WO2012105459A1 - 電力計測装置 - Google Patents

電力計測装置 Download PDF

Info

Publication number
WO2012105459A1
WO2012105459A1 PCT/JP2012/051883 JP2012051883W WO2012105459A1 WO 2012105459 A1 WO2012105459 A1 WO 2012105459A1 JP 2012051883 W JP2012051883 W JP 2012051883W WO 2012105459 A1 WO2012105459 A1 WO 2012105459A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic film
magnetic
longitudinal direction
measuring device
power measuring
Prior art date
Application number
PCT/JP2012/051883
Other languages
English (en)
French (fr)
Inventor
浩章 辻本
Original Assignee
公立大学法人大阪市立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人大阪市立大学 filed Critical 公立大学法人大阪市立大学
Priority to KR1020137020426A priority Critical patent/KR101831800B1/ko
Priority to JP2012555846A priority patent/JP5885209B2/ja
Priority to CN201280007234.8A priority patent/CN103477235B/zh
Priority to US13/983,144 priority patent/US9329213B2/en
Priority to EP12741874.7A priority patent/EP2682766B1/en
Publication of WO2012105459A1 publication Critical patent/WO2012105459A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/08Arrangements for measuring electric power or power factor by using galvanomagnetic-effect devices, e.g. Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/06Arrangements for measuring electric power or power factor by measuring current and voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/096Magnetoresistive devices anisotropic magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/091Constructional adaptation of the sensor to specific applications

Definitions

  • the present invention relates to various thin film sensor type power measuring devices capable of measuring power in a high-frequency circuit or a battery with a simple and small configuration.
  • Non-Patent Literature a power measuring device and a magnetic field sensor that can measure power consumption with the amount of electricity using the magnetoresistive effect of a magnetic thin film have been proposed (Non-Patent Literature). 1, 2).
  • This uses a magnetic thin film (configured on the substrate) placed in parallel to the primary conductor through which alternating current flows, and a primary voltage is applied to both ends of the magnetic thin film via resistors, from both ends of the magnetic thin film.
  • a power measurement device and a magnetic field sensor that extract output. This power measuring device or the like takes a method of taking out the power IV from the amplitude value of the double frequency component.
  • planar Hall effect which is a phenomenon in which the electric resistance value of the magnetic material changes depending on the angle between the current and the magnetization in the ferromagnetic material made of a magnetic thin film. Focusing on the fact that linear characteristics can be obtained without a bias magnetic field, a signal component proportional to power is extracted (this power measuring device is called “planar hall type power measuring device” or “PHE type power measuring device”). Called).
  • the magnetic field sensor used here is an element that converts an external magnetic field change into an electrical signal. Patterning a magnetic thin film such as a ferromagnetic thin film or a semiconductor thin film and passing a current through the pattern of the magnetic thin film as a voltage change. A change in the external magnetic field is converted into an electric signal.
  • the voltage output detected from the magnetic thin film must be taken in the direction orthogonal to the load current of the primary conductor. That is, a voltage must be output at both ends in the width direction of the magnetic thin film. Therefore, in the PHE type power measuring device, the magnetic thin film needs to be thick to some extent, and a thin magnetic film (for example, a thin shape in the longitudinal direction of a linear shape or a rectangular shape, for example) is used. It is not possible.
  • the PHE type power measuring device has a geometric limitation that the magnetic thin film must be configured in a bridge circuit configuration. This means that it is difficult for the PHE type power measuring apparatus to be installed on a special line such as a microstrip line or a coplanar line used in a high frequency circuit.
  • Thin-film wattmeter using a magnetic film (The Institute of Electrical Engineers of Japan Magnetics Study Group data VOL.MAG-05 No.182) Thin-film wattmeter using a magnetic film (Materials of the Institute of Electrical Engineers of Japan, Vol. MAG-05 No. 192)
  • the present invention has been created in view of the above problems, and provides a configuration of a power measurement device suitable for power measurement of various circuits, batteries, and the like including a high-frequency circuit with a simple and inexpensive configuration. Objective.
  • the power measuring device is A power measuring device that measures power consumed in a load connected to a power supply via a connection line, A pair of connecting ends for connecting the power supply in parallel with the load; A magnetic film portion including a magnetic film; A pair of sensor terminals provided at both ends of the magnetic film portion; One end of the sensor terminal is connected to one of the coupling ends, A sensor element disposed adjacent to the connection line via an insulating layer so that the longitudinal direction of the magnetic film portion is substantially parallel to the direction in which the current of the connection line flows; One end is connected to the other end of the sensor terminal of the sensor element, and the other end is connected to the other of the connecting ends, a measuring resistor, Each of the sensor terminals is a measurement terminal, and a voltage detection unit that measures a voltage between the measurement terminals is provided.
  • the power measuring apparatus is A power measuring device that measures power consumed in a load connected to a power supply via a connection line, A pair of connecting ends for connecting the power supply in parallel with the load; A magnetic film portion in which a first magnetic film and a second magnetic film formed in a straight line are connected in series, and a connection point between the first magnetic film and the second magnetic film is grounded; A pair of sensor terminals provided at both ends of the magnetic film portion; One end of the sensor terminal is connected to one of the coupling ends, A sensor element disposed adjacent to the connection line via an insulating layer so that the longitudinal direction of the magnetic film portion is substantially parallel to the direction in which the current of the connection line flows; One end is connected to the other end of the sensor terminal of the sensor element, and the other end is connected to the other of the connecting ends, a measuring resistor, Each of the sensor terminals is a measurement terminal, and a voltage detection unit that measures a voltage between the measurement terminals is provided.
  • the power measuring apparatus of the present invention even when an offset is generated by a magnetic field applied to the magnetic film, it can be canceled and only the change in the measured magnetic field can be detected.
  • a power measuring apparatus is A power measuring device that measures power consumed in a load connected to a power supply via a connection line, A pair of connecting ends for connecting the power supply in parallel with the load; A magnetic film formed in a straight line and having a first magnetic film and a second magnetic film having different operating points connected in series, and a connection point between the first magnetic film and the second magnetic film is grounded And A pair of sensor terminals provided at both ends of the magnetic film portion; One end of the sensor terminal is connected to one of the coupling ends, A sensor element disposed adjacent to the connection line via an insulating layer so that the longitudinal direction of the magnetic film portion is substantially parallel to the direction in which the current of the connection line flows; One end is connected to the other end of the sensor terminal of the sensor element, and the other end is connected to the other of the connecting ends, a measuring resistor, The sensor terminal includes a point where one end and the other end of the sensor terminal are connected via a resistor, and a grounding point as a measurement terminal, and a voltage detection unit that
  • the power measuring apparatus uses sensor elements having different operating points in combination, a bias magnetic field is not required during use.
  • a power measuring apparatus is A power measuring device that measures power consumed in a load connected to a power supply via a connection line, A pair of connecting ends for connecting the power supply in parallel with the load; A magnetic film portion including a magnetic film; A pair of sensor terminals provided at both ends of the magnetic film portion; One end of the sensor terminal is connected to one of the coupling ends, A sensor element disposed adjacent to the connection line via an insulating layer so that the longitudinal direction of the magnetic film portion is substantially parallel to the direction in which the current of the connection line flows; One end is connected to the other end of the sensor terminal of the sensor element, and the other end is connected to the other of the connecting ends, a measuring resistor, In parallel with the sensor element and the measurement resistance, an equivalent sensor resistance having a resistance value equivalent to the sensor element and a series connection of an equivalent measurement resistance having the same resistance value as the measurement resistance are connected, A voltage detection unit that detects a potential between the respective measurement terminals using the connection point of the sensor element and the measurement resistor and the connection point of the variable
  • the sensor element is used as one resistance element of the bridge circuit, so that the AC component can be canceled and a slight DC component on the AC component can be detected with high accuracy.
  • a power measuring apparatus is A power measuring device that measures power consumed in a load connected to a power supply via a connection line, A pair of connecting ends for connecting the power supply in parallel with the load; A linearly formed first magnetic film and a second magnetic film are connected in series, and a magnetic film portion in which a connection point between the first magnetic film and the second magnetic film is grounded; A pair of sensor terminals provided at both ends of the magnetic film portion; One end of the sensor terminal is connected to one of the coupling ends, A sensor element disposed adjacent to the connection line via an insulating layer so that the longitudinal direction of the magnetic film portion is substantially parallel to the direction in which the current of the connection line flows; One end is connected to the other end of the sensor terminal of the sensor element, and the other end is connected to the other of the connecting ends, a measuring resistor, An equivalent measurement hand resistance having the same resistance value as the measurement resistance at the sensor terminal where the sensor element is connected to one of the connection ends and the other end where the measurement resistance is connected to the other of the connection ends. Is
  • the AC component can be canceled, a slight DC component on the AC component can be detected with high accuracy, and the offset related to the magnetic film can be canceled.
  • a power measuring apparatus is: A power measuring device that measures power consumed in a load connected to a power supply via a connection line, A pair of connecting ends for connecting the power supply in parallel with the load; A magnetic film formed in a straight line and having a first magnetic film and a second magnetic film having different operating points connected in series, and a connection point between the first magnetic film and the second magnetic film is grounded And A pair of sensor terminals provided at both ends of the magnetic film portion; One end of the sensor terminal is connected to one of the coupling ends, A sensor element disposed adjacent to the connection line via an insulating layer so that the longitudinal direction of the magnetic film portion is substantially parallel to the direction in which the current of the connection line flows; One end is connected to the other end of the sensor terminal of the sensor element, and the other end is connected to the other of the connecting ends, a measuring resistor, An equivalent measurement hand resistance having the same resistance value as the measurement resistance at the sensor terminal where the sensor element is connected to one of the connection ends and the other end where the measurement resistance is connected to the other of
  • the power measuring device does not require a magnetic field for adjusting the operating point when used, can cancel the AC component, and accurately detects a slight DC component on the AC component. Can do.
  • a power measuring apparatus is A power measuring device that measures power consumed in a load connected to a power supply via a connection line, A pair of connecting ends for connecting the power supply in parallel with the load; A magnetic film portion including a magnetic film; A pair of sensor terminals provided at both ends of the magnetic film portion; One end of the sensor terminal is connected to one of the coupling ends, A sensor element disposed adjacent to the connection line via an insulating layer so that the longitudinal direction of the magnetic film portion is substantially parallel to the direction in which the current of the connection line flows; One end is connected to the other end of the sensor terminal of the sensor element, and the other end is connected to the other of the connecting ends, a measuring resistor, Each of the end portions of the magnetic film portion perpendicular to the sensor terminal is used as a measurement terminal, and a voltage detection unit that measures a voltage between the measurement terminals is provided.
  • the power measuring device can use the planar Hall effect as a sensor element.
  • This is a configuration of a power measuring device that extracts and outputs a desired n-order high frequency with a band-pass filter.
  • FIG. 22 shows an improved example of the connection method shown in FIG.
  • FIG. 22 which is a configuration that can monitor the discharge amount and the charge amount of the battery.
  • (A) is a schematic diagram similar to FIG. 5,
  • (b) is a schematic diagram using this power measuring device for measuring a microstrip line, and
  • (c) is a schematic diagram using this power measuring device for measuring a coplanar line. is there.
  • the magnetic film in the barber pole type magnetoresistive effect type power measuring device is shown.
  • An oblique conductor film and electrodes provided on the magnetic film are shown.
  • the relationship between the longitudinal voltage V1 and the magnetic field H is shown.
  • a differential barber pole type magnetoresistive power measuring device is shown.
  • (A) is a photograph viewed from above, and (b) is used for measuring a microstrip line.
  • a schematic diagram is shown.
  • the barber pole patterns with different inclinations show the characteristics of the magnetic resistance effect of the barber pole magnetic film as if different bias magnetic fields were applied to the left and right of the magnetic film.
  • the state of the connection of the amplifier circuit of the differential barber pole magnetoresistive effect type power measuring device is shown.
  • the concrete measurement system of FIG. 32 is shown.
  • the output characteristic between the AB terminals in FIG. 33 is shown.
  • the output characteristic between the CB terminals of FIG. 33 is shown.
  • the output voltage of the operational amplifier of FIG. 33 is shown.
  • the schematic diagram of the measurement system when a bias magnetic field is applied parallel to the long axis is shown.
  • the output characteristic of the measurement system of FIG. 37 is shown.
  • the output characteristic of the measurement system of FIG. 37 is shown.
  • the output characteristic of the measurement system of FIG. 37 is shown.
  • a characteristic measurement system as a wattmeter when a load current (I1) is passed through the conductor film is shown.
  • the output characteristics when a load current (I1) is passed through the conductor film without applying a bias magnetic field are shown. This The output change by the magnetic field application to the element longitudinal direction (longitudinal direction of a magnetic film) is shown.
  • the measurement system when a bias magnetic field is applied is shown.
  • the output characteristics of the magnetoresistive effect type power measuring device when a bias magnetic field is applied are shown. It is a figure which shows the sensor element using the magnetic film which inclined the magnetization easy axis with respect to the longitudinal direction.
  • (A) is an image diagram of a slight DC component
  • (b) is an image diagram in which the DC component is amplified by a low-pass filter or an amplifier
  • (c) is a differential amplification of the output voltage of the dummy resistor VR and the magnetic thin film Rmr.
  • the image figure which takes out only DC voltage component is shown.
  • the specific measurement circuit of FIG. 47 is shown.
  • (A) and (b) show the measurement results when the input AC (load current) on the reference side is set to an execution value of 4.0 V and 100 Hz, respectively. It is a graph of the result of having detected a harmonic current by the method similar to FIG.49 (b).
  • the power measuring device utilizes the magnetoresistive effect, which is a phenomenon in which the electrical resistance value of a magnetic material changes depending on the angle (direction) between current and magnetization (spontaneous magnetization) in a ferromagnetic material or semiconductor. It is. This will be described more specifically with reference to FIG. A current I is passed through the ferromagnetic material.
  • the magnetization M is affected by the magnetic field H and the direction changes. Then, the voltage V1 in the current direction changes.
  • the output voltage V1 with respect to the magnetic field H shows an even function as shown in FIG.
  • the horizontal axis represents the magnetic field acting on the ferromagnetic material
  • the vertical axis represents the voltage V1 of the ferromagnetic material in the current direction.
  • the horizontal axis is determined by the direction. For example, if the magnetic field H from the bottom to the top of FIG. 1 is a positive direction, the magnetic field acting from the top to the bottom of the paper is a negative magnetic field.
  • the output voltage V1 exhibits a mountain-shaped characteristic, and in order to obtain a linear characteristic, it is necessary to apply a bias magnetic field in either the positive or negative direction.
  • FIG. 2 shows a state in which a bias magnetic field is applied in the positive direction and the operating point has moved to the inclined portion of the mountain-shaped characteristic curve.
  • This circuit configuration is a parallel circuit in which the current from the power source Vin is divided into currents I1 and I2.
  • the current from the power source Vin is obtained by applying a current I2 to the primary conductor film Cu and a load path R1 (Load R1) where power consumption is measured, and to the magnetic film 1a and the measurement resistor R2 (12). Flowed in parallel with the measurement path.
  • the measurement resistance R2 is sufficiently larger than the resistance value Rmr of the magnetic film 1a.
  • Equation 2 is the sum of the AC component and DC component of each frequency component. Therefore, in the power measuring apparatus according to the present invention, in principle, even when the voltage and current include a high frequency, the AC voltage and the DC voltage are superimposed on the output voltage Vmr in the longitudinal direction of the magnetic film 1a. Appear. At this time, the DC voltage component of the output voltage Vmr is a DC voltage obtained by summing the DC voltage proportional to the power consumption due to the fundamental wave and the DC voltage proportional to the power consumption due to the harmonic.
  • the power measuring device even when the power source includes a harmonic component, if only the DC voltage in the longitudinal direction of the magnetic film 1a is measured, the power consumption (effective power including the power factor) at the load R1 It is possible to measure
  • the power measuring device will be outlined.
  • the sensor element 1 including the magnetic film 1a, the measuring resistor R2, and the voltage detector for measuring the voltage of the sensor element 1 (FIG. 3). Is omitted). Furthermore, it has a pair of connection end (10a, 10b) for connecting these structures to the conveyance circuit by which electric power is measured.
  • the signal to be detected is a DC voltage signal
  • power consumption can be measured even with a simple device such as a digital tester (DMM) as a voltage detection unit.
  • DMM digital tester
  • the direct-current voltage signal is essentially less influenced by high frequency induction noise. Therefore, it can be said that this power measuring device is suitable for power measurement in a high-frequency circuit.
  • the power measuring apparatus since the voltage in the longitudinal direction (current direction) of the magnetic film is detected, the long and narrow magnetic film increases the output voltage (higher SNR).
  • this power measuring device can easily install a substantially linear element in a line shape such as a microstrip line, strip line, or cosplayer line that is often used in a high-frequency circuit. Also in this respect, it can be said that this power measuring apparatus is suitable in principle for power measurement of a high-frequency circuit.
  • FIG. 4 shows a state in which a three-layer structure in which the insulating film 2 is interposed between the conductor film 3 and the magnetic film 1a corresponding to a connection line for passing a current to the load is integrally formed.
  • the insulating film 2 is an insulating layer provided for closely attaching the sensor element 1 to the connection line.
  • the magnetic field H is formed by a current I1 flowing through the conductor film 3.
  • the conductor film 3, the insulating film 2, and the magnetic film 1a are made of copper Cu, a polyimide substrate, and permalloy, respectively.
  • a permalloy film 1a is formed as a magnetic film on the glass substrate 4, and a copper film 3s (3sa, 3sb) is formed so as to be connected to both ends of the permalloy film 1a.
  • a polyimide substrate 2 is formed on the surfaces of the permalloy film 1 a and the copper film 3 s, and a conductor film 3 is formed on the surface of the polyimide substrate 2.
  • a current I2 (see FIG. 3) having the same phase as the current I1 flowing from the left side to the right side through the upper conductor film 3 flows in the copper film 3sa. This current flows from the left end to the right end in the magnetic film 1a (Permalloy), and then flows to the copper film 3sb.
  • the magnetic field H created by the line becomes a magnetic film (see FIG. 4).
  • the power can be obtained as an electrical output (DC power component) by the magnetoresistive effect of the magnetic film.
  • FIG. 25A is a schematic diagram similar to FIG. 5, FIG. 25B is a schematic diagram in which the power measuring device is used for measuring a microstrip line, and FIG. 25C is a coplanar device.
  • the schematic diagram used for the measurement of the track is shown.
  • the same reference numerals as those in FIG. 25A and 25B the current I1 flows through the strip line 3, and the current I2 flows through the magnetic film 1a.
  • the central strip line 3 which is a signal line of the microstrip line and the coplanar line also serves as the conductor film 3 on which the sensor element 1 of the power measuring apparatus is disposed. That is, the power measuring apparatus can be integrally formed as a part of a microstrip line or a coplanar line.
  • FIG. 6A shows the configuration of the magnetoresistive effect type power measuring apparatus together with the circuit 20 for measuring power.
  • the circuit 20 for measuring the power is composed of a function generator 22 and an amplifier 24 as a power source.
  • the load is R1.
  • the load and the power source are connected by a connection line.
  • the location where the sensor unit of the power measuring device is disposed is represented by the connection line Rcu.
  • the signal from the function generator 22 is amplified by an amplifier (DC amplifier) 24 and becomes an AC power supply.
  • the power measuring device 15 includes a sensor element 1, a measuring resistor 12 (R2), and a voltage detection unit 28. Moreover, the power measuring device 15 has a pair of connecting ends 10 (10a, 10b) for connecting in parallel to a power source of a circuit whose power is measured. As long as this connection end 10 can be connected to the power supply in parallel with the load R1, the connection end 10 may be connected anywhere in the circuit where power is measured.
  • a sensor element 1 including a magnetic film and a measuring resistor 12 (R2) are connected in series between the connection ends. The terminals of the measurement resistor 12 are denoted by reference numerals 12a and 12b, respectively.
  • the sensor element 1 has a pair of sensor terminals 1ta and 1tb, and a magnetic film 1a is formed between the sensor terminals.
  • FIG. 6B shows an enlarged view of the sensor element 1. That is, a sensor terminal is provided on each of the opposing short sides of the strip-shaped magnetic film. It should be noted that when both sensor terminals are described without distinction, they are indicated as “sensor terminal 1t”, and when they need to be described separately, they are indicated as “sensor terminal 1ta” or “sensor terminal 1tb”. Further, the connection end 10 and the terminals of the measuring resistor 12 are also expressed in the same manner.
  • One end 1tb of the sensor terminal is connected to one end 10b of the connecting end.
  • the sensor element 1 is arranged on the connection line of the circuit where power is measured so that the longitudinal direction of the magnetic film is the same direction as the current flowing through the connection line. At this time, an insulating layer is formed between the magnetic film of the sensor element 1 and the connection line. This is because the current flowing through the connection line does not flow through the magnetic film.
  • the magnetic film exhibits a magnetoresistive effect under the influence of a magnetic field generated by a current flowing through the connection line. Since the magnetoresistive effect may be considered to be proportional to the strength of the applied magnetic field, the sensor element is preferably arranged as close to the connection line as possible.
  • the other end 1ta of the sensor element 1 is connected to one end 12b of the measuring resistor 12.
  • the other end 12 a of the measuring resistor 12 is connected to the other 10 a of the connecting end 10.
  • the sensor terminals (1ta, 1tb) are measurement terminals 13 (13a, 13b), and the voltage detection unit 28 measures the voltage between the measurement terminals 13.
  • a low-pass filter 26 is connected between the measurement terminals 13. Note that this low-pass filter can be provided in all electrode measuring apparatuses according to the present invention.
  • the high frequency component of the voltage is cut by the low pass filter 26.
  • the magnetic film of the sensor element 1 preferably has a strip shape. This is because a large resistance change can be obtained by passing an electric current in the longitudinal direction. However, it does not exclude other shapes such as a square, a rhombus, a circle, an ellipse, a bent shape, and the like. This is because the magnetic film needs to match the shape of the connection line of the current flowing through the load. That is, in this specification, in the case of a strip shape, it may be considered as a concept including these shapes.
  • the sensor terminal is described as being provided on the opposite short sides of the strip-shaped magnetic film.
  • the sensor terminal is substantially a sensor terminal provided to allow a current to flow in the longitudinal direction of the magnetic film. If it exists, it may be provided at a position other than the opposing short sides of the strip-shaped magnetic film. This is because, depending on the shape of the connection line for passing a current to the load, it may be necessary to provide the sensor terminal at a position away from the short side of the magnetic film.
  • the operating point adjusting bias magnetic field applying means can be composed of a permanent magnet or an electromagnet.
  • FIG. 7 shows another configuration of the power measuring device 15.
  • the signal from the function generator 32 is input to two amplifiers (DC amplifiers) 34 and 35 so that the change in the offset of the amplifier 35 (AMP2) does not affect the output voltage of the sensor element 1. Yes.
  • In-phase alternating current is output to the amplifier 34 (AMP1) and the amplifier 35 (AMP2).
  • the current flowing through the power measuring device 15 of the present invention must flow a current having the same frequency as the current flowing through the circuit where power is measured.
  • this condition is satisfied.
  • the power measurement device itself has a power source. Also good.
  • This power source may be a voltage source or a current source.
  • Equation 3 the reason why it is necessary to flow a current in the same phase as the current flowing in the circuit in which power is measured through the magnetic film is shown in Equation 3 below. Equation 3 is understood from the fact that if the input voltage is not the same frequency ( ⁇ 1 ⁇ ⁇ 2), the output voltage is only an AC component. In addition, Formula 3 is based on the power measurement principle of FIG. 3 like Formula 1 and Formula 2.
  • the high-frequency component of the output voltage from the magnetic film is cut by the low-pass filter 26, and the DC component of the output voltage is measured by the digital tester 28, as in the case of FIG.
  • FIG. 8 to FIG. 10 show the results of power measurement with the configuration of FIG. 8 and 9, the power supply voltage is an AC power supply having an effective value of 2.0 V and 60 Hz, the load R1 is changed to infinite (released) 10 ⁇ , 3.9 ⁇ , and 2 ⁇ every 200 seconds, and further 2 ⁇ , 3.
  • the graph shows the results of measuring the output voltage of the sensor element 1 with 9 ⁇ , 10 ⁇ , and infinity (open).
  • the horizontal axis is time, but substantially the magnitude of the load resistance.
  • the left vertical axis is the output voltage of the digital tester 28, and the right vertical axis is the current value flowing through the load.
  • the output fluctuates in the direction of the vertical axis is the output voltage, indicated by the symbol “a”.
  • FIG. 9 shows the measurement results obtained by changing the frequency of the power supply voltage.
  • the frequency of the power supply voltage is 100 Hz
  • FIG. 9B shows the measurement result of 200 Hz.
  • the horizontal axis is time (substantially the resistance value)
  • the left vertical axis is the output voltage
  • the right vertical axis is the current flowing through the load, as in FIG. It is understood that the output voltage changes corresponding to the power consumption changed stepwise at any frequency.
  • FIG. 10 is a graph showing the relationship between the power consumption and the output voltage by calculating the average value of the output voltage in each time interval of each frequency (that is, the resistance value of the selected load).
  • the horizontal axis represents power consumption, and the vertical axis represents the average value of each output voltage. It can be seen from this graph that an output voltage proportional to power consumption can be obtained with relatively good reproducibility.
  • the reason why the output voltage when the power consumption is 0 [W] is different at each frequency may be that the offset of the amplifier 35 (AMP2) changes for each measurement.
  • ⁇ Power measurement device for every nth harmonic (applicable to magnetoresistance effect type, planar Hall effect type (PHE type), Hall effect type power measurement device) ⁇
  • a power measuring device using the magnetoresistive effect an AC voltage component and a DC voltage component are superimposed on a sensor element and output, and the DC voltage component is detected by a voltage detection unit such as a DMM.
  • a voltage detection unit such as a DMM.
  • an output signal detected in a power measuring device using a thin film element such as a PHE type power measuring device or a power measuring device using a semiconductor thin film is a DC voltage.
  • the DC voltage component of the output voltage signal Vmr is the effective power consumption (including power factor) of each n-order harmonic. ). Therefore, in the case of the power measuring device of the present invention, it is possible to measure the total power consumption of each corresponding high frequency only by measuring the DC voltage of the sensor element even with respect to the power source including the nth harmonic. This point will be described in detail.
  • Fig. 11 shows the measurement circuit used for the demonstration.
  • This current also flows through the conductor film Rcu, which is a connection line.
  • the high-frequency component of the output voltage from the sensor element 1 resistance is Rmr
  • the low-pass filter 26 On the power measuring apparatus side, the high-frequency component of the output voltage from the sensor element 1 (resistance is Rmr) is cut by the low-pass filter 26.
  • a component having a frequency equal to or higher than the minimum oscillation frequency at the power source V1 is cut.
  • DDM digital multimeter
  • FIG. 12 shows the measurement result of the output voltage at the DMM 28 in the measurement circuit of FIG.
  • the power source V1 includes a 100 Hz component and a 200 Hz component having the same magnitude superimposed (denoted as “100 Hz + 200 Hz”). That is, FIG. 12 shows an example of power consumption measurement when a power supply voltage including two frequency components of 100 Hz and 200 Hz is used.
  • a current determined by the power supply voltage and the load flows through the load Rload.
  • signals of (1) 100 Hz + 200 Hz, (2) 100 Hz, (3) 200 Hz, (4) 300 Hz are prepared as signals of the power source V2, and between the sensor terminals (1ta, 1tb) of the sensor element 1 A current was passed through.
  • the horizontal axis represents time
  • the left vertical axis represents the detected voltage of the power measuring device (measured value at the DMM 28 in FIG. 11)
  • the right vertical axis represents the current flowing through the load.
  • the horizontal axis represents the time because the resistances are sequentially switched, but it represents the time directly, but substantially the resistance value of the load in the circuit where the power is measured.
  • a region where the load is infinite, 3.9 ⁇ , 1.9 ⁇ is indicated by numbers “1”, “2”, and “3” surrounded by a square.
  • symbol (5) in FIG. 12 is the electric current which flowed through load, and is increasing in steps according to each area
  • the measured voltage value (vertical axis) is shown as the current flowing through the sensor element is (1) 100 Hz + 200 Hz, (2) 100 Hz, (3) 200 Hz, and the power consumption at the load resistance RLoad increases. You can see how it increases.
  • the measured voltage value does not increase at 300 Hz. That is, it can be seen that the 300 Hz component that is not included in the signal component of 100 Hz + 200 Hz that is not supplied as current to the sensor element is not detected even when current is passed through the sensor element. As a result, it can be seen that frequency components that are not in the power source on which power consumption is measured are not output as DC components in the power measurement device according to the present invention.
  • the input current to the sensor element is (1) 100Hz + 200Hz, (2) 100Hz includes almost the same level of noise, but (3) the noise level is slightly reduced at 200Hz, and (4) the noise level is further increased at 300Hz. You can see how it is decreasing. Therefore, it turns out that this electric power measuring apparatus is a system suitable for the measurement of high frequency electric power. Note that the offset voltage and its variation are presumed to be an influence on the measuring instrument.
  • FIG. 13 (a) is a graph summarizing the measurement results of FIG. 12, which are the results of the measurement system of FIG.
  • the vertical axis represents the output voltage of the power measuring device, and the horizontal axis represents time (substantially the resistance value of the load). The average value was plotted for each time (load resistance value).
  • FIG. 13 (b) is a rewrite of the amount of change in the measurement voltage of the power measurement device with 0 W consumption as a reference.
  • the horizontal axis is time (substantially the resistance value of the load), and the vertical axis is voltage.
  • the measurement results obtained when the currents flowing through the sensor elements are (2) 100 Hz and (3) 200 Hz are in good agreement, and the linearity is also good.
  • the measurement result of 100 Hz + 200 Hz and (6) the sum of the measurement values at 100 Hz and 200 Hz are in good agreement. This indicates that the power measurement apparatus can measure power consumption at all harmonics and can measure power consumption at any n-th harmonic.
  • FIG. 14A is a graph summarizing the measurement results of FIGS. 11 and 12 (same as FIG. 13B), and FIG. 14B shows the measurement result of FIG. 14A as the load resistance RLoad.
  • the power consumption is rewritten with the horizontal axis.
  • FIG. 14B all the measured values are on a straight line, the measurement results are in good agreement, and the linearity is good.
  • FIG. 15 shows another specific configuration example of the power measuring apparatus of the present invention.
  • the voltage detection unit that measures the output from the sensor element is not shown.
  • n band-pass filters 41 are arranged in parallel, and band-pass filter means 40 having a switch 42 for selecting one of the band-pass filters is connected in series to the sensor element 1 and the measuring resistor 12. ing.
  • the switch 42 is described as selecting one band-pass filter, but n or less band-pass filters may be selected simultaneously.
  • the band-pass filter 41 can be used to detect a voltage proportional to an arbitrary nth harmonic.
  • the electric resistance Rmr of the adjacent sensor element 1 is changed by a magnetic field generated by the current I1 flowing through the load R1.
  • a current proportional to an arbitrary n-order harmonic voltage is passed through the sensor element 1 from the high frequency included in the AC power source through the band pass filter 41.
  • the output voltage Vmr in the power measuring device of FIG. 15 can obtain a DC voltage proportional to the power consumed by the nth harmonic voltage selected by the bandpass filter 41.
  • the power measuring device using the thin film element includes the above-described (1) power measuring device using the change in the electric resistance of the magnetic thin film due to the magnetoresistive effect, and (2) the electric resistance of the magnetic thin film due to the planar hole effect. In addition to the power measurement device that uses the change, (3) it is also applicable to a power measurement device that uses a change in electrical resistance of the semiconductor film due to the Hall effect.
  • the output voltage in (1) is the longitudinal voltage Vmr with reference numeral 1a as a magnetic film, in (2) with reference numeral 1a as a magnetic film and in the width direction voltage VPHE, and in (3) with reference numeral 1a as a semiconductor film.
  • a DC component is detected using the voltage VHE in the thickness direction as an output.
  • the 15 can detect power consumption due to harmonic components of the power supply. Therefore, it can be used as a means to detect high-frequency leakage for each frequency and to warn of high-frequency leakage in areas where electrical appliance fires, etc., frequently occur due to leakage of high-frequency component power .
  • the configuration example of the power measurement device shown in FIG. 15 is a case where the input voltage has a single frequency. May be.
  • the power consumption in the load that is the measurement target can be measured only with the DC voltage component. Therefore, by removing the AC voltage component with the band-pass filter, only the DC voltage component can be separated and the power consumption of the load can be measured. Furthermore, the power consumption in the necessary frequency region can be measured by removing the output voltage component in the low frequency or high frequency region with a band pass filter.
  • FIG. 16A shows a schematic diagram of a magnetic film portion (ferromagnetic material) of an (anisotropic) magnetoresistive effect type power measuring device
  • FIG. A schematic diagram of a magnetic film portion (ferromagnetic material) of a power measurement device of “PHE type” is shown. In the PHE type, a voltage V2 between two opposite sides in the direction perpendicular to the current flowing through the magnetic film is measured.
  • the measurement terminals 13 (13a, 13b) for taking out the voltage are formed on the sides where the sensor terminals of the sensor elements are not formed. This point is different from the magnetoresistive effect type power measuring device (FIG. 16A), and the other configurations are the same as those of the power measuring device described with reference to FIGS.
  • the DC output voltages of the outputs V1 and V2 are usually unstable (drift). It was.
  • FIG. 17 shows the measurement result of the output voltage V2 with respect to the current I1 when only the DC magnetic field H is measured by the PHE type power measuring device having the measurement terminal as shown in FIG. 16B (no application of the AC bias magnetic field). Show. Here, only a direct current flows through the load.
  • the experimental conditions in FIG. 17 are as follows. Magnetic element used: Circular element with a diameter of 10 mm DC applied magnetic field: -2 A (-100 A / m) to 2 A (100 A / m) Measurement: Cycle is 120sec, this time 300prot / 600sec Further, when the current flowing through the load is only a direct current, since there is no alternating current component, the low-pass filter 26 (see FIG. 6) is not required in the power measuring device. That is, in the power measurement device of the present invention, the voltage detection unit 28 may not be connected to the low-pass filter.
  • the horizontal axis represents the current flowing through the load
  • the vertical axis represents the detected voltage.
  • the output voltage characteristic becomes an odd function with respect to the magnetic field to be acted on, and therefore, the output voltage characteristic is lowered to the right centering on zero current.
  • the measurement was repeated several times, but the results varied as shown in FIG. From FIG. 17, it can be seen that when the power measurement is performed only by the action of the DC magnetic field by the load current (DC current) flowing through the primary conductor, the reproducibility of the output voltage is deteriorated due to drift.
  • FIGS. 18 to 19 show the measurement of the output voltage V2 with respect to the load current I1 when an AC bias magnetic field is applied parallel to the DC magnetic field to be measured when the DC magnetic field H is measured by the PHE type power measuring device. Results are shown. In each case, the same measurement was performed several times.
  • the experimental conditions in FIGS. 18 to 19 are the same as those in FIG. 17 except that an extra AC bias magnetic field is applied.
  • the AC bias magnetic field was generated by a combination of an oscillator and an amplifier.
  • means for applying the AC bias magnetic field in parallel with the detection magnetic field is referred to as AC bias magnetic field applying means.
  • the applied AC bias magnetic field is -0.1 A (5 A / m), 50 Hz in the case of FIG. 18A, -0.2 A (10 A / m), 50 Hz in the case of FIG. c) -0.3 A (15 A / m), 50 Hz, Fig. 19 (d) -0.4 A (20 A / m), 50 Hz, Fig. 18 (e) -0.5 A (25 A / m) ), 50 Hz.
  • This phenomenon is related to the magnetization behavior of the magnetic film, and as long as the magnetic film is used as a sensor element, it has an effect on output stability. That is, in the above description, the PHE type power measuring device has been described. However, even a magnetoresistive effect type power measuring device that measures a voltage in the same direction as the current flowing through the magnetic film is parallel to the measured DC magnetic field. An AC bias magnetic field applying means for applying such an AC bias magnetic field is effective.
  • FIGS. 20 to 21 (a)
  • rectangular wave currents of ⁇ 2 A ( ⁇ 100 A / m) and 2 A ( ⁇ 100 A / m) are allowed to flow through the conductor film Cu (primary conductor) at a period of 120 [sec].
  • FIG. 21 shows a case where an AC bias magnetic field ( ⁇ 0.3 A (15 A / m), 50 Hz) is applied (added) to the magnetic film parallel to the magnetic field generated from the conductor film Cu. Is shown. Note that the measurement was performed at 240 [sec] (2 cycles) for 240 proto.
  • the horizontal axis of the graph shows time, and the vertical axis shows input (DC applied magnetic field) and output voltage.
  • DC bias magnetic field refers to applying a DC magnetic field parallel to the easy axis of magnetization of the magnetic film.
  • FIG. 22 shows output voltages when a DC bias magnetic field is not applied (in the PHE type power measuring device, only the DC magnetic field H is applied to the magnetic film) and when a DC bias magnetic field is applied. .
  • the results using DC bias magnetic fields of different sizes were shown.
  • the horizontal axis represents the magnitude of the DC magnetic field generated by the DC current flowing through the load
  • the vertical axis represents the output of the power measuring device. From this figure, it can be seen that the output potential difference can be increased as the DC bias magnetic field increases. It can be said that application of the DC bias magnetic field can improve the sensitivity of the power measuring device.
  • the power measuring device of the present invention can have a DC bias magnetic field applying means for applying a DC bias magnetic field to the sensor element 1 in the direction of the easy magnetization axis of the magnetic film.
  • the easy axis of magnetization of the magnetic film is induced in the longitudinal direction of the magnetic film.
  • the DC bias magnetic field applying means applies a magnetic field in a direction parallel to the longitudinal direction of the magnetic film of the sensor element.
  • the DC bias magnetic field applying means is also applicable to a sensor element in which the magnetic film is composed of a barber pole magnetic film, an easy-magnetization-tilt magnetic film, a ninety-nine-fold magnetic film, and a combination thereof, which will be described later. Can do.
  • the longitudinal direction of the magnetic film may not coincide with the easy axis of magnetization.
  • a DC bias magnetic field is applied in a direction (direction of the easy axis of magnetization) apparently different from the longitudinal direction of the magnetic film.
  • a magnetic field by a permanent magnet or an electromagnet can be considered.
  • an AC bias magnetic field applying means may be used in combination.
  • the AC bias by the AC bias magnetic field applying means is represented by Hbac.
  • FIG. 24 shows a configuration in which the power measuring device of FIG. 23 is applied to a secondary battery.
  • a rectifier circuit 37 converts an alternating current into a direct current, and a bridge circuit is a simple configuration example.
  • the charger 38 charges an alternating current, and an external power source (alternating current) is connected to the charger 38 (not shown).
  • the amount of power transfer (discharge amount, charge amount) between when the battery supplies power to the load R1 and when the battery is charged by an external power source is monitored. be able to.
  • FIG. 26 shows a magnetic film of a sensor element in a barber pole type magnetoresistive effect type power measuring device.
  • FIG. 27 shows an oblique conductor film 1c and electrodes provided on the surface of the magnetic film (hereinafter referred to as barber pole electrodes).
  • barber pole electrodes an integrated magnetic film of a magnetic film and an oblique conductor (barber pole electrode) formed thereon
  • FIG. 26A is an image diagram showing the current direction and the magnetization direction when the barber pole magnetic film 1bbp is viewed from above
  • FIG. 26B is a photograph of the barber pole magnetic film 1bbp viewed from above as in FIG. ).
  • the magnetic field H generated by the current flowing through the load is assumed to be upward from the bottom of the page.
  • FIG. 27 shows an oblique conductor 1c and electrodes provided on the surface of the magnetic film 1a.
  • FIG. 27A shows an overall view
  • FIG. 27B shows an enlarged view of a circled portion of FIG.
  • a plurality of oblique conductors 1c are arranged in the longitudinal direction of the magnetic film 1a.
  • the direction of inclination changes from the center to the left and right.
  • the respective inclination directions are opposite to each other.
  • a center tap electrode 1m is formed between the first group and the second group (boundary) of the oblique conductors. That is, two barber pole magnetic films 1bbp connected in series to form one sensor element can ground the center tap electrode 1m during use.
  • Sensor terminals 10 (10a, 10b) are formed at both ends of the diagonal conductor. This is because a current flows through the magnetic film 1c. Thus, the sensor terminal 10 may be formed at a position away from both ends of the magnetic film 1c.
  • a measurement terminal 13 is also formed from the same point as the sensor terminal 10. Two magnetic films having the same conductive film in the inclined direction may be connected in series and a center tap electrode may be attached. Such a sensor element can cancel the offset voltage of each magnetic film.
  • a permalloy (NiFe) film having a length of 30 mm, a width of 1 mm, and a film thickness of about 0.1 ⁇ m is used as the magnetic film.
  • the barber pole magnetic film 1bbp is provided with a conductor film 1c oblique in the width direction of the magnetic film (up and down in the drawing), and uses copper (Cu).
  • the conductor film 1c has a width of 0.5 mm, a length of 3 mm, a film thickness of 0.1 ⁇ m, and a conductor film-conductor film interval of 1 mm (see FIG. 27).
  • the sensor element 1 shown in FIGS. 26 to 27 When the sensor element 1 shown in FIGS. 26 to 27 is used as a part of the power measuring device, it is necessary to pass a current through the magnetic film 1a. At this time, by providing the conductor film 1c, the direction of the current flowing in the magnetic film can be controlled. That is, since the current has a property of flowing in a direction in which the electric resistance is smaller, the current flowing in the magnetic film travels the shortest distance between the conductor films 1c, and as a result, the current is inclined with respect to the longitudinal direction of the magnetic film. (See FIG. 26A).
  • the electric resistance of the conductor film (Cu film) 1c is about 1/10 of the electric resistance of the magnetic film (permalloy film) 1a. Therefore, the electric resistance of the current is smaller when the distance between the conductor film and the conductor film is shorter and when the current flows through the conductor film 1c than when traveling straight in the longitudinal direction of the magnetic film 1a. Since the magnetization direction (easy magnetization direction) is previously induced in the longitudinal direction by shape anisotropy and induction anisotropy in the magnetic film, the direction of current flowing in the magnetic film between the oblique conductors 1c and the magnetization direction are An angle will result.
  • the magnetic resistance characteristics of the barber pole magnetic film 1bbp are as if the magnetic field-resistance characteristics due to the normal magnetoresistance effect are biased by a bias magnetic field. That is, the operating point at which linear characteristics can be obtained from the magnetoresistive effect can be set to a point where the working magnetic field is zero in the absence of a bias magnetic field.
  • FIG. 28 shows the relationship between the longitudinal voltage V1 and the magnetic field H.
  • FIG. 28A shows a normal magnetoresistance effect.
  • the output voltage V1 with respect to the magnetic field H forms an even function. Therefore, it is necessary to apply a bias magnetic field to obtain linear characteristics.
  • FIG. 28B shows the magnetoresistive effect of the barber pole magnetic film, and it can be seen that a bias magnetic field is unnecessary. Therefore, a power measuring device having a sensor element using a barber pole magnetic film does not require a DC bias magnetic field perpendicular to the longitudinal direction of the sensor element. Moreover, such a power measuring device can be configured in the same manner as the power measuring device described above.
  • FIG. 29 shows a sensor element of a magnetoresistive effect type power measuring device of a differential barber pole.
  • FIG. 29A is a photograph viewed from above, and FIG. 29B is a microstrip line. The schematic diagram used for the measurement is shown.
  • FIG. 29 (a) shows that barber poles having different inclinations on the left and right are formed on the magnetic film. Note that FIG. 29B is different from FIG. 25B in the number of electrodes.
  • FIG. 29B shows a sensor element having a center tap electrode.
  • FIG. 30 shows how the electric resistance of the magnetic film changes due to the normal magnetoresistance effect.
  • FIG. 30A shows a strip-shaped magnetic film 1a and a magnetic field H generated by a current flowing through a load.
  • FIG. 30B shows the relationship between the both-end voltage (vertical axis) and the magnetic field H (horizontal axis) when current flows in the longitudinal direction of the strip.
  • the voltage VMR on the vertical axis is proportional to the resistance R.
  • the output voltage characteristic shows an even function around the point where the magnetic field H is zero.
  • FIG. 31 (a) is the magnetoresistive effect of the differential barber pole magnetic film 1bbp with the barber pole patterns having different inclinations applied with different bias magnetic fields depending on the inclination direction of the oblique conductors? It shows the following characteristics. As shown in FIG. 31, the left barber pole magnetic film 1bbpa shows a characteristic B that is negatively biased with respect to an externally applied magnetic field, and the right barber pole magnetic film 1bbpp shows a characteristic that it is positively biased. A is shown.
  • each barber pole magnetic film 1bbpa and 1bbpp When these different barber pole magnetic films 1bbpa and 1bbpp are connected in series and a magnetic field is applied in the same direction, for example, from left to right, the resistance of each barber pole magnetic film decreases on the one hand and increases on the other hand. . If they are differentially output, only the change can be extracted with the magnetic field zero point as the operating point as shown in FIG. This is called a differential barber pole magnetic film.
  • the normal magnetic resistance effect magnetic film 1a when used, it is necessary to apply a large bias magnetic field as shown in FIG. 30 and set the operating point at a place with good linearity.
  • the operating point can be moved to a zero magnetic field by using a differential barber pole magnetic film as shown in FIG.
  • the change in electrical resistance due to the magnetic field can be doubled.
  • an output voltage can be obtained with a biasless magnetic field.
  • FIG. 32 shows a configuration of a differential barber pole magnetoresistive power measuring apparatus using a differential barber pole magnetic film as a sensor element.
  • a current is supplied from the power source to the load R1.
  • the load and the power source are connected by a connection line.
  • the sensor element 1 is arranged on a part of the connection line so that the longitudinal direction of the magnetic film coincides with the direction of the connection line.
  • FIG. 32 shows a state where the current flowing through the load R1 flows under the sensor element 1.
  • the connection ends 10a and 10b are connected to a circuit formed by the power source and the load so as to be in parallel with the load R1.
  • the one end 12a of the measuring resistor 12 is connected to the connecting end 10a.
  • the other end 12b is connected to the sensor terminal 1ta.
  • the sensor terminal 1tb is connected to the connection end 10b.
  • the sensor terminals 1ta and 1tb are joined via a resistor. This point is the measurement terminal 13a.
  • the center tap electrode 1m is grounded and further serves as a measurement terminal 13b.
  • the voltage detector 28 detects a potential difference between the measurement terminals 13a and 13b.
  • the operational amplifier to which negative feedback is applied is shown as the voltage detection unit 28, but other means may be used.
  • the B terminal (center tap electrode) in FIG. 32 is grounded, and the electric signals from the A terminal (sensor terminal 1ta) and C terminal (sensor terminal 1tb) are added by an operational amplifier, so that only a change in magnetic field without a bias voltage is obtained. Can be obtained.
  • FIG. 33 shows a measurement system of an experiment in which the operation of a sensor element using a differential barber pole magnetic film was confirmed.
  • the magnetic field applied to the differential barber pole magnetic film was generated by a Helmholm coil.
  • the current flowing through the magnetic film was supplied from a constant current source. All the resistance values of the amplifier are 2 k ⁇ and the amplification gain is 1.
  • FIG. 34 shows the output characteristics between the AB terminals of the measurement system shown in FIG. 33
  • FIG. 35 shows the output characteristics between the CB terminals of the measurement system
  • FIG. The output voltage of the operational amplifier is shown.
  • the output offset between AB is 742 [mV]
  • the output change between AB is 4 [mV]
  • the output change rate of AB is 0.42 [%] ]
  • the output offset between CB is 743 [mV]
  • the output change between CB is 2.6 [mV]
  • the output offset between AC is 1.46 [mV]
  • the output change between ACs is 0.11 [mV]
  • the output change between ACs is 7.5 [%]
  • the resistance greatly changes with respect to the magnetic field.
  • FIG. 36 (c) it can be seen that the bias voltage is greatly reduced as compared with FIGS.
  • the change in output voltage due to the magnetic field is small. Therefore, it is considered that the magnetization direction and the magnetic domain structure in the magnetic film 1c are in a multi-domain state and are not single magnetic domains having uniaxial anisotropy.
  • Table 2 shows the results of output improvement using differential barber pole magnetic thin films.
  • the reason why the output change and the output change rate are greatly reduced is presumed that the magnetization in the film is not sufficiently aligned in the longitudinal direction of the element.
  • the rate of change in resistance is drastically improved due to a rapid decrease in the offset voltage, and the device performance is remarkably improved by the differential connection of the barber pole magnetic film.
  • the reduction of the offset voltage brings about an advantage that the amplification factor of the amplifier circuit connected to the element can be increased, which is a very beneficial result.
  • FIG. 37 shows a schematic diagram of a measurement system when a DC bias magnetic field is applied parallel to the longitudinal direction of the magnetic film. This is to apply a DC bias magnetic field in the longitudinal direction of the sensor element to the magnetic film of the sensor element of the power measuring device. Although a differential barber pole magnetic film is shown here, it may not be a differential type. In the power measuring device, it is realized by a DC bias magnetic field applying means. As described above, changes in the characteristics of the device (device) were studied by forcibly aligning the magnetization directions in one direction.
  • FIGS. FIG. 38 shows output characteristics when a bias magnetic field is applied in the longitudinal direction of the magnetic film in a sensor element (differential connection) using a magnetic film prepared without providing a barber pole.
  • the horizontal axis is the magnetic field applied from the outside, and the vertical axis is the output voltage.
  • the resistance change with no barber pole and with a bias magnetic field was very small, and the resistance change rate was 0.00022%, which was very small.
  • FIG. 40 shows the output characteristics of an element with a barber pole and a bias magnetic field in the longitudinal direction of the magnetic film, that is, the output characteristics when a DC bias magnetic field is applied in the longitudinal direction of the barber pole magnetic film 1. It can be seen that the output characteristics vary greatly depending on whether a DC bias magnetic field is applied in the longitudinal direction of the sensor element.
  • the magnetization is strongly aligned in the magnetic field direction by the DC bias magnetic field in the longitudinal direction of the sensor element that compensates for the strength of the anisotropy, and that a clear angle is formed between the magnetization and the current.
  • the rate of change in resistance is 0.6% when there is no DC bias magnetic field, and 3.3% or more when there is a DC bias magnetic field, and it can be said that the DC bias magnetic field is very effective.
  • FIG. 41 shows a measurement system for characteristics as a wattmeter when a load current (I1) is passed through the conductor film.
  • a current (I2) proportional to the magnitude of the load voltage is often passed through the magnetic film for measurement.
  • I1 and I2 can be set individually. That is, a constant current power source is connected between the sensor terminals, and a desired current can be passed regardless of the current flowing through the load.
  • FIG. 42 shows output characteristics when a load current (I1) is passed through the conductor film without applying a DC bias magnetic field.
  • the direct current (I2) passed through the magnetic film was 2 mA.
  • the load current (I1) was set using a DC power source connected to a load resistor.
  • the load current was increased from 0 [A] to 1 [A] in increments of 0.2 [A], and then measured for 50 [s] while decreasing in increments of 0.2 [A]. Therefore, in FIG. 42, the horizontal axis represents time, but substantially represents the load current.
  • FIG. 43 shows changes in output due to magnetic field application (DC bias magnetic field) in the longitudinal direction of the magnetic film.
  • the horizontal axis indicates the magnetic field strength applied to the magnetic film, and the vertical axis indicates the output voltage.
  • the output as a wattmeter is not uniquely determined in this state due to the relationship between the anisotropy strength of the magnetic film and the direction of magnetization, and cannot be used as a wattmeter.
  • the magnitude of the DC bias magnetic field is 10 Oe and 40 Oe, linearity and good sensitivity can be obtained in a wide range, but in the case of a DC bias magnetic field of 100 Oe, the sensitivity is clearly lowered.
  • FIG. 44 shows a measurement system when a DC bias magnetic field is applied.
  • a DC bias magnetic field was applied using a permanent magnet.
  • the magnitude of the magnetic field was set by adjusting the magnet distance.
  • FIG. 45 shows the output characteristics of a magnetoresistive effect type power measuring device when a DC bias magnetic field is applied.
  • the magnitude of the DC bias magnetic field is 40 Oe.
  • Other measurement conditions are the same as in FIG. From FIG. 45, it is clear that the followability of the output voltage to the current change is improved by applying the DC bias magnetic field.
  • the barber pole type magnetic film power measuring device and the differential type barber pole magnetic film power measuring device are optimally applied to smart grids, smart batteries, etc. It is. Even when a sensor element using a barber pole type magnetic film is used, when an AC bias magnetic field perpendicular to the current flowing through the sensor element is applied as shown in FIGS. effective. That is, even a sensor element using a barber pole type magnetic film can constitute a power measuring device together with an AC bias magnetic field applying means.
  • a sensor element in which two barber pole type magnetic films having the same inclination direction of the oblique conductor are connected in series and a center tap electrode is provided at the connection point can also be used as shown in FIG. With such a configuration, the offset generated in each barber pole type magnetic film part can be canceled.
  • FIG. 46 (a) shows a sensor element 1 having a magnetic film having an axis of easy magnetization inclined with respect to the longitudinal direction of the strip.
  • the shape is a strip shape, and the sensor terminal is provided on the short side of the strip shape.
  • the easy axis of magnetization is induced to be inclined with respect to the longitudinal direction of the magnetic film.
  • Such an easy axis tilted magnetic film also exhibits the characteristics as shown in FIG. 28, like the barber pole type magnetic film.
  • the power measuring device having the sensor element using the easy axis tilted magnetic film does not require a DC bias magnetic field perpendicular to the longitudinal direction of the sensor element. Moreover, such a power measuring device can be configured in the same manner as the power measuring device described above.
  • FIG. 46 (b) shows a sensor element having a configuration in which two easy-magnetization-axis tilted magnetic films are connected in series. Two easy-magnetization-axis tilted magnetic films connected in series and arranged linearly have different tilt directions of the easy-magnetization axis with respect to the longitudinal direction.
  • the operation characteristics of the respective easy axis tilted magnetic films are shifted. Therefore, when a magnetic field is applied to such a sensor element from the lateral direction, the same effect as in FIG. 31 can be obtained.
  • the power measuring device can be configured together with the DC bias magnetic field applying means or the AC bias magnetic field applying means.
  • a sensor element in which two easy-magnetization-axis tilted magnetic films whose easy-magnetization axes are tilted in the same direction are connected in series and a center tap electrode is provided at the connection point can be used as shown in FIG. With such a configuration, it is possible to cancel the offset generated in each easy-magnetization-axis tilted magnetic film.
  • the signal from the function generator 32 is input to two amplifiers (DC amplifiers) 34 and amplified to be used as an AC power source.
  • the output voltage from the sensor element 1 cuts high frequency components in the low pass filter 26.
  • the output voltage from which the high frequency component has been cut by the low pass filter 26 is measured by the digital tester 28 (DMM) for the direct current component.
  • This circuit is configured so that the offset change of the amplifier 34 (AMP1) does not affect the output voltage of the sensor element 1.
  • the amplification factors of the amplifier 34 (AMP1) and the amplifier 35 (AMP2) are equal, and alternating current of the same frequency is output. This is because if the input voltage is not the same frequency, the output voltage is only an AC component.
  • FIG. 48 shows a part of the configuration according to another embodiment of the power measuring device according to the present invention.
  • an equivalent sensor resistance 51 and an equivalent measurement resistance 52 are connected in parallel with the sensor element 1 and the measurement resistance 13.
  • connection point 53 between the measurement resistor 12 and the sensor element 1 and the connection point 53 between the equivalent sensor resistor 51 and the equivalent measurement resistor 52 are used as measurement terminals (13a and 13b), respectively, and the output voltage between the measurement terminals is differentially amplified. By doing so, only the DC voltage component can be extracted (see the image diagram of FIG. 47C). That is, by configuring a bridge circuit including a sensor element and a measurement resistor, it is possible to accurately measure the power consumption of the AC power supply.
  • 49 (a) and 49 (b) show that the input alternating current (load current) on the power measuring device side (AMP1 (34) side in FIG. 7) is set to an execution value of 4.0 V and 100 Hz, respectively. 3 outputs are compared.
  • the horizontal axis represents time but substantially the current flowing through the load, and the vertical axis represents the output of the amplifier. It can be seen from FIG. 49 that noise and DC offset are improved by the AC component due to differential amplification with a gain of 80 dB.
  • FIG. 50 is a graph showing the result of detecting the harmonic current by the same method as in FIG. 49 (b).
  • the output measurement results when the frequency of the current input to the magnetic film of the power measuring device is (1) 100 Hz + 200 Hz + 300 Hz, (2) 100 Hz + 200 Hz, (3) 100 Hz, (4) 200 Hz, (5) 300 Hz, respectively. Is shown. From this result, it can be seen that only current of each frequency can be detected almost accurately.
  • FIG. 51 shows a connection structure when a bridge circuit including a sensor element and a measurement resistor is formed when a center tap electrode is provided. Only the equivalent measurement resistor 52 is added, and a bridge circuit is formed by the magnetic film portions on both sides of the center tap electrode and the measurement resistor. A variable resistor may be added for offset adjustment.
  • the magnetic film may be a combination of a barber pole magnetic film, a combination of an easy magnetization axis tilted magnetic film, or a film in which an easy magnetization axis is induced in a normal longitudinal direction.
  • FIG. 52 shows a connection structure when a bridge circuit is formed when the operating points of the magnetic film portions on both sides of the center tap electrode are different.
  • the case where the operating points are different may be an easy-magnetization-axis tilted magnetic film or a differential barber pole magnetic film. It is only necessary that these easy magnetization axes or the inclination directions of the conductors are different in each magnetic film portion.
  • FIG. 53 shows a sensor element composed of a magnetic film portion of a type in which magnetic films are arranged in parallel and the upper end and the lower end are connected to the surface of the adjacent magnetic film.
  • the sensor terminals (1ta, 1tb) are formed at the upper and lower ends of the magnetic films at both ends. That is, all the magnetic films are connected in series.
  • Such a type of magnetic film is called a ninety-nine-folded magnetic film.
  • the output characteristics with respect to the applied magnetic field are an even function as shown in FIG. Therefore, the resistance of the film changes regardless of the direction of the current flowing in the magnetic film.
  • the output voltage can be increased as the current length is longer. Therefore, the sensitivity of the output voltage can be increased by using the 99-fold magnetic film as a sensor element.
  • a barber pole electrode can be formed on the magnetic film.
  • barber pole electrodes are provided on the surface of the magnetic film.
  • an easy axis tilted magnetic film may be used.
  • FIG. 54 shows a sensor element in which a differential barber pole magnetic film is formed in a ninety-nine fold type and a center tap electrode is further formed. Even if such a sensor element is used, the power measuring device of the present invention can be configured. Even when the sensor element of the above variation using the 99-fold type magnetic film is used, the operating point adjusting bias magnetic field applying means, the DC bias magnetic field applying means, the AC bias magnetic field applying means, the band pass Filter means can be used. Further, instead of the barber pole magnetic film, a sensor element in which two easy-axis-inclined magnetic films having different easy-axis inclination directions are connected in series to form a center tap electrode may be used.
  • the present invention can be used not only as a power measuring device but also for larger devices and systems that require power measuring means.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

 本発明は、高周波回路や電池における電力を簡易でかつ小さな構成で測定することが可能な種々の薄膜センサ型の電力計測装置を提供する。 本電力計測装置は、負荷電流が流れる一次導体に対して平行になるように配置された磁性膜と、前記磁性膜に素子電流を供給する入出力端子を備えた給電部と、 前記磁性膜の磁化方向に平行または垂直あるいは斜めの直流磁界を印加させるバイアス磁界印加部と、前記素子電流の方向における前記磁性膜の端部間の電圧を検出する検出部と、を具備する。この電力計測装置では、素子電流の方向における前記磁性膜の端部間の直流電圧成分のみが検出される。

Description

電力計測装置
 本発明は、高周波回路や電池における電力を簡易でかつ小さな構成で測定することが可能な種々の薄膜センサ型の電力計測装置に関する。
 近年、インターネット等を利用する環境が整ってきた中で、電力の遠隔検針を含めた計測システムの開発が進められている。従来より電力の計測においては、使用した電力を円盤の回転数に変換し積算演算を行うという積算電力量計が使用されている。最近ではこの積算電力量計に、回転を検出するセンサや電流計(CT)、電圧計(PT)を新たに付加し、電子回路やマイクロプロセッサによる乗算計算を行い、電力を計測している。積算電力量計の場合、装置構成が複雑であり、装置が大型化するだけでなく高価であり、電力が機械的に出力されるためデジタル管理できない。また、これらと相俟って、余分なエネルギーを消費しかねない。
 そこで、消費電力をそのまま電気量として測定することができるとともに、小型化および集積化の可能な電力計の開発が望まれている。
 また、近年、業務用電気装置のみならず家電にまで高周波回路を有するデバイスが増大しており、高調波電流の発生に基づく様々な弊害が発生している。例えば、高調波電流の漏洩をカットする規制が緩い地域では漏洩した高調波電流の影響による周辺家電の火災等が発生している。したがって、高調波電流の発生を簡単に測定し得るセンサ、電力測定装置の社会的ニーズも高まってきている。
 積算電力量計の代替としては、例えば、磁性薄膜の磁気抵抗効果を利用し、消費電力を電気量のまま測定することの可能な電力計測装置、および磁界センサが提案されている(非特許文献1、2)。これは、交流が流れる一次導体に対し、平行に置かれた(基板上に構成された)磁性薄膜を用い、この磁性薄膜の両端に抵抗を介して一次電圧が印加され、磁性薄膜の両端から出力を取り出すようにした電力計測装置、および磁界センサである。この電力計測装置等では、2倍周波数成分の振幅値から電力IVを取り出す方式をとるものである。
 この電力計測装置等では、磁性薄膜からなる強磁性体内において、電流と磁化のなす角度によりその磁性体の電気抵抗値が変わる現象であるプレナーホール効果(Planar Hall effect(PHE))を利用し、バイアス磁界なしで線形特性を得ることができる点に着目し、電力に比例する信号成分を取り出すようにしている(この電力計測装置を「プレナーホール型電力計測装置」または「PHE型電力計測装置」と称する)。
 なお、ここで用いられる磁界センサは、外部磁界の変化を電気信号に変換する素子であり、強磁性薄膜や半導体薄膜等の磁性薄膜をパターニングし、その磁性薄膜のパターンに電流を流し電圧変化として外部磁界の変化を電気信号に変換するものである。
 しかしながら、PHE型電力計測装置では、磁性薄膜から検出する電圧出力を一次導体の負荷電流に直交する方向にとらなければならない。すなわち、磁性薄膜の幅方向の両端で電圧を出力させなければならない。したがって、PHE型電力計測装置では、磁性薄膜がある程度の幅太である必要があり、幅細形状(ここでは例えば直線形状・長方形状の長手方向に細い形状を意味する)の磁性薄膜を使用することはできない。また、PHE型電力計測装置では磁性薄膜をブリッジ回路構成で構成しなければならないという形状的な制限も存在する。これらのことはPHE型電力計測装置では、高周波回路で用いられるマイクロストリップ線路やコプレナー線路等の特殊な線路上に設置することが困難であることを意味する。
 この他に高周波用の電力測定装置としてはボロメータ計測器や精密計測器も存在するが、それらは複雑大型な構成で、かつ非常に高価なものであり、各デバイスや各施設ごとの電力測定・検出に耐え得るものではない。
特開平11-274598号公報
磁性膜を用いた薄膜電力計(電気学会マグネティツクス研究会資料VOL.MAG-05 No.182) 磁性膜を用いた薄膜電力計(電気学会マグネティツクス研究会資料VOL.MAG-05 No.192)
 本発明は、上記の問題に鑑みて創作されたものであり、簡単かつ安価な構成で高周波回路を含めた種々の回路、電池等の電力測定に適した電力計測装置の構成を提供することを目的とする。
 第一の発明に係る電力計測装置は、
電源に接続線を介して接続された負荷において消費される電力を測定する電力計測装置であって、
前記電源に対して前記負荷と並列に連結するための一対の連結端と、
磁性膜を含む磁性膜部と、
前記磁性膜部の両端に設けられた一対のセンサ端子を有し、
前記センサ端子の一端は前記連結端の一方に接続され、
前記磁性膜部の長手方向が前記接続線の電流が流れる方向と略平行になるように前記接続線に絶縁層を介して隣接配置されるセンサ素子と、
一端が前記センサ素子のセンサ端子の他端に接続され、他端が前記連結端の他方に接続される計測抵抗と、
前記センサ端子のそれぞれを計測端子とし、前記計測端子間の電圧を計測する電圧検出部とを有することを特徴とする。
 これにより従来の積算電力量計に比べて小型で安価な電力計を提供することができる。また、この電力計測装置では磁性膜の長手方向の電圧を出力するため磁性膜を細長くした方が良く、高周波回路に多用されるマイクロストリップ線路等の線路上に設置し、電力測定する場合にも適している。この点、磁性膜の幅方向の電圧を出力し、磁性膜の幅を細くできないPHE型電力計測装置と比べても大きな利点がある。
 第2の発明に係る電力計測装置は、
電源に接続線を介して接続された負荷において消費される電力を測定する電力計測装置であって、
前記電源に対して前記負荷と並列に連結するための一対の連結端と、
直線状に形成された第1の磁性膜と第2の磁性膜が直列に接続され、前記第1の磁性膜と前記第2の磁性膜の接続点が接地された磁性膜部と、
前記磁性膜部の両端に設けられた一対のセンサ端子を有し、
前記センサ端子の一端は前記連結端の一方に接続され、
前記磁性膜部の長手方向が前記接続線の電流が流れる方向と略平行になるように前記接続線に絶縁層を介して隣接配置されるセンサ素子と、
一端が前記センサ素子のセンサ端子の他端に接続され、他端が前記連結端の他方に接続される計測抵抗と、
前記センサ端子のそれぞれを計測端子とし、前記計測端子間の電圧を計測する電圧検出部とを有することを特徴とする。
 本発明の電力計測装置では、磁性膜に加わる磁界によってオフセットが生じた場合でも、それをキャンセルし、測定される磁界の変化分だけを検出することができる。
 第3の発明に係る電力計測装置は、
電源に接続線を介して接続された負荷において消費される電力を測定する電力計測装置であって、
前記電源に対して前記負荷と並列に連結するための一対の連結端と、
直線状に形成され、動作点のそれぞれ異なる第1の磁性膜と第2の磁性膜が直列に接続され、前記第1の磁性膜と前記第2の磁性膜の接続点が接地された磁性膜部と、
前記磁性膜部の両端に設けられた一対のセンサ端子を有し、
前記センサ端子の一端は前記連結端の一方に接続され、
前記磁性膜部の長手方向が前記接続線の電流が流れる方向と略平行になるように前記接続線に絶縁層を介して隣接配置されるセンサ素子と、
一端が前記センサ素子のセンサ端子の他端に接続され、他端が前記連結端の他方に接続される計測抵抗と、
前記センサ端子の一端および他端とを抵抗を介して連結した点と、前記接地点をそれぞれ計測端子とし、前記計測端子間の電圧を計測する電圧検出部と
を有することを特徴とする。
 第3の発明に係る電力計測装置は、動作点の異なるセンサ素子を組み合わせて使用するので、使用の際にバイアス磁界が不要になる。
 第4の発明に係る電力計測装置は、
電源に接続線を介して接続された負荷において消費される電力を測定する電力計測装置であって、
前記電源に対して前記負荷と並列に連結するための一対の連結端と、
磁性膜を含む磁性膜部と、
前記磁性膜部の両端に設けられた一対のセンサ端子を有し、
前記センサ端子の一端は前記連結端の一方に接続され、
前記磁性膜部の長手方向が前記接続線の電流が流れる方向と略平行になるように前記接続線に絶縁層を介して隣接配置されるセンサ素子と、
一端が前記センサ素子のセンサ端子の他端に接続され、他端が前記連結端の他方に接続される計測抵抗と、
前記センサ素子および前記計測抵抗と並列に、前記センサ素子と同等の抵抗値を有する等価センサ抵抗と、前記計測抵抗と同じ抵抗値を有する等価計測抵抗の直列接続が接続され、
前記センサ素子と前記計測抵抗の接続点と、前記可変抵抗と前記等価抵抗の接続点とを計測端子とし、前記それぞれの計測端子間の電位を検出する電圧検出部と
を有することを特徴とする。
 第4の発明に係る電力計測装置では、センサ素子をブリッジ回路の1つの抵抗要素として用いるので、交流成分をキャンセルでき、交流成分に乗ったわずかな直流成分を精度よく検出することができる。
 第5の発明に係る電力計測装置は、
電源に接続線を介して接続された負荷において消費される電力を測定する電力計測装置であって、
前記電源に対して前記負荷と並列に連結するための一対の連結端と、
直線状の形成された第1の磁性膜と第2の磁性膜が直列に接続され、前記第1の磁性膜と前記第2の磁性膜の接続点が接地された磁性膜部と、
前記磁性膜部の両端に設けられた一対のセンサ端子を有し、
前記センサ端子の一端は前記連結端の一方に接続され、
前記磁性膜部の長手方向が前記接続線の電流が流れる方向と略平行になるように前記接続線に絶縁層を介して隣接配置されるセンサ素子と、
一端が前記センサ素子のセンサ端子の他端に接続され、他端が前記連結端の他方に接続される計測抵抗と、
前記センサ素子が前記連結端の一方に接続された前記センサ端子と、前記計測抵抗が前記連結端の他方に接続された前記他端とに、前記計測抵抗と同じ抵抗値を有する等価計測手抵抗が接続され、
前記センサ端子同士を計測端子とし、前記それぞれの計測端子間の電位を検出する電圧検出部と
を有することを特徴とする。
 第5の電力計測装置によれば、交流成分をキャンセルでき、交流成分に乗ったわずかな直流成分を精度よく検出することができるうえに、磁性膜に係るオフセットをキャンセルすることができる。
 第6の発明に係る電力計測装置は、
電源に接続線を介して接続された負荷において消費される電力を測定する電力計測装置であって、
前記電源に対して前記負荷と並列に連結するための一対の連結端と、
直線状に形成され、動作点のそれぞれ異なる第1の磁性膜と第2の磁性膜が直列に接続され、前記第1の磁性膜と前記第2の磁性膜の接続点が接地された磁性膜部と、
前記磁性膜部の両端に設けられた一対のセンサ端子を有し、
前記センサ端子の一端は前記連結端の一方に接続され、
前記磁性膜部の長手方向が前記接続線の電流が流れる方向と略平行になるように前記接続線に絶縁層を介して隣接配置されるセンサ素子と、
一端が前記センサ素子のセンサ端子の他端に接続され、他端が前記連結端の他方に接続される計測抵抗と、
前記センサ素子が前記連結端の一方に接続された前記センサ端子と、前記計測抵抗が前記連結端の他方に接続された前記他端とに、前記計測抵抗と同じ抵抗値を有する等価計測手抵抗が接続され、
前記センサ端子同士を抵抗を介して連結した点と、接地された前記接地点とを計測端子とし、前記それぞれの計測端子間の電位を検出する電圧検出部と
を有することを特徴とする。
 第6の発明に係る電力計測装置は、使用する際に動作点を調整するための磁界を必要とせず、さらに交流成分をキャンセルでき、交流成分に乗ったわずかな直流成分を精度よく検出することができる。
 第7の発明に係る電力計測装置は、
電源に接続線を介して接続された負荷において消費される電力を測定する電力計測装置であって、
前記電源に対して前記負荷と並列に連結するための一対の連結端と、
磁性膜を含む磁性膜部と、
前記磁性膜部の両端に設けられた一対のセンサ端子を有し、
前記センサ端子の一端は前記連結端の一方に接続され、
前記磁性膜部の長手方向が前記接続線の電流が流れる方向と略平行になるように前記接続線に絶縁層を介して隣接配置されるセンサ素子と、
一端が前記センサ素子のセンサ端子の他端に接続され、他端が前記連結端の他方に接続される計測抵抗と、
前記磁性膜部の前記センサ端子と直角方向の端部のそれぞれを計測端子とし、前記計測端子間の電圧を計測する電圧検出部と
を有することを特徴とする。
 第7の発明に係る電力計測装置は、プレーナーホール効果をセンサ素子として用いることができる。
磁気抵抗効果の説明模式図である。 磁気抵抗効果においてバイアス磁界が必要であることを示すグラフ図である。 本磁気抵抗効果型の電力計測装置の測定原理概要である。 本磁気抵抗効果型の電力計測装置における磁界センサ部の略斜視断面図である。 図4の磁界センサにおける絶縁部と磁性膜とを示す断面図である。 本磁気抵抗効果型の電力計測装置の計測回路例である。 図6の計測回路の改良例である。 図7の計測回路の測定結果である。 図8の他の測定結果である。 図8の他の測定結果である。 本電力計測装置でn次高調波測定の適正実証のための計測回路例である。 図11の計測回路での測定結果である。 (a)は図12の計測結果をまとめたグラフ図であり、(b)は、0W消費時を基準としてV2出力変化量を書き直したものである。 (a)は図12の計測結果をまとめたグラフ図であり、(b)は、左図(a)の計測結果を負荷抵抗RLoadでの消費電力を横軸として書き直したものである。 バンドパスフィルターで所望のn次高周波を抽出て出力させる電力計測装置構成である。 磁気抵抗効果とプレナーホール効果とを説明する模式図である。 交流バイアス磁界を印加しない場合の出力測定結果である。 異なる交流バイアス磁界を印加した場合の出力測定結果である。 異なる交流バイアス磁界を印加した場合の出力測定結果である。 矩形波に交流バイアス磁界を印加しない場合の出力測定結果である。 矩形波に交流バイアス磁界を印加した場合の出力測定結果である。 直流バイアス磁界を印加しない場合と、異なる大きさの直流バイアス磁界を印加した場合との出力測定結果である。 磁気抵抗効果の素子を直列接続して直流入力を測定する接続方法である。 図22の接続方法を改良例であり、電池の放電量と充電量とをモニタリング可能な構成である。 (a)は図5と同様の略図、(b)は本電力計測装置をマイクロストリップ線路の測定に用いた模式図、(c)は本電力計測装置をコプレナー線路の測定に用いた模式図である。 バーバーポール型の磁気抵抗効果型の電力計測装置における磁性膜を示している。 磁性膜の上部に設ける斜めの導体膜と電極を示している。 長手方向の電圧V1と磁界Hとの関係を示している。 差動型のバーバーポール型の磁気抵抗効果型の電力計測装置を示しており、(a)には上方から見た写真、(b)にはこの電力計測装置をマイクロストリップ線路の測定に用いた模式図が示されている。 通常の磁気抵抗効果による磁性膜の電気抵抗の変化の様子を示している。 傾きの異なるバーバーポールパターンによりバーバーポール磁性膜の磁気抵抗効果が磁性膜の左右で正負に異なるバイアス磁界が印可されているかのような特性を示している。 差動型のバーバーポール磁気抵抗効果型の電力計測装置の増幅回路の接続の様子を示している。 図32の具体的な測定系を示している。 図33のA-B端子間の出力特性を示している。 図33のC-B端子間の出力特性を示している。 図33のオペアンプの出力電圧を示している。 長軸と平行にバイアス磁界を印加したときの測定系の模式図を示している。 図37の測定系の出力特性を示している。 図37の測定系の出力特性を示している。 図37の測定系の出力特性を示している。 導体膜に負荷電流(I1)を流したときの電力計としての特性の測定系が示されている。 バイアス磁界を印加せずに導体膜に負荷電流(I1)を流した時の出力特性を示している。こ 素子長手方向(磁性膜の長手方向)への磁界印加による出力変化を示す。 バイアス磁界を印可した時の測定系を示している。 バイアス磁界印加したときの本磁気抵抗効果型の電力計測装置の出力特性を示している。 磁化容易軸を長手方向に対して傾斜させた磁性膜を用いたセンサ素子を示す図である。 (a)は僅かな直流成分のイメージ図、(b)はその直流成分をローパスフィルタやアンプで増幅させるイメージ図、(c)はダミー抵抗VRと磁性薄膜Rmrとの出力電圧を差動増幅することで直流電圧成分のみ取り出すイメージ図を示している。 図47の具体的な計測回路が示されている。 (a)(b)は、それぞれ参照側の入力交流(負荷電流)を実行値4.0V、100Hzとした計測結果を示している。 図49(b)と同様の方法で高調波電流の検出をした結果のグラフ図である。 センタータップ電極がある場合に、センサ素子をブリッジ回路に構成する場合の結線を示す図である。 センタータップ電極があって、両側の磁性膜の動作点が異なるセンサ素子をブリッジ回路に構成する場合の結線を示す図である。 九十九折れ型の磁性膜を用いたセンサ素子の構成を示す図である。 九十九折れ型のセンタータップ電極付のセンサ素子の構成を示す図である。
 続いて、本発明の実施の形態について図面を参照しつつ説明する。
まずは本発明の電力計測装置の測定原理について説明する。
 本発明に関わる電力計測装置は、強磁性体や半導体内で電流と磁化(自発磁化)のなす角度(向き)によりその磁性体の電気抵抗値が変化する現象である磁気抵抗効果を利用したものである。図1を用いてより具体的に説明する。強磁性体には、電流Iが流されている。
 ここで、電流Iの流れる方向に直角方向から磁界Hが強磁性体に作用すると、磁化Mが磁界Hの影響を受け、方向が変化する。すると、電流方向の電圧V1が変化する。強磁性体の電流Iと同じ方向における磁気抵抗効果においては、磁界Hに対する出力電圧V1は図2に示すような偶関数を示す。図2では、横軸が強磁性体に作用する磁界であり、縦軸は電流方向における強磁性体の電圧V1である。
 横軸は方向によって正負が決まる。例えば、図1の、紙面下から上に向かう磁界Hを正方向とすると、紙面上から下に向かって作用する磁界は、負の磁界である。出力電圧V1は、山形の特性を示し、線形特性を得るためには、正負どちらかの方向にバイアス磁界を付与する必要がある。図2では、正の方向にバイアス磁界をかけ、動作点が山形の特性曲線の傾斜部分に移動した様子を示す。
≪磁気抵抗型電力計測装置の測定原理および基本構成(交流入力の場合)≫
 次に、本発明の電力計測装置における測定原理を図3を参照しつつ説明する。この回路構成は、電源Vinからの電流を電流I1とI2とに分けた並列回路である。電源Vinからの電流は、一次導体膜Cuと、消費電力が測定される負荷R1(Load R1)とに電流I1を流す搬送経路と、磁性膜1aと計測抵抗R2(12)とに電流I2を流す計測経路に並列に流される。なお、ここで計測抵抗R2は、磁性膜1aの抵抗値Rmrより十分に大きいとする。
 負荷R1に流れる電流I1は一次導体Cuに流れると一次導体Cuの周囲に磁界Hを発生させる。この磁界Hによって、磁性膜1aは、磁気抵抗効果を示し、磁性膜両端の電圧Vmrも変化する。この出力電圧Vmrは、負荷R1での消費電力に比例する。したがって、出力電圧Vmrを測定すれば、負荷R1での消費電力を測定することができる
 磁性膜両端の電圧Vmrが、負荷R1での消費電力を表すのは、以下のように説明できる。
Figure JPOXMLDOC01-appb-M000001
 上記計算式の最終式は、AC成分とDC成分の和となっている。つまり、磁性膜1aの長手方向の出力電圧Vmrには、交流電圧と直流電圧とが重畳されて現れる。したがって、磁性膜1aの長手方向の直流電圧成分のみを計測すれば交流入力に対する負荷R1の消費電力(P=I1*V1=V1/R1)を測定することができる。なお、上記最終式中のDC成分は(V1/R1)cosθに比例している。つまり、Vmrの直流成分を測定することは、力率cosθを含んだ有効電力を測定することになる。
 また、図3に示す本電力計測装置の原理を示す図において、負荷R1に入力される交流電圧および電流に、高調波が含まれている場合の電力計測についても検討する。下記数式2は上記数式1のV1、I1にn次高調波を含む場合についての出力電圧Vmrを求める計算式である。
Figure JPOXMLDOC01-appb-M000002
 数式2の最終式は、各周波数成分のAC成分とDC成分の和となっている。したがって、本発明に関わる電力計測装置では、測定原理的に、電圧および電流に高周波を含んでいる場合においても、磁性膜1aの長手方向の出力電圧Vmrには、交流電圧と直流電圧とが重畳されて現れる。この時出力電圧Vmrの直流電圧成分は、基本波による消費電力に比例した直流電圧と、高調波による消費電力に比例した直流電圧とが合計された直流電圧である。
 したがって、本発明に関わる電力計測装置では、電源が高調波成分を含んでいる場合でも、磁性膜1aの長手方向の直流電圧のみを計測すれば負荷R1での消費電力(力率を含む有効電力である)を測定することが可能である。
 以上のような測定原理に基づき、電力計測装置を概説すると、図3を参照して、磁性膜1aを含むセンサ素子1と計測抵抗R2とセンサ素子1の電圧を計測する電圧検出部(図3では省略)とを含む。さらに、これらの構成を電力が計測される搬送回路に接続するための一対の連結端(10a、10b)を有する。
 本電力計測装置では、検出する信号は直流電圧信号なので、デジタルテスター(DMM)等の簡単なデバイスを電圧検出部としても消費電力測定をすることができる。さらに、直流電圧信号は本質的に高周波による誘導ノイズの影響が小さい。したがって、本電力計測装置は高周波回路での電力測定に適していると言える。また、本電力計測装置では、磁性膜の長手方向(電流方向)の電圧を検出するため幅が細く長い形状の磁性膜は、出力電圧を大きくする(SNRを高く取れる)。
 したがって、本電力計測装置は略直線状の素子を、高周波回路で多く用いるマイクロストリップ線路、ストリップ線路、コスプレナー線路等の線路状に設置することが容易である。この点においても本電力計測装置は原理的に高周波回路の電力測定に適していると言える。
≪磁気抵抗型電力計測装置の具体的な構成および計測結果≫
 次に、本発明の電力計測装置において、磁性膜の磁気抵抗効果による交流電力測定について説明する。図4には、電力計測装置に用いるセンサ素子1を示す。センサ素子1は、磁性膜1aと、磁性膜1aの両短辺に設けられたセンサ端子1tで構成される。なお、図面向こう側のセンサ端子1tはこの図では見えない。磁性膜1aを保持するために絶縁体などからなる基板が含まれていてもよい。図4では、負荷に電流を流す接続線に相当する導体膜3と磁性膜1aとの間に絶縁膜2を介挿した3層構造を一体として形成した状態を示している。絶縁膜2はセンサ素子1を接続線に密着させるために設ける絶縁層である。
 磁界Hは導体膜3に流れる電流I1により形成される。例えば、導体膜3、絶縁膜2、磁性膜1aはそれぞれ銅Cu、ポリイミド基盤、パーマロイで構成される。また、センサ素子1の断面詳細例を示す図5では、ガラス基板4上に磁性膜としてパーマロイ膜1aを形成し、パーマロイ膜1aの両端に接続するように銅膜3s(3sa、3sb)を形成する。このパーマロイ膜1aと銅膜3sの表面上にポリイミド基板2を形成し、さらにポリイミド基板2の表面上に導体膜3を形成している。上側の導体膜3を左側から右側に流れる電流I1と同相の電流I2(図3参照)が銅膜3sa中を流れる。この電流は磁性膜1a(パーマロイ)内を左端から右端に向けて流れ、銅膜3sbに流れる。
 このポリイミド基板2側の導体膜1aの表面(紙面上面)を高周波電流(交流)の流れるマイクロストリップラインやコプレナー線路等の線路に設置すると、線路によって作られる磁界Hが、磁性膜(図4の磁性膜1aに相当)に作用し、磁性膜の磁気抵抗効果によって、電気的な出力(直流電力成分)として電力を求めることができる。
 図25(a)には図5と同様の略図、図25(b)には本電力計測装置をマイクロストリップ線路の測定に用いた模式図、図25(c)には本電力計測装置をコプレナー線路の測定に用いた模式図が示されている。なお、図25において図5と同一の参照番号は同一のものを意味している。図25(a)(b)ともにストリップライン3に電流I1が流れ、磁性膜1aには電流I2が流れることとなる。また、マイクロストリップ線路、コプレナー線路の信号ラインである中央のストリップライン3が本電力計測装置のセンサ素子1が配置される導体膜3を兼ねている。すなわち、本電力計測装置は、マイクロストリップ線路やコプレナー線路の一部として一体に形成されることもできる。
「計測回路1」
 ここで図6(a)に、磁気抵抗効果型である本電力計測装置の構成を、電力測定される回路20と共に示す。電力を計測される回路20は、電源をファンクションジェネレータ22とアンプ24で構成した。負荷はR1である。なお、負荷と電源の間は接続線で接続される。その接続線中において、電力計測装置のセンサ部が配設される箇所を接続線Rcuで表した。ファンクションジェネレータ22からの信号はアンプ(直流増幅器)24で増幅され、交流電源となる。
 電力計測装置15は、センサ素子1と、計測抵抗12(R2)と、電圧検出部28を含む。また、電力計測装置15は、電力を計測される回路の電源に対して並列に接続するための一対の連結端10(10a、10b)を有する。この連結端10は、電源に対して負荷R1と並列に接続できれば、電力を計測される回路のどこに連結してもよい。連結端の間には、磁性膜を含むセンサ素子1と計測抵抗12(R2)が直列に接続される。計測抵抗12の端子はそれぞれ符号12a、12bと示す。
 センサ素子1は、一対のセンサ端子1ta、1tbを有し、センサ端子間に磁性膜1aが形成されている。図6(b)にはセンサ素子1の拡大図を示す。つまり、短冊状の磁性膜の相対する短い辺のそれぞれにセンサ端子は設けられる。なお、両方のセンサ端子を区別せず説明する際には「センサ端子1t」と示し、別々に説明する必要がある場合は、「センサ端子1ta」若しくは「センサ端子1tb」と示す。また、連結端10および計測抵抗12の端子も同様に表記する。
 センサ端子の一端1tbは、連結端の一方10bに接続される。センサ素子1は、電力が測定される回路の接続線に、磁性膜の長手方向が、接続線を流れる電流と同じ方向になるように配置される。この時センサ素子1の磁性膜と接続線の間には絶縁層が形成される。接続線に流れる電流が磁性膜に流れないためである。
 磁性膜は接続線に流れる電流による磁界の作用を受けて磁気抵抗効果を発揮する。磁気抵抗効果は作用される磁界の強さに比例すると考えてよいので、センサ素子はできるだけ接続線に接近させて配置するのが好ましい。
 センサ素子1の他端1taは、計測抵抗12の一端12bに接続される。また計測抵抗12の他端12aは、連結端10の他方10aに接続される。これで、連結端10の一方10bから他方10aにかけて、センサ素子1と計測抵抗12が直列に接続された。また、それぞれのセンサ端子(1ta、1tb)は、計測端子13(13a、13b)とされ、この計測端子13間の電圧を電圧検出部28で計測する。ここで、電圧検出部28で計測し電力として有効であるのは、直流電圧なので、計測端子13間にローパスフィルタ26を連結する。なお、このローパスフィルタは、本発明に係るすべての電極計測装置に設けることができる。
 電圧はローパスフィルタ26において高周波成分がカットされる。ローパスフィルタ26で高周波がカットされた出力電圧はデジタルテスター28(DMM=digital multimeter)で直流成分が測定される。すなわち、電圧検出部28は、DMMで構成されている。なお、電圧検出部28は、DMM以外の手段で電圧検出を行ってもよいのは言うまでもない。
 なお、磁気抵抗効果型の場合は、センサ素子1の磁性膜は短冊状が好ましい。電流を長手方向に流すことで抵抗変化を大きく取れるからである。しかし、正方形、ひし形、円形、楕円形といったその他の形状や、折れ曲がった形状等を排除するものではない。磁性膜は負荷に流れる電流の接続線の形状に合わせる必要があるからである。すなわち、本明細書では短冊状といった場合には、これらの形状も含まれる概念としてとらえてよい。
 また、本明細書では、センサ端子は、短冊状の磁性膜の相対する短辺に設けるとする説明を行うが、実質的に磁性膜の長手方向に電流を流すために設けられたセンサ端子であれば、短冊状の磁性膜の相対する短辺以外の位置に設けられてもよい。負荷に電流を流す接続線の形状によっては、磁性膜の短辺から離れた位置にセンサ端子を設けなければならない場合もあるからである。
 また、図2で示したように、磁気抵抗効果では、線形な動作点を得るためには、センサ素子の長手方向に直角な方向に、直流バイアス磁界を印加する必要がある。この直流バイアス磁界を動作点調整バイアス磁界とよび、動作点調整バイアス磁界を発生させる手段を動作点調整バイアス磁界印加手段と呼ぶ。動作点調整バイアス磁界印加手段は、永久磁石や電磁石などで構成することができる。
 なお、後述するバーバーポール磁性膜や磁化容易軸傾斜型磁性膜のように、動作点調整バイアス磁界を必要としない場合を除いて、本発明のすべての電力計測装置には、動作点調整バイアス磁界印加手段を設けることができる。
 図7には、電力計測装置15の他の構成を示す。図7では、ファンクションジェネレータ32からの信号を、2つのアンプ(直流増幅器)34、35に入力し、アンプ35(AMP2)のオフセットの変化がセンサ素子1の出力電圧に影響しないように構成されている。アンプ34(AMP1)、アンプ35(AMP2)には、同位相の交流が出力されている。
 本発明の電力計測装置15に流す電流は、電力を計測される回路に流れる電流と同周波数の電流を流さなければならない。図6では電力計測装置は、連結端10によって電力を計測される回路に並列に接続されたので、この条件は満たされていた。しかし、電力が計測される回路(搬送経路)と同一電源に連結していなくても、搬送経路に流れる電流と同周波数の電流を流せるのであれば、電力計測装置自体が電源を有していても良い。この電源は電圧源であってもよいし、電流源であってもよい。
 なお、本発明の電力計測装置では、電力が計測される回路に流れる電流と同位相の電流を磁性膜に流す必要がある理由を、下記の数式3に示す。数式3は、入力電圧が同周波数でなければ(ω1≠ω2)、出力電圧が交流成分のみとなることから理解される。なお、数式3は数式1と数式2と同様に図3の電力測定原理に基づくものである。
Figure JPOXMLDOC01-appb-M000003
 また、図7に示した構成において、磁性膜からの出力電圧をローパスフィルタ26で高周波成分をカットし、デジタルテスター28で出力電圧の直流成分を測定する点は図6の場合と同様である。
 図7の構成での電力計測の結果を図8乃至図10に示す。図8、図9では、電源電圧を実効値2.0V、60Hzの交流電源とし、負荷R1を無限大(解放)10Ω、3.9Ω、2Ωと200秒ごとに変化させ、さらに2Ω、3.9Ω、10Ω、無限大(解放)と変化させてセンサ素子1の出力電圧を測定した結果をグラフ化している。横軸は時間であるが、実質的には負荷抵抗の大きさである。また左縦軸は、デジタルテスター28の出力電圧であり、右縦軸は、負荷に流れた電流値である。
 出力が縦軸方向に振れているのが出力電圧であり、符号「a」で示した。抵抗が小さくなるに従い、流れる電流は多くなり、負荷での消費電力は大きくなる。出力電圧aは、抵抗の変化にしたがって、上昇および降下している。また、出力電圧aとほぼ同じ位置に負荷に流れる電流bが表示されている。左右の縦軸はともにリニアであるので、負荷に流れた電流(すなわち消費電力)に比例した出力電圧aが得られているのがわかる。なお、各抵抗体の抵抗値はそれぞれ、R1≒150Ω、Rcu≪1、R2=4.7KΩ、であり、ローパスフィルタ36の性能は、80dBゲイン(DC応答)である。
 次に、電源電圧の周波数を変化させて計測した結果を図9に示す。図9(a)では電源電圧の周波数が100Hzであり、図9(b)では200Hzの測定結果を示している。両図とも、横軸は時間(実質的には抵抗値)であり、また左縦軸が出力電圧、右縦軸が負荷に流れる電流であるのは、図8の場合と同じである。いずれの周波数においても階段状に変化させた消費電力に対応して、出力電圧が変化していることが理解される。
 図10は、各周波数のそれぞれの時間区間(すなわち、選択された負荷の抵抗値)で出力電圧の平均値を計算し、消費電力と出力電圧の関係を示したグラフである。横軸は消費電力、縦軸はそれぞれの出力電圧の平均値を示している。このグラフからも比較的再現性がよく、消費電力に比例した出力電圧が得られることがわかる。なお、消費電力が0[W]のときの出力電圧が各周波数で異なっているのは、アンプ35(AMP2)のオフセットが計測ごとに変化したためと考えられる。
≪任意のn次高調波ごとの電力計測装置(磁気抵抗効果型、プレナーホール効果型(PHE型)、ホール効果型の電力計測装置に適用)≫
 上述するように磁気抵抗効果を利用した電力計測装置では、センサ素子に交流電圧成分と直流電圧成分とが重畳して出力され、このうち直流電圧成分をDMM等の電圧検出部で検出する。その他、PHE型電力計測装置や半導体薄膜を利用する電力計測装置のごとき薄膜素子を用いる電力計測装置(「薄膜型電力計測装置」とも称する)において検出する出力信号は直流電圧である。
 上述した数式2からも明白なように、電源電圧にn次高調波が含まれていた場合、出力電圧信号Vmrのうち直流電圧成分は、各n次高調波の有効消費電力(力率を含む)の総和であることがわかる。したがって、本発明の電力計測装置の場合、n次高調波を含む電源に対してもセンサ素子の直流電圧を測定するだけで対応する各高周波の消費電力合計を測定することができる。この点を詳細に説明する。
 図11は、実証に使用した計測回路を示している。なお、図3と同様の参照記号、符号のものは同様のものとする。まず、負荷抵抗(RLoad=R1)には、交流電源V1が接続され、その結果電流が流れる。この電流は、接続線である導体膜Rcuにも流れる。また、電力測定装置側では、センサ素子1(抵抗はRmr)からの出力電圧はローパスフィルタ26において高周波成分がカットされる。ここでは電源V1での最低発振周波数以上の成分をカットする。ローパスフィルタ26で高周波成分がカットされた出力電圧はデジタルテスター28(DMM=digital multimeter)で直流成分が測定される。また、センサ素子1には、電源V2から電流が流される。これは、電力が計測される回路側に流れる周波数の電流と異なる周波数の電流をセンサ部に流せるようにしたものである。
 図12は、図11の計測回路でのDMM28での出力電圧の測定結果を示している。まず、計測される側の回路では、図12左上に記載するように電源V1は、大きさの等しい100Hz成分と200Hz成分とを重畳(「100Hz+200Hz」と表記)して含んでいる。すなわち、図12では、100Hzと200Hzの2つの周波数成分を含んだ電源電圧を用いた場合における消費電力測定例を示すことになる。
 また、負荷抵抗RLoadは、開放(=無限大)、3.9Ω、1.9Ωと所定時間毎に切り換えた。電源電圧と負荷によって決められる電流が負荷Rloadに流れる。一方、電力計測装置側では、電源V2の信号として(1)100Hz+200Hz、(2)100Hz、(3)200Hz、(4)300Hzの信号を用意し、センサ素子1のセンサ端子(1ta、1tb)間に電流を流した。
 図12は、横軸が時間であり、左縦軸は電力計測装置の検出電圧(図11のDMM28での測定値)であり、右縦軸は負荷に流れた電流である。横軸は、抵抗を順次切り替えたので、直接的には時間を表すが、実質的には電力を計測される回路における負荷の抵抗値である。なお、負荷が無限大、3.9Ω、1.9Ωとなる領域を、四角で囲った「1」、「2」、「3」の数字で示した。負荷が小さくなるに従って、負荷に流れる電流は多くなるので、消費電力は増加することになる。また、図12において符号(5)で示されるラインは、負荷に流れた電流であり、それぞれの領域に従って、階段状に増加している。
 図12からは、センサ素子に流される電流が(1)100Hz+200Hz、(2)100Hz、(3)200Hzのそれぞれで負荷抵抗RLoadでの消費電力の増加とともに、計測された電圧値(縦軸)が増加している様子が分かる。一方、(4)300Hzでは計測電圧値は増加していない。すなわち、センサ素子に電流として供給しなかった100Hz+200Hzという信号成分に含まれない300Hz成分はセンサ素子に電流を流しても検出されないことがわかる。これにより、消費電力を計測される側の電源にない周波数成分は本発明に係る電力計測装置では、直流成分として出力されないことがわかる。
 また、センサ素子への入力電流が(1)100Hz+200Hz、(2)100Hzはほぼ同じレベルのノイズが含まれるが、(3)200Hzでは若干ノイズレベルが減少し、(4)300Hzではさらにノイズレベルが減少している様子が分かる。したがって、本電力計測装置は、高周波電力の測定ほど適した方式であることがわかる。なお、オフセット電圧とその変動は計測機器での影響と推測される。
 図13(a)は、図11の測定系での結果である図12の計測結果をまとめたグラフである。縦軸が電力計測装置の出力電圧であり、横軸は時間(実質的には負荷の抵抗値)である。それぞれの時間(負荷の抵抗値)毎に、平均値をプロットした。
 図13(b)は0W消費時を基準として電力計測装置の計測電圧の変化量を書き直したものである。横軸は時間(実質的には負荷の抵抗値)であり、縦軸は電圧である。図13(b)よりわかるように、センサ素子に流した電流が(2)100Hz、(3)200Hzでの計測結果は良く一致しており、その直線性も良好である。また、(1)100Hz+200Hzの計測結果と、(6)100Hz、200Hzでの計測値を加算したものと、はよく一致していることがわかる。このことより本電力計測装置は、全ての高調波での電力消費を計測可能であることを示していると共に任意のn次高調波での消費電力を計測可能であることがわかる。
 図14(a)は、図11、図12の計測結果をまとめたグラフ(図13(b)と同じ)であり、図14(b)は、図14(a)の計測結果を負荷抵抗RLoadでの消費電力を横軸として書き直したものである。図14(b)よりわかるように、全ての計測値は一直線上にあり、計測結果は良く一致しており、直線性は良好である。
 また、図14(a)から(1)100Hz+200Hzの計測結果と、(6)100Hzと200Hzとの計測値を加算したものと、はよく一致していることがわかる。このことより本電力計測装置は、全ての高調波での電力消費を計測可能であることを示していると共に任意のn次高調波での消費電力を計測可能であることがわかる。
 図15に本発明の電力計測装置の他の具体的構成例を示す。なお、図15では、センサ素子からの出力を計測する電圧検出部は記載を省略した。この構成では、n個のバントパスフィルタ41が並列に配置され、そのうちの1つのバンドパスフィルターを選択するスイッチ42を有するバンドパスフィルター手段40が、センサ素子1および計測抵抗12に直列に接続されている。ここでは、スイッチ42は、1つのバンドパスフィルターを選択するように説明しているが、n個以下のバンドパスフィルターを同時に選択してもよい。
 本構成の電力計測装置では、バンドパスフィルター41を用いて任意のn次高調波に比例した電圧を検出することができる。本電力計測装置では、負荷R1を流れる電流I1により発生する磁界により隣接するセンサ素子1の電気抵抗Rmrを変化させる。この点では従来の薄膜素子を用いる電力計測装置と同様である。ただし、本電力計測装置では交流電源に含まれる高周波からバンドパスフィルター41を通して任意のn次高調波電圧に比例した電流をセンサ素子1に流す。
 バンドパスフィルター41とは、必要な範囲の周波数のみを通し、他の周波数は通さない(減衰させる)機能を有する。例えば、図15のバンドパスフィルター41が、I2=120Hzの電流を通す場合、センサ素子1の出力電圧もVmr=120Hzの周波数成分のみが出力される。
 したがって、図15の電力計測装置における出力電圧Vmrは、バンドパスフィルター41で選択されたn次高調波電圧によって消費された電力に比例した直流電圧を得ることができる。なお、この薄膜素子を利用する電力計測装置には、上述してきた(1)磁気抵抗効果による磁性薄膜の電気抵抗変化を利用する電力計測装置や、(2)プレナーホール効果による磁性薄膜の電気抵抗変化を利用する電力計測装置の他、(3)ホール効果による半導体膜の電気抵抗変化を利用する電力計測装置にも適用される。なお、出力電圧は、(1)では符号1aを磁性膜として長手方向の電圧Vmrを、(2)では符号1aを磁性膜として幅方向の電圧VPHEを、(3)では符号1aを半導体膜として厚さ方向の電圧VHEを、それぞれ出力として直流成分を検出する。
 図15の電力計測装置は、電源の高調波成分による消費電力を検出することができる。したがって、高周波成分の電力が漏洩することによる電化製品の火災等が多発している地域においては、周波数ごとの高周波の漏洩を探知し、高周波漏洩の警告を行うための手段として利用が可能である。
 また、上記図15の構成の電力計測装置では、入力電圧をn次高調波である場合について説明してきたが、図15の電力計測装置の構成例は、単一周波数の入力電圧の場合であってもよい。数式1~数式3で説明したように本電力計測装置の場合、測定対象である負荷における消費電力を直流電圧成分だけで測定できる。したがって、バンドパスフィルターで交流電圧成分を除去することで直流電圧成分のみを分離し、負荷の消費電力を測定できる。さらに、低周波あるいは高周波領域の出力電圧成分をバンドパスフィルターで除去することで必要な周波数領域の消費電力も測定できる。
≪直流電流(磁界)測定時の出力電圧安定方法(磁気抵抗効果型、プレナーホール効果型電力計測装置に適用)≫
「交流バイアス磁界を印加(再現性向上)」
 次に、図16(a)では(異方性)磁気抵抗効果型の電力計測装置の磁性膜部分(強磁性体)の模式図が示され、図16(b)ではプレナーホール型(以後「PHE型」と呼ぶ。)の電力計測装置の磁性膜部分(強磁性体)の模式図が示されている。PHE型では、磁性膜に流す電流と直角方向の相対する2辺の間の電圧V2を計測する。
 従って、PHE型の電力計測装置では、センサ素子のセンサ端子が形成されていない辺に電圧を取り出す計測端子13(13a、13b)を形成する。この点が磁気抵抗効果型の電力計測装置(図16(a))と異なる点であり、他の構成は図6および図7で説明した電力計測装置と同じである。ここで図16(a)(b)の両電力計測装置のセンサ素子を用いた直流電力の測定に際して、通常、出力V1、V2の直流出力電圧は不安定になる(ドリフトする)ことがわかってきた。
 図17には図16(b)のように計測端子を形成したPHE型電力計測装置で直流磁界Hのみを計測する場合(交流バイアス磁界の印加なし)の電流I1に対する出力電圧V2の測定結果を示している。ここで、負荷には直流電流だけが流される。なお、図17の実験条件としては、次の通りである。
使用した磁性体素子:直径10mmの円形素子
直流印加磁界:-2A(-100A/m)~2A(100A/m)
測定:周期は120sec、今回は300prot/600sec
また、負荷に流れる電流が直流電流だけの場合は、交流成分がないため、電力計測装置には、ローパスフィルタ26(図6参照)は不要である。つまり、本発明の電力計測装置では、電圧検出部28にはローパスフィルタが接続されない場合もある。
 図17では、横軸が負荷に流れる電流であり、縦軸は検出された電圧である。PHE型素子では、作用を受ける磁界に対して出力電圧特性が奇関数となるため、電流ゼロを中心に右下がりの出力電圧特性を示す。数回の測定を繰り返したが、図17に示すように、結果がばらついた。この図17から、一次導体を流れる負荷電流(直流電流)による直流磁界だけの作用で電力計測を行う場合ではドリフトにより出力電圧の再現性が悪化していることがわかる。
 これに対して図18~図19にはPHE型電力計測装置で、直流磁界Hを計測するに際し、計測する直流磁界と平行に交流バイアス磁界を印加した場合の負荷電流I1に対する出力電圧V2の測定結果を示している。それぞれ、複数回同じ計測を行った。図18~図19の実験条件としては、交流バイアス磁界を余分に印加したこと以外図17と同様である。なお、交流バイアス磁界は発振器と増幅器の組み合わせにより生成した。ここで交流バイアス磁界を検出磁界と平行に印加する手段を交流バイアス磁界印加手段と呼ぶ。
 また、印加した交流バイアス磁界は、図18(a)の場合-0.1A(5A/m)、50Hz、図18(b)の場合-0.2A(10A/m)、50Hz、図18(c)の場合-0.3A(15A/m)、50Hz、図19(d)の場合-0.4A(20A/m)、50Hz、図18(e)の場合-0.5A(25A/m)、50Hz、である。
 図18、図19の測定結果から、交流バイアス磁界が、5A/m、10A/m、15A/mのときには交流バイアス磁界なしの場合(図17参照)に比べて、出力電圧の再現性が良くなっていることがわかる。一方、20A/m、25A/mと交流バイアス磁界を大きくしていくと計測される直流磁界に対して相対的に交流バイアス磁界が大きくなり、出力電圧の再現性は悪くなっていることがわかる(図19)。したがって、磁性膜の磁化を僅かに振動させる程度の交流バイアス磁界によって、出力電圧の再現性はよくなることがわかった。
 この現象は、磁性膜の磁化の挙動に関係する現象であり、磁性膜をセンサ素子に用いる限り、出力の安定性に効果がある。つまり、上記の説明ではPHE型電力計測装置について説明を行ったが、磁性膜に流す電流と同じ方向の電圧を計測する磁気抵抗効果型電力計測装置であっても、計測される直流磁界と平行な交流バイアス磁界を印加する交流バイアス磁界印加手段は有効である。
「矩形波の交流バイアス磁界を印加(安定性向上)」
次に、矩形波電流を負荷に流したときの消費電力を測定する際に、交流バイアス磁界を磁性膜に印加した時の測定結果を示す。図20~図21の(a)図は、周期120[sec]で導体膜Cu(一次導体)に-2A(-100A/m)と2A(-100A/m)の矩形波の電流を流すことで直流磁界(図16参照)をセンサ素子の磁性膜に作用させたときの出力電圧を示している。図20は交流バイアス磁界を印加しない場合、図21は交流バイアス磁界(-0.3A(15A/m)、50Hz)を導体膜Cuから発生する磁界に平行に磁性膜に印加(追加)した場合を示している。なお、測定は、240[sec](2周期)で240prot行った。グラフの横軸に時間、縦軸に入力(直流印加磁界)、出力電圧を表示している。
 また、図20~図21の(b)図は、(a)図の丸囲み部分を拡大したものである。これらの図から明らかなように交流バイアス磁界を印加すると出力電圧の「ゆらぎ(分散)」が小さくなっている。交流バイアス磁界印加の有無による出力電圧の分散の具体的な値を表1に示している。この表から交流バイアス磁界により出力の安定性が約1.5倍ほど改善されていることがわかる。
Figure JPOXMLDOC01-appb-T000004
「直流バイアス磁界を印加(感度上昇)」
 図17~図21では直流磁界の測定に際し交流バイアス磁界を印加した場合の効果について説明してきた。ここでは直流バイアス磁界を用いた場合の効果について言及する。ここでの「直流バイアス磁界」とは、磁性膜の磁化容易軸方向に平行に直流磁界を印加することをいう。
 図22では、直流バイアス磁界を印加しない場合(PHE型電力計測装置において、直流磁界Hだけが、磁性膜に印加されている場合)と、直流バイアス磁界を印加した場合の出力電圧を示している。なお、直流バイアス磁界を印加した場合の計測では、大きさの異なる直流バイアス磁界を使った結果を示した。
 具体的には、
(1)直流バイアス磁界を印加しない場合、(2)80A/mの直流バイアス磁界を印加した場合、(3)240A/mの直流バイアス磁界を印加した場合、(4)480A/mの直流バイアス磁界を印加した場合、(5)800A/mの直流バイアス磁界を印加した場合、(6)1200A/mの直流バイアス磁界を印加した場合、の測定結果を示している。磁性膜に流す直流電流は10mAである。なお、直流バイアス磁界は、永久磁石の距離調整により調節される。
 図22では、横軸が負荷に流す直流電流によって生じる直流磁界の大きさであり、縦軸は電力計測装置の出力である。この図から直流バイアス磁界は、大きくなるにつれ出力電位差を大きく取れることがわかる。直流バイアス磁界印加は電力計測装置の感度を向上させることができるとも言える。
 本発明の電力計測装置は、センサ素子1に対してその磁性膜の磁化容易軸方向に直流バイアス磁界を印加する直流バイアス磁界印加手段を有することができる。磁性膜の磁化容易軸方向は磁性膜の長手方向に誘導される場合が多い。その場合、直流バイアス磁界印加手段は、センサ素子の磁性膜の長手方向と平行な方向に磁界を印加する。また、直流バイアス磁界印加手段は磁性膜が後述するバーバーポール磁性膜、磁化容易軸傾斜型磁性膜、九十九折れ型磁性膜およびこれらの組み合わせで構成されたセンサ素子に対しても適用することができる。
 もちろん、後述するように磁性膜の長手方向と磁化容易軸を一致させていない場合もある。その場合は、見かけ上磁性膜の長手方向と異なる方向(磁化容易軸の方向)に直流バイアス磁界を印加する。直流バイアス磁界を印加する具体的手段としては、永久磁石若しくは電磁石による磁界が考えらえる。
≪磁気抵抗効果型電力計測装置における直流測定方法例(電池等の電力測定への適用)≫
 磁気抵抗効果型の電力計測装置では、負荷に接続する電源が直流電源の場合には、大きな直流オフセット電圧が現れる。このため1つの磁性膜1aでは直流電力測定ができない。しかしながら、図23に示すように2個の磁性膜1aおよび1pを直列に接続し、かつ接続点を接地することで、それぞれの磁性膜で発生するオフセット電圧をキャンセルさせることができる。ここでセンサ端子1t(1ta、1tb)は、磁性膜1aと磁性膜1pの両端である。また、このセンサ端子1tは計測端子13(13a、13b)でもあり、電圧検出手段28が接続される。なお、図23ではアンプが電圧検出手段28を表す。
 すなわち、このセンサ素子1は、磁性膜1aと磁性膜1bが直列に接続され、その接続点に接地のためのセンタータップ電極1mが設けられ、センタータップ電極1mをはさんで磁性膜1a、1pの両端にセンタ端子1ta、1tbが設けられる。したがって、このようなセンサ素子1では、各磁性膜1a、1pの両端での出力電圧Vmrにはオフセット電圧が現れない。したがって、このような磁性膜の接続方法によれば磁気抵抗効果型の電力計測装置の欠点であった直流電力測定不能という問題を解消し得る。なお、出力を安定させるために交流バイアス磁界印加手段を併用してもよい。交流バイアス磁界印加手段による交流バイアスをHbacで表す。また、ここでは2つの磁性膜をまとめて1つのセンサ素子としてが、2つのセンサ素子を直列に接続し、接続点を接地してもよい。
 図24は図23の電力計測装置を二次電池に応用した形態であり、図24のセンサ素子1、計測抵抗12および電圧検出手段28に加え整流回路37、充電器38、切替スイッチ39が付加されている。整流回路37は交流電流を直流電流に変換するものであり、ブリッジ回路が簡易構成例となる。また、充電器38は交流電流を充電するものであり、図示しないが充電器38には外部電源(交流)が接続される。
 まず、切替スイッチ39を負荷R1側に接続した場合、図23で説明したように直流電源である電池の消費電力を検出することができる。一方、切替スイッチ39を充電器38側に接続すると充電器38に充電される電力を検出することができる。
 したがって、図24の構成の二次電池では、電池により負荷R1に電力を供給する場合と、電池に外部電源により充電する場合の電力とにおける電力の移動量(放電量、充電量)をモニタリングすることができる。
 なお、図23、図24の構成以外にも磁気抵抗効果型の電力計測装置の直流測定で現れる直流バイアス電圧(オフセット電圧)を差し引く方法として、直流バイアス電圧と同等の電圧をダミーの抵抗体で発生させるなどの方法も考えられる。
《バーバーポール磁気抵抗効果型の電力計測装置》
 次に、バーバーポール磁気抵抗効果型の電力計測装置について説明する。この電力計測装置は、上述する磁気抵抗効果型の電力計測装置の変形例である。
 図26にはバーバーポール型の磁気抵抗効果型の電力計測装置におけるセンサ素子の磁性膜を示している。図27は磁性膜の表面に設ける斜めの導体膜1cと電極が示されている(以下、バーバーポール電極と呼ぶ)。また以下、磁性膜とその上部に形成された斜め導体(バーバーポール電極)との一体型磁性膜を「バーバーポール磁性膜1bbp」と称する。図26はバーバーポール磁性膜1bbpを上方から見たときの電流方向と磁化方向とを示したイメージ図を(a)に、バーバーポール磁性膜1bbpを(a)と同じく上方から見た写真図(b)を示している。なお、負荷に流れる電流によって発生する磁界Hは、紙面下から上に向かっているとしている。
 また、図27は磁性膜1aの表面に設ける斜め導体1cと電極が示されており、(a)では全体視を、(b)では(a)の丸囲み部分の拡大視を示している。斜め導体1cは、磁性膜1aの長手方向に対して複数個が配置されている。
 また、図27では、中央から左右で傾斜の方向が変わっている。つまり、右側の斜め導体を第1のグループとし、左側の斜め導体を第2のグループとするとそれぞれの傾斜の方向は逆方向を向いている。
 斜め導体の第1グループおよび第2グループの間(境界)には、センタータップ電極1mが形成されている。つまり、バーバーポール磁性膜1bbpを2つ直列に接続し、1つのセンサ素子としたものは、使用時にセンタータップ電極1mを接地することができる。また、斜め導体両端には、センサ端子10(10a、10b)が形成されている。磁性膜1cに電流を流すためである。このように、センサ端子10は、磁性膜1cの両端から離れた位置に形成されていてもよい。また、センサ端子10と同じ地点から計測端子13も形成される。なお、傾斜方向の同じ導電膜を施した磁性膜を2つ直列に接続し、センタータップ電極をつけても良い。そのようなセンサ素子は、各磁性膜のオフセット電圧をキャンセルすることができる。
 図26(b)の具体的な試作例には、磁性膜として長さ30mm、幅1mm、膜厚約0.1μmのパーマロイ(NiFe)膜を用いている。バーバーポール磁性膜1bbpには図26~図27に示すように磁性膜の幅方向(紙面上下方向)に斜めの導体膜1cを設けており、銅(Cu)を用いている。この導体膜1cは幅0.5mm、長さ3mm、膜厚0.1μm、導体膜-導体膜の間隔1mmである(図27参照)。
 図26~図27に示すセンサ素子1を電力計測装置の一部として用いる場合、磁性膜1aには電流を流す必要がある。この際、導体膜1cを設けることにより、磁性膜中に流れる電流の方向を制御することができる。つまり、電流は電気抵抗のより小さい方向に流れる性質を持っているので、磁性膜中に流れる電流は、導体膜1c同士の最短距離を進み、結果として磁性膜の長手方向に対して斜めに電流を流すことができる(図26(a)参照)。
 より詳細に説明すると、まず、磁性膜(パーマロイ膜)1aの電気抵抗に比べ導体膜(Cu膜)1cの電気抵抗は約10分の1程度である。したがって、電流は、磁性膜1aの長手方向を直進するよりも導体膜-導体膜間の距離の短い方と導体膜1cを流れる方が電気抵抗が小さくなる。磁性膜には形状異方性、誘導異方性により予め長手方向に磁化方向(磁化容易方向)が誘導されているので、斜め導体1c間の磁性膜中で流れる電流の方向と磁化方向とに角度が生じることになる。
 そのため、図28(b)に示すようにバーバーポール磁性膜1bbpの磁気抵抗特性は通常の磁気抵抗効果による磁界-抵抗特性があたかもバイアス磁界によりバイアスされているかのような特性を示す。すなわち、磁気抵抗効果からリニア特性を得られる動作点を、バイアス磁界がない状態で、作用磁界がゼロの点に設定することができる。
 図28は、長手方向の電圧V1と磁界Hとの関係を示している。図28(a)は通常の磁気抵抗効果を表している。磁界Hに対する出力電圧V1は偶関数を形成する。そのため線形特性を得るためにバイアス磁界を付与する必要がある。一方、図28(b)は、バーバーポール磁性膜の磁気抵抗効果を示しており、バイアス磁界が不要であることがわかる。従って、バーバーポール磁性膜を用いたセンサ素子を有する電力計測装置は、センサ素子の長手方向に直角方向の直流バイアス磁界を必要としない。また、そのような電力計測装置は、上記で説明した電力計測装置と同じように構成することができる。
≪差動型のバーバーポールの磁気抵抗効果型の電力計測装置≫
 図29に差動型のバーバーポールの磁気抵抗効果型の電力計測装置のセンサ素子を示しており、(a)には上方から見た写真、(b)にはこのセンサ素子をマイクロストリップ線路の測定に用いた模式図が示されている。図29(a)からは、磁性膜上には、左右に傾きの異なるバーバーポールが作製されているのが分かる。なお、図29(b)は図25(b)と電極の数が違う。図29(b)は、センタータップ電極を有するタイプのセンサ素子である。
 図30に通常の磁気抵抗効果による磁性膜の電気抵抗の変化の様子を示しておく。図30(a)は、短冊状の磁性膜1aと、負荷に流れる電流によって発生する磁界Hを示している。図30(b)は、この短冊状の長手方向に電流が流れた時の両端電圧(縦軸)と、磁界H(横軸)の関係を示す。縦軸の電圧VMRは抵抗Rに比例する。この出力電圧特性が磁界Hがゼロの点を中心に偶関数を示すのはすでに説明したとおりである。
 一方、図31(a)を参照して、傾きの異なるバーバーポールパターンによる差動型バーバーポール磁性膜1bbpの磁気抵抗効果は斜め導体の傾斜方向に応じて正負に異なるバイアス磁界が印可されているかのような特性を示す。図31に示すように左のバーバーポール磁性膜1bbpaは、外部からの印加磁界に対して負にバイアスされている特性Bを示し、右のバーバーポール磁性膜1bbppは正にバイアスされているかの特性Aを示す。
 この異なるバーバーポール磁性膜1bbpa、1bbppを直列に接続し、同じ方向たとえば左から右方向に磁界を印可すると各々のバーバーポール磁性膜の抵抗は一方では減少し、また一方では増加するように変化する。それらを差動出力させれば図31(b)のように磁界ゼロ点を動作点として変化のみを取り出すことができるようになる。これを差動型バーバーポール磁性膜と呼ぶ。
 また、通常の磁気抵抗効果の磁性膜1aを用いる場合には図30に示すような大きなバイアス磁界を印可して、動作点を直線性の良い所に設定する必要がある。しかし、図31に示すように差動型バーバーポール磁性膜を用いることにより動作点を零磁界に移動させることができる。また磁界による電気抵抗の変化も2倍に拡大することができる。さらに、無バイアス磁界で出力電圧を得ることができる。
 図32に差動型バーバーポール磁性膜をセンサ素子として用いた差動型バーバーポール磁気抵抗効果型の電力計測装置の構成を示す。電源からは負荷R1に電流が供給される。負荷と電源の間は接続線によって接続されている。センサ素子1は、接続線の一部に磁性膜の長手方向を接続線の方向に一致させて配置する。図32では負荷R1に流れた電流はセンサ素子1の下を流れる様子を示す。連結端10a、10bは、電源と負荷が作る回路に、負荷R1と並列になるように連結する。
 連結端10aには、計測抵抗12の一端12aが接続される。他端12bはセンサ端子1taに接続される。センサ端子1tbは、接続端10bに接続される。センサ端子1taと1tbは抵抗を介して接合されている。この点が計測端子13aである。一方、センタータップ電極1mは接地され、さらに計測端子13bとされる。電圧検出部28はこの計測端子13aと13bの間の電位差を検出する。
 図32では、負帰還のかかったオペアンプを電圧検出部28として示したが、これ以外の手段を用いてもよい。図32のB端子(センタータップ電極)を接地し、A端子(センサ端子1ta)、C端子(センサ端子1tb)からの電気信号を演算増幅器で加算することによりバイアス電圧の無い、磁界の変化のみを出力する電気信号を得ることができる。
 図33に差動型バーバーポール磁性膜を用いたセンサ素子の動作確認をおこなった実験の測定系を示す。差動型バーバーポール磁性膜に印加される磁界は、ヘルムホルムコイルによって発生させた。また、磁性膜に流す電流は定電流源から供給した。なお、増幅器の全ての抵抗値は2kΩとし、増幅ゲインは1である。
 次に、一様な外部磁界に対するバーバーポール磁性膜を用いた電力計測装置の出力特性を測定した。図34は図33に示した測定系のA-B端子間の出力特性を示し、図35は同測定系のC-B端子間の出力特性を示し、図36(c)は同測定系のオペアンプの出力電圧を示している。
 なお、図34に示すA-B端子間の出力特性については、AB間の出力オフセットが742 [mV]、AB間の出力変化が4 [mV]、ABの出力変化率が0.42 [%]、抵抗変化率が0.0031/0.7420*100=0.42[%]である。
 また、図35に示すC-B端子間の出力特性については、CB間の出力オフセットが743 [mV]、CB間の出力変化が2.6 [mV]、CB間の出力変化率が0.35 [%]、抵抗変化率が0.0026/0.7430*100=0.35[%])である。
 また、図36(c)に示す図33のオペアンプの出力特性については、AC間の出力オフセットが1.46 [mV]、AC間の出力変化が0.11 [mV]、AC間の出力変化率が7.5 [%]、抵抗変化率0.00011/0.00146*100=7.5[%])である。
 図34、図35では磁界に対して大きく抵抗が変化している。図36(c)では図34、図35に比べバイアス電圧が大きく減少しているのがわかる。また磁界による出力電圧の変化は小さい。したがって、磁性膜1c中の磁化の向きや磁区構造が多磁区状態になり一軸異方性を持った単磁区になっていないと思われる。
Figure JPOXMLDOC01-appb-T000005
 表2に差動型バーバーポール磁性薄膜による出力改善結果を示す。出力変化および出力変化率が大きく減少しているのは、膜中の磁化が十分に素子長手方向に揃っていないのが原因と推察される。しかしながら、オフセット電圧の急激な減少により抵抗変化率が急激に改善され、バーバーポール磁性膜の差動接続によりデバイスとしての性能が格段と向上していることが判る。オフセット電圧の減少は素子に繋がる増幅回路の増幅率を大きく出来るメリットをもたらし、非常に有益な結果である。
 また、図37に磁性膜の長手方向と平行に直流バイアス磁界を印加したときの測定系の模式図を示す。これは電力計測装置のセンサ素子の磁性膜に対して、センサ素子の長手方向に直流バイアス磁界を印加することである。ここでは差動型バーバーポール磁性膜を示しているが、差動型でなくてもよい。電力計測装置においては、直流バイアス磁界印加手段によって実現される。先に述べたように磁化方向を強制的に一方向にそろえることにより素子(デバイス)としての特性の変化について検討した。
 図37の測定系の出力特性を図38乃至40に示している。図38はバーバーポールを設けないで作成した磁性膜を用いたセンサ素子(差動接続)において磁性膜長手方向にバイアス磁界を印加した場合の出力特性を示している。横軸は外部から印加される磁界で、縦軸は出力電圧である。バーバーポール無し、バイアス磁界有りの場合の抵抗変化は非常に小さく、その抵抗変化率は0.00022%で非常に小さいものであった。
 図39では、バーバーポール有りで磁性膜長手方向にバイアス磁界無しの素子の場合の出力特性、すなわちバーバーポール磁性膜の長手方向に直流バイアス磁界を印加しない場合の出力特性が示されている。
 図40では、バーバーポール有りで磁性膜長手方向にバイアス磁界有りの素子の出力特性、すなわちバーバーポール磁性膜1の長手方向に直流バイアス磁界を印可した場合の出力特性が示されている。センサ素子長手方向に直流バイアス磁界を印可するか否かにより出力特性が大きく変化している様子がわかる。
 これは磁性膜の異方性の強さが十分で無いのが原因であると推察できる。その異方性の強さを補うようなセンサ素子長手方向への直流バイアス磁界により、磁化が磁界方向に強く揃えられ、磁化と電流に明確な角度が出来たことによるものと推察される。抵抗変化率は直流バイアス磁界無しの場合は0.6%、直流バイアス磁界有りの場合は3.3%以上であり、直流バイアス磁界が非常に有効であるといえる。
 図41では、導体膜に負荷電流(I1)を流したときの電力計としての特性の測定系が示されている。本来の電力計測では、負荷電圧の大きさに比例した電流(I2)を磁性膜に流して測定する場合が多い。しかし、ここではI1とI2を個別に設定できるようにして特性を評価した。すなわち、センサ端子間には定電流電源を接続し、負荷に流れる電流に係らず、所望の電流を流すことができる。
 図42は、直流バイアス磁界を印加せずに導体膜に負荷電流(I1)を流した時の出力特性を示している。この測定では、磁性膜に流す直流電流(I2)は2mAとした。また、負荷電流(I1)は負荷抵抗に接続した直流電源を用いて設定した。負荷電流を0[A]~1[A]まで0.2[A]刻みで増加させ、その後0.2[A]刻みで減少させながらそれぞれ50[s]間測定した。従って、図42では横軸は時間であるが、実質的には負荷電流を表す。
 負荷電流(I1)の増加に伴い出力が増加している様子が分かる。しかしながら負荷電流の変化に対して電力センサ出力の変化は明確に電流の変化を反映しているとは言えない状態である。磁性膜の磁化の向きが印可されている磁界に比例して動いていないことがその一因であると思われる。
 図43に磁性膜の長手方向への磁界印加(直流バイアス磁界)による出力変化を示す。横軸は磁性膜に作用される磁界強度を示し、縦軸は出力電圧を示す。無バイアス磁界状態では磁性膜の異方性の強さと磁化の向きとの関係でこの状態では電力計としての出力は一意に定まらず、電力計として利用できない。直流バイアス磁界の大きさが10Oe、40Oeとでは広い範囲で直線性と良い感度を得ることが出来ているが、100Oeの直流バイアス磁界の場合には明らかに感度の低下が見られる。
 ただし、100Oeの場合は、10Oe、40Oeの場合と比較すると直線領域が広がっている様子が分かる。直流バイアス磁界はある程度の大きさまでは膜の磁区構造を整え、高感度と良い直線性を得ることが出来るが大きなバイアス磁界は感度を低下させることが明らかである。
 磁性膜の保磁力を若干超える程度の直流バイアス磁界印加は電力計としての感度を大きく改善する効果を有することと異方性磁界以上の印加磁界は感度を減少させるが電力計としての動作範囲を広げる効果を有すると言える。印加磁界の大きさを変えることにより測定可能な電流(電力)を設定できると言える。ただし、感度は減少する。
 図44は、直流バイアス磁界を印可した時の測定系を示している。ここでは永久磁石を用いて直流バイアス磁界を印可した。磁界の大きさは磁石の距離を調整することにより設定した。
 また、図45は直流バイアス磁界印加したときの磁気抵抗効果型の電力計測装置の出力特性を示している。直流バイアス磁界の大きさは40Oeである。その他の測定条件は図42の場合と同じである。この図45から直流バイアス磁界の印可により出力電圧の電流変化への追随性は向上していることが明らかである。
 また、若干の誤差を生じているが、膜特性の向上や上記のバンドパスフィルターの使用や図16~図21に記載する交流バイアスの印加により大きく改善できるものと思われる。また交流電力計測では全く問題なく動作すると思われる。
 以上の結果より、バーバーポール型磁性膜電力計測装置および差動型バーバーポール磁性膜電力計測装置はスマートグリッド、スマートバッテリー等への応用が最適であると結論でき、電力不足等の回避にも有利である。なお、バーバーポール型磁性膜を用いたセンサ素子を用いた場合でも、図17、18で示したように、センサ素子に流れる電流と直角方向の交流バイアス磁界が加えられた場合は、出力安定の効果がある。すなわち、バーバーポール型磁性膜を用いたセンサ素子であっても、交流バイアス磁界印加手段と共に電力計測装置を構成することができる。
 また、斜め導電体の傾斜方向が同じバーバーポール型磁性膜2個を直列に接続し、接続点にセンタータップ電極を設けたセンサ素子を図23のようにして使用することもできる。このような構成であると、それぞれのバーバーポール型磁性膜部で生じるオフセットをキャンセルすることができる。
 バーバーポール型磁性薄膜を用いると、図28に示すように、あたかもバイアス磁界があるかのような動作を行うことを示した。これは、外部から磁界が印加されていない場合であっても、長手方向に誘導された磁化容易軸に対して磁性膜中を流れる電流の向きがことなっているように制御されたからと考えられる。つまり、外部磁界がない場合であっても、磁化容易軸と電流の流れる方向が違っていれば、図28と同じ特性が得られる。
 図46(a)には、短冊状の長手方向に対して磁化容易軸を傾けた磁性膜を有するセンサ素子1を示す。形状は短冊状であり、センサ端子は短冊状の短辺に設けられている。一方磁化容易軸は、磁性膜の長手方向に対して傾けて誘導させてある。このような磁化容易軸傾斜型磁性膜も、バーバーポール型磁性膜と同様に図28のような特性を示す。
 従って、磁化容易軸傾斜型磁性膜を用いたセンサ素子を有する電力計測装置は、センサ素子の長手方向に直角方向の直流バイアス磁界を必要としない。また、そのような電力計測装置は、上記で説明した電力計測装置と同じように構成することができる。
 また、図46(b)には、磁化容易軸傾斜型磁性膜を2つ直列に接続した構成を有するセンサ素子を示す。直列に接続され、直線状に配置された2つの磁化容易軸傾斜型磁性膜は、長手方向に対する磁化容易軸の傾斜方向がそれぞれ異なる。このようなセンサ素子は、図31と同じように、それぞれの磁化容易軸傾斜型磁性膜の動作特性がずれる。したがってこのようなセンサ素子に対して、横方向から磁界が印加されると、図31と同様の効果を得ることができる。
 また、磁性膜の長手方向に直流バイアス磁界を印加した時も、バーバーポール型磁性膜を用いたセンサ素子と同様の効果を得ることができる。また、負荷に流れる電流によって生成される磁界と同じ方向の交流バイアス磁界を加えた場合も、図17、18で示したように、出力を安定させる効果がある。すなわち、磁化容易軸傾斜型磁性膜を用いたセンサ素子を用いた場合でも、直流バイアス磁界印加手段若しくは交流バイアス磁界印加手段と共に電力計測装置を構成することができる。
 また、磁化容易軸が同じ方向に傾斜した磁化容易軸傾斜型磁性膜2個を直列に接続し、接続点にセンタータップ電極を設けたセンサ素子を図23のようにして使用することもできる。このような構成であると、それぞれの磁化容易軸傾斜型磁性膜で生じるオフセットをキャンセルすることができる。
≪電力計測回路3及びその測定結果≫
 ここで再び磁気抵抗効果型である電力計測装置による実際の電力計測回路を示す。
 図7を参照して説明する。上述するように図7では、ファンクションジェネレータ32からの信号を2つのアンプ(直流増幅器)34に入力し、増幅することでこれを交流電源として使用する。センサ素子1からの出力電圧はローパスフィルタ26において高周波成分をカットする。ローパスフィルタ26で高周波成分がカットされた出力電圧はデジタルテスター28(DMM)で直流成分を測定する。
 この回路ではアンプ34(AMP1)のオフセットの変化がセンサ素子1の出力電圧に影響しないように構成されている。アンプ34(AMP1)、アンプ35(AMP2)の増幅率は等しく、同周波数の交流が出力されている。入力電圧が同周波数でなければ、出力電圧が交流成分のみとなるからである。
 換言すれば図7における電力計測では、出力電圧のうち交流成分に重畳された僅かな直流成分(図47(a)のイメージ図参照)をローパスフィルタ26やDMM28で計測しており(図47(b)のイメージ図参照)、正確に計測することが難しいという問題点を有している。
 図48では、本発明に係る電力計測装置の他の実施形態に係る構成の一部が示されている。本電力計測装置の構成では、センサ素子1および計測抵抗13と並列に等価センサ抵抗51および等価計測抵抗52が接続される。
 そして、計測抵抗12とセンサ素子1の接続点と、等価センサ抵抗51および等価計測抵抗52との接続点53をそれぞれ計測端子(13a、13b)とし、この計測端子間の出力電圧を差動増幅することで直流電圧成分のみ取り出すことができる(図47(c)のイメージ図参照)。すなわち、センサ素子と計測抵抗を含むブリッジ回路を構成することで、交流電源の消費電力を精度よく計測することができる。なお、各抵抗体の抵抗値はそれぞれ、R1=2Ω、Rcu≪1、R2、R2’=360Ω、であり、60~80dBゲインで差動増幅する。
 図7の計測回路2と上記図48の計測回路3との測定結果について説明する。図49(a)(b)の計測結果は、それぞれ電力計測装置側(図7ではAMP1(34)側)の入力交流(負荷電流)を実行値4.0V、100Hzとして、両計測回路2,3の出力を比較している。横軸は時間であるが実質的に負荷に流れる電流であり、縦軸はアンプの出力である。この図49からゲイン80dBの差動増幅によって交流成分によりノイズと直流オフセットが改善されていることがわかる。
 図50では図49(b)と同様の方法で高調波電流の検出をした結果のグラフである。このグラフでは、それぞれ電力計測装置の磁性膜に入力する電流の周波数を(1)100Hz+200Hz+300Hz、(2)100Hz+200Hz、(3)100Hz、(4)200Hz、(5)300Hzとした場合の出力の計測結果を示している。この結果から、各周波数の電流だけほぼ正確に検出できていることがわかる。
 図51には、センタータップ電極が設けられている場合に、センサ素子および計測抵抗を含むブリッジ回路を形成する場合の結線構造を示す。付加する抵抗は等価計測抵抗52だけあり、センタータップ電極の両側の磁性膜部と、計測抵抗でブリッジ回路を構成する。なお、オフセット調整のために可変抵抗を加えても良い。また、磁性膜は、バーバーポール磁性膜の組み合わせでもよいし、磁化容易軸傾斜磁性膜の組み合わせでもよいし、また通常の長手方向に磁化容易軸を誘導されたものであってもよい。なお、ここで、「組み合わせ」とは異なる動作点の磁性膜を直列に接続してセンタータップ電極を設ける場合と動作点が同じ磁性膜を直列に接続してセンタータップ電極を設ける場合のどちらをも含む。また、これらの磁性膜に交流バイアス磁界を印加すれば、出力はより再現性良く得ることができる。
 図52には、センタータップ電極の両側の磁性膜部の動作点が異なる場合にブリッジ回路を形成する場合の結線構造を示す。動作点が異なる場合とは、磁化容易軸傾斜磁性膜でもよいし、差動型バーバーポール磁性膜であってもよい。これらの磁化容易軸若しくは、導電体の傾斜方向がそれぞれの磁性膜部で異なっていればよい。
 図53には、磁性膜を平行に配列し、隣り合う磁性膜の紙面に向かって上端と下端をそれぞれ連結したタイプの磁性膜部からなるセンサ素子を示す。センサ端子(1ta、1tb)は、両端の磁性膜の上端と下端に形成される。つまり、全ての磁性膜は直列に接続されている。このようなタイプの磁性膜を九十九折れ(つづらおれ)型磁性膜と呼ぶ。
 磁気抵抗効果型として磁性膜を使用する場合は、図3に示したように印加磁界に対する出力特性が偶関数となる。従って、磁性膜中を流れる電流の向きにかかわらず、膜の抵抗が変化する。また、磁気抵抗効果型では、電流長が長いほど出力電圧を高くすることができる。そこで、九十九折れ型磁性膜をセンサ素子として用いることで、出力電圧の感度を上げることができる。
 また、九十九折れ型磁性膜を2つ連結し、連結点にセンタータップ電極1mを形成することで、センタータップ電極を有するセンサ素子としても利用できる。また、九十九折れ型磁性膜は、磁性膜上にバーバーポール電極を形成することもできる。なお、図53では磁性膜の表面にバーバーポール電極を施してある。また、同じように磁化容易軸傾斜型磁性膜を用いてもよい。
 図54には、差動型バーバーポール磁性膜を九十九折れ型に形成し、さらにセンタータップ電極を形成したセンサ素子を示す。このようなセンサ素子を用いても本発明の電力計測装置は構成することができる。なお、この九十九折れ型磁性膜を用いた上記のバリエーションのセンサ素子を用いた場合であっても、動作点調整バイアス磁界印加手段、直流バイアス磁界印加手段、交流バイアス磁界印加手段、バンドパスフィルター手段を利用することができる。また、バーバーポール磁性膜の代わりに、それぞれ磁化容易軸の傾斜方向が異なる磁化容易軸傾斜型磁性膜を2つ直列に接続し、センタータップ電極を形成したセンサ素子であってもよい。
 以上、本発明の種々の電力計測装置ついての実施形態およびその概念について説明してきたが本発明はこれに限定されるものではなく特許請求の範囲および明細書等に記載の精神や教示を逸脱しない範囲で他の変形例、改良例が得られることは当業者は理解できるであろう。
 本発明は、電力計測装置として利用できるのはもちろんのこと、電力計測手段を必要とするより大きな装置およびシステムに利用することができる。
 1 センサ素子
 1a、1p 磁性膜
 1c 導体膜
 1t センサ端子
 1m センタータップ電極
 2 絶縁膜
 3 導体膜
 10 連結端
 12 計測抵抗
 13 計測端
 15 電力計測装置
 22、32 ファンクションジェネレータ
 24、34、35 アンプ
 26、37 ローパスフィルタ
 28、38 DMM(デジタルテスター)
 37 整流回路
 38 充電器
 39 スイッチ
 40 バンドパスフィルター手段
 41 バンドパスフィルター
 42 スイッチ
 51 等価センサ抵抗
 52 等価計測抵抗

Claims (49)

  1.  電源に接続線を介して接続された負荷において消費される電力を測定する電力計測装置であって、
    前記電源に対して前記負荷と並列に連結するための一対の連結端と、
    磁性膜を含む磁性膜部と、
    前記磁性膜部の両端に設けられた一対のセンサ端子を有し、
    前記センサ端子の一端は前記連結端の一方に接続され、
    前記磁性膜部の長手方向が前記接続線の電流が流れる方向と略平行になるように前記接続線に絶縁層を介して隣接配置されるセンサ素子と、
    一端が前記センサ素子のセンサ端子の他端に接続され、他端が前記連結端の他方に接続される計測抵抗と、
    前記センサ端子のそれぞれを計測端子とし、前記計測端子間の電圧を計測する電圧検出部と
    を有することを特徴とする電力計測装置。
  2.  前記磁性膜部の長手方向と同じ方向の直流磁界を前記磁性膜部に印加する直流バイアス磁界印加手段を設けた事を特徴とする請求項1に記載された電力計測装置。
  3.  前記磁性膜部の長手方向と直角方向の交流磁界を前記磁性膜部に印加する交流バイアス磁界印加手段を設けたことを特徴とする請求項1に記載された電力計測装置。
  4.  前記磁性膜部は、前記磁性膜部の長手方向に対して傾いた磁化容易軸が誘導されたことを特徴とする請求項1乃至3のいずれか1の請求項に記載された電力計測装置。
  5.  前記磁性膜部は、前記磁性膜部の長手方向に磁化容易軸が誘導され、前記磁性膜の表面には、前記磁化容易軸の方向に対して傾斜した複数の導電膜が形成されたことを特徴とする請求項1乃至3のいずれか1の請求項に記載された電力計測装置。
  6.  前記磁性膜部は、複数の磁性膜を並設し、前記それぞれの磁性膜をすべて直列に接続したことを特徴とする請求項1乃至3のいずれか1の請求項に記載された電力計測装置。
  7.  電源に接続線を介して接続された負荷において消費される電力を測定する電力計測装置であって、
    前記電源に対して前記負荷と並列に連結するための一対の連結端と、
    直線状に形成された第1の磁性膜と第2の磁性膜が直列に接続され、前記第1の磁性膜と前記第2の磁性膜の接続点が接地された磁性膜部と、
    前記磁性膜部の両端に設けられた一対のセンサ端子を有し、
    前記センサ端子の一端は前記連結端の一方に接続され、
    前記磁性膜部の長手方向が前記接続線の電流が流れる方向と略平行になるように前記接続線に絶縁層を介して隣接配置されるセンサ素子と、
    一端が前記センサ素子のセンサ端子の他端に接続され、他端が前記連結端の他方に接続される計測抵抗と、
    前記センサ端子のそれぞれを計測端子とし、前記計測端子間の電圧を計測する電圧検出部と
    を有することを特徴とする電力計測装置。
  8.  前記磁性膜部の長手方向と同じ方向の直流磁界を前記第1および第2の磁性膜に印加する直流バイアス磁界印加手段を設けた事を特徴とする請求項7に記載された電力計測装置。
  9.  前記磁性膜部の長手方向と直角方向の交流磁界を前記第1および第2の磁性膜に印加する交流バイアス磁界印加手段を設けたことを特徴とする請求項7に記載された電力計測装置。
  10.  前記第1および第2の磁性膜の少なくとも一方は、前記磁性膜部の長手方向に対して傾いた磁化容易軸が誘導され、かつそれぞれの前記磁化容易軸は、前記磁性膜部の長手方向に対して互いに逆向きとなるように配設されたことを特徴とする請求項7乃至9のいずれか1の請求項に記載された電力計測装置。
  11.  前記第1および第2の磁性膜の少なくとも一方は、前記磁性膜部の長手方向に磁化容易軸が誘導され、前記磁性膜の表面には、前記磁化容易軸の方向に対して傾斜した複数の導電膜が形成され、前記導電膜の傾きは、前記磁性膜部の長手方向に対して互いに逆向きにとなるように形成されたことを特徴とする請求項7乃至9のいずれか1の請求項に記載された電力計測装置。
  12.  前記第1および第2の磁性膜の少なくとも一方は、複数の磁性膜を並設し、前記それぞれの磁性膜をすべて直列に接続したことを特徴とする請求項7乃至9のいずれか1の請求項に記載された電力計測装置。
  13.  電源に接続線を介して接続された負荷において消費される電力を測定する電力計測装置であって、
    前記電源に対して前記負荷と並列に連結するための一対の連結端と、
    直線状に形成され、動作点のそれぞれ異なる第1の磁性膜と第2の磁性膜が直列に接続され、前記第1の磁性膜と前記第2の磁性膜の接続点が接地された磁性膜部と、
    前記磁性膜部の両端に設けられた一対のセンサ端子を有し、
    前記センサ端子の一端は前記連結端の一方に接続され、
    前記磁性膜部の長手方向が前記接続線の電流が流れる方向と略平行になるように前記接続線に絶縁層を介して隣接配置されるセンサ素子と、
    一端が前記センサ素子のセンサ端子の他端に接続され、他端が前記連結端の他方に接続される計測抵抗と、
    前記センサ端子の一端および他端とを抵抗を介して連結した点と、前記接地点をそれぞれ計測端子とし、前記計測端子間の電圧を計測する電圧検出部と
    を有することを特徴とする電力計測装置。
  14.  前記磁性膜部の長手方向と同じ方向の直流磁界を前記第1および第2の磁性膜に印加する直流バイアス磁界印加手段を設けた事を特徴とする請求項13に記載された電力計測装置。
  15.  前記磁性膜部の長手方向と直角方向の交流磁界を前記第1および第2の磁性膜に印加する交流バイアス磁界印加手段を設けたことを特徴とする請求項13に記載された電力計測装置。
  16.  前記第1および第2の磁性膜は、前記磁性膜部の長手方向に対して傾いた磁化容易軸が誘導され、かつそれぞれの前記磁化容易軸は、前記磁性膜部の長手方向に対して互いに逆向きとなるように配設されたことを特徴とする請求項13乃至15のいずれか1の請求項に記載された電力計測装置。
  17.  前記第1および第2の磁性膜は、前記磁性膜部の長手方向に磁化容易軸が誘導され、前記磁性膜の表面には、前記磁化容易軸の方向に対して傾斜した複数の導電膜が形成され、前記導電膜の傾きは、前記磁性膜部の長手方向に対して互いに逆向きにとなるように形成されたことを特徴とする請求項13乃至15のいずれか1の請求項に記載された電力計測装置。
  18.  電源に接続線を介して接続された負荷において消費される電力を測定する電力計測装置であって、
    前記電源に対して前記負荷と並列に連結するための一対の連結端と、
    磁性膜を含む磁性膜部と、
    前記磁性膜部の両端に設けられた一対のセンサ端子を有し、
    前記センサ端子の一端は前記連結端の一方に接続され、
    前記磁性膜部の長手方向が前記接続線の電流が流れる方向と略平行になるように前記接続線に絶縁層を介して隣接配置されるセンサ素子と、
    一端が前記センサ素子のセンサ端子の他端に接続され、他端が前記連結端の他方に接続される計測抵抗と、
    前記センサ素子および前記計測抵抗と並列に、前記センサ素子と同等の抵抗値を有する等価センサ抵抗と、前記計測抵抗と同じ抵抗値を有する等価計測抵抗の直列接続が接続され、
    前記センサ素子と前記計測抵抗の接続点と、前記可変抵抗と前記等価抵抗の接続点とを計測端子とし、前記それぞれの計測端子間の電位を検出する電圧検出部と
    を有することを特徴とする電力計測装置。
  19.  前記磁性膜部の長手方向と同じ方向の直流磁界を前記磁性膜部に印加する直流バイアス磁界印加手段を設けた事を特徴とする請求項18に記載された電力計測装置。
  20.  前記磁性膜部の長手方向と直角方向の交流磁界を前記磁性膜部に印加する交流バイアス磁界印加手段を設けたことを特徴とする請求項18に記載された電力計測装置。
  21.  前記磁性膜部は、前記磁性膜部の長手方向に対して傾いた磁化容易軸が誘導されたことを特徴とする請求項18乃至20のいずれか1の請求項に記載された電力計測装置。
  22.  前記磁性膜部は、前記磁性膜部の長手方向に磁化容易軸が誘導され、前記磁性膜の表面には、前記磁化容易軸の方向に対して傾斜した複数の導電膜が形成されたことを特徴とする請求項18乃至20のいずれか1の請求項に記載された電力計測装置。
  23.  前記磁性膜部は、複数の磁性膜を並設し、前記それぞれの磁性膜をすべて直列に接続したことを特徴とする請求項18乃至20のいずれか1の請求項に記載された電力計測装置。
  24.  電源に接続線を介して接続された負荷において消費される電力を測定する電力計測装置であって、
    前記電源に対して前記負荷と並列に連結するための一対の連結端と、
    直線状の形成された第1の磁性膜と第2の磁性膜が直列に接続され、前記第1の磁性膜と前記第2の磁性膜の接続点が接地された磁性膜部と、
    前記磁性膜部の両端に設けられた一対のセンサ端子を有し、
    前記センサ端子の一端は前記連結端の一方に接続され、
    前記磁性膜部の長手方向が前記接続線の電流が流れる方向と略平行になるように前記接続線に絶縁層を介して隣接配置されるセンサ素子と、
    一端が前記センサ素子のセンサ端子の他端に接続され、他端が前記連結端の他方に接続される計測抵抗と、
    前記センサ素子が前記連結端の一方に接続された前記センサ端子と、前記計測抵抗が前記連結端の他方に接続された前記他端とに、前記計測抵抗と同じ抵抗値を有する等価計測手抵抗が接続され、
    前記センサ端子同士を計測端子とし、前記それぞれの計測端子間の電位を検出する電圧検出部と
    を有することを特徴とする電力計測装置。
  25.  前記磁性膜部の長手方向と同じ方向の直流磁界を前記第1および第2の磁性膜に印加する直流バイアス磁界印加手段を設けた事を特徴とする請求項24に記載された電力計測装置。
  26.  前記磁性膜部の長手方向と直角方向の交流磁界を前記第1および第2の磁性膜に印加する交流バイアス磁界印加手段を設けたことを特徴とする請求項24に記載された電力計測装置。
  27.  前記第1および第2の磁性膜の少なくとも一方は、前記磁性膜部の長手方向に対して傾いた磁化容易軸が誘導され、かつそれぞれの前記磁化容易軸は、前記磁性膜部の長手方向に対して互いに逆向きとなるように配設されたことを特徴とする請求項24乃至26のいずれか1の請求項に記載された電力計測装置。
  28.  前記第1および第2の磁性膜の少なくとも一方は、前記磁性膜部の長手方向に磁化容易軸が誘導され、前記磁性膜の表面には、前記磁化容易軸の方向に対して傾斜した複数の導電膜が形成され、前記導電膜の傾きは、前記磁性膜部の長手方向に対して互いに逆向きにとなるように形成されたことを特徴とする請求項24乃至26のいずれか1の請求項に記載された電力計測装置。
  29.  前記第1および第2の磁性膜の少なくとも一方は、複数の磁性膜を並設し、前記それぞれの磁性膜をすべて直列に接続したことを特徴とする請求項24乃至26のいずれか1の請求項に記載された電力計測装置。
  30.  電源に接続線を介して接続された負荷において消費される電力を測定する電力計測装置であって、
    前記電源に対して前記負荷と並列に連結するための一対の連結端と、
    直線状に形成され、動作点のそれぞれ異なる第1の磁性膜と第2の磁性膜が直列に接続され、前記第1の磁性膜と前記第2の磁性膜の接続点が接地された磁性膜部と、
    前記磁性膜部の両端に設けられた一対のセンサ端子を有し、
    前記センサ端子の一端は前記連結端の一方に接続され、
    前記磁性膜部の長手方向が前記接続線の電流が流れる方向と略平行になるように前記接続線に絶縁層を介して隣接配置されるセンサ素子と、
    一端が前記センサ素子のセンサ端子の他端に接続され、他端が前記連結端の他方に接続される計測抵抗と、
    前記センサ素子が前記連結端の一方に接続された前記センサ端子と、前記計測抵抗が前記連結端の他方に接続された前記他端とに、前記計測抵抗と同じ抵抗値を有する等価計測手抵抗が接続され、
    前記センサ端子同士を抵抗を介して連結した点と、接地された前記接地点とを計測端子とし、前記それぞれの計測端子間の電位を検出する電圧検出部と
    を有することを特徴とする電力計測装置。
  31.  前記磁性膜部の長手方向と同じ方向の直流磁界を前記第1および第2の磁性膜に印加する直流バイアス磁界印加手段を設けた事を特徴とする請求項30に記載された電力計測装置。
  32.  前記磁性膜部の長手方向と直角方向の交流磁界を前記第1および第2の磁性膜に印加する交流バイアス磁界印加手段を設けたことを特徴とする請求項30に記載された電力計測装置。
  33.  前記第1および第2の磁性膜は、前記磁性膜部の長手方向に対して傾いた磁化容易軸が誘導され、かつそれぞれの前記磁化容易軸は、前記磁性膜部の長手方向に対して互いに逆向きとなるように配設されたことを特徴とする請求項30乃至32のいずれか1の請求項に記載された電力計測装置。
  34.  前記第1および第2の磁性膜は、前記磁性膜部の長手方向に磁化容易軸が誘導され、前記磁性膜の表面には、前記磁化容易軸の方向に対して傾斜した複数の導電膜が形成され、前記導電膜の傾きは、前記磁性膜部の長手方向に対して互いに逆向きにとなるように形成されたことを特徴とする請求項30乃至32のいずれか1の請求項に記載された電力計測装置。
  35.  電源に接続線を介して接続された負荷において消費される電力を測定する電力計測装置であって、
    前記電源に対して前記負荷と並列に連結するための一対の連結端と、
    磁性膜を含む磁性膜部と、
    前記磁性膜部の両端に設けられた一対のセンサ端子を有し、
    前記センサ端子の一端は前記連結端の一方に接続され、
    前記磁性膜部に電流を流す方向が前記接続線の電流が流れる方向と略平行になるように前記接続線に絶縁層を介して隣接配置されるセンサ素子と、
    一端が前記センサ素子のセンサ端子の他端に接続され、他端が前記連結端の他方に接続される計測抵抗と、
    前記磁性膜部の前記センサ端子と直角方向の端部のそれぞれを計測端子とし、前記計測端子間の電圧を計測する電圧検出部と
    を有することを特徴とする電力計測装置。
  36.  前記磁性膜部の長手方向と同じ方向の直流磁界を前記磁性膜部に印加する直流バイアス磁界印加手段を設けた事を特徴とする請求項35に記載された電力計測装置。
  37.  前記磁性膜部の長手方向と直角方向の交流磁界を前記磁性膜部に印加する交流バイアス磁界印加手段を設けたことを特徴とする請求項35に記載された電力計測装置。
  38.  前記電圧検出部は、前記計測端子間にローパスフィルタを配置したことを特徴とする請求項1乃至37のいずれかの請求項に記載された電力計測装置。
  39.  n個のバンドパスフィルターが並列に配置され、前記n個のバンドパスフィルターのうちからn個以下のバンドパスフィルターを選択できるスイッチを有するバンドパスフィルター手段を前記センサ素子と直列に接続されたことを特徴とする請求項1乃至37のいずれかの請求項に記載された電力計測装置。
  40.  一対のセンサ端子の間に磁性膜部が形成され、前記磁性膜部の長手方向には磁化容易軸が誘導され、前記磁性膜の表面には、前記磁化容易軸の方向に対して傾斜した複数の導電膜が形成されたことを特徴とするセンサ素子。
  41.  一対のセンサ端子の間に、
    磁性膜の長手方向に誘導された磁化容易軸を有し、前記磁化容易軸に対して傾斜した複数の導電膜が前記磁性膜の表面に形成された磁性膜部を2個結合して形成されたセンサ素子であって、
    前記導電膜の傾斜方向が前記磁性膜部同士で異なるように形成され、
    前記磁性膜部同士の結合部分にセンタータップ電極が形成されたことを特徴とするセンサ素子。
  42.  一対のセンサ端子の間に磁性膜が形成され、前記一対の磁性膜部の長手方向に対して傾斜した方向に磁化容易軸が誘導されたことを特徴とするセンサ素子。
  43.  一対のセンサ端子の間に、一対の磁性膜部が結合して形成され、前記磁性膜部の長手方向に対してそれぞれ異なる方向に傾斜した磁化容易軸が誘導され、前記2種類の磁性膜部の結合点にセンタータップ電極が形成されたことを特徴とするセンサ素子。
  44.  一対のセンサ端子間に直列に接続された複数個の短冊状の磁性膜が隣接して配置されたことを特徴とするセンサ素子。
  45.  前記短冊状の磁性膜の表面に前記短冊状の長手方向に対して傾斜を有する導電膜が複数個形成されたことを特徴とする請求項44に記載されたセンサ素子。
  46.  前記短冊状の磁性膜の長手方向に対して傾斜した磁化容易軸が誘導されたことを特徴とする請求項44に記載されたセンサ素子。
  47.  一対のセンサ端子間に直列に接続された複数個の短冊状の磁性膜が隣接して配置された2個の磁性膜部を、それぞれ前記磁性膜部の前記短冊状の磁性膜の長手方向を揃え、前記磁性膜部同士を縦列配置させ、
    さらに、前記磁性膜部同士を直列に接続する接続点を形成し、前記接続点にセンタータップ電極が形成されたことを特徴とするセンサ素子。
  48.  前記短冊状の磁性膜の長手方向に対して傾斜した磁化容易軸を誘導し、前記2個の磁性膜部の磁化容易軸の方向は、前記長手方向に対して逆向きであることを特徴とする請求項47に記載されたセンサ素子
  49.  前記短冊状の磁性膜の表面に前記短冊状の長手方向に対して傾斜を有する導電膜が複数個形成され、前記磁性膜部同士の前記傾斜は、前記長手方向に対して異なる角度を有することを特徴とする請求項47に記載されたセンサ素子。
PCT/JP2012/051883 2011-02-01 2012-01-27 電力計測装置 WO2012105459A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137020426A KR101831800B1 (ko) 2011-02-01 2012-01-27 전력계측장치
JP2012555846A JP5885209B2 (ja) 2011-02-01 2012-01-27 電力計測装置
CN201280007234.8A CN103477235B (zh) 2011-02-01 2012-01-27 传感器元件及使用传感器元件的功率测量装置
US13/983,144 US9329213B2 (en) 2011-02-01 2012-01-27 Power measuring apparatus
EP12741874.7A EP2682766B1 (en) 2011-02-01 2012-01-27 Power measuring apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011019639 2011-02-01
JP2011-019639 2011-02-01
JP2011251194 2011-11-17
JP2011-251194 2011-11-17

Publications (1)

Publication Number Publication Date
WO2012105459A1 true WO2012105459A1 (ja) 2012-08-09

Family

ID=46602675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051883 WO2012105459A1 (ja) 2011-02-01 2012-01-27 電力計測装置

Country Status (6)

Country Link
US (1) US9329213B2 (ja)
EP (1) EP2682766B1 (ja)
JP (2) JP5885209B2 (ja)
KR (1) KR101831800B1 (ja)
CN (1) CN103477235B (ja)
WO (1) WO2012105459A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013205120A (ja) * 2012-03-27 2013-10-07 Osaka City Univ 電力計測装置
WO2014080634A1 (ja) 2012-11-22 2014-05-30 公立大学法人大阪市立大学 磁気抵抗効果素子
WO2014083812A1 (ja) * 2012-11-29 2014-06-05 公立大学法人大阪市立大学 電力計測装置
WO2014162730A1 (ja) 2013-04-01 2014-10-09 公立大学法人大阪市立大学 温度補償機能付センサ素子とそれを用いた磁気センサおよび電力測定装置
WO2015056397A1 (ja) 2013-10-17 2015-04-23 公立大学法人大阪市立大学 電流測定装置および電流測定方法
JP2021051091A (ja) * 2020-12-24 2021-04-01 株式会社NejiLaw センサ構造のパターニング方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9606195B2 (en) * 2013-03-03 2017-03-28 Bar Ilan University High resolution planar hall effect sensors having plural orientations and method of operating the same to measure plural magnetic field components
JP2015219061A (ja) * 2014-05-15 2015-12-07 Tdk株式会社 磁界検出センサ及びそれを用いた磁界検出装置
GB2533570A (en) * 2014-12-19 2016-06-29 Hall Element Devices Ltd Apparatus for measure of quantity and associated method of manufacturing
CN104931899B (zh) * 2015-05-11 2018-07-06 太原科技大学 一种提高磁场传感器探头灵敏度的方法
CA3014830A1 (en) * 2015-12-08 2017-06-15 Eaton Intelligent Power Limited Constant power supply for thermo-electric cells
JP6724459B2 (ja) * 2016-03-23 2020-07-15 Tdk株式会社 磁気センサ
CN106771556B (zh) * 2016-12-23 2019-02-22 中国计量科学研究院 一种基于量子技术的交流功率差分测量系统及方法
DE102017105317B3 (de) * 2017-03-14 2018-05-09 Helmholtz-Zentrum Dresden - Rossendorf E.V. Vorrichtung zum Charakterisieren des elektrischen Widerstandes eines Messobjekts
WO2019044280A1 (ja) 2017-08-31 2019-03-07 公立大学法人大阪市立大学 出力システム及び計器
CN109100565A (zh) * 2018-07-05 2018-12-28 国网重庆市电力公司电力科学研究院 一种基于巨磁阻传感器的功率计设计方法及系统
CN109239453B (zh) * 2018-10-08 2021-04-20 郑州云海信息技术有限公司 一种输入功率侦测电路
JP7313932B2 (ja) * 2019-06-28 2023-07-25 公益財団法人電磁材料研究所 磁気センサおよび磁気センサモジュール

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6266413A (ja) * 1985-09-18 1987-03-25 Sony Corp 磁気抵抗効果型磁気センサ−
JPH01250875A (ja) * 1988-03-31 1989-10-05 Toshiba Corp 磁気センサー
JPH08503778A (ja) * 1993-06-09 1996-04-23 インスティトゥート フュア ミクロシュトルクトウアテクノロギー ウント オプトエレクトロニク エー.ファウ. 磁性反転導体と一又は複数の磁気抵抗レジスタとからなる磁界センサ
JPH11274598A (ja) 1998-03-20 1999-10-08 Tdk Corp 磁界センサ
JP2005236815A (ja) * 2004-02-20 2005-09-02 Matsushita Electric Works Ltd 電力線通信装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856408B2 (ja) 1978-03-27 1983-12-14 ソニ−マグネスケ−ル株式会社 磁気センサ
JPH0756508B2 (ja) 1984-09-14 1995-06-14 富士通株式会社 磁気検出器
KR910004261B1 (ko) * 1987-04-09 1991-06-25 후지쓰 가부시끼가이샤 자전 변환 소자를 이용한 검지기
JPH01153967A (ja) * 1987-12-10 1989-06-16 Fujitsu Ltd 電流検出器およびその製造方法
JPH01237461A (ja) * 1988-03-18 1989-09-21 Fujitsu Ltd 電力モニタ付コンセント
JPH02120677A (ja) 1988-10-31 1990-05-08 Fujitsu Ltd 位相差検出装置
JPH06148301A (ja) * 1992-05-15 1994-05-27 Fujitsu Ltd 磁気センサ
JP3142092B2 (ja) * 1992-10-30 2001-03-07 富士写真フイルム株式会社 レンズ付きフイルムユニット
DE4436876A1 (de) 1994-10-15 1996-04-18 Lust Antriebstechnik Gmbh Sensorchip
JP3207094B2 (ja) * 1995-08-21 2001-09-10 松下電器産業株式会社 磁気抵抗効果素子及びメモリー素子
ATE434192T1 (de) * 2000-10-26 2009-07-15 Foundation The Res Inst Of Ele Dünnfilm-magnetfeldsensor
JP4360998B2 (ja) * 2004-10-01 2009-11-11 Tdk株式会社 電流センサ
US7417242B2 (en) * 2005-04-01 2008-08-26 Axcelis Technologies, Inc. Method of measuring ion beam position
JP2006317203A (ja) 2005-05-11 2006-11-24 Alps Electric Co Ltd センサモジュール及びそれを用いた角度検出装置
JP4224483B2 (ja) * 2005-10-14 2009-02-12 Tdk株式会社 電流センサ
JP4816952B2 (ja) * 2006-11-17 2011-11-16 Tdk株式会社 電流センサ
JP4458149B2 (ja) * 2007-10-31 2010-04-28 Tdk株式会社 磁気カプラ
JP5540180B2 (ja) 2007-12-14 2014-07-02 国立大学法人東北大学 磁界検出素子および磁界検出装置
US7592803B1 (en) * 2008-06-23 2009-09-22 Magic Technologies, Inc. Highly sensitive AMR bridge for gear tooth sensor
JP5234459B2 (ja) * 2008-10-23 2013-07-10 甲神電機株式会社 電流センサ
CN102656471B (zh) 2009-08-26 2015-04-01 松下电器产业株式会社 磁场传感器、使用其的磁场测定方法、电力测量装置及电力测量方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6266413A (ja) * 1985-09-18 1987-03-25 Sony Corp 磁気抵抗効果型磁気センサ−
JPH01250875A (ja) * 1988-03-31 1989-10-05 Toshiba Corp 磁気センサー
JPH08503778A (ja) * 1993-06-09 1996-04-23 インスティトゥート フュア ミクロシュトルクトウアテクノロギー ウント オプトエレクトロニク エー.ファウ. 磁性反転導体と一又は複数の磁気抵抗レジスタとからなる磁界センサ
JPH11274598A (ja) 1998-03-20 1999-10-08 Tdk Corp 磁界センサ
JP2005236815A (ja) * 2004-02-20 2005-09-02 Matsushita Electric Works Ltd 電力線通信装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Journal of Technical Meeting of Magnetics", vol. MAG-05, THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN
HIROAKI TSUJIMOTO ET AL.: "Thin film power meter using magnetic thin film", THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN MAGNETICS KENKYUKAI SHIRYO, vol. MAG-05, no. 174-, 2005, pages 45 - 48, XP008171687 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9689905B2 (en) 2012-03-27 2017-06-27 Osaka City University Power measurement apparatus
JP2013205120A (ja) * 2012-03-27 2013-10-07 Osaka City Univ 電力計測装置
WO2014080634A1 (ja) 2012-11-22 2014-05-30 公立大学法人大阪市立大学 磁気抵抗効果素子
US9689902B2 (en) 2012-11-22 2017-06-27 Sirc Co., Ltd Magnetoresistance effect element
JPWO2014083812A1 (ja) * 2012-11-29 2017-01-05 公立大学法人大阪市立大学 電力計測装置
WO2014083812A1 (ja) * 2012-11-29 2014-06-05 公立大学法人大阪市立大学 電力計測装置
US10048298B2 (en) 2012-11-29 2018-08-14 Sirc Co., Ltd Thin-film sensor type electrical power measurement device
CN104871018A (zh) * 2012-11-29 2015-08-26 株式会社Sirc 电能测量装置
EP2927701A4 (en) * 2012-11-29 2016-08-17 Sirc Co Ltd CURRENT MEASURING DEVICE
JPWO2014162730A1 (ja) * 2013-04-01 2017-02-16 公立大学法人大阪市立大学 温度補償機能付センサ素子とそれを用いた磁気センサおよび電力測定装置
CN105074488B (zh) * 2013-04-01 2017-11-17 株式会社Sirc 带温度补偿功能的传感器元件和使用该元件的磁传感器及电能测定装置
CN105074488A (zh) * 2013-04-01 2015-11-18 株式会社Sirc 带温度补偿功能的传感器元件和使用该元件的磁传感器及电能测定装置
JP2018185315A (ja) * 2013-04-01 2018-11-22 公立大学法人大阪市立大学 温度補償機能付センサ素子とそれを用いた磁気センサおよび電力測定装置
US9739812B2 (en) 2013-04-01 2017-08-22 Sirc Co., Ltd Sensor element with temperature compensating function, and magnetic sensor and electric power measuring device which use same
WO2014162730A1 (ja) 2013-04-01 2014-10-09 公立大学法人大阪市立大学 温度補償機能付センサ素子とそれを用いた磁気センサおよび電力測定装置
EP3244218A2 (en) 2013-10-17 2017-11-15 Osaka City University Electric current measurement apparatus
CN105745547A (zh) * 2013-10-17 2016-07-06 公立大学法人大阪市立大学 电流测定装置和电流测定方法
EP3244217A2 (en) 2013-10-17 2017-11-15 Osaka City University Electric current measurement apparatus
WO2015056397A1 (ja) 2013-10-17 2015-04-23 公立大学法人大阪市立大学 電流測定装置および電流測定方法
CN105745547B (zh) * 2013-10-17 2019-04-05 公立大学法人大阪市立大学 电流测定装置和电流测定方法
US10557874B2 (en) 2013-10-17 2020-02-11 Osaka City Univeristy Electric current measurement apparatus and electric current measurement method
JP2021051091A (ja) * 2020-12-24 2021-04-01 株式会社NejiLaw センサ構造のパターニング方法
JP2022119964A (ja) * 2020-12-24 2022-08-17 株式会社NejiLaw センサ構造のパターニング方法

Also Published As

Publication number Publication date
US20140049253A1 (en) 2014-02-20
EP2682766A4 (en) 2017-08-30
JP6218194B2 (ja) 2017-10-25
JP5885209B2 (ja) 2016-03-15
KR20140032373A (ko) 2014-03-14
EP2682766B1 (en) 2018-10-17
JP2016105105A (ja) 2016-06-09
EP2682766A1 (en) 2014-01-08
KR101831800B1 (ko) 2018-02-23
US9329213B2 (en) 2016-05-03
CN103477235B (zh) 2016-11-23
JPWO2012105459A1 (ja) 2014-07-03
CN103477235A (zh) 2013-12-25

Similar Documents

Publication Publication Date Title
JP6218194B2 (ja) 電力計測装置及びセンサ素子
JP6590422B2 (ja) 温度補償機能付センサ素子とそれを用いた磁気センサおよび電力測定装置
JP2020516873A (ja) 被変調磁気抵抗センサ
JP6457026B2 (ja) 電流測定装置および電流測定方法
JP6692539B2 (ja) 磁気センサ素子、磁気センサ及び電力測定装置
JP5911065B2 (ja) 漏電検出装置
US10048298B2 (en) Thin-film sensor type electrical power measurement device
JP2013200253A (ja) 電力計測装置
JP2012150007A (ja) 電力計測装置
JP2013053914A (ja) 電流測定装置
WO2012042336A1 (ja) 電力計測装置および電力計測方法
JP5796804B2 (ja) 電流センサの設置方法
JP2013200252A (ja) 電力計測装置
JP2013200250A (ja) 電力計測装置
JP2012093267A (ja) 電流検出装置
JP2008527370A (ja) 角度センサ
JP2013200251A (ja) 電力計測装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12741874

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012555846

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137020426

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13983144

Country of ref document: US