WO2012105081A1 - コヒーレント光受信器、コヒーレント光受信器におけるチャネル間スキュー検出装置および検出方法 - Google Patents

コヒーレント光受信器、コヒーレント光受信器におけるチャネル間スキュー検出装置および検出方法 Download PDF

Info

Publication number
WO2012105081A1
WO2012105081A1 PCT/JP2011/070541 JP2011070541W WO2012105081A1 WO 2012105081 A1 WO2012105081 A1 WO 2012105081A1 JP 2011070541 W JP2011070541 W JP 2011070541W WO 2012105081 A1 WO2012105081 A1 WO 2012105081A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
optical receiver
peak
coherent optical
light source
Prior art date
Application number
PCT/JP2011/070541
Other languages
English (en)
French (fr)
Inventor
安部 淳一
和佳子 安田
清 福知
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US13/505,199 priority Critical patent/US8626000B2/en
Priority to EP11857687.5A priority patent/EP2672636B1/en
Priority to CN201180066636.0A priority patent/CN103339882B/zh
Priority to JP2012517033A priority patent/JP5029794B1/ja
Publication of WO2012105081A1 publication Critical patent/WO2012105081A1/ja
Priority to US14/082,875 priority patent/US8953953B2/en
Priority to US14/577,007 priority patent/US9088370B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0775Performance monitoring and measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • H04B10/6164Estimation or correction of the frequency offset between the received optical signal and the optical local oscillator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • H04B10/6165Estimation of the phase of the received optical signal, phase error estimation or phase error correction

Definitions

  • the present invention relates to a coherent optical receiver, an inter-channel skew detection apparatus and a detection method in a coherent optical receiver, and more particularly to a coherent optical receiver and a coherent optical receiver that receive an optical polarization multiplexed signal by coherent detection and digital signal processing.
  • the present invention relates to an inter-channel skew detection apparatus and detection method.
  • OOK On-Off-Keying
  • FIG. 18 shows an example of the configuration of a related coherent optical receiver.
  • the associated coherent optical receiver 700 includes a local light source 710, a 90 ° hybrid circuit (90 ° Hybrid) 720, a photoelectric converter (O / E) 730, an analog-to-digital converter (ADC) 740, and a digital signal processing unit ( DSP) 750.
  • the signal light and the local light can be expressed by the following equations as single polarization signals, respectively.
  • S (t) exp [j ⁇ t] (1)
  • L (t) exp [j ( ⁇ + ⁇ ) t] (2)
  • represents the frequency offset between the signal light and the local light.
  • the signal light and the local light are input to a 90 ° hybrid circuit (90 ° hybrid) 720, and are converted into an electrical signal by an optical converter (O / E) 730 including a photodiode having a differential configuration through an optical interference system. .
  • O / E optical converter
  • outputs represented by the following equations (3) and (4) are obtained from the ports I X and Q X , respectively.
  • I X (t) cos ( ⁇ t) (3)
  • Q X (t) sin ( ⁇ t) (4)
  • a signal output from each port is AD converted by an analog-digital converter (ADC) 740 and then input to a digital signal processing unit (DSP) 750.
  • ADC analog-digital converter
  • DSP digital signal processing unit
  • DSP digital signal processor
  • the signals obtained by the above equations (3) and (4) are the lengths of the four signal lines between the output of the 90 ° hybrid circuit 720 and the input of the analog-digital converter 740 in the coherent optical receiver 700. Only holds if all are equal. However, each of the optical fiber from the output of the 90 ° hybrid circuit 720 to the input of the photoelectric converter 730 and the coaxial line from the output of the photoelectric converter 730 to the input of the analog-digital converter 740 is strictly between four channels. It is difficult to use equal length wiring.
  • a delay that is, skew occurs in signal transmission. The effect of this skew will be described with reference to FIG. FIG.
  • FIG. 19 is a block diagram showing a configuration of a related 90 ° hybrid circuit 720 and its peripheral part.
  • PBS is a polarizing beam splitter
  • CPL is an optical coupler
  • is a 90 ° phase difference part
  • BR is a balanced photo detector as a photoelectric converter (O / E) 630.
  • the object of the present invention is a coherent optical receiver that solves the above-described problem that a coherent optical receiver cannot sufficiently demodulate and receive performance deteriorates when skew occurs between channels.
  • An object of the present invention is to provide an inter-channel skew detection apparatus and detection method in an optical receiver.
  • the coherent optical receiver of the present invention includes a local light source, a 90 ° hybrid circuit, a photoelectric converter, an analog-digital converter, and a digital signal processing unit, and the 90 ° hybrid circuit is a multiplexed signal.
  • the digital signal processing unit includes a skew compensation unit that compensates for a propagation delay difference between a plurality of signal components, and an FFT operation that performs fast Fourier transform processing on the quantized signal.
  • the propagation delay difference is calculated based on a plurality of peak values centered on a negative peak value in the result of the fast Fourier transform process.
  • the inter-channel skew detection apparatus in the coherent optical receiver of the present invention includes a coherent optical receiver, an inspection light source, an analog-digital converter, an FFT operation unit, and a control block.
  • the 90 ° hybrid circuit includes at least a local light source, a 90 ° hybrid circuit, and a photoelectric converter, and the 90 ° hybrid circuit interferes with the local light from the local light source and separates into a plurality of signal components.
  • An optical transceiver includes a coherent optical receiver and an optical transmitter including a phase-modulated light source that transmits phase-modulated modulated light.
  • the coherent optical receiver includes a local light source and a 90 ° hybrid.
  • the 90 ° hybrid circuit includes a circuit, a photoelectric converter, an analog-to-digital converter, and a digital signal processing unit.
  • the 90 ° hybrid circuit causes the multiplexed signal light to interfere with the local light from the local light source, thereby generating a plurality of signal components.
  • a plurality of separated optical signals the photoelectric converter detects the optical signal and outputs a detected electrical signal
  • the analog-digital converter quantizes the detected electrical signal and outputs a quantized signal
  • the digital signal processing unit includes a skew compensation unit that compensates for a propagation delay difference between a plurality of signal components, and an FFT operation unit that performs a fast Fourier transform process on the quantized signal, and the propagation delay difference is equivalent to a 90 ° hybrid circuit.
  • the inter-channel skew detection method in the coherent optical receiver of the present invention outputs a plurality of optical signals that are separated into a plurality of signal components by interfering the inspection light from the inspection light source with the local light from the local light source, Detects and outputs a detected electrical signal, quantizes the detected electrical signal, outputs a quantized signal, performs a fast Fourier transform process on the quantized signal, and centers on the peak value of-in the result of the fast Fourier transform process process A propagation delay difference between a plurality of signal components is calculated based on the plurality of peak values.
  • the coherent optical receiver of the present invention sufficient demodulation is possible even when a skew occurs between channels, and deterioration of reception performance can be suppressed.
  • FIG. 1 is a block diagram showing a configuration of a coherent optical receiver according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the inter-channel skew detection apparatus in the coherent optical receiver according to the first embodiment of the present invention.
  • FIG. 3 is a flowchart showing the inter-channel skew detection method in the coherent optical receiver according to the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram when the FFT data derived by the FFT calculation unit of the coherent optical receiver according to the first embodiment of the present invention is plotted against the number of points.
  • FIG. 5 is a schematic diagram plotting the relationship between the phase difference and the angular frequency at the Qx port and the Iy port of the coherent optical receiver according to the first embodiment of the present invention.
  • FIG. 1 is a block diagram showing a configuration of a coherent optical receiver according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the inter-channel skew detection apparatus in the coherent optical
  • FIG. 6 is a flowchart showing another inter-channel skew detection method in the coherent optical receiver according to the first embodiment of the present invention.
  • FIG. 7 is a schematic diagram plotting another relationship between the phase difference and the angular frequency at the Q x port and the I y port of the coherent optical receiver according to the first embodiment of the present invention.
  • FIG. 8 is a block diagram showing the configuration of the inter-channel skew detection apparatus in the coherent optical receiver according to the second embodiment of the present invention.
  • FIG. 9 is a schematic diagram when the FFT data derived by the FFT calculation unit of the coherent optical receiver according to the second embodiment of the present invention is plotted against the number of points.
  • FIG. 10 is a block diagram showing the configuration of the inter-channel skew detection apparatus in the coherent optical receiver according to the third embodiment of the present invention.
  • FIG. 11 is a flowchart showing the inter-channel skew detection method in the coherent optical receiver according to the third embodiment of the present invention.
  • FIG. 12 is a block diagram showing the configuration of the inter-channel skew detection apparatus in the coherent optical receiver according to the fourth embodiment of the present invention.
  • FIG. 13 is a schematic diagram of an FFT signal spectrum for explaining the operation of the inter-channel skew detection apparatus in the coherent optical receiver according to the fourth embodiment of the present invention.
  • FIG. 14 is a diagram showing a simulation result when the inter-channel skew detection device is applied in the coherent optical receiver according to the fourth embodiment of the present invention.
  • FIG. 11 is a flowchart showing the inter-channel skew detection method in the coherent optical receiver according to the third embodiment of the present invention.
  • FIG. 12 is a block diagram showing the configuration of the inter-channel skew detection
  • FIG. 15 is a block diagram showing the configuration of the inter-channel skew detection apparatus in the coherent optical receiver according to the fifth embodiment of the present invention.
  • FIG. 16 is an output waveform diagram of the phase modulation light source of the inter-channel skew detection apparatus in the coherent optical receiver according to the fifth embodiment of the present invention.
  • FIG. 17 is a block diagram showing a configuration of an optical transceiver according to the sixth embodiment of the present invention.
  • FIG. 18 is a block diagram showing a configuration of a related coherent optical receiver.
  • FIG. 19 is a block diagram showing a configuration of a related 90 ° hybrid circuit and its peripheral portion.
  • FIG. 1 is a block diagram showing a configuration of a coherent optical receiver 100 according to the first embodiment of the present invention.
  • the coherent optical receiver 100 includes a local light source 110, a 90 ° hybrid circuit (90 ° hybrid) 120, a photoelectric converter (O / E) 130, an analog-digital converter (ADC) 140, and a digital signal processor (DSP). 150.
  • the 90 ° hybrid circuit (90 ° Hybrid) 120 causes the multiplexed signal light (Signal) to interfere with local light from the local light source 110 and outputs a plurality of optical signals separated into signal components.
  • the digital signal processing unit (DSP) 150 includes a skew compensation unit 151 and a demodulation unit 152 that compensate for a propagation delay difference (hereinafter also referred to as “skew”) between a plurality of signal components.
  • the skew compensation unit 151 can be configured using, for example, an FIR (Finite Impulse Response) filter, and in this case, has a filter coefficient determined based on the skew value.
  • the demodulator 152 separates the quantized signal into an X polarization signal and a Y polarization signal by polarization separation processing, and further demodulates the four-channel signal components by phase estimation processing.
  • the digital signal processing unit (DSP) 150 of the coherent optical receiver 100 includes a buffer unit (Buf) 153 and an FFT operation unit (FFT) 154 will be described.
  • the FFT operation unit 154 performs fast Fourier transform (Fast Fourier Transform, hereinafter referred to as “FFT”) processing on the quantized signal output from the analog-digital converter 140.
  • FFT fast Fourier transform
  • FIG. 2 the description of the skew compensation unit 151 and the demodulation unit 152 is omitted.
  • a 90 ° error exists between the I port and the Q port in the 90 ° hybrid circuit will be described.
  • an inspection light source 170 and a control block 180 are connected to the coherent optical receiver 100 to constitute an interchannel skew detection apparatus 1000 in the coherent optical receiver.
  • the control block 180 includes a control unit 181, a memory unit 182, and an arithmetic processing unit 183.
  • the calculation processing unit 183 includes a peak detection unit 184 and a skew calculation unit 185, and calculates a skew value from the FFT processing result.
  • the peak detection unit 184 and the skew calculation unit 185 may be configured by a dedicated signal processing circuit, or may be configured by a central processing unit (CPU) and a program that causes the CPU to execute processing.
  • CPU central processing unit
  • the inspection light source (Test) 170 is connected to the signal port 121 of the 90 ° hybrid circuit (90 ° Hybrid) 120, and the local light source 110 is connected to the local port 122.
  • I which is an output port of a 90 ° hybrid circuit (90 ° Hybrid) 120 X Port, Q X Port, I Y Port, Q Y
  • the light output from the port is input to the photoelectric converter (O / E) 130, respectively.
  • the frequency f s (Wavelength ⁇ s ) Continuous wave (Continuous Wave: CW) light is input to the signal port 121.
  • a variable wavelength light source can be used as the inspection light source 170.
  • I X Cos (2 ⁇ f IF t + ⁇ IX ) (7)
  • Q X Sin (2 ⁇ f IF t + ⁇ QX ) (8)
  • I Y Cos (2 ⁇ f IF t + ⁇ IY ) (9)
  • Q Y Sin (2 ⁇ f IF t + ⁇ QY ) (10)
  • DSP digital signal processor
  • the buffer unit 153 blocks each processing unit (for example, 4096 bits), and the FFT operation unit (FFT) 154 performs FFT processing.
  • each matrix I ⁇ as an output of the FFT operation unit 154 x (N), Q ⁇ x (N), I ⁇ y (N), Q ⁇ y (N) is obtained.
  • the inter-channel skew detection method in the coherent optical receiver according to the present embodiment will be described with reference to the flowchart shown in FIG. First, the frequency of the inspection light source 170 is set to the frequency f. S1 (Wavelength ⁇ S1 (Step S1). As a result, the frequency f is output from each output port of the 90 ° hybrid circuit (90 ° Hybrid) 120.
  • step S2 data capture is started (step S2).
  • the control unit 181 of the control block 180 sends a data capture signal to the digital signal processing unit (DSP) 150 (step S3).
  • DSP digital signal processing unit
  • the FFT operation unit 154 obtains a data capture signal, triggers this to perform FFT processing on the data stored in the buffer unit (Buf) 153 at that time (step S4), and the FFT data I ⁇ x (N), Q ⁇ x (N), I ⁇ y (N), Q ⁇ y (N) is returned to the control unit 181.
  • the control unit 181 stores the acquired FFT data in the memory unit 182 (step S5).
  • the peak detection unit 184 of the arithmetic processing unit 183 causes the FFT data I ⁇ x Among the 4096 points of (N), the data I ⁇ having the maximum size x (N max ). And the frequency (peak frequency) f at that time max And phase (peak phase) ⁇ max Is obtained by calculation (step 6).
  • I ⁇ x The schematic diagram when (N) is plotted is shown.
  • , and the horizontal axis represents the number N of FFT points. As shown in FIG.
  • the peak detector 184 is the number of points N max
  • the peak detector 184 x (N max ) Is detected.
  • the sampling frequency in the analog-digital converter (ADC) 140 is expressed as f. T
  • the peak detection unit 184 performs FFT data I ⁇ x Peak frequency f when the magnitude of (N) peaks max And peak phase ⁇ max
  • the control unit 181 determines the frequency f IX (1, 1) And phase ⁇ IX (1, 1) Is stored in the memory unit 182 (step S7). At this time, the other FFT data I ⁇ x (N) may be discarded. ⁇ To reduce the influence of measurement error, repeat the process from step 3 to step 7 n times, and the frequency f IX (1, n) And phase ⁇ IX (1, n) Are stored in the memory unit 182 (feedback loop FB1). When the n-th loop is completed, an end flag is set (step 8).
  • the frequency of the inspection light source 170 is changed to the frequency f S2 (Step S9), and the processing from step 2 to step 7 is repeated again, and the frequency f IX (2, n) And phase ⁇ IX (2, n) Is stored in the memory unit 182 (step S7).
  • the end flag is detected (step S8), the frequency of the inspection light source 170 is further swept (step S9), and the processing from step 2 to step 8 is repeated again (feedback loop FB2).
  • this feedback loop FB2 By repeating this feedback loop FB2 m times, the frequency f IX (m, n) And phase ⁇ IX (m, n) Are stored in the memory unit 182.
  • the frequency f QX (m, n) , F IY (m, n) , F QY (m, n) And phase ⁇ QX (m, n) , ⁇ IY (m, n) , ⁇ QY (m, n) are stored in the memory unit 182.
  • the skew calculation unit 185 of the calculation processing unit 183 calculates a skew according to an instruction from the control unit 181 (step 10).
  • I X I based on port X Port skew is zero
  • Each port of I X Skew is represented by whether the phase is advanced or delayed with respect to the port. Specifically, first, the phase difference of each port is obtained by calculating the following amounts for the number of measurements n and the measurement frequency m, respectively.
  • the approximate expression is calculated for the port as follows.
  • ⁇ QY-IX T 3 (2 ⁇ f) + ⁇ 3
  • the slope T obtained here 1 , T 2 , T 3 Is I X Skew for the port.
  • the inspection light is input to the signal port of the 90 ° hybrid circuit, the beat signals of the inspection light and the local light are observed with an analog-digital converter, and the skew and 90 ° are calculated from the phase information obtained by performing the FFT operation.
  • the error can be calculated.
  • the skew value obtained here is compensated by the skew compensation unit 151 of the digital signal processing unit 150, so that even when a skew occurs between channels, it is sufficient. Demodulation is possible, and degradation of reception performance can be suppressed.
  • FIG. 6 shows a flowchart of the inter-channel skew detection method in this case.
  • the frequency of the inspection light source 170 is set to the frequency f. S1 (Wavelength ⁇ S1 (Step S1).
  • the frequency f is output from each output port of the 90 ° hybrid circuit (90 ° Hybrid) 120.
  • IF
  • is output.
  • step S2 data capture is started (step S2).
  • the control unit 181 of the control block 180 sends a data capture signal to the digital signal processing unit (DSP) 150 (step S3).
  • DSP digital signal processing unit
  • the FFT operation unit 154 obtains a data capture signal, triggers this to perform FFT processing on the data stored in the buffer unit (Buf) 153 at that time (step S4), and the FFT data I ⁇ x (N), Q ⁇ x (N), I ⁇ y (N), Q ⁇ y (N) is returned to the control unit 181.
  • the control unit 181 stores the acquired FFT data in the memory unit 182 (step S5).
  • the peak detection unit 184 of the arithmetic processing unit 183 causes the FFT data I ⁇ x Among the 4096 points of (N), the data I ⁇ having the maximum size x (N max ). And the frequency (peak frequency) f at that time max And phase (peak phase) ⁇ max Is obtained by calculation (step 6).
  • the controller 181 determines the peak frequency and peak phase at this time as the frequency f.
  • IX (1) , Phase ⁇ IX (1) Is stored in the memory unit 182 (step S7).
  • step 8 the skew calculation unit 185 of the calculation processing unit 183 calculates a skew according to an instruction from the control unit 181 (step 9). For example, I X Q based on port X , I Y , Q Y The phase difference of each port is determined for the number of measurements n as follows.
  • ⁇ IX (n) 0 ⁇ QX (n) ⁇ IX (n) ⁇ IY (n) ⁇ IX (n) ⁇ QY (n) ⁇ IX (n)
  • Fig. 7 shows I X Q with reference to port X Port and I Y Each phase difference ⁇ at the port QX-IX , ⁇ IY-IX And angular frequency 2 ⁇ f max The schematic diagram which plotted the relationship with is shown. If the 90 ° error between the I and Q ports is negligible, X Port and I Y An approximate expression based on a linear function can be calculated for each port as follows.
  • FIG. 8 is a block diagram showing a configuration of an inter-channel skew detection apparatus 2000 in the coherent optical receiver according to the second embodiment of the present invention.
  • the inter-channel skew detection apparatus 2000 in the coherent optical receiver includes a coherent optical receiver 200, an inspection light source 270 connected to the coherent optical receiver 200, and a control block 280.
  • the coherent optical receiver 200 includes a local light source 210, a 90 ° hybrid circuit (90 ° hybrid) 220, a photoelectric converter (O / E) 230, an analog-digital converter (ADC) 240, and a digital signal processor (DSP). 250.
  • the control block 280 includes a control unit 281, a memory unit 282, and a calculation processing unit 283, and the calculation processing unit 283 includes a peak detection unit 284 and a skew calculation unit 285.
  • the configuration of the digital signal processing unit (DSP) 250 is different from that of the digital signal processing unit (DSP) 150 according to the first embodiment.
  • the digital signal processing unit (DSP) 250 includes a complex signal generator 252, a buffer unit (Buf) 253, and an FFT operation unit (FFT) 254.
  • the inspection light source (Test) 270 is connected to the signal port 221 of the 90 ° hybrid circuit (90 ° Hybrid) 220, and the local light source 210 is connected to the local port 222.
  • the frequency f as the inspection light from the inspection light source 270 s (Wavelength ⁇ s ) Continuous wave (Continuous Wave: CW) light is input to the signal port 221.
  • a variable wavelength light source can be used as the inspection light source 270.
  • the local port 222 has a frequency f as local light from the local light source 210.
  • FFT FFT operation unit
  • E ⁇ x (N) is given by the following equation.
  • P 1 , P 2 , ⁇ is expressed by the following equation.
  • step S2 data capture is started (step S2).
  • the control unit 281 of the control block 280 sends a data capture signal to the digital signal processing unit (DSP) 250 (step S3).
  • the FFT operation unit 254 obtains a data capture signal, triggers this to perform FFT processing on the data stored in the buffer unit (Buf) 253 at that time, and performs FFT data E ⁇ x (N), E ⁇ y (N) is returned to the control unit 281 (step S4).
  • the control unit 281 stores the acquired FFT data in the memory unit 282 (step S5).
  • And P 2
  • FIG. x The schematic diagram when (N) is plotted is shown.
  • , and the horizontal axis represents the number N of FFT points.
  • phase information ⁇ IX And ⁇ QX Is obtained as follows.
  • the peak detection unit 284 performs FFT data E ⁇ . x The frequency f when the magnitude of (N) peaks peak1 And peak phase ⁇ IX And ⁇ QX
  • the control unit 281 determines the frequency f X (1,1) And phase ⁇ IX (1, 1) , ⁇ QX (1,1) Is stored in the memory unit 282 (step S7). At this time, other FFT data E ⁇ x (N) may be discarded.
  • step S7 ⁇ To reduce the influence of measurement error, repeat the process from step 3 to step 7 n times, and the frequency f X (1, n) And phase ⁇ IX (1, n) , ⁇ QX (1, n) Are stored in the memory unit 282 (feedback loop FB1).
  • an end flag is set (step 8).
  • the frequency of the inspection light source 270 is changed to the frequency f. S2 (Step S9), the processing from step 2 to step 8 is repeated again, and the frequency f X (2, n) And phase ⁇ IX (2, n) , ⁇ QX (2, n) Is stored in the memory unit 282 (step S7).
  • step S8 When the end flag is detected (step S8), the frequency of the inspection light source 270 is further swept (step S9), and the processing from step 2 to step 8 is repeated again (feedback loop FB2).
  • the frequency f X (m, n) And phase ⁇ IX (m, n) , ⁇ QX (m, n) Are stored in the memory unit 282, respectively.
  • E ⁇ y By applying the same processing to (N), the frequency f Y (m, n) And phase ⁇ IY (m, n) , ⁇ QY (m, n) Are stored in the memory unit 282, respectively.
  • the skew calculation unit 285 of the calculation processing unit 283 calculates a skew by the same method as in the first embodiment in accordance with an instruction from the control unit 281 (step 10).
  • the inter-channel skew detection apparatus and detection method in the coherent optical receiver according to the present embodiment it is possible to calculate the skew between output ports and the 90 ° error between IQ ports. It becomes.
  • the skew compensation unit of the digital signal processing unit provided in the coherent optical receiver according to the first embodiment sufficient demodulation is possible even when skew occurs between channels. Therefore, it is possible to suppress deterioration of reception performance.
  • FIG. 10 is a block diagram showing a configuration of an inter-channel skew detection apparatus 3000 in the coherent optical receiver according to the third embodiment of the present invention.
  • the inter-channel skew detection apparatus 3000 in the coherent optical receiver includes a coherent optical receiver 300, an inspection light source 370 connected to the coherent optical receiver 300, a control block 380, and a sampling oscilloscope 390.
  • the coherent optical receiver 300 includes a local light source 310, a 90 ° hybrid circuit (90 ° hybrid) 320, and a photoelectric converter (O / E) 330.
  • the control block 380 includes a control unit 381, a memory unit 382, and a calculation processing unit 383, and the calculation processing unit 383 includes a peak detection unit 384, a skew calculation unit 385, and an FFT calculation unit (FFT) 386.
  • This embodiment is different from the first and second embodiments in that the sampling oscilloscope 390 is provided instead of the digital signal processing unit (DSP), and the control block 380 includes an FFT operation unit (FFT) 386.
  • the sampling oscilloscope 390 includes a 4-channel analog-digital converter (ADC) 391 and a memory unit 392.
  • ADC analog-digital converter
  • the inspection light source (Test) 370 is connected to the signal port 321 of the 90 ° hybrid circuit (90 ° Hybrid) 320, and the local light source 310 is connected to the local port 322.
  • I which is an output port of a 90 ° hybrid circuit (90 ° Hybrid) 320 X Port, Q X Port, I Y Port, Q Y
  • the beat signal output from the port is expressed by the above equations (7) to (10) as in the case of the first embodiment.
  • beat signals are converted into electrical signals by a photoelectric converter (O / E) 330, and then quantized by an analog-to-digital converter (ADC) 391 provided in the sampling oscilloscope 390, and waveform data I x (N), Q x (N), I y (N), Q y (N) is stored in the memory unit 392.
  • the frequency f is output from each output port of the 90 ° hybrid circuit (90 ° Hybrid) 320.
  • IF
  • is output.
  • the waveform data is captured by the sampling oscilloscope 390 (step S2).
  • the control unit 381 of the control block 380 sends a waveform capture signal to the sampling oscilloscope 390 (step S3).
  • the waveform data stored in the memory unit 392 of the sampling oscilloscope 390 is stored in the memory unit 382 of the control block 380 (step 4).
  • the FFT calculation unit (FFT) 386 of the control block 380 is waveform data I stored in the memory unit 382.
  • step S5 the FFT data I ⁇ which is the processing result x (N), Q ⁇ x (N), I ⁇ y (N), Q ⁇ y (N) is returned to the control unit 381.
  • the control unit 381 stores the acquired FFT data in the memory unit 382 (step S6).
  • the peak detection unit 384 of the arithmetic processing unit 383 causes the FFT data I ⁇ x Among the 4096 points of (N), the data I ⁇ having the maximum size x (N max ).
  • step 7 And the frequency f at that time max And phase ⁇ max Is obtained by calculation (step 7).
  • step 7 repeat the process from step 2 to step 7 n times, and the frequency f IX (1, n) And phase ⁇ IX (1, n) Are stored in the memory unit 382 (feedback loop FB1).
  • the frequency of the inspection light source 370 is changed to the frequency f.
  • Step S8 the processing from step 2 to step 7 is repeated again, and the frequency f IX (2, n) And phase ⁇ IX (2, n) Is stored in the memory unit 382 (feedback loop FB2).
  • the frequency f IX (m, n) And phase ⁇ IX (m, n) are stored in the memory unit 382, respectively.
  • Q ⁇ x (N), I ⁇ y (N), Q ⁇ y By applying the same processing to (N), the frequency f QX (m, n) , F IY (m, n) , F QY (m, n) And phase ⁇ QX (m, n) , ⁇ IY (m, n) , ⁇ QY (m, n) Are stored in the memory unit 382, respectively.
  • the skew calculation unit 385 of the calculation processing unit 383 calculates the skew by the same method as in the first embodiment in accordance with an instruction from the control unit 381 (step 9).
  • the inter-channel skew detection apparatus and detection method in the coherent optical receiver according to the present embodiment it is possible to calculate the skew between output ports and the 90 ° error between IQ ports. Become. Then, by compensating for this skew value in the skew compensation unit of the digital signal processing unit provided in the coherent optical receiver according to the first embodiment, sufficient demodulation is possible even when skew occurs between channels. Therefore, it is possible to suppress deterioration of reception performance.
  • the coherent optical receiver includes the polarization diversity type 90 ° hybrid circuit (Polarization Diversity 90 ° Hybrid).
  • the present invention is not limited to this, and a single polarization type 90 ° hybrid circuit (Single Polarization 90 ° Hybrid) or a single polarization type 90 ° hybrid circuit may be used in combination.
  • the inspection light source is connected to the signal port of the 90 ° hybrid circuit to sweep the frequency.
  • the wavelength of the inspection light source is constant and the wavelength of the local light source is variable. The wavelength may be swept using a laser.
  • the inter-channel skew detection apparatus 4000 in the coherent optical receiver includes a coherent optical receiver 400, an inspection light source 270 connected to the coherent optical receiver 400, and a control block 480.
  • the coherent optical receiver 400 includes a local light source 210, a 90 ° hybrid circuit (90 ° hybrid) 220, a photoelectric converter (O / E) 230, an analog-digital converter (ADC) 240, and a digital signal processor (DSP). 450.
  • the control block 480 includes a control unit 281, a memory unit 282, and a calculation processing unit 283, and the calculation processing unit 283 includes a multiple peak detection unit 484 and a skew calculation unit 285.
  • the configurations of a digital signal processing unit (DSP) 450 and a control block 480 are different from those of the second embodiment. That is, the digital signal processing unit (DSP) 450 includes a skew compensation unit 451 and a signal processing unit 455, and the control block 480 includes a multiple peak detection unit 484.
  • the signal processing unit 455 performs various signal processing such as clock extraction, polarization tracking, and carrier frequency offset compensation in digital coherent reception.
  • the same components as those in the inter-channel skew detection apparatus 2000 in the coherent optical receiver according to the second embodiment shown in FIG. 8 are denoted by the same reference numerals, and the description thereof is omitted.
  • the frequency f as the inspection light from the inspection light source 270 is the same as in the second embodiment.
  • s (Wavelength ⁇ s ) Continuous wave (Continuous Wave: CW) light is input to the signal port 221.
  • a variable wavelength light source can be used as the inspection light source 270.
  • the local port 222 has a frequency f as local light from the local light source 210.
  • Equation (11) or Equation (12) is a relational expression obtained when ideal Fourier transform is performed
  • a discrete Fourier transform circuit such as FFT
  • an error from the ideal state is increased.
  • the FFT signal shown in FIG. 9 has the beat frequency f of the inspection light and the local light.
  • IF Is the kth grid frequency k ⁇ f of FFT sample / 2 n Represents a spectrum that occurs when.
  • 2 n Is the number of FFT points, and k is 0 ⁇ k ⁇ 2.
  • n An integer satisfying -1, n is a positive integer.
  • the beat frequency f IF Often deviates from the grid frequency of the FFT.
  • the spectrum spreads to the adjacent grid of the peak signal in FIG. 9, and a plurality of sidelobe spectra are generated.
  • , and the horizontal axis represents the grid frequency of the FFT.
  • Detect multiple peak values with values For example, in FIG. 13, P as a peak value of- 0 And P 0 P centered on -1 And P +1 , And its mirror image P ' 0 , P ’ -1 , P ’ +1 Is detected.
  • the range in which the spectrum amplitude of the FFT signal has an effective value for example, a plurality having a higher amplitude level can be selected.
  • a certain threshold level may be provided in advance, and an amplitude level that is equal to or higher than the threshold level may be employed.
  • the propagation delay difference T depends on the measurement conditions. 2 -T 1 A combination that optimizes the measurement accuracy can be selected.
  • the multiple peak detection unit 484 detects multiple peak values. Thereafter, from each spectrum and a mirror image component paired with the spectrum, the propagation delay difference T is expressed using the equation (11) or the equation (12). 2 -T 1 And a weighted average proportional to the spectrum amplitude value is obtained. Thereby, the propagation delay difference T 2 -T 1
  • the measurement accuracy in the measurement can be improved. For example, in FIG. 13, P corresponding to the top three spectral amplitudes.
  • T 2 -T 1 (
  • T 2 -T 1 (
  • FIG. 14 shows a simulation result when the inter-channel skew detection apparatus 4000 in the coherent optical receiver according to the present embodiment is applied when side lobes are generated in the spectrum of the FFT signal.
  • the propagation delay amount T 2 -T 1 25 psec is added, and an FFT circuit having an FFT point number of 4096 and a sampling rate of 64 GS / s (Giga sample per second) is shown.
  • the vertical axis in FIG. 14 represents the propagation delay amount T. 2 -T 1
  • the horizontal axis represents the beat frequency f IF Is shown in units of FFT frequency grid intervals.
  • FFT frequency grid interval number FFT bin no.
  • f IF Deviates from 64 (integer value) an error of about ⁇ 1 psec at maximum occurs.
  • the propagation delay difference T is obtained by weighted average of a plurality of amplitude values.
  • the plurality of peak detection units 484 detect a plurality of peak values and calculate the propagation delay difference from the spectrum of each peak. And the measurement precision in the measurement of a propagation delay difference can be improved by calculating
  • FIG. 15 is a block diagram showing the configuration of the inter-channel skew detection apparatus 5000 in the coherent optical receiver according to the fifth embodiment of the present invention.
  • the inter-channel skew detection apparatus 5000 in the coherent optical receiver includes the phase modulation light source 570 as the inspection light source 270 and further includes the polarization controller 580, and the inter-channel skew detection apparatus in the coherent optical receiver according to the fourth embodiment. Different from 4000. In FIG. 15, the same components as those in the inter-channel skew detector 4000 in the coherent optical receiver shown in FIG. 12 are denoted by the same reference numerals, and the description thereof is omitted.
  • the phase modulation light source 570 transmits, for example, modulated light that has been subjected to quaternary (0, ⁇ / 2, ⁇ , 3 ⁇ / 2) phase modulation (Quadrature Phase-Shift Keying: QPSK) as inspection light.
  • QPSK Quadrature Phase-Shift Keying
  • phase modulation light source 570 shows a modulated light waveform obtained by repeating phase modulation in a sawtooth shape as an example of an output waveform of the phase modulation light source 570.
  • the vertical axis represents the phase ( ⁇ ) of the optical signal, and the horizontal axis represents time (t).
  • the polarization controller 580 sets the polarization angle to approximately 45 ° (or an angle corresponding to 45 °) when the inspection light transmitted from the phase modulation light source 570 is a single polarization. And I X Port, Q X Port, I Y Port, Q Y The polarization state is adjusted so that the optical power output from the port is substantially uniform.
  • the polarization controller 580 is not used when the transmission signal from the phase modulation light source 570 is subjected to polarization scrambling or when it is polarization multiplexed (for example, DP-QPSK modulation). Even with the configuration, skew detection can be performed.
  • the inter-channel skew detection apparatus 5000 in the coherent optical receiver of the present embodiment the above-described inspection light that is stable and can be controlled with high accuracy is used in the same manner as in the second or fourth embodiment. Perform skew detection. As a result, more accurate skew detection can be performed. Then, the skew value detected here is compensated in the skew compensation unit of the digital signal processing unit provided in the coherent optical receiver.
  • phase-modulated light source 570 transmits modulated light subjected to QPSK modulation as inspection light
  • the present embodiment is not limited to this, and the present embodiment can also be applied to the case where the phase-modulated light source 570 transmits modulated light that is phase-modulated by other methods such as QAM (Quadrature Amplitude Modulation) modulation or analog serodyne modulation. Is clear.
  • QAM Quadrature Amplitude Modulation
  • the optical transceiver 6000 includes a coherent optical receiver (Rx) 600, an optical transmitter (Tx) 610, a polarization controller 620, a mode switching unit 630, and a control unit 640.
  • the optical transmitter 610 includes a phase modulator such as a QPSK modulator.
  • this phase modulator the same modulator as the phase modulation light source 570 provided in the inter-channel skew detection apparatus in the coherent optical receiver according to the fifth embodiment can be used.
  • the mode switching unit 630 instructs the control unit 640 to switch between a skew detection mode for detecting a channel-to-channel skew and a normal operation mode for performing a normal communication operation in an inspection process when the optical transceiver 6000 is manufactured.
  • the control unit 640 controls the optical transmitter 610 so that the optical transmitter 610 transmits transmission light having a sawtooth phase modulation waveform.
  • the sawtooth phase modulation waveform at this time can be the same waveform as the waveform (FIG. 16) transmitted by the phase modulation light source 570 in the inter-channel skew detection device 5000 in the coherent optical receiver of the fifth embodiment. .
  • the control unit 640 controls the coherent optical receiver 600 so that the coherent optical receiver 600 performs an inter-channel skew detection operation in the inter-channel skew detection apparatus 5000 in the coherent optical receiver of the fifth embodiment.
  • the control unit 640 controls the coherent optical receiver 600 to use the transmitted light from the optical transmitter 610 as inspection light.
  • the polarization controller 620 adjusts the polarization of the inspection light transmitted from the optical transmitter 610, and adjusts the I in the coherent optical receiver 600.
  • X Port, Q X Port, I Y Port, Q Y The polarization state is adjusted so that the optical power output from the port is substantially uniform.
  • the polarization controller 620 is not used when the transmission signal from the optical transmitter 610 is subjected to polarization scrambling or polarization multiplexed (for example, DP-QPSK modulation). Even with the configuration, skew detection can be performed.
  • the control unit 640 controls the optical transmitter 610 so that a normal optical transmission signal is transmitted from the optical transmitter 610.
  • the optical transmitter 610 of the optical transceiver 6000 can be used as a light source for transmitting phase-modulated inspection light.
  • the optical transceiver including the inter-channel skew detection device 5000 in the coherent optical receiver according to the fifth embodiment can have a simpler configuration.
  • Coherent optical receiver 110 210, 310 Local light source 120, 220, 320 90 ° hybrid circuit (90 ° Hybrid) 121, 221, 321 Signal port 122, 222, 322 Local port 130, 230, 330 Photoelectric converter (O / E) 140, 240 Analog-to-digital converter (ADC) 150, 250, 450 Digital signal processor (DSP) 151, 451 Skew compensation unit 152 Demodulation unit 153, 253 Buffer unit (Buf) 154, 254, 386 FFT operation unit (FFT) 170, 270, 370 Inspection light source 180, 280, 380, 480 Control block 181, 281, 381 Control unit 182, 282, 382, 392 Memory unit 183, 283, 383 Arithmetic processing unit 184, 284, 384 Peak detection unit 185, 285, 385 Skew calculation unit 252 Complex signal generator 390 Sampling oscilloscope 455 Signal processing unit 484 Multiple peak detection unit 570 Phase modulation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

コヒーレント光受信器においては、チャネル間にスキューが生じると十分な復調ができず、受信性能が劣化するため、本発明のコヒーレント光受信器は、局所光源と、90°ハイブリッド回路と、光電変換器と、アナログ-デジタル変換器と、デジタル信号処理部を有し、90°ハイブリッド回路は、多重化された信号光を局所光源からの局所光と干渉させて複数の信号成分に分離した複数の光信号を出力し、光電変換器は、光信号を検波して検波電気信号を出力し、アナログ-デジタル変換器は、検波電気信号を量子化して量子化信号を出力し、デジタル信号処理部は、複数の信号成分間の伝播遅延差を補償するスキュー補償部と、量子化信号を高速フーリエ変換処理するFFT演算部とを備え、伝播遅延差は高速フーリエ変換処理した結果における一のピーク値を中心とした複数のピーク値に基づいて算出される。

Description

コヒーレント光受信器、コヒーレント光受信器におけるチャネル間スキュー検出装置および検出方法
 本発明は、コヒーレント光受信器、コヒーレント光受信器におけるチャネル間スキュー検出装置および検出方法に関し、特に、光偏波多重信号をコヒーレント検波とデジタル信号処理により受信するコヒーレント光受信器、コヒーレント光受信器におけるチャネル間スキュー検出装置および検出方法に関する。
 インターネットの幅広い普及により、ネットワーク内のデータ容量は年々増加している。大都市間を結ぶ大動脈通信路では、1チャネル当たりの伝送容量が10Gb/sおよび40Gb/sの光伝送路がすでに導入されている。10Gb/s伝送では変調方式としてオンオフ変調(On−Off−Keying:OOK)が用いられている。40Gb/s伝送においてもOOK方式が用いられるが、光パルス幅が25psと狭くなり波長分散の影響を大きく受けるため、長距離伝送には不適当である。そのため位相による多値変調方式および偏波多重方式が用いられるようになっており、100Gb/s級伝送では偏波多重4相位相変調(Dual Polarization Quadrature Phase Shift Keying:DP−QPSK)方式が主流となっている。
 送信器でDP−QPSK変調を施された光信号は、コヒーレント光受信器で受信され復調される(例えば、非特許文献1参照)。図18に、関連するコヒーレント光受信器の構成の一例を示す。関連するコヒーレント光受信器700は、局所光源710、90°ハイブリッド回路(90°Hybrid)720、光電変換器(O/E)730、アナログ−デジタル変換器(ADC)740、およびデジタル信号処理部(DSP)750を有する。
 信号光および局所光は、それぞれ片偏波信号として次式で表すことができる。
S(t)=exp[jωt]           (1)
L(t)=exp[j(ω+Δω)t]       (2)
ここで、Δωは信号光と局所光の周波数オフセットを表す。信号光と局所光は90°ハイブリッド回路(90°Hybrid)720に入力され、光学干渉系を通って差動構成のフォトダイオードからなる光電変換器(O/E)730によって電気信号に変換される。このときポートIおよびQからそれぞれ次式(3)、(4)で表わされる出力が得られる。
(t)=cos(Δωt)           (3)
(t)=sin(Δωt)           (4)
偏波多重信号の場合は、S(t)=E+Eとなり、IおよびIポートには混合信号E+Eのcos成分が、QおよびQポートには混合信号E+Eのsin成分が出力される。
 各ポートから出力された信号は、アナログ−デジタル変換器(ADC)740によってAD変換された後にデジタル信号処理部(DSP)750に入力される。デジタル信号処理部(DSP)750では、偏波分離処理によりE信号とE信号を分離し、さらに位相推定処理によりEとEをそれぞれ4値復調している。
 このようにして、DP−QPSK信号はコヒーレント光受信器を用いて復調することができる。
M.G.Taylor,"Coherent Detection Method Using DSP for Demodulation of Signal and Subsequent Equalization of Propagation Impairments",IEEE Photonics Technology Letters,vol.16,No.2,February 2004,p.674−676
 上述した式(3)、(4)で得られる信号は、コヒーレント光受信器700において90°ハイブリッド回路720の出力からアナログ−デジタル変換器740の入力までの間の4本の信号線の長さがすべて等しい場合にのみ成立する。しかし、90°ハイブリッド回路720の出力から光電変換器730の入力までの光ファイバ、および光電変換器730の出力からアナログ−デジタル変換器740の入力までの同軸線のそれぞれを、4チャネル間で厳密に等長配線とすることは困難である。
 ここで4チャネル間が等長でない場合、信号の伝達に遅延、すなわちスキューが生じる。このスキューの影響について図19を用いて説明する。図19は、関連する90°ハイブリッド回路720とその周辺部の構成を示すブロック図である。図中、「PBS」は偏光ビームスプリッタを、「CPL」は光カプラを、「τ」は90°位相差部を、「BR」は光電変換器(O/E)630としてのバランス型フォトディテクタをそれぞれ示す。
 チャネル1(CH1)に対してチャネル2(CH2)にスキューTが存在する場合、上述の(4)式は下記(5)式になる。
(t)=sin(Δω(t+T))           (5)
 上述したスキューTが存在しない場合は、上記式(3)および式(4)を用いたデジタル信号処理によって偏波分離および位相推定を行うことができ、完全に復調することができる。しかし、チャネル間スキューが存在すると、式(4)で表わされたポートQからの出力は、式(5)式で表わされる出力信号となり、デジタル信号処理を行っても復調が不十分となり、十分な性能が得られない。このように、コヒーレント光受信器においては、チャネル間にスキューが生じると十分な復調ができず、受信性能が劣化する、という問題があった。
 本発明の目的は、上述した課題である、コヒーレント光受信器においては、チャネル間にスキューが生じると十分な復調ができず、受信性能が劣化する、という課題を解決するコヒーレント光受信器、コヒーレント光受信器におけるチャネル間スキュー検出装置および検出方法を提供することにある。
 本発明のコヒーレント光受信器は、局所光源と、90°ハイブリッド回路と、光電変換器と、アナログ−デジタル変換器と、デジタル信号処理部を有し、90°ハイブリッド回路は、多重化された信号光を局所光源からの局所光と干渉させて複数の信号成分に分離した複数の光信号を出力し、光電変換器は、光信号を検波して検波電気信号を出力し、アナログ−デジタル変換器は、検波電気信号を量子化して量子化信号を出力し、デジタル信号処理部は、複数の信号成分間の伝播遅延差を補償するスキュー補償部と、量子化信号を高速フーリエ変換処理するFFT演算部とを備え、伝播遅延差は高速フーリエ変換処理した結果における−のピーク値を中心とした複数のピーク値に基づいて算出される。
 本発明のコヒーレント光受信器におけるチャネル間スキュー検出装置は、コヒーレント光受信器と、検査光源と、アナログ−デジタル変換器と、FFT演算部と、制御ブロックとを有し、コヒーレント光受信器は、局所光源と、90°ハイブリッド回路と、光電変換器とを少なくとも備え、90°ハイブリッド回路は、検査光源からの検査光を局所光源からの局所光と干渉させて複数の信号成分に分離した複数の光信号を出力し、光電変換器は、光信号を検波して検波電気信号を出力し、アナログ−デジタル変換器は、検波電気信号を量子化して量子化信号を出力し、FFT演算部は、量子化信号に高速フーリエ変換処理を施し、制御ブロックは、高速フーリエ変換処理した結果における−のピーク値を中心とした複数のピーク値に基づいて複数の信号成分間の伝播遅延差を算出する。
 本発明の光送受信機は、コヒーレント光受信器と、位相変調された変調光を送出する位相変調光源を備えた光送信器とを有し、コヒーレント光受信器は、局所光源と、90°ハイブリッド回路と、光電変換器と、アナログ−デジタル変換器と、デジタル信号処理部を有し、90°ハイブリッド回路は、多重化された信号光を局所光源からの局所光と干渉させて複数の信号成分に分離した複数の光信号を出力し、光電変換器は、光信号を検波して検波電気信号を出力し、アナログ−デジタル変換器は、検波電気信号を量子化して量子化信号を出力し、デジタル信号処理部は、複数の信号成分間の伝播遅延差を補償するスキュー補償部と、量子化信号を高速フーリエ変換処理するFFT演算部とを備え、伝播遅延差は、90°ハイブリッド回路に位相変調光源から変調光を入力して局所光と干渉させた場合の高速フーリエ変換処理した結果における−のピーク値を中心とした複数のピーク値に基づいて算出される。
 本発明のコヒーレント光受信器におけるチャネル間スキュー検出方法は、検査光源からの検査光を局所光源からの局所光と干渉させて複数の信号成分に分離した複数の光信号を出力し、光信号を検波して検波電気信号を出力し、検波電気信号を量子化して量子化信号を出力し、量子化信号に高速フーリエ変換処理を施し、高速フーリエ変換処理した結果における−のピーク値を中心とした複数のピーク値に基づいて複数の信号成分間の伝播遅延差を算出する。
 本発明のコヒーレント光受信器によれば、チャネル間にスキューが生じた場合であっても十分な復調が可能であり、受信性能の劣化を抑制することができる。
図1は本発明の第1の実施形態に係るコヒーレント光受信器の構成を示すブロック図である。
図2は本発明の第1の実施形態に係るコヒーレント光受信器におけるチャネル間スキュー検出装置の構成を示すブロック図である。
図3は本発明の第1の実施形態に係るコヒーレント光受信器におけるチャネル間スキュー検出方法を示すフローチャートである。
図4は本発明の第1の実施形態に係るコヒーレント光受信器のFFT演算部が導出するFFTデータをポイント数に対してプロットしたときの概略図である。
図5は本発明の第1の実施形態に係るコヒーレント光受信器のQポートおよびIポートにおける位相差と角周波数との関係をプロットした概略図である。
図6は本発明の第1の実施形態に係るコヒーレント光受信器における別のチャネル間スキュー検出方法を示すフローチャートである。
図7は本発明の第1の実施形態に係るコヒーレント光受信器のQポートおよびIポートにおける位相差と角周波数との別の関係をプロットした概略図である。
図8は本発明の第2の実施形態に係るコヒーレント光受信器におけるチャネル間スキュー検出装置の構成を示すブロック図である。
図9は本発明の第2の実施形態に係るコヒーレント光受信器のFFT演算部が導出するFFTデータをポイント数に対してプロットしたときの概略図である。
図10は本発明の第3の実施形態に係るコヒーレント光受信器におけるチャネル間スキュー検出装置の構成を示すブロック図である。
図11は本発明の第3の実施形態に係るコヒーレント光受信器におけるチャネル間スキュー検出方法を示すフローチャートである。
図12は本発明の第4の実施形態に係るコヒーレント光受信器におけるチャネル間スキュー検出装置の構成を示すブロック図である。
図13は本発明の第4の実施形態に係るコヒーレント光受信器におけるチャネル間スキュー検出装置の動作を説明するためのFFT信号スペクトルの概略図である。
図14は本発明の第4の実施形態に係るコヒーレント光受信器におけるチャネル間スキュー検出装置を適用した場合のシミュレーション結果を示す図である。
図15は本発明の第5の実施形態に係るコヒーレント光受信器におけるチャネル間スキュー検出装置の構成を示すブロック図である。
図16は本発明の第5の実施形態に係るコヒーレント光受信器におけるチャネル間スキュー検出装置の位相変調光源の出力波形図である。
図17は本発明の第6の実施形態に係る光送受信機の構成を示すブロック図である。
図18は関連するコヒーレント光受信器の構成を示すブロック図である。
図19は関連する90°ハイブリッド回路とその周辺部の構成を示すブロック図である。
 以下に、図面を参照しながら、本発明の実施形態について説明する。
 〔第1の実施形態〕
 図1は、本発明の第1の実施形態に係るコヒーレント光受信器100の構成を示すブロック図である。コヒーレント光受信器100は、局所光源110、90°ハイブリッド回路(90°Hybrid)120、光電変換器(O/E)130、アナログ−デジタル変換器(ADC)140、およびデジタル信号処理部(DSP)150を有する。
 90°ハイブリッド回路(90°Hybrid)120は、多重化された信号光(Signal)を局所光源110からの局所光と干渉させて、各信号成分に分離した複数の光信号を出力する。本実施形態では、DP−QPSK変調方式を用いた場合について説明する。したがって90°ハイブリッド回路(90°Hybrid)120からは、2偏波(X偏波、Y偏波)についてそれぞれ同相成分(I、I)および直交成分(Q、Q)からなる4チャンネルの信号成分をそれぞれ有する4波の光信号が出力される。
 光電変換器(O/E)130は、90°ハイブリッド回路120が出力する各光信号を検波して検波電気信号を出力する。アナログ−デジタル変換器(ADC)140は、検波電気信号を量子化して量子化信号を出力する。
 デジタル信号処理部(DSP)150は、複数の信号成分間の伝播遅延差(以下、「スキュー」とも言う)を補償するスキュー補償部151と復調部152を備える。スキュー補償部151は、例えばFIR(Finite Impulse Response)フィルタなどを用いて構成することができ、この場合スキュー値に基づいて決定されるフィルタ係数を有する。復調部152は偏波分離処理により量子化信号をX偏波信号とY偏波信号に分離し、さらに位相推定処理により4チャンネルの信号成分をそれぞれ復調する。
 次に、コヒーレント光受信器100におけるチャネル間スキューの検出方法について図2を用いて説明する。以下では、コヒーレント光受信器100のデジタル信号処理部(DSP)150がバッファ部(Buf)153とFFT演算部(FFT)154を備えた場合について説明する。ここでFFT演算部154はアナログ−デジタル変換器140が出力する量子化信号に対して高速フーリエ変換(Fast Fourier Transform、以下では「FFT」と言う)処理を施す。なお図2では、スキュー補償部151および復調部152の記載は省略した。
 また、以下ではまず、90°ハイブリッド回路においてIポートとQポートの間に90°誤差が存在する場合について説明する。すなわち、90°ハイブリッド回路のIポートとQポートの間には信号周期の90°に相当する遅延があるが、90°ハイブリッド回路の製造ばらつきにより、位相差は必ずしも正確に90°となるとは限らない。この位相差90°の誤差による遅延Δτを考慮すると、上記式(5)は下記式(6)となる。
(t)=sin(Δω(t+T)+Δτ)        (6)
この90°誤差が存在する場合、式(4)で表わされたポートQからの出力は、式(6)式で表わされる出力信号となり、この場合もデジタル信号処理を行っても復調が不十分となり、十分な性能が得られない。
 図2に示すように、コヒーレント光受信器100に検査光源170と制御ブロック180が接続され、コヒーレント光受信器におけるチャネル間スキュー検出装置1000を構成する。制御ブロック180は、制御部181、メモリ部182、および演算処理部183を有する。演算処理部183はピーク検出部184とスキュー演算部185を備え、FFT処理結果からスキュー値を算出する。ここでピーク検出部184およびスキュー演算部185は、専用の信号処理回路により構成することもできるし、中央演算処理装置(CPU)とCPUに処理を実行させるプログラムから構成することとしてもよい。
 90°ハイブリッド回路(90°Hybrid)120のシグナル・ポート121には検査光源(Test)170が接続され、ローカル・ポート122には局所光源110が接続される。90°ハイブリッド回路(90°Hybrid)120の出力ポートであるIポート、Qポート、Iポート、Qポートから出力された光は、それぞれ光電変換器(O/E)130に入力される。
 コヒーレント光受信器100におけるチャネル間スキューの検出においては、まず、検査光源170から検査光として周波数f(波長λ)の連続発振(Continuous Wave:CW)光をシグナル・ポート121に入力する。ここで検査光源170には波長可変光源を用いることができる。一方、ローカル・ポート122には局所光源110から局所光として周波数f(波長/λ)のCW光を入力する。周波数fの検査光と周波数fの局所光は90°ハイブリッド回路120内で干渉し、周波数fIF=|f−f|のビート信号が出力される。このとき、Iポート、Qポート、Iポート、Qポートからそれぞれ出力されるビート信号は下記(7)式から(10)式で表わされる。
=cos(2πfIFt+φIX)           (7)
=sin(2πfIFt+φQX)            (8)
=cos(2πfIFt+φIY)           (9)
=sin(2πfIFt+φQY)            (10)
 これらのビート信号は光電変換器(O/E)130によって電気信号に変換された後、アナログ−デジタル変換器(ADC)140で量子化されデジタル信号処理部(DSP)150へそれぞれ入力される。デジタル信号処理部(DSP)150では、バッファ部153によって所定の処理単位(例えば、4096ビット)ごとにブロック化され、FFT演算部(FFT)154においてFFT処理が施される。その結果、FFT演算部154の出力として各行列I^(N)、Q^(N)、I^(N)、Q^(N)が得られる。ここで「N」はFFTのポイント数であり、例えばN=0~4095である。
 次に、図3に示したフローチャートを参照しながら本実施形態によるコヒーレント光受信器におけるチャネル間スキュー検出方法について説明する。まず、検査光源170の周波数を周波数fS1(波長λS1)に設定する(ステップS1)。これにより、90°ハイブリッド回路(90°Hybrid)120の各出力ポートから周波数fIF=|fS1−f|のビート信号が出力される。
 次に、データキャプチャを開始する(ステップS2)。このとき制御ブロック180の制御部181はデジタル信号処理部(DSP)150へデータキャプチャ信号を送出する(ステップS3)。FFT演算部154はデータキャプチャ信号を取得し、これをトリガとしてそのときバッファ部(Buf)153に格納されているデータにFFT処理を施し(ステップS4)、FFTデータI^(N)、Q^(N)、I^(N)、Q^(N)を制御部181に返送する。制御部181は取得したFFTデータをメモリ部182に格納する(ステップS5)。
 制御部181からの指示により演算処理部183のピーク検出部184は、FFTデータI^(N)の4096ポイントの中から、その大きさが最大であるデータI^(Nmax)を抽出する。そして、そのときの周波数(ピーク周波数)fmaxと位相(ピーク位相)φmaxを計算によって求める(ステップ6)。図4に、ポイント数Nに対してI^(N)をプロットしたときの概略図を示す。ここでFFTデータI^(N)は複素数であるので、同図の縦軸はI^(N)の大きさ|I^(N)|であり、横軸はFFTのポイント数Nである。図4に示すように、|I^(N)|がポイント数Nmaxでピークを持つとした場合、ピーク検出部184はI^(Nmax)を検出する。ここで、アナログ−デジタル変換器(ADC)140におけるサンプリング周波数をfとすると、FFTの周波数間隔はf/4096となる。よって、I^(N)がピークとなるときのピーク周波数fmaxはNmax/4096となる。続いて、ピーク周波数がfmaxのときのFFTデータI^(Nmax)からピーク位相情報φmax=∠(I^(Nmax))を計算する。
 以上により、ピーク検出部184はFFTデータI^(N)の大きさがピークとなるときのピーク周波数fmaxとピーク位相φmaxを求め、制御部181は周波数fIX(1,1)と位相φIX(1,1)としてメモリ部182に格納する(ステップS7)。このとき、その他のFFTデータI^(N)は廃棄することとしてもよい。
 測定誤差による影響を軽減するため、ステップ3からステップ7までの処理をn回繰り返し、周波数fIX(1,n)と位相φIX(1,n)をそれぞれメモリ部182に格納する(フィードバックループFB1)。n回目のループが終了したとき、終了フラグを立てる(ステップ8)。
 次に、検査光源170の周波数を周波数fS2に変更し(ステップS9)、再度ステップ2からステップ7までの処理を繰り返して、周波数fIX(2,n)と位相φIX(2,n)をメモリ部182に格納する(ステップS7)。終了フラグを検出したとき(ステップS8)、検査光源170の周波数をさらにスイープし(ステップS9)、再度ステップ2からステップ8までの処理を繰り返す(フィードバックループFB2)。このフィードバックループFB2をm回繰り返すことによって周波数fIX(m,n)と位相φIX(m,n)がそれぞれメモリ部182に格納される。Q^(N)、I^(N)、Q^(N)についても同様の処理を施すことによって、周波数fQX(m,n)、fIY(m,n)、fQY(m,n)と位相φQX(m,n)、φIY(m,n)、φQY(m,n)がそれぞれメモリ部182に格納される。
 以上の処理が終了したとき、制御部181からの指示により、演算処理部183のスキュー演算部185はスキューを計算する(ステップ10)。例えば、Iポートを基準とするとIポートのスキューはゼロとなり、Q、I、Qの各ポートはIポートに対して位相が進んでいるか、または遅れているかによってスキューを表わす。具体的にはまず、各ポートの位相差を測定回数nおよび測定周波数mについてそれぞれ以下の量を計算することによって求める。
φIX(m,n)=0
φQX(m,n)−φIX(m,n)
φIY(m,n)−φIX(m,n)
φQY(m,n)−φIX(m,n)
 図5に、Iポートを基準としたときのQポートおよびIポートにおけるそれぞれの位相差φQX−IX、φIY−IXと角周波数2πfmaxとの関係をプロットした概略図を示す。同図より、QポートおよびIポートについて一次関数による近似式を以下のようにそれぞれ算出する。
φQX−IX=T(2πf)+φ
φIY−IX=T(2πf)+φ
ポートについても同様にして以下のように近似式を算出する。
φQY−IX=T(2πf)+φ
ここで求めた傾きT、T、TがIポートに対するスキューとなる。このとき、スキュー検出の精度はFFTのポイント数NとfIFの関係から求められる。例えばfIFが1GHzである場合、周期は1ns(=1000ps)であるから、Nが4096のときスキュー検出精度は0.24ps(=1000/4096)となる。すなわち、fIFが小さいと検出精度が低下することがわかる。
 一方、QポートのIポートに対する位相差は以下のように表される。
φQY(m,n)−φIY(m,n)
このとき、角周波数2πfmaxとの関係は上述した場合と同様に以下の一次関数で近似される。
φQY−IY=T(2πf)+φ
 ここで周波数オフセットがない場合、φQX−IXとφQY−IY位相差はそれぞれπ/2となることから、φおよびφはπ/2となるはずである。よって、IポートとQポート、およびIポートとQポートの90°誤差はそれぞれ、φ−π/2、φ−π/2となる。したがって、図5に示した一次関数のy軸の切片からφ、φを求めることによって、IポートとQポートの90°誤差が得られる。
 以上説明したように、本実施形態によるコヒーレント光受信器におけるチャネル間スキュー検出装置およびその検出方法によれば、各出力ポート間のスキューとI−Qポート間の90°誤差を算出することが可能となる。すなわち、90°ハイブリッド回路のシグナル・ポートに検査光を入力し、検査光と局所光のビート信号をアナログ−デジタル変換器で観測し、FFT演算を行って得られた位相情報からスキューと90°誤差を算出することができる。そして本実施形態によるコヒーレント光受信器100によれば、ここで得たスキュー値をデジタル信号処理部150のスキュー補償部151において補償することにより、チャネル間にスキューが生じた場合であっても十分な復調が可能となり、受信性能の劣化を抑制することができる。
 上述した実施形態では、図3のフィードバックループFB2に示すように、検査光源の周波数をスイープし、各周波数におけるチャネル間のピーク位相の差を求めることによりIポートとQポート間の90°誤差を算出することとした。しかし、この90°誤差が無視できる場合には、より簡易にチャネル間スキューを検出することができる。
 図6に、この場合におけるチャネル間スキュー検出方法のフローチャートを示す。まず、検査光源170の周波数を周波数fS1(波長λS1)に設定する(ステップS1)。これにより、90°ハイブリッド回路(90°Hybrid)120の各出力ポートから周波数fIF=|fS1−f|のビート信号が出力される。
 次に、データキャプチャを開始する(ステップS2)。このとき制御ブロック180の制御部181はデジタル信号処理部(DSP)150へデータキャプチャ信号を送出する(ステップS3)。FFT演算部154はデータキャプチャ信号を取得し、これをトリガとしてそのときバッファ部(Buf)153に格納されているデータにFFT処理を施し(ステップS4)、FFTデータI^(N)、Q^(N)、I^(N)、Q^(N)を制御部181に返送する。制御部181は取得したFFTデータをメモリ部182に格納する(ステップS5)。
 制御部181からの指示により演算処理部183のピーク検出部184は、FFTデータI^(N)の4096ポイントの中から、その大きさが最大であるデータI^(Nmax)を抽出する。そして、そのときの周波数(ピーク周波数)fmaxと位相(ピーク位相)φmaxを計算によって求める(ステップ6)。制御部181はこのときのピーク周波数とピーク位相を周波数fIX(1)、位相φIX(1)としてメモリ部182に格納する(ステップS7)。
 測定誤差による影響を軽減するため、ステップ3からステップ7までの処理をn回繰り返し、周波数fIX(n)と位相φIX(n)をそれぞれメモリ部182に格納する(フィードバックループFB1)。n回目のループが終了したとき、終了フラグを立てる(ステップ8)。
 終了フラグを検出したとき、制御部181からの指示により、演算処理部183のスキュー演算部185はスキューを計算する(ステップ9)。例えば、Iポートを基準として、Q、I、Qの各ポートの位相差を測定回数nについてそれぞれ以下のように求める。
φIX(n)=0
φQX(n)−φIX(n)
φIY(n)−φIX(n)
φQY(n)−φIX(n)
 図7に、Iポートを基準としたときのQポートおよびIポートにおけるそれぞれの位相差φQX−IX、φIY−IXと角周波数2πfmaxとの関係をプロットした概略図を示す。ここでI−Qポート間の90°誤差が無視できる場合には、QポートおよびIポートについて一次関数による近似式を以下のようにそれぞれ算出することができる。
φQX−IX=a(2πf)+π/2
φIY−IX=a(2πf)
ポートについても同様にして以下のように近似式を算出することができる。
φQY−IX=a(2πf)
ここで求めた傾きa、a、aがIポートに対するスキューとなる。
 このように、90°誤差が無視できる場合には、より簡易にチャネル間スキューを検出することができる。
 〔第2の実施形態〕
 次に、本発明の第2の実施形態について説明する。図8は、本発明の第2の実施形態に係るコヒーレント光受信器におけるチャネル間スキュー検出装置2000の構成を示すブロック図である。コヒーレント光受信器におけるチャネル間スキュー検出装置2000は、コヒーレント光受信器200と、コヒーレント光受信器200に接続された検査光源270および制御ブロック280を有する。
 コヒーレント光受信器200は、局所光源210、90°ハイブリッド回路(90°Hybrid)220、光電変換器(O/E)230、アナログ−デジタル変換器(ADC)240、およびデジタル信号処理部(DSP)250を有する。制御ブロック280は、制御部281、メモリ部282、および演算処理部283を有し、演算処理部283はピーク検出部284とスキュー演算部285を備える。
 本実施形態のコヒーレント光受信器200においては、デジタル信号処理部(DSP)250の構成が、第1の実施形態によるデジタル信号処理部(DSP)150と異なる。デジタル信号処理部(DSP)250は、複素信号生成器252、バッファ部(Buf)253およびFFT演算部(FFT)254を備える。
 90°ハイブリッド回路(90°Hybrid)220のシグナル・ポート221には検査光源(Test)270が接続され、ローカル・ポート222には局所光源210が接続される。90°ハイブリッド回路(90°Hybrid)220の出力ポートであるIポート、Qポート、Iポート、Qポートから出力された光は、それぞれ光電変換器(O/E)230に入力される。
 コヒーレント光受信器200におけるチャネル間スキューの検出においては、まず、検査光源270から検査光として周波数f(波長λ)の連続発振(Continuous Wave:CW)光をシグナル・ポート221に入力する。ここで検査光源270には波長可変光源を用いることができる。一方、ローカル・ポート222には局所光源210から局所光として周波数f(波長λ)のCW光を入力する。周波数fの検査光と周波数fの局所光は90°ハイブリッド回路220内で干渉し、周波数fIF=|f−f|のビート信号が出力される。このとき、Iポート、Qポート、Iポート、Qポートからそれぞれ出力されるビート信号は、第1の実施形態における場合と同様に、上述の(7)式から(10)式で表わされる。
 これらのビート信号は光電変換器(O/E)230によって電気信号に変換された後、アナログ−デジタル変換器(ADC)240で量子化されデジタル信号処理部(DSP)250へそれぞれ入力される。デジタル信号処理部(DSP)250では、IポートおよびQポートの信号を合成して複素信号として処理する。すなわち、複素信号生成器252はIおよびQを入力して複素信号E=I+jQを出力する。同様に、IおよびQを入力して複素信号E=I+jQを出力する。
 これらの複素信号EおよびEは、バッファ部253によって所定の処理単位(例えば、4096ビット)ごとにブロック化され、FFT演算部(FFT)254においてFFT処理が施される。その結果、FFT演算部254の出力として各行列E^(N)およびE^(N)が得られる。ここで「N」はFFTのポイント数であり、例えばN=0~4095である。
 このときE^(N)は次式で与えられる。
Figure JPOXMLDOC01-appb-I000001
ただし、P、P、Δωは下式で表わされる。
Figure JPOXMLDOC01-appb-I000002
 次に、本実施形態によるコヒーレント光受信器におけるチャネル間スキュー検出方法について説明する。処理のフローは第1の実施形態における場合と同様であり、以下では図3のフローチャートを参照しながら説明する。まず、検査光源270の周波数を周波数fS1(波長λS1)に設定する(ステップS1)。これにより、90°ハイブリッド回路(90°Hybrid)120の各出力ポートから周波数fIF=|fS1−f|のビート信号が出力される。
 次に、データキャプチャを開始する(ステップS2)。このとき制御ブロック280の制御部281はデジタル信号処理部(DSP)250へデータキャプチャ信号を送出する(ステップS3)。FFT演算部254はデータキャプチャ信号を取得し、これをトリガとしてそのときバッファ部(Buf)253に格納されているデータにFFT処理を施し、FFTデータE^(N)、E^(N)を制御部281に返送する(ステップS4)。制御部281は取得したFFTデータをメモリ部282に格納する(ステップS5)。
 制御部281からの指示により演算処理部283のピーク検出部284は、FFTデータE^(N)の4096ポイントの中から、2個のピーク値P=|E^(Npeak1)|およびP=|E^(Npeak2)|を抽出する。そして、そのときの周波数±2πfIFを計算によって求める(ステップ6)。図9に、ポイント数Nに対してE^(N)をプロットしたときの概略図を示す。ここでFFTデータE^(N)は複素数であるので、同図の縦軸はE^(N)の大きさ|E^(N)|であり、横軸はFFTのポイント数Nである。図9に示すように、|E^(N)|がポイント数Npeak1とNpeak2でピークを持つとした場合、ピーク検出部284はPとPを検出する。ここで、アナログ−デジタル変換器(ADC)240におけるサンプリング周波数をfとすると、FFTの周波数間隔はf/4096となる。よって、E^(N)がピークとなるときの周波数は、fpeak1=Npeak1/4096、fpeak2=−(4096−Npeak2)f/4096となる。
 次に、位相情報φIXとφQXを計算により算出する。まず、ピーク値Pは次式で与えられる。
Figure JPOXMLDOC01-appb-I000003
ただし、R、Iは下式で表わされる。
Figure JPOXMLDOC01-appb-I000004
また、ピーク値Pは次式で与えられる。
Figure JPOXMLDOC01-appb-I000005
ただし、R、Iは下式で表わされる。
Figure JPOXMLDOC01-appb-I000006
以上の各式から、下記の関係式が得られる。
Figure JPOXMLDOC01-appb-I000007
これらの関係式を解くことにより、位相情報φIXとφQXが下記のように求められる。
Figure JPOXMLDOC01-appb-I000008
 以上により、ピーク検出部284はFFTデータE^(N)の大きさがピークとなるときの周波数fpeak1とピーク位相φIXとφQXを求め、制御部281は周波数fX(1,1)と位相φIX(1,1)、φQX(1,1)としてメモリ部282に格納する(ステップS7)。このとき、その他のFFTデータE^(N)は廃棄することとしてもよい。
 測定誤差による影響を軽減するため、ステップ3からステップ7までの処理をn回繰り返し、周波数fX(1,n)と位相φIX(1,n)、φQX(1,n)をそれぞれメモリ部282に格納する(フィードバックループFB1)。n回目のループが終了したとき、終了フラグを立てる(ステップ8)。
 次に、検査光源270の周波数を周波数fS2に変更し(ステップS9)、再度ステップ2からステップ8までの処理を繰り返して、周波数fX(2,n)と位相φIX(2,n)、φQX(2,n)をメモリ部282に格納する(ステップS7)。終了フラグを検出したとき(ステップS8)、検査光源270の周波数をさらにスイープし(ステップS9)、再度ステップ2からステップ8までの処理を繰り返す(フィードバックループFB2)。このフィードバックループFB2をm回繰り返すことによって周波数fX(m,n)と位相φIX(m,n)、φQX(m,n)がそれぞれメモリ部282に格納される。E^(N)についても同様の処理を施すことによって、周波数fY(m,n)と位相φIY(m,n)、φQY(m,n)がそれぞれメモリ部282に格納される。
 以上の処理が終了したとき、制御部281からの指示により演算処理部283のスキュー演算部285は、第1の実施形態と同様の手法によりスキューを計算する(ステップ10)。
 以上説明したように、本実施形態によるコヒーレント光受信器におけるチャネル間スキュー検出装置およびその検出方法によれば、各出力ポート間のスキューとI−Qポート間の90°誤差を算出することが可能となる。そして、このスキュー値を第1の実施形態によるコヒーレント光受信器が備えるデジタル信号処理部のスキュー補償部において補償することにより、チャネル間にスキューが生じた場合であっても十分な復調が可能となり、受信性能の劣化を抑制することができる。
 〔第3の実施形態〕
 次に、本発明の第3の実施形態について説明する。図10は、本発明の第3の実施形態に係るコヒーレント光受信器におけるチャネル間スキュー検出装置3000の構成を示すブロック図である。コヒーレント光受信器におけるチャネル間スキュー検出装置3000は、コヒーレント光受信器300と、コヒーレント光受信器300に接続された検査光源370、制御ブロック380、およびサンプリングオシロスコープ390を有する。
 コヒーレント光受信器300は、局所光源310、90°ハイブリッド回路(90°Hybrid)320、光電変換器(O/E)330を有する。制御ブロック380は、制御部381、メモリ部382、および演算処理部383を有し、演算処理部383はピーク検出部384とスキュー演算部385およびFFT演算部(FFT)386を備える。
 本実施形態においては、デジタル信号処理部(DSP)の代わりにサンプリングオシロスコープ390を有し、制御ブロック380がFFT演算部(FFT)386を備える点において、第1および第2の実施形態と異なる。サンプリングオシロスコープ390は4チャネルのアナログ−デジタル変換器(ADC)391およびメモリ部392を備える。
 90°ハイブリッド回路(90°Hybrid)320のシグナル・ポート321には検査光源(Test)370が接続され、ローカル・ポート322には局所光源310が接続される。90°ハイブリッド回路(90°Hybrid)320の出力ポートであるIポート、Qポート、Iポート、Qポートから出力されるビート信号は第1の実施形態の場合と同様に上記(7)式から(10)式で表わされる。
 これらのビート信号は光電変換器(O/E)330によって電気信号に変換された後、サンプリングオシロスコープ390が備えるアナログ−デジタル変換器(ADC)391で量子化され、波形データI(N)、Q(N)、I(N)、Q(N)がメモリ部392に格納される。ここで「N」はデータ数であり、例えばN=0~4095である。
 次に、図11に示したフローチャートを参照しながら本実施形態によるコヒーレント光受信器におけるチャネル間スキュー検出方法について説明する。まず、検査光源370の周波数を周波数fS1(波長λS1)に設定する(ステップS1)。これにより、90°ハイブリッド回路(90°Hybrid)320の各出力ポートから周波数fIF=|fS1−f|のビート信号が出力される。
 次に、サンプリングオシロスコープ390において波形データをキャプチャする(ステップS2)。このとき制御ブロック380の制御部381はサンプリングオシロスコープ390へ波形取り込み信号を送出する(ステップS3)。そして、そのときサンプリングオシロスコープ390のメモリ部392に格納されている波形データを制御ブロック380のメモリ部382に格納する(ステップ4)。
 制御ブロック380のFFT演算部(FFT)386はメモリ部382に格納されている波形データI(N)、Q(N)、I(N)、Q(N)にFFT処理を施す(ステップS5)。そして処理結果であるFFTデータI^(N)、Q^(N)、I^(N)、Q^(N)を制御部381に返送する。制御部381は取得したFFTデータをメモリ部382に格納する(ステップS6)。
 制御部381からの指示により演算処理部383のピーク検出部384は、FFTデータI^(N)の4096ポイントの中から、その大きさが最大であるデータI^(Nmax)を抽出する。そして、そのときの周波数fmaxと位相φmaxを計算によって求める(ステップ7)。
 測定誤差による影響を軽減するため、ステップ2からステップ7までの処理をn回繰り返し、周波数fIX(1,n)と位相φIX(1,n)をそれぞれメモリ部382に格納する(フィードバックループFB1)。n回目のループが終了したとき、検査光源370の周波数を周波数fS2に変更し(ステップS8)、再度ステップ2からステップ7までの処理を繰り返して周波数fIX(2,n)と位相φIX(2,n)をメモリ部382に格納する(フィードバックループFB2)。検査光源370の周波数をさらにスイープし、フィードバックループFB2をm回繰り返すことによって周波数fIX(m,n)と位相φIX(m,n)がそれぞれメモリ部382に格納される。Q^(N)、I^(N)、Q^(N)についても同様の処理を施すことによって、周波数fQX(m,n)、fIY(m,n)、fQY(m,n)と位相φQX(m,n)、φIY(m,n)、φQY(m,n)がそれぞれメモリ部382に格納される。
 以上の処理が終了したとき、制御部381からの指示により演算処理部383のスキュー演算部385は、第1の実施形態と同様の手法によりスキューを計算する(ステップ9)。
 以上説明したように、本実施形態によるコヒーレント光受信器におけるチャネル間スキュー検出装置および検出方法によれば、各出力ポート間のスキューとI−Qポート間の90°誤差を算出することが可能となる。そして、このスキュー値を第1の実施形態によるコヒーレント光受信器が備えるデジタル信号処理部のスキュー補償部において補償することにより、チャネル間にスキューが生じた場合であっても十分な復調が可能となり、受信性能の劣化を抑制することができる。
 上述した実施形態では、コヒーレント光受信器は偏波ダイバーシティ型の90°ハイブリッド回路(Polarization Diversity 90° Hybrid)を備えることとした。しかしこれに限らず、単一偏波型90°ハイブリッド回路(Single Polarization 90° Hybrid)、または単一偏波型90°ハイブリッド回路を組み合わせて用いることとしてもよい。
 また、上述の実施形態では、90°ハイブリッド回路のシグナル・ポートに検査光源を接続して周波数をスイープすることとしたが、これに限らず、検査光源の波長は一定とし、局所光源に波長可変レーザを用いて波長をスイープすることとしてもよい。
 〔第4の実施形態〕
 次に、本発明の第4の実施形態について説明する。図12は、本発明の第4の実施形態に係るコヒーレント光受信器におけるチャネル間スキュー検出装置4000の構成を示すブロック図である。コヒーレント光受信器におけるチャネル間スキュー検出装置4000は、コヒーレント光受信器400と、コヒーレント光受信器400に接続された検査光源270および制御ブロック480を有する。
 コヒーレント光受信器400は、局所光源210、90°ハイブリッド回路(90°Hybrid)220、光電変換器(O/E)230、アナログ−デジタル変換器(ADC)240、およびデジタル信号処理部(DSP)450を有する。制御ブロック480は、制御部281、メモリ部282、および演算処理部283を有し、演算処理部283は複数ピーク検出部484とスキュー演算部285を備える。
 本実施形態のコヒーレント光受信器400においては、デジタル信号処理部(DSP)450と制御ブロック480の構成が、第2の実施形態と異なる。すなわち、デジタル信号処理部(DSP)450はスキュー補償部451と信号処理部455を有し、制御ブロック480は複数ピーク検出部484を有する。ここで、信号処理部455はデジタルコヒーレント受信におけるクロック抽出、偏波トラッキング、およびキャリア周波数オフセット補償などの種々の信号処理を行う。なお、図12において、図8に示した第2の実施形態によるコヒーレント光受信器におけるチャネル間スキュー検出装置2000と同一の構成には同一の符号を付して、その説明を省略する。
 コヒーレント光受信器400におけるチャネル間スキューの検出においては、第2の実施形態における場合と同様に、検査光源270から検査光として周波数f(波長λ)の連続発振(Continuous Wave:CW)光をシグナル・ポート221に入力する。ここで検査光源270には波長可変光源を用いることができる。一方、ローカル・ポート222には局所光源210から局所光として周波数f(波長λ)のCW光を入力する。周波数fの検査光と周波数fの局所光は90°ハイブリッド回路220内で干渉し、周波数fIF=|f−f|のビート信号が出力される。このとき、Iポート、Qポート、Iポート、Qポートからそれぞれ出力されるビート信号は、第1の実施形態における場合と同様に、上述の(7)式から(10)式で表わされる。
 これらのビート信号は光電変換器(O/E)230によって電気信号に変換された後、アナログ−デジタル変換器(ADC)240で量子化されデジタル信号処理部(DSP)450へそれぞれ入力される。デジタル信号処理部(DSP)450では、スキュー補償部451で伝播遅延差(スキュー)が補償された後に、IポートおよびQポートの信号を合成して複素信号として処理する。すなわち、複素信号生成器252はIおよびQを入力して複素信号E=I+jQを出力する。同様に、IおよびQを入力して複素信号E=I+jQを出力する。
 このときEは次式で与えられる。
Figure JPOXMLDOC01-appb-I000009
ただし、P、P’、Δωは下式で表わされる。
Figure JPOXMLDOC01-appb-I000010
ここで、Pはサンプリング周波数fsampleでフーリエ変換を施したときのビート周波数fIF(=Δω/2π)におけるスペクトル成分、P’はその鏡像(折り返し成分)のスペクトル成分を表している。
 次に、PおよびP’をそれぞれ実部と虚部に分けて表記すると下式のようになる。
Figure JPOXMLDOC01-appb-I000011
ただし、R、I、R’、I’はそれぞれ下式で与えられる。
Figure JPOXMLDOC01-appb-I000012
以上の各式から、下記の関係式が得られる。
Figure JPOXMLDOC01-appb-I000013
これらの関係式を解くことにより伝播遅延量TおよびTが下記のように求まる。
Figure JPOXMLDOC01-appb-I000014
ここで、「tan−1」はtan(正接)の逆関数を表す。
 また、異なる表記として下記の関係式が得られる。
Figure JPOXMLDOC01-appb-I000015
したがって、R、I、R’、I’から下記の関係式により伝播遅延差T−Tを直接求めることもできる。
Figure JPOXMLDOC01-appb-I000016
 以上より、ビート周波数fIFに関する伝播遅延差は、複素信号Eのフーリエ変換信号の周波数fIF(=Δω/2π)におけるスペクトル成分(R、I)と、そのスペクトルと対になる鏡像成分(R’,I’)から、式(11)または式(12)を用いて求めることができることが分かる。
 しかし、式(11)または式(12)は理想的なフーリエ変換を行った場合に得られる関係式であるので、FFTのような離散フーリエ変換回路を用いた場合には理想状態からの誤差が生じる。例えば、図9に示したFFT信号は、検査光と局所光のビート周波数fIFがFFTのk番目のグリッド周波数k×fsample/2と等しい場合に発生するスペクトルを表わしている。ここで、2はFFTポイント数であり、kは0≦k≦2−1を満たす整数、nは正の整数である。しかし実際の測定においては、検査光源および局所光源の周波数安定度が十分でないため、ビート周波数fIFはFFTのグリッド周波数とずれる場合が多い。この場合、図13に示すように、スペクトルが図9におけるピーク信号の隣接グリッドに広がり、複数のサイドローブスペクトルが発生する。ここで、図13の縦軸はE^(N)の大きさ|E^(N)|であり、横軸はFFTのグリッド周波数である。
 このようなサイドローブが発生する場合、本実施形態のコヒーレント光受信器におけるチャネル間スキュー検出装置4000においては、複数ピーク検出部484が−のピーク値を中心として、FFT信号のスペクトル振幅が有効な値を持つ複数のピーク値を検出する。例えば、図13において、−のピーク値としてのPとPを中心としたP−1とP+1、およびその鏡像であるP’、P’−1、P’+1を検出する。ここでFFT信号のスペクトル振幅が有効な値を持つ範囲として、例えば振幅レベルの大きさが上位にある複数個を選択することができる。また、あらかじめ一定の閾値レベルを設け、振幅レベルがその閾値レベル以上であるものを採用することとしてもよい。これに限らず、測定条件に応じて伝播遅延差T−T測定の精度が最適になるような組み合わせを選択することができる。
 本実施形態によるコヒーレント光受信器におけるチャネル間スキュー検出装置4000においては、上述したように複数ピーク検出部484が複数のピーク値を検出する。その後、各スペクトルとそのスペクトルと対になる鏡像成分とから、式(11)または式(12)を用いて伝播遅延差T−Tを算出し、それぞれスペクトル振幅値に比例した加重平均を求める。これにより、伝播遅延差T−Tの測定における測定精度を向上させることができる。例えば、図13においてスペクトル振幅の大きさの上位3個に相当するP、P−1、P+1およびそれらの鏡像であるP’、P’−1、P’+1からそれぞれの伝播遅延差ΔT,ΔT−1、ΔT+1を算出する。このとき、伝播遅延差T−Tとして、これらの加重平均を用いる。すなわち次式より伝播遅延差T−Tを算出する。
−T=(|P−1|ΔT−1+|P|ΔT+|P−1|ΔT−1)/(|P−1|+|P|+|P+1|)
また、採用するピーク数をm個に増やした場合も同様に、次式より伝播遅延差T−Tを算出することができる。
−T=(|P|ΔT+・・・・+|P|ΔT)/(|P|+・・・+|P|)
 図14に、FFT信号のスペクトルにサイドローブが発生している場合に、本実施形態によるコヒーレント光受信器におけるチャネル間スキュー検出装置4000を適用した場合のシミュレーション結果を示す。同図では、伝播遅延量T−T=25psecを付加し、FFTポイント数4096、サンプリング速度64GS/s(Giga sample per second)のFFT回路を用いた場合について示している。図14の縦軸は伝播遅延量T−Tであり、横軸はビート周波数fIFをFFT周波数グリッド間隔単位で示したものである。本シミュレーション条件では、FFT周波数グリッド間隔単位は64GS/s/4096となり、FFT周波数グリッド間隔数(FFT bin no.)が整数である64のときに、fIFはFFTグリッド周波数1GHz(=64×64GS/s/4096)に相当する。
 図14からわかるように、図13に示した単一ピークPとその鏡像であるP’のみを用いて伝播遅延差T−Tを算出した場合(図14中の「○」印)、fIFが64(整数値)からずれると、最大約±1psecの誤差が生じる。それに対して、複数の振幅値の加重平均により伝播遅延差T−Tを算出した場合(図14中の「□」印)は、fIFが64からずれた場合であっても、誤差がほぼゼロとなる測定が可能であることを分かる。ここでは、図13における振幅値が上位2個に相当するPおよびP−1(またはP+1)とその各々の鏡像であるP’およびP’−1(またはP’+1)を用いた。なお、FFTの代わりに離散フーリエ変換(Discrete Fourier Transform:DFT)を用いて同様の手法によりスキュー検出を行うことも可能である。この場合は、図13に示したポイント数は2のべき乗(2)に限らない正の整数を用いることができる。
 このように、本実施形態によるコヒーレント光受信器におけるチャネル間スキュー検出装置4000によれば、複数ピーク検出部484が複数のピーク値を検出し、各ピークのスペクトルからそれぞれ伝播遅延差を算出する。そして、これらのスペクトル振幅値に比例した加重平均を求めることにより、伝播遅延差の測定における測定精度を向上させることができる。
 以上説明したように、本実施形態によるコヒーレント光受信器におけるチャネル間スキュー検出装置およびその検出方法によれば、各出力ポート間の伝播遅延差(スキュー)をより精度よく算出することが可能となる。そして、ここで算出した伝播遅延差量(スキュー値)をコヒーレント光受信器400が備えるデジタル信号処理部450のスキュー補償部451において補償する。これにより、チャネル間に伝播遅延差(スキュー)が生じた場合であっても十分な復調が可能となり、受信性能の劣化を抑制することができる。
 〔第5の実施形態〕
 次に、本発明の第5の実施形態について説明する。図15は、本発明の第5の実施形態に係るコヒーレント光受信器におけるチャネル間スキュー検出装置5000の構成を示すブロック図である。コヒーレント光受信器におけるチャネル間スキュー検出装置5000は、検査光源270として位相変調光源570を備え、さらに偏波コントローラ580を有する点において、第4の実施形態によるコヒーレント光受信器におけるチャネル間スキュー検出装置4000と異なる。なお、図15において、図12に示したコヒーレント光受信器におけるチャネル間スキュー検出装置4000と同一の構成には同一の符号を付して、その説明は省略する。
 位相変調光源570は検査光として例えば、4値(0、π/2、π、3π/2)の位相変調(Quadrature Phase−Shift Keying:QPSK)を行った変調光を送出する。図16に、位相変調光源570の出力波形の一例として、鋸波状に位相変調を繰り返した変調光の波形を示す。縦軸は光信号の位相(φ)、横軸は時間(t)である。このような変調光は、Δω=2πf=dφ/dt(φは光信号の位相)に相当する周波数シフト(デジタルセロダイン変調)を生じさせる。したがって、位相変調光源570は、鋸波状位相変調の周期を変更することによって、周波数シフトΔωを非常に安定に、高精度で制御することができる。その結果、第2の実施形態または第4の実施形態によるコヒーレント光受信器におけるチャネル間スキュー検出装置2000、4000のように、検査光源270として周波数が不安定なCW光を送出する波長可変光源を用いる必要がない。そのため、より精度の高いスキュー検出を行うことができる。
 偏波コントローラ580は、位相変調光源570から送信される検査光が単一偏波である場合、偏光角を概ね45°(もしくは45°に相当する角度)に設定する。そして、Iポート、Qポート、Iポート、Qポートから出力される光パワーが概ね均等になるように偏光状態の調整を行う。したがって、位相変調光源570からの送信信号に偏波スクランブルが施されている場合、または偏波多重されているような場合(例えば、DP−QPSK変調など)には、偏波コントローラ580を用いない構成であってもスキュー検出を行うことが可能である。
 本実施形態のコヒーレント光受信器におけるチャネル間スキュー検出装置5000においては、上述した周波数が安定で高精度な制御が可能な検査光を用いて、第2または第4の実施形態と同様の手法によりスキュー検出を行う。その結果、より精度の高いスキュー検出が可能となる。そして、ここで検出したスキュー値をコヒーレント光受信器が備えるデジタル信号処理部のスキュー補償部において補償する。これにより、チャネル間にスキューが生じた場合であっても十分な復調が可能となり、受信性能の劣化を抑制することができる。
 本実施形態では、位相変調光源570は検査光としてQPSK変調を行った変調光を送出する場合を例として説明した。しかし、これに限らず、位相変調光源570がQAM(Quadrature Amplitude Modulation)変調またはアナログセロダイン変調など、他の方式によって位相変調された変調光を送出するとした場合にも、本実施形態を適用できることは明らかである。
 〔第6の実施形態〕
 次に、本発明の第6の実施形態について説明する。図17は、本発明の第6の実施形態に係る光送受信機6000の構成を示すブロック図である。光送受信機6000は、コヒーレント光受信器(Rx)600、光送信器(Tx)610、偏波コントローラ620、モード切替手段630、および制御部640を備える。本実施形態による光送受信機6000において、光送信器610はQPSK変調器などの位相変調器を備える。この位相変調器として、第5の実施形態によるコヒーレント光受信器におけるチャネル間スキュー検出装置が備える位相変調光源570と同様の変調器を用いることができる。
 モード切替手段630は、光送受信機6000の製造時などにおける検査工程において、チャネル間スキューを検出するスキュー検出モードと、通常の通信動作を行う通常運用モードの切替を制御部640に指示する。
 スキュー検出モードにおいて、制御部640は光送信器610が鋸波状の位相変調波形からなる送信光を送出するように光送信器610を制御する。このときの鋸波状の位相変調波形は、第5の実施形態のコヒーレント光受信器におけるチャネル間スキュー検出装置5000における位相変調光源570が送出する波形(図16)と同様な波形とすることができる。そして制御部640は、コヒーレント光受信器600が第5の実施形態のコヒーレント光受信器におけるチャネル間スキュー検出装置5000におけるチャネル間スキュー検出動作を行うように、コヒーレント光受信器600を制御する。このとき制御部640は、コヒーレント光受信器600が光送信器610からの送出光を検査光として用いるように制御する。
 ここで偏波コントローラ620は、光送信器610から送信される検査光の偏波を調整し、コヒーレント光受信器600内のIポート、Qポート、Iポート、Qポートから出力される光パワーが概ね均等になるように偏光状態の調整を行う。したがって、光送信器610からの送信信号に偏波スクランブルが施されている場合、または偏波多重されているような場合(例えば、DP−QPSK変調など)には、偏波コントローラ620を用いない構成であってもスキュー検出を行うことが可能である。
 一方、通常運用モードにおいては、制御部640は光送信器610から通常の光送信信号が送信されるように光送信器610を制御する。
 このように、光送受信機6000の光送信器610を、位相変調された検査光を送出する光源として用いることができる。これによって、第5の実施形態によるコヒーレント光受信器におけるチャネル間スキュー検出装置5000を含んだ光送受信機を、より簡易な構成とすることができる。したがって本実施形態によれば、コヒーレント光受信器における各ポート間のスキューを高精度で検出可能な、小型の光送受信機を得ることができる。
 本発明は上記実施形態に限定されることなく、特許請求の範囲に記載した発明の範囲内で、種々の変形が可能であり、それらも本発明の範囲内に含まれるものであることはいうまでもない。
 この出願は、2011年2月1日に出願された日本出願特願2011−019612を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 100、200、300、400 コヒーレント光受信器
 110、210、310 局所光源
 120、220、320 90°ハイブリッド回路(90°Hybrid)
 121、221、321 シグナル・ポート
 122、222、322 ローカル・ポート
 130、230、330 光電変換器(O/E)
 140、240 アナログ−デジタル変換器(ADC)
 150、250、450 デジタル信号処理部(DSP)
 151、451 スキュー補償部
 152 復調部
 153、253 バッファ部(Buf)
 154、254、386 FFT演算部(FFT)
 170、270、370 検査光源
 180、280、380、480 制御ブロック
 181、281、381 制御部
 182、282、382、392 メモリ部
 183、283、383 演算処理部
 184、284、384 ピーク検出部
 185、285、385 スキュー演算部
 252 複素信号生成器
 390 サンプリングオシロスコープ
 455 信号処理部
 484 複数ピーク検出部
 570 位相変調光源
 580、620 偏波コントローラ
 600 コヒーレント光受信器(Rx)
 610 光送信器(Tx)
 630 モード切替手段
 640 制御部
 700 関連するコヒーレント光受信器
 710 局所光源
 720 90°ハイブリッド回路(90°Hybrid)
 730 光電変換器(O/E)
 740 アナログ−デジタル変換器(ADC)
 750 デジタル信号処理部(DSP)
 1000、2000、3000、4000、5000 コヒーレント光受信器におけるチャネル間スキュー検出装置
 6000 光送受信機

Claims (10)

  1. 局所光源と、90°ハイブリッド回路と、光電変換器と、アナログ−デジタル変換器と、デジタル信号処理部を有し、
     前記90°ハイブリッド回路は、多重化された信号光を前記局所光源からの局所光と干渉させて複数の信号成分に分離した複数の光信号を出力し、
     前記光電変換器は、前記光信号を検波して検波電気信号を出力し、
     前記アナログ−デジタル変換器は、前記検波電気信号を量子化して量子化信号を出力し、
     前記デジタル信号処理部は、前記複数の信号成分間の伝播遅延差を補償するスキュー補償部と、前記量子化信号を高速フーリエ変換処理するFFT演算部とを備え、
     前記伝播遅延差は前記高速フーリエ変換処理した結果における−のピーク値を中心とした複数のピーク値に基づいて算出される
     コヒーレント光受信器。
  2. 請求項1に記載したコヒーレント光受信器において、
     前記伝播遅延差は、前記複数のピーク値に基づいてそれぞれ算出される各伝播遅延差に対して、前記各ピーク値の振幅値に比例した加重平均を求めることによって算出される
     コヒーレント光受信器。
  3. コヒーレント光受信器と、検査光源と、アナログ−デジタル変換器と、FFT演算部と、制御ブロックとを有し、
     前記コヒーレント光受信器は、局所光源と、90°ハイブリッド回路と、光電変換器とを少なくとも備え、
     前記90°ハイブリッド回路は、前記検査光源からの検査光を前記局所光源からの局所光と干渉させて複数の信号成分に分離した複数の光信号を出力し、
     前記光電変換器は、前記光信号を検波して検波電気信号を出力し、
     前記アナログ−デジタル変換器は、前記検波電気信号を量子化して量子化信号を出力し、
     前記FFT演算部は、前記量子化信号に高速フーリエ変換処理を施し、
     前記制御ブロックは、前記高速フーリエ変換処理した結果における−のピーク値を中心とした複数のピーク値に基づいて前記複数の信号成分間の伝播遅延差を算出する
     コヒーレント光受信器におけるチャネル間スキュー検出装置。
  4. 請求項3に記載したコヒーレント光受信器におけるチャネル間スキュー検出装置において、
     前記制御ブロックは、複数ピーク検出部とスキュー演算部を有し、
     前記複数ピーク検出部は、前記複数のピーク値として振幅値が所定の値以上であるピーク値を算出し、各ピーク値における各ピーク周波数と各ピーク位相を前記複数の信号成分ごとに算出し、
     前記スキュー演算部は、前記各ピーク周波数と前記各ピーク位相とからそれぞれ算出される各伝播遅延差に対して、前記各ピーク値の振幅値に比例した加重平均を求めることによって前記伝播遅延差を算出する
     コヒーレント光受信器におけるチャネル間スキュー検出装置。
  5. 請求項4に記載したコヒーレント光受信器におけるチャネル間スキュー検出装置において、
     前記スキュー演算部は、前記−のピーク値と、前記高速フーリエ変換処理した結果における前記−のピーク値の鏡像成分、とにおける各ピーク周波数と各ピーク位相とから前記伝播遅延差を算出する
     コヒーレント光受信器におけるチャネル間スキュー検出装置。
  6. 請求項3から5のいずれか一項に記載したコヒーレント光受信器におけるチャネル間スキュー検出装置において、
     前記検査光源は、位相変調された変調光を送出する位相変調光源である
     コヒーレント光受信器におけるチャネル間スキュー検出装置。
  7. コヒーレント光受信器と、位相変調された変調光を送出する位相変調光源を備えた光送信器とを有し、
     前記コヒーレント光受信器は、
     局所光源と、90°ハイブリッド回路と、光電変換器と、アナログ−デジタル変換器と、デジタル信号処理部を有し、
     前記90°ハイブリッド回路は、多重化された信号光を前記局所光源からの局所光と干渉させて複数の信号成分に分離した複数の光信号を出力し、
     前記光電変換器は、前記光信号を検波して検波電気信号を出力し、
     前記アナログ−デジタル変換器は、前記検波電気信号を量子化して量子化信号を出力し、
     前記デジタル信号処理部は、前記複数の信号成分間の伝播遅延差を補償するスキュー補償部と、前記量子化信号を高速フーリエ変換処理するFFT演算部とを備え、
     前記伝播遅延差は、前記90°ハイブリッド回路に前記位相変調光源から前記変調光を入力して前記局所光と干渉させた場合の前記高速フーリエ変換処理した結果における−のピーク値を中心とした複数のピーク値に基づいて算出される
     光送受信機。
  8. 検査光源からの検査光を局所光源からの局所光と干渉させて複数の信号成分に分離した複数の光信号を出力し、
     前記光信号を検波して検波電気信号を出力し、
     前記検波電気信号を量子化して量子化信号を出力し、
     前記量子化信号に高速フーリエ変換処理を施し、
     前記高速フーリエ変換処理した結果における−のピーク値を中心とした複数のピーク値に基づいて前記複数の信号成分間の伝播遅延差を算出する
     コヒーレント光受信器におけるチャネル間スキュー検出方法。
  9. 請求項8に記載したコヒーレント光受信器におけるチャネル間スキュー検出方法において、
     前記伝播遅延差を算出する処理は、前記複数のピーク値として振幅値が所定の値以上であるピーク値を算出し、各ピーク値における各ピーク周波数と各ピーク位相を前記複数の信号成分ごとに算出し、
     前記各ピーク周波数と前記各ピーク位相とからそれぞれ算出される各伝播遅延差に対して、前記各ピーク値の振幅値に比例した加重平均を求めることによって前記伝播遅延差を算出する処理を含む
     コヒーレント光受信器におけるチャネル間スキュー検出方法。
  10. 請求項9に記載したコヒーレント光受信器におけるチャネル間スキュー検出装置において、
     前記伝播遅延差を算出する処理は、前記−のピーク値と、前記高速フーリエ変換処理した結果における前記−のピーク値の鏡像成分、とにおける各ピーク周波数と各ピーク位相とから前記伝播遅延差を算出する処理を含む
     コヒーレント光受信器におけるチャネル間スキュー検出装置。
PCT/JP2011/070541 2011-02-01 2011-09-02 コヒーレント光受信器、コヒーレント光受信器におけるチャネル間スキュー検出装置および検出方法 WO2012105081A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/505,199 US8626000B2 (en) 2011-02-01 2011-09-02 Coherent optical receiver, apparatus and method for detecting inter-channel skew in coherent optical receiver
EP11857687.5A EP2672636B1 (en) 2011-02-01 2011-09-02 Coherent optical receiver, and inter-channel skew detection device and detection method in coherent optical receiver
CN201180066636.0A CN103339882B (zh) 2011-02-01 2011-09-02 相干光学接收器,用于检测相干光学接收器中的信道间偏斜的装置和方法
JP2012517033A JP5029794B1 (ja) 2011-02-01 2011-09-02 コヒーレント光受信器、コヒーレント光受信器におけるチャネル間スキュー検出装置および検出方法
US14/082,875 US8953953B2 (en) 2011-02-01 2013-11-18 Coherent optical receiver, apparatus and method for detecting inter-channel skew in coherent optical receiver
US14/577,007 US9088370B2 (en) 2011-02-01 2014-12-19 Coherent optical receiver, apparatus and method for detecting inter-channel skew in coherent optical receiver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-019612 2011-02-01
JP2011019612 2011-02-01

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/505,199 A-371-Of-International US8626000B2 (en) 2011-02-01 2011-09-02 Coherent optical receiver, apparatus and method for detecting inter-channel skew in coherent optical receiver
US14/082,875 Division US8953953B2 (en) 2011-02-01 2013-11-18 Coherent optical receiver, apparatus and method for detecting inter-channel skew in coherent optical receiver

Publications (1)

Publication Number Publication Date
WO2012105081A1 true WO2012105081A1 (ja) 2012-08-09

Family

ID=46602318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070541 WO2012105081A1 (ja) 2011-02-01 2011-09-02 コヒーレント光受信器、コヒーレント光受信器におけるチャネル間スキュー検出装置および検出方法

Country Status (5)

Country Link
US (3) US8626000B2 (ja)
EP (1) EP2672636B1 (ja)
JP (1) JP5029794B1 (ja)
CN (1) CN103339882B (ja)
WO (1) WO2012105081A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012238941A (ja) * 2011-05-10 2012-12-06 Nippon Telegr & Teleph Corp <Ntt> デジタルコヒーレント受信装置
CN103107853A (zh) * 2013-01-23 2013-05-15 河北四方通信设备有限公司 基于数字相干接收机的光通信系统及输出信号的处理方法
JP5842826B2 (ja) * 2010-12-21 2016-01-13 日本電気株式会社 コヒーレント光受信器、コヒーレント光受信器におけるレーン間スキュー検出装置および検出方法
JP2017195561A (ja) * 2016-04-22 2017-10-26 富士通株式会社 デジタル信号処理回路および複数のデジタル信号処理回路を含む信号処理装置
JP2018046552A (ja) * 2016-09-13 2018-03-22 富士通株式会社 残存直流成分の測定方法、装置及びシステム

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8626000B2 (en) * 2011-02-01 2014-01-07 Nec Corporation Coherent optical receiver, apparatus and method for detecting inter-channel skew in coherent optical receiver
WO2013125016A1 (ja) * 2012-02-23 2013-08-29 富士通オプティカルコンポーネンツ株式会社 光受信器、及び光受信方法
US9240843B1 (en) * 2012-12-28 2016-01-19 Juniper Networks, Inc. Method and apparatus for blind time skew compensation for coherent optical receivers
US9749057B2 (en) * 2012-12-28 2017-08-29 Juniper Networks, Inc. Detection and alignment of XY skew
KR20140094350A (ko) * 2013-01-22 2014-07-30 한국전자통신연구원 측정 장치 및 그것의 신호 전송 시간차 측정 방법
CN104168068B (zh) 2013-05-16 2018-08-14 爱斯福公司 用于集成相干接收器的共模抑制比表征的方法和系统
US9225430B2 (en) * 2013-05-20 2015-12-29 Ciena Corporation Digital noise loading for optical receivers
KR102165231B1 (ko) * 2013-12-30 2020-10-14 에스케이하이닉스 주식회사 스큐를 보정하는 리시버 회로, 이를 포함하는 반도체 장치 및 시스템
JPWO2015146108A1 (ja) * 2014-03-26 2017-04-13 日本電気株式会社 受光素子、光モジュール及び光受信器
WO2015143664A1 (zh) 2014-03-27 2015-10-01 华为技术有限公司 监测光性能参数的装置、方法和光传输系统
US10110318B2 (en) * 2015-02-19 2018-10-23 Elenion Technologies, Llc Optical delay lines for electrical skew compensation
US9882653B2 (en) * 2015-04-10 2018-01-30 Arista Networks, Inc. System and method of de-skewing electrical signals
EP3113367A1 (en) * 2015-07-03 2017-01-04 Rohde & Schwarz GmbH & Co. KG Delay line system, high frequency sampler, analog-to-digital converter and oscilloscope
US9998232B2 (en) 2016-09-13 2018-06-12 Juniper Networks, Inc. Detection and compensation of power imbalances for a transmitter
US10805009B2 (en) * 2016-09-30 2020-10-13 Mitsubishi Electric Corporation Optical modulation apparatus, and timing adjustment method for optical modulation apparatus
US10110320B2 (en) * 2017-03-17 2018-10-23 Juniper Networks, Inc. Method for monitoring and correction of adjacent channel penalty in coherent optical transmission
EP3506531A1 (en) * 2017-12-28 2019-07-03 Xieon Networks S.à r.l. A system and method for determining skew
JP6965946B2 (ja) * 2018-01-30 2021-11-10 日本電気株式会社 光トランシーバおよびその設定方法
CN110492941B (zh) * 2018-05-14 2021-01-29 华为技术有限公司 一种光信号收发装置
CN108768557B (zh) * 2018-05-23 2020-10-16 中国电子科技集团公司第五十四研究所 一种从宽带接收信号的频域中检测延时差的方法
CN112134624B (zh) * 2019-06-24 2021-06-01 西安电子科技大学 一种高效的微波光子信道化接收方法
JP7385386B2 (ja) * 2019-07-22 2023-11-22 京セラ株式会社 受電装置及び光ファイバー給電システム
JP7361549B2 (ja) 2019-09-18 2023-10-16 Kddi株式会社 受信装置及びプログラム
WO2022011613A1 (en) * 2020-07-15 2022-01-20 Huawei Technologies Co., Ltd. Self-calibrating device and method for in-phase and quadrature time skew and conjugation in a coherent transmitter
CN111917485A (zh) * 2020-08-10 2020-11-10 武汉普赛斯电子技术有限公司 基于线性光采样的强度调制光信号眼图测量装置及方法
CN116325675A (zh) * 2020-10-31 2023-06-23 华为技术有限公司 用于低复杂度符号率接收器的数字信号处理方法和装置
CN114915349A (zh) * 2021-02-09 2022-08-16 中兴通讯股份有限公司 相干检测方法、装置及光传输系统
CN113422749B (zh) * 2021-06-23 2022-06-17 河北经贸大学 基于laco-ofdm的可见光解调方法、装置、设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010028470A (ja) * 2008-07-18 2010-02-04 Nippon Telegr & Teleph Corp <Ntt> 受信装置、補償演算回路、および受信方法
JP2010226254A (ja) * 2009-03-19 2010-10-07 Nippon Telegr & Teleph Corp <Ntt> デジタル信号処理回路、及び光受信器
JP2011199687A (ja) * 2010-03-19 2011-10-06 Fujitsu Ltd デジタルコヒーレント受信器およびデジタルコヒーレント受信方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7460793B2 (en) * 2002-12-11 2008-12-02 Michael George Taylor Coherent optical detection and signal processing method and system
US7606498B1 (en) * 2005-10-21 2009-10-20 Nortel Networks Limited Carrier recovery in a coherent optical receiver
US8005368B2 (en) * 2007-12-05 2011-08-23 Ciena Corporation Signal equalizer in a coherent optical receiver
JP4872003B2 (ja) * 2008-02-22 2012-02-08 日本電信電話株式会社 光ofdm受信器および光伝送システムおよびサブキャリア分離回路およびサブキャリア分離方法
JP5326584B2 (ja) * 2009-01-09 2013-10-30 富士通株式会社 遅延処理装置,信号増幅装置,光電変換装置,アナログ/デジタル変換装置,受信装置および受信方法
JP5407403B2 (ja) * 2009-02-18 2014-02-05 富士通株式会社 信号処理装置および光受信装置
CN102396170A (zh) * 2009-04-16 2012-03-28 日本电气株式会社 检测并行信号之间时滞的方法和系统
JP5444877B2 (ja) * 2009-06-24 2014-03-19 富士通株式会社 デジタルコヒーレント受信器
WO2011145712A1 (ja) * 2010-05-21 2011-11-24 日本電気株式会社 コヒーレント光受信器、コヒーレント光受信器におけるチャネル間スキュー検出装置および検出方法
US8873971B2 (en) * 2010-10-11 2014-10-28 Nec Laboratories America, Inc. Nonlinear compensation using an enhanced backpropagation method with subbanding
US8626000B2 (en) * 2011-02-01 2014-01-07 Nec Corporation Coherent optical receiver, apparatus and method for detecting inter-channel skew in coherent optical receiver
US8725006B2 (en) * 2011-02-25 2014-05-13 Nec Laboratories America, Inc. Digital signal-to-signal beat noise reduction for filter-less coherent receiving system
US8774644B2 (en) * 2011-02-28 2014-07-08 Infinera Corporation PMD and chromatic dispersion tolerant clock recovery
CN102308546B (zh) * 2011-07-26 2013-12-04 华为技术有限公司 一种多载波光信号的接收方法和装置
CN102546026B (zh) * 2012-01-16 2015-01-28 中兴通讯股份有限公司 一种相干光接收机输出信号的偏斜检测方法和系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010028470A (ja) * 2008-07-18 2010-02-04 Nippon Telegr & Teleph Corp <Ntt> 受信装置、補償演算回路、および受信方法
JP2010226254A (ja) * 2009-03-19 2010-10-07 Nippon Telegr & Teleph Corp <Ntt> デジタル信号処理回路、及び光受信器
JP2011199687A (ja) * 2010-03-19 2011-10-06 Fujitsu Ltd デジタルコヒーレント受信器およびデジタルコヒーレント受信方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5842826B2 (ja) * 2010-12-21 2016-01-13 日本電気株式会社 コヒーレント光受信器、コヒーレント光受信器におけるレーン間スキュー検出装置および検出方法
JP2012238941A (ja) * 2011-05-10 2012-12-06 Nippon Telegr & Teleph Corp <Ntt> デジタルコヒーレント受信装置
CN103107853A (zh) * 2013-01-23 2013-05-15 河北四方通信设备有限公司 基于数字相干接收机的光通信系统及输出信号的处理方法
CN103107853B (zh) * 2013-01-23 2015-07-08 河北四方通信设备有限公司 基于数字相干接收机的光通信系统及输出信号的处理方法
JP2017195561A (ja) * 2016-04-22 2017-10-26 富士通株式会社 デジタル信号処理回路および複数のデジタル信号処理回路を含む信号処理装置
JP2018046552A (ja) * 2016-09-13 2018-03-22 富士通株式会社 残存直流成分の測定方法、装置及びシステム

Also Published As

Publication number Publication date
US8953953B2 (en) 2015-02-10
CN103339882A (zh) 2013-10-02
JP5029794B1 (ja) 2012-09-19
CN103339882B (zh) 2016-05-11
US20140140690A1 (en) 2014-05-22
US20120237202A1 (en) 2012-09-20
EP2672636A4 (en) 2017-07-05
JPWO2012105081A1 (ja) 2014-07-03
US8626000B2 (en) 2014-01-07
EP2672636A1 (en) 2013-12-11
EP2672636B1 (en) 2019-07-03
US20150098713A1 (en) 2015-04-09
US9088370B2 (en) 2015-07-21

Similar Documents

Publication Publication Date Title
JP5029794B1 (ja) コヒーレント光受信器、コヒーレント光受信器におけるチャネル間スキュー検出装置および検出方法
JP5527441B2 (ja) コヒーレント光受信器、コヒーレント光受信方法、コヒーレント光受信器におけるチャネル間スキュー検出装置および検出方法
US10530491B2 (en) Coherent optical receiver, device and method for detecting inter-lane skew in coherent optical receiver
US9716564B2 (en) Polarization tracking using signal tone information while keeping least mean squares frequency domain equalization
JP2015512189A (ja) コヒーレント光受信機における偏光多重分離のためのシステムおよび方法
EP3281313B1 (en) Polarization insensitive self-homodyne detection receiver
WO2015106494A1 (zh) 一种色度色散测量方法、装置及数字相干接收机
US11277207B1 (en) Apparatus and method for in-phase and quadrature skew calibration in a coherent transceiver
JP5890015B2 (ja) 位相変調された光信号を復調する方法
Ju et al. Calibration of in-phase/quadrature amplitude and phase response imbalance for coherent receiver
Pereira et al. Experimental analysis of the power auto-correlation-based chromatic dispersion estimation method
JP2013162182A (ja) 光信号品質測定方法、光信号品質測定回路、光受信装置及び光伝送システム
CN114448500A (zh) 相频响应测量方法和装置
Yoshida et al. Single-pixel IQ monitor via computational coherent reception with widely linear phase retrieval
Borkowski et al. Experimental demonstration of the maximum likelihood-based chromatic dispersion estimator for coherent receivers
JP5969661B1 (ja) 光送信装置及び光送受信システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180066636.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012517033

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13505199

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857687

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011857687

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE