended, the pick 35a is advanced from the transfer chamber 31 to the processing chamber 32a, and the pick 35b is transferred from the transfer chamber 31 to the load lock chamber 41a. And proceed.
  • the unprocessed wafer (1) is transferred from the pick 35a to a mounting table (not shown) in the processing chamber 32a.
  • the processed wafer (a) is transferred from the pick 35b to a mounting table (not shown) in the load lock chamber 41a.
  • the time required so far is about 10 a seconds.
  • the transfer arms 34a and 34b are retracted, the pick 35a is returned from the processing chamber 32a to the transfer chamber 31, and the pick 35b is returned from the load lock chamber 41a to the transfer chamber 31.
  • the time required so far is about 11a seconds.
  • the following simultaneous replacement operation is performed in which the processed wafer (b) and the unprocessed wafer (2) are simultaneously replaced.
  • the pick 35a is moved to the wafer delivery position set in front of the load lock chamber 41b, and the pick 35b is moved to the wafer delivery position set in front of the processing chamber 32b.
  • the picks 35a and 35b do not hold the wafer.
  • the ⁇ 1 axis and the ⁇ 2 axis can be used to turn faster than when the wafer is held.
  • the pick 35b may be rotated more slowly than the pick 35a using the ⁇ 2 axis.
  • the time required for the pick 35a to move in front of the load lock chamber 41b and the pick 35b to move in front of the processing chamber 32b is about 2a seconds as shown in FIG. 4C.
  • the time during which the load lock chambers 41a and 41b and the transfer chamber 31 and the gate valves G1 to G6 between the processing chambers 32a to 32d and the transfer chamber 31 can be opened and closed is shortened.
  • a new system rate control may occur. For example, when the transfer arm turns faster and the parameter “a” depending on the type of the transfer arm becomes a very short time, the throughput of the transfer device 33 is the processing chambers 32a to 32d and the load lock chamber 41a. , 41b, the transfer chamber 31, and the system valves due to the operation of the gate valves G1 to G6 are easily caused.
  • FIG. 8A is a time chart showing the time during which the gate valves G1 to G6 can be opened and closed during the simultaneous replacement operation.
  • the time during which the gate valves G1 to G4 can be opened and closed is, for example, after the pick 35b is returned from the processing chamber 32a to the transfer chamber 31 and then the pick 35a is moved from the transfer chamber 31. It takes about 2a seconds until the process chamber 32b is advanced.
  • the time during which the gate valves G5 and G6 can be opened and closed is, for example, the period from when the pick 35a is returned from the load lock chamber 41a to the transfer chamber 31 until the pick 35b is advanced from the transfer chamber 31 to the load lock chamber 41b. , About 2a seconds.
  • the transfer device 33 itself can turn the transfer arms 34a and 34b in about 2a seconds, and the next simultaneous replacement operation in about 2a seconds. In spite of being able to enter, it takes a time exceeding the next simultaneous replacement operation 2a seconds, for example, about 3a seconds.
  • the opening / closing timings of the gate valves G1 to G4 are different from the opening / closing timings of the gate valves G5, G6. For this reason, it does not open and close simultaneously.
  • the time during which the gate valves G1 to G4 can be opened and closed is, for example, after the pick 35b is returned from the processing chamber 32a to the transfer chamber 31, and then the pick 35a is moved from the transfer chamber 31. It takes about 15a seconds before proceeding to the processing chamber 32b.
  • the time during which the gate valves G5 and G6 can be opened and closed is, for example, the period from when the pick 35a is returned from the load lock chamber 41b to the transfer chamber 31 until the pick 35b is advanced from the transfer chamber 31 to the load lock chamber 41a. , About 15a seconds.
  • the system rate is less likely to be controlled as compared with the transport method that performs the simultaneous replacement operation.
  • FIG. 9A is a diagram illustrating the relationship between the process recipe time and the throughput in the transport method for performing the simultaneous replacement operation and the first embodiment.
  • the throughput is superior to the transfer method in which the simultaneous replacement operation is performed.
  • the transport method that performs the simultaneous replacement operation causes system rate-determining, the throughput is reversed so that the first embodiment is superior at a certain process recipe time.
  • the time required for turning the transfer arms 34a and 34b in preparation for the next replacement operation after the replacement of the wafer is about 2a seconds in the first embodiment in which the system is not rate-limited.
  • the system is restricted by, for example, the opening / closing operation of the gate valves G1 to G6, until the next replacement operation starts after the wafer replacement is completed. For example, it takes about 3a seconds.
  • FIG. 9B is an enlarged view of the frame 9B in FIG. 9A.
  • the transfer arm 34a, 34b can be independently extended and retracted separately. Is used to carry out the transfer method for performing the simultaneous replacement operation, and when the process recipe time is long, the transfer method according to the first embodiment is executed.
  • the switching between the two transfer methods is a process recipe in which the throughput curve by the transfer method performing the simultaneous switching operation and the throughput curve by the transfer method according to the first embodiment intersect and the throughputs are reversed. Based on time Tc.
  • the process recipe time is equal to or longer than the time Tc, the transfer method according to the first embodiment is performed.
  • the transfer method of performing the simultaneous replacement operation is performed.
  • switching is performed between the transport method for performing the simultaneous replacement operation and the transport method according to the first embodiment according to the length of the process recipe time. Therefore, it is possible to obtain an advantage that the throughput can be further improved even when the process recipe time is short as compared with the case where only the transfer method according to the first embodiment is used.
  • the transfer device 33 including the two transfer arms 34a and 34b and the two picks 35a and 35b is illustrated.
  • the number of transfer arms and the number of picks are limited to two. There is nothing. There may be at least two transfer arms and picks. If at least two transfer arms and two, four, or six picks of picks are subjected to the method of transporting the object to be processed according to the first embodiment, the advantage of improving the throughput is achieved. It is because it can obtain.
  • the object to be processed is exemplified by a semiconductor wafer used for manufacturing a semiconductor integrated circuit device or the like, but the object to be processed is not limited to a semiconductor wafer, and is used for manufacturing a flat panel display or a solar cell. It may be a glass substrate.
  • the present invention it is possible to provide a method for transporting an object to be processed and an apparatus for processing an object to be processed, which can suppress the situation where productivity reaches a peak even if the processing time in the process is shortened.

Abstract

被処理体の搬送方法及び被処理体処理装置を開示する。この搬送方法は、第1トランスファアーム(34a)を処理室(32a)に向けて伸長し、処理室(32a)に収容された処理済の被処理体(a)を第1ピック(35a)に受け取らせた後、縮退させること、第1、第2トランスファアームを旋回させ、処理前の被処理体(1)を保持した第2ピック(35b)を処理室(32a)の前の受け渡し位置に移動させ、処理済の被処理体(a)を保持した第1ピック(35a)をロードロック室(41b)の前の受け渡し位置に隣接する位置に移動させること、第2トランスファアーム(34b)を処理室(32a)に向けて伸長し、第2ピック(35b)に保持された処理前の被処理体(1)を処理室(32a)に収容した後、縮退させること、及び第2トランスファアーム(34b)を旋回させ、被処理体を保持していない第2ピック(35b)をロードロック室(41b)の前の受け渡し位置に移動させることを含む。

Description

被処理体の搬送方法及び被処理体処理装置
 この発明は、被処理体の搬送方法及び被処理体処理装置に関する。
 電子機器の製造には被処理体が用いられ、被処理体に対して成膜やエッチング等の処理が施される。例えば、半導体集積回路装置の製造には、被処理体として半導体ウエハが用いられ、半導体ウエハに対して、成膜やエッチング等の処理が施される。これらの処理は互いに独立した処理装置にて行われるのが一般的である。例えば、成膜処理は成膜処理室を備えた成膜処理装置にて行われ、エッチング処理はエッチング処理室を備えたエッチング処理装置にて行われる。
 近時、処理の一貫化を図るため、および処理装置の増加に伴うフットプリントの増大を抑えるために、搬送室の周りに複数の処理室を配置したマルチチャンバ(クラスタツール)型の被処理体処理装置が多用されるようになってきている。マルチチャンバ型の被処理体処理装置の典型例は、例えば、特許文献1に記載されている。
 また、搬送室と複数の処理室との間での被処理体の搬送には、上記特許文献1、又は特許文献2に記載されるように、多関節ロボットを利用した搬送装置が使用されている。
特開2005-64509号公報 特開2004-282002号公報
 成膜やエッチング等の各種処理においては、生産性を上げるために、それぞれ処理時間の短縮化が進められている。
 しかしながら、各種処理における処理時間の短縮化が進んでくると、マルチチャンバ型の被処理体処理装置での処理に要する時間を律速させる要因が、処理律速から搬送律速に変化してしまう。このため、処理時間をいくら短縮しても、生産性は頭打ちになる、という事情がある。
 この発明は、処理における処理時間を短縮しても生産性が頭打ちになる事情を抑制できる被処理体の搬送方法及び被処理体処理装置を提供する。
 この発明の第1の態様に係る被処理体の搬送方法は、被処理体を搬送する搬送装置が配置された搬送室と、前記搬送室の周囲に配置され、前記被処理体に処理を施す複数の処理室と、前記搬送室の周囲に配置され、前記被処理体の周囲の環境を前記搬送室の内部の環境に変換する複数のロードロック室と、を備え、前記搬送装置は、個別に独立して伸長、縮退及び旋回動作が可能な少なくとも2つの第1、第2トランスファアームと、前記少なくとも2つの第1、第2トランスファアーム各々に取り付けられた、前記被処理体を保持する少なくとも2つの第1、第2ピックと、を備えている被処理体処理装置の被処理体の搬送方法であって、(0)前記第1、第2トランスファアームを旋回させ、被処理体を保持していない第1ピックを前記複数の処理室のうちの第1処理室の前に設定された第1受け渡し位置に移動させるとともに、処理前の第1被処理体を保持した第2ピックを前記第1受け渡し位置に隣接する位置に移動させること、(1)前記第1トランスファアームを前記第1処理室に向けて伸長し、前記第1処理室に収容された処理済の第2被処理体を前記第1ピックに受け取らせた後、前記第1トランスファアームを縮退させること、(2)前記第1、第2トランスファアームを旋回させ、前記処理前の第1被処理体を保持した前記第2ピックを前記第1受け渡し位置に移動させるとともに、前記処理済の第2被処理体を保持した第1ピックを前記複数のロードロック室のうちの第1ロードロック室の前に設定された第2受け渡し位置に隣接する位置に移動させること、(3)前記第2トランスファアームを前記第1処理室に向けて伸長し、前記第2ピックに保持された前記処理前の第1被処理体を前記第1処理室に収容した後、前記第2トランスファアームを縮退させること、(4)前記第2トランスファアームを旋回させ、被処理体を保持していない第2ピックを前記第2受け渡し位置に移動させること、(5)前記第2トランスファアームを前記第1ロードロック室に向けて伸長し、前記第1ロードロック室に収容された処理前の第3被処理体を前記第2ピックに受け取らせた後、前記第2トランスファアームを縮退させること、(6)前記第1、第2トランスファアームを旋回させ、前記処理済の第2被処理体を保持した第1ピックを前記第2受け渡し位置に移動させるとともに、前記処理前の第3被処理体を保持した第2ピックを前記第2受け渡し位置に隣接する位置に移動させること、(7)前記第1トランスファアームを前記第1ロードロック室に向けて伸長し、前記第1ピックに保持された前記処理済の第2被処理体を前記第1ロードロック室に収容した後、前記第1トランスファアームを縮退させること、を含む。
 この発明の第2の態様に係る被処理体の搬送方法は、処理前の被処理体と処理済の被処理体とを同時に入れ替える被処理体の搬送方法と、第1の態様に係る被処理体の搬送方法とを、プロセスレシピ時間の長短に応じて切り替える。
 この発明の第3の態様に係る被処理体処理装置は、被処理体を搬送する搬送装置が配置された搬送室と、前記搬送室の周囲に配置され、前記被処理体に処理を施す複数の処理室と、前記搬送室の周囲に配置され、前記被処理体の周囲の環境を前記搬送室の内部の環境に変換する複数のロードロック室と、少なくとも前記搬送装置を制御するプロセスコントローラと、を備え、前記搬送装置は、個別に独立して伸長、縮退及び旋回動作が可能な少なくとも2つの第1、第2トランスファアームと、前記少なくとも2つの第1、第2トランスファアーム各々に取り付けられた、前記被処理体を保持する少なくとも2つの第1、第2ピックとを備え、前記プロセスコントローラが、第2の態様に係る被処理体の搬送方法を実行するように、前記搬送装置を制御する。
この発明の第1の実施形態に係る被処理体の搬送方法を実行することが可能な被処理体処理装置の一例を概略的に示す平面図 搬送装置を拡大して示す図 搬送装置を拡大して示す図 搬送装置を拡大して示す図 搬送装置を拡大して示す図 この発明の第1の実施形態に係る被処理体の搬送方法の一例を搬送手順毎に示す平面図 この発明の第1の実施形態に係る被処理体の搬送方法の一例を搬送手順毎に示す平面図 この発明の第1の実施形態に係る被処理体の搬送方法の一例を搬送手順毎に示す平面図 この発明の第1の実施形態に係る被処理体の搬送方法の一例を搬送手順毎に示す平面図 この発明の第1の実施形態に係る被処理体の搬送方法の一例を搬送手順毎に示す平面図 この発明の第1の実施形態に係る被処理体の搬送方法の一例を搬送手順毎に示す平面図 この発明の第1の実施形態に係る被処理体の搬送方法の一例を搬送手順毎に示す平面図 この発明の第1の実施形態に係る被処理体の搬送方法の一例を搬送手順毎に示す平面図 この発明の第1の実施形態に係る被処理体の搬送方法の一例を搬送手順毎に示す平面図 この発明の第1の実施形態に係る被処理体の搬送方法の一例を搬送手順毎に示す平面図 この発明の第1の実施形態に係る被処理体の搬送方法の一例を搬送手順毎に示す平面図 この発明の第1の実施形態に係る被処理体の搬送方法の一例を搬送手順毎に示す平面図 この発明の第1の実施形態に係る被処理体の搬送方法の一例のタイムチャート 参考例に係る被処理体の搬送方法の一例のタイムチャート この発明の第2の実施形態に利用可能な被処理体の搬送方法の一例を示すタイムチャート この発明の参考例に係る被処理体の搬送方法の一例を搬送手順毎に示す平面図 この発明の参考例に係る被処理体の搬送方法の一例を搬送手順毎に示す平面図 この発明の参考例に係る被処理体の搬送方法の一例を搬送手順毎に示す平面図 この発明の参考例に係る被処理体の搬送方法の一例を搬送手順毎に示す平面図 この発明の参考例に係る被処理体の搬送方法の一例を搬送手順毎に示す平面図 この発明の参考例に係る被処理体の搬送方法の一例を搬送手順毎に示す平面図 この発明の参考例に係る被処理体の搬送方法の一例を搬送手順毎に示す平面図 この発明の参考例に係る被処理体の搬送方法の一例を搬送手順毎に示す平面図 この発明の参考例に係る被処理体の搬送方法の一例を搬送手順毎に示す平面図 この発明の参考例に係る被処理体の搬送方法の一例を搬送手順毎に示す平面図 この発明の参考例に係る被処理体の搬送方法の一例を搬送手順毎に示す平面図 この発明の参考例に係る被処理体の搬送方法の一例を搬送手順毎に示す平面図 プロセスレシピ時間とスループットとの関係を示す図 この発明の第2の実施形態に利用可能な被処理体の搬送方法の一例を搬送手順毎に示す平面図 この発明の第2の実施形態に利用可能な被処理体の搬送方法の一例を搬送手順毎に示す平面図 この発明の第2の実施形態に利用可能な被処理体の搬送方法の一例を搬送手順毎に示す平面図 この発明の第2の実施形態に利用可能な被処理体の搬送方法の一例を搬送手順毎に示す平面図 この発明の第2の実施形態に利用可能な被処理体の搬送方法の一例を搬送手順毎に示す平面図 この発明の第2の実施形態に利用可能な被処理体の搬送方法の一例を搬送手順毎に示す平面図 同時入れ替え動作の際のゲートバルブを開閉させることが可能な時間を示すタイムチャート システム律速を起こした場合のタイムチャート この発明の第2の実施形態に係る被処理体の搬送方法のゲートバルブを開閉させることが可能な時間を示すタイムチャート 同時入れ替え動作を行う搬送方法及び第1の実施形態のプロセスレシピ時間とスループットとの関係を示す図 図9A中の枠9Bの拡大図
 以下、添付図面を参照して、この発明の実施の形態について説明する。この説明において、参照する図面全てにわたり、同一の部分については同一の参照符号を付す。
  (第1の実施形態)
   (被処理体処理装置)
 図1は、この発明の第1の実施形態に係る被処理体の搬送方法を実行することが可能な被処理体処理装置の一例を概略的に示す平面図である。本例では、被処理体処理装置の一例として、被処理体として半導体ウエハを取り扱うマルチチャンバ(クラスタツール)型の半導体製造装置を例示する。
 図1に示すように、半導体製造装置1は、半導体製造装置1の外部との間で被処理体である半導体ウエハ(以下ウエハ)Wを搬入出する搬入出部2と、ウエハWに処理を施す処理部3と、搬入出部2と処理部3との間で搬入出するロードロック部4と、半導体製造装置1を制御する制御部5とを備えている。
 搬入出部2は、搬入出室21を備えている。搬入出室21は、内部を大気圧、又はほぼ大気圧、例えば、外部の大気圧に対してわずかに陽圧に調圧可能である。搬入出室21の平面形状は、本例では、長辺と、この長辺に直交する短辺とを有した矩形である。矩形の長辺の一辺は上記処理部3に上記ロードロック部4を介して相対する。長辺の他の一辺には、ウエハWが収容された、又は空のキャリアCが取り付けられるロードポート22が備えられている。本例では、三つのロードポート22a~22cが備えられている。ロードポート22の数は三つに限られるものではなく、数は任意である。ロードポート22a~22cには各々、図示せぬシャッターが設けられている。キャリアCがロードポート22a~22cのいずれかに取り付けられると、シャッターが外れる。これにより、外気の侵入を防止しつつ、キャリアCの内部と搬入出室21の内部とが連通される。矩形の短辺の位置には、キャリアCから取り出されたウエハWの向きを合わせるオリエンタ23が備えられている。
 処理部3は、搬送室31と、ウエハWに処理を施す複数の処理室32とを備えている。本例では、一つの搬送室31と、一つの搬送室31の周囲に設けられた四つの処理室32a~32dとを備えている。処理室32a~32dはそれぞれ、内部を所定の真空度に減圧可能な真空容器として構成され、内部では、成膜又はエッチングといった処理が行われる。処理室32a~32dはそれぞれゲートバルブG1~G4を介して搬送室31に接続される。
 ロードロック部4は、複数のロードロック室41を備えている。本例では、一つの搬送室31の周囲に設けられた二つのロードロック室41a及び41bを備えている。ロードロック室41a及び41bはそれぞれ、内部を所定の真空度に減圧可能な真空容器として構成されるとともに、上記所定の真空度と、大気圧又はほぼ大気圧との間で圧力変換可能に構成されている。これにより、ウエハWの周囲の環境が搬送室31の内部の環境に変換される。ロードロック室41a及び41bはそれぞれゲートバルブG5、G6を介して搬送室31に接続されるとともに、ゲートバルブG7、G8を介して搬入出室21に接続される。
 搬入出室21の内部には、搬入出装置24が配置されている。搬入出装置24は、キャリアCと搬入出室21との相互間でのウエハWの搬入出、搬入出室21とオリエンタ23との相互間でのウエハWの搬入出、及び搬入出室21とロードロック室41a、41bとの相互間でのウエハWの搬入出を行う。搬入出装置24は、複数の多関節アーム25を有し、搬入出室21の長辺方向に沿って延びるレール26上を走行可能に構成される。本例では、二つの多関節アーム25a及び25bを有する。多関節アーム25a、25bの先端には、ハンド27a及び27bが取り付けられている。ウエハWを処理部3へ搬入する際、ウエハWはハンド27a又は27bに載せられてキャリアCから搬出され、オリエンタ23へ搬入される。次いで、ウエハWがオリエンタ23において向きが調節された後、ウエハWは、ハンド27a又は27bに載せられてオリエンタ23から搬出され、ロードロック室41a又は41bへ搬入される。反対に、ウエハWを処理部3から搬出する際、ウエハWはハンド27a又は27bに載せられてロードロック室41a又は41bから搬出され、キャリアCへ搬入される。
 制御部5は、プロセスコントローラ51、ユーザーインターフェース52、及び記憶部53を含んで構成される。プロセスコントローラ51は、マイクロプロセッサ(コンピュータ)からなる。ユーザーインターフェース52は、オペレータが半導体製造装置1を管理するためにコマンドの入力操作等を行うキーボードや、半導体製造装置1の稼働状況を可視化して表示するディスプレイ等を含む。記憶部53は、半導体製造装置1において実施される処理を、プロセスコントローラ51の制御にて実現するための制御プログラム、各種データ、及び処理条件に応じて半導体製造装置1に処理を実行させるためのレシピが格納される。レシピは、記憶部53の中の記憶媒体に記憶される。記憶媒体はコンピュータ読み取り可能なもので、例えば、ハードディスクであっても良いし、CD-ROM、DVD、フラッシュメモリ等の可搬性のものであってもよい。また、他の装置から、例えば、専用回線を介してレシピを適宜伝送させるようにしてもよい。任意のレシピはユーザーインターフェース52からの指示等にて記憶部53から呼び出され、プロセスコントローラ51において実行されることで、プロセスコントローラ51の制御のもと、半導体製造装置1においてウエハWに対する処理が実施される。
 搬送室31の内部には、搬送装置33が配置されている。搬送装置33は、複数のロードロック室41a、41bと搬送室31との相互間でのウエハWの搬入出、搬送室31と複数の処理室32a~32dとの相互間での搬入出を行う。搬送装置33は、本例では、搬送室31のほぼ中央に配置される。搬送装置33は、伸長、縮退及び旋回動作が可能な複数のトランスファアーム34を有する。本例では、二つのトランスファアーム34a及び34bを有する。トランスファアーム34a及び34bの先端には、ピック35a及び35bが取り付けられている。ウエハWは、ピック35a又は35bに保持され、複数のロードロック室41a、41bと搬送室31との相互間でのウエハWの搬入出、及び搬送室31と複数の処理室32a~32dとの相互間でのウエハWの搬入出が行われる。
 図2A~図2Dは、図1に示す搬送装置33を拡大して示す図である。
 図2Aに示すように、搬送装置33は、回転軸としてθ1軸、θ2軸を持つ。
 θ1軸は、トランスファアーム34a及び34bの双方をいっしょに回転させる軸である。θ1軸は無限回転が可能であり、例えば、図2Bに示すように、図2Aに示す状態から時計回り又は反時計回りに約180°回転させることも、さらには、図2Bに示す状態から、さらに時計回り又は反時計回りに約180°回転させて、図2Aに示す状態に戻すこともできる。
 θ2軸は、トランスファアーム34bを回転させる軸である。θ2軸は、例えば、最大回転角度240°以上270°以下の回転が可能である。本例では、最大回転角度240°としている。これは、搬送室31の平面形状が六角形であることを想定し、ピック35aとピック35bとがなす最小角度θpminを60°に設定していることによる(360°-60°-60°=240°)。例えば、搬送室31の平面形状が八角形であることを想定した場合には、ピック35aとピック35bとがなす最小角度θpminは45°に設定される。この場合には、θ2軸の最大回転角度は、例えば、270°に設定される(360°-45°-45°=270°)。図2Cに、θ2軸を使ってトランスファアーム34bを時計回りに60°旋回させ、ピック間角度θpを時計回りに120°に拡げた場合を、図2Dに、θ2軸を使ってトランスファアーム34bを時計回りに240°旋回させ、ピック間角度θpを時計回りに300°に拡げた場合を示す。
 搬送装置33は、θ1軸及びθ2軸を使うことで、トランスファアーム34a、34bを個別に独立して旋回させることが可能である。
 なお、図2A~図2Dにおいては、θ2軸はトランスファアーム34bを回転させる軸としているが、トランスファアーム34aを回転させる軸となるようにすることも可能である。
   (搬送方法)
 次に、この発明の第1の実施形態に係る被処理体の搬送方法の一例を説明する。
 図3A~図3Lはこの発明の第1の実施形態に係る被処理体の搬送方法の一例を搬送手順毎に示す平面図、図4Aは搬送方法の一例のタイムチャートである。なお、図3A~図3Lにおいては、ロードポート22a~22c、及びオリエンタ23の図示は省略する。
 また、本一例においては、トランスファアーム34a、34bの伸長、縮退、及び旋回に要する時間を、下記にように仮定する。
 “ピック35a又は35bがウエハを保持している状態”
   トランスファアーム34a、34bを伸ばす時間   2a秒
   トランスファアーム34a、34bを縮める時間   2a秒
   トランスファアーム34a、34bを旋回させる時間 3a秒
 “ピック35a又は35bがウエハを保持していない状態”
   トランスファアーム34a、34bを伸ばす時間   1a秒
   トランスファアーム34a、34bを縮める時間   1a秒
   トランスファアーム34a、34bを旋回させる時間 2a秒
 ピック35a又は35bがウエハを受け取る時間     1a秒
 同じく、ピック35a又は35bがウエハを受け渡す時間 1a秒
 なお、“a”は、トランスファアームの種類に依存したパラメータであり、トランスファアームの種類ごとに異なった、ある定められた時間である。
 また、以下に説明する被処理体の搬送方法は、そのシーケンスがプロセスレシピとともに記憶部53に格納されており、その搬送方法は、プロセスコントローラ51の制御のもと、実行される。これは、後述する第2の実施形態においても同様である。
 まず、図3A及び図4Aに示すように、トランスファアーム34a、34bを旋回させ、ウエハを保持していないピック35aを4つの処理室のうち、処理室32aの前に設定されたウエハ受け渡し位置に移動させる。これとともに、処理前ウエハ(1)を保持したピック35bを上記受け渡し位置に隣接する位置に移動させる。本例では、隣接する位置として処理室32aに隣接した処理室32bの前に移動させる。
 この状態から、処理済ウエハ(a)と処理前ウエハ(1)とを入れ替える入れ替え動作を開始する。
 最初の入れ替え動作の手順として、トランスファアーム34aを処理室32aに向けて伸長し、処理室32aに収容された処理済ウエハ(a)を、ピック35aに受け取らせる手順に入る。
 この手順においては、図3B及び図4Aに示すように、トランスファアーム34aを伸長し、ピック35aを、搬送室31から処理室32aへと進める。ここまでに要する時間は約1a秒である。次いで、図3C及び図4Aに示すように、処理室32aに収容された処理済ウエハ(a)をピック35aに受け取る。次いで、トランスファアーム34aを縮退させ、処理済ウエハ(a)を搬送室31に搬出する。ここまでに要する時間は約4a秒である。
 次に、トランスファアーム34a、34bを旋回させ、処理前ウエハ(1)を保持したピック35bを処理室32aの前に設定されたウエハ受け渡し位置に移動させるとともに、処理済ウエハ(a)を保持したピック35aをロードロック室41bの前に設定された受け渡し位置に隣接する位置に移動させる手順に入る。なお、本例では、隣接する位置としてロードロック室41bに隣接した処理室32dの前を選択した。
 この手順においては、図3D及び図4Aに示すように、θ1軸を使って、トランスファアーム34a及び34bを反時計回りに旋回させ、ピック35bを処理室32aの前の受け渡し位置に移動させる。トランスファアーム34aについては、さらにθ1軸を使って反時計回りに旋回させる。このとき、トランスファアーム34bは、θ2軸を使ってピック35bが処理室32aの前から移動しないように停止させておけば良い。旋回を続けるトランスファアーム34aは、最終的にはピック35aがロードロック室41bの前を通過し、その隣の処理室32dの前に位置するまで移動される。これは、ピック35bがロードロック室41bに移動してきたとき、ピック35aがピック35bを妨げないようにする配慮である。ここまでに要する時間は約7a秒である。
 次に、トランスファアーム34bを処理室32aに向けて伸長し、ピック35bに保持された処理前ウエハ(1)を、処理室32aに収容する手順に入る。
 この手順においては、図3E及び図4Aに示すように、トランスファアーム34bを伸長し、ピック35bを、搬送室31から処理室32aへと進める。次いで、処理前ウエハ(1)をピック35bから処理室32a内にある図示せぬ載置台に受け渡す。ここまでに要する時間は、約10a秒である。次いで、図3F及び図4Aに示すように、トランスファアーム34bを縮退させ、ピック35bを処理室32aから搬送室31に戻す。ここまでに要する時間は、約11a秒である。
 次に、トランスファアーム34bを旋回させ、ウエハを保持していないピック35bをロードロック室41bの前に設定されたウエハ受け渡し位置に移動させる手順に入る。
 この手順においては、図3G及び図4Aに示すように、θ2軸を使って、トランスファアーム34bを反時計回りに旋回させ、ピック35bをロードロック室41bの前に設定されたウエハ受け渡し位置に移動させる。このとき、ピック35bはウエハを保持していないので、トランスファアーム34bは、ピック35bがウエハ保持している場合に比較して、より速く旋回させることができる。もしも、ピック35bがウエハを保持している場合には、ウエハの位置ずれや落下を抑制するため、ウエハが滑らないように、トランスファアーム34bをゆっくりと旋回させなければならない。この場合の旋回には、例えば、3a秒の時間を要する。しかし、本例のように、ピック35bがウエハを保持していない場合には、ウエハの位置ずれや落下を考慮しなくて良い。このため、旋回には、例えば、より短い2a秒で済む。よって、本例においては、図3Gに示す状態までに要する時間は、約13a秒で済む。
 次に、トランスファアーム34bをロードロック室41bに向けて伸長し、ロードロック室41bに収容された処理前ウエハ(2)を、ピック35bに受け取らせる手順に入る。
 この手順においては、図3H及び図4Aに示すように、トランスファアーム34bを伸長し、ピック35bを、搬送室31からロードロック室41bへと進める。ここまでに要する時間は、約14a秒である。次いで、図3I及び図4Aに示すように、ロードロック室41b内にある処理前ウエハ(2)をピック35bに受け取る。次いで、トランスファアーム34bを縮退させ、処理前ウエハ(2)を搬送室31に搬出する。ここまでに要する時間は約17a秒である。
 次に、トランスファアーム34a、34bを旋回させ、処理済ウエハ(a)を保持したピック35aをロードロック室41bの前に設定されたウエハ受け渡し位置に移動させるとともに、処理前ウエハ(2)を保持したピック35bを上記受け渡し位置に隣接する位置に移動させる手順に入る。
 この手順においては、図3J及び図4Aに示すように、θ1軸を使って、トランスファアーム34a、34bを時計回りに旋回させ、ピック35aをロードロック室41bの前に設定されたウエハ受け渡し位置に、ピック35bは、例えば、ロードロック室41aの前に移動させる。ここまでに要する時間は、約20a秒である。
 次に、トランスファアーム34aをロードロック室41bに向けて伸長し、ピック35aに保持された処理済ウエハ(a)をロードロック室41bに収容する手順に入る。
 この手順においては、図3K及び図4Aに示すように、トランスファアーム34aを伸長し、ピック35aを、搬送室31からロードロック室41bへと進める。次いで、処理済ウエハ(a)をピック35aからロードロック室41b内にある図示せぬ載置台に受け渡す。ここまでに要する時間は、約23a秒である。次いで、図3L及び図4Aに示すように、トランスファアーム34aを縮退させ、ピック35aをロードロック室41bから搬送室31に戻す。ここまでに要する時間は、約24a秒である。
 これで、処理済ウエハ(a)と処理前ウエハ(1)との入れ替え動作が終了する。
 この後、例えば、処理済ウエハ(b)と処理前ウエハ(2)とを入れ替える、次の入れ替え動作が行われる。この際、ピック35aを処理室32bの前に設定されたウエハ受け渡し位置まで移動させるが、ピック35aはウエハを保持していない。このため、θ1軸を使って、処理前ウエハ(2)を保持しているピック35bよりも、速く旋回させることができる。ピック35bについては、θ2軸を使ってピック35aよりもゆっくりと旋回させれば良い。ピック35aが処理室32bの前に移動するのに要する時間は、図4Aに示すように、約2a秒である。
 よって、第1の実施形態に係る被処理体の搬送方法においては、入れ替え動作の開始から、次の入れ替え動作の開始までの時間は、約26a秒となる。
 このように第1の実施形態に係る搬送方法によれば、処理済のウエハを、処理前のウエハに約26a秒で交換できる。このため、1時間あたりに交換可能なウエハの枚数は、概算で、 
   3600秒 ÷ 26a秒 = 約138.5/a枚 
とすることができる。
   (参考例)
 上記第1の実施形態による利点を、より明確とするために、参考例を説明する。
 図5A~図5Lはこの発明の参考例に係る被処理体の搬送方法の一例を搬送手順毎に示す平面図、図4Bは参考例に係る搬送方法のタイムチャートである。なお、図5A~図5Lにおいては、ロードポート22a~22c、及びオリエンタ23の図示は省略する。
 本参考例に使用される搬送装置は、トランスファアーム34a、34bの角度が固定されており、トランスファアーム34a、34bが個別に独立した動作を行えない搬送装置である。
 参考に係る被処理体の搬送方法が、上記第1の実施形態に係る被処理体搬送方法と異なるところは、図5D~図5Gに示す手順である。これらの手順以外の図5A~図5C、図5H~図5Lに示す手順は、上記図3A~図3C、図3H~図3Lに示した手順と同じである。よって、異なる手順のみ説明する。
 まず、図5D及び図4Bに示すように、トランスファアーム34a及び34bを反時計回りに旋回させ、ピック35bを処理室32aの前に移動させる。トランスファアーム34aは、トランスファアーム34bと角度が固定されている。このため、例えば、ピック35aは、ロードロック室41aの前に位置している。
 次に、図5E及び図4Bに示すように、トランスファアーム34bを伸長し、ピック35bを、搬送室31から処理室32aへと進める。次いで、処理前ウエハ(1)をピック35bから処理室32a内にある図示せぬ載置台に受け渡す。
 次に、図5F及び図4Bに示すように、トランスファアーム34bを縮退させ、ピック35bを処理室32aから搬送室31に戻す。ここまでに要する時間は、上記第1の実施形態と同じ、約11a秒である。
 次に、図5G及び図4Bに示すように、トランスファアーム34a及び34bを反時計回りに旋回させ、ピック35aを処理室32dの前に、ピック35bをロードロック室41bの前に移動させる。しかし、ピック35aが処理済ウエハ(a)を保持している。このため、トランスファアーム34a及び34bは、処理済ウエハ(a)が位置ずれをおこしたり、落下したりすることを抑制するため、ゆっくりと旋回させなければならない。したがって、旋回には、3a秒の時間を要することになる。
 この後、図5H~図5Lに示すように、第1の実施形態と同様に、処理前ウエハ(2)をピック35bに受け取り、処理済ウエハ(a)をロードロック室41bの図示せぬ載置台に受け渡す。ここまでに要する時間は、約25a秒である。
 さらに、この後、例えば、処理済ウエハ(b)と処理前ウエハ(2)とを入れ替える、次の入れ替え動作が行われる。次の入れ替え動作の際には、ピック35aを処理室32bの前に移動させなければならないが、ピック35bが処理前ウエハ(2)を保持している。このときにも、処理前ウエハ(2)が位置ずれをおこしたり、落下したりしないようにするために、ゆっくりと旋回させなければならならない。つまり、この旋回にも、3a秒の時間を要する。
 したがって、参考例に係る被処理体の搬送方法では、入れ替え動作の開始から、次の入れ替え動作の開始までの時間は、約28a秒要することになる。
 参考例に係る搬送方法では、1時間あたりに交換可能なウエハの枚数は、概算で、 
   3600秒 ÷ 28a秒 = 約128.6/a枚 
となる。これは、参考例が、上記第1の実施形態に比較して、1時間あたりに交換可能なウエハの枚数が約10/a枚少なくなることを意味する。パーセンテージにすれば、上記第1の実施形態は、参考例に比較して、スループットが約8%向上することになる。
 図6は、プロセスレシピ時間とスループットとの関係を示す図である。なお、図6中の“b”は、プロセスの種類に依存したパラメータであり、プロセスごとに異なった、ある定められた時間である。
 図6では、上記参考例が処理律速から搬送律速に変わるプロセスレシピ時間を100bとし、搬送律速になったときのスループットを100%として、第1の実施形態のスループットと比較したものである。
 図6に示すように、第1の実施形態は、参考例に比較して、処理律速から搬送律速に変わるプロセスレシピ時間が短くなる。これは、入れ替え動作の開始から、次の入れ替え動作の開始までの時間が約26a秒で済み、参考例に比較して約2a秒短縮されることによる。また、搬送律速になった後でも、上述した通りであるが、スループットは、約8%向上する。
 なお、プロセスレシピ時間が100b以上になると、第1の実施形態も参考例もともに処理律速となる。このため、第1の実施形態でも参考例でもスループットは変わらない。つまり、第1の実施形態は、プロセスレシピ時間が短いプロセスにおいての適用に有利である、ということである。
 このように、第1の実施形態は、トランスファアーム34a、34bを個別に独立した動作が可能なように構成する。かつ、処理済ウエハを保持したピックを、ウエハを保持していないピックがロードロック室の前に設定されたウエハ受け渡し位置にきたときに、このピックを妨げない位置に移動させておく。この手順を備えることで、ウエハを保持していないピックをロードロック室前のウエハ受け渡し位置まで旋回させる際に、処理済ウエハを保持したピックは旋回させないようにすることができる。このため、ウエハを保持していないピックをロードロック室前まで旋回させる際には、ウエハを保持している場合に比較して、より速く旋回させることができる。
 したがって、第1の実施形態によれば、スループットを向上させることができ、各種処理における処理時間を短縮しても生産性が頭打ちになる事情を抑制できる被処理体の搬送方法が得られる、という利点を得ることができる。
  (第2の実施形態)
 搬送装置33は、トランスファアーム34a、34bが、個別に独立した動作が可能なように構成されている。このような搬送装置33を用いると、処理済ウエハ及び処理前ウエハを同時に交換する搬送方法を行うことができる。
 第2の実施形態は、上記処理済ウエハ及び処理前ウエハを同時に交換する搬送方法と、上記第1の実施形態に係る搬送方法とを、プロセスレシピ時間に応じて切り換えるようにしたものである。
 第2の実施形態の説明に先立ち、第2の実施形態に利用可能な処理済ウエハ及び処理前ウエハを同時に交換する搬送方法の一例を説明する。
 図7A~図7Fはこの発明の第2の実施形態に利用可能な被処理体の搬送方法の一例を搬送手順毎に示す平面図、図4Cは上記利用可能な被処理体に係る搬送方法のタイムチャートである。なお、図7A~図7Fにおいては、ロードポート22a~22c、及びオリエンタ23の図示は省略する。
 まず、図7A及び図4Cに示すように、トランスファアーム34a、34bを旋回させ、ウエハを保持していないピック35aをロードロック室41aの前に移動させる。これとともに、同じくウエハを保持していないピック35bを4つの処理室のうち、処理室32aの前に設定されたウエハ受け渡し位置に移動させる。
 この状態から、処理済ウエハ(a)と処理前ウエハ(1)とを同時に入れ替える同時入れ替え動作を開始する。
 最初の入れ替え動作の手順として、トランスファアーム34aをロードロック室41aに向けて伸長し、ロードロック室41aに収容された処理前ウエハ(1)をピック35aに受け取らせること、及びトランスファアーム34bを処理室32aに向けて伸長し、処理室32aに収容された処理済ウエハ(a)をピック35bに受け取らせることを同時に行う手順に入る。
 この手順においては、図7B及び図4Cに示すように、トランスファアーム34a、34bを伸長し、ピック35aを搬送室31からロードロック室41aへと進め、ピック35bを搬送室31から処理室32aへと進める。ここまでに要する時間は約1a秒である。次いで、図7C及び図4Cに示すように、ロードロック室41aに収容された未処理ウエハ(1)をピック35aに、処理室32aに収容された処理済ウエハ(a)をピック35bに受け取る。次いで、トランスファアーム34a、34bを縮退させ、処理前ウエハ(1)、及び処理済ウエハ(a)をそれぞれ搬送室31に搬出する。ここまでに要する時間は約4a秒である。
 次に、トランスファアーム34a、34bを旋回させ、処理前ウエハ(1)を保持したピック35aを処理室32aの前に設定されたウエハ受け渡し位置に移動させるとともに、処理済ウエハ(a)を保持したピック35bをロードロック室41aの前に設定された受け渡し位置に移動させる手順に入る。
 この手順においては、図7D及び図4Cに示すように、θ1軸を使って、トランスファアーム34a及び34bを反時計回りに旋回させ、ピック35aを処理室32aの前の受け渡し位置に移動させる。トランスファアーム34bについては、さらにθ2軸を使って反時計回りに旋回させ、ピック35bをロードロック室41aの前の受け渡し位置に移動させる。ここまでに要する時間は約7a秒である。
 次に、トランスファアーム34aを処理室32aに向けて伸長し、ピック35aに保持された処理前ウエハ(1)を処理室32aに収容すること、及びトランスファアーム34bをロードロック室41aに向けて伸長し、ピック35bに保持された保持された処理済ウエハ(a)をロードロック室41aに収容することを同時に行う手順に入る。
 この手順においては、図7E及び図4Cに示すように、トランスファアーム34a、34bを伸長し、ピック35aを搬送室31から処理室32aへと進め、ピック35bを搬送室31からロードロック室41aへと進める。次いで、処理前ウエハ(1)をピック35aから処理室32a内にある図示せぬ載置台に受け渡す。これとともに、処理済ウエハ(a)をピック35bからロードロック室41a内にある図示せぬ載置台に受け渡す。ここまでに要する時間は、約10a秒である。次いで、図7F及び図4cに示すように、トランスファアーム34a、34bを縮退させ、ピック35aを処理室32aから搬送室31に戻し、ピック35bをロードロック室41aから搬送室31に戻す。ここまでに要する時間は、約11a秒である。
 これで、処理済ウエハ(a)と処理前ウエハ(1)との同時入れ替え動作が終了する。
 この後、例えば、処理済ウエハ(b)と処理前ウエハ(2)とを同時に入れ替える、次の同時入れ替え動作が行われる。この際、ピック35aをロードロック室41bの前に設定されたウエハ受け渡し位置に、ピック35bを処理室32bの前に設定されたウエハ受け渡し位置まで移動させる。この同時入れ替え動作においても、ピック35a、35bはそれぞれウエハを保持していない。このため、θ1軸、θ2軸を使って、ウエハを保持している場合よりも速く旋回させることができる。このため、ピック35bについては、θ2軸を使ってピック35aよりもゆっくりと旋回させれば良い。ピック35aがロードロック室41bの前に、ピック35bが処理室32bの前に移動するのに要する時間は、図4Cに示すように、約2a秒である。
 しかしながら、同時入れ替え動作では、ロードロック室41a、41bと搬送室31、並びに処理室32a~32dと搬送室31との間にあるゲートバルブG1~G6を開閉させることが可能な時間が短くなり、搬送律速、処理律速に加え、新たにシステム律速を起こす場合がある。例えば、トランスファアームの旋回が高速になり、トランスファアームの種類に依存したパラメータ“a”が非常に短い時間になったときに、搬送装置33のスループットは、処理室32a~32d、ロードロック室41a、41b、搬送室31、ゲートバルブG1~G6の動作に起因したシステム律速を起こしやくなる。
 図8Aは、同時入れ替え動作の際のゲートバルブG1~G6を開閉させることが可能な時間を示すタイムチャートである。
 図8Aに示すように、同時入れ替え動作の場合、ゲートバルブG1~G4が開閉可能となる時間は、例えば、ピック35bを処理室32aから搬送室31に戻してから、ピック35aを搬送室31から処理室32bに進めるまでの間の、約2a秒である。
 同じく、ゲートバルブG5、G6が開閉可能となる時間は、例えば、ピック35aをロードロック室41aから搬送室31に戻してから、ピック35bを搬送室31からロードロック室41bに進めるまでの間の、約2a秒である。
 もしも、約2a秒の間に、ゲートバルブG1~G6の開閉が完了しない場合、システム律速となる。システム律速を起こした場合には、図8Bに示すタイムチャートに示すように、搬送装置33自体は、トランスファアーム34a、34bを約2a秒で旋回可能であり、約2a秒で次の同時入れ替え動作に入ることが可能にも関わらず、次の同時入れ替え動作2a秒を超えた時間、例えば、約3a秒を要することになる。
 このような同時入れ替え動作に対し、上記第1の実施形態においては、ゲートバルブG1~G4の開閉タイミングと、ゲートバルブG5、G6の開閉タイミングとがずれている。このため、同時に開閉することはない。
 このため、図8Cのタイミングチャートに示すように、ゲートバルブG1~G4が開閉可能となる時間は、例えば、ピック35bを処理室32aから搬送室31に戻してから、ピック35aを搬送室31から処理室32bに進めるまでの間の、約15a秒である。
 同じく、ゲートバルブG5、G6が開閉可能となる時間は、例えば、ピック35aをロードロック室41bから搬送室31に戻してから、ピック35bを搬送室31からロードロック室41aに進めるまでの間の、約15a秒である。
 したがって、上記第1の実施形態によれば、同時入れ替え動作を行う搬送方法に比較して、システム律速を起こし難い。
 図9Aは、同時入れ替え動作を行う搬送方法及び第1の実施形態の、プロセスレシピ時間とスループットとの関係を示す図である。
 図9Aに示すように、プロセスレシピ時間が短い場合には、スループットは、同時入れ替え動作を行う搬送方法が優れている。しかし、同時入れ替え動作を行う搬送方法がシステム律速を起こしている場合には、あるプロセスレシピ時間を境にして、スループットは、第1の実施形態が優れるように逆転する。
 この理由は、ウエハの入れ替えが終わり、次の入れ替え動作に備えてトランスファアーム34a、34bを旋回させる時間が、システム律速を起こさない第1の実施形態は、約2a秒で済む。これに対して、システム律速を起こしている同時入れ替え動作においては、システムに束縛、例えば、ゲートバルブG1~G6の開閉動作に束縛されて、ウエハの入れ替えが終わってから次の入れ替え動作に入るまでの時間が、例えば、約3a秒要することによる。
 図9Bは、図9A中の枠9Bの拡大図である。
 そこで、第2の実施形態は、図9B中の一点鎖線に示すように、プロセスレシピ時間が短い場合には、トランスファアーム34a、34bが、個別に独立して伸長および縮退が可能な搬送装置33を用いて、同時入れ替え動作を行う搬送方法を実施し、プロセスレシピ時間が長い場合には、第1の実施形態に係る搬送方法を実施する。両搬送方法の切り替えは、図9に示すように、同時入れ替え動作を行う搬送方法によるスループット曲線と、第1の実施形態に係る搬送方法によるスループット曲線とが交差し、スループットが互いに逆転するプロセスレシピ時間Tcに基づいて行う。プロセスレシピ時間が、時間Tc以上になる場合には、第1の実施形態に係る搬送方法を実施し、時間Tc未満になる場合には、同時入れ替え動作を行う搬送方法を実施する。
 このような第2の実施形態によれば、プロセスレシピ時間の長短に応じて、同時入れ替え動作を行う搬送方法、及び第1の実施形態に係る搬送方法と切り替えて実施する。このため、上記第1の実施形態に係る搬送方法のみを用いる場合に比較して、プロセスレシピ時間が短い場合においても、スループットを、さらに向上させることができる、という利点を得ることができる。
 また、同時入れ替え動作を行う搬送方法のみを用いる場合に比較すると、プロセスレシピが長い場合において、スループットを、さらに向上させることができる、という利点を得ることができる。
 以上、この発明をいくつかの実施形態に従って説明したが、この発明は、上記実施形態に限定されることは無く、種々変形可能である。
 例えば、上記一実施形態においては、2つのトランスファアーム34a、34b、並びに2つのピック35a、35bを備えた搬送装置33を例示したが、トランスファアームの数、並びにピックの数は2つに限られることはない。トランスファアーム、並びにピックは、少なくとも2つ以上あれば良い。少なくとも2つ以上あるトランスファアーム、並びにピックのうちの2つ、あるいは4つ、あるいは6つ、…に、上記第1の実施形態に係る被処理体の搬送方法を行わせれば、スループット向上の利点を得ることができるからである。
 また、被処理体は、半導体集積回路装置等の製造に使用される半導体ウエハを例示したが、被処理体は、半導体ウエハに限られることはなく、フラットパネルディスプレイや太陽電池の製造に使用されるガラス基板であっても良い。
 その他、この発明はその要旨を逸脱しない範囲で様々に変形することができる。
 この発明によれば、処理における処理時間を短縮しても生産性が頭打ちになる事情を抑制できる被処理体の搬送方法及び被処理体処理装置を提供できる。

Claims (7)

  1.  被処理体を搬送する搬送装置が配置された搬送室と、前記搬送室の周囲に配置され、前記被処理体に処理を施す複数の処理室と、前記搬送室の周囲に配置され、前記被処理体の周囲の環境を前記搬送室の内部の環境に変換する複数のロードロック室と、を備え、前記搬送装置は、個別に独立して伸長、縮退及び旋回動作が可能な少なくとも2つの第1、第2トランスファアームと、前記少なくとも2つの第1、第2トランスファアーム各々に取り付けられた、前記被処理体を保持する少なくとも2つの第1、第2ピックと、を備えている被処理体処理装置の被処理体の搬送方法であって、
     (0) 前記第1、第2トランスファアームを旋回させ、被処理体を保持していない第1ピックを前記複数の処理室のうちの第1処理室の前に設定された第1受け渡し位置に移動させるとともに、処理前の第1被処理体を保持した第2ピックを前記第1受け渡し位置に隣接する位置に移動させること、
     (1) 前記第1トランスファアームを前記第1処理室に向けて伸長し、前記第1処理室に収容された処理済の第2被処理体を前記第1ピックに受け取らせた後、前記第1トランスファアームを縮退させること、
     (2) 前記第1、第2トランスファアームを旋回させ、前記処理前の第1被処理体を保持した前記第2ピックを前記第1受け渡し位置に移動させるとともに、前記処理済の第2被処理体を保持した第1ピックを前記複数のロードロック室のうちの第1ロードロック室の前に設定された第2受け渡し位置に隣接する位置に移動させること、
     (3) 前記第2トランスファアームを前記第1処理室に向けて伸長し、前記第2ピックに保持された前記処理前の第1被処理体を前記第1処理室に収容した後、前記第2トランスファアームを縮退させること、
     (4) 前記第2トランスファアームを旋回させ、被処理体を保持していない第2ピックを前記第2受け渡し位置に移動させること、
     (5) 前記第2トランスファアームを前記第1ロードロック室に向けて伸長し、前記第1ロードロック室に収容された処理前の第3被処理体を前記第2ピックに受け取らせた後、前記第2トランスファアームを縮退させること、
     (6) 前記第1、第2トランスファアームを旋回させ、前記処理済の第2被処理体を保持した第1ピックを前記第2受け渡し位置に移動させるとともに、前記処理前の第3被処理体を保持した第2ピックを前記第2受け渡し位置に隣接する位置に移動させること、
     (7) 前記第1トランスファアームを前記第1ロードロック室に向けて伸長し、前記第1ピックに保持された前記処理済の第2被処理体を前記第1ロードロック室に収容した後、前記第1トランスファアームを縮退させること、
     を含む被処理体の搬送方法。
  2.  前記(4)における前記第2トランスファアームの旋回速度が、前記第2ピックが被処理体を保持している状態における旋回速度よりも速い請求項1に記載の被処理体の搬送方法。
  3.  処理前の被処理体と処理済の被処理体とを同時に入れ替える被処理体の搬送方法と、
     請求項1または請求項2に記載された被処理体の搬送方法とを、プロセスレシピ時間の長短に応じて切り替える被処理体の搬送方法。
  4.  前記プロセスレシピ時間が短い場合、前記処理前の被処理体と処理済の被処理体とを同時に入れ替える被処理体の搬送方法を実施し、
     前記プロセスレシピ時間が長い場合、前記請求項1または請求項2に記載された被処理体の搬送方法を実施する請求項3に記載の被処理体の搬送方法。
  5.  前記同時に入れ替える搬送方法の際、被処理体の搬送時間がシステム律速を起こし、
     前記請求項1または請求項2に記載された被処理体の搬送方法の搬送方法の際、前記被処理体の搬送時間がシステム律速を起こさない請求項4に記載の被処理体の搬送方法。
  6.  前記搬送方法の切り替えが、前記同時に入れ替える搬送方法によるスループット曲線と、前記請求項1または請求項2に記載された被処理体の搬送方法によるスループット曲線とが交差し、スループットが互いに逆転するプロセスレシピ時間に基づいて行われる請求項5に記載の被処理体の搬送方法。
  7.  被処理体を搬送する搬送装置が配置された搬送室と、
     前記搬送室の周囲に配置され、前記被処理体に処理を施す複数の処理室と、
     前記搬送室の周囲に配置され、前記被処理体の周囲の環境を前記搬送室の内部の環境に変換する複数のロードロック室と、
     少なくとも前記搬送装置を制御するプロセスコントローラと、を備え、
     前記搬送装置は、個別に独立して伸長、縮退及び旋回動作が可能な少なくとも2つの第1、第2トランスファアームと、前記少なくとも2つの第1、第2トランスファアーム各々に取り付けられた、前記被処理体を保持する少なくとも2つの第1、第2ピックとを備え、
     前記プロセスコントローラが、請求項3から請求項6のいずれか一項に記載された被処理体の搬送方法を実行するように、前記搬送装置を制御する被処理体処理装置。
PCT/JP2012/053405 2011-02-17 2012-02-14 被処理体の搬送方法及び被処理体処理装置 WO2012111669A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/000,286 US20140052286A1 (en) 2011-02-17 2012-02-14 Object transfer method and object processing apparatus
KR1020137024276A KR101813309B1 (ko) 2011-02-17 2012-02-14 피처리체의 반송 방법 및 피처리체 처리 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-032081 2011-02-17
JP2011032081A JP5675416B2 (ja) 2011-02-17 2011-02-17 被処理体の搬送方法及び被処理体処理装置

Publications (1)

Publication Number Publication Date
WO2012111669A1 true WO2012111669A1 (ja) 2012-08-23

Family

ID=46672587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053405 WO2012111669A1 (ja) 2011-02-17 2012-02-14 被処理体の搬送方法及び被処理体処理装置

Country Status (4)

Country Link
US (1) US20140052286A1 (ja)
JP (1) JP5675416B2 (ja)
KR (1) KR101813309B1 (ja)
WO (1) WO2012111669A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023062739A1 (ja) * 2021-10-13 2023-04-20 東京エレクトロン株式会社 基板搬送方法及び基板搬送装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09162263A (ja) * 1995-10-05 1997-06-20 Dainippon Screen Mfg Co Ltd 基板処理装置及びこれに用いる基板搬送装置
JPH10178083A (ja) * 1996-12-18 1998-06-30 Kokusai Electric Co Ltd 基板搬送装置
JP2004288718A (ja) * 2003-03-19 2004-10-14 Tokyo Electron Ltd 基板搬送装置及び基板処理装置
JP2005197752A (ja) * 2004-01-07 2005-07-21 Samsung Electronics Co Ltd 基板製造装置及びそれに使用される基板移送モジュール

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6167893B1 (en) * 1999-02-09 2001-01-02 Novellus Systems, Inc. Dynamic chuck for semiconductor wafer or other substrate
JP2003037146A (ja) * 2001-07-24 2003-02-07 Asm Japan Kk バッファ機構を有する半導体製造装置及び方法
US6986261B2 (en) * 2002-11-15 2006-01-17 Tokyo Electron Limited Method and system for controlling chiller and semiconductor processing system
JP4239572B2 (ja) * 2002-11-27 2009-03-18 東京エレクトロン株式会社 搬送システムの搬送位置合わせ方法及び処理システム
JP4450664B2 (ja) * 2003-06-02 2010-04-14 東京エレクトロン株式会社 基板処理装置及び基板搬送方法
JP4884801B2 (ja) * 2005-10-06 2012-02-29 東京エレクトロン株式会社 処理システム
US20070209593A1 (en) * 2006-03-07 2007-09-13 Ravinder Aggarwal Semiconductor wafer cooling device
US20080175694A1 (en) * 2007-01-19 2008-07-24 Dong-Seok Park Unit and method for transferring substrates and apparatus and method for treating substrates with the unit
US20090016853A1 (en) * 2007-07-09 2009-01-15 Woo Sik Yoo In-line wafer robotic processing system
JP5306908B2 (ja) * 2009-06-03 2013-10-02 東京エレクトロン株式会社 搬送モジュール
JP2011129610A (ja) * 2009-12-16 2011-06-30 Tokyo Electron Ltd 搬送装置及びこの搬送装置を備えた被処理体処理装置
JP5586271B2 (ja) * 2010-03-02 2014-09-10 株式会社日立ハイテクノロジーズ 真空処理装置及びプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09162263A (ja) * 1995-10-05 1997-06-20 Dainippon Screen Mfg Co Ltd 基板処理装置及びこれに用いる基板搬送装置
JPH10178083A (ja) * 1996-12-18 1998-06-30 Kokusai Electric Co Ltd 基板搬送装置
JP2004288718A (ja) * 2003-03-19 2004-10-14 Tokyo Electron Ltd 基板搬送装置及び基板処理装置
JP2005197752A (ja) * 2004-01-07 2005-07-21 Samsung Electronics Co Ltd 基板製造装置及びそれに使用される基板移送モジュール

Also Published As

Publication number Publication date
JP5675416B2 (ja) 2015-02-25
KR20140008380A (ko) 2014-01-21
KR101813309B1 (ko) 2017-12-28
JP2012174716A (ja) 2012-09-10
US20140052286A1 (en) 2014-02-20

Similar Documents

Publication Publication Date Title
WO2011040301A1 (ja) 被処理体の搬送方法及び被処理体処理装置
TWI741133B (zh) 最佳化低能量/高生產率沉積系統
KR101429827B1 (ko) 반송 시스템
TWI408766B (zh) Vacuum processing device
US20150243490A1 (en) Substrate processing apparatus and substrate processing method
JP6063716B2 (ja) 基板処理装置及び基板搬送方法
JP2010147207A (ja) 真空処理装置及び真空搬送装置
JP2011119468A (ja) 被処理体の搬送方法および被処理体処理装置
WO2013077322A1 (ja) ワーク搬送システム
TW201546941A (zh) 基板處理方法及基板處理裝置
JP5518550B2 (ja) 被処理体処理装置
JP2020038880A (ja) 基板搬送機構、基板処理装置及び基板搬送方法
JP2020035954A (ja) 基板搬送機構、基板処理装置及び基板搬送方法
TWI630161B (zh) Substrate transfer chamber and container connection mechanism
JP2004288719A (ja) 基板搬送装置及び基板処理装置
JP2011174108A (ja) 冷却装置及びその冷却装置を備えた基板処理装置
JP5037551B2 (ja) 基板交換機構及び基板交換方法
WO2012111669A1 (ja) 被処理体の搬送方法及び被処理体処理装置
US11031269B2 (en) Substrate transport robot, substrate transport system, and substrate transport method
KR101942613B1 (ko) 처리 장치 및 처리 방법
JP6343536B2 (ja) 処理装置および処理方法
JP2002237507A (ja) 処理システム及び処理システムの被処理体の搬送方法
KR101246775B1 (ko) 반송 장치 및 이 반송 장치를 구비한 피처리체 처리 장치
JP4963075B2 (ja) 処理装置、処理方法、および記憶媒体
JP6674674B2 (ja) 基板保持方法および基板処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137024276

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14000286

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12747627

Country of ref document: EP

Kind code of ref document: A1