WO2012105495A1 - フェニルピルビン酸還元酵素並びに本酵素を用いた光学活性フェニル乳酸及び4-ヒドロキシ-フェニル乳酸の製造方法 - Google Patents

フェニルピルビン酸還元酵素並びに本酵素を用いた光学活性フェニル乳酸及び4-ヒドロキシ-フェニル乳酸の製造方法 Download PDF

Info

Publication number
WO2012105495A1
WO2012105495A1 PCT/JP2012/051989 JP2012051989W WO2012105495A1 WO 2012105495 A1 WO2012105495 A1 WO 2012105495A1 JP 2012051989 W JP2012051989 W JP 2012051989W WO 2012105495 A1 WO2012105495 A1 WO 2012105495A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
amino acid
ppr
seq
acid sequence
Prior art date
Application number
PCT/JP2012/051989
Other languages
English (en)
French (fr)
Inventor
一誠 小西
直樹 高谷
Original Assignee
旭化成ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成ケミカルズ株式会社 filed Critical 旭化成ケミカルズ株式会社
Priority to CN201280006892.5A priority Critical patent/CN103403157B/zh
Priority to US13/981,832 priority patent/US9187771B2/en
Priority to KR1020137019832A priority patent/KR101531121B1/ko
Priority to EP12741920.8A priority patent/EP2674490B1/en
Priority to JP2012555862A priority patent/JP5714033B2/ja
Publication of WO2012105495A1 publication Critical patent/WO2012105495A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/03Organic compounds
    • A23L29/035Organic compounds containing oxygen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/145Fungal isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/56Lactic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01237Hydroxyphenylpyruvate reductase (1.1.1.237)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi

Definitions

  • the present invention relates to phenylpyruvate reductase, its gene, and a method for producing optically active phenyllactic acid and optically active 4-hydroxyphenyllactic acid using them.
  • the antibacterial activity of 3-phenyllactic acid is not limited to molds such as Aspergillus ochraceus , Penicillium roqueforti , and Penicillium citrinum (Non-Patent Document 5), but also against harmful gram-negative and positive bacteria such as Listeria monocytogenes , Staphylococcus aureus , Escherichia coli O157, etc. (Non-patent documents 1, 2, 5 to 7).
  • This broad antibacterial activity suggests that 3-phenyllactic acid may be used as a food additive.
  • it is a useful compound that can be used as other pharmaceuticals, agricultural chemicals and intermediates thereof, aromatic biopolymers / plastics, functional materials such as liquid crystals, biocompatible (medical) materials, and the like.
  • 4-hydroxyphenyl lactic acid is derived from lactic acid bacteria in the same way as 3-phenyl lactic acid, not only is it suggested to be used as a food additive, but antibacterial additives for other uses, Expected to be a pharmaceutical, agrochemical and its intermediate.
  • Patent Document 1 As for the production method of these compounds, there have been many reports of attempts to produce optically active 3-phenyllactic acid by organic chemical synthesis (Patent Document 1). However, such chemical substances are used from the viewpoint of environmental problems and costs. A new synthesis method not used is desired. Furthermore, in 4-hydroxyphenyl lactic acid, a technology for mass production with high purity has not been established, and in organic chemical synthesis, the racemic product is the main product, that is, the state in which the D and L forms are mixed. A small amount of reagents are commercially available as reagents, and a synthesis method with higher production efficiency is desired.
  • Non-patent Document 2 Ascomycete Geotrichum candidum (Non-patent Document 2 ), Propionibacterium producing bacteria Propionibacterium freudenreichii (Non-patent Document 8 ), and various lactic acid bacteria (Non-patent Documents 5 and 9-11). .
  • Non-patent Document 12 L-lactate dehydrogenase of Lactobacillus sp SK007 was purified (Non-patent Document 12). ).
  • a recombinant D L-lactic acid dehydrogenase derived from Lactobacillus plantarum SK002 ( D, L-Lactate dehydrogenase) (Non-patent document 13), Rhizobium etli CFN 42-derived recombinant glyoxylate reductase / hydroxypyruvate reductase (Glyoxylate reductase / Hydroxypyruvate reductase) (Non-patent document 16).
  • D L-lactic acid dehydrogenase derived from Lactobacillus plantarum SK002
  • Rhizobium etli CFN 42-derived recombinant glyoxylate reductase / hydroxypyruvate reductase Glyoxylate reductase / Hydroxypyruvate reductase
  • Patent Documents 2 and 3 report optically active 3-phenyllactic acid-producing bacteria, but these are undesirable because R and S forms are mixed.
  • Patent Document 4 a production enzyme of Mycelia sterilia (FERM BP-2671), a PF1022 substance-producing fungus, acts on phenylpyruvic acid to reduce it, and (R) -2-hydroxy-3-phenylpropion It has been reported to convert to acid.
  • FERM BP-2671 Mycelia sterilia
  • the present invention provides phenylpyruvate reductase which can efficiently obtain highly pure optically active 3-phenyllactic acid and 4-hydroxyphenyllactic acid, a gene encoding the same, and an optical system using the same.
  • An object of the present invention is to provide a method for synthesizing active 3-phenyllactic acid and 4-hydroxyphenyllactic acid.
  • the present inventors have found a novel yeast that produces a large amount of optically active phenyllactic acid from glucose. And, optically active phenyl lactic acid is mass-produced because the yeast in particular has a novel and highly active affinity for phenylpyruvic acid as a substrate, and produces optically active phenyl lactic acid exclusively. It has also been found that it has a special phenylpyruvate reductase (hereinafter also referred to as “PPR”) and that the PPR is a new enzyme.
  • PPR phenylpyruvate reductase
  • ppr gene this novel and unique PPR-encoding gene
  • optically active phenyllactic acid can be obtained from glucose by this transformant.
  • the present inventor has shown that the PPR of the present invention also has an affinity for 4-hydroxyphenylpyruvic acid, and using 4-hydroxyphenylpyruvic acid as a substrate, high purity optically active 4-hydroxy It has been found that phenyllactic acid, specifically, high-purity D-4-hydroxyphenyllactic acid can be selectively produced. Moreover, it has been found that a method for producing high-purity optically active 4-hydroxyphenyl lactic acid that can be produced in large quantities using D-glucose that is inexpensive and stably available as a raw material (substrate) can also be established. .
  • the PPR of the present invention is a novel enzyme having only about 24% identity with the enzyme described in Patent Document 1 and only about 40% identity with a conventionally known enzyme. Moreover, as shown in the examples described later, the PPR of the present invention does not belong to the existing HPPR or GRHPR family, and forms a new family. Moreover, the PPR of the present invention has an enzyme activity several tens of times higher than that of the conventional PPR and has high industrial applicability. It is also apparent that the novel yeast of the present invention that produces such a specific enzyme and produces optically active phenyllactic acid from glucose is also an important genetic resource.
  • the present invention relates to the following inventions.
  • a polynucleotide encoding a phenylpyruvate reductase that produces D-phenyllactic acid using phenylpyruvate as a substrate (A) a polynucleotide comprising the base sequence represented by SEQ ID NO: 5, (B) a polynucleotide that hybridizes with the polynucleotide comprising the base sequence represented by SEQ ID NO: 5 under stringent conditions; (C) a polynucleotide comprising a base sequence having 60% or more identity with a polynucleotide comprising the base sequence represented by SEQ ID NO: 5, (D) a polynucleotide comprising the base sequence represented by SEQ ID NO: 6, 7 or 8, (E) a polynucleotide encoding the amino acid sequence represented by SEQ ID NO: 4, (F) a polynucleotide encoding an amino acid sequence in which one or several amino acids are deleted, substituted or added in
  • phenylpyruvate reductase comprising the following protein (a), (b) or (c), using phenylpyruvic acid or 4-hydroxyphenylpyruvic acid as a substrate, D-phenyllactic acid or D-4 -A process for producing D-phenyllactic acid or D-4-hydroxyphenyllactic acid, characterized in that hydroxyphenyllactic acid is produced and recovered: (A) a protein comprising the amino acid sequence represented by SEQ ID NO: 4, (B) a protein comprising an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 4, or (c) 60% or more of the amino acid sequence shown in SEQ ID NO: 4 A protein comprising an amino acid sequence having the identity of
  • the reaction conditions of the phenylpyruvate reductase are a reaction temperature of 20 to 40 ° C. and a pH of 6 to 7.
  • the microbial substrate is one or more substrates selected from D-glucose, L-phenylalanine, L-tyrosine, phenylpyruvic acid and 4-hydroxyphenylpyruvic acid.
  • MALDI-TOF MS Spectra for one of the PPR-derived tryptic peptides and MALDI-QIT-TOF MS 2 Spectra / PPR cation MALDI-TOF Mass Spectra from W. fluorescens NRRLYB-4819 It is an MS spectrum by the sequence MALDI-TOF. “Mass ion peaks at m / z 2000.0 (a) and 2427.3 (b) shown in MALDI-TOF MS spectrum and MALDI-QIT-TOF MS 2 spectrum / panel for one of the PPR-derived tryptic peptides. MS / MS Spectra ”is an MS spectrum by MALDI-TOF of the internal amino acid sequence of the present invention.
  • the internal amino acid sequence of PPR determined by MALDI-QIT-TOF MS analysis is shown in a box.
  • the positions of Primer NP and Oligo dT are indicated by arrows.
  • Nested primer 2427P is indicated by a dotted arrow.
  • the stop codon is indicated by an asterisk.
  • "Southern blot analysis of total DNA using pprA as a probe” Contains pprA gene sequence for total DNA of W. fluorescens TK1 strain treated with restriction enzymes ( Hind III, Eco RI, Pst I, Bam HI) Southern hybridization using a DNA fragment as a probe is shown. Total DNA of W.
  • fluorescens TK1 strain is digested with restriction enzymes Hind III, Eco RI, Pst I, Bam HI, electrophoresed, blotted on Zeta-Probe® blotting membrane (Bio-Rad), probe Hybridization was performed using "Effect of phenylalanine on PPR activity and gene expression" PPR activity and ppr gene ( pprA gene) expression when W. fluorescens TK1 strain is cultured in GPMM medium (+ Phe), GPAMM medium (+ PPA), MM medium (Glc) Indicates the amount.
  • A Specific activity of PPR in a cell-free extract of W. fluorescens TK1 cultured at 30 ° C. for 10 hours.
  • Lane 1 Purified rPPR M: Molecular weight standard (Bio-Rad Precision Protein Standard kit) The molecular weight is shown at the left end.
  • the cell concentration and the amount of phenyllactic acid produced when D-glucose is used as a substrate of a phenylalanine-producing microorganism (ATCC31882 strain / pHSGpprA) containing the pprA gene are shown.
  • An expression vector containing the tyrA gene is shown.
  • Phenylpyruvate reductase of the present invention (1) Enzymatic properties of the PPR of the present invention (2) Amino acid sequence of the PPR of the present invention and gene encoding the same (3) Method for obtaining the PPR of the present invention 2.
  • Production method of optically active 3-phenyl lactic acid (1) Production method of optically active phenyl lactic acid by PPR of the present invention (2) Production method of optically active 3-phenyl lactic acid by a microorganism having a gene encoding PPR of the present invention Process for producing optically active 4-hydroxyphenyl lactic acid (1) Process for producing optically active 4-hydroxyphenyl lactic acid by PPR of the present invention (2) Optically active 4-hydroxyphenyl lactic acid by a microorganism having a gene encoding the PPR of the present invention Manufacturing method
  • Phenylpyruvate reductase of the present invention is a novel enzyme and has the following enzymological properties, amino acid sequence and gene encoding the same.
  • This PPR is preferably one that forms a homodimer.
  • High purity D-phenyl lactic acid or D-4-hydroxyphenyl lactic acid can be obtained by the PPR of the present invention. Since optically active phenyllactic acid or 4-hydroxyphenyllactic acid can be produced directly, D-form L-forms that are mixed in almost equal amounts like conventional organic compounds can be separated from each other or either one can be removed. Therefore, the work efficiency can be improved by avoiding the separation and purification process such as purification, and high purity is easy. Since highly purified optically active phenyl lactic acid and hydroxyphenyl lactic acid can be easily obtained, they can be easily used in various fields, especially in technical fields where high purity is required, such as pharmaceuticals, food additives, agricultural chemicals and the like.
  • the PPR of the present invention uses phenylpyruvic acid and 4-hydroxyphenylpyruvic acid as substrates, has high affinity and acts on this, and acts as an optically active phenyllactic acid (D-3-phenyllactic acid) and 4-hydroxyphenyllactic acid. This produces (D-4-hydroxyphenyl lactic acid). It is preferred to enantioselectively produce D-3-phenyl lactic acid and D-4-hydroxyphenyl lactic acid.
  • the substrate is not limited to phenylpyruvic acid and hydroxypyruvic acid, but in addition to this, it is preferable to reduce glyoxylic acid.
  • the k cat / K m value is the largest when phenylpyruvic acid is used as a substrate.
  • NADH and NADPH can be used as coenzymes, but their specificity for NADPH is high.
  • An enzyme having a k cat / K m value (specificity constant) of 300 to 500 s ⁇ 1 mM ⁇ 1 (Km value 0.40 ⁇ 0.07 mM) in phenylpyruvic acid and NADPH is desirable.
  • the constant is not particularly limited.
  • the specificity constant k cat / K m value indicates the efficiency with which the enzyme converts a substrate into a product.
  • Examples of measurement conditions at this time include the following methods. Using 50 mM phosphate buffer (pH 6.5), 2 mM phenylpyruvic acid, 0.1 mM NADPH as an enzyme reaction solution, an enzyme was added thereto, and the reaction was performed at a temperature of 25 ° C., an ultraviolet / visible spectrophotometer (340 nm) Quantify using.
  • the molar extinction coefficient of NADPH absorption at a wavelength of 340 nm is 6.2 mM ⁇ 1 ⁇ cm ⁇ 1 .
  • optically active phenyllactic acid D-3-phenyllactic acid
  • phenylpyruvic acid 1 mol
  • NADPH 1 mol
  • the molar ratio of D-3-phenyllactic acid: L-3-phenyllactic acid is 100 to 90: 0 to 10, more preferably 100 to 95: 0 to 5, and more preferably 100 to 98: 0 to 2. Further, D-3-phenyllactic acid (optically active phenyllactic acid) having an optical purity of 99% or more is preferable.
  • This reaction is preferably an irreversible reaction.
  • the irreversible reaction means that no enzymatic reaction occurs or phenylpyruvic acid cannot be detected when a combination of D-3-phenyllactic acid, L-3-phenyllactic acid, NAD + , and NADP + is used as a substrate.
  • Substrate One or more selected from 4-hydroxyphenylpyruvic acid, 3-phenylpyruvic acid, glyoxylic acid and hydroxypyruvic acid are used as a raw material (substrate) to catalyze the reduction reaction. It is desirable not to use pyruvic acid and oxaloacetic acid as substrates.
  • the PPR of the present invention shows a molecular weight of 30,000 to 50,000 daltons, particularly a molecular weight of 40,000 daltons, as measured by SDS-polyacrylamide gel electrophoresis (method of Lammli et al.).
  • the molecular weight is 70,000 to 90,000, particularly 80,000, as measured by gel filtration.
  • the enzyme was equilibrated in advance with an elution buffer (10% glycerol, 1 ⁇ mM dithiothreitol (DTT, 20 mM phosphate buffer, 0.15 mM NaCl pH7). Apply to (Superose 6 10/300) and elute with 1 column volume of elution buffer.
  • elution buffer 10% glycerol, 1 ⁇ mM dithiothreitol (DTT, 20 mM phosphate buffer, 0.15 mM NaCl pH7.
  • bovine serum albumin M.W. 67,000
  • chymotrypsinogen M.W. 25,000
  • ⁇ -amylase M.W. 45,000
  • ⁇ -amylase M.W. 200,000
  • Tween 80 registered trademark
  • 2-mercaptoethanol Almost no inhibition (about 10 to 20%) by one or more inhibitors selected from Triton X-100 (tritonX) and ethylenediaminetetraacetic acid (EDTA).
  • enzyme activity is calculated
  • the PPR of the present invention preferably has at least the following N-terminal amino acid sequence and / or partial amino acid sequence of the internal amino acid sequence.
  • this partial amino acid sequence one or several amino acids may be substituted, deleted, or inserted.
  • N-terminal amino acid sequence NKK-terminal MKKPQVLILGRI 12 amino acid residue sequence (SEQ ID NO: 1).
  • the sequence of amino acid residues on the N-terminal side may be obtained by a known method (Edman, P. (1950) Acta Chem. Scand. 4: 283-293).
  • an enzyme is electrophoresed by SDS-polyacrylamide electrophoresis, and the resulting enzyme band is electrically transferred to a polyvinylidene fluoride (PVDF) membrane and then analyzed by a protein sequencer. Can be determined.
  • PVDF polyvinylidene fluoride
  • the tryptic peptide may be obtained by a known method (Shimizu, M., et al. (2009) Proteomics 9, 7-19).
  • the purified PPR of the present invention migrated on SDS-PAGE is excised from a gel and digested in gel with trypsin (temperature 36 to 38 ° C., pH 8 to 9, 4 to 18 hours).
  • trypsin digestion peptide kit may be used. Specific examples include Trypsin Profile Profile IGD Kit: in-gel digest kit (SIGMA-ALDORICH).
  • the PPR of the present invention includes the following proteins (a), (b) and (c).
  • (B) In the amino acid sequence shown in SEQ ID NO: 4, it consists of an amino acid sequence in which one or several amino acids are substituted, deleted or added, has phenylpyruvic acid reducing activity, and has high affinity for phenylpyruvic acid protein.
  • a protein comprising an amino acid sequence having 60% or more identity with the amino acid sequence represented by SEQ ID NO: 4, having phenylpyruvate reducing activity, and high affinity for phenylpyruvic acid.
  • the identity with any known one is extremely about 20% to 50%. It is suggested that the PPR of the present invention is a novel enzyme and forms a new enzyme group.
  • the ppr gene of the present invention is a novel gene because it includes the gene encoding the PPR of the present invention.
  • the identity of the amino acid sequence and the base sequence is calculated by a known algorithm such as the Lipman-Person method (Science, 227, 1435, (1985)), and can be performed by comparing the sequences accordingly. it can.
  • the identity can be calculated using a search homology or Maxim matching program of the homology analysis (Search homology) program of genetic information processing software Genetyx-ver 8.1 (software development: Genetics). For example, it is calculated by performing analysis with Unit size tocompare (ktup) as 2.
  • the transcription initiation region is a region including a promoter and a transcription initiation point
  • the ribosome binding site is a Shine-Dalgarno (SD) sequence (Proc.cNatl. Acad. Sci. USA 74, 5463 (1974)).
  • the amino acid sequence in which one or several amino acids are substituted, deleted, or added means an amino acid sequence that is functionally equivalent to SEQ ID NO: 4, respectively.
  • An amino acid sequence in which several, preferably 1 to 6, more preferably 1 to 3 amino acids are substituted, deleted or added and still have phenylpyruvic acid reducing activity and high for phenylpyruvic acid A sequence that retains affinity.
  • the addition includes addition of one or several, preferably 1 to 6, more preferably 1 to 3 amino acids to both ends.
  • the functionally equivalent amino acid may be an enzyme having at least phenylpyruvate reducing activity and 4-hydroxyphenylpyruvate reducing activity, and may have additional properties. Furthermore, it is preferred to have a high affinity for phenylpyruvic acid. Further, it preferably has substantially the same function as the protein encoded by the ppr gene shown in SEQ ID NO: 5, specifically, the above-described PPR function of the present invention.
  • having phenylpyruvic acid reducing activity and 4-hydroxyphenylpyruvic acid reducing activity means that phenylpyruvic acid and 4-hydroxyphenylpyruvic acid are respectively converted into D-3-phenyllactic acid and 4-hydroxyphenylpyruvic acid as in the above-mentioned schemes 1 and 2, respectively. It means D-4-hydroxyphenyl lactic acid, but the level of its activity is not particularly limited as long as it exhibits its function, that is, the same level as the protein shown in SEQ ID NO: 4. Not only that, it may be higher or lower.
  • the additional properties include properties that are superior in stability compared to the protein consisting of the amino acid sequence shown in SEQ ID NO: 4, properties that have a wide range of reaction temperatures and pH, and the like.
  • amino acid sequence shown in SEQ ID NO: 4 60% or more, preferably 65% or more, more preferably 70% or more, more preferably 75% or more, more preferably 80% or more, more preferably 85% or more.
  • An amino acid sequence having an identity of preferably 90% or more, still more preferably 95% or more, particularly preferably 98% or more is suitable.
  • the protein consisting of the amino acid sequence shown in SEQ ID NO: 4 of the present invention and the phenylpyruvate reducing activity as described above. If it is a functionally equivalent enzyme having at least high affinity for phenylpyruvic acid and within the range of identity of about 60% or more, it is expected to be included in this novel group of enzymes. . In general, it is considered that proteins having homology of 60% or more often have similar enzyme specificity, and thus those having such homology are considered to be included in the same enzyme group. Yes.
  • the ppr gene of the present invention is a gene encoding a protein consisting of the amino acid sequence shown in SEQ ID NO: 4 or a protein consisting of an amino acid sequence functionally equivalent to the amino acid sequence.
  • the following (a) to (d) Polynucleotides are also included. Of these, the following (a) to (d) are preferable.
  • a polynucleotide comprising the base sequence represented by SEQ ID NO: 5.
  • (B) a polynucleotide that hybridizes with a polynucleotide consisting of the base sequence shown in SEQ ID NO: 5 under a stringent condition and encodes a protein having phenylpyruvate reducing activity.
  • (C) a polynucleotide encoding a protein comprising a base sequence having 60% or more identity with the base sequence shown in SEQ ID NO: 5 and having a phenylpyruvic acid reducing activity and a high affinity for phenylpyruvic acid .
  • (D) A polynucleotide encoding a protein comprising the base sequence shown in SEQ ID NO: 6, 7 or 8 and having a phenylpyruvic acid reducing activity and a high affinity for phenylpyruvic acid.
  • the ppr gene of the present invention has a partial nucleotide sequence in the polynucleotide (DNA, etc.) represented by the nucleotide sequence of SEQ ID NO: 5 by mutagen treatment, random mutation, specific site mutation, deletion or insertion, etc.
  • the gene consisting of For example, a base sequence in which one or several (eg, 2 to 3) base sequences are substituted, deleted, or added can be used. The addition includes addition to both ends.
  • “one or several” means 1 to 6, preferably 1 to 3.
  • stringent conditions include conditions described in, for example, Molecular cloning-a laboratory manual, 2 nd edition (Sambrook et al, 1989). That is, 6XSSC (1XSSC composition: 0.15M sodium chloride, 0.015M sodium citrate, pH 7.0), 0.5% SDS, 5X Denhart and 100 mg / mL herring sperm DNA together with the probe at 65 ° C. Examples include conditions of constant temperature for 8 to 16 hours and hybridization.
  • genes shown in (b) to (d) above have, for example, a higher expression level of mRNA, higher stability of the mRNA, and stability of the translated protein than the gene shown in (a). It may have additional properties such as excellent properties.
  • any one or more of a transcription initiation control region, a translation initiation control region, and a secretion signal region may be linked upstream of these genes (a) to (d).
  • the transcription initiation region is a region including a promoter and a transcription initiation site
  • the ribosome binding site is a Shine-Dalgarno (SD) sequence (Proc. Nalt. Acad) that forms a translation initiation control region together with the initiation codon. .Sci. USA 74, 5463 (1974))
  • upstream or downstream of a gene is not a position from the replication start point, but upstream indicates a region continuing on the 5 ′ side of the gene or region regarded as a target, while downstream indicates a target A region following the 3 ′ side of the gene or region captured as.
  • the PPR of the present invention has introduced a Wickerhamia yeast or a mutant thereof, or a gene encoding the PPR or a fragment thereof. It can be produced and obtained by a transformant (preferably a microorganism).
  • the Wickelhamia yeast is not particularly limited as long as it is an ascomycete yeast and has a gene encoding the above-described enzyme PPR, and / or a function of producing D-3-phenyllactic acid from phenylpyruvic acid and / or D -Those having the function of producing optically active phenyllactic acid (D-3-phenyllactic acid) from glucose via phenylpyruvic acid are preferred.
  • yeast examples include Wickerhamia fluorescens and bacteria having equivalent mycological and physiological properties.
  • a W. fluorescens TK1 (FERM AP-22048) strain (hereinafter, also referred to as “yeast TK1”), a bacterium equivalent thereto, and mutants thereof may be mentioned.
  • the mutant strain can be obtained from a wild-type yeast TK1 strain by a known technique of treatment with ultraviolet rays, ionizing radiation, nitrous acid, nitrosoguanidine, ethylmethanesulfonate, and the like.
  • Mutant strains include those obtained by further mutating mutant strains from wild strains.
  • the isolated strain 1 platinum loop was inoculated into D-glucose-added MM liquid medium (see Table 1) and cultured at 28 ° C. for 2 to 4 days.
  • the culture supernatant of each strain is obtained by a known method, and the optically active phenyl lactic acid in this culture supernatant is measured by a known measurement method (for example, ODS liquid chromatographic analysis, gas chromatographic analysis, etc.). Those having good lactic acid production were selected to obtain the present strain TK1 collected from soil.
  • W. fluorescens TK1 strain This Wickerhamia fluorescens TK1 strain is a new microorganism from the above, as a new microorganism on December 13, 2010, 1-1-1 Tsukuba Center, Tsukuba City, Ibaraki 305-8856 Japan, National Institute of Advanced Industrial Science and Technology Deposited at the Patent Organism Depositary (IPOD) as Wickerhamia fluorescens TK1 (FERM AP-22048).
  • the PPR of the present invention In order to produce the PPR of the present invention from the yeast TK1 strain, it may be inoculated into a general yeast culture medium and cultured at an appropriate temperature. Production of the PPR of the present invention from the culture can be performed according to a conventional method. Specifically, after centrifuging the culture solution and removing the cells, it can be concentrated and recovered from the cell-free extract using a known enzyme separation and purification method. Separation and purification methods include, for example, filtration methods such as gel filtration chromatography and ultrafiltration membrane, and enzyme precipitation methods by adding ammonium sulfate.
  • the PPR of the present invention can be obtained from the natural world as described above, but its gene is cloned from the chromosomal DNA of the above-mentioned microorganism (preferably ascomycete yeast) to produce and recover the PPR in large quantities. You can also
  • the DNA encoding the PPR of the present invention can be stabilized by ligating the gene to a DNA vector that can be stably amplified or introducing it onto a chromosomal DNA that can be maintained in the gene.
  • the method of introducing the PPR of the present invention by introducing the gene into a host that can be amplified and then expressed in a stable and efficient manner can be employed.
  • the ppr gene of the present invention can be obtained by known methods (for example, “Sambrook, J., Fritch, EF, and Maniatis, T. (1989) in Molecular Cloning: A Laboratory Manual, Vol. 2, Cold Spring Harbor Laboratory Press”). , Cold Spring Harbor, NY ”).
  • genomic DNA is extracted from a PPR producing strain, cleaved with an appropriate restriction enzyme, and a library composed of genomic DNA of the PPR producing strain is prepared using a phage vector.
  • a library consisting of cDNA of the PPR-producing strain is prepared using a phage vector. To do.
  • genomic DNA or cDNA from PPR producing strain subjected to polymerase chain reaction as a template (PCR) using it, ppr Amplify the DNA fragment of the gene. Using this DNA fragment as a probe, a genomic library or a cDNA library is screened. In this way, it is possible to isolate the entire region of the ppr gene or the region necessary for expression.
  • a restriction enzyme cleavage site is introduced upstream of the translation initiation codon and downstream of the translation termination codon by a technique such as PCR, and the polypeptide comprising only the ppr gene of the present invention It is possible to obtain a gene fragment containing
  • vectors that can be used in the present invention include those that are incorporated into host chromosomal DNA, and vectors that have a self-replicating autonomously replicating sequence present in a host cell in the form of a plasmid.
  • examples of the plasmid vector include pUC18 and pBR322 (Takara Bio) when Escherichia coli is used as a host, and pPK4 and the like when corynebacteria are used. Note that the number of copies of the gene present in the host cell may be either one or multiple copies.
  • a promoter (control region) is operably linked upstream of a polynucleotide sequence encoding PPR, and a terminator is operably linked downstream, and in some cases, a genetic marker and / or other It can be made by operably linking control sequences.
  • the promoter or terminator is linked to the gene of the present invention and the expression unit is inserted into the vector by a known method (Sambrook, J., Fritch, E. F., and Maniatis, T. (1989) in Molecular Cloning: A Laboratory Manual, Vol. 2, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY).
  • the promoter and terminator used in the present invention are not particularly limited.
  • a regulatory sequence of a glycolytic enzyme gene such as 3-phosphoglycerate kinase or glutaraldehyde-3-phosphate dehydrogenase; an amino acid such as tryptophan synthase
  • control sequences of synthetic enzyme genes control sequences of hydrolase genes such as amylase, protease, lipase, and cellulase
  • control of oxidoreductase genes such as nitrate reductase, orotidine-5'-phosphate dehydrase, alcohol dehydrase, etc.
  • Each regulatory sequence means a polynucleotide that can exhibit a desired function in each regulatory region.
  • the gene of the present invention may be expressed as a fusion protein by linking to a foreign gene encoding a translation region of another protein.
  • the gene marker is introduced into the recombinant vector by, for example, introducing an appropriate restriction enzyme cleavage site into the control sequence by PCR and inserting it into the plasmid vector, and then complementing the drug resistance gene and / or auxotrophic complementation. This can be done by linking a selectable marker gene such as a gene.
  • the selection marker can be appropriately selected according to the selection method of the transformant.
  • a gene encoding drug resistance and a gene complementary to auxotrophy can be used.
  • Examples of the drug resistance gene include genes for drugs such as destomycin, benomyl, oligomycin, hygromycin, G418, bleomycin, phosphinothricin, ampicin and kanamycin.
  • genes that complement this auxotrophy include argB gene, pyr4 gene, trpC gene, TRP1 gene, niaD gene, LEU2 gene, and URA3 gene.
  • a transformant can be obtained by transforming a host (preferably a microorganism) using the recombinant vector obtained above.
  • the host to be used is not particularly limited as long as it can be used as a host for gene recombination, preferably a microorganism.
  • the host that can be used include microorganisms such as arbitrary bacteria and fungi.
  • these microorganisms are preferably recombinant microorganisms that have been subjected to mutation such as gene substitution, insertion, deletion, or inactivation so that optically active phenyllactic acid or 4-hydroxyphenyllactic acid is easily produced.
  • a phenylalanine-producing bacterium phenylalanine-producing recombinant microorganism
  • a tyrosine-producing bacterium tyrosine-producing recombinant microorganism
  • Examples of methods for causing mutations in the genes described above include, for example, recombinant PCR (PCR Technology, Stockton press (1989)), partial specific displacement method (Kramer, W. and Frits, H., J. Methods in Enzymology, 154,350 (1987)], SOE (splicing by overlap extension) -double crossover method using DNA fragments prepared by PCR method [Gene, 77, 61, (1987)], chemical agent treatment (N-methyl- N′-nitrosoguanidine, nitrous acid, etc.) and a method of chemically synthesizing the target gene.
  • the phenylalanine-producing bacterium may be any microorganism that has a gene mutated so that L-phenylalanine can be mass-produced (preferably L-phenylalanine is mass-produced using D-glucose as a substrate) using known techniques.
  • the phenylalanine-producing recombinant microorganism is transformed with a recombinant vector containing DNA fragments encoding 3-deoxy-D-arabinohepturonic acid-7-phosphate synthase and prefenate dehydrogenase, which are desensitized to feedback inhibition.
  • microorganisms include, for example, ATCC31882 strain, ATCC3188 strain 3, ATCC31884 strain (American Type Culture collection), AJ12740 strain (FERM P-12999), AJ12741 strain (FERM P-13000) (JP 1993-344881) And other phenylalanine-producing recombinant microorganisms such as Corynebacteirum glutamicum and the like.
  • the tyrosine-producing bacterium is preferably a microorganism having a mutated gene so that L-tyrosine can be mass-produced using a known technique (preferably L-tyrosine is mass-produced using D-glucose as a substrate).
  • a tyrosine-producing recombinant microorganism a group obtained by introducing a tyrA gene (SEQ ID NO: 24: YP_002927556) into a phenylalanine-producing bacterium (for example, E. coli ATCC31882 (obtained from ATCC)) by a known method.
  • Recombinant Escherichia coli Escherichia microorganisms having a mutant prefenate dehydrogenase that has L-tyrosine-producing ability and is desensitized to L-feedback inhibition (for example, JP 2006-311833 and JP 2007) -325592).
  • the transformant (microorganism) of the present invention can be obtained by introducing the recombinant vector for gene expression prepared as described above into the host according to a conventional method.
  • Examples of the introduction method include an electroporation method, a polyethylene glycol method, an Agrobacterium method, a competent method, a lithium acetate method, and a calcium chloride method. What is necessary is just to select suitably according to the host cell to be used.
  • the PPR of the present invention can produce optically active phenyllactic acid with very high purity, and the possibility that the enantiomers have different physiological activities is extremely low or almost none. Moreover, since it is an irreversible reaction, optically active phenyllactic acid may be accumulated at a high concentration, which is advantageous in terms of recovery efficiency. Furthermore, the PPR of the present invention has a high affinity for phenylpyruvic acid, and besides this, a wide variety of substances such as 4-hydroxyphenylpyruvic acid, glyoxylic acid, and hydroxypyruvic acid can be used as substrates.
  • k cat / K m value of PPR of the present invention since also high that several tens of times of k cat / K m values for known phenylpyruvic acid reductase, PPR of the present invention, large amount of optically active phenyl acid It is also possible to generate.
  • the PPR of the present invention can be mass-produced with a transformant using a gene encoding the PPR, optically active phenyllactic acid can be industrially mass-produced using the obtained PPR. It is also possible to do.
  • the method for producing optically active 3-phenyllactic acid according to the present invention only needs to have at least a production process (enzyme reaction system: see the above-mentioned scheme 1) capable of producing D-3-phenyllactic acid from phenylpyruvic acid.
  • those having a production process for producing phenylpyruvic acid from a raw material such as D-glucose and L-phenylalanine are preferred because the production cost and availability are easy.
  • the production process for producing phenylpyruvic acid from D-glucose is not particularly limited, and examples thereof include an organic synthesis method and a fermentation method (biosynthesis reaction), and examples thereof include a shikimate pathway.
  • the production process for producing L-phenylalanine from D-glucose is not particularly limited, and examples thereof include known methods such as JP-A-5-344811 and US Pat. No. 4,681,852.
  • the production process for producing phenylpyruvic acid from L-phenylalanine includes an enzyme reaction system using an aminotransferase such as aminotransferase.
  • the production process for example, a reaction system by fermentation of enzymes, microorganisms, etc.
  • a reaction system by fermentation of enzymes, microorganisms, etc. that can produce phenylpyruvic acid from raw materials such as D-glucose and L-phenylalanine is used as the optically active 3-phenyllactic acid production method of the present invention. It is preferable to be included in
  • optically active 3-phenyllactic acid from a substrate and recover optically active 3-phenyllactic acid using the PPR of the present invention and / or the microorganism of the present invention.
  • a culture solution in which the microorganism of the present invention is cultured a culture solution from which the microorganism has been removed, a microorganism disruption solution or a debris is removed A cell-free extract or the like may be used.
  • a series of enzymes for the reaction of the shikimate pathway include a series of enzymes for the reaction of the shikimate pathway (specifically, 7-phospho-2-dehydro-3-deoxyarabinoheptonic acid aldolase, 3-dehydroquinic acid synthase, 3-dehydroquinic acid dehydratase, Shikimate dehydrogenase, shikimate kinase, 3-phosphoshikimate 1-carboxyvinyltransferase (5-enolpyruvylshikimate-3-phosphate synthase, chorismate synthase, chorismate mutase, etc.) and phenylalanine synthase group ( Specifically, prephenate dehydrogenase, tyrosine aminotransferase, etc.) may be included.
  • shikimate pathway specifically, 7-phospho-2-dehydro-3-deoxyarabinoheptonic acid aldolase, 3-dehydroquinic acid synthase, 3-
  • NADPH and / or NADH is preferably used as a coenzyme, and NADPH is preferable because the yield of optically active phenyllactic acid is increased.
  • the reaction mode of the optically active 3-phenyllactic acid production method of the present invention is not particularly limited, and may be performed in a batch system or a continuous flow system.
  • the PPR of the present invention and the microorganism of the present invention may be immobilized.
  • the immobilization technique is not particularly limited as long as it is a known technique.
  • a carrier binding method in which a microorganism / enzyme is immobilized on a water-insoluble carrier through physical adsorption, ionic bonding, or binding; glutaraldehyde
  • Examples of such a crosslinking method include cross-linking and immobilization with a reagent having a bivalent functional group such as a gel having a network structure and a comprehensive method in which microorganisms and enzymes are confined in a semipermeable membrane.
  • the solvent used in the reaction may be either a polar or nonpolar solvent, but water and / or a water-soluble solvent is preferable, and 90 to 100% by mass of water is particularly preferable.
  • the water-soluble organic solvent is preferably such that a compound having a benzene ring is easily dissolved, and examples thereof include linear or branched alcohols such as acetone and acetone.
  • the lower alcohols preferably having 1 to 5 carbon atoms
  • examples of the lower alcohols include monohydric alcohols such as methanol, ethanol and propanol, and divalent or polyhydric alcohols such as 1,3-butanediol. You may combine these suitably.
  • optically active 3-phenyllactic acid can be produced from an enzyme substrate and recovered. As described above, optically active 3-phenyllactic acid may be continuously obtained by using an enzyme other than PPR together.
  • phenylpyruvic acid is preferable because the yield of optically active phenyllactic acid increases.
  • the reaction temperature is preferably 5 to 50 ° C., more preferably 10 to 40 ° C., and still more preferably 20 to 40 ° C.
  • the reaction time (one turn) is preferably 12 hours to 1 week, more preferably 2 to 4 days.
  • the reaction pH is preferably 5 to 8, more preferably 6 to 7.
  • the pH adjustment at this time may be performed with a known pH adjusting agent such as a phosphate buffer.
  • the method for producing optically active phenyllactic acid of the present invention comprises the following (a), (b) or (c): It is preferable to culture using a microorganism containing a gene encoding a phenylpyruvate reductase consisting of protein, to produce optically active phenyllactic acid from a microbial substrate, and to recover this.
  • A a protein comprising the amino acid sequence set forth in SEQ ID NO: 5
  • (b) consisting of an amino acid sequence in which one or several amino acids are substituted, deleted, or inserted in the amino acid sequence set forth in SEQ ID NO: 5, and reduced by phenylpyruvate
  • a protein having activity and high affinity for phenylpyruvic acid (c) consisting of an amino acid sequence having 60% or more identity with the amino acid sequence shown in SEQ ID NO: 5, having phenylpyruvic acid reducing activity, Protein with high affinity for pyruvate.
  • this microorganism refers to the above-mentioned wild strain (TK1 strain) and its mutant strain, or the above-described transformant, and may be aerobic or anaerobic.
  • the microorganism substrate is preferably at least one selected from D-glucose, L-phenylalanine, phenylpyruvic acid and the like.
  • D-glucose when used as the microbial substrate, it is suitable because it can be obtained at low cost and optically active phenyllactic acid can be produced in a large amount.
  • the discovery of a ppr gene capable of mass-producing optically active 3-D- phenyllactic acid is extremely useful in industry. In such a case, a recombinant microorganism in which a gene encoding the PPR of the present invention is introduced into an L-phenylalanine-producing microorganism is preferable.
  • a series of reactions for the reaction of the shikimate pathway You may utilize microorganisms which produce the said microbial substrate, such as a microorganism which has a gene which codes an enzyme group, and a microorganism which has a gene which codes the enzyme group of a phenylalanine synthesis system.
  • a nutrient medium used for the growth of each microorganism preferably contains at least the above microbial substrate.
  • the microbial substrate is preferably 0.01 to 20% (mass / volume), more preferably 0.1 to 3% (mass / volume), and further preferably 1 to 2% (mass / volume) in the medium. ) Is preferred.
  • the nutrient medium is, for example, if the microorganism is a yeast, the culture medium 1L in, D- glucose 1 ⁇ 30 g; other than glucose microbial substrate 0 ⁇ 5g; NaNO 3 5 ⁇ 7g; KCl 0.4 ⁇ 0.6g; MgSO 4 7H 2 O 0.4-7 g; KH 2 PO 4 1-2 g; Hutner's Trace elements 1-3 mL; MM medium containing distilled water. Hutner's Trace elements are as in the examples described later. Further, 0 to 3% of yeast extract and 0 to 2% of polypeptone may be used as appropriate.
  • Hutner ’s “Trace” elements and Trace “elements” 2 are as in the examples described later (see Tables 2 and 12).
  • trypsin 9 to 11 g and yeast extract 4 to 5 g.
  • Culture conditions may be set as appropriate according to the microorganism used.
  • the culture temperature is preferably 5 to 50 ° C., more preferably 10 to 40 ° C., and still more preferably 20 to 40 ° C., because microbial growth is good and the substrate and product are not precipitated. .
  • the culture period (one turn) is preferably about 0.5 days to 2 weeks, more preferably about 1 week, and further preferably about 3 to 5 days.
  • the culture pH is preferably 4 to 9, more preferably 6 to 7 for yeast, and 6 to 8 for E. coli.
  • the culture pH adjustment may be appropriately controlled with a pH adjuster so as to be within a predetermined range.
  • the stirring is preferably performed at 100 to 1000 rpm, more preferably 400 to 600 rpm.
  • aeration culture when aeration culture is performed using air, it is preferably 0.01 to 1 L / min, more preferably 0.1 to 0.3 L / min.
  • the concentration of the culture substrate in the culture medium during the culture period is within a predetermined concentration, for example, a 500 g / L D-glucose solution is preferable. It may be added continuously or discontinuously at 0.1 to 5 g / L / h, more preferably 1 to 2 g / L / h.
  • the method for recovering 3-D-phenyllactic acid is not particularly limited, and a known separation and purification method may be used.
  • a means for removing the cells known means such as centrifugation and filtration can be used.
  • means for separating and purifying 3-D-phenyllactic acid include known means such as crystallization, ultrafiltration, ion exchange, activated carbon treatment, and chromatographic separation.
  • Examples of chromatographic separation include a technique using ODS column chromatography.
  • the method for producing optically active 4-hydroxyphenyl lactic acid (D-4-hydroxyphenyl lactic acid) of the present invention is a production process (enzyme reaction system: the above-mentioned) that can produce optically active 4-hydroxyphenyl lactic acid from 4-hydroxyphenylpyruvic acid. (See Scheme 2).
  • 4-hydroxyphenylpyruvic acid serving as a substrate is one of the metabolic intermediates of phenylalanine and tyrosine, a production process using these metabolic systems may be used.
  • those having a production process for producing optically active 4-hydroxyphenyl lactic acid from a raw material such as D-glucose and L-tyrosine are preferred because production costs and availability are easy.
  • the production process for producing L-tyrosine from D-glucose is not particularly limited, and examples thereof include known methods such as JP-A-2006-311833.
  • the production process for producing tyrosine from L-phenylalanine and then 4-hydroxyphenylpyruvic acid includes an enzyme reaction system using phenylalanine hydroxylase, tyrosine aminotransferase, and the like.
  • the production process for producing 4-hydroxyphenylpyruvic acid from D-glucose is not particularly limited and includes organic synthesis methods, fermentation methods (biosynthetic reactions), and the like. For example, the shikimate pathway is used. Can be mentioned.
  • the above-mentioned optically active 4-hydroxyphenyl is produced by a production process (for example, a reaction system by fermentation of enzymes, microorganisms, etc.) that can produce 4-hydroxyphenylpyruvic acid from raw materials such as D-glucose and L-tyrosine. It is preferable to encapsulate the lactic acid production method.
  • a production process for example, a reaction system by fermentation of enzymes, microorganisms, etc.
  • 4-hydroxyphenylpyruvic acid from raw materials such as D-glucose and L-tyrosine. It is preferable to encapsulate the lactic acid production method.
  • optically active 4-hydroxyphenyl lactic acid is produced from a substrate using the above-described biocatalyst (preferably an enzyme and / or a microorganism), from which optically active 4-hydroxyphenyl lactic acid (preferably D-4 is produced). It is preferred to recover (hydroxyphenyl lactic acid).
  • biocatalyst preferably an enzyme and / or a microorganism
  • what contains at least the enzyme may be used.
  • a culture solution in which the microorganism is cultured a culture solution from which the microorganism has been removed, a cell-free extract from which a microorganism disruption solution or debris has been removed, etc. It may be used.
  • These include a series of enzymes for the reaction of the shikimate pathway (specifically, 7-phospho-2-dehydro-3-deoxyarabinoheptonic aldolase, 3-dehydroquinic acid synthase, 3-dehydroquinic acid dehydratase, Shikimate dehydrogenase, shikimate kinase, 3-phosphoshikimate 1-carboxyvinyltransferase (5-enolpyruvylshikimate-3-phosphate synthase), chorismate synthase, chorismate mutase, etc .; Specifically, prephenate dehydrogenase, tyrosine aminotransferase and the like); phenylalanine hydroxylase and the like may be contained.
  • NADPH and / or NADH is preferably used as a coenzyme, and among these, NADPH is preferable because the yield of optically active 4-hydroxyphenyllactic acid is increased.
  • the reaction mode of the optically active 4-hydroxyphenyl lactic acid production method of the present invention is not particularly limited, and may be performed in a batch system or a continuous flow system.
  • the enzyme and the microorganism may be immobilized.
  • the immobilization technique is not particularly limited as long as it is a known technique.
  • a carrier binding method in which a microorganism / enzyme is immobilized on a water-insoluble carrier through physical adsorption, ionic bonding, or binding; glutaraldehyde
  • Examples of such a crosslinking method include cross-linking and immobilization with a reagent having a bivalent functional group such as a gel having a network structure and a comprehensive method in which microorganisms and enzymes are confined in a semipermeable membrane.
  • the solvent used in the reaction may be either a polar or nonpolar solvent, but is preferably water and / or a water-soluble solvent, particularly preferably 90 to 100% by mass of water.
  • the water-soluble organic solvent is preferably a solvent that easily dissolves a compound having a benzene ring, and examples thereof include linear or branched alcohols and acetone.
  • the lower alcohols include monohydric alcohols (preferably having 1 to 3 carbon atoms) such as methanol, ethanol, and propanol, and dihydric or polyhydric alcohols such as 1,3-butanediol. You may combine these suitably.
  • optically active 4-hydroxyphenyl lactic acid by enzyme PPR of the present invention
  • PPR of the present invention optically active 4-hydroxyphenyl lactic acid can be produced from an enzyme substrate and recovered. is there.
  • optically active 4-hydroxyphenyl lactic acid may be continuously obtained by using an enzyme other than the PPR of the present invention in combination.
  • 4-hydroxyphenylpyruvic acid is preferable because the yield of optically active 4-hydroxyphenyllactic acid increases.
  • the reaction temperature is preferably 5 to 50 ° C., more preferably 10 to 40 ° C., and still more preferably 20 to 40 ° C.
  • the reaction time (one turn) is preferably 12 hours to 1 week, more preferably 2 to 4 days.
  • the reaction pH is preferably 5 to 8, more preferably 6 to 7.
  • the pH adjustment at this time may be performed with a known pH adjusting agent such as a phosphate buffer.
  • the method for producing optically active 4-hydroxyphenyl lactic acid of the present invention includes a gene encoding the PPR of the present invention. It is preferable to culture using microorganisms to produce optically active 4-hydroxyphenyl lactic acid from a microbial substrate and recover it.
  • the microorganism refers to the above-described wild strain and its mutant strain, or the above-described transformant, and may be aerobic or anaerobic.
  • a strain containing a gene encoding 4-hydroxyphenylpyruvate reductase a strain containing a gene encoding PPR enzyme, an ATCC strain, and the like can be mentioned.
  • the microbial substrate is preferably at least one selected from D-glucose, L-tyrosine and 4-hydroxyphenylpyruvic acid.
  • the enzyme of the present invention it is also possible to produce optically active 4-hydroxyphenyl lactic acid by combining with other enzymes.
  • D-glucose when used as the microbial substrate, it is suitable because it can be obtained at low cost and can produce a large amount of optically active 4-hydroxyphenyl lactic acid. It is very useful industrially to pay attention to the ppr gene that can selectively produce a compound with high purity and D-4-hydroxyphenyl lactic acid. In such a case, a recombinant microorganism in which a gene encoding the enzyme is introduced into an L-tyrosine producing bacterium via a vector or the like is preferable.
  • microorganisms producing the microbial substrate such as microorganisms having a gene encoding a group, genes encoding an enzyme group of a phenylalanine synthesis system, and microorganisms having a gene encoding phenylalanine hydroxylase may be used.
  • a nutrient medium used for the growth of each microorganism preferably contains at least the above microbial substrate.
  • the microbial substrate is preferably 0.01 to 20% (mass / volume), more preferably 0.1 to 3% (mass / volume), and further preferably 1 to 2% (mass / volume) in the medium. ) Is preferred.
  • the nutrient medium is, for example, if the microorganism is a yeast, the culture medium 1L in, D- glucose 1 ⁇ 30 g; other than glucose microbial substrate 0 ⁇ 5g; NaNO 3 5 ⁇ 7g; KCl 0.4 ⁇ 0.6g; MgSO 4 7H 2 O 0.4-7 g; KH 2 PO 4 1-2 g; Hutner's Trace elements 1-3 mL; MM medium containing distilled water. Hutner's Trace elements are as in the examples described later. Further, 0 to 3% of yeast extract and 0 to 2% of polypeptone may be used as appropriate.
  • the microorganism is Escherichia coli
  • 1 to 30 g of D-glucose 6 to 24 g of a microbial substrate other than glucose; 3 to 12 g of Na 2 HPO 4 ; 0.5 to 1 g of KH 2 PO 4 ; 5 to 2 g; NH 4 Cl 0.05 to 0.05 g; MgSO 4 ⁇ 7H 2 O 0.015 to 0.030 g; CaCl 2 ⁇ H 2 O 0.015 to 0.050 g; thiamine HCl 0.050 to 0 10 g; M9 medium containing 1-2 mL of tryptophan Hutner's Trace elements.
  • D-glucose 1-30 g; microorganism substrate other than glucose 6-24 g; Na 2 HPO 4 3-12 g; KH 2 PO 4 0.5-1 g; NaCl 0.5-1.0 g; NH 4 Cl 0.05-1 g; MgSO 4 .7H 2 O 0.015-0.03 g; CaCl 2 ⁇ 2H 2 O 0.015-0.05 g; Thiamine HCl 1-10 g; Tryptone 0-1.5 g; 5.00 g / L Yeast extract 0.5-5 g; Trace elements 2 1-3 mL; Hydroxyphenyl lactic acid production medium (phenyl lactic acid production medium) containing distilled water.
  • Hydroxyphenyl lactic acid production medium phenyl lactic acid production medium
  • Culture conditions may be set as appropriate according to the microorganism used.
  • the culture temperature is preferably 5 to 50 ° C., more preferably 10 to 40 ° C., and still more preferably 20 to 40 ° C., because microbial growth is good and the substrate and product are not precipitated. .
  • the culture period (one turn) is preferably about 0.5 days to 2 weeks, more preferably about 1 week, and further preferably about 3 to 5 days.
  • the culture pH is preferably 4 to 9, more preferably 6 to 7 for yeast, and 6 to 8 for E. coli.
  • the culture pH adjustment may be appropriately controlled with a pH adjuster so as to be within a predetermined range.
  • the stirring is preferably performed at 100 to 1000 rpm, more preferably 400 to 600 rpm.
  • aeration culture when aeration culture is performed using air, it is preferably 0.01 to 1 L / min, more preferably 0.1 to 0.3 L / min.
  • the concentration of the culture substrate in the culture medium during the culture period is within a predetermined concentration, for example, a 500 g / L D-glucose solution is preferable. It may be added continuously or discontinuously at 0.1 to 5 g / L / h, more preferably 1 to 2 g / L / h.
  • the pH may be around 6-8.
  • the method for recovering the optically active 4-hydroxyphenyl lactic acid obtained by the above production method is not particularly limited, and a known separation and purification method may be used.
  • a means for removing the cells known means such as centrifugation and filtration can be used.
  • the separation / purification means of optically active 4-hydroxyphenyl lactic acid include known means such as crystallization, ultrafiltration, ion exchange, activated carbon treatment, and chromatographic separation.
  • chromatographic separation examples include a technique using ODS column chromatography.
  • crystallization examples include extraction with an organic solvent and recrystallization techniques.
  • the production method of the present invention it is possible to obtain not only a racemate but also high-purity D-4-hydroxyphenyl lactic acid, and the process of separation and purification can be simplified. Suitable for. And since the enzyme and microorganisms suitable for this can be obtained easily, this technique is suitable for industrial production also in this point.
  • either one of the ratios is high, preferably 85% or more, more preferably 90% or more, still more preferably 95% or more, and still more preferably 98% or more. It is advantageous.
  • Example 1 Screening of D-3-phenyllactic acid producing bacteria and purification of phenylpyruvate reductase (PPR) produced thereby (1) Acquisition of TK1 strain producing D-3-phenyllactic acid Tens of soil and water in the environment of Tsukuba City, Ibaraki Prefecture are collected, diluted as appropriate, and applied to YPD agar medium (2% yeast extract, 1% polypeptone, 1% D-glucose / distilled water 1L). did. After culturing at 28 ° C. for 2 to 4 days, the colonies that appeared were appropriately diluted and then inoculated on a new YPD agar medium for pure isolation. Further, the isolated strain 1 platinum loop was inoculated into a minimum medium (hereinafter also referred to as “MM”) liquid medium shown in Table 1, and cultured at 28 ° C. for 2 to 4 days under aerobic conditions.
  • MM minimum medium
  • TK1 strain Those having good production of optically active phenyllactic acid were selected by the following measuring method, and one of them was designated as TK1 strain.
  • the Chloroform layer is completely dehydrated by adding 0.1 g of sodium sulfate to the obtained Chloroform layer, and the organic acid contained in the obtained solution is measured using GC / MS (GCMS-QP2010 Plus, Shimadzu). The conditions for this GC / MS analysis are shown below.
  • the culture supernatant from which the bacterial cells have been removed by filtration or centrifugation is used as a sample.
  • Bacterial cells were collected from 2.5 ml of the preculture solution by centrifugation, and the precipitate was washed with physiological saline. This was inoculated into a 10-mL MM liquid medium in a total volume of 50-mL test tube and cultured with shaking at 120 ° C for 2 days at 30 ° C. When culturing under anaerobic conditions, the gas phase of the test tube was replaced with nitrogen and a butyl rubber stopper was attached, and this was cultured with shaking at 120 ° C. for 6 days at 30 ° C.
  • TK1 strain As a result of nucleotide sequence homology search using BLAST (Altschul, SF et al., (1990) J. Mol. Biol. 215: 403-410.) Against Apollon DB-FU, 26S rDNA-D1 of Strain TK1 strain The / D2 nucleotide sequence showed 100% homology with that of NRRL YB-4819, which is a reference strain of Wickerhamia fluorescens , a kind of Ascomycetous yeast.
  • CellityDensity indicates the amount of cells
  • PPA indicates the concentration of D-3-phenyllactic acid
  • PPA indicates the concentration of phenylpyruvic acid
  • Phe Represents L-phenylalanine.
  • the enzyme PPR reduction to D-3- phenyl lactic study phenylpyruvic acid of the enzyme PPR collection conditions are enzymes that catalyze (phenylpyruvic acid reductase) from cell-free extract W.
  • Fluorescens TK1 Prior to purification from the cell-free extract of the strain, the relationship between the culture time of the main culture of the bacterium and the PPR activity in the cell-free extract was examined. When cell-free extract was prepared from cells at 12, 12, and 48 hours after starting culture using GPMM medium, PPR activity at 12 hours of culture was 1.8 and 3.4 times higher than that at 4 hours and 48 hours, respectively. (Figure 6).
  • PPR activity is measured by using 50 mM phosphate buffer (pH 6.5), 2 mM phenylpyruvic acid, and 0.1 mM NADPH as the enzyme reaction solution, and adding a sample (such as an enzyme solution or cell-free extract) to this. Start the reaction.
  • the reaction temperature is 25 ° C.
  • the activity is quantified by measuring the decrease in absorption at a wavelength of 340 nm of NADPH produced by the reaction using an ultraviolet-visible spectroscopic clock (Beckman-Coulter DU-800).
  • the molar extinction coefficient of NADPH absorption at a wavelength of 340 nm is 6.2 mM ⁇ 1 ⁇ cm ⁇ 1 .
  • PAT activity was measured using 50 mM phosphate buffer (pH 6.5), 10 mM L-phenylalanine, 2.5 mM 2-oxoglutarate, and 12.5 ⁇ M Pridoxal phosphate as the enzyme reaction solution. The reaction is started by adding the extract. The reaction temperature is 37 ° C. and the reaction time is 30 minutes. The reaction was terminated by adding 800 ⁇ L of 2 N NaOH. The activity was quantified by measuring the increase in absorption at 320 nm wavelength of phenylpyruvic acid produced with the reaction.
  • the molar extinction coefficient of phenylpyruvic acid is 17.5 mM ⁇ 1 ⁇ cm ⁇ 1 (Whitaker RJ., Et al. J. Biol. Chem. (1982) 257, 3550-3556.).
  • the molecular weight of PPR is measured by SDS-PAGE and / or gel filtration using 12.5% polyacrylamide gel.
  • the purified PPR sample of this enzyme concentrated using polyethylene glycol 20,000 is pre-elution buffer (10% glycerol, 1 mM DTT, 20 mM phosphate buffer, 0.15 mM NaCl pH7) Apply to Superose 6-10 / 300 equilibrated in 1) and elute with 1 column volume of elution buffer.
  • bovine serum albumin M.W. 67,000
  • chymotrypsinogen M.W. 25,000
  • ⁇ -amylase M.W. 45,000
  • ⁇ -amylase M.W. 200,000
  • the total amount of protein in the cell-free extract prepared from 30 ⁇ g of bacterial cells was 592.2 mg, and the total activity for producing D-3-phenyllactic acid was 190.8 ⁇ mol / mL. That is, it was confirmed that phenylpyruvate reductase was present in the cell-free extract.
  • the soluble fraction obtained by centrifuging this was purified as described above with Butyl-Sepharose (hydrophobic column), 2'5'-ADP-Sepharose (affinity column), Mono Q HR 5/5 (strong anion exchange). Column), the specific activity of the enzyme PPR could be concentrated up to 2260 times, and the enzyme PPR could be purified with a yield of 41% (Table 6).
  • This enzyme PPR also reduced phenylpyruvic acid, 4-hydroxyphenylpyruvic acid, glyoxylic acid and hydroxypyruvic acid using NADPH as a coenzyme (Scheme 1 and Scheme 2).
  • the kcat / Km value when NADH was used as a coenzyme was as low as 1/31 when 330 s -1 mM -1 and NADPH were used as a coenzyme (10143 s -1 mM -1 ). Therefore, it was shown that this enzyme can use NADH and NADPH as coenzymes, but has high specificity for NADPH.
  • the W. fluorescens TK1 strain enantiomerically produced D-3-phenyllactic acid.
  • Chemical products and pharmaceuticals may have different physiological activities among enantiomers as represented by thalidomide. Therefore, enantioselective production of chiral molecules is desired. Therefore, it is considered that the fact that this bacterium has high enantioselectivity and produces D-3-phenyllactic acid is very significant in considering the use of this compound as a pharmaceutical raw material.
  • the purified PPR activity of the purified bacterium had a kcat / Km value of 373 s -1 mM -1 when phenylpyruvic acid was used as a substrate. This value is reported up to now one of the Lactobacillus pentosus JCM1558 (Non-Patent Document 15), Lactobacillu. DLDH of plantarum ATCC 8041 (Taguchi, H .; Ohta, TJ Biol. Chem. (1991) 266, 12588- 12594 ), Rhizobium etli CFN 42 has a higher value than the molecular activity of GRHPR (Fauvart, M. et al. Biochimica et Biophysica Acta 1774 (2007) 1092-1098) (Table 9).
  • D-4-hydroxyphenyllactate dehydrogenase of Candida maltosa L4 the only enzyme that has been purified using fungal-derived phenylpyruvic acid as a substrate, is similar to PPR of W. fluorescens TK1 strain. It shows high affinity for hydroxyphenylpyruvic acid.
  • D-4-hydroxyphenyllactate dehydrogenase requires Mn 2+ as a cofactor, and its molecular weight is 250,000-280,000, which is very large compared to the molecular weight of this PPR.
  • the enzyme PPR had the highest affinity for phenylpyruvic acid, whereas D-4-hydroxyphenyllactate dehydrogenase had higher affinity for 4-hydroxyphenylpyruvic acid. It may be an enzyme.
  • E. coli Origami B (DE3) was used as a host for PPR expression.
  • E. coli JM109 strain was used.
  • the target band was cut out from the dried PVDF membrane and subjected to an amino acid sequence analyzer (Applied Biosystems Procise 492 cLC).
  • the PCR product was template 1 ⁇ L, 10 ⁇ Ex Taq buffer (TaKaRa) 5 ⁇ L, 2.5 mM dNTP 4 ⁇ L each, primer NP (SEQ ID NO: 10), primer 2427P (5′-GGYTCYTCYTCRAANACRTT-3 ′) (SEQ ID NO: 12 ), Ex Taq Polymerase (TaKaRa) 0.5 ⁇ L was added.
  • the treatment at 96 ° C. for 15 s, 56 ° C. for 20 s, and 72 ° C. for 1 min was performed 35 times to carry out extension reaction at 72 ° C. for 5 min (secondary PCR).
  • 3'-terminal is 3 'RACE System for Rapid Amplification ofcDNA Ends (Invitrogen Co., CA) as a template, primer GSP (5'-AACTACGAGGTGCTGCC-3') (SEQ ID NO: 15), primer GSP nest PCR was performed in the same manner as described above using (5′-GTCCTCCCCAGTTACCATATATAGC-3 ′) (SEQ ID NO: 16), and the base sequence of the obtained 270 kb fragment was determined.
  • DNA sequence analysis was performed using a fully automatic DNA sequencer (CEQ2000, Beckman Coulter). The method was performed according to the protocol.
  • Ratio of expression (pprA / 18SrDNA) 2 CT (pprA) ⁇ CT (18S ribosome) * C T is the number of cycles where amplified product accumulated and a detectable fluorescent signal was obtained.
  • the enzyme pprA (pprART Fr (5'-ATTTAGCCGCGATGAAAGAAC-3 ')' (SEQ ID NO: 17), pprART R (5'-TCGGCAAAGGCACATCC-3 ') (SEQ ID NO: 18)) and 18S ribosome primer (18SRT F ( 5'-ACCAGGTCCAGACACAATAAGG-3 ') (SEQ ID NO: 19), 18SRT R (5'-AAGCAGACAAATCACTCCACC-3') (SEQ ID NO: 20)) is primer preparation software primer 3 (http://frodo.wi.mit.edu/ cgi-bin / primer3 / primer3.cgi).
  • the cultured cells were collected, suspended in buffer A (20 mM potassium phosphate (pH 7.0), 10% glycerol, 0.1 mM DTT), and sonicated. The disrupted solution was centrifuged at 15,000 rpm for 30 minutes to recover the supernatant (cell-free extract). After adsorbing Ni 2+ in advance, the cell-free extract was applied to a chelating Sepharose column (Amersham) equilibrated with buffer A (buffer C) containing 300 mM NaCl. The fraction eluted with buffer C containing 500 mM imidazole was collected, dialyzed against buffer A, and used for the subsequent analysis.
  • buffer A 20 mM potassium phosphate (pH 7.0), 10% glycerol, 0.1 mM DTT
  • the disrupted solution was centrifuged at 15,000 rpm for 30 minutes to recover the supernatant (cell-free extract). After adsorbing Ni 2+ in advance, the cell-free
  • the peptide showing m / z 2000.00 is the amino acid sequence of NIQAIYGNWGGLASFGGFK consisting of 19 amino acid residues (SEQ ID NO: 2) , M / z 2427.27 was able to obtain the amino acid sequence (SEQ ID NO: 3) of VAFAALDVFEEEPFIHPGLIGR consisting of 22 amino acid residues, respectively (FIG. 12).
  • the PPR activity in the cell-free extract of bacterial cells obtained using GPMM medium supplemented with L-phenylalanine was 0.22 ⁇ mol / min / mg, compared to the activity when cultured using MM medium. It was 3.6 times. Moreover, it was 3.0 times higher than that when the GPAMM medium supplemented with phenylpyruvic acid was used (FIG. 16).
  • the amount of transcription of the pprA gene in the cells obtained by culturing the W. fluorescens TK1 strain for 8 hours under the same conditions was measured using real-time PCR.
  • the expression level of the pprA gene in cells cultured in GPMM medium supplemented with 5 mM phenylalanine increased by 40 times compared to conditions using MM medium, and 18 times increased compared to conditions cultured using GPAMM medium. (FIG. 16). From the above results, it was shown that the expression of the pprA gene is induced by phenylalanine.
  • Enzymatic properties of enzyme rPPR As with the enzyme PPR of the W. fluorescens TK1 strain, the purified enzyme rPPR can use NADPH as a coenzyme, and when phenylpyruvic acid, 4-hydroxyphenylpyruvic acid, glyoxylic acid and hydroxypyruvic acid are used as substrates. The kcat / Km value was highest when phenylpyruvic acid was used as a substrate (Table 10). In addition, activity using pyruvic acid and oxaloacetic acid as substrates was not detected (data not shown). From these results, it was revealed that the enzyme rPPR expressed using Escherichia coli showed the same substrate specificity as the enzyme PPR derived from the W. fluorescens TK1 strain.
  • Alignment analysis was performed using genes with unknown functions of C. dubliniensis , DLDH from L. plantarum , recombinant GRHPR from R. etli CFN 42, HPPR from S. scutellarioide , and the deduced amino acid sequence of W. fluorescens TK1.
  • a NADH / NADPH binding domain was found at positions 185-331 in the deduced amino acid sequence of W. fluorescens TK1. Furthermore, the sequence -GXGXXG- which seems to be a NADH / NADPH binding motif was found in the deduced amino acid sequence of PPR (FIG. 18). In addition, the 86th that binds to the oxygen atom of the carboxyl group of the substrate identified as the substrate binding site of GRHPR (Booth MP, et al. J Mol Biol.
  • Valine (V) (V83 in GRHPR), 87th glycine (G) (GRHPR: G274), 282nd arginine (R) (GRHPR: R269) remaining, which hydrogen bonds with the carboxyl and carbonyl oxygen atoms of the substrate
  • the group was conserved in the enzyme PPR.
  • the acid-base-catalyzed 329th histidine (H) (GRHPR: H329) residue and the 311th glutamic acid (E) (GRHPR: E311) residue that hydrogen bond to the imidazole ring of the H329 residue were also conserved.
  • DLDH and GRHPR are enzymes belonging to the D-isomer specific 2-hydroxyacid dehydrogenase superfamily, suggesting that the PPR of this test bacterium also belongs to the same family.
  • the family is located in the phylogenetic tree in the vicinity of the HPPR and GRHPR families, which means that the enzyme PPR, like the HPPR or GRHPR family of enzymes, is phenylpyruvic, 4-hydroxyphenylpyruvic, glyoxylic and Correlation with the point that hydroxypyruvic acid was recognized as a substrate was shown.
  • the enzyme PPR was shown to be different from the DLDH of lactic acid bacteria reported to be involved in the production of 3-phenyllactic acid from both the enzymatic and molecular phylogenetic results. . From the phylogenetic analysis, this enzyme PPR was not classified into the existing family of D-isomer specific 2-hydroxyacid dehydrogenase superfamily, but was mapped to the same group as the protein of unknown function of ascomycete yeast. This suggests that this enzyme PPR is a novel enzyme belonging to the D-isomer specific 2-hydroxyacid dehydrogenase superfamily, and its function may be preserved in ascomycete yeast.
  • the expression level of the pprA gene was increased at the transcription level in the presence of phenylalanine.
  • the PPR activity was 3.6 times at the protein level, and the production amount of D-3-phenyllactic acid was increased to 58 times when phenylalanine was added compared to when it was not added.
  • Aromatic polymers include phenol resins such as bakelite and polyphenylene oxide, and generally have excellent physical properties such as heat resistance and chemical resistance.
  • polylactic acid will be the mainstream of biopolymers that have been studied for practical use.
  • Polylactic acid is obtained by lactide polymerization or direct polymerization of lactic acid as a raw material (Yin, M .; Baker, G. L. Macromolecules 1999, 32, 7711.).
  • the reason for the practical application of polylactic acid is that lactic acid, which is a raw material, is a basic product of metabolism, and research on bio-based production such as lactic acid fermentation by lactic acid bacteria is well conducted.
  • D-3- phenyllactic acid production system (1) Preparation of phenylalanine-producing Escherichia coli into which ppr gene was introduced D-3-Phenyllactic acid-producing strain was prepared in LB medium ⁇ 10.0 g / L tryptone, 5.0 After overnight culture in g / L yeast extract, 10.0 g / L NaCl ⁇ , 20% of the total amount of sterilized glycerol was added and stored at ⁇ 80 ° C.
  • Pre-culture was performed by placing 5.0 ⁇ mL of LB medium in a test tube, inoculating the medium with 1/100 volume of glycerol stock solution, and culturing with shaking at 37 ° C. and 120 ⁇ rpm for about 6 hours.
  • a plasmid was prepared in the ATCC31882 strain (obtained from ATCC), which is phenylalanine-producing, in accordance with the above-described method, and a ppr gene was introduced using the plasmid to prepare a novel phenyllactic acid-producing strain transformed.
  • This phenyl lactic acid producing strain was prepared by adding 20 g / L glucose and 50 mg / L kanamycin to 50 mL phenyl lactic acid producing medium (Tables 11 and 12). Then, 1/100 amount of the above-mentioned preculture solution was inoculated, and cultured in a 500 mL bladed Erlenmeyer flask with shaking at 37 ° C., 120 rpm for 24 hours.
  • the optical activity of phenyl lactic acid was determined by purifying phenyl lactic acid in the medium by recrystallization, and subjecting the sample to a NUCLEOSIL® Chiral-1 column (manufactured by MACHEREY-NAGEL) as described above.
  • pprA gene By introducing the pprA gene into the ATCC31882 strain, which is a phenylalanine-producing strain, we succeeded in producing useful strains (ATCC31882 / pHSGpprA) that each produced 99% or more of D-3-phenyllactic acid.
  • D-3-phenyllactic acid was produced by a jar fermenter using the ATCC31882 pHSGpprA strain for practical application (FIG. 21).
  • D-glucose which is a carbon source was added to the medium at a rate of 1.50 g / L / h using a pericitator pump at a rate of 1.50 g / L D-glucose.
  • L-tyrosine and L-tryptophan which are auxotrophic components, were added in advance to the phenyllactic acid production medium in an amount of 0.50 g / L in order to prevent deficiency due to long-term culture.
  • D-3-phenyllactic acid was produced at 15.5 g / L (10.8% sugar yield) in 96 hours of culture.
  • the sugar yield was calculated by the amount of D-3-phenyllactic acid produced (g) / the total amount of D-glucose added (g).
  • D-phenyl lactic acid produced in the medium was purified by an extraction method using an organic solvent and a recrystallization method.
  • the extraction solvent a mixed solvent of methanol and hexane (mixing ratio 1: 1) was used.
  • hydrochloric acid was added to the culture supernatant after centrifuging to remove the bacterial cells, acidified, an equal amount of extraction solvent was added thereto, and the mixture was gently stirred for 30 minutes for extraction.
  • Example 4 Construction of an optically active 4-hydroxyphenyl lactic acid production system using a gene encoding PPR (1) Preparation of L-tyrosine-producing Escherichia coli introduced with the ppr gene Optically active 4-hydroxyphenyl lactic acid production strain was cultured overnight in LB medium ⁇ 10.0 g / L tryptone, 5.0 g / L yeast extract, 10.0 g / L NaCl ⁇ , and then sterilized glycerol was added to 20% of the total volume and stored at ⁇ 80 ° C.
  • Pre-culture was performed by placing 5.0 ⁇ mL of LB medium in a test tube, inoculating the medium with 1/100 volume of glycerol stock solution, and culturing with shaking at 37 ° C. and 120 ⁇ rpm for about 6 hours.
  • a plasmid pTyrA was prepared according to the above-described method (FIG. 22), and using this, C at the 779th base of the base sequence shown in SEQ ID NO: 24 was used.
  • the tyrA gene SEQ ID NO: 23 in which the 260th Thr was replaced with Ile was introduced to obtain an L-tyrosine-producing bacterium.
  • a plasmid (pCW pprA or pHSG pprA ) was prepared in this L-tyrosine-producing bacterium according to the above-described method, and a ppr gene was further introduced and transformed into a novel optically active hydroxyphenyl lactic acid producing strain (NST -pprA production strain).
  • the culture supernatant from which the cells were removed by centrifugation was acidified by adding hydrochloric acid (pH 2.5 to 3.5), and an equal amount of extraction solvent was added thereto, followed by gentle stirring for 30 minutes to perform extraction. .
  • Example 5 Fermentative production of D-4-hydroxyphenyl lactic acid using yeast W. fluoresens TK1 strain It was shown that this bacterium can convert tyrosine added to the medium into 4-hydroxyphenyl lactic acid. This bacterium was thought to produce 4-hydroxyphenyllactic acid from glucose as a raw material via the shikimate pathway, 4-hydroxyphenylpyruvic acid. The 4-hydroxyphenyl lactic acid produced was an optically active substance (D-4-hydroxyphenyl lactic acid).
  • the culture supernatant from which the bacterial cells have been removed by filtration or centrifugation is used as a sample.
  • the obtained precipitate was completely suspended in 200 ⁇ L of 1% NaOH, 167 ⁇ L of methanol, and 34 ⁇ L of Pyridine. To this, 20 ⁇ L of Methyl chlorocarbonate was added, and the sample was methylated by vigorous stirring. After repeating the operation of adding and stirring Methyl chlorocarbonate, 400 ⁇ L of Chloroform was added and stirred. Next, 50 mM sodium bicarbonate was added, and the aqueous layer after stirring was removed. The Chloroform layer was completely dehydrated by adding 0.1 g of sodium sulfate to the obtained Chloroform layer, and the organic acid contained in the obtained solution was measured using GC / MS (GCMS-QP2010 Plus, Shimadzu). The analysis conditions are shown below.
  • the PPR of the present invention and the pprA gene encoding the same can be obtained efficiently from highly novel optically active 3-phenyl lactic acid and 4-hydroxyphenyl lactic acid from a novel D-3-phenyl lactic acid-producing bacterium uniquely discovered Got.
  • high-purity optically active 3- phenyllactic acid and 4-hydroxyphenyllactic acid can be efficiently obtained using inexpensive glucose as a raw material, and genetic engineering production is also possible.
  • optically active 3-phenyllactic acid is attracting attention in a wide range of fields, and is expected to be used as, for example, a polyaromatic plastic raw material, a biocompatible material, a functional material, and a pharmaceutical agricultural intermediate.
  • optically active 4-hydroxyphenyl lactic acid is also expected to be used as a food additive, medicine, agricultural chemical and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Virology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本発明は、高純度の光学活性3-フェニル乳酸及び4-ヒドロキシフェニル乳酸を効率よく得られるフェニルピルビン酸還元酵素及びそれをコードする遺伝子並びにこれらを用いた光学活性3-フェニル乳酸及び4-ヒドロキシフェニル乳酸の製造方法を提供する。

Description

フェニルピルビン酸還元酵素並びに本酵素を用いた光学活性フェニル乳酸及び4-ヒドロキシ-フェニル乳酸の製造方法
 本発明は、フェニルピルビン酸還元酵素及びその遺伝子並びにこれらを用いる光学活性フェニル乳酸及び光学活性4-ヒドロキシフェニル乳酸の製造方法に関する。
 3-フェニル乳酸および4-ヒドロキシフェニル乳酸は、ともに乳酸菌より単離された抗菌物質である(非特許文献1~4)。
 3-フェニル乳酸の抗菌活性はAspergillus ochraceusPenicillium roquefortiPenicillium citrinumなどのカビだけでなく(非特許文献5)、Listeria monocytogenesStaphylococcus aureusEscherichia coli O157などのような有害なグラム陰性、陽性細菌にたいしても幅広い(非特許文献1、2、5~7)。この幅広い抗菌活性により3-フェニル乳酸は食品添加物としての利用の可能性が示唆されている。また、これ以外の医薬、農薬及びその中間体、芳香族バイオポリマー・プラスチック、液晶等の機能性材料、生体適合性(医療)材料等としても利用できる有用な化合物である。
 4-ヒドロキシフェニル乳酸も、3-フェニル乳酸と同様に乳酸菌由来であることから、食品添加物としての利用可能性が示唆されるだけでなく、これ以外の用途での抗菌性添加物、更には医薬、農薬及びその中間体として期待されている。
 これら化合物の製造方法について、光学活性3-フェニル乳酸においては有機化学合成による製造を試みている報告が多数なされているが(特許文献1)、環境問題やコストの観点からこのような化学物質を使用しない新たな合成方法が望まれている。更に、4-ヒドロキシフェニル乳酸においては、高純度に大量生産する技術が確立されておらず、有機化学合成にて、ラセミ体が主な生産物、すなわちD体及びL体が混在した状態を試験試薬として少量市販しているのが現状であり、より生成効率の高い合成方法が切望されている。
 これら課題の潜在的解決手段として、触媒や有機溶媒等の化学物質を使用せずに所望の化合物を大量生産し得る微生物培養や酵素による光学活性3-フェニル乳酸あるいは4-ヒドロキシフェニル乳酸の合成方法が挙げられる。
 3-フェニル乳酸の生産菌として子嚢菌Geotrichum candidum(非特許文献2)、プロピオン酸生産細菌Propionibacterium freudenreichii(非特許文献8)、様々な乳酸菌(非特許文献5、9~11)が知られている。
 しかし、3-フェニル乳酸の生産に関わる酵素の分子レベルでの研究については、2008年になりLactobacillus. sp SK007のD,L-乳酸デヒドロゲナーゼ(D,L-Lactate dehydrogenase)が精製(非特許文献12)されたのみであった。また、3-フェニル乳酸の前駆体であると予想されるフェニルピルビン酸に対して酵素活性をもつ酵素の遺伝子がクローニングされた例としては、Lactobacillus plantarum SK002由来の組換えD,L-乳酸デヒドロゲナーゼ(D,L-Lactate dehydrogenase)(非特許文献13)、Rhizobium etli CFN 42由来の組換えグリオキシル酸レダクターゼ/ヒドロキシピルビン酸還元酵素(Glyoxylate reductase/Hydroxypyruvate reductase)(非特許文献16)の2例のみであるが、これらが3-フェニル乳酸の生産に関与するかどうかは不明である。
 また、特許文献2及び3には、光学活性3-フェニル乳酸生産菌の報告があるが、これらはR体とS体とが混在しており、望ましくない。
 特許文献4には、PF1022物質生産菌の糸状菌Mycelia sterilia(FERM BP-2671)の産生酵素が、フェニルピルビン酸に作用してこれを還元し、(R)-2-ヒドロキシ-3-フェニルプロピオン酸に変換することが報告されている。
 しかしながら、高純度の光学活性3-フェニル乳酸を効率よく得るには至っていないのが実状である。
 以上のように、高純度の光学活性3-フェニル乳酸及び4-ヒドロキシフェニル乳酸を大量に得ることが可能な製造方法は未だ確立されておらず、その開発が強く望まれている。
特開2003-192633号公報 特開平9-37792号公報 特開2000-300284号公報 国際公開2001/81563号パンフレット
Lavermicocca, P.; Valerio, F.; Evidente, A.; Lazzaroni, S.; Corsetti, A.; Gobbetti, M., Appl. Environ. Microbiol. 2000 66 4084-4090 Dieuleveux, V.; Van Der Pyl, D.; Chataud, J.; Gueguen, M., Appl. Environ. Microbiol. 1998 64 800-803 Paola La et al.,"Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B",Applied and Environmental Microbiology (2000), 66(9), 4084-4090. Wanmeng Mu et al., "Production of 4-hydroxyphenyllactic acid by Lactobacillus sp. SK007" fermentation Journal of Bioscience and Bioengineering (2010), 109(4), 369-371. Ohhira, I.; Kuwaki, S.; Morita, H.; Suzuki, T.; Tomita, S.; Hisamatsu, S.; Sonoki, S.; Shinoda, S., Biocontrol Sci. 2004 9 77-81 Dieuleveux, V.; Gueguen, M.; J. Food Prot. 1998 61 1281-1285 Dieuleveux, V.; Lemarinier, S.; Gueguen, M.; Int. J. Food Microbiol. 1998 40 177-183 Thierry, A.; Maillard, M. , 2002 82 17-32 Strom, K.; Sjogren, J.; Broberg, A.; Schnurer, Appl. Environ. Microbiol. 2002 68 4322-4327 Magnusson, J.; Strom, K.; Roos, S.; Sjogren, J.; Schnurer, Microbiol. Lett. 2003 219 129-135 Valerio, F.; Lavermicocca, P.; Pascale, M.; Visconti, A., Microbiol. Lett. 2004 233 289-295 Li, X.; Pan, . Mu, W. & Zhang, T. (2008)., Journal of Agricultural and Food Chemistry, 56 7 2392-399 Jianghua,J.; Wanmeng, M.; Tao, Z.; Bo .;, Appl. Biochem. Biotechnol. 2009 (in press) Ishikura, Y.; Tsuzuki, S.; Takahashi, O.; Tokuda, C.; Nakanishi, R.; Shinoda, T.; Taguchi, H., J. Biochem. 2005 138, 741-749
 本発明は、斯かる問題点と実状に鑑み、高純度の光学活性3-フェニル乳酸及び4-ヒドロキシフェニル乳酸を効率よく得られるフェニルピルビン酸還元酵素及びそれをコードする遺伝子並びにこれらを利用した光学活性3-フェニル乳酸及び4-ヒドロキシフェニル乳酸の合成方法を提供しようとするものである。
 本発明者は、既知の乳酸菌のみならず、より広範囲の微生物から試行錯誤を繰り返した結果、グルコースから光学活性フェニル乳酸を大量に生産する新規な酵母菌を見出した。そして、光学活性フェニル乳酸を大量生産するのは、当該酵母菌が、特にフェニルピルビン酸を基質とし、これに高い親和性を有してかつ作用して専ら光学活性フェニル乳酸を生成するという新規かつ特殊なフェニルピルビン酸還元酵素(以下、「PPR」ともいう)を有すること、しかも当該PPRが新たな酵素であることも見出した。更に、この新規で特異なPPRをコードする遺伝子(以下、「ppr遺伝子」ともいう)をクローン化し、この形質転換体を用いることにより特異な新規なPPRを遺伝子工学的に製造できることを見出した。また、この形質転換体によってもグルコースから光学活性フェニル乳酸が得られることも見出した。
 更に、本発明者は、本発明のPPRが4-ヒドロキシフェニルピルビン酸に対しても親和性を有しており、4-ヒドロキシフェニルピルビン酸を基質として、これから、高純度の光学活性4-ヒドロキシフェニル乳酸を、具体的には高純度のD-4-ヒドロキシフェニル乳酸を選択的に、生産することができることを見出した。しかも、その原材料(基質)として安価で安定的に入手可能なD-グルコースを利用しても大量に生産できる高純度の光学活性4-ヒドロキシフェニル乳酸の製造方法も確立することができることを見出した。
 因みに、本発明のPPRは、特許文献1記載の酵素とは24%の同一性しかなく、また、従来知られている酵素とも約40%程度の同一性しかない新規な酵素である。しかも、後記実施例に示すように、本発明のPPRは、既存のHPPR又はGRHPRファミリーには属しておらず、新規ファミリーを形成するものでもある。しかも、本発明のPPRは、従来のPPRよりも酵素活性が数十倍も高く、産業上の利用可能性も高いものである。また、斯様な特異な酵素を生産し、またグルコースから光学活性フェニル乳酸を生産する本発明の新規酵母菌も重要な遺伝資源であることも明白である。
 すなわち、本発明は、以下の発明に係るものである。
〔1〕フェニルピルビン酸を基質としてD-フェニル乳酸を生成するフェニルピルビン酸還元酵素をコードするポリヌクレオチドであって、
 (a)配列番号5に示される塩基配列からなるポリヌクレオチド、
 (b)配列番号5に示される塩基配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズするポリヌクレオチド、
 (c)配列番号5に示される塩基配列からなるポリヌクレオチドと60%以上の同一性を有する塩基配列からなるポリヌクレオチド、
 (d)配列番号6,7又は8に示される塩基配列を含むポリヌクレオチド、
 (e)配列番号4に示されるアミノ酸配列をコードするポリヌクレオチド、
 (f)配列番号4に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列をコードするポリヌクレオチド、及び
 (g)配列番号4に示されるアミノ酸配列と60%以上の同一性を有するアミノ酸配列をコードするポリヌクレオチド、
からなる群より選択されるポリヌクレオチド。 
〔2〕フェニルピルビン酸を基質としてD-フェニル乳酸を生成するフェニルピルビン酸還元酵素であって、
 (a)配列番号4に示されるアミノ酸配列、
 (b)配列番号4に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列、又は
 (c)配列番号4に示されるアミノ酸配列と60%以上の同一性を有するアミノ酸配列、
のいずれかを含む、フェニルピルビン酸還元酵素。
〔3〕〔1〕に記載のヌクレオチドを含有する組換えベクター。
〔4〕〔3〕に記載の組換えベクターを含む形質転換体。
〔5〕宿主が微生物である〔4〕に記載の形質転換体。
〔6〕前記微生物が大腸菌又はフェニルアラニン若しくはチロシン生産性組換微生物である〔5〕に記載に形質転換体。
〔7〕次の(a)、(b)又は(c)のタンパク質からなるフェニルピルビン酸還元酵素を用いて、フェニルピルビン酸又は4-ヒドロキシフェニルピルビン酸を基質としてD-フェニル乳酸又はD-4-ヒドロキシフェニル乳酸を生成させ、これを回収することを特徴とするD-フェニル乳酸又はD-4-ヒドロキシフェニル乳酸の製造方法:
 (a)配列番号4に示されるアミノ酸配列からなるタンパク質、
 (b)配列番号4に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質、又は
 (c)配列番号4に示されるアミノ酸配列と60%以上の同一性を有するアミノ酸配列からなるタンパク質。
〔8〕前記フェニルピルビン酸還元酵素の反応条件が、反応温度20~40℃、pH6~7であることを特徴とする〔7〕に記載のD-フェニル乳酸又はD-4-ヒドロキシフェニル乳酸の製造方法。
〔9〕次の(a)、(b)又は(c)のタンパク質からなるフェニルピルビン酸還元酵素をコードする遺伝子を含む微生物を用いて培養し、微生物基質からD-フェニル乳酸又はD-4-ヒドロキシフェニル乳酸を生成させ、これを回収することを特徴とするD-フェニル乳酸又はD-4-ヒドロキシフェニル乳酸の製造方法:
 (a)配列番号4に示されるアミノ酸配列からなるタンパク質、
 (b)配列番号4に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質、又は
 (c)配列番号4に示されるアミノ酸配列と60%以上の同一性を有するアミノ酸配列からなるタンパク質。
〔10〕前記微生物が、ウィッケルハミア属酵母若しくはこれを親株とした変異株又は〔4〕又は〔5〕に記載の形質転換体であることを特徴とする〔9〕に記載のD-フェニル乳酸又はD-4-ヒドロキシフェニル乳酸の製造方法。
〔11〕前記微生物基質がD-グルコース、L-フェニルアラニン、L-チロシン、フェニルピルビン酸及び4-ヒドロキシフェニルピルビン酸から選ばれる1種以上の基質であることを特徴とする〔9〕に記載のD-フェニル乳酸又はD-4-ヒドロキシフェニル乳酸の製造方法。
〔12〕ウィッケルハミア属酵母が、Wicherhamia fluorescensである〔10〕に記載のD-フェニル乳酸又はD-4-ヒドロキシフェニル乳酸の製造方法。
〔13〕ウィッケルハミア フルオレセンス(Wicherhamia fluorescens)TK1と命名され、FERM AP-22048として寄託された微生物。
 本発明によれば、高純度の光学活性3-フェニル乳酸及び4-ヒドロキシフェニル乳酸を効率よく得ることが可能となる。
Wickerhamia fluorescensTK1菌株の光学顕微鏡像 「L-フェニル乳酸とD-フェニル乳酸のHPLCプロフィール」(a)はD-3-フェニル乳酸及びL-3-フェニル乳酸の標品/L-フェニル乳酸は22.4分で最初のピークとして溶出され、D-フェニル乳酸は31.7分で溶出された。;(b)はW.fluorescens TK1のMM培地培養後の上清;(c)はW.fluorescens TK1のGPAMM培地培養後の上清;(d)は本菌株から得られた酵素にてフェニルピルビン酸の基質を処理したものである。 W. fluorescensTK1菌株の培養中の菌体量と光学活性フェニル乳酸の生産量を示すものである。 W. fluorescensTK1菌株の培養中の菌体量、光学活性フェニル乳酸(PLA)の生産量、フェニルピルビン酸(PPA)の生産量を示すものである。 W. fluorescensTK1菌株の培養中の菌体量と光学活性フェニル乳酸(PLA)の生産量、L-フェニルアラニン(Phe)の生産量を示すものである。 W. fluorescensTK1菌株の培養時間(2、12、48時間)ごとのフェニルピルビン酸還元酵素活性を示すものである。 W. fluorescensTK1菌株のPPRの各pH〔Tris-HCl緩衝液(pH 7, 7.5, 8)、リン酸緩衝液(pH 5.5, 6, 6.5, 7)〕ごとの、pH6.5のPPR活性を100としたときの各PPR活性(相対比)を示すものである。 「PPRの分子量」(a)本酵素PPRのSDS-PAGE電気泳動分析(右側);(b)本酵素PPRのゲル濾過分析(黒菱形)を示すものである。 本発明のppr遺伝子(pprA遺伝子)を含むプラスミドベクターの作製の例示である。 本発明のppr遺伝子(pprA遺伝子)を含む形質転換体の例示である。 「PPR由来のトリプシンペプチドの1つに対するMALDI-TOFのMSスペクトラ及びMALDI-QIT-TOFのMSスペクトラ/W.fluorescens NRRLYB-4819由来のPPRの陽イオンMALDI-TOFマススペクトラ」本発明の内部アミノ酸配列のMALDI-TOFによるMSスペクトラである。 「PPR由来のトリプシンペプチドの1つに対するMALDI-TOFのMSスペクトラ及びMALDI-QIT-TOFのMSスペクトラ/パネル中に示されたm/z 2000.0(a)及び2427.3(b)におけるマスイオンピークのMS/MSスペクトラ」本発明の内部アミノ酸配列のMALDI-TOFによるMSスペクトラである。(a)配列番号2に示すアミノ酸配列;(b)配列番号3に示すアミノ酸配列。 「nested PCR産物のアガロースゲル電気泳動」 N末端アミノ酸配列(配列番号1)と内部アミノ酸配列(配列番号3)の情報を基に、得られた935bpのDNA断片のアガロースゲル電気泳動を示す。1:pprAのPCR産物 M:DNAマーカー W.fluorescens TK1 PPR 遺伝子のヌクレオチド配列及びその推定アミノ酸配列」W. fluorescensTK1菌株由来のppr遺伝子及びそのアミノ酸配列を示す。MALDI-QIT-TOF MS分析で決定されたPPRの内部アミノ酸配列を枠囲で示す。Primer NPとOligo dTの位置を矢印で示す。nested primer 2427Pを点線矢印で示す。終止コドンを星印で示す。 pprAをプローブとして用いた全DNAのサザンブロット分析」制限酵素(HindIII、EcoRI、PstI、BamHI)で処理したW. fluorescens TK1菌株の全DNAに対して、pprA遺伝子の配列を含むDNA断片をプローブとしたサザンハイブリダイゼーションを示す。W. fluorescens TK1菌株の全DNAを制限酵素HindIII、EcoRI、PstI、BamHIで消化し、電気泳動し、Zeta-Probe(登録商標)ブロッティングメンブレン(Bio-Rad)上にブロッティングし、プローブを用いてハイブリダイゼーションを行った。 「PPR活性及び遺伝子発現におけるフェニルアラニンの効果」W. fluorescensTK1菌株をGPMM培地(+Phe)、GPAMM培地(+PPA)、MM培地(Glc)で培養した際のPPR活性及びppr遺伝子(pprA遺伝子)発現量を示す。(A)30℃で10時間培養したW.fluorescens TK1の無細胞抽出液中におけるPPRの比活性。56 mMグルコース(Glc)、56 mMグルコース+5 mMフェニルアラニン(+Phe)又は56 mMグルコース+5 mMフェニルピルビン酸(+PPA)を含むMM培地中で細胞を培養した。(B)pprA転写物の定量的PCR。W.fluoerscens NRRLYB-4819を上記のとおり培養した。棒線はreal-time PCRで決定した相対的発現比率を示す。 「精製rPPR(recombinant PPR)のSDS-PAGE」ppr遺伝子を含む大腸菌が生産する酵素rPPRのSDS-PAGEの結果を示す。Lane 1:精製rPPR M: 分子量標準 (Bio-Rad Precision Protein Standard kit)分子量を左端に示す。 W.fluorescens TK1由来のPPRと他の微生物由来のPPRの推定アミノ酸配列マルチプルアライメント」W. fluorescensTK1菌株由来の酵素PPRと、他の微生物の酵素(DLDH、GRHPR、HPPR)とのアミノ酸配列を用いたアライメント解析結果を示す。CLUSTALXを用いてタンパク質の一次構造のアライメントを行った。配列は、C.dubliniensis(Accession No.:XP 002418129)、E.coli(P37666)、S.scutellarioide(Q65CJ7)及びL.plantarum(BAA14352)のPPR関連タンパク質である。星印は同一アミノ酸を示す。ドット及びコロンは保存アミノ酸による置換を示す。ダッシュは、コンピュータによって生成されたギャップを示す。枠囲はNAD結合モチーフの保存配列を示す。 W. fluorescensTK1菌株でのD-3-フェニル乳酸の生合成系を示す。 ppr遺伝子を含むフェニルアラニン生産性微生物の生産するフェニル乳酸を示す。 pprA遺伝子を含むフェニルアラニン生産性微生物(ATCC31882株/pHSGpprA)のD-グルコースを基質とした際の菌体濃度及びフェニル乳酸生産量を示す。 tyrA遺伝子を含む発現ベクターを示す。 4-ヒドロキシフェニル乳酸のHPLC分析。Standard;D,L-4-ヒドロキシフェニル乳酸(左側;L-4-ヒドロキシフェニル乳酸/右側;D-4-ヒドロキシフェニル乳酸);NST-ldhA菌株のL-4-ヒドロキシフェニル乳酸; NST-pprA菌株の生成のD-4-ヒドロキシフェニル乳酸。
1.本発明のフェニルピルビン酸還元酵素
 (1)本発明のPPRの酵素学的性質
 (2)本発明のPPRのアミノ酸配列及びこれをコードする遺伝子
 (3)本発明のPPRの取得方法
2.光学活性3-フェニル乳酸の製造方法
 (1)本発明のPPRによる光学活性フェニル乳酸の製造方法
 (2)本発明のPPRをコードする遺伝子を有する微生物による光学活性3-フェニル乳酸の製造方法
3.光学活性4-ヒドロキシフェニル乳酸の製造方法
 (1)本発明のPPRによる光学活性4-ヒドロキシフェニル乳酸の製造方法
 (2)本発明のPPRをコードする遺伝子を有する微生物による光学活性4-ヒドロキシフェニル乳酸の製造方法
<1.本発明のフェニルピルビン酸還元酵素>
 本発明のフェニルピルビン酸還元酵素は、新規酵素であり、以下の酵素学的性質並びにアミノ酸配列及びこれをコードする遺伝子を有するものである。このPPRは、ホモ二量体を形成しているものが好適である。
 本発明のPPRによって、高純度のD-フェニル乳酸又はD-4-ヒドロキシフェニル乳酸を得ることができる。光学活性フェニル乳酸又は4-ヒドロキシフェニル乳酸を直接生成することが可能となるため、従来の有機合成物のようなほぼ等量混在するD体L体をそれぞれに分離したり、何れか一方を除去したりするといった分離精製工程を回避することにより作業効率も改善でき、しかも高純度化も容易である。高純度化された光学活性フェニル乳酸及びヒドロキシフェニル乳酸が容易に得られるので、種々の用途、特に医薬、食品添加物、農薬等といった高純度化が求められるような技術分野に利用しやすくなる。
(1)酵素学的性質
〔作用〕
 本発明のPPRは、フェニルピルビン酸及び4-ヒドロキシフェニルピルビン酸を基質とし、これに高い親和性を有し且つ作用して光学活性フェニル乳酸(D-3-フェニル乳酸)及び4-ヒドロキシフェニル乳酸(D-4-ヒドロキシフェニル乳酸)を生成するものである。エナンチオ選択的にD-3-フェニル乳酸及びD-4-ヒドロキシフェニル乳酸を生成するのが好適である。
Figure JPOXMLDOC01-appb-C000001
 また、基質は、フェニルピルビン酸及びヒドロキシピルビン酸に限らず、この他に、グリオキシル酸を還元するのが好ましい。このうち、フェニルピルビン酸を基質としたときにkcat/K値が最も大きい。
 また、補酵素として、NADH及びNADPHを利用することが可能であるが、NADPHに対する特異性が高い。
 フェニルピルビン酸及びNADPHにおけるkcat/K値(特異度定数)が、300~500s-1mM-1(Km値 0.40±0.07mM)となるような酵素が望ましいが、この特異度定数に特に限定されるものではない。なお、特異度定数kcat/K値は、酵素が基質を生成物に変換する際の効率を示すものである。
 このときの測定条件としては、以下のような手法が挙げられる。酵素反応液として50mMリン酸緩衝液(pH6.5)、2mMフェニルピルビン酸、0.1mMNADPHを用い、これに酵素を加え、温度25℃にて反応を行い、紫外・可視分光光度計(340nm)を用いて、定量する。NADPHの340nmの波長の吸収のモル吸光係数は、6.2mM-1・cm-1とする。
 また、基質であるフェニルピルビン酸1モルと補酵素であるNADPH1モルにより、光学活性フェニル乳酸(D-3-フェニル乳酸)を生成するものが好ましい。
 このときのD-3-フェニル乳酸:L-3-フェニル乳酸のモル比は、100~90:0~10、より100~95:0~5、更に100~98:0~2であるのが好ましく、更に、光学純度99%以上のD-3-フェニル乳酸(光学活性フェニル乳酸)であるのが好適である。
 またこの反応は不可逆反応であるのが好ましい。ここで不可逆反応とは、D-3-フェニル乳酸、L-3-フェニル乳酸、NAD、NADPの組み合わせを基質とした場合の酵素反応が起きない或いはフェニルピルビン酸が検出できないことをいう。
〔基質〕
 4-ヒドロシキフェニルピルビン酸、3-フェニルピルビン酸、グリオキシル酸及びヒドロキシピルビン酸から選ばれる1種以上のものを原料(基質)とし、還元反応を触媒する。なお、ピルビン酸及びオキザロ酢酸を基質としないのが望ましい。
〔最適反応pH〕
 Tris-HCl緩衝液(pH7~8)及びリン酸緩衝液(pH5~7)の緩衝液で各pH(25℃)に調整した後、pH以外は上記〔作用〕記載の測定条件にて酵素活性を求めた場合、p6~7、特にpH6.5~7で高い活性を示す。
〔反応温度〕
 pH6.5の20~40℃にて良好なフェニルピルビン酸還元反応を示す。
〔分子量〕
 SDS-ポリアクリルアミドゲル電気泳動(Lammli等の方法)における測定で、本発明のPPRは、分子量30,000~50,000ダルトン、特に分子量40,000ダルトンを示す。
 また、ゲル濾過法における測定で、分子量70,000~90,000、特に分子量80,000を示す。
 このときのゲル濾過の測定分析には、酵素を予め溶出緩衝液(10%グリセロール, 1 mMジチオトレイトール(DTT, 20 mMリン酸緩衝液, 0.15 mM NaCl pH7)で平衡化させたスペロースゲル濾過カラム(Superose 6 10/300)に供し、カラム容量の1倍の溶出緩衝液で溶出する。
 標準タンパク質として、牛血清アルブミン(M.W.67,000)、キモトリプシノーゲン(M.W.25,000)、α-アミラーゼ(M.W.45,000)、β-アミラーゼ(M.W.200,000)を用いる。
〔金属イオン及び阻害剤の影響〕
 2)金属イオンと阻害剤の影響
 Cu2+、Zn2+、Fe2+、WO2-、Hg2+から選ばれる1種以上の金属イオンによって、PPR活性が強阻害される(90~100%程度阻害)。Ni2+、Co2+から選ばれる1種以上の金属イオンによってやや強く阻害される(30~40%程度阻害)。Mn2+、Mg2+、Ca2+、Mo2+、から選ばれる1種以上の金属イオンによって、殆ど阻害されないか或いは全く阻害されない(15~0%程度阻害)。
 ツィーン80(Tween:登録商標)、2-メルカプトエタノール(2-mercaptethanol)から選ばれる1種以上の阻害剤によって、あまり阻害されない(30~50%)。トリトンX-100(tritonX)、エチレンジアミン四酢酸(EDTA)から選ばれる1種以上の阻害剤によって、殆ど阻害されない(10~20%程度)。
 なお、金属イオン及び阻害剤共に、各物質が1mMになるように添加した以外は、上記〔作用〕記載の測定条件にて酵素活性を求める。
〔部分アミノ酸配列〕
 本発明のPPRは、少なくとも以下のN末端アミノ酸配列及び/又は内部アミノ酸配列の部分アミノ酸配列を有するものが好適である。なお、この部分アミノ酸配列は、1若しくは数個のアミノ酸が置換、欠失、挿入されていてもよい。
〔部分アミノ酸配列:N末端アミノ酸配列〕
 N末端側のアミノ酸残基の配列:N末端側のMKKPQVLILGRIの12アミノ酸残基の配列(配列番号1)である。
 なお、N末端側のアミノ酸残基の配列は、公知の手法(Edman, P. (1950) Acta Chem. Scand. 4: 283-293)にて得ればよい。一例として、SDS-ポリアクリルアミド電気泳動法にて酵素を泳動し、得られた酵素バンドを電気的にポリビニリデンフロオライド(PVDF)膜等に移動させた後に、プロテインシーケンサーにて分析することで決定することができる。
〔部分アミノ酸配列:内部アミノ酸配列〕
 トリプシン消化ペプチドのアミノ酸残基の配列:NIQAIYGNWGGLASFGGFKの19アミノ酸残基の配列(配列番号2)及びVAFAALDVFEEEPFIHPGLIGRの22アミノ酸残基の配列(配列番号3)を有する。
 なお、トリプシン消化ペプチドは、公知の手法(Shimizu, M., et al. (2009) Proteomics 9, 7-19)にて得ればよい。一例として、SDS-PAGEに泳動した精製した本発明のPPRをゲルより切り出し、トリプシン(温度36~38℃、pH8~9、4~18時間)によりゲル内消化して得られるものである。また、市販品のトリプシン消化ペプチドキットで行えばよく、具体的には、Trypsin Profile IGD Kit:ゲル内消化キット(SIGMA-ALDORICH社)等が挙げられる。
(2)本発明のPPRのアミノ酸配列及びこれをコードする遺伝子(塩基配列)
 本発明のPPRには、次の(a)、(b)及び(c)のタンパク質が包含される。
 (a)配列番号4に示すアミノ酸配列からなるタンパク質。
 (b)配列番号4に示すアミノ酸配列において、1若しくは数個のアミノ酸が置換、欠失若しくは付加されたアミノ酸列からなり、フェニルピルビン酸還元活性を有し、フェニルピルビン酸に対する高い親和性を有するタンパク質。
 (c)配列番号4で示されるアミノ酸配列と60%以上の同一性を有するアミノ酸配列からなり、フェニルピルビン酸還元活性を有し、フェニルピルビン酸に対する高い親和性を有するタンパク質。
 本発明の配列番号4に示すPPRのアミノ酸配列と既知のフェニルピルビン酸還元酵素のアミノ酸配列との同一性を比較した結果、何れの既知のものとも同一性が約20%~50%程度と極めて低く、本発明のPPRは新規な酵素であり、新たな酵素群を形成することが示唆されている。また、本発明のppr遺伝子は、本発明のPPRをコードする遺伝子を包含することから、新規な遺伝子である。
 本発明において、アミノ酸配列及び塩基配列の同一性は、Lipman-Person法(Science, 227, 1435, (1985))等の公知のアルゴリズムによって計算され、またこれによって配列を比較することにより行うことができる。具体的には、遺伝情報処理ソフトウェアGenetyx-ver 8.1(ソフトウエア開発:ゼネティックス社)のホモロジー解析(Search homology)プログラムのサーチホモロジーやマキシムマッチングプログラムを用いて、同一性を算出することができる。例えば、Unit size to compare(ktup)を2として解析を行うことにより算出される。
 また、本発明において、転写開始領域は、プロモーター及び転写開始点を含む領域であり、リボソーム結合部位は開始コドンと共に翻訳開始制御領域を形成するShine-Dalgarno(SD)配列(Proc. Natl. Acad. Sci. USA 74, 5463(1974))に相当する部分である。
 ここで、配列番号4に示すアミノ酸配列において、1若しくは数個のアミノ酸が置換、欠失若しくは付加されたアミノ酸配列とは、配列番号4とそれぞれ機能的に等価なアミノ酸配列を意味し、1若しくは数個、好ましくは1~6個、より好ましくは1~3個のアミノ酸が置換、欠失若しくは付加されたアミノ酸配列であって、依然として、フェニルピルビン酸還元活性を有し、フェニルピルビン酸に対する高い親和性を保持する配列をいう。また、付加には、両末端への1若しくは数個、好ましくは1~6個、より好ましくは1~3個のアミノ酸の付加も含まれる。
 前記機能的に等価なアミノ酸とは、少なくともフェニルピルビン酸還元活性及び4-ヒドロキシフェニルピルビン酸還元活性を有する酵素であればよく、更に付加的な性質を有していてもよい。更に、フェニルピルビン酸に対する高い親和性を有するのが好適である。また、配列番号5に示すppr遺伝子によりコードされるタンパク質と実質的に同じ機能、具体的には上述の本発明のPPRの機能を有するのが好適である。
 ここで、フェニルピルビン酸還元活性及び4-ヒドロキシフェニルピルビン酸還元活性を有するとは、上述のスキーム1及び2の如き、フェニルピルビン酸及び4-ヒドロキシフェニルピルビン酸をそれぞれD-3-フェニル乳酸及びD-4-ヒドロキシフェニル乳酸にすることを意味するが、その活性の程度は、その機能を発揮する限り、機能の高低は特に制限されず、すなわち配列番号4で示されるタンパク質と同程度のもののみならず、これより高いもの又は低いものであってもよい。
 また、付加的な性質とは、配列番号4に示すアミノ酸配列からなるタンパク質に比し、安定性に優れている性質、反応温度やpHが異なるや広範囲という性質等が挙げられる。
 また、配列番号4に示すアミノ酸配列において、60%以上、好ましくは65%以上、より好ましくは70%以上、より好ましくは75%以上、より好ましくは80%以上、より好ましくは85%以上、更に好ましくは90%以上、より更に好ましくは95%以上、特に好ましくは98%以上の同一性を有するアミノ酸配列が好適である。
 後記実施例に示すように、本発明のPPRの発見により新規な酵素群も発見したことから、本発明の配列番号4に示すアミノ酸配列からなるタンパク質と、上述の如くフェニルピルビン酸還元活性であってフェニルピルビン酸に対する高い親和性を少なくとも有するという機能的に等価な酵素で、かつ60%程度以上の同一性の範囲内にあるものであれば、この新規な酵素群に含まれると予測される。一般的に、60%以上の相同性を示すタンパク質は類似の酵素の特異性を持つことが多いとされているため、このような相同性を示すものは同じ酵素群に含まれると考えられている。
 本発明のppr遺伝子は、配列番号4に示すアミノ酸配列からなるタンパク質又は当該アミノ酸配列と機能的に等価なアミノ酸配列からなるタンパク質をコードする遺伝子であるが、次の(a)~(d)のポリヌクレオチドも包含される。このうち、次の(a)~(d)が好ましい。
 (a)配列番号5に示される塩基配列からなるポリヌクレオチド。
 (b)配列番号5に示される塩基配列からなるポリヌクレオチドとストリンジエントな条件下でハイブリダイズし、且つフェニルピルビン酸還元活性を有するタンパク質をコードするポリヌクレオチド。
 (c)配列番号5に示される塩基配列と60%以上の同一性を有する塩基配列からなり、且つフェニルピルビン酸還元活性を有し、フェニルピルビン酸に対する高い親和性を有するタンパク質をコードするポリヌクレオチド。
 (d)配列番号6、7又は8に示される塩基配列を含み、且つフェニルピルビン酸還元活性を有し、フェニルピルビン酸に対する高い親和性を有するタンパク質をコードするポリヌクレオチド。
 配列番号5に示す塩基配列において、好ましくは65%以上、より好ましくは70%以上、より好ましくは75%以上、より好ましくは80%以上、より好ましくは85%以上、更に好ましくは90%以上、より更に好ましくは95%以上、特に好ましくは98%以上の同一性を有する塩基配列が好適である。
 すなわち、本発明のppr遺伝子には、配列番号5の塩基配列で示されるポリヌクレオチド(DNA等)において、変異剤処理、ランダム変異、特定部位突然変異、欠損或いは挿入等によって部分的に塩基配列が変化したものであっても、これらのDNA変異体が配列番号5の塩基配列で示されるDNAとストリンジエントな条件でハイブリダイズし、且つ少なくともフェニルピルビン酸還元活性を有するタンパク質をコードするポリヌクレオチドからなる遺伝子を包含するものである。例えば、1若しくは数個(例えば2~3個)の塩基配列が、置換、欠失若しくは付加された塩基配列等が挙げられる。また、付加には、両末端への付加も含まれる。ここで、「1若しくは数個」とは、1~6個、好ましくは1~3個程度をいう。
 ここで、「ストリンジエントな条件」とは、例えばMolecular cloning-a laboratory manual, 2nd edition (Sambrook et al, 1989)に記載の条件が挙げられる。すなわち、6XSSC(1XSSCの組成:0.15M塩化ナトリウム、0.015Mクエン酸ナトリウム、pH7.0)、0.5%SDS、5Xデンハート及び100mg/mLニシン精子DNAを含む溶液にプローブと共に65℃で8~16時間恒温し、ハイブリダイズさせる条件等が挙げられる。
 また、上記(b)~(d)で示される遺伝子は、例えば、(a)で示される遺伝子に比べて、mRNAの発現量が多い、そのmRNAの安定性が高い、翻訳されるタンパク質の安定性が優れている等の付加的な性質を有していてもよい。
 また、これら(a)~(d)遺伝子の上流に、転写開始制御領域、翻訳開始制御領域又は分泌シグナル領域の何れか1以上の領域を結合させてもよい。
 なお、本発明において、転写開始領域は、プロモーター及び転写開始点を含む領域であり、リボソーム結合部位は、開始コドンと共に翻訳開始制御領域を形成するShine-Dalgarno(SD)配列(Proc. Nalt. Acad. Sci. USA 74, 5463 (1974))に相当する部位である。
 また、本発明において、遺伝子の上流又は下流とは、複製開始点からの位置ではなく、上流とは対象として捉えている遺伝子又は領域の5’側に続く領域を示し、一方、下流とは対象として捉えている遺伝子又は領域の3’側に続く領域を示す。
(3)本発明のPPR(フェニルピルビン酸還元酵素)の取得方法
 (i)本発明のPPRは、ウィッケルハミア属(Wickerhamia)酵母若しくはその変異株、又は前記PPRをコードする遺伝子若しくはその断片を導入した形質転換体(好適には微生物)によって生産、取得することが可能である。
 前記ウィッケルハミア属酵母は、子嚢菌酵母であり、かつ上述の酵素PPRをコードする遺伝子を有するものであれば特に限定されないが、フェニルピルビン酸からD-3-フェニル乳酸を生産する機能及び/又はD-グルコースからフェニルピルビン酸を経てこれから光学活性フェニル乳酸(D-3-フェニル乳酸)を生産する機能を有するものが好適である。
 この酵母としては、例えば、Wickerhamia fluorescens並びにこれと同等の菌学的性質並びに生理学的性質を有する菌が挙げられる。
 更に、W. fluorescens TK1(FERM AP-22048)菌株(以下、「酵母菌TK1」ともいう)及びこれと同等の菌、並びにその変異株が挙げられる。ここで、変異株とは、野生株の酵母菌TK1株を、紫外線、電離放射線、亜硝酸、ニトロソグアニジン、エチルメタンスルホネート等の処理という公知の手法により、得ることができる。なお、変異株には、野生株からの変異株を更に変異させたものも含む。
 前記W. fluorescens TK1(FERM AP-22048)菌株の菌学的性質及び生理学的性質を以下に示す。
(a)26S rDNA-D1/D2塩基配列
 配列番号9に示す塩基配列。
(b)形態学的特徴
 形状:レモン形、卵形、長卵形
 増殖形式:増殖は両極出芽により、出芽部位は広く、偽菌糸の形成。
 胞子形成:子嚢にスポーツ帽形の子嚢胞子の形成。
(c)生理・生化学的性状
 糖発酵性:D-グルコース(+)、サッカロース(+)、D-ガラクトース(W)、マルトース(-)
 炭素源資化性:D-グルコース(+)、サッカロース(+)、D-ガラクトース(+)、マルトース(-)、イノシトール(-)
 窒素源資化性:硝酸塩(-)
 なお、前記酵母菌TK1は、2007年11月頃、日本国筑波県つくば市内の環境中の土壌や水を40種採取し、適宜希釈後、YPD寒天培地(後記実施例1参照)に塗布した。28℃で2~4日培養後、現れたコロニーを適宜希釈後、新たなYPD寒天培地に接種することを繰り返し行い、純粋分離した。
 さらに分離した菌株1白金耳を、D-グルコース添加MM液体培地(表1参照)に植菌し、28℃で2日から4日培養した。各菌株の培養上清を公知の手法にて取得し、この培養上清中の光学活性フェニル乳酸を公知の測定法(例えばODS液体クロマト分析、ガスクロマト分析等)にて測定し、光学活性フェニル乳酸の生産量が良好なものを選抜して、土壌より採取された本菌株TK1を得た。
 更に、本菌株の菌学的性質及び生理学的性質から、W. fluorescensに帰属すると推定され、本菌株をW. fluorescens TK1株と命名した。このWickerhamia fluorescens TK1株は、上述のことから新規な微生物として、2010年12月13日、〒305-8566 茨城県つくば市東1-1-1 つくばセンター 中央第6、独立行政法人 産業技術総合研究所 特許生物寄託センター(IPOD)に、Wickerhamia fluorescens TK1(FERM AP-22048)として寄託した。
 酵母菌TK1菌株から、本発明のPPRを生産するには、一般的な酵母培養用の培地に植菌し、適当な温度で培養すればよい。培養液からの本発明のPPRの生成は、常法に従って行うことができる。具体的には、培養液を遠心分離し、菌体を除去した後、無細胞抽出液から公知の酵素分離精製法を用いて濃縮や回収することができる。分離精製法としては、例えば、ゲル濾過クロマトや限界ろ過膜等の濾過法、また硫安添加による酵素沈殿法等が挙げられる。
 本発明のPPRは、上述のように自然界から得ることが可能であるが、その遺伝子を上述の微生物(好適には子嚢酵母菌)の染色体DNAからクローニングし、当該PPRを大量に生産、回収することもできる。
 ppr遺伝子のクローニング方法としては、例えば、当該遺伝子を安定的に増幅できるDNAベクターに連結させる、或いは当該遺伝子に維持できる染色体DNA上に導入させる等の方法で本発明のPPRをコードするDNAを安定的に増幅し、更に当該遺伝子を安定にかつ効率よく発現させることが可能である宿主に導入し、本発明のPPRを生産させる方法が採用できる。
 なお、本発明のppr遺伝子は、公知の手法(例えば、「Sambrook, J., Fritch, E. F., and Maniatis, T. (1989) in Molecular Cloning: A Laboratory Manual, Vol. 2, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY」参照)にて取得すればよい。一例として、PPR産生菌株からゲノムDNAを抽出し、適当な制限酵素にて切断後、ファージベクターを用いて、PPR産生菌株のゲノムDNAからなるライブラリーを作製する。或いは、PPR産生菌株から全RNAを抽出し、オリゴdTをプライマーとした逆転写酵素反応にてmRNAに対応したcDNAを調製後、ファージベクターを用いて、PPR産生菌株のcDNAからなるライブラリーを作製する。
 上述の如きN末端アミノ酸配列及び内部アミノ酸配列をもとに、適当なプライマーを合成し、それを用いてPPR産生菌株由来のゲノムDNA又はcDNAを鋳型としたポリメラーゼ連鎖反応(PCR)を行い、ppr遺伝子のDNA断片を増幅する。このDNA断片をプローブとして用い、ゲノムライブラリー又はcDNAライブラリーのスクリーニングを行う。このようにしてppr遺伝子の全領域又は発現に必要な領域を単離することが可能となる。これらのDNA断片の塩基配列を決定した後、翻訳開始コドンの上流及び翻訳終結コドンの下流に、PCR等の手法により適応な制限酵素切断部位を導入し、本発明のppr遺伝子のみからなるポリペプチドを含む遺伝子断片を得ることが可能となる。
 〔組換えベクター及びその作製方法〕
 また、本発明によれば、PPRをコードするポリヌクレオチド又はppr遺伝子を含む組換えベクターを適用することが可能となる。これにより、形質転換体を得、この形質転換体の培養等によって、PPRを遺伝子工学的に製造することが可能となる。
 本発明の組換えベクターの構築の手順及び方法は、遺伝子工学の分野で慣用されているものを用いることができる(Sambrook, J., Fritch, E. F., and Maniatis, T. (1989) in Molecular Cloning: A Laboratory Manual, Vol. 2, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY)。
 本発明において使用できるベクターとしては、宿主染色体DNAに組み込まれるものや、自己複製可能な自律的複製配列を有するベクターを宿主細胞内でプラスミド状態にて存在させるものが挙げられる。このプラスミドベクターとしては、例えば、大腸菌を宿主とする場合、pUC18、pBR322(タカラバイオ)等が挙げられ、コリネ細菌を用いる場合はpPK4等が挙げられる。なお、宿主細胞内に存在する遺伝子のコピー数は、1又は複数コピーの何れでもよい。
 本発明の組換えベクターは、例えば、PPRをコードするポリヌクレオチド配列の上流にプロモーター(制御領域)を、また下流にターミネーターをそれぞれ作動可能に連結し、場合によっては、遺伝子マーカー及び/又は他の制御配列を作動可能に連結することにより作製することが可能である。
 本発明の遺伝子へのプロモーターやターミネーターの連結及び発現ユニットのベクターへの挿入は、公知の方法(Sambrook, J., Fritch, E. F., and Maniatis, T. (1989) in Molecular Cloning: A Laboratory Manual, Vol. 2, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY)にて行うことが可能である。
 ここで、本発明に用いるプロモーター及びターミネーターは、特に限定されず、例えば、3-ホスホグリセリン酸キナーゼ、グルタルアルデヒド-3-リン酸デヒドロゲナーゼ等の解糖系酵素遺伝子の制御配列;トリプトファンシンターゼ等のアミノ酸合成系酵素遺伝子の制御配列;アミラーゼ、プロテアーゼ、リパーゼ、セルラーゼ等の加水分解酵素遺伝子の制御配列;硝酸還元酵素、オロチジン-5’-リン酸脱水酵素、アルコール脱水酵素等の酸化還元酵素遺伝子の制御配列等が挙げられる。なお、各制御配列とは、各制御領域で、所望の機能を発揮し得るポリヌクレオチドのことを意味する。
 なお、本発明の遺伝子を他のタンパク質の翻訳領域をコードする外来遺伝子と連結させて融合タンパク質として発現させてもよい。
 また、組換えベクターへの遺伝子マーカーの導入は、例えば、制御配列にPCR法により適当な制限酵素切断部位を導入し、これをプラスミドベクターに挿入した後、薬剤耐性遺伝子及び/又は栄養要求性相補遺伝子等の選択マーカー遺伝子を連結することにより行うことができる。
 選択マーカーは、形質転換体の選択手法に応じて適宜選択することが可能であるが、例えば、薬剤耐性をコードする遺伝子や栄養要求性を相補する遺伝子を使用することができる。
 この薬剤耐性遺伝子としては、デストマイシン、ベノミル、オリゴマイシン、ハイグロマイシン、G418、ブレオマイシン、フォスフィノスリシン、アンピシン、カナマイシン等の薬剤に対する遺伝子が挙げられる。
 また、この栄養要求性を相補する遺伝子としては、argB遺伝子、pyr4遺伝子、trpC遺伝子、TRP1遺伝子、niaD遺伝子、LEU2遺伝子、URA3遺伝子等が挙げられる。
 〔本発明の組換えベクターを導入した形質転換体〕
 本発明によれば、上述にて得られた組換えベクターを用いて宿主(好適には微生物)を形質転換し、形質転換体を得ることができる。
 使用される宿主は、遺伝子組換えの宿主として使用可能なもの、好ましくは微生物であれば特に限定されるものではない。使用できる宿主としては、例えば任意の細菌類や真菌類等の微生物が挙げられ、このうち、大腸菌、コリネ菌、乳酸菌、放線菌、酵母、糸状菌、具体的には、エシェリヒア(Escherichia)属、シュードモナス(Pseudomonas)属、フラボバクテリウム(Flavobacterium)属、バチルス(Bacillus)属、セラチア(Serratia)属、コリネバクテリウム(Corynebacterium)属、ブレビバクテリウム(Brevibacterium)属、アグロバクテリウム(Agrobacterium)属、アセトバクター(Acetobacter)属、グルコノバクター(Gluconobacter)属、ラクトバチルス(Lactobacillus)属、ストレプトコッカス(Streptococcus)属又はストレプトマイセス(Streptomyces)属に属する微生物及びこれらの変異株等を用いることが好適である。組換えが容易な点から、より好ましくは、大腸菌又はこの変異株である。
 このとき、これら微生物は、光学活性フェニル乳酸又は4-ヒドロキシフェニル乳酸が生産されやすいように、遺伝子の置換、挿入、欠失、不活化等の変異を施した組換微生物であるのが好適であり、この組換微生物としては、フェニルアラニン産生菌(フェニルアラニン生産性組換微生物)及びチロシン産生菌(チロシン生産性組換微生物)が好適である。
 上述のような遺伝子に変異を生じさせる手法としては、例えば、リコンビナントPCR法〔PCR Technology, Stockton press (1989)〕、部分特異的変位法〔Kramer, W. and Frits, H., J. Methods in Enzymology, 154,350 (1987)〕、SOE(splicing by overlap extension)-PCR法〔Gene, 77, 61,(1987)〕により調製されたDNA断片を用いる二重交差法、化学薬剤処理(N-メチル-N’-ニトロソグアニジン、亜硝酸等)する方法、目的遺伝子を化学合成する方法等が挙げられる。
 また、フェニルアラニン生産菌は、公知技術を用いて、L-フェニルアラニンを大量生産(好ましくはD-グルコースを基質としてL-フェニルアラニンを大量生産)できるように、遺伝子を変異させた微生物であればよい。そのフェニルアラニン生産性組換微生物としては、フィードバック阻害が解除された3-デオキシ-D-アラビノヘプツロン酸-7-リン酸シンターゼ及びプレフェン酸デヒドロゲナーゼをコードするDNA断片を含む組換えベクターで形質転換されたtryR遺伝子及びtyrA遺伝子の欠失したエシェリヒア属微生物等が挙げられる。
 より具体的な微生物としては、例えば、ATCC31882株、ATCC3188株3、ATCC31884株(American Type Culture Collection分譲)やAJ12740株(FERM P-12999)、AJ12741株(FERM P-13000)(特開1993-344881号公報)等のフェニルアラニン生産性組換大腸菌などが挙げられ、この他のフェニルアラニン生産性組換微生物としてはCorynebacteirum glutamicum等も挙げられる。
 また、チロシン生産菌は、公知技術を用いて、L-チロシンを大量生産(好ましくはD-グルコースを基質としてL-チロシンを大量生産)できるように、遺伝子を変異させた微生物が好適である。そのチロシン生産性組換微生物としては、フェニルアラニン生産菌(例えば、E. coli ATCC31882(ATCCより入手))に、tyrA遺伝子(配列番号24:YP_002927556)を公知の手法にて導入して得られた組換え大腸菌;L-チロシン生産能を有し、且つL-フィードバック阻害が解除された変異型プレフェン酸デヒドロゲナーゼを保持するエシェリヒア属微生物等が挙げられる(例えば、特開2006-311833号公報及び特開2007-325592号公報等参照)。
 本発明の形質転換体(微生物)は、上述のように作製された遺伝子発現用の組換えベクターを、常法に従って前記宿主に導入することによって得ることが可能である。
 この導入法としては、例えば、エレクトロポレーション法、ポリエチレングリコール法、アグロバクテリウム法、コンピテント法、酢酸リチウム法及び塩化カルシウム法等が挙げられる。使用する宿主細胞に応じて適宜選択すればよい。
 そもそも、既知のフェニルピルビン酸還元酵素にて生成するフェニル乳酸の光学異性の知見は極めて少ない。また、そのなかで、生成されたフェニル乳酸がラセミ体であるとの報告がなされている。このような状況からは、光学活性フェニル乳酸を高濃度に、すなわち高純度化された光学活性フェニル乳酸を工業的に得ることが困難と考えられる。
 このような状況において、本発明のPPRは非常に高純度に光学活性フェニル乳酸を生成することが可能であり、エナンチオマー同士で生理活性が異なるような可能性も極めて低いか殆ど無い。しかも、不可逆的反応であるため、光学活性フェニル乳酸を高濃度に蓄積してもよいため、回収効率の点でも有利である。更に、本発明のPPRは、フェニルピルビン酸に高い親和性を有しながら、これ以外に、4-ヒドロキシフェニルピルビン酸、グリオキシル酸、ヒドロキシピルビン酸と幅広いものを基質とすることができる。
 また、本発明のPPRのkcat/K値は、既知のフェニルピルビン酸還元酵素のkcat/K値の数十倍も高いことから、本発明のPPRは、光学活性フェニル乳酸を大量生成することも可能である。
 更に、本発明のPPRは、これをコードする遺伝子を用いた形質転換体にてこの酵素の大量生産が可能であるので、更に得られたPPRを用いて光学活性フェニル乳酸を工業的に大量生産することも可能である。
<2.光学活性3-フェニル乳酸の製造方法>
 本発明の光学活性3-フェニル乳酸の製造方法は、フェニルピルビン酸からD-3-フェニル乳酸を生成できる製造工程(酵素反応系:上述のスキーム1参照)を少なくとも有していればよい。
 更に、D-グルコースやL-フェニルアラニン等の原料からフェニルピルビン酸を生成する製造工程を有するものが、製造コストや入手が容易なので、好適である。
 D-グルコースからフェニルピルビン酸を生成する製造工程としては、特に限定されず、有機合成法や発酵法(生合成反応)等が挙げられるが、例えば、シキミ酸経路(Shikimate pathway)が挙げられる。
 また、D-グルコースからL-フェニルアラニンを生成する製造工程としては、特に限定されず、例えば、特開平5-344811号公報や米国特許4681852号公報等の公知の手法が挙げられる。また、L―フェニルアラニンからフェニルピルビン酸を生成する製造工程は、アミノトランスフェラーゼ等のアミノ基転移酵素を用いる酵素反応系が挙げられる。
 このとき、D-グルコースやL-フェニルアラニン等の原料からフェニルピルビン酸を生成できるような製造工程(例えば酵素や微生物等の発酵法による反応系)を、本発明の光学活性3-フェニル乳酸製造法に内包させているのが好適である。
 すなわち、本発明のPPR及び/又は本発明の微生物を用いて、基質から光学活性3-フェニル乳酸を生産し、光学活性3-フェニル乳酸を回収するのが好適である。
 このとき、本発明のPPRの酵素が少なくとも含まれているものを用いればよく、例えば、本発明の微生物を培養した培養液やこれから微生物を除去した培養液、微生物破砕液や破砕物を除去した無細胞抽出液等を用いてもよい。これらに、シキミ酸経路の反応のための一連の酵素群(具体的には、7-ホスホ-2-デヒドロ-3-デオキシアラビノヘプトン酸アルドラーゼ、3-デヒドロキナ酸シンターゼ、3-デヒドロキナ酸デヒドラターゼ、シキミ酸デヒドロゲナーゼ、シキミ酸キナーゼ、3-ホスホシキミ酸1-カルボキシビニルトランスフェラーゼ(5-エノールピルビルシキミ酸-3-リン酸シンターゼ)、コリスミ酸シンターゼ、コリスミ酸ムターゼ等)やフェニルアラニン合成系の酵素群(具体的には、プレフェン酸デヒドロゲナーゼ、チロシンアミノトランスフェラーゼ等)等が含まれていてもよい。
 また、補酵素として、NADPH及び/又はNADHを用いるのが好適であり、このうち、NADPHが光学活性フェニル乳酸の収率が高まるので好ましい。
 本発明の光学活性3-フェニル乳酸製造法の反応形式は、特に限定されず、バッチ式で行っても良く、連続流通式で行ってもよい。
 また、本発明のPPRや本発明の微生物は、固定化されていてもよい。この固定化の手法は、公知の手法であれば特に限定されず、例えば、水不溶性の担体に微生物・酵素を物理的吸着、イオン結合、有結合を介して固定化する担体結合法;グルタルアルデヒドなどの二価性官能基をもつ試薬で架橋固定化する架橋法;網目構造をもつゲルや、半透性膜の中に微生物・酵素を閉じこめる包括法等が挙げられる。
 また、反応に用いる溶媒は、極性又は非極性溶媒の何れでもよいが、水及び/又は水溶性溶媒が好ましく、90~100質量%の水が特に好ましい。ここで、水溶性有機溶媒とは、ベンゼン環を有する化合物を溶解させやすいようなものが好ましく、例えば、直鎖又は分岐鎖等のアルコール類やアセトン等が挙げられる。この低級アルコール類(好適には炭素数1~5)としては、例えば、メタノール、エタノール、プロパノール等の一価アルコール類、1,3-ブタンジオール等の二価又は多価アルコール類が挙げられ、これらを適宜組み合わせても良い。
(1)本発明の酵素PPRによる光学活性フェニル乳酸の製造方法
 本発明のPPRを用いて、酵素基質から、光学活性3-フェニル乳酸を生産し、これを回収することが可能である。なお、上述のようにPPR以外の酵素も併用することによって連続的に光学活性3-フェニル乳酸を得てもよい。
 ここで、酵素基質としては、フェニルピルビン酸とするのが、光学活性フェニル乳酸の収率が高まるので、好適である。
 また、反応温度は、好ましくは5~50℃、より好ましくは10~40℃、更に好ましくは20~40℃とするのが好適である。
 また、反応時間(1ターン)は、好ましくは12時間~1週間、より好ましくは2~4日間とするのが好適である。
 また、反応pHは、好ましくは5~8、より好ましくは6~7とするのが好適である。このときのpH調整は、リン酸緩衝液等のような公知のpH調整剤にて行えばよい。
(2)本発明のPPRをコードする遺伝子を有する微生物による光学活性3-フェニル乳酸の製造方法
 本発明の光学活性フェニル乳酸の製造方法は、次の(a)、(b)又は(c)のタンパク質からなるフェニルピルビン酸還元酵素をコードする遺伝子を含む微生物を用いて培養し、微生物基質から光学活性フェニル乳酸を生成させ、これを回収するのが好適である。
 (a)配列番号5に記載のアミノ酸配列からなるタンパク質
 (b)配列番号5に記載のアミノ酸配列において、1若しくは数個のアミノ酸が置換、欠失、挿入したアミノ酸列からなり、フェニルピルビン酸還元活性を有し、フェニルピルビン酸に対する高い親和性を有するタンパク質
 (c)配列番号5で示されるアミノ酸配列と60%以上の同一性を有するアミノ酸配列からなり、フェニルピルビン酸還元活性を有し、フェニルピルビン酸に対する高い親和性を有するタンパク質。
 ここで、この微生物は、上述の野生株(TK1菌株)及びその変異株、又は上述の形質転換体等をいい、好気・嫌気の何れでも良い。
 このとき微生物基質としては、D-グルコース、L-フェニルアラニン、フェニルピルビン酸等から選ばれる1種以上のものが好ましい。
 また、微生物基質をD-グルコースとした場合、安価で入手可能であり、かつ大量に光学活性フェニル乳酸を生産することが可能なので、好適であり、しかも単純な糖のグルコースから芳香族化合物、しかも光学活性である3-D-フェニル乳酸を大量生産することが可能なppr遺伝子を見出したことは産業上極めて有益である。このような場合、本発明のPPRをコードする遺伝子をL-フェニルアラニン生産性微生物に導入した組換微生物が好ましい。
 なお、微生物にて光学活性フェニル乳酸を製造する場合、上述の如きフェニルピルビン酸還元酵素をコードする遺伝子を含む微生物以外に、上記微生物基質を生産させるため、シキミ酸経路の反応のための一連の酵素群をコードする遺伝子を有する微生物やフェニルアラニン合成系の酵素群をコードする遺伝子を有する微生物等の上記微生物基質を生産する微生物を利用してもよい。
 例えば、上記微生物基質を生産させる微生物を用いて前培養した後、本発明の微生物を用いて本培養すること;これら微生物を同時に使用して培養すること等が挙げられる。
 微生物培養に使用する培地としては、各微生物の生育に用いられる栄養培地に、少なくとも上記微生物基質を含んだものが好適である。このとき上記微生物基質は、培地中、好ましくは0.01~20%(質量/容量)、より好ましくは0.1~3%(質量/容量)、更に好ましくは1~2%(質量/容量)とするのが好適である。
 前記栄養培地は、例えば、微生物が酵母の場合、培地1L中、D-グルコース 1~30g;グルコース以外の微生物基質 0~5g;NaNO3 5~7g;KCl 0.4~0.6g;MgSO・7HO0.4~7g;KHPO 1~2g;Hutner’s Trace elements 1~3mL;蒸留水を含むMM培地が挙げられる。Hutner’s Trace elementsについては、後述の実施例の通りである。また適宜酵母エキス0~3%、ポリペプトン0~2%としてもよい。
 また、例えば微生物が大腸菌の場合、培地1L中、D-グルコース 1~30g;グルコース以外の微生物基質 0~5g;NaPO 5~7g;KHPO 2~4g;NaCl 9~11g;NHCl 5~7g;MgSO・7HO 0.4~7g;CaCl・HO 0.02~0.04g;チアミンHCl 0.04~0.05g;トリプシン 0.2~0.4g;トリプトファン 0.2~0.4g;Hutner’s Trace elements 1~3mL;蒸留水を含むM9培地が挙げられる。
 また、大腸菌の場合、培地1L中、D-グルコース 1~30g;グルコース以外の微生物基質 0~5g; NaHPO、11~13g;KHPO 5~7g;NaCl 0.4~0.6g;NHCl 0.9~1.1g;MgSO・7HO 0.2~0.4g;CaCl・2HO 0.01~0.02g;チアミンHCl 0.01~0.02g;トリプトン 9~11g;5.00 g/L 酵母エキス 4~6g;Trace elements 2 1~3mL;蒸留水を含むフェニル乳酸生産培地が挙げられる。
 なお、Hutner’s Trace elements及びTrace elements 2については、後述の実施例の通りである(表2及び表12参照)。
 更に、トリプシン9~11g、酵母エキス4~5gを加えるのが好適である。
 培養条件は使用する微生物に応じて適宜設定すればよい。
 培養温度は、好ましくは5~50℃、より好ましくは10~40℃、更に好ましくは20~40℃とするのが、微生物生育が良好であると共に基質及び生成物を析出させないので、好適である。
 また、培養期間(1ターン)は、好ましくは0.5日~2週間程度、より好ましくは1週間程度、更に好ましくは3~5日程度とするのが好適である。
 また、培養pHは、好ましくは4~9、より好ましくは、酵母の場合6~7とするのが好適であり、大腸菌の場合6~8とするのが好適である。培養pH調整は適宜pH調整剤にて所定の範囲内になるように制御すればよい。
 また、撹拌は、好ましくは100~1000rpm、より好ましくは400~600rpmで行うのが好適である。
 また、空気を用いて通気培養をする場合、好ましくは0.01~1L/分、より好ましくは0.1~0.3L/分とするのが好適である。
 更に、上記培養基質の培養期間内の培地中の濃度は、所定の濃度内になるように調整するのが生産効率の点で好適であり、例えば500g/LのD-グルコース溶液を、好ましくは0.1~5g/L/h、より好ましくは1~2g/L/hで、連続的に又は不連続的に添加してもよい。
 3-D-フェニル乳酸の回収法としては、特に限定されず、公知の分離精製方法を用いればよい。菌体の除去手段として、遠心分離や濾過等の公知の手段が挙げられる。また、3-D-フェニル乳酸の分離・精製手段としては、晶析、限外濾過、イオン交換、活性炭処理、クロマト分離等の公知の手段が挙げられる。
 クロマト分離としては、例えばODSカラムクロマトを用いる手法等が挙げられる。また晶析としては、有機溶媒による抽出及び再結晶の手法等が挙げられる。好適な一例として、メタノール及びヘキサン(=2:1~1:2)の混合溶媒:水=2:1~1:2にて抽出するのが好適である。
<3.光学活性4-ヒドロキシフェニル乳酸の製造方法>
 本発明の光学活性4-ヒドロキシフェニル乳酸(D-4-ヒドロキシフェニル乳酸)の製造方法は、4-ヒドロキシフェニルピルビン酸から光学活性4-ヒドロキシフェニル乳酸を生成できる製造工程(酵素反応系:上述のスキーム2参照)を少なくとも有していればよい。
 基質となる4-ヒドロキシフェニルピルビン酸は、フェニルアラニン及びチロシンの代謝中間体の一つであることから、これらの代謝系を利用した製造工程とすればよい。
 更に、D-グルコースやL-チロシン等の原料から光学活性4-ヒドロキシフェニル乳酸を生成する製造工程を有するものが、製造コストや入手が容易なので、好適である。
 D-グルコースからL-チロシンを生成する製造工程としては、特に限定されず、例えば、特開2006-311833号公報等の公知の手法が挙げられる。また、L-フェニルアラニンからチロシン、次いで4-ヒドロキシフェニルピルビン酸を生成する製造工程は、フェニルアラニンヒドロキシラーゼやチロシンアミノトランスフェラーゼ等を用いる酵素反応系が挙げられる。D-グルコースから4-ヒドロキシフェニルピルビン酸を生成する製造工程としては、特に限定されず、有機合成法や発酵法(生合成反応)等が挙げられるが、例えば、シキミ酸経路(Shikimate pathway)が挙げられる。
 このとき、D-グルコースやL-チロシン等の原料から4-ヒドロキシフェニルピルビン酸を生成できるような製造工程(例えば酵素や微生物等の発酵法による反応系)を、上述の光学活性4-ヒドロキシフェニル乳酸製造法に内包させているのが好適である。
 すなわち、上述の生体触媒(好適には、酵素及び/又は微生物)を用いて、基質から光学活性4-ヒドロキシフェニル乳酸を生産し、ここから光学活性4-ヒドロキシフェニル乳酸(好適にはD-4-ヒドロキシフェニル乳酸)を回収するのが好適である。
 このとき、前記酵素が少なくとも含まれているものを用いればよく、例えば、前記微生物を培養した培養液やこれから微生物を除去した培養液、微生物破砕液や破砕物を除去した無細胞抽出液等を用いてもよい。これらに、シキミ酸経路の反応のための一連の酵素群(具体的には、7-ホスホ-2-デヒドロ-3-デオキシアラビノヘプトン酸アルドラーゼ、3-デヒドロキナ酸シンターゼ、3-デヒドロキナ酸デヒドラターゼ、シキミ酸デヒドロゲナーゼ、シキミ酸キナーゼ、3-ホスホシキミ酸1-カルボキシビニルトランスフェラーゼ(5-エノールピルビルシキミ酸-3-リン酸シンターゼ)、コリスミ酸シンターゼ、コリスミ酸ムターゼ等);フェニルアラニン合成系の酵素群(具体的には、プレフェン酸デヒドロゲナーゼ、チロシンアミノトランスフェラーゼ等);フェニルアラニンヒドロキシラーゼ等が含まれていてもよい。
 また、補酵素として、NADPH及び/又はNADHを用いるのが好適であり、このうち、NADPHが光学活性4-ヒドロキシフェニル乳酸の収率が高まるので好ましい。
 本発明の光学活性4-ヒドロキシフェニル乳酸製造法の反応形式は、特に限定されず、バッチ式で行っても良く、連続流通式で行ってもよい。
 また、前記酵素や前記微生物は、固定化されていてもよい。この固定化の手法は、公知の手法であれば特に限定されず、例えば、水不溶性の担体に微生物・酵素を物理的吸着、イオン結合、有結合を介して固定化する担体結合法;グルタルアルデヒドなどの二価性官能基をもつ試薬で架橋固定化する架橋法;網目構造をもつゲルや、半透性膜の中に微生物・酵素を閉じこめる包括法等が挙げられる。
 また、反応に用いる溶媒は、極性又は非極性溶媒の何れでもよいが、水及び/又は水溶性溶媒が好ましく、90~100質量%の水が特に好ましい。ここで、水溶性有機溶媒とは、ベンゼン環を有する化合物を溶解させやすいようなものが好ましく、例えば、直鎖又は分岐鎖のアルコール類やアセトンが挙げられる。この低級アルコール類としては、例えば、メタノール、エタノール、プロパノール等の一価アルコール類(好適には炭素数1~3)、1,3-ブタンジオール等の二価又は多価アルコール類が挙げられ、これらを適宜組み合わせても良い。 
(1)本発明の酵素PPRによる光学活性4-ヒドロキシフェニル乳酸の製造方法
 本発明のPPRを用いて、酵素基質から、光学活性4-ヒドロキシフェニル乳酸を生産し、これを回収することが可能である。なお、上述のように本発明のPPR以外の酵素も併用することによって連続的に光学活性4-ヒドロキシフェニル乳酸を得てもよい。
 ここで、酵素基質としては、4-ヒドロキシフェニルピルビン酸とするのが、光学活性4-ヒドロキシフェニル乳酸の収率が高まるので、好適である。
 また、反応温度は、好ましくは5~50℃、より好ましくは10~40℃、更に好ましくは20~40℃とするのが好適である。
 また、反応時間(1ターン)は、好ましくは12時間~1週間、より好ましくは2~4日間とするのが好適である。
 また、反応pHは、好ましくは5~8、より好ましくは6~7とするのが好適である。このときのpH調整は、リン酸緩衝液等のような公知のpH調整剤にて行えばよい。
(2)本発明のPPRをコードする遺伝子を有する微生物による光学活性4-ヒドロキシフェニル乳酸の製造方法
 本発明の光学活性4-ヒドロキシフェニル乳酸の製造方法は、本発明のPPRをコードする遺伝子を含む微生物を用いて培養し、微生物基質から光学活性4-ヒドロキシフェニル乳酸を生成させ、これを回収するのが好適である。
 ここで、この微生物は、上述の野生株及びその変異株、又は上述の形質転換体等をいい、好気・嫌気の何れでも良い。例えば、4-ヒドロキシフェニルピルビン酸還元酵素をコードする遺伝子を含む菌株、PPR酵素をコードする遺伝子を含む菌株、及びATCC菌株等が挙げられる。
 このとき微生物基質としては、D-グルコース、L-チロシン、4-ヒドロキシフェニルピルビン酸から選ばれる1種以上のものが好ましい。また、本発明の酵素を使用する際に、他の酵素を組み合わせて光学活性4-ヒドロキシフェニル乳酸を生産することも可能である。
 また、微生物基質をD-グルコースとした場合、安価で入手可能であり、かつ大量に光学活性4-ヒドロキシフェニル乳酸を生産することが可能なので、好適であり、しかも単純な糖のグルコースから芳香族化合物、しかも、D-4-ヒドロキシフェニル乳酸を選択的に高純度に大量生産することが可能なppr遺伝子に着目して利用したことは産業上極めて有益である。このような場合、前記酵素をコードする遺伝子をベクター等を介してL-チロシン生産菌に導入した組換微生物が好ましい。
 なお、微生物にて光学活性4-ヒドロキシフェニル乳酸を製造する場合、上述の如き前記酵素をコードする遺伝子を含む微生物以外に、上記微生物基質を生産させるためシキミ酸経路の反応のための一連の酵素群をコードする遺伝子を有する微生物やフェニルアラニン合成系の酵素群をコードする遺伝子、フェニルアラニンヒドロキシラーゼをコードする遺伝子を有する微生物等の前記微生物基質を生産する微生物を利用してもよい。
 例えば、上記微生物基質を生産させる微生物を用いて前培養した後、本発明の微生物を用いて本培養すること;これら微生物を同時に使用して培養すること等が挙げられる。
 微生物培養に使用する培地としては、各微生物の生育に用いられる栄養培地に、少なくとも上記微生物基質を含んだものが好適である。このとき上記微生物基質は、培地中、好ましくは0.01~20%(質量/容量)、より好ましくは0.1~3%(質量/容量)、更に好ましくは1~2%(質量/容量)とするのが好適である。
 前記栄養培地は、例えば、微生物が酵母の場合、培地1L中、D-グルコース 1~30g;グルコース以外の微生物基質 0~5g;NaNO 5~7g;KCl 0.4~0.6g;MgSO・7HO 0.4~7g;KHPO 1~2g;Hutner’s Trace elements 1~3mL;蒸留水を含むMM培地が挙げられる。Hutner’s Trace elementsについては、後述の実施例の通りである。また適宜酵母エキス0~3%、ポリペプトン0~2%としてもよい。
 また、例えば微生物が大腸菌の場合、培地1L中、D-グルコース 1~30g;グルコース以外の微生物基質 6~24g;NaHPO 3~12g;KHPO 0.5~1g;NaCl 0.5~2g;NHCl 0.05~0.05g;MgSO・7HO 0.015~0.030g;CaCl・HO 0.015~0.050g;チアミンHCl 0.050~0.10g;トリプトファン Hutner’s Trace elements 1~2mLを含むM9培地が挙げられる。
 また、培地1L中、D-グルコース 1~30g;グルコース以外の微生物基質 6~24g; NaHPO、3~12g;KHPO 0.5~1g;NaCl 0.5~1.0g;NHCl 0.05~1g;MgSO・7HO 0.015~0.03g;CaCl・2HO 0.015~0.05g;チアミンHCl 1~10g;トリプトン 0~1.5g;5.00 g/L 酵母エキス 0.5~5g;Trace elements 2 1~3mL;蒸留水を含むヒドロキシフェニル乳酸生産培地(フェニル乳酸生産培地)が挙げられる。
 更に、トリプトン5~20g(好ましくは9~11g)、酵母エキス4~7gを加えるのが好適である。
 培養条件は使用する微生物に応じて適宜設定すればよい。
 培養温度は、好ましくは5~50℃、より好ましくは10~40℃、更に好ましくは20~40℃とするのが、微生物生育が良好であると共に基質及び生成物を析出させないので、好適である。
 また、培養期間(1ターン)は、好ましくは0.5日~2週間程度、より好ましくは1週間程度、更に好ましくは3~5日程度とするのが好適である。
 また、培養pHは、好ましくは4~9、より好ましくは、酵母の場合6~7とするのが好適であり、大腸菌の場合6~8とするのが好適である。培養pH調整は適宜pH調整剤にて所定の範囲内になるように制御すればよい。
 また、撹拌は、好ましくは100~1000rpm、より好ましくは400~600rpmで行うのが好適である。
 また、空気を用いて通気培養をする場合、好ましくは0.01~1L/分、より好ましくは0.1~0.3L/分とするのが好適である。
 更に、上記培養基質の培養期間内の培地中の濃度は、所定の濃度内になるように調整するのが生産効率の点で好適であり、例えば500g/LのD-グルコース溶液を、好ましくは0.1~5g/L/h、より好ましくは1~2g/L/hで、連続的に又は不連続的に添加してもよい。
 また、pHは、6~8付近であればよい。
 上述の製造方法にて得られる光学活性4-ヒドロキシフェニル乳酸の回収法としては、特に限定されず、公知の分離精製方法を用いればよい。菌体の除去手段として、遠心分離や濾過等の公知の手段が挙げられる。また、光学活性4-ヒドロキシフェニル乳酸(D-4-ヒドロキシフェニル乳酸)の分離・精製手段としては、晶析、限外濾過、イオン交換、活性炭処理、クロマト分離等の公知の手段が挙げられる。
 クロマト分離としては、例えばODSカラムクロマトを用いる手法等が挙げられる。
 また晶析としては、有機溶媒による抽出及び再結晶の手法等が挙げられる。一例として、酢酸エチル及びヘキサン(=2:1~1:2)の混合溶媒:水=2:1~1:2にて抽出するのが好適である。このとき、塩酸等の酸にてpH2~4とする等により酸性化するのが好ましい。
 なお、本発明の製造方法を用いれば、ラセミ体でなく高純度のD-4-ヒドロキシフェニル乳酸を得ることもでき、分離精製の工程を簡略化することができるので、本技術は工業的生産には適している。しかも、これに適した酵素及び微生物を容易に得ることができるので、この点においても本技術は工業的生産に好適である。
 なお、高純度として、何れか一方の割合が高いのが有利であり、好ましくは85%以上、より好ましくは90%以上、更に好ましくは95%以上、より更に好ましくは98%以上であるのが有利である。 
 以下に具体的な実施例を説明するが、本発明はこれに限定されるものではない。
<実施例1>D-3-フェニル乳酸の生産菌のスクリーニング及びそれの生産するフェニルピルビン酸還元酵素(PPR)の精製
(1)D-3-フェニル乳酸を生産するTK1菌株の取得
 日本国の茨城県つくば市内の環境中の土壌や水を数十箇所で採取し、適宜希釈後、YPD寒天培地(2%酵母抽出液、1%ポリペプトン、1%D-グルコース/蒸留水 1L)に塗布した。28℃で2日から4日培養後、現れたコロニーを適宜希釈後、新たなYPD寒天培地に接種することにより、純粋分離した。さらに分離した菌株1白金耳を表1に示すMinimum medium(以下、「MM」ともいう)液体培地に植菌し、好気条件にて、28℃で2日から4日培養した。
 光学活性フェニル乳酸の生産量が良好なものを、以下の測定方法にて選抜し、そのうち1つをTK1菌株とした。
Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003
〔3-フェニル乳酸の定性及び定量方法〕
 1)ガスクロマトグラフィー質量分析計(GC/MS)を用いた3-フェニル乳酸の定性
 試料を、1% NaOH 200 μL、Methanol 167 μL、Pyridine 34 μLに完全に懸濁する。これに、Methyl chlorocarbonateを20 μL加え、激しく攪拌することにより試料をメチル化する。Methyl chlorocarbonateを加え攪拌する操作を繰り返した後、Chloroformを400 μL加え、攪拌する。次に、50 mM Sodium bicarbonateを加え、攪拌後の水層を除去する。得られたChloroform層に0.1gのSodium sulfateを加えることによりChloroform層を完全に脱水し、得られた溶液に含まれる有機酸をGC/MS(GCMS-QP2010 Plus、Shimadzu)を用いて測定する。このGC/MS分析の条件を以下に示す。
 なお、培養液を分析する場合、培養液5 mLを、1% NaOHを用いてpHを9から10に調整し、遠心エバポレーターを用いて減圧乾燥し、これを試料として使用する。
 分析器:GC/MS-QP2010 Plus (Shimadzu)
 カラム:DB-5(0.32 mm x 30 m)
 カラム温度:60 ℃ (2 min)-8℃/min-180℃ (5 min)-40℃/min-220℃ (5 min)
 インターフェイス温度:230℃
 イオンソース温度:250℃ 
 キャリアガス:He
 流量:30 mL/min
 2)高速液体クロマトグラフィー(HPLC)を用いた3-フェニル乳酸の定量
 試料中の3-フェニル乳酸の定量はHPLCを用いて、以下の分析条件にて、分析する。
 なお、培養液を分析する場合は、濾過や遠心分離等により菌体を除去した培養上清を試料として使用する。
 分析器:HP-1100 ( Hewlett-Packard)
 カラム:TSKgel ODS-80(登録商標) (4.6 × 150 mm, Tosoh, Tokyo, Japan)
 カラム温度:28℃
 流速:1.0 mL/min
 移動相:20 mm potassium phosphate buffer (pH 2.5): methanol (6:4, v/v)
 3)HPLCを用いたキラル分析
 試料(酵素反応液)中の3-フェニル乳酸の光学異性を、HPLCを用いて、以下の分析条件にて、決定する。なお、培養液を分析する場合には、培養液から濾過や遠心分離等により菌体を除去した培養上清を試料として使用する。
 分析器:HP-1100 ( Hewlett-Packard)
 カラム:Nucleosil Chiral-1 (Macherey-Nagel)
 カラム温度:60℃
 流速:1.2 mL/min
 移動相:0.5 mM CuSO4
(2)TK1菌株の同定
 全容50 mLの試験管に分注したYPD培地 10 mLに、予め菌体を生育させたYPD寒天培地から、菌体を一白金耳植菌し、30℃で2日間、120 rpmで振とう培養した。
 前培養液2.5 mLから菌体を遠心分離により集菌し、その沈殿を生理食塩水で洗浄した。これを10 mLのMM液体培地全容50 mLの試験管に植菌し、30℃で2日間、120 rpmで振盪培養した。なお、嫌気条件下で培養する際には、試験管の気相を窒素で置換しブチルゴム栓をし、これを30℃、6日間、120 rpmで振とう培養した。
 〔26S rDNA-D1/D2塩基配列解析〕
 抽出からサイクルシーケンスまでの操作は、DNA抽出(物理的破壊およびMarmur(1961))、PCR(puReTaq Ready-To-Go PCR beads(Amersham Biosciences, NJ, USA))、サイクルシーケンス BigDye Terminator v3.1 Kit (Applied Biosystems, CA, USA)、使用プライマー (NL1およびNL4 (O’Donnell,  1993))、シーケンス (ABI PRISM 3130xl Genetic Analyzer System (Applied Biosystems, CA, USA))、相同性検索および簡易分子系統解析(ソフトウェア アポロン2.0 (テクノスルガラボ), データベース アポロン DB-FU3.0 (テクノスルガラボ), 国際塩基配列データベース (GeneBank/DDBJ/EMBL))の各プロトコルに従った。
 〔生理性状試験〕
 試験方法はBarnett et al. (2000)およびKurtzman and Fell (1998)に準拠し、培養は温度耐性試験を除き25℃で行った。表3に示す生理性状の試験を行った。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000004
〔簡易形態観察〕
 光学顕微鏡(BX オリンパス、東京)を用いて簡易形態観察を行った。その結果を図1に示す。なお、バーは、5μmである。
〔TK1菌株の同定〕
 アポロンDB-FUに対するBLAST(Altschul, S.F. et al., (1990) J. Mol. Biol. 215:403-410.)を用いた塩基配列の相同性検索の結果、Strain TK1菌株の26S rDNA- D1/D2塩基配列は、子嚢菌酵母の一種であるWickerhamia fluorescens の基準株である NRRL YB-4819のそれと100%の相同性を示した。GenBank/DDBJ/EMBLなどの国際塩基配列データベースに対しする相同性検索においても、Strain TK1菌株の26S rDNA-D1/D2塩基配列は、WfluorescensのNRR YB-4819菌株に対して、100%の高い相同性を示した。
 また簡易形態観察の結果、Strain TK1菌株の栄養細胞は、レモン形、卵形、長卵形であり、増殖は両極出芽により、出芽部位は広く、偽菌糸の形成が認められた(図1)。また、培養開始19日目には、子嚢にスポーツ帽形の子嚢胞子を形成されることが確認された。これらの形態学観察はWfluorescensの形態学的特徴と一致する(Kurtzman C.P., Fell J.W. The Yeasts: A Taxonomic Study, 4th edition Elsevier, Amsterdam, Netherlands.)。
 生理・生化学的性状試験の結果、Strain TK1菌株は糖発酵性を示し、炭素源としてイノシトールを資化せず、窒素源として硝酸塩を資化しなかった(表3)。これらはWickerhamia属の特徴と一致した(Kurtzman C.P., Fell J.W. The Yeasts: A Taxonomic Study, 4th edition. Elsevier, Amsterdam, Netherlands.)。
 以上の生理性状試験、簡易形態観察の結果は26S rDNA-D1/D2塩基配列の結果を支持するものであった。このことより、Strain TK1菌株は、Wfluorescensに帰属すると推定され、本菌株をWfluorescens TK1と命名した。新規な微生物として、2010年12月13日、〒305-8566 茨城県つくば市東1-1-1 つくばセンター 中央第6、独立行政法人 産業技術総合研究所 特許生物寄託センター(IPOD)に、Wickerhamia fluorescens TK1(FERM AP-22048)として寄託した。
(3)Wfluorescens TK1菌株が生産する3-フェニル乳酸の光学異性
 Wfluorescens TK1菌株が生産する3-フェニル乳酸の光学異性を決定した。培養上清を、上述の如きキラル分析(Nucleosil Chiral-1カラム)に供した(図2)。その結果、生産されていた3-フェニル乳酸はD-3-フェニル乳酸と同一の保持時間を示し、L-3-フェニル乳酸とは異なるピークを与えた。このことより、Wfluorescens TK1菌株はエナンチオ選択的にD-3-フェニル乳酸を生産することが明らかとなった(図2)。
 なお、図2(a)はD-3-フェニル乳酸及びL-3-フェニル乳酸の標品;(b)は本菌株のMM培地培養後の上清;(c)は本菌株のGPAMM培地培養後の上清;(d)は本菌株から得られた酵素にてフェニルピルビン酸の基質を処理したものである。
(4)MM培地(最少培地)を用いてWfluorescens TK1菌株で培養した際のD-3-フェニル乳酸の生産性
 Wfluorescens TK1菌株を初期菌体濃度を0.2(O.D.600)に合わせ、MM培地を用いて好気条件下で5日間振とう培養(羽根付きフラスコ、100 mL)し、経時的に培養上清をサンプリングした。その結果、菌体の増殖は培養開始24時間以降には定常期に入った。D-3-フェニル乳酸の生産量は定常期に入っても増え続け、培養開始96時間目には培地中に0.1 mMのD-3-フェニル乳酸を生産していた(図3)。
 なお、図3~5の「Cell Density」は、菌体量を示し、「PLA」はD-3-フェニル乳酸の濃度を示し、また「PPA」はフェニルピルビン酸の濃度を示し、「Phe」はL-フェニルアラニンを示す。
(5)D-3-フェニル乳酸の生産に対するフェニルアラニンとフェニルピルビン酸の影響
 Wfluorescens TK1菌株を初期菌体濃度を0.2(O.D.600)に合わせ、MM培地に、フェニルピルビン酸を添加したGPAMM培地(表4)と、L-フェニルアラニンを添加したGPMM培地(表5)をそれぞれ用いて好気条件下でそれぞれ2日間および3日間振とう培養(羽根付きフラスコ、100 mL)し、経時的に培養液をサンプリングし、本菌によるD-3-フェニル乳酸の生産量を測定した(図4及び5)。
Figure JPOXMLDOC01-appb-T000005

Figure JPOXMLDOC01-appb-T000006
 その結果、Wfluorescens TK1菌株は培地にL-フェニルアラニンを添加すると、添加しない際と比較して、菌体量は5.1倍となり、D-3-フェニル乳酸を57.5倍生産した。また、フェニルピルビン酸を添加すると菌体量は1.5倍となり、D-3-フェニル乳酸を8.9倍生産した。
 培地に5 mM のL-フェニルアラニンを添加した場合、培養24時間後にはL-フェニルアラニンは検出されなくなり、代わりに同レベル(5.7 mM)のD-3-フェニル乳酸が蓄積された。このことより、本菌によりL-フェニルアラニンがD-3-フェニル乳酸へと変換されたと考えられた。すなわち、本菌株は、光学活性フェニル乳酸を生成する酵素を有すると考えられた。
 また、L-フェニルアラニンの減少とD-3-フェニル乳酸の生産に伴った菌体の増殖が見られた。L-フェニルアラニンを添加しているGPMM培地(図4)、L-フェニルアラニンを加えていないMM培地を用いた培養(図3)、フェニルピルビン酸を添加しているGPAMM培地(図4)を用いた培養での菌体の増殖量を比較すると、L-フェニルアラニンを添加しているGPMM培地を用いた培養で最も多かった。
 これは、L-フェニルアラニンのアミノ基から遊離するアンモニアが窒素源として利用されるため本菌の増殖が促進されたためと考えられる。
(6)Wfluorescens TK1菌株が生産する酵素を含む無細胞抽出液の調製
 湿菌体重量1.0 gあたり酸化アルミニウム2.5 gとプロテアーゼ阻害剤phenylmethylsulfonyl fluoride(PMSF)、N-tosyl-L-phenylalanylchlormethyl ketone(TPCK)各0.2 mM、10%グリセロールと1 mM dithiothreitol(DTT)を含んだ20 mMのリン酸緩衝液を加えて、菌体を乳棒と乳鉢を用いて破砕した。破砕液に菌体と同量の同緩衝液を加え、15000×gで遠心分離した。得られた培養上清を無細胞抽出液とした。以上の操作は氷中にて行った。
(7)無細胞抽出液からの本酵素PPR回収条件の検討
 フェニルピルビン酸のD-3-フェニル乳酸への還元を触媒する酵素(フェニルピルビン酸還元酵素)である本酵素PPRをWfluorescens TK1菌株の無細胞抽出液から精製するのに先立って、本菌の本培養の培養時間と無細胞抽出液中のPPR活性の関係を検討した。GPMM培地を用いて培養開始4、12、48時間後の菌体より無細胞抽出液を調製したところ、培養時間12時間でのPPR活性が4時間、48時間に比べそれぞれ1.8、3.4倍高かった(図6)。
 以上の結果から、精製に用いる菌体は12時間培養したものを用いることとした。なお、培養開始12時間後は3-フェニル乳酸の生産が行われる時間と一致することから、本酵素PPRは3-フェニル乳酸の生産に関わっている可能性が示唆された。
(8)本酵素PPRの至適pHの検討
 pH 5.5~8のTris-HCl緩衝液(pH 7, 7.5, 8)、リン酸緩衝液(pH 5.5, 6, 6.5, 7)の各pH緩衝液を反応液に用いてPPR活性を測定し、本酵素PPRの反応の至適pHを検討した。pH 6.5で最も高いPPR活性が検出された(図7)。このことから、本酵素PPRの至適pHは6.5であり、以後の活性測定のpHは6.5で行った。
(9)Wfluorescens TK1菌株由来の本酵素PPRの調製
 上述の如く、無細胞抽出液を調製し、この無細胞抽出液を100,000×gで1時間遠心分離した。
 更に、以下に示すように、遠心分離後の無細胞抽出液から、Butyl Shepharoseカラム、2’5’-ADP-Sepharoseカラム、次いでMonoQ HR 5/5カラムの各種クロマトグラフィーにて分離精製を行い、本酵素PPRを得た。
〔Butyl Shepharoseカラム〕
 遠心分離後の無細胞抽出液に、20%となるように硫安を添加した。wash buffer(10% glycerol, 1 mM dithiothreitol (DTT), 20 mMのリン酸緩衝液, 20% (NH4)2SO4, pH7)をカラム容積の5倍量流しカラムの平衡化を行った。このカラムに調製したサンプルをのせ硫酸アンモニウムの直線濃度勾配(20%-0%)により溶出を行い、活性画分を得た。
〔2’5’-ADP-Sepharoseカラム〕
 上記で得られた活性画分を、透析buffer(10% glycerol, 1 mM DTT, 20 mMリン酸緩衝液, pH7)に対して一晩透析を行った。このサンプルを、wash buffer(10%glycerol, 1 mM DTT, 20 mMリン酸緩衝液, pH7)を5倍量流し平衡化を行った2’5’-ADP-Sepharoseカラムに供した。溶出はelution buffer(10% glycerol, 1 mM DTT, 0.1-1 mM NADP+, 20 mMリン酸緩衝液, pH7)にて行い、活性画分を得た。
〔MonoQ HR 5/5カラム〕
 上記で得られた活性画分を、equilibration buffer(10% glycerol, 1 mM DTT, 20 mMリン酸緩衝液, pH7)で平衡化したMonoQ HR 5/5カラム(GE Healthcare)に供し、NaCl直線濃度勾配(0%-15%)により溶出を行った。
〔PPR活性の測定法〕
 PPRの活性測定は、酵素反応液として50 mM リン酸緩衝液(pH 6.5)、2 mM フェニルピルビン酸、0.1 mM NADPHを用い、これに試料(酵素液や無細胞抽出液など)を加えることにより反応を開始する。反応温度は25℃。活性は、反応に伴い生成されるNADPHの持つ340nmの波長の吸収の減少を紫外・可視分光時計(Beckman-Coulter DU-800)を用いて測定することによって定量する。NADPHの340 nm の波長の吸収のモル吸光係数は、6.2 mM-1・cm-1とする。
〔Phenylalanine aminotransferase(PAT)の活性測定〕
 PATの活性測定は、酵素反応液として50 mMリン酸緩衝液(pH 6.5)、10 mM L-フェニルアラニン、2.5 mM 2-オキソグルタル酸、12.5 μM Pridoxal phosphateを用い、これに試料(酵素液や無細胞抽出液など)を加えることにより反応を開始する。反応温度は37℃、反応時間30分とする。2 N NaOHを800 μL添加することで反応を終了させた。活性は、反応に伴い生成されるフェニルピルビン酸の持つ320 nmの波長の吸収の増加を測定することによって定量した。なおフェニルピルビン酸のモル吸光係数は17.5 mM-1・cm-1(Whitaker RJ., et al. J. Biol. Chem. (1982) 257, 3550-3556.)とする。
〔PPRの分子量の定量〕
 PPRの分子量の測定は、12.5%ポリアクリルアミドゲルを用いたSDS-PAGE及び/又はゲルろ過法により行う。
 SDS-ポリアクリルアミドゲル電気泳動法を用いる際には、Laemmliらの方法に従い、行う。
 また、ゲル濾過法を用いる際には、polyethylene glycol 20,000を用いて濃縮した精製本酵素PPRサンプルなどを予めelution buffer(10% glycerol, 1 mM DTT, 20 mMリン酸緩衝液, 0.15 mM NaCl pH7)で平衡化させたSuperose 6 10/300に供し、カラム容量の1倍のelution bufferで溶出する。
 標準タンパク質として、牛血清アルブミン(M.W. 67,000)、キモトリプシノーゲン(M.W. 25,000)、α-アミラーゼ(M.W. 45,000)、β-アミラーゼ(M.W. 200,000)を用いる。
 菌体30 gより調製した無細胞抽出液中の総タンパク量は592.2 mgであり、D-3-フェニル乳酸の生産の総活性は190.8 μmol/mLであった。すなわち、フェニルピルビン酸還元酵素が無細胞抽出液中に存在することが確認できた。
 これを遠心分離して得られた可溶性画分を、上述の如く、Butyl-Sepharose(疎水カラム)、2’5’-ADP-Sepharose(アフィニティーカラム)、Mono Q HR 5/5(強陰イオン交換カラム)に順次供した結果、本酵素PPRの比活性を2260倍まで濃縮でき、収率41%で本酵素PPRが精製できた(表6)。
 精製した本酵素PPRをSDS-PAGEに供した結果、単一バンドであることが示され、またその分子量は40,000であった(図8)。ゲル濾過法により、精製した本酵素PPR酵素の分子量は80,000と見積もられたことより本酵素PPRはホモ二量体を形成していることが明らかとなった(図8)。
Figure JPOXMLDOC01-appb-T000007
(10)Wfluorescens TK1菌株由来の生成する酵素の諸性質
〔PPRの酵素学的解析〕
 本酵素PPRはNADPH依存的に、フェニルピルビン酸と反応し、D-3-フェニル乳酸を生産することが、上述のHPLCの測定方法により確認できた。
 また、2 mMのフェニルピルビン酸と2 mM のNADPHより、2 mMの3-フェニル乳酸が生産されることが確認されたことから、この反応には、以下の化学量論が成り立つことが示された(Scheme 1)。
Figure JPOXMLDOC01-appb-C000008
 D-3-フェニル乳酸、L-3-フェニル乳酸、NAD+、NADP+の組み合わせを基質として用いた際の酵素反応は起きなかったことより、本酵素PPRによる反応は不可逆反応であることが示された。
 また、本酵素PPRはNADPHを補酵素として利用してフェニルピルビン酸、4-ヒドロキシフェニルピルビン酸、グリオキシル酸およびヒドロキシピルビン酸を還元した(Scheme 1及びScheme 2)。
 このときkcat/Km値はフェニルピルビン酸を基質としたときに最も大きく、373 s-1 mM-1であった(表7)。
 また、NADHを補酵素とした際のkcat/Km値は330 s-1mM-1とNADPHを補酵素とした際(10143 s-1mM-1)の1/31という低い値になった。そのため本酵素は、補酵素としてNADHとNADPHを利用可能であるが、NADPHに対する特異性が高いことが示された。
Figure JPOXMLDOC01-appb-T000009
〔金属イオンと阻害剤の影響〕
 各金属イオンと各阻害剤をそれぞれ終濃度1 mMで反応系に添加し、PPR活性を測定した。Cu2+ , Zn2+ , Fe2+, WO2-, Hg2+ の金属イオンにより、本酵素PPR活性の低下が見られたことから(表8)、これらがPPR活性を阻害することが示された。
Figure JPOXMLDOC01-appb-T000010
〔D-3-フェニル乳酸生産菌及びそれの生産するPPRの諸性質〕
 D-3-フェニル乳酸生産菌を検索した結果、子嚢菌酵母であるWfluorescens TK1菌株が培養上清中にD-3-フェニル乳酸を0.1 mM生産していたことから、新規D-3-フェニル乳酸生産菌をスクリーニングすることができたと考えられた。また、L-フェニルアラニンを培地に添加し同様に培養した際のD-3-フェニル乳酸の生産量は5.7 mM生産していた。3-フェニル乳酸の生産の報告があるGcandidumではTSBYE培地を用いてジャーファーメンターを用いて培養することで3.6~6.0 mM(非特許文献2)、乳酸菌ではMRS培地を用いることで0.57 mM(J. Biochem. 2005 138, 741-74915))の3-フェニル乳酸が生産されることが報告されている。また、Lactobacillus. Sp. SK007が3-フェニル乳酸の前駆体であるフェニルピルビン酸を培地に6 mM添加した際に5.2 mMの3-フェニル乳酸を生産し(Li, X. et al., Biotechnol. Lett (2007) 29, 593-597,)、L. plantarum TMW1.468、L. sanfranciscensis DSM20451では培地に50 mMのフェニルアラニンを添加した場合0.04~0.08 mMの生産がみられた(Vermeulen, N. et al. J. Agric. Food Chem. (2006) 54, 3832- 3839)。以上の結果は、W. fluorescens TK1菌株がジャーファーメンターなどを用いて培養条件を精密にコントロールしなくて比較的高いD-3-フェニル乳酸を生産する能力をもつことを示しものである。
 また、W. fluorescens TK1菌株はD-3-フェニル乳酸をエナンチオ選択的に生産していた。化成品、医薬品はサリドマイドに代表されるようにエナンチオマー同士で生理活性が異なることがある。そのため、キラル分子のエナンチオ選択的な製造が求められている。よって、本菌が高いエナンチオ選択性をもちD-3-フェニル乳酸を生産していることは、本化合物の医薬品原料などへの利用を考える上で大変意義があると考えられる。
 また、精製した本菌のPPR活性は、フェニルピルビン酸を基質としたときのkcat/Km値が373 s-1mM-1であった。この値は、現在までに報告のあるいずれのLactobacillus pentosus JCM1558 (非特許文献15)、Lactobacilluplantarum ATCC 8041のDLDH  (Taguchi, H.; Ohta, T. J. Biol. Chem. (1991) 266, 12588- 12594)、Rhizobium etli CFN 42のGRHPR(Fauvart, M. et al. Biochimica et Biophysica Acta 1774 (2007) 1092-1098)の分子活性よりも高い値である(表9)。
 また、これまでに唯一精製された真菌由来のフェニルピルビン酸を基質とする酵素であるCandida maltosa L4のD-4-hydroxyphenyllactate dehydrogenaseは、W. fluorescens TK1菌株のPPRと同様にフェニルピルビン酸と4-ヒドロキシフェニルピルビン酸に対して高い親和性を示している。しかし、D-4-hydroxyphenyllactate dehydrogenase はMn2+を補因子として必要とし、分子量250,000-280,000と本菌PPRの分子量と比較すると非常に大きい。また、本酵素PPRがフェニルピルビン酸に対する親和性が最も高かったのに対して、D-4-hydroxyphenyllactate dehydrogenaseは4-ヒドロキシフェニルピルビン酸に対する親和性の方が高かったことからも、両者は別の酵素であることが考えられる。
Figure JPOXMLDOC01-appb-T000011
<実施例2>ppr遺伝子のクローニング及び大腸菌での発現
(1)使用菌株
 3-フェニル乳酸生産菌W. fluorescens TK1菌株を用いた。
 E. coli Origami B (DE3)を、PPR発現用の宿主として用いた。プラスミドの構築に際しては、E. coli JM109 株を用いた。
(2)培養方法
 全容50 mLの試験管に分注した上述のYPD培地10 mLに、予め菌体を生育させたYPD寒天培地から、菌体を一白金耳植菌し、30℃で2日間、120 rpmで振とう培養した。前培養液から菌体を遠心分離により集菌し、その沈殿を生理食塩水で洗浄した。これを150 mLのGPMM培地を含む全容500 mLの羽根つきフラスコに植菌した。これを30℃、12時間、120 rpm、好気条件下で振とう培養した。
(3)本酵素PPRのN末端アミノ酸配列解析
〔ブロッティング〕
 濾紙をA溶液(0.3 M Tris、5%メタノール)に2枚、B溶液(25 mM Tris、5%メタノール)に1枚、C溶液(25 mM Tris、40mM 6-アミノカプロン酸、5%メタノール)に3枚それぞれ浸した。精製した本酵素PPRをSDS-PAGEで電気泳動した後、ゲルをそれぞれの溶液に浸した濾紙を重ね、転写装置(ホライズブロットAE - 6670P/N、ATTO)を用いて電気的にPolyVinylidene DiFluoride(PVDF)膜(AE-6665、ATTO)に転写した。
〔プロテインシーケンス〕
 乾燥させたPVDF膜より目的のバンドを切り出し、アミノ酸配列分析装置(Applied Biosystems Procise 492 cLC)に供した。
(4)本酵素PPRの内部アミノ酸配列の決定
 SDS-PAGEに泳動した精製した本酵素PPRをゲルより切り出し、トリプシンによりゲル内消化した。トリプシン消化ペプチドをMatrix-Assisted Laser Desorption/Ionization Time-of Flight (MALDI-TOF/MS) (AXIMA(登録商標), AXIMA(登録商標)-QIT Shimazu)に供し、得られたフラグメント情報を基にアミノ酸配列を決定した。
(5)cDNAの調製
 GPMM培地で培養したW. fluorescens TK1菌株を破砕バッファー(500 mM NaCl, 200 mM Tris-HCl (pH7.5), 10 mM EDTA, 1% SDS)に懸濁し、半量のガラスビーズと等量のフェノール・クロロホルム・イソアミルアルコール(25:24:1)を加えた(フェノクロ処理)。ボルテックスで攪拌したのち遠心分離し、上清を回収し、DNase処理し、フェノール・クロロホルム・イソアミルアルコール抽出を2回繰り返して、2.5倍量のエタノールと1/10倍量の3 M酢酸ナトリウムを添加した(エタノール沈殿)。遠心分離後、沈殿をRLC (RNeasy(登録商標) Plant Mini Kitに付属のもの) 450 μL、2-メルカプトエタノール4.5 μLに懸濁した 。以降のステップは RNeasy(登録商標) Plant Mini Kitのプロトコルに従った。調整したRNAとPrimeScript(登録商標)Reverse Transcriptaseを用いてcDNAを合成した。
(6)全DNAの調製
 YPD培地で一夜培養したW. fluorescens TK1菌株を破砕バッファー(100 mM NaCl、10 mM Tris-HCl (pH8.0)、1 mM EDTA、2% TritonX-100)に懸濁し、半量のガラスビーズと等量のフェノール・クロロホルム・イソアミルアルコール(25:24:1)を加えた(フェノクロ処理)。ボルテックスで攪拌したのち遠心分離し、上清を回収し、フェノール・クロロホルム・イソアミルアルコール抽出を2回繰り返して、2.5倍量のエタノールと1/10倍量の3 M酢酸ナトリウムを添加した(エタノール沈殿)。遠心分離後、沈殿を70%エタノールで洗浄した。70%エタノールを捨てアスピレータで乾燥させ、RNaseを加えた適量の滅菌水に懸濁した。
(7)クローニング
〔PCR法〕
 50 μLのPCR反応系に、得られたcDNAを鋳型として1 μL、10×KOD -Plus- buffer(TOYOBO) 5 μL、各2.5 mM dNTP 4 μL、プライマーNP (5'-ATGAARAARCCNCAGGT-3')(配列番号10)、Oligo dT (5'-TTTTTTTTTTTTTTTTTTTT-3') (配列番号11)、KOD -Plus- DNA Polymerase(TOYOBO) 1 μL、25 mM MgSO4 2 μLを加えた。この反応系に対して、96℃ 30 s、50℃ 30 s、68℃ 3 minの処理を35回行った後、68℃ 5 min伸長反応させた(一次PCR)。さらに、PCR産物をテンプレート1 μL、10×Ex Taq buffer(TaKaRa) 5 μL、各2.5 mM dNTP 4 μL、プライマーNP(配列番号10)、プライマー2427P (5'-GGYTCYTCYTCRAANACRTT-3') (配列番号12)、Ex Taq Polymerase (TaKaRa) 0.5 μLを加えた。96℃ 15 s、56℃ 20 s、72℃ 1 minの処理を35回行い、72℃ 5 min伸長反応させた(二次PCR)。
〔PPR遺伝子の全長解析〕
 調製した全RNAをもとに、5’ RACE System for Rapid Amplification of cDNA Ends (RACE), Version 2.0 (Invitrogen Co., CA)を用いてPPRの5’-末端のcDNAを合成した。得られたcDNAをテンプレートとして、kit付属のアダプターオリゴヌクレオチドとPPRをコードする遺伝子に特異的なプライマー(GSP1(5'-TGAAAATGCGTTAGTATGTGGAT-3') (配列番号13)、GSP2 (5'-TGCCTTTGCTGCTTTGAATGTAT-3') (配列番号14))を用いてnested PCRした。PCRの反応条件は、96℃ 15 s、56℃ 20 s、72℃ 1 minの処理を35回行い、72℃ 5 min伸長反応させた。PCRで得られた200 kpのDNA断片をアガロース電気泳動により回収し、pGEM(登録商標)-T easy (Promega, Madison, WI)にクローニングした。得られたプラスミドの挿入断片のDNA配列を決定した。
 3’-末端は3’ RACE System for Rapid Amplification of cDNA Ends (Invitrogen Co., CA)により合成したcDNAをテンプレートとして、プライマーGSP(5'-AACTACGAGGTGCTGCC-3’) (配列番号15)、プライマーGSP nest (5'-GTCCTCCCCAGTTACCATATATAGC-3') (配列番号16)を用いて上記と同様にPCRを行い、得られた270 kbの断片の塩基配列を決定した。
〔DNA配列解析〕
 DNAの配列解析は全自動 DNAシーケンサー(CEQ2000, Beckman Coulter)を用いて解析した。方法は、プロトコルに従って行った。
(8)リアルタイムPCR
 Wfluorescens TK1菌株を、MM培地、GPMM培地、GPAMM培地を用いて30℃ 、8時間培養し、得られた各培地の菌体からRNAを調製した。これを鋳型としてoligo-dT19プライマー、Reverse Transcriptase M-MLV (TAKARA BIO, Inc., Japan)を用いて逆転写反応を行った。得られた一本鎖cDNAを鋳型として、iQ(登録商標) SYBR(登録商標) Green Supermix (Bio-Rad Laboratories Inc., CA)を用いてMiniOpticon(登録商標)version 3.1 (Bio-Rad Laboratories Inc., CA)に供した。それぞれの菌体でpprA遺伝子の発現量を、18S ribosomal RNAの発現量との比として表した。
 発現の比率(pprA /18SrDNA)=2CT(pprA)-CT(18S ribosom)
 *CTは増幅産物が蓄積し、検出可能な蛍光シグナルが得られたサイクル数。
 なお、用いた酵素pprA(pprART F (5'-ATTTAGCCGCGATGAAAGAAC-3') (配列番号17)、pprART R (5'-TCGGCAAAGGCACATCC-3') (配列番号18))および18S ribosomeのプライマー(18SRT F (5'-ACCAGGTCCAGACACAATAAGG-3') (配列番号19)、18SRT R (5'-AAGCAGACAAATCACTCCACC-3') (配列番号20))はプライマー作製ソフトprimer 3 (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3.cgi)を用いて設計した。
(9)大腸菌を用いた組換えPPR(rPPR)の発現、精製
〔形質転換体の作製〕
 W. fluorescens TK1菌株のRNAから調製した一本鎖cDNAとプライマーNde-PPR(5'-GGGTTTCATATGAAAAAGCCTCAG-3')(配列番号21)、Xho-PPR(5'-CCGCTCGAGAACTACAAGATT-3')(配列番号22)を用いて、PCR反応によりpprA遺伝子のcDNA断片を増幅した。これをNdeI, XhoIで処理したものをpCWoriを予め同じ制限酵素で処理したものに連結して構築したプラスミド(pCW-PPR)をEcoli ATCC31882(ATCCより取得)に導入した(図9及び図10参照)。
〔発現の誘導〕
 得られた組換え体を終濃度100 μg/L アンピシリンナトリウムを含んだLB培地(LA) 10 mLで37℃、12 時間前培養した。この全量を150 mL LAに植菌した。120 rpm, 37℃、2時間培養後、終濃度1 mMのIPTGを添加し、50 rpm、室温で8時間培養した。
〔rPPRの精製〕
 培養した菌体を集菌し、buffer A (20 mM potassium phosphate (pH 7.0), 10% glycerol, 0.1 mM DTT)に懸濁して、超音波破砕した。破砕液を15,000 rpm, 30 分間遠心分離して上清(無細胞抽出液)を回収した。予めNi2+を吸着させた後、300 mM NaClを含んだbuffer A (buffer C)で平衡化したchelating Sepharose column (Amersham)に無細胞抽出液を供した。500 mM imidazoleを含んだbuffer Cで溶出した画分を回収し、buffer Aに対して透析し、以降の解析に用いた。
(10)分子系統解析
〔アミノ酸配列のアライメント〕
 クローニングしたpprA遺伝子の推定アミノ酸配列と相同性のある配列をNational Center for Biotechnology Information(NCBI)のデータベース内で検索した。この際、BLASTを用いた。得られた配列情報を利用してClustalWによるマルチプルアライメント解析を行った。
〔系統樹の作成〕
 系統樹の作成にはMEGA 4を用いた。系統樹の作製に用いたアミノ酸配列はNCBIより入手した。系統樹の作成は近隣接合法により行い、枝上にブートストラップ反復推定値を示した。
(11)本酵素PPRのN末端アミノ酸配列の決定
 精製した本酵素PPR(1μg)をPVDF膜に電気的にブロッティングし、本酵素PPRのN末端のアミノ酸配列を分析した。その結果、MKKPOVLILGRIからなる本酵素PPRの12残基のN末端アミノ酸配列を決定することができた(配列番号1)。
(12)本酵素PPRの内部アミノ酸配列の取得
 SDS-PAGE後の本酵素PPRをゲルより切り出し、トリプシンを用いてゲル内消化を行った。得られたトリプシン消化ペプチドをMALDI-TOF MS解析した。MALDI-TOF MS解析により得られたペプチドピーク中から、m/z 2000.00とm/z 2427.27の二つのペプチドを選び、MALDI-QIT-TOF MSを用いたMS/MS解析を行った(図11)。得られた質量フラグメントピークの情報をもとにトリプシン消化ペプチドのアミノ酸配列のde novoシーケンスを行った結果、m/z 2000.00を示すペプチドは19アミノ酸残基からなるNIQAIYGNWGGLASFGGFKのアミノ酸配列(配列番号2)、m/z 2427.27を示すペプチドは22アミノ酸残基からなるVAFAALDVFEEEPFIHPGLIGRのアミノ酸配列(配列番号3)をそれぞれ得ることができた(図12)。
(13)pprA遺伝子のクローニング
 N末端アミノ酸配列(配列番号1)と内部アミノ酸配列m/z 2427.27(配列番号3)の情報を基に、プライマーNP(配列番号10)、プライマー2427P(配列番号12)をそれぞれ設計した。W. fluorescens TK1菌株より調製したcDNAを鋳型とし、プライマーNP(配列番号10)、プライマーOligo dT(配列番号11)を用いてPCRを行った。さらに、PCR産物を鋳型として、プライマーNP(配列番号10)、プライマー2427P(配列番号12)を用いてPCRを行った。その結果、935 bpの目的のDNA断片が増幅された(図13)。
 増幅されたDNAの塩基配列をもとにプライマーを設計し、RACE法によりpprA遺伝子の両末端の塩基配列を解析した。その結果、pprA遺伝子は364残基のアミノ酸をコードする1,095 bpの塩基対からなることが示された(図14:配列番号4及び5)。この推定アミノ酸配列中には、上記で決定したPPRのN末端および内部アミノ酸配列をともに見出すことができた。また、ゲノムDNAより増幅した配列とcDNAより増幅した配列とを比較したところ、pprA遺伝子にはイントロンが存在しないことが明らかとなった。
(14)pprA遺伝子の染色体上でのコピー数
 W. fluorescens TK1菌株のゲノム上に存在するpprA遺伝子のコピー数を確認するためにサザンブロット解析を行った(図15)。制限酵素(HindIII、EcoRI、PstI、BamHI)で処理したW. fluorescens TK1菌株の全DNAに対して、pprA遺伝子の配列を含むDNA断片をプローブとしてサザンハイブリダイゼーションを行った。その結果、いずれの制限酵素処理した全DNAを用いた場合でもバンドは一本のみ検出された。このことより、ゲノム上に存在するpprA遺伝子は1コピーのみであり、精製した本酵素PPRはpprA遺伝子が発現したものであることが示された。
(15)L-フェニルアラニンによる本酵素PPRの発現制御
 GPMM培地(D-グルコース及びL-フェニルアラニンを含む)、GPAMM培地(D-グルコース及びフェニルピルビン酸を含む)、MM培地(D-グルコースを含む)をそれぞれ用いてW. fluorescens TK1菌株を10時間、30℃でそれぞれ培養して得られた菌体の無細胞抽出液中のPPR活性を上述の〔PPR活性の測定法〕に従って測定した。その結果、L-フェニルアラニンを添加したGPMM培地を用いて得られた菌体の無細胞抽出液中のPPR活性は0.22 μmol/min/mgであり、MM培地を用いて培養した際の活性に比べ3.6倍であった。また、フェニルピルビン酸を添加したGPAMM培地を用いた際のそれと比べ3.0倍高かった(図16)。同様の条件下でW. fluorescens TK1菌株を8時間培養して得られた菌体のpprA遺伝子の転写量をリアルタイムPCRを用いて測定した。その結果、5 mMフェニルアラニンを添加したGPMM培地を用いて培養した菌体でのpprA遺伝子の発現量がMM培地を用いた条件に比べ40倍、GPAMM培地を用いて培養した条件に比べ18倍増加していた(図16)。以上の結果から、pprA遺伝子の発現は、フェニルアラニンによって誘導されることが示された。
(16)大腸菌を用いた酵素rPPRの発現、精製
〔酵素rPPRの精製〕
 大腸菌Origami B株にpET21aにpprA遺伝子のcDNAを組込んだプラスミドを導入した。N末端にHisを付加させた本酵素PPRを発現させた後、chelating Sepharoseカラムを用いて精製した(図17)。その結果、40 kDaに単一バンドが得られたことから、酵素rPPRを精製できたことが示された。
〔酵素rPPRの酵素学的諸性質〕
 精製した酵素rPPRはW. fluorescens TK1菌株の酵素PPRと同様に、NADPHを補酵素として利用可能であり、フェニルピルビン酸、4-ヒドロキシフェニルピルビン酸、グリオキシル酸およびヒドロキシピルビン酸を基質とした際のkcat/Km値はフェニルピルビン酸を基質としたときが最も高かった(表10)。また、ピルビン酸とオキサロ酢酸を基質とした活性は検出されなかった(データ示さず)。これらのことより、大腸菌を用いて発現させた酵素rPPRも、W. fluorescens TK1菌株由来の酵素PPRと同様の基質特異性を示すことが明らかとなった。
Figure JPOXMLDOC01-appb-T000012
(17)本酵素PPRの分子系統解析
〔酵素PPRのアライメント解析〕
 酵素PPRの推定アミノ酸配列は、相同性が最も高かったCandida dubliniensis の機能未知遺伝子の推定アミノ酸配列と54%の相同性しか示さなかった。また、機能が明らかとなっているタンパク質のアミノ酸配列では L. plantarum 由来のD-lactate dehydrogenase(DLDH)と20%、R. etli CFN 42の組換えGRHPRと25%、Solenostemon scutellarioide由来のhydroxyphenylpyruvate reductase(HPPR)と27%の相同性を示したのみであった。
 C. dubliniensisの機能未知遺伝子、L. plantarum由来のDLDH、R. etli CFN 42の組換えGRHPR、S. scutellarioide由来のHPPRおよびWfluorescens TK1菌株の推定アミノ酸配列を用いてアライメント解析を行った。
 W. fluorescens TK1菌株の推定アミノ酸配列上の185-331番目にはNADH/NADPH結合ドメインが見られた。さらにNADH/NADPH結合モチーフと思われる配列 -G-X-G-X-X-G-がPPRの推定アミノ酸配列に見られた(図18)。また、ヒト由来GRHPR(Booth MP, et al. J Mol Biol. (2006) 360, 178-189.))の基質結合部位として同定されている基質のカルボキシル基の酸素原子と水素結合する86番目のバリン(V)(V83 in GRHPR)、87番目のグリシン(G)(GRHPR: G274)、基質のカルボキシル基とカルボニル基の酸素原子と水素結合する282番目のアルギニン(R)(GRHPR: R269)残基が酵素PPRに保存されていた。酸塩基触媒である329番目のヒスチジン(H)(GRHPR:  H329)残基とH329残基のイミダゾール環と水素結合する311番目のグルタミン酸(E)(GRHPR: E311)残基も保存されていた。DLDHとGRHPRはD-isomer specific 2-hydroxyacid dehydrogenase superfamilyに属する酵素であることから、本供試菌のPPRも同ファミリーに属することが示唆された。
〔系統樹〕
 GRHPR、HPPR、DLDH、formate dehydrogenase(FDH)、L-lactate dehydrogenase(LLDH)およびmalate dehydrogenase(MDH)ファミリーに属する既知の酵素と、本酵素PPRと相同性の高かった機能未知タンパク質のアミノ酸配列を選抜し、分子系統樹を作製した。その結果、PPRはLLDH、MDH superfamily とは異なるクラスターに属しておりD-isomer specific 2-hydroxyacid dehydrogenase superfamilyに分類された。
 さらに詳細な系統解析を行うために、D-isomer specific 2-hydroxyacid dehydrogenase superfamilyに属するHPPRまたはGRHPRファミリーに属する酵素と、本酵素PPRおよび本酵素PPRと、相同性を示した機能未知タンパク質のアミノ酸配列を選び、系統樹を作製した。その結果、本菌のPPRは既存のHPPRまたはGRHPRファミリーには属しておらず、子嚢菌酵母の機能未知タンパク質と新たなクラスターを形成していた。このことより、PPRはD-isomer specific 2-hydroxyacid dehydrogenase superfamilyに属する新規ファミリーを形成することが明らかとなった。そのファミリーは系統樹上でHPPRとGRHPRファミリーの近隣に位置しており、このことは本酵素PPRが、HPPRまたはGRHPRファミリーの酵素と同様にフェニルピルビン酸、4-ヒドロキシフェニルピルビン酸、グリオキシル酸およびヒドロキシピルビン酸を基質として認識するという点と相関を示した。
〔本酵素PPRの機能性〕
 本研究において、D-3-フェニル乳酸及び光学活性4-ヒドロキシフェニル乳酸を生産可能な子嚢菌酵母W. fluorescens TK1菌株を新たに見出した。さらに供試菌よりD-3-フェニル乳酸及びD-4-ヒドロキシフェニル乳酸の生産に関与する本酵素PPRを精製し、その遺伝子であるpprA遺伝子をクローニングした。今までにD-3-フェニル乳酸及びD-4-ヒドロキシフェニル乳酸の生産に直接関わる酵素を精製し、その遺伝子をクローニングしたという報告はなく、本研究は初めての例である。また、本酵素PPRは3-フェニル乳酸の生産に関与しているとして報告のあった乳酸菌のDLDHとは酵素学的解析、分子系統解析のいずれの結果からも異なる酵素であることが示された。系統解析より、本酵素PPRはD-isomer specific 2-hydroxyacid dehydrogenase superfamilyの既存のファミリーには分類されず、子嚢菌酵母の機能未知タンパク質と同じグループにマッピングされた。このことより、本酵素PPRはD-isomer specific 2-hydroxyacid dehydrogenase superfamilyに属する新規酵素であり、その機能は子嚢菌酵母に保存されている可能性が示唆された。
 本研究により明らかにされたW. fluorescens TK1菌株におけるD-3-フェニル乳酸の生産機構のモデルを図19に示す。グルコースを炭素源とした場合にはシキミ酸経路により供給されるフェニルピルビン酸が本酵素PPRにより還元されD-3-フェニル乳酸が生成すると考えられた。また、フェニルアラニンを培地に添加した場合は、フェニルアラニンはアミノトランスフェラーゼによりアミノ基の脱離がされフェニルピルビン酸へと変換される。さらに、本酵素PPRによりフェニルピルビン酸よりNADPHを補酵素として還元的にD-3-フェニル乳酸が生産される。また、pprA遺伝子はフェニルアラニンの存在下で転写レベルでの発現量が増大していた。実際にタンパク質レベルでもPPR活性は3.6倍、D-3-フェニル乳酸の生産量もフェニルアラニン添加時では添加してないときと比較して58倍まで増加した。
 乳酸菌における3-フェニル乳酸の生産は、ピルビン酸から乳酸へと変換を触媒するLDHがフェニルアラニンの代謝中間体であるフェニルピルビン酸にも触媒作用を示したため副次的に生産されると考えられている(Valerio F. et al., (2004) FEMS Microbiol Letters, 233, 289-295)。しかし、本供試菌の本酵素PPRはLDH活性を示しておらず、基質として認識する2-ケト酸の中でフェニルピルビン酸に対しての親和性が最も高かった。これは、本酵素PPRの機能が通常の乳酸菌のLDHとは異なることを示す。
 また、本酵素PPRは、4-ヒドロキシフェニルピルビン酸からD-4-ヒドロキシフェニル乳酸を生成することが明らかとなった。
 このことより、本供試菌では、3-フェニル乳酸及びD-4-ヒドロキシフェニル乳酸の生産は副次的なものではなく、本酵素PPRによって特異的に生産されていたことが分かる。
 本研究では、大腸菌のpETシステムを利用することによって組換えPPRの発現と精製に成功した。
 また、本研究により、芳香族化合物の生合成に関する新規な酵素PPRの精製、その遺伝子のクローニングと異種生物での発現系を構築することに成功した。この成果は、今後の芳香族系化合物の発酵生産のために役立つと考えられる。3-フェニル乳酸は幅広い抗菌活性を示す抗菌物質であるが、それと同時に芳香族系ポリマーの素材としての可能性も期待されている(Tsuji H. et al., J. Appl. Polymer Sci., 110, 3954-3962 (2008))。芳香族系ポリマーはベークライトに代表されるフェノール樹脂やポリフェニレンオキシドがあり、一般的に耐熱性、耐薬品性などの優れた物性がある。
 しかし、その原料の供給は主に石油由来であり、循環型社会が叫ばれる現在では、バイオマス由来の原料への変換が求められている。現在までに、バイオポリマーとして実用化が検討されているものの主流はポリ乳酸であろう。ポリ乳酸は原料である乳酸をラクチド重合や直接重合により得られる(Yin, M.; Baker, G. L. Macromolecules 1999, 32, 7711.)。ポリ乳酸の実用化が進んでいる理由としては、原料である乳酸が代謝の基幹産物であり、乳酸菌による乳酸発酵といったバイオベースでの生産の研究がよくなされているからである。もし、芳香族系の代謝産物の発酵生産技術が確立されれば、安定的な原料の供給が可能となりバイオマス由来の芳香族系ポリマーの製造が可能となると考えられる。本研究によりD-3-フェニル乳酸の生産機構を解明したことにより、今まで研究が困難であったD-3-フェニル乳酸を用いたバイオポリマーの機能解明のためのブレイクスルーとなると考えられる。
<実施例3>D-3-フェニル乳酸生産システムの構築
(1)ppr遺伝子を導入したフェニルアラニン生産性大腸菌の調製
 D-3-フェニル乳酸の生産株は、LB培地{10.0 g/L tryptone、5.0 g/L yeast extract、10.0 g/L NaCl}で一晩培養した後に、滅菌したグリセロールを全量の20%添加し、-80℃で保存した。
 前培養は、試験管に5.0 mLのLB培地を入れ、培地に対し1/100量のグリセロール保存溶液を接種して、37℃、120 rpmで約6時間振とう培養した。
 はじめに、フェニルアラニン生産性であるATCC31882株(ATCCより入手)に、上述の手法に準じてプラスミドを作製し、これを用いてppr遺伝子を導入し、形質転換した新規フェニル乳酸生産株を調製した。
(2)新規フェニル乳酸生産株による培養
 本フェニル乳酸生産株を、50 mLのフェニル乳酸生産培地(表11及び12)に20 g/Lのグルコースと50 mg/Lのカナマイシンを加えたものを用いて、1/100量の前述した前培養液を接種し、500 mL容羽根付き三角フラスコで、37℃、120 rpm、24時間振とう培養した。
Figure JPOXMLDOC01-appb-T000013

Figure JPOXMLDOC01-appb-T000014
 その結果を図20および表13に示した。なお、D-3-フェニル乳酸およびL-フェニルアラニンの定量は、RP-18カラム(MERCK社製)を用い、HPLC(HEWLETT PACKARD社製 SERIES1100)で行った。
 フェニル乳酸の光学活性は、培地中のフェニル乳酸を再結晶法により精製し、そのサンプルを上述の如くNUCLEOSIL Chiral-1カラム(MACHEREY-NAGEL社製)に供して決定した。
 D-グルコースの定量は、グルコースCIIテストキット(Wako社製)を用いて行った。
 pprA遺伝子をフェニルアラニン生産株であるATCC31882株にそれぞれ導入することによって、99%以上D-3-フェニル乳酸をそれぞれ生産する有用株(ATCC31882 /pHSGpprA)を作製することに成功した。
 続いて実用化を目指し、ATCC31882 pHSGpprA株を用いて、ジャーファーメンターによるD-3-フェニル乳酸生産を行った(図21)。
 400 mLの前述したフェニル乳酸生産培地を1.0 L容ジャーファーメンターに入れ、1/100量の前培養液を接種し、37℃、500 rpm、0.2 L/min(0.5 vvm)の空気を通気し、さらに、5NのNaOHを用いてpHを7.0に制御して、96時間培養した。培養環境の安定化のために、適量の消泡剤を加えた。
 なお、炭素源であるD-グルコースは、ペリシターポンプを用いて、500 g/LのD-グルコース溶液を1.50 g/L/hの速度になるように培地中へ添加した。
 また、栄養要求成分であるL-チロシンとL-トリプトファンは、長期培養による欠乏を防ぐために、予めフェニル乳酸生産培地にそれぞれ0.50 g/L添加した。
 最終的に、培養96時間でD-3-フェニル乳酸を15.5 g/L(対糖収率10.8%)生産することができた。なお、対糖収率は、D-3-フェニル乳酸の生成量(g)/D-グルコースの総添加量(g)にて算出した。
Figure JPOXMLDOC01-appb-T000015
(4)生産されたD-3-フェニル乳酸の精製
 培地中に生産されたD-フェニル乳酸は、有機溶媒を用いた抽出法と再結晶法を用いて精製された。抽出溶媒は、メタノールとヘキサンの混合溶媒(混合比1:1)を用いた。
 まず、遠心分離して菌体を除去した培養上清に塩酸を加えて酸性化し、それに抽出溶媒を等量加え、30分間緩やかに攪拌し、抽出作業を行った。
 その後、有機溶媒層を回収し、培養液に再度新しい抽出溶媒を加え、前述の工程を行った。これらの工程を2回行い、回収した有機溶媒層をエバポレートにより蒸発乾固し、D-3-フェニル乳酸を含有する粉末固体を得た。
 得られた粉末固体から高純度のD-3-フェニル乳酸を得るために、トルエンを加え、90~100℃で粉末を十分に溶解させ、その後、ゆっくり冷却させることでトルエン溶液中に白色結晶を得ることができた。
 トルエンを除き、洗浄した白色結晶をキラルカラムとGC/MS(GC-2010 SHIMADZU社製)に供した結果、白色結晶が高純度のD体の3-フェニル乳酸であることが確認された。
 以上、本発明のPPRを用いることによって、光学活性D-3-フェニル乳酸の発酵生産を行い、生産物であるD-3-フェニル乳酸を高純度に得られる技術が確立された。また、その生産量も既報に比べて格段に多く、次項の産業用途にとって有益である。
<実施例4>PPRをコードする遺伝子を利用した光学活性4-ヒドロキシフェニル乳酸生産システムの構築
(1)ppr遺伝子を導入したL-チロシン生産性大腸菌の調製
 光学活性4-ヒドロキシフェニル乳酸の生産株は、LB培地{10.0 g/L tryptone、5.0 g/L yeast extract、10.0 g/L NaCl}で一晩培養した後に、滅菌したグリセロールを全量の20% 添加し、-80℃で保存した。
 前培養は、試験管に5.0 mLのLB培地を入れ、培地に対し1/100量のグリセロール保存溶液を接種して、37℃、120 rpmで約6時間振とう培養した。
 はじめに、フェニルアラニン生産性であるATCC31882株(ATCCより入手)に、上述の手法に準じてプラスミドpTyrAを作製し(図22)、これを用いて配列番号24に示す塩基配列の779塩基目のCをTに変えることによって260番目のThrをIleに置換させたtyrA遺伝子(配列番号23)を導入し、L-チロシン生産菌を得た。このL-チロシン生産菌に、上述の手法に準じてプラスミド(pCWpprA又はpHSGpprA)を作製し、これを用いて更にppr遺伝子を導入し、形質転換した新規光学活性ヒドロキシフェニル乳酸生産株(NST-pprA生産株)を調製した。
(2)PPRを有する新規光学活性ヒドロキシフェニル乳酸生産株の培養
 PPRを有する光学活性ヒドロキシフェニル乳酸生産株を、50 mLのD-ヒドロキシフェニル乳酸生産培地(表14及び表15)に20 g/Lのグルコースと50 mg/Lのカナマイシンを加えたものを用いて、1/100量の前述した前培養液を接種し、500 mL容羽根付き三角フラスコで、37℃、120 rpm、24時間振とう培養した。
 得られた形質転換体をグルコースを炭素源とした培地を用いて培養したときに、培地中に4-ヒドロキシフェニル乳酸が検出された。生産される4-ヒドロキシフェニル乳酸はD-4-ヒドロキシフェニル乳酸であった。現在までに、2.5 g/LのD-4-ヒドロキシフェニル乳酸の発酵生産(対糖収率8%)が可能となった(表16)。
Figure JPOXMLDOC01-appb-T000016

Figure JPOXMLDOC01-appb-T000017

Figure JPOXMLDOC01-appb-T000018
(3)PPRをコードする遺伝子を含む微生物が生産した光学活性4-ヒドロキシフェニル乳酸の精製
 培地中に生産されたD-4-ヒドロキシフェニル乳酸は、有機溶媒を用いた抽出法と再結晶法を用いて精製された。抽出溶媒は、酢酸エチルとヘキサンの混合溶媒(混合比1:1)を用いた。
 まず、遠心分離して菌体を除去した培養上清に塩酸を加えて酸性化(pH2.5~3.5)し、それに抽出溶媒を等量加え、30分間緩やかに攪拌し、抽出作業を行った。
 その後、有機溶媒層を回収し、培養液に再度新しい抽出溶媒を加え、前述の工程を行った。回収した有機溶媒層をエバポレートにより蒸発乾固し、D- 4-ヒドロキシフェニル乳酸を含有する粉末固体を得た。
 得られた粉末固体から高純度のD-4-ヒドロキシフェニル乳酸を得るために、トルエンを加え、90~100℃で粉末を十分に溶解させ、その後、ゆっくり冷却させることでトルエン溶液中に白色結晶を得ることができた。
 トルエンを除き、洗浄した白色結晶をキラルカラムとGC/MS(GC-2010 SHIMADZU社製)に供した結果、白色結晶が高純度の光学活性のD-4-ヒドロキシフェニル乳酸(純度約99%)であることが確認された(図23参照)。
<実施例5>酵母W.fluoresensTK1株を利用したD-4-ヒドロキシフェニル乳酸の発酵生産
 本菌が、培地に添加したチロシンを4-ヒドロキシフェニル乳酸に変換可能であることを示した。本菌は、グルコースを原料として、シキミ酸経路、4-ヒドロキシフェニルピルビン酸を経由して4-ヒドロキシフェニル乳酸を生成すると考えられた。生産される4-ヒドロキシフェニル乳酸は光学活性体(D-4-ヒドロキシフェニル乳酸)であった。
<高速液体クロマトグラフィー(HPLC)を用いた4-ヒドロキシフェニル乳酸の定量>
 試料中のヒドロキシフェニル乳酸の定量はHPLCを用いて、以下の分析条件にて、分析する。
 なお、培養液を分析する場合は、濾過や遠心分離等により菌体を除去した培養上清を試料として使用する。
 分析器:HP-1100 (Hewlett-Packard)
 カラム:TSKgel ODS-80(登録商標) (4.6 × 150 mm, Tosoh, Tokyo, Japan)
 カラム温度:28℃
 流速:0.8 mL/min
 移動相:20 mm potassium phosphate buffer (pH 2.5): methanol (6:4, v/v) 
<ガスクロマトグラフィー質量分析計(GC/MS)を用いた4-ヒドロキシフェニル乳酸の定性>
 培養液5 mLを、1% NaOHを用いてpH を9から10に調整し、遠心エバポレーターを用いて減圧乾燥した。得られた沈殿を、1% NaOH 200 μL、Methanol 167 μL、Pyridine 34 μLに完全に懸濁した。これに、Methyl chlorocarbonateを20 μL加え、激しく攪拌することにより試料をメチル化した。Methyl chlorocarbonateを加え攪拌する操作を繰り返した後、Chloroformを400 μL加え、攪拌した。次に、50 mM Sodium bicarbonateを加え、攪拌後の水層を除去した。得られたChloroform層に0.1gのSodium sulfateを加えることによりChloroform層を完全に脱水し、得られた溶液に含まれる有機酸をGC/MS(GCMS-QP2010 Plus、Shimadzu)を用いて測定した。分析の条件を以下に示す。
分析器:GC/MS-QP2010 Plus (Shimadzu)
カラム:DB-5(0.32 mm x 30 m)
カラム温度:60 ℃ (2 min)-8℃/min-180℃ (5 min)-40℃/min-220℃ (5 min)
インターフェイス温度:230℃
イオンソース温度:250℃ 
キャリアガス:He
流量:30 ml/min
<生産した4-ヒドロキシフェニル乳酸の光学異性>
〔HPLCを用いたキラル分析〕
 培養液中の4-ヒドロキシフェニル乳酸の光学異性を、HPLCを用いて、以下の分析条件にて、決定する。なお、培養液から濾過や遠心分離等により菌体を除去した培養上清を試料として使用する。
 分析器:HP-1100 ( Hewlett-Packard)
 カラム:Nucleosil Chiral-1 (Macherey-Nagel)
 カラム温度:60℃
 流速:1.2 mL/min
 移動相:0.5 mM CuSO4 
<生産した4-ヒドロキシフェニル乳酸の光学異性>
 培養上清を回収し適宜メタノールで希釈したものを分析試料とする。ヒドロキシフェニル乳酸濃度の測定は、HPLCを用いて、以下の分析条件にて決定する。
 分析器:HP-1100 ( Hewlett-Packard)
 カラム:ODS-column (5C18-MS-II : COSMSIL)
 カラム温度:28℃
 流速: 0.8 mL/ min
 移動相:20mM リン酸:メタノール=4:6 
 以上、本発明の酵素PPRを利用すると、チロシンをD-4-ヒドロキシフェニル乳酸に変換可能である。更に、シキミ酸経路及びヒドロキシフェニルピルビン酸を経由するような形質転換体を利用することで、グルコースを原料としてD-4-ヒドロキシフェニル乳酸を生成することが可能である。
 そして、本発明の酵素PPR及びこれをコードする遺伝子を利用すれば、D-4-ヒドロキシフェニル乳酸を、選択的に作製することも可能である。
 よって、D-フェニル乳酸及びD-4-ヒドロキシフェニル乳酸の発酵生産を行い、生産物であるD-フェニル乳酸及びD-4-ヒドロキシフェニル乳酸を高純度に得られる技術が確立された。また、その生産量も既報に比べて格段に多く、次項の産業用途にとって有益である。
 独自に発見した新規なD-3-フェニル乳酸生産菌から、高純度の光学活性3-フェニル乳酸及び4-ヒドロキシフェニル乳酸を効率よく得ることが可能となる本発明のPPR及びこれコードするpprA遺伝子を得た。pprA遺伝子を導入した形質転換体によって、安価なグルコースを原料として高純度の光学活性3-フェニル乳酸及び4-ヒドロキシフェニル乳酸を効率よく得、遺伝子工学的製造も可能である。
 この光学活性3-フェニル乳酸は、広範囲の分野にて注目されており、例えば、ポリアロマ系プラスチック原料、生体適合性材料、機能性材料、医薬農業中間体としての利用が期待されている。同様に、光学活性4-ヒドロキシフェニル乳酸も、食品添加物、医薬、農薬等としての利用が期待されている。更には、従来困難といわれている芳香族系化合物の発酵生産技術構築のためのブレイクスルーとなる可能性を有している。

Claims (13)

  1.  フェニルピルビン酸を基質としてD-フェニル乳酸を生成するフェニルピルビン酸還元酵素をコードするポリヌクレオチドであって、
    (a)配列番号5に示される塩基配列からなるポリヌクレオチド、
    (b)配列番号5に示される塩基配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズするポリヌクレオチド、
    (c)配列番号5に示される塩基配列からなるポリヌクレオチドと60%以上の同一性を有する塩基配列からなるポリヌクレオチド、
    (d)配列番号6,7又は8に示される塩基配列を含むポリヌクレオチド、
    (e)配列番号4に示されるアミノ酸配列をコードするポリヌクレオチド、
    (f)配列番号4に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列をコードするポリヌクレオチド、及び
    (g)配列番号4に示されるアミノ酸配列と60%以上の同一性を有するアミノ酸配列をコードするポリヌクレオチド、
    からなる群より選択されるポリヌクレオチド。 
  2.  フェニルピルビン酸を基質としてD-フェニル乳酸を生成するフェニルピルビン酸還元酵素であって、
    (a)配列番号4に示されるアミノ酸配列、
    (b)配列番号4に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列、又は
    (c)配列番号4に示されるアミノ酸配列と60%以上の同一性を有するアミノ酸配列、
    のいずれかを含む、フェニルピルビン酸還元酵素。
  3.  請求項1に記載のヌクレオチドを含有する組換えベクター。
  4.  請求項3に記載の組換えベクターを含む形質転換体。
  5.  宿主が微生物である請求項4に記載の形質転換体。
  6.  前記微生物が大腸菌又はフェニルアラニン若しくはチロシン生産性組換微生物である請求項5に記載に形質転換体。
  7.  次の(a)、(b)又は(c)のタンパク質からなるフェニルピルビン酸還元酵素を用いて、フェニルピルビン酸又は4-ヒドロキシフェニルピルビン酸を基質としてD-フェニル乳酸又はD-4-ヒドロキシフェニル乳酸を生成させ、これを回収することを特徴とするD-フェニル乳酸又はD-4-ヒドロキシフェニル乳酸の製造方法:
    (a)配列番号4に示されるアミノ酸配列からなるタンパク質、
    (b)配列番号4に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質、又は
    (c)配列番号4に示されるアミノ酸配列と60%以上の同一性を有するアミノ酸配列からなるタンパク質。
  8.  前記フェニルピルビン酸還元酵素の反応条件が、反応温度20~40℃、pH6~7であることを特徴とする請求項7に記載のD-フェニル乳酸又はD-4-ヒドロキシフェニル乳酸の製造方法。
  9.  次の(a)、(b)又は(c)のタンパク質からなるフェニルピルビン酸還元酵素をコードする遺伝子を含む微生物を用いて培養し、微生物基質からD-フェニル乳酸又はD-4-ヒドロキシフェニル乳酸を生成させ、これを回収することを特徴とするD-フェニル乳酸又はD-4-ヒドロキシフェニル乳酸の製造方法:
    (a)配列番号4に示されるアミノ酸配列からなるタンパク質、
    (b)配列番号4に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質、又は
    (c)配列番号4に示されるアミノ酸配列と60%以上の同一性を有するアミノ酸配列からなるタンパク質。
  10.  前記微生物が、ウィッケルハミア属酵母若しくはこれを親株とした変異株又は請求項4又は5に記載の形質転換体であることを特徴とする請求項9に記載のD-フェニル乳酸又はD-4-ヒドロキシフェニル乳酸の製造方法。
  11.  前記微生物基質がD-グルコース、L-フェニルアラニン、L-チロシン、フェニルピルビン酸及び4-ヒドロキシフェニルピルビン酸から選ばれる1種以上の基質であることを特徴とする請求項9に記載のD-フェニル乳酸又はD-4-ヒドロキシフェニル乳酸の製造方法。
  12.  ウィッケルハミア属酵母が、Wicherhamia fluorescensである請求項10に記載のD-フェニル乳酸又はD-4-ヒドロキシフェニル乳酸の製造方法。
  13.  ウィッケルハミア フルオレセンス(Wicherhamia fluorescens)TK1と命名され、FERM AP-22048として寄託された微生物。
PCT/JP2012/051989 2011-01-31 2012-01-30 フェニルピルビン酸還元酵素並びに本酵素を用いた光学活性フェニル乳酸及び4-ヒドロキシ-フェニル乳酸の製造方法 WO2012105495A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280006892.5A CN103403157B (zh) 2011-01-31 2012-01-30 苯丙酮酸还原酶及使用该酶制造光学活性苯基乳酸及4-羟基苯基乳酸的制造方法
US13/981,832 US9187771B2 (en) 2011-01-31 2012-01-30 Phenylpyruvate reductase and method for manufacturing optically-active phenyllactic acid and 4-hydroxyl-phenyllactic acid using same enzyme
KR1020137019832A KR101531121B1 (ko) 2011-01-31 2012-01-30 페닐피루브산 환원 효소와 본 효소를 이용한 광학 활성 페닐젖산 및 4-히드록시-페닐젖산의 제조방법
EP12741920.8A EP2674490B1 (en) 2011-01-31 2012-01-30 Phenylpyruvate reductase and method for manufacturing optically-active phenyllactic acid and 4-hydroxyl-phenyllactic acid using same enzyme
JP2012555862A JP5714033B2 (ja) 2011-01-31 2012-01-30 フェニルピルビン酸還元酵素並びに本酵素を用いた光学活性フェニル乳酸及び4−ヒドロキシ−フェニル乳酸の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011018892 2011-01-31
JP2011-018892 2011-01-31
JP2011018895 2011-01-31
JP2011-018895 2011-01-31

Publications (1)

Publication Number Publication Date
WO2012105495A1 true WO2012105495A1 (ja) 2012-08-09

Family

ID=46602709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051989 WO2012105495A1 (ja) 2011-01-31 2012-01-30 フェニルピルビン酸還元酵素並びに本酵素を用いた光学活性フェニル乳酸及び4-ヒドロキシ-フェニル乳酸の製造方法

Country Status (7)

Country Link
US (1) US9187771B2 (ja)
EP (1) EP2674490B1 (ja)
JP (1) JP5714033B2 (ja)
KR (1) KR101531121B1 (ja)
CN (1) CN103403157B (ja)
TW (1) TWI453283B (ja)
WO (1) WO2012105495A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103710291A (zh) * 2014-01-02 2014-04-09 常熟理工学院 一株巨大芽孢杆菌z2013513及其生产苯基乳酸的方法
WO2016136508A1 (ja) * 2015-02-23 2016-09-01 国立大学法人静岡大学 2-アザ-8オキソヒポキサンチンの製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107164341A (zh) * 2017-06-21 2017-09-15 江南大学 一种植物乳杆菌来源的苯丙酮酸还原酶及应用
CN107729719B (zh) * 2017-09-30 2020-05-26 中国科学院计算技术研究所 一种从头测序方法
CN107805620B (zh) * 2017-10-12 2021-03-02 昆明理工大学 一株基因工程菌乳酸乳球菌及其应用
CN114015729B (zh) * 2021-11-15 2023-08-15 江南大学 植物乳杆菌在制备乳酸菌素、乳酸和苯乳酸中的应用
CN114369626B (zh) * 2022-01-20 2024-10-11 浙江工业大学 一种利用生物催化剂催化转化合成苯乳酸的方法
CN114854657A (zh) * 2022-05-18 2022-08-05 中山大学 一种产苯乳酸的重组大肠杆菌及其构建方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4681852A (en) 1980-07-18 1987-07-21 Austgen-Biojet International Pty, Ltd. Novel microorganism and method
JPH05344811A (ja) 1992-06-12 1993-12-27 Yanmar Agricult Equip Co Ltd 乗用田植機
JPH05344881A (ja) 1992-06-15 1993-12-27 Ajinomoto Co Inc 発酵法によるl−フェニルアラニンの製造法
JPH0937792A (ja) 1995-07-31 1997-02-10 Nitto Chem Ind Co Ltd 光学活性3−フェニル乳酸生産菌の取得方法
JP2000300284A (ja) 1999-04-20 2000-10-31 Seibutsu Kassei Kenkyusho:Kk 乳酸菌を用いて作られたフェニル乳酸およびその生産方法
JP2001081563A (ja) 1999-09-17 2001-03-27 Japan Science & Technology Corp エルビウム添加水素化アモルファスシリコン薄膜の製造方法
JP2003192633A (ja) 2001-12-26 2003-07-09 Toray Ind Inc 光学活性フェニル乳酸の製造法
JP2006311833A (ja) 2004-06-15 2006-11-16 Ajinomoto Co Inc L−チロシン生産菌及びl−チロシンの製造法
JP2007325592A (ja) 2006-06-07 2007-12-20 E I Du Pont De Nemours & Co L−チロシン過剰産生細菌株の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256552A (en) * 1988-02-08 1993-10-26 Daicel Chemical Industries, Ltd. Process for the production of optically active 2-hydroxy-4-phenylbutyric acid
NZ522584A (en) * 2000-04-26 2004-02-27 Meiji Seika Kaisha Process for producing substance PF1022 from a host which expresses a D-phenyllactic acid dehydrogenase
WO2006109632A1 (ja) * 2005-04-06 2006-10-19 Kaneka Corporation 新規α-ケト酸還元酵素、その遺伝子、およびその利用法
WO2007140816A1 (en) * 2006-06-09 2007-12-13 Metabolic Explorer Glycolic acid production by fermentation from renewable resources

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4681852A (en) 1980-07-18 1987-07-21 Austgen-Biojet International Pty, Ltd. Novel microorganism and method
JPH05344811A (ja) 1992-06-12 1993-12-27 Yanmar Agricult Equip Co Ltd 乗用田植機
JPH05344881A (ja) 1992-06-15 1993-12-27 Ajinomoto Co Inc 発酵法によるl−フェニルアラニンの製造法
JPH0937792A (ja) 1995-07-31 1997-02-10 Nitto Chem Ind Co Ltd 光学活性3−フェニル乳酸生産菌の取得方法
JP2000300284A (ja) 1999-04-20 2000-10-31 Seibutsu Kassei Kenkyusho:Kk 乳酸菌を用いて作られたフェニル乳酸およびその生産方法
JP2001081563A (ja) 1999-09-17 2001-03-27 Japan Science & Technology Corp エルビウム添加水素化アモルファスシリコン薄膜の製造方法
JP2003192633A (ja) 2001-12-26 2003-07-09 Toray Ind Inc 光学活性フェニル乳酸の製造法
JP2006311833A (ja) 2004-06-15 2006-11-16 Ajinomoto Co Inc L−チロシン生産菌及びl−チロシンの製造法
JP2007325592A (ja) 2006-06-07 2007-12-20 E I Du Pont De Nemours & Co L−チロシン過剰産生細菌株の製造方法

Non-Patent Citations (40)

* Cited by examiner, † Cited by third party
Title
"PCR Technology", 1989, STOCKTON PRESS
ALTSCHUL, S. F. ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403 - 410
BODE R. ET AL.: "Purification and Properties of D-Aromatic Lactate Dehydrogenase: An Enzyme Involved in the Catabolism of the Aromatic Amino Acids of Candida maltosa", BIOCHEM. PHYSIOL. PFLANZEN, vol. 181, 1986, pages 189 - 198, XP009063426 *
BOOTH, M. P. ET AL., J. MOL. BIOL., vol. 360, 2006, pages 178 - 189
DIEULEVEUX, V.; GUEGUEN, M., J. FOOD PROT., vol. 61, 1998, pages 1281 - 1285
DIEULEVEUX, V.; LEMARINIER, S.; GUEGUEN, M., INT. J. FOOD MICROBIOL., vol. 40, 1998, pages 177 - 183
DIEULEVEUX, V.; VAN DER PYL, D.; CHATAUD, J.; GUEGUEN, M., APPL. ENVIRON. MICROBIOL., vol. 64, 1998, pages 800 - 803
EDMAN, P., ACTA CHEM. SCAND., vol. 4, 1950, pages 283 - 293
FAUVART, M. ET AL., BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1774, 2007, pages 1092 - 1098
FUJII T. ET AL.: "Novel fungal phenylpyruvate reductase belongs to d-isomer-specific 2-hydroxyacid dehydrogenase family", BIOCHIM. BIOPHYS. ACTA, vol. 1814, no. 12, December 2011 (2011-12-01), pages 1669 - 1676, XP028121025 *
GENE, vol. 77, 1987, pages 61
HYMAN B.C. ET AL.: "Resolution of mitochondrial DNA structures in the large yeast Wickerhamia fluorescens", EXP. CELL RES., vol. 141, no. 1, 1982, pages 221 - 230, XP024856977 *
ISHIKURA, Y.; TSUZUKI, S.; TAKAHASHI, 0.; TOKUDA, C.; NAKANISHI, R.; SHINODA, T.; TAGUCHI, H., J. BIOCHEM., vol. 138, 2005, pages 741 - 749
J. BIOCHEM., vol. 138, 2005, pages 741 - 74915
JIANGHUA, J.; WANMENG, M.; TAO, Z.; BO., APPL. BIOCHEM. BIOTECHNOL., 2009
KRAMER, W.; FRITS, H., J. METHODS IN ENZYMOLOGY, vol. 154, 1987, pages 350
KURTZMAN, C. P.; FELL, J. W.: "The Yeasts: A Taxonomic Study", ELSEVIER
LAVERMICOCCA, P.; VALERIO, F.; EVIDENTE, A.; LAZZARONI, S.; CORSETTI, A.; GOBETTI, M., APPL. ENVIRON. MICROBIOL., vol. 66, 2000, pages 4084 - 4090
LI, X. ET AL., BIOTECHNOL. LETT., vol. 29, 2007, pages 593 - 597
LI, X.; PAN; MU, W.; ZHANG, T., JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, vol. 56, no. 7, 2008, pages 2392 - 399
MAGNUSSON, J.; STROM, K.; ROOS, S.; SJOGREN, J.; SCHNURER, MICROBIOL. LETT., vol. 219, 2003, pages 129 - 135
OHHIRA, I.; KUWAKI, S.; MORITA, H.; SUZUKI, T.; TOMITA, S.; HISAMATSU, S.; SONOKI, S.; SHINODA, S., BIOCONTROL SCI., vol. 9, 2004, pages 77 - 81
PAOLA LA ET AL.: "Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B", APPLIED ENVIRONMENTAL MICROBIOLOGY, vol. 66, no. 9, 2000, pages 4084 - 4090
PROC. NATL. ACAD. SCI. USA, vol. 74, 1974, pages 5463
RINTALA E. ET AL.: "The ORF YNL274c (GOR1) codes for glyoxylate reductase in Saccharomyces cerevisiae", YEAST, vol. 24, no. 2, February 2007 (2007-02-01), pages 129 - 136, XP009167436 *
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", 1989
SAMBROOK, J.; FRITCH, E. F.; MANIATIS, T.: "Molecular Cloning: A Laboratory Manual", vol. 2, 1989, COLD SPRING HARBOR LABORATORY PRESS
SCIENCE, vol. 227, 1985, pages 1435
See also references of EP2674490A4
SHIMIZU, M. ET AL., PROTEOMICS, vol. 9, 2009, pages 7 - 19
STROM, K.; SJOGREN, J.; BROBERG, A.; SCHNURER, APPL. ENVIRON. MICROBIOL., vol. 68, 2002, pages 4322 - 4327
TAGUCHI, H.; OHTA, T., J. BIOL. CHEM., vol. 266, 1991, pages 12588 - 12594
TAKASHI ITO ET AL.: "Development of D- phenyllactic acid-producing Escherichia coli using molecular breeding", DAI 63 KAI ABSTRACTS OF THE ANNUAL MEETING OF THE SOCIETY FOR BIOTECHNOLOGY, 25 August 2011 (2011-08-25), JAPAN, pages 152 - 2FA15 *
TSUJI, H. ET AL., J. APPL. POLYMER SCI., vol. 110, 2008, pages 3954 - 3962
VALERIO, F. ET AL., FEMS MICROBIOL. LETTERS, vol. 233, 2004, pages 289 - 295
VALERIO, F.; LAVERMICOCCA, P.; PASCALE, M.; VISCONTI, A., MICROBIOL. LETT., vol. 233, 2004, pages 289 - 295
VERMUELEN, N. ET AL., J. AGRIC. FOOD CHEM., vol. 54, 2006, pages 3832 - 3839
WANMENG MU ET AL.: "Production of 4-hydroxyphenyllactic acid by Lactobacillus sp. SK007", FERMENTATION JOURNAL OF BIOSCIENCE AND BIOENGINEERING, vol. 109, no. 4, 2010, pages 369 - 371, XP026949554, DOI: doi:10.1016/j.jbiosc.2009.10.005
WHITAKER, R. J. ET AL., J. BIOL. CHEM., vol. 257, 1982, pages 3550 - 3556
YIN, M.; BAKER, G. L., MACROMOLECULES, vol. 32, 1999, pages 7711

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103710291A (zh) * 2014-01-02 2014-04-09 常熟理工学院 一株巨大芽孢杆菌z2013513及其生产苯基乳酸的方法
CN103710291B (zh) * 2014-01-02 2015-11-18 常熟理工学院 一株巨大芽孢杆菌z2013513及其生产苯基乳酸的方法
WO2016136508A1 (ja) * 2015-02-23 2016-09-01 国立大学法人静岡大学 2-アザ-8オキソヒポキサンチンの製造方法
JPWO2016136508A1 (ja) * 2015-02-23 2017-12-07 国立大学法人静岡大学 2−アザ−8オキソヒポキサンチンの製造方法

Also Published As

Publication number Publication date
EP2674490A1 (en) 2013-12-18
CN103403157B (zh) 2015-08-05
JP5714033B2 (ja) 2015-05-07
EP2674490A4 (en) 2014-03-26
JPWO2012105495A1 (ja) 2014-07-03
US20140073024A1 (en) 2014-03-13
CN103403157A (zh) 2013-11-20
EP2674490B1 (en) 2017-04-19
KR20130107355A (ko) 2013-10-01
KR101531121B1 (ko) 2015-07-08
US9187771B2 (en) 2015-11-17
TWI453283B (zh) 2014-09-21
TW201303017A (zh) 2013-01-16

Similar Documents

Publication Publication Date Title
JP5714033B2 (ja) フェニルピルビン酸還元酵素並びに本酵素を用いた光学活性フェニル乳酸及び4−ヒドロキシ−フェニル乳酸の製造方法
US11597954B2 (en) Bioproduction of phenethyl alcohol, aldehyde, acid, amine, and related compounds
JP4613177B2 (ja) 1,2−プロパンジオールの産生のための発展型微生物
JP6881448B2 (ja) アルデヒドの製造方法
US11299717B2 (en) Production of citronellal and citronellol in recombinant hosts
JP6355562B2 (ja) 組換え細胞、並びに、イソプレンの生産方法
CN109295113A (zh) 一种生产羟基酪醇的方法
JP5320692B2 (ja) 酵母及びl−乳酸の製造方法
KR102149044B1 (ko) 2-히드록시 감마 부티로락톤 또는 2,4-디히드록시-부티레이트 의 제조 방법
JP5878871B2 (ja) 新規アミノ基転移酵素、およびこれをコードする遺伝子、ならびにこれらの利用法
WO2021187533A1 (ja) 3-ヒドロキシアジピン酸および/またはα-ヒドロムコン酸を生産するための遺伝子改変微生物および当該化学品の製造方法
JP7473573B2 (ja) 新規ラクトナーゼ
US20050089974A1 (en) Fermentative production of d-hydroxyphenylglycine and d-phenylglycine
JP5761641B2 (ja) (r)−3−キヌクリジノールの製造方法
WO2019059337A1 (ja) ヌートカトンの製造方法
JP2008301766A (ja) 乳酸製造用培地及び乳酸の製造方法
EP3868868A1 (en) Muconic acid-producing transformed microorganism and use thereof
JP6682274B2 (ja) ジヒドロキシナフタレンの製造方法
US20080176300A1 (en) Microbial conversion of sugar acids and means therein
WO2023220728A2 (en) Enzymes, cells, and methods for producing cis-3 hexenol
JP5678356B2 (ja) フェノール酸の製造法
JP2024109093A (ja) アセトバニロン変換酵素遺伝子及びそれを用いた有用物質生産
JP2024517485A (ja) フェニルプロパノイド化合物の生合成
JP2009131254A (ja) 4−ヒドロキシイソロイシン又は2−アミノ−3−メチル−4−ケトペンタン酸の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12741920

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137019832

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012741920

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012741920

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012555862

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301004211

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 13981832

Country of ref document: US