WO2012105047A1 - 冷却装置 - Google Patents

冷却装置 Download PDF

Info

Publication number
WO2012105047A1
WO2012105047A1 PCT/JP2011/052387 JP2011052387W WO2012105047A1 WO 2012105047 A1 WO2012105047 A1 WO 2012105047A1 JP 2011052387 W JP2011052387 W JP 2011052387W WO 2012105047 A1 WO2012105047 A1 WO 2012105047A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
cooling
condenser
charger
passage
Prior art date
Application number
PCT/JP2011/052387
Other languages
English (en)
French (fr)
Inventor
悠樹 城島
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP11857535.6A priority Critical patent/EP2672200B1/en
Priority to JP2012555669A priority patent/JP5522275B2/ja
Priority to PCT/JP2011/052387 priority patent/WO2012105047A1/ja
Priority to US13/979,258 priority patent/US8893522B2/en
Priority to CN201180066498.6A priority patent/CN103370583B/zh
Publication of WO2012105047A1 publication Critical patent/WO2012105047A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20354Refrigerating circuit comprising a compressor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a cooling device, and more particularly to a cooling device that cools a charger for charging a storage battery using a vapor compression refrigeration cycle.
  • Patent Document 1 discloses a first cooling circuit that selectively or simultaneously cools an engine cylinder head and a drive motor, a second cooling circuit that cools an engine cylinder block, and a drive A hybrid vehicle cooling device is disclosed that includes a third cooling circuit that cools a high-power control unit that performs drive control of the motor.
  • Patent Document 1 a system for circulating cooling water between a heating element and a radiator is used like an ordinary vehicle that cools only an engine. System parts are cooled. In such a system, since it is necessary to newly provide a radiator for cooling the electric system parts, there is a problem that vehicle mountability is low.
  • Patent Document 2 discloses a heat exchanger that exchanges heat with air for air conditioning, a heat exchanger that exchanges heat with a heating element, in a refrigerant passage from an expansion valve to a compressor. , Are arranged in parallel, and a system for cooling a heating element using a refrigerant for an air conditioner is disclosed.
  • Patent Document 3 Japanese Patent Laying-Open No. 2005-90862 (Patent Document 3) is provided with a heating element cooling means for cooling a heating element in a bypass passage that bypasses a decompressor, an evaporator and a compressor of a refrigeration cycle for air conditioning.
  • a cooling system is disclosed.
  • Patent Document 4 the refrigerant of the refrigeration cycle device for vehicle air conditioning is recirculated to the cooling member of the inverter circuit unit that drives and controls the vehicle running motor, and cooling of the air-conditioned air flow is not required
  • Patent Document 5 Japanese Patent Application Laid-Open No. 4-275492
  • a charger that rectifies power from a power source and charges a battery is provided in an electric vehicle, and a coolant circulation path is provided so as to pass through the charger.
  • a cooling device that circulates a coolant in a coolant circulation path by a coolant pump is disclosed.
  • Patent Document 6 discloses an electric pump motor in which both ends of a circulation pipe for circulating a cooling fluid are connected to a main body case of a vehicle-mounted charger and the cooling fluid is circulated through the circulation pipe. And a device for providing a radiator for cooling the cooling fluid is disclosed.
  • the present invention has been made in view of the above-described problems, and a main object thereof is to provide a charger cooling device that can simplify the device configuration and reduce power consumption.
  • a cooling device is a cooling device that cools a charger for charging a storage battery by receiving power supplied from a power source, and includes a compressor for circulating a refrigerant and a condenser for condensing the refrigerant. And a decompressor for decompressing the refrigerant condensed by the condenser, an evaporator for evaporating the refrigerant decompressed by the decompressor, and a path of the refrigerant flowing from the condenser toward the evaporator, And a cooling unit for cooling the charger using the refrigerant from the condenser.
  • the charger may be in direct contact with the piping through which the refrigerant flows.
  • the cooling device may include a heat pipe disposed between the charger and a pipe through which the refrigerant flows.
  • the cooling unit is provided on a refrigerant path that circulates from the condenser toward the decompressor.
  • the cooling device may include another condenser provided on a refrigerant path that circulates from the cooling unit toward the decompressor.
  • the condenser has another heat dissipation capability for releasing heat from the refrigerant. It may be higher than the condenser.
  • the cooling device includes a first passage and a second passage arranged in parallel through which the refrigerant from the outlet of the condenser to the inlet of the decompressor flows, and the cooling unit is provided in the second passage. Good.
  • the cooling device may include a flow rate adjusting valve that is disposed in the first passage and adjusts the flow rate of the refrigerant flowing through the first passage and the flow rate of the refrigerant flowing through the second passage.
  • the cooling device includes a communication path that communicates a refrigerant path that circulates from the cooling section toward the decompressor and a refrigerant path that circulates from the compressor toward the condenser.
  • the cooling device may include a switching valve that switches between a refrigerant flow from the outlet of the cooling unit to the inlet of the decompressor and a refrigerant flow from the outlet of the cooling unit to the communication path.
  • the cooling unit may be disposed below the condenser.
  • the cooling unit includes an electric device arranged on the upstream side of the refrigerant flow with respect to the charger, and cools the electric device using the refrigerant from the condenser.
  • the device configuration can be simplified and power consumption can be reduced.
  • FIG. 2 is a schematic diagram illustrating a configuration of a cooling device according to Embodiment 1.
  • FIG. 2 is a Mollier diagram showing the state of the refrigerant in the vapor compression refrigeration cycle of Embodiment 1.
  • FIG. 6 is a schematic diagram illustrating a configuration of a cooling device according to Embodiment 2.
  • FIG. 6 is a Mollier diagram showing the state of the refrigerant in the vapor compression refrigeration cycle of Embodiment 2.
  • FIG. 6 is a schematic diagram illustrating a configuration of a cooling device according to Embodiment 3.
  • FIG. FIG. 6 is a schematic diagram illustrating a configuration of a cooling device according to a fourth embodiment.
  • FIG. 10 is a schematic diagram showing a refrigerant flow for cooling a charger during operation of the vapor compression refrigeration cycle of the fourth embodiment.
  • FIG. 10 is a schematic diagram showing a refrigerant flow for cooling a charger while the vapor compression refrigeration cycle of the fourth embodiment is stopped.
  • FIG. 10 is a schematic diagram illustrating a configuration of a cooling device according to a fifth embodiment.
  • FIG. 10 is a schematic diagram showing a refrigerant flow for cooling a charger during operation of the vapor compression refrigeration cycle of the fifth embodiment.
  • FIG. 10 is a schematic diagram showing a refrigerant flow for cooling a charger while the vapor compression refrigeration cycle of Embodiment 5 is stopped.
  • FIG. 10 is a schematic diagram illustrating a configuration of a cooling device according to a sixth embodiment.
  • FIG. 12 is a Mollier diagram showing the state of the refrigerant in the vapor compression refrigeration cycle of the sixth embodiment.
  • FIG. 10 is a schematic diagram illustrating a configuration of a cooling device according to a seventh embodiment. It is a figure which shows the outline of the opening degree control of a flow regulating valve.
  • FIG. 10 is a schematic diagram showing a refrigerant flow for cooling a charger during operation of the vapor compression refrigeration cycle of the seventh embodiment.
  • FIG. 10 is a schematic diagram showing a refrigerant flow for cooling a charger while the vapor compression refrigeration cycle of the seventh embodiment is stopped.
  • FIG. 1 is a schematic diagram illustrating a configuration of a cooling device 1 according to the first embodiment.
  • the cooling device 1 includes a vapor compression refrigeration cycle 10.
  • the vapor compression refrigeration cycle 10 is mounted on a vehicle, for example, to cool the inside of the vehicle.
  • the cooling using the vapor compression refrigeration cycle 10 is selected, for example, when the switch for performing the cooling is turned on or the automatic control mode for automatically adjusting the temperature in the vehicle interior to the set temperature is selected. This is performed when the temperature in the passenger compartment is higher than the set temperature.
  • the vapor compression refrigeration cycle 10 includes a compressor 12, a condenser 14, an expansion valve 16 as an example of a decompressor, and an evaporator 18.
  • the vapor compression refrigeration cycle 10 also includes a refrigerant passage 21 that communicates the compressor 12 and the condenser 14, a refrigerant passage 22 that communicates the condenser 14 and the expansion valve 16, and the expansion valve 16 and the evaporator 18.
  • a refrigerant passage 23 that communicates with each other, and a refrigerant passage 24 that communicates between the evaporator 18 and the compressor 12 are included.
  • the vapor compression refrigeration cycle 10 includes a compressor 12, a condenser 14, an expansion valve 16, and an evaporator 18 connected by refrigerant passages 21-24.
  • the compressor 12 operates with a motor or engine mounted on the vehicle as a power source, and compresses the refrigerant gas in an adiabatic manner to form an overheated refrigerant gas.
  • the compressor 12 sucks and compresses the gas-phase refrigerant flowing from the evaporator 18 via the refrigerant passage 24 during operation, and discharges it to the refrigerant passage 21.
  • the compressor 12 circulates the refrigerant in the vapor compression refrigeration cycle 10 by discharging the refrigerant into the refrigerant passage 21.
  • the condenser 14 dissipates the superheated refrigerant gas compressed in the compressor 12 isothermally to an external medium to obtain a refrigerant liquid.
  • the gas-phase refrigerant discharged from the compressor 12 is condensed (liquefied) by releasing heat to the surroundings in the condenser 14 and being cooled.
  • the condenser 14 includes a tube through which the refrigerant flows, and fins for exchanging heat between the refrigerant flowing through the tube and the air around the condenser 14.
  • the condenser 14 performs heat exchange between the cooling air supplied by natural ventilation generated by traveling of the vehicle and the refrigerant. By the heat exchange in the condenser 14, the temperature of the refrigerant is lowered and the refrigerant is liquefied.
  • the expansion valve 16 expands by injecting a high-pressure liquid refrigerant flowing through the refrigerant passage 22 from a small hole, and changes it into a low-temperature / low-pressure mist refrigerant.
  • the expansion valve 16 depressurizes the refrigerant liquid condensed by the condenser 14 to obtain wet vapor in a gas-liquid mixed state.
  • the decompressor for decompressing the refrigerant liquid flowing through the coolant passage 22 is not limited to the expansion valve 16 that is squeezed and expanded, and may be a capillary tube.
  • the evaporator 18 absorbs the heat of ambient air introduced so as to come into contact with the evaporator 18 by vaporizing the mist refrigerant flowing through the evaporator 18.
  • the evaporator 18 uses the refrigerant decompressed by the expansion valve 16 to absorb the heat of vaporization when the vapor of the refrigerant evaporates into the refrigerant gas from the air in the vehicle interior as the part to be cooled, Cool the interior of the vehicle.
  • the air whose temperature has been lowered by the heat absorbed by the evaporator 18 is returned to the vehicle interior, thereby cooling the vehicle interior.
  • the refrigerant absorbs heat from the surroundings in the evaporator 18 and is heated.
  • the evaporator 18 includes a tube through which the refrigerant flows, and fins for exchanging heat between the refrigerant flowing through the tube and the air around the evaporator 18.
  • a wet steam refrigerant circulates in the tube. When the refrigerant circulates in the tube, it evaporates by absorbing the heat of the air in the vehicle interior as latent heat of evaporation via the fins, and further becomes superheated steam by sensible heat.
  • the vaporized refrigerant flows to the compressor 12 via the refrigerant passage 24.
  • the compressor 12 compresses the refrigerant flowing from the evaporator 18.
  • the refrigerant passage 21 is a passage for circulating the refrigerant from the compressor 12 to the condenser 14.
  • the refrigerant flows from the outlet of the compressor 12 toward the inlet of the condenser 14 via the refrigerant passage 21.
  • the refrigerant passage 22 is a passage for circulating the refrigerant from the condenser 14 to the expansion valve 16.
  • the refrigerant flows from the outlet of the condenser 14 toward the inlet of the expansion valve 16 via the refrigerant passage 22.
  • the refrigerant passage 23 is a passage for circulating the refrigerant from the expansion valve 16 to the evaporator 18.
  • the refrigerant flows from the outlet of the expansion valve 16 toward the inlet of the evaporator 18 via the refrigerant passage 23.
  • the refrigerant passage 24 is a passage for circulating the refrigerant from the evaporator 18 to the compressor 12.
  • the refrigerant flows from the outlet of the evaporator 18 toward the inlet of the compressor 12 via the refrigerant passage 24.
  • the refrigerant flows through the vapor compression refrigeration cycle 10 through the points A, B, C, D, E, and F shown in FIG. 1 in order, and the compressor 12, the condenser 14, and the expansion valve
  • the refrigerant circulates between the refrigerant and the evaporator 18.
  • the refrigerant circulates in the vapor compression refrigeration cycle 10 through a refrigerant circulation passage in which the compressor 12, the condenser 14, the expansion valve 16 and the evaporator 18 are sequentially connected by refrigerant passages 21 to 24.
  • the refrigerant of the vapor compression refrigeration cycle 10 for example, carbon dioxide, hydrocarbons such as propane and isobutane, ammonia or water can be used.
  • a cooling unit 80 is provided in the refrigerant passage 23 through which the refrigerant flowing from the expansion valve 16 toward the evaporator 18 flows.
  • the cooling unit 80 is provided on a refrigerant path that circulates from the expansion valve 16 toward the evaporator 18. Since the cooling unit 80 is provided, the refrigerant passage 23 includes the refrigerant passage 23a on the upstream side (side closer to the expansion valve 16) than the cooling unit 80 and the downstream side (side closer to the evaporator 18) than the cooling unit 80. ) Refrigerant passage 23b.
  • the cooling unit 80 cools the charger 71 using the low-temperature and low-pressure refrigerant that has been discharged from the condenser 14 and decompressed by the expansion valve 16.
  • the cooling unit 80 includes an HV (Hybrid Vehicle) device heat source 30 which is an electric device mounted on the vehicle, a charger 71, and a cooling passage 81 which is a pipe through which a refrigerant flows.
  • the HV equipment heat source 30 and the charger 71 are examples of heat generation sources.
  • the refrigerant flowing out of the expansion valve 16 and flowing through the refrigerant passage 23a flows through the cooling passage 81 and reaches the evaporator 18 through the refrigerant passage 23b.
  • the upstream end of the cooling passage 81 is connected to the refrigerant passage 23a.
  • the downstream end of the cooling passage 81 is connected to the refrigerant passage 23b.
  • the refrigerant passage 23 a is a passage through which the refrigerant flows from the expansion valve 16 to the cooling unit 80.
  • the refrigerant passage 23 b is a passage through which the refrigerant flows from the cooling unit 80 to the evaporator 18. The refrigerant flows from the expansion valve 16 toward the cooling unit 80 via the refrigerant passage 23a, and flows from the cooling unit 80 toward the evaporator 18 via the refrigerant passage 23b.
  • the refrigerant that flows from the condenser 14 to the cooling unit 80 via the expansion valve 16 and flows via the cooling passage 81 takes heat from the HV equipment heat source 30 and the charger 71, and the HV equipment heat source 30 and the charger. 71 is cooled.
  • the cooling unit 80 is provided so as to have a structure capable of exchanging heat between the HV equipment heat source 30 and the charger 71 and the refrigerant through the cooling passage 81.
  • cooling unit 80 has cooling passage 81 formed so that the outer peripheral surface of cooling passage 81 directly contacts the housing of HV equipment heat source 30 and charger 71, for example.
  • the cooling passage 81 has portions adjacent to the respective housings of the HV equipment heat source 30 and the charger 71. In this part, heat exchange is possible between the refrigerant flowing through the cooling passage 81 and the HV equipment heat source 30 and the charger 71.
  • the HV equipment heat source 30 includes an electrical equipment that generates heat when power is transferred.
  • the electrical equipment includes, for example, an inverter for converting DC power into AC power, a motor generator that is a rotating electrical machine, a battery that is a power storage device, a converter that boosts the voltage of the battery, and a DC that steps down the voltage of the battery. Including at least one of DC / DC converters and the like.
  • the battery is a secondary battery such as a lithium ion battery or a nickel metal hydride battery. A capacitor may be used instead of the battery.
  • the charger 71 is electrically connected to a chargeable / dischargeable storage battery 72 via a wiring 73.
  • the charger 71 includes a switching element for power conversion, and converts power supplied from an external power source into a predetermined charging voltage (direct current).
  • the electric power converted in voltage by the charger 71 is supplied to the storage battery 72, and the storage battery 72 is charged.
  • FIG. 2 is a Mollier diagram showing the state of the refrigerant in the vapor compression refrigeration cycle 10 of the first embodiment.
  • the horizontal axis in FIG. 2 represents the specific enthalpy (unit: kJ / kg) of the refrigerant, and the vertical axis represents the absolute pressure (unit: MPa) of the refrigerant.
  • the curves in the figure are the saturated vapor line and saturated liquid line of the refrigerant.
  • the compressor 12 flows into the refrigerant passage 23a via the condenser 14 and the expansion valve 16, cools the HV equipment heat source 30 and the charger 71, and passes through the evaporator 18 from the refrigerant passage 23b.
  • the thermodynamic state of the refrigerant at each point namely, points A, B, C, D, E and F
  • the superheated vapor refrigerant (point A) sucked into the compressor 12 is adiabatically compressed in the compressor 12 along the isoentropic line.
  • the pressure and temperature of the refrigerant increase, and the refrigerant becomes superheated steam with a high temperature and high superheat degree (point B), and the refrigerant flows to the condenser 14.
  • the high-pressure refrigerant vapor that has entered the condenser 14 is cooled in the condenser 14 and becomes dry saturated vapor from the superheated vapor while maintaining the constant pressure, releases the latent heat of condensation, gradually liquefies, and becomes wet vapor in a gas-liquid mixed state.
  • point C When all of the refrigerant condenses, it becomes a saturated liquid, and further releases sensible heat to become a supercooled liquid
  • the refrigerant flows into the expansion valve 16.
  • the refrigerant in the supercooled liquid state is squeezed and expanded, the specific enthalpy does not change, the temperature and pressure are reduced, and the low temperature and low pressure gas-liquid mixed vapor is obtained (point D).
  • the wet steam refrigerant that has flowed out of the expansion valve 16 flows into the cooling passage 81 of the cooling unit 80 via the refrigerant passage 23a, and cools the HV equipment heat source 30 and the charger 71.
  • the heat exchange between the HV equipment heat source 30 and the charger 71 reduces the dryness of the refrigerant. That is, in the wet steam state which is a two-phase flow in which the saturated liquid and the dry saturated steam are mixed, the saturated liquid evaporates and decreases, and the vaporized saturated liquid becomes the dry saturated steam, so that the dry saturated steam is increased. .
  • a part of the refrigerant evaporates by cooling the HV equipment heat source 30 (point E), and a part of the refrigerant evaporates further by cooling the charger 71 (point F).
  • the refrigerant absorbs heat from the outside in the evaporator 18 and evaporates while maintaining the equal pressure by the latent heat of vaporization.
  • the refrigerant vapor further rises in temperature due to sensible heat, becomes superheated vapor (point A), and is sucked into the compressor 12.
  • the refrigerant continuously repeats the compression, condensation, throttle expansion, and evaporation state changes.
  • the refrigerant absorbs heat of vaporization from the air in the vehicle interior in the evaporator 18 to cool the interior of the vehicle interior.
  • the refrigerant cools the HV equipment heat source 30 and the charger 71 by exchanging heat with the HV equipment heat source 30 and the charger 71.
  • the cooling device 1 cools the HV equipment heat source 30 and the charger 71, which are heat sources mounted on the vehicle, using the vapor compression refrigeration cycle 10 for air conditioning in the vehicle interior.
  • the temperature required for cooling the HV equipment heat source 30 and the charger 71 is at least lower than the upper limit value of the target temperature range as the temperature range of the HV equipment heat source 30 and the charger 71. Is desirable.
  • the charger 71 is cooled using the vapor compression refrigeration cycle 10 provided for cooling the cooled portion in the evaporator 18.
  • a device such as a dedicated water circulation pump or a cooling fan. Therefore, the configuration necessary for the cooling device 1 of the charger 71 can be reduced and the device configuration can be simplified, so that the manufacturing cost of the cooling device 1 can be reduced.
  • it is not necessary to operate a power source such as a pump or a cooling fan for cooling the charger 71 and power consumption for operating the power source is not required. Therefore, power consumption for cooling the charger 71 can be reduced.
  • the charger 71 is directly connected to the outer peripheral surface of the cooling passage 81 that forms part of the refrigerant path from the condenser 14 to the evaporator 18 of the vapor compression refrigeration cycle 10 to be cooled. Since the charger 71 is disposed outside the cooling passage 81, the charger 71 does not interfere with the flow of the refrigerant flowing inside the cooling passage 81. Therefore, since the pressure loss of the vapor compression refrigeration cycle 10 does not increase, the charger 71 can be cooled without increasing the power of the compressor 12.
  • the HV equipment heat source 30 is disposed on the upstream side of the refrigerant flow, and the charger 71 is disposed on the downstream side.
  • the HV equipment heat source 30 is arranged on the upstream side of the refrigerant flow with respect to the charger 71.
  • the refrigerant is heated by sequentially receiving heat from the HV equipment heat source 30 and the charger 71.
  • the charger 71 is cooled by the refrigerant after being heated by exchanging heat with the HV equipment heat source 30.
  • the dryness of the refrigerant that cools the HV equipment heat source 30 is compared with the dryness of the refrigerant that cools the charger 71, the dryness of the refrigerant that cools the charger 71 arranged on the downstream side is larger. It has become.
  • the charger 71 is arranged on the downstream side with respect to the HV equipment heat source 30, the heat dissipating ability of the refrigerant for cooling the HV equipment heat source 30 becomes relatively high, and the HV equipment heat source 30 can be cooled more reliably. .
  • the HV equipment heat source 30 is necessary for driving the vehicle. If the HV equipment heat source 30 breaks down due to insufficient cooling, the vehicle cannot be operated. If the HV equipment heat source 30 that requires further cooling is arranged upstream to ensure cooling, the HV equipment heat source 30 is more broken when the refrigerant is vaporized for some reason and the cooling capacity is reduced. Can be difficult. Therefore, the reliability of the vehicle can be improved.
  • FIG. 3 is a schematic diagram illustrating a configuration of the cooling device 1 according to the second embodiment.
  • the cooling unit 80 is provided in the refrigerant passage 23 between the expansion valve 16 and the evaporator 18, whereas in the cooling device 1 of the second embodiment, the condenser 14 is directed to the expansion valve 16.
  • a cooling unit 80 is provided on the refrigerant passage 22 that is a refrigerant path that circulates. Since the cooling unit 80 is provided, the refrigerant passage 22 includes a refrigerant passage 22a upstream of the cooling unit 80 (side closer to the condenser 14) and a downstream side of the cooling unit 80 (side closer to the expansion valve 16). ) Refrigerant passage 22b.
  • FIG. 4 is a Mollier diagram showing the state of the refrigerant in the vapor compression refrigeration cycle of the second embodiment.
  • the horizontal axis in FIG. 4 indicates the specific enthalpy (unit: kJ / kg) of the refrigerant, and the vertical axis indicates the absolute pressure (unit: MPa) of the refrigerant.
  • the curves in the figure are the saturated vapor line and saturated liquid line of the refrigerant. 4 shows the thermodynamic state of the refrigerant at each point (that is, points A, B, G, H, I, and J) in the vapor compression refrigeration cycle 10 shown in FIG.
  • the superheated vapor refrigerant (point A) sucked into the compressor 12 is adiabatically compressed along the isentropic line in the compressor 12.
  • the pressure and temperature of the refrigerant increase, and the refrigerant becomes superheated steam with a high temperature and high superheat degree (point B), and the refrigerant flows to the condenser 14.
  • the high-pressure refrigerant vapor that has entered the condenser 14 is cooled in the condenser 14 and becomes dry saturated vapor from the superheated vapor while maintaining the constant pressure, releases the latent heat of condensation, gradually liquefies, and becomes wet vapor in a gas-liquid mixed state.
  • point G When all of the refrigerant condenses, it becomes a saturated liquid and further releases sensible heat to become a supercooled liquid
  • the liquefied refrigerant flows from the point G via the refrigerant passage 22a to the cooling passage 81 of the cooling unit 80, and cools the HV equipment heat source 30 and the charger 71. Due to heat exchange with the HV equipment heat source 30, the degree of supercooling of the refrigerant decreases, and the temperature of the refrigerant in the supercooled liquid state rises (point H). Thereafter, due to heat exchange with the charger 71, the degree of supercooling of the refrigerant further decreases and approaches the saturation temperature of the liquid refrigerant (point I).
  • the refrigerant flows into the expansion valve 16.
  • the expansion valve 16 the refrigerant in the supercooled liquid state is squeezed and expanded, the specific enthalpy does not change, the temperature and pressure are reduced, and the low-temperature and low-pressure gas-liquid mixed steam is obtained (point J).
  • the wet vapor refrigerant that has flowed out of the expansion valve 16 absorbs heat from the outside and evaporates while maintaining the equal pressure by the latent heat of vaporization. When all the refrigerant is dry and becomes saturated vapor, the refrigerant vapor further rises in temperature due to sensible heat, becomes superheated vapor (point A), and is sucked into the compressor 12.
  • the refrigerant is cooled in the condenser 14 until it becomes supercooled liquid, and is heated to a temperature slightly lower than the saturation temperature by receiving sensible heat from the HV equipment heat source 30 and the charger 71. Thereafter, the refrigerant passes through the expansion valve 16 so that the refrigerant becomes low-temperature and low-pressure wet steam. At the outlet of the expansion valve 16, the refrigerant has the temperature and pressure originally required for cooling the interior of the vehicle.
  • the condenser 14 has a heat dissipating capacity so that the refrigerant can be sufficiently cooled.
  • the cooling device 1 of the present embodiment When the low-temperature and low-pressure refrigerant after passing through the expansion valve 16 is used for cooling the charger 71, the cooling capacity of the air in the passenger compartment in the evaporator 18 decreases, and the cooling capacity for the passenger compartment decreases.
  • the refrigerant is cooled to a sufficiently supercooled state in the condenser 14, and the high-pressure refrigerant at the outlet of the condenser 14 is used for cooling the charger 71. Therefore, the charger 71 can be cooled without affecting the cooling capability of cooling the air in the passenger compartment.
  • the specification of the condenser 14 (that is, the size or heat dissipation performance of the condenser 14) is such that the temperature of the liquid-phase refrigerant after passing through the condenser 14 is lower than the temperature required for cooling the passenger compartment. Determined.
  • the specification of the condenser 14 is the amount of heat that the refrigerant is assumed to receive from the HV equipment heat source 30 and the charger 71 than the condenser of the vapor compression refrigeration cycle when the HV equipment heat source 30 and the charger 71 are not cooled. It is determined to have a large heat dissipation amount.
  • the cooling device 1 including the condenser 14 having such a specification can appropriately cool the charger 71 without increasing the power of the compressor 12 while maintaining the cooling performance in the interior of the vehicle.
  • FIG. 5 is a schematic diagram illustrating a configuration of the cooling device 1 according to the third embodiment.
  • the charger 71 is in direct contact with the cooling passage 81 through which the refrigerant flows.
  • the cooling device 1 according to the third embodiment is provided between the charger 71 and the cooling passage 81.
  • a heat pipe 82 is provided.
  • the heat pipe 82 may be any known heat pipe such as a wick type, a thermosiphon type, or a self-excited vibration type.
  • the charger 71 is connected to an outer peripheral surface of a cooling passage 81 that forms part of a refrigerant path from the condenser 14 to the evaporator 18 of the vapor compression refrigeration cycle 10 via a heat pipe 82.
  • the heat is transferred to the cooling passage 81 via the heat pipe 82 to be cooled. Since the charger 71 is disposed outside the cooling passage 81, the charger 71 does not interfere with the flow of the refrigerant flowing inside the cooling passage 81. Therefore, since the pressure loss of the vapor compression refrigeration cycle 10 does not increase, the charger 71 can be cooled without increasing the power of the compressor 12.
  • the heat transfer efficiency between the cooling passage 81 and the charger 71 can be improved.
  • Efficiency can be improved.
  • a wick-type heat pipe 82 can be used. Since heat can be reliably transferred from the charger 71 to the cooling passage 81 by the heat pipe 82, there may be a distance between the charger 71 and the cooling passage 81, and the cooling passage 81 is brought into contact with the charger 71. Therefore, it is not necessary to arrange the cooling passage 81 in a complicated manner. As a result, the degree of freedom of arrangement of the charger 71 can be improved.
  • FIG. 6 is a schematic diagram illustrating a configuration of the cooling device 1 according to the fourth embodiment.
  • the cooling device 1 according to the fourth embodiment is provided with a communication passage 51 that connects the refrigerant passages 22b and 22c on the downstream side of the cooling unit 80 and the refrigerant passage 21 on the upstream side of the condenser 14 with respect to the third embodiment. Is different.
  • the communication path 51 communicates the refrigerant path flowing from the outlet of the cooling unit 80 toward the inlet of the expansion valve 16 and the refrigerant path flowing from the outlet of the compressor 12 toward the inlet of the condenser 14. .
  • the refrigerant flows from the refrigerant passage 22 b at the outlet of the cooling unit 80 to the inlet of the expansion valve 16 via the refrigerant passage 22 c and from the refrigerant passage 22 b at the outlet of the cooling unit 80 to the communication passage 51.
  • a switching valve 52 that switches between the flow of the refrigerant is provided.
  • the switching valve 52 of the present embodiment is an on-off valve 56.
  • the communication path 51 is divided into a communication path 51 a upstream of the on-off valve 56 and a communication path 51 b downstream of the on-off valve 56.
  • the refrigerant flowing through the refrigerant passage 22b after cooling the charger 71 can be circulated to the expansion valve 16 via the refrigerant passage 22c, or the communication passage. It is possible to circulate to the condenser 14 via 51.
  • the on-off valve 56 which is an example of the switching valve 52
  • the refrigerant after cooling the charger 71 is passed through the refrigerant passages 32b and 22 to the expansion valve 16 or connected. Any of the paths to the condenser 14 via the passage 51 and the refrigerant passage 21 can be arbitrarily selected and distributed.
  • FIG. 7 is a schematic diagram showing the flow of the refrigerant that cools the charger 71 during the operation of the vapor compression refrigeration cycle 10 of the fourth embodiment.
  • the refrigerant that has flowed through the cooling unit 80 and cooled the charger 71 is expanded via the refrigerant passages 22b and 22c.
  • the on-off valve 56 is fully closed (valve opening degree 0%) so that the refrigerant flows into the valve 16 and does not flow into the communication path 51. Since the refrigerant path is selected so that the refrigerant flows through the entire cooling device 1, the cooling capacity of the vapor compression refrigeration cycle 10 can be secured, and the charger 71 can be efficiently cooled.
  • FIG. 8 is a schematic diagram showing the flow of the refrigerant that cools the charger 71 while the vapor compression refrigeration cycle 10 of the fourth embodiment is stopped.
  • the on-off valve 56 is fully opened (valve open) so that the refrigerant is circulated from the cooling unit 80 to the condenser 14.
  • the expansion valve 16 is fully closed (valve opening degree 0%).
  • the refrigerant can be circulated between the condenser 14 and the cooling unit 80 via the annular path without operating the compressor 12.
  • the refrigerant receives evaporation latent heat from the charger 71 and evaporates.
  • the refrigerant vapor evaporated by the charger 71 flows to the condenser 14 through the refrigerant passage 22a, the communication passage 51, and the refrigerant passage 21b in this order.
  • the refrigerant vapor is cooled and condensed by natural ventilation or forced ventilation from a cooling fan such as a radiator fan for engine cooling.
  • the refrigerant liquid liquefied by the condenser 14 returns to the cooling unit 80 via the refrigerant passage 22a.
  • a heat pipe having the charger 71 as a heating unit and the condenser 14 as a cooling unit is formed by an annular path passing through the charger 71 and the condenser 14. Therefore, even when the vapor compression refrigeration cycle 10 is stopped, that is, when cooling for the vehicle is stopped, the refrigerant is naturally circulated without the need to start the compressor 12, and the charger 71 is reliably cooled. can do. Since it is not necessary to always operate the compressor 12 for cooling the charger 71, the power consumption of the compressor 12 can be reduced. In addition, the life of the compressor 12 can be extended, so Reliability can be improved.
  • the cooling unit 80 is disposed below the condenser 14.
  • the charger 71 is disposed below and the condenser 14 is disposed above.
  • the condenser 14 is arranged at a position higher than the charger 71.
  • the refrigerant vapor heated and vaporized by the charger 71 ascends in the annular path and reaches the condenser 14, is cooled in the condenser 14, is condensed and becomes a liquid refrigerant, and becomes annular due to the action of gravity. It goes down in the route and returns to the charger 71. That is, a thermosiphon heat pipe is formed by the charger 71, the condenser 14, and the refrigerant path connecting them. Since the heat transfer efficiency from the charger 71 to the condenser 14 can be improved by forming the heat pipe, the charger can be used without applying power even when the vapor compression refrigeration cycle 10 is stopped. 71 can be cooled more efficiently.
  • FIG. 9 is a schematic diagram illustrating a configuration of the cooling device 1 according to the fifth embodiment.
  • FIG. 10 is a schematic diagram showing the flow of the refrigerant that cools the charger 71 during the operation of the vapor compression refrigeration cycle 10 of the fifth embodiment.
  • FIG. 11 is a schematic diagram illustrating the flow of the refrigerant that cools the charger 71 while the vapor compression refrigeration cycle 10 according to the fifth embodiment is stopped.
  • the cooling device 1 of the fifth embodiment is different in that it further includes a three-way valve 53 constituting the switching valve 52.
  • the three-way valve 53 is disposed at a branch point between the refrigerant passage 22 and the communication passage 51, and switches the communication state of the refrigerant passage 22b, the refrigerant passage 22c, and the communication passage 51a.
  • the on-off valve 56 When the vapor compression refrigeration cycle 10 is in operation, the on-off valve 56 is fully closed (valve opening degree 0%), while the three-way valve 53 connects the refrigerant passage 22b and the refrigerant passage 22c to each other, and the communication passage 51a. And the refrigerant passages 22b and 22c are operated so as not to communicate with each other. Thus, the refrigerant that has flowed through the cooling unit 80 and cooled the charger 71 is set to flow through the refrigerant passages 22 b and 22 c to the expansion valve 16 and no refrigerant flows through the communication passage 51.
  • the on-off valve 56 When the vapor compression refrigeration cycle 10 is stopped, the on-off valve 56 is fully opened (valve opening degree 100%), while the three-way valve 53 communicates the refrigerant passage 22b and the communication passage 51a with the refrigerant passage 22c.
  • the refrigerant passage 22b and the communication passage 51a are operated so as not to communicate with each other.
  • the refrigerant that has flowed through the cooling unit 80 and cooled the charger 71 is set so as to circulate from the cooling unit 80 to the condenser 14 and not flow into the refrigerant passage 22c.
  • the condenser 14 By circulating the refrigerant through the communication path 51, the condenser 14 reaches the cooling unit 80 via the refrigerant path 22a, and further passes through the refrigerant path 22b, the communication paths 51a and 51b, and the refrigerant path 21b in this order. A closed annular path is formed back to the condenser 14.
  • the flow of the refrigerant circulating from the outlet of the cooling unit 80 toward the communication path 51 to the condenser 14 can be switched more reliably.
  • FIG. 12 is a schematic diagram illustrating a configuration of the cooling device 1 according to the sixth embodiment.
  • the cooling device 1 according to the sixth embodiment is different from the condenser 14 on the refrigerant passage 22 that connects the condenser 14 and the expansion valve 16 and serves as a refrigerant path that circulates from the cooling unit 80 toward the expansion valve 16.
  • This is different from the fifth embodiment in that a condenser 15 as another condenser is arranged.
  • the cooling device 1 of Embodiment 6 includes a condenser 14 as a first condenser and a condenser 15 as a second condenser. Since the cooling unit 80, the three-way valve 53, and the condenser 15 are provided between the condenser 14 and the expansion valve 16, the refrigerant passage 22 is upstream of the cooling unit (the side closer to the condenser 14). 22a, a refrigerant passage 22b that connects the cooling unit 80 and the three-way valve 53, a refrigerant passage 22c that connects the three-way valve 53 and the condenser 15, and a downstream side (side closer to the expansion valve 16) than the condenser 15 ) Refrigerant passage 22d. In the vapor compression refrigeration cycle 10, the high-pressure refrigerant discharged from the compressor 12 is condensed by both the condenser 14 and the condenser 15.
  • FIG. 13 is a Mollier diagram showing the state of the refrigerant in the vapor compression refrigeration cycle 10 of the sixth embodiment.
  • the horizontal axis in FIG. 13 indicates the specific enthalpy (unit: kJ / kg) of the refrigerant, and the vertical axis indicates the absolute pressure (unit: MPa) of the refrigerant.
  • the curves in the figure are the saturated vapor line and saturated liquid line of the refrigerant.
  • FIG. 13 shows the thermodynamic state of the refrigerant at each point (that is, points A, B, G, H, I, K, and J) in the vapor compression refrigeration cycle 10 shown in FIG.
  • the Mollier diagram showing the vapor compression refrigeration cycle 10 of the sixth embodiment is the same as the Mollier diagram of the second embodiment shown in FIG. 4 except for the system from the condenser 14 to the expansion valve 16. That is, the state of the refrigerant from point I to point J through point A and point B through point A in the Mollier diagram shown in FIG. 4, and from point K to point J and point A in the Mollier diagram shown in FIG. The state of the refrigerant reaching point B is the same. Therefore, the state of the refrigerant from the B point to the K point, which is unique to the vapor compression refrigeration cycle 10 of the sixth embodiment, will be described below.
  • the high-temperature and high-pressure superheated steam refrigerant (point B) that is adiabatically compressed by the compressor 12 is cooled in the condenser 14.
  • Refrigerant releases sensible heat at the same pressure and turns from superheated steam to saturated steam, releases latent heat of condensation and gradually liquefies into wet vapor in a gas-liquid mixed state, and all of the refrigerant condenses and saturates. Become liquid (point G).
  • the HV equipment heat source 30 is cooled by releasing heat to the liquid refrigerant condensed through the condenser 14.
  • the heat exchange with the HV equipment heat source 30 heats the refrigerant and increases the dryness of the refrigerant.
  • the refrigerant receives the latent heat from the HV equipment heat source 30 and partially vaporizes to become wet steam in which the saturated liquid and saturated steam are mixed (point H). Thereafter, the refrigerant is further heated by heat exchange with the charger 71, and the dryness is further increased (point I).
  • the charger 71 is cooled by releasing latent heat to the refrigerant.
  • the refrigerant flows into the condenser 15 via the refrigerant passages 22b and 22c.
  • the wet steam of the refrigerant is condensed again in the condenser 15, and when all of the refrigerant is condensed, it becomes a saturated liquid, and further becomes a supercooled liquid that releases sensible heat and is supercooled (point K).
  • the refrigerant passes through the expansion valve 16 so that the refrigerant becomes a low-temperature and low-pressure wet steam (point J).
  • the refrigerant By sufficiently cooling the refrigerant in the condenser 15, at the outlet of the expansion valve 16, the refrigerant has a temperature and pressure originally required for cooling the vehicle interior. Therefore, the amount of heat received from the outside when the refrigerant evaporates in the evaporator 18 can be sufficiently increased.
  • the charger 71 can be cooled without affecting the cooling capability of cooling the air in the passenger compartment. Therefore, both the cooling capacity of the charger 71 and the cooling capacity for the passenger compartment can be reliably ensured.
  • a condenser 14 is disposed between the compressor 12 and the expansion valve 16, and the refrigerant is further cooled from the saturated liquid state in the condenser 14, so that the refrigerant is a predetermined amount. It was necessary to cool until it had a degree of supercooling. When the refrigerant in the supercooled liquid state is cooled, the temperature of the refrigerant approaches the atmospheric temperature and the cooling efficiency of the refrigerant decreases, so the capacity of the condenser 14 needs to be increased. As a result, there is a problem that the size of the condenser 14 increases, which is disadvantageous as the in-vehicle cooling device 1.
  • the condenser 14 is downsized for mounting on a vehicle, the heat dissipation capability of the condenser 14 is also reduced. As a result, the temperature of the refrigerant at the outlet of the expansion valve 16 cannot be lowered sufficiently, and cooling for the passenger compartment is performed. There is a risk of lack of ability.
  • the two-stage condensers 14 and 15 are arranged between the compressor 12 and the expansion valve 16, and a cooling unit that is a cooling system of the charger 71. 80 is provided between the condenser 14 and the condenser 15.
  • the refrigerant may be cooled to a saturated liquid state.
  • the refrigerant in the state of wet steam that has received the latent heat of vaporization from the charger 71 and partially vaporized is cooled again by the condenser 15.
  • the refrigerant changes its state at a constant temperature until the wet vapor state refrigerant is condensed and completely saturated.
  • the condenser 15 further cools the refrigerant to a degree of supercooling necessary for cooling the vehicle interior. Therefore, compared with Embodiment 1, it is not necessary to increase the degree of supercooling of the refrigerant, and the capacities of the condensers 14 and 15 can be reduced. Therefore, the size of the condensers 14 and 15 can be reduced, and the cooling device 1 that is downsized and advantageous for in-vehicle use can be obtained.
  • the refrigerant flowing from the condenser 14 to the cooling unit 80 via the refrigerant passage 22 receives heat from the charger 71 and is heated when the charger 71 is cooled.
  • the amount of heat exchange between the refrigerant and the charger 71 is reduced, so that the charger 71 cannot be cooled efficiently, and the refrigerant flows through the pipe.
  • the pressure loss increases. For this reason, it is desirable that the refrigerant is sufficiently cooled in the condenser 14 to such an extent that the refrigerant after the charger 71 is cooled is not made dry steam.
  • the state of the refrigerant at the outlet of the condenser 14 is brought close to the saturated liquid, and typically, the refrigerant is on the saturated liquid line at the outlet of the condenser 14.
  • the condenser 14 having the ability to sufficiently cool the refrigerant in this way, the heat dissipating ability for releasing heat from the refrigerant of the condenser 14 becomes higher than the heat dissipating ability of the condenser 15.
  • the refrigerant that has received heat from the charger 71 can be kept in a wet steam state, and the amount of heat exchange between the refrigerant and the charger 71. Therefore, the charger 71 can be cooled sufficiently efficiently.
  • the refrigerant in the state of wet steam after cooling the charger 71 is efficiently cooled again in the condenser 15 and is cooled to a state of supercooled liquid that is slightly below the saturation temperature. Therefore, it is possible to provide the cooling device 1 that ensures both the cooling capacity for the passenger compartment and the cooling capacity of the charger 71.
  • FIG. 14 is a schematic diagram illustrating a configuration of the cooling device 1 according to the seventh embodiment.
  • the refrigerant passage 22 through which the refrigerant flowing from the outlet of the condenser 14 toward the inlet of the expansion valve 16 includes a passage forming portion 26 as a first passage.
  • the passage forming unit 26 forms a part of the refrigerant passage 22.
  • the refrigerant passage 22 between the condenser 14 and the expansion valve 16 includes a refrigerant passage 22a upstream of the passage formation portion 26 (side closer to the condenser 14), a passage formation portion 26, and a passage formation portion 26.
  • the refrigerant passage 22c that reaches the condenser 15 is divided into a refrigerant passage 22d that is downstream of the condenser 15 (on the side close to the expansion valve 16).
  • the cooling device 1 includes a passage for another refrigerant as a second passage arranged in parallel with the passage formation portion 26.
  • the other refrigerant passages include refrigerant passages 31 and 32 and a cooling passage 81 of the cooling unit 80.
  • the cooling unit 80 is provided in the other refrigerant passage.
  • the refrigerant flowing through the refrigerant passages 31 and 32 flows through the cooling unit 80, takes heat from the HV equipment heat source 30 and the charger 71 as heat generation sources, and cools the HV equipment heat source 30 and the charger 71.
  • the refrigerant passage 31 is a passage for circulating the refrigerant from the refrigerant passage 22a to the cooling unit 80.
  • the refrigerant passage 32 is a passage for circulating the refrigerant from the cooling unit 80 to the refrigerant passage 22c.
  • the refrigerant flows from the refrigerant passage 22a toward the cooling unit 80 via the refrigerant passage 31, and flows from the cooling unit 80 toward the refrigerant passage 22c via the refrigerant passage 32.
  • the high-pressure liquid refrigerant coming out of the condenser 14 branches and a part of the refrigerant flows to the cooling unit 80.
  • Refrigerant passages 31 and 32 and cooling passages 81 that pass through the cooling unit 80 and passages that do not pass through the cooling unit 80 are passages through which refrigerant flows from the outlet of the condenser 14 to the inlet of the expansion valve 16.
  • the forming unit 26 is provided in parallel. Therefore, only a part of the refrigerant that has flowed out of the condenser 14 flows to the cooling unit 80.
  • an amount of refrigerant necessary for cooling the charger 71 is circulated through the refrigerant passages 31 and 32, and the charger 71 is appropriately cooled. Therefore, the charger 71 can be prevented from being overcooled.
  • the pressure loss related to the refrigerant flow in the refrigerant passages 31 and 32 can be reduced, and accordingly, the consumption necessary for the operation of the compressor 12 for circulating the refrigerant. Electric power can be reduced.
  • the passage forming portion 26 that forms a part of the refrigerant passage 22 is provided between the condenser 14 and the condenser 15 in the refrigerant passage 22.
  • the cooling system of the charger 71 including the refrigerant passages 31 and 32 is connected in parallel with the passage forming unit 26.
  • a refrigerant path flowing directly from the condenser 14 to the condenser 15 and a refrigerant path flowing from the condenser 14 to the condenser 15 via the cooling unit 80 are provided in parallel, and only a part of the refrigerant is passed through the refrigerant passage 31. , 32, the pressure loss when the refrigerant flows through the cooling system of the charger 71 can be reduced.
  • the cooling device 1 further includes a flow rate adjustment valve 28.
  • the flow rate adjustment valve 28 is provided in the refrigerant passage 22 from the condenser 14 toward the expansion valve 16.
  • the flow rate adjustment valve 28 is disposed in a passage forming portion 26 that forms a part of the refrigerant passage 22.
  • the flow rate adjusting valve 28 fluctuates the valve opening, and increases or decreases the pressure loss of the refrigerant flowing through the passage forming portion 26, thereby causing the flow rate of the refrigerant flowing through the passage forming portion 26, the refrigerant passages 31 and 32, and the cooling passage 81.
  • the flow rate of the refrigerant flowing through is arbitrarily adjusted.
  • the valve opening degree of the flow rate adjusting valve 28 is increased, the flow rate of the refrigerant flowing from the condenser 14 to the refrigerant passage 22 through the passage forming portion 26 is increased, and the refrigerant passages 31 and 32 and the cooling passage 81 are connected. The flow rate of the refrigerant that flows through and cools the charger 71 is reduced.
  • valve opening degree of the flow rate adjusting valve 28 is reduced, among the refrigerant flowing from the condenser 14 to the refrigerant passage 22, the flow rate directly flowing to the condenser 15 via the passage forming portion 26 is reduced, and the refrigerant passages 31, 32. In addition, the flow rate of the refrigerant that flows to the cooling unit 80 via the cooling passage 81 and cools the charger 71 increases.
  • valve opening degree of the flow rate adjusting valve 28 When the valve opening degree of the flow rate adjusting valve 28 is increased, the flow rate of the refrigerant that cools the charger 71 is reduced, and the cooling capacity of the charger 71 is reduced. When the valve opening degree of the flow rate adjusting valve 28 is decreased, the flow rate of the refrigerant that cools the charger 71 is increased, and the cooling capacity of the charger 71 is improved. Since the amount of the refrigerant flowing through the cooling unit 80 can be optimally adjusted by using the flow rate adjusting valve 28, the overcooling of the charger 71 can be reliably prevented, and in addition, the refrigerant in the refrigerant passages 31 and 32 can be prevented. It is possible to reliably reduce pressure loss related to circulation and power consumption of the compressor 12 for circulating the refrigerant.
  • FIG. 15 is a diagram showing an outline of opening control of the flow rate adjusting valve 28.
  • the horizontal axis shown in the graphs (A) to (D) of FIG. 15 indicates time.
  • the vertical axis of the graph (A) indicates the valve opening when the flow rate adjustment valve 28 is an electric expansion valve using a stepping motor.
  • the vertical axis of the graph (B) indicates the valve opening when the flow rate adjustment valve 28 is a temperature type expansion valve that opens and closes due to temperature fluctuations.
  • the vertical axis of the graph (C) indicates the temperature of the charger 71 as a heat source.
  • the vertical axis of the graph (D) indicates the inlet / outlet temperature difference of the charger 71.
  • the charger 71 As the refrigerant flows through the refrigerant passages 31 and 32 to the cooling unit 80, the charger 71 is cooled.
  • the valve opening adjustment of the flow rate adjustment valve 28 is performed by monitoring the temperature of the charger 71 or the temperature difference between the outlet temperature and the inlet temperature of the charger 71, for example.
  • a temperature sensor that continuously measures the temperature of the charger 71 is provided, and the temperature of the charger 71 is monitored.
  • a temperature sensor for measuring the inlet temperature and the outlet temperature of the charger 71 is provided, and the temperature difference between the inlet and outlet of the charger 71 is monitored.
  • the flow rate The opening degree of the regulating valve 28 is reduced.
  • the flow rate of the refrigerant flowing to the cooling unit 80 via the refrigerant passage 31 is increased, so that the charger 71 can be cooled more effectively.
  • the temperature of the charger 71 can be lowered to the target temperature or lower as shown in the graph (C), or the inlet / outlet temperature difference of the charger 71 can be reduced as shown in the graph (D).
  • the target temperature difference can be kept below.
  • the cooling device 1 circulates from the cooling section 80 toward the condenser 15 and the refrigerant passage 32 that is a refrigerant path that circulates toward the condenser 15 and from the compressor 12 toward the condenser 14.
  • a communication path 51 is provided that communicates with the refrigerant path 21, which is a refrigerant path.
  • the refrigerant passage 32 is divided into a refrigerant passage 32 a upstream of the branch point with the communication passage 51 and a refrigerant passage 32 b downstream of the branch point with the communication passage 51.
  • the refrigerant passage 21 is divided into a refrigerant passage 21 a upstream from the branch point with the communication passage 51 and a refrigerant passage 21 b downstream from the branch point with the communication passage 51.
  • the open / close valve 56 is provided in the communication path 51.
  • a three-way valve 53 is disposed at a branch point between the passage forming portion 26, the refrigerant passage 22c, and the refrigerant passage 32b.
  • the three-way valve 53 and the on-off valve 56 function as a switching valve 52 that switches the refrigerant flow.
  • the refrigerant after cooling the charger 71 passes through the refrigerant passages 32 b and 22 c to the condenser 15 or the communication passage 51.
  • any route to the condenser 14 via the refrigerant passage 21b can be arbitrarily selected and distributed.
  • FIG. 16 is a schematic diagram showing the flow of the refrigerant that cools the charger 71 during the operation of the vapor compression refrigeration cycle 10 of the seventh embodiment.
  • the refrigerant that has flowed through the cooling unit 80 and cooled the charger 71 flows to the condenser 15 via the refrigerant passages 32b and 22c,
  • the on-off valve 56 is fully closed (valve opening degree 0%) and the three-way valve 53 is fully opened (valve opening degree 100%) so that the refrigerant does not flow into the passage 51.
  • FIG. 17 is a schematic diagram showing the flow of the refrigerant that cools the charger 71 while the vapor compression refrigeration cycle 10 of the seventh embodiment is stopped.
  • the on-off valve 56 is fully opened (valve opening degree 100%) and expanded so that the refrigerant is circulated from the cooling unit 80 to the condenser 14.
  • the three-way valve 53 is operated so that the valve 16 is fully closed (the valve opening is 0%), and the refrigerant passage 32b and the refrigerant passage 22c are disconnected.
  • the condenser 14 By circulating the refrigerant via the communication path 51, the condenser 14 leads to the cooling unit 80 via the refrigerant paths 22a and 31, and further passes through the refrigerant path 32a, the communication paths 51a and 51b, and the refrigerant path 21b in this order. A closed annular path is formed which returns to the condenser 14 via.
  • the refrigerant can be circulated between the condenser 14 and the cooling unit 80 via the annular path without operating the compressor 12.
  • the refrigerant receives evaporation latent heat from the charger 71 and evaporates.
  • the refrigerant vapor evaporated by the charger 71 flows to the condenser 14 through the refrigerant passage 32a, the communication passages 51a and 51b, and the refrigerant passage 21b in this order.
  • the condenser 14 the refrigerant vapor is cooled and condensed by natural ventilation or forced ventilation from a cooling fan such as a radiator fan for engine cooling.
  • the refrigerant liquid liquefied by the condenser 14 returns to the cooling unit 80 via the refrigerant passages 22a and 31.
  • a heat pipe having the charger 71 as a heating unit and the condenser 14 as a cooling unit is formed by an annular path passing through the charger 71 and the condenser 14. Therefore, when the vapor compression refrigeration cycle 10 is stopped, that is, when cooling for the vehicle is stopped, the charger 71 can be reliably cooled without having to start the compressor 12. Since it is not necessary to always operate the compressor 12 for cooling the charger 71, the power consumption of the compressor 12 can be reduced. In addition, the life of the compressor 12 can be extended, so Reliability can be improved.
  • FIG. 18 is a schematic diagram showing a refrigerant flow for cooling the charger 71 during the operation of the vapor compression refrigeration cycle 10, showing the configuration of the cooling device 1 of the eighth embodiment.
  • FIG. 19 is a schematic diagram showing the flow of the refrigerant that cools the charger 71 while the vapor compression refrigeration cycle 10 is stopped, showing the configuration of the cooling device 1 of the eighth embodiment.
  • the three-way valve 53 that functions as the switching valve 52 is at the branch point between the refrigerant passage 32 and the communication passage 51.
  • the on-off valve 56 is removed.
  • the three-way valve 53 is operated so that the refrigerant passages 32a and 32b are in a communication state and the refrigerant passage 32 and the communication passage 51 are in a non-communication state.
  • the valve opening degree of the flow rate adjusting valve 28 is adjusted so that sufficient refrigerant flows through the cooling unit 80. Accordingly, the refrigerant after cooling the charger 71 can be reliably circulated to the condenser 15 via the refrigerant passages 32a, 32b, and 22c.
  • FIG. 18 shows that the refrigerant after cooling the charger 71 can be reliably circulated to the condenser 15 via the refrigerant passages 32a, 32b, and 22c.
  • any of the valves shown in the seventh or eighth embodiment may be provided.
  • any other valve may be provided as long as the refrigerant can be circulated through the cooling unit 80 and the charger 71 can be efficiently cooled during both operation and stop of the vapor compression refrigeration cycle 10. May be.
  • the configuration of the eighth embodiment since one on-off valve 56 is omitted, it is considered that the space required for the arrangement of the switching valve 52 may be smaller, and the size is further reduced. It is possible to provide the cooling device 1 having excellent vehicle mountability.
  • the cooling device 1 further includes a check valve 55.
  • the check valve 55 is disposed in the refrigerant passage 21 a closer to the compressor 12 than the connection point between the refrigerant passage 21 and the communication passage 51 in the refrigerant passage 21 between the compressor 12 and the condenser 14. ing.
  • the check valve 55 allows the refrigerant flow from the compressor 12 toward the condenser 14 and prohibits the reverse refrigerant flow.
  • the flow regulating valve 28 is fully closed (valve opening degree 0%) so that the refrigerant flows from the refrigerant passage 32a to the communication passage 51 and does not flow to the refrigerant passage 32b.
  • the valve 53 is adjusted, a closed-loop refrigerant path for circulating the refrigerant between the condenser 14 and the HV equipment heat source 30 can be reliably formed.
  • the refrigerant may flow from the communication passage 51 to the refrigerant passage 21a on the compressor 12 side. Since the check valve 55 is provided, the flow of the refrigerant from the communication path 51 toward the compressor 12 can be surely prohibited. Therefore, the stop of the vapor compression refrigeration cycle 10 using the heat pipe formed by the annular refrigerant path is stopped. The fall of the cooling capacity of the charger 71 at the time can be prevented. Therefore, the charger 71 can be efficiently cooled even when the cooling for the passenger compartment of the vehicle is stopped.
  • the compressor 12 is operated only for a short time, thereby passing through the check valve 55.
  • the refrigerant can be supplied to the closed loop path.
  • coolant amount in a closed loop can be increased and the heat exchange processing amount of a heat pipe can be increased. Therefore, since the amount of refrigerant in the heat pipe can be secured, it is possible to avoid insufficient cooling of the charger 71 due to insufficient refrigerant amount.
  • the cooling device of the present invention is for cooling a vehicle in a vehicle including a charger for charging a chargeable / dischargeable storage battery by receiving power supplied from an external power source, such as a plug-in hybrid vehicle or an electric vehicle. It can be applied particularly advantageously to cooling a charger using a vapor compression refrigeration cycle.
  • 1 cooling device 10 vapor compression refrigeration cycle, 12 compressor, 14, 15 condenser, 16 expansion valve, 18 evaporator, 21, 21a, 21b, 22, 22a, 22b, 22c, 22d, 23, 23a, 23b 24, 31, 31a, 31b, 32, 32a, 32b Refrigerant passage, 26 passage formation portion, 28 flow rate adjustment valve, 30 HV equipment heat source, 51, 51a, 51b communication passage, 52 switching valve, 53 three-way valve, 55 reverse Stop valve, 56 open / close valve, 60 ground, 71 charger, 72 storage battery, 73 wiring, 80 cooling section, 81 cooling passage, 82 heat pipe.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

 装置構成を単純にでき、消費動力を低減できる、充電器(71)の冷却装置(1)を提供する。電源からの電力供給を受け蓄電池(72)を充電するための充電器(71)を冷却する冷却装置(1)は、冷媒を循環させるための圧縮機(12)と、冷媒を凝縮するための凝縮器(14)と、凝縮器(14)によって凝縮された冷媒を減圧する減圧器(16)と、減圧器(16)によって減圧された冷媒を蒸発させるための蒸発器(18)と、凝縮器(14)から蒸発器(18)に向けて流通する冷媒の経路上に設けられ、凝縮器(14)からの冷媒を用いて充電器(71)を冷却するための冷却部(80)と、を備える。

Description

冷却装置
 本発明は、冷却装置に関し、特に、蓄電池を充電するための充電器を蒸気圧縮式冷凍サイクルを利用して冷却する冷却装置に関する。
 近年、環境問題対策の一つとして、モータの駆動力により走行するハイブリッド車、燃料電池車、電気自動車などが注目されている。このような車両において、モータ、ジェネレータ、インバータ、コンバータおよびバッテリなどの電気機器は、電力の授受によって発熱する。そのため、これらの電気機器を冷却する必要がある。
 特開2000-73763号公報(特許文献1)には、エンジンシリンダヘッドと駆動用モータとを選択的、あるいは同時に冷却する第1冷却回路と、エンジンシリンダブロックを冷却する第2冷却回路と、駆動用モータの駆動制御を行う強電系コントロールユニットを冷却する第3冷却回路と、を備えるハイブリッド車用冷却装置が開示されている。
 特開2000-73763号公報(特許文献1)に記載の冷却装置では、エンジンのみを冷却する通常の車両のごとく、発熱体とラジエータとの間に冷却水を循環させるシステムを使用して、電気系部品を冷却させている。このようなシステムでは、電気系部品を冷却するためのラジエータを新たに設ける必要があるので、車両搭載性が低いという問題を有している。
 そこで、車両用空調装置として使用される蒸気圧縮式冷凍サイクルを利用して、発熱体を冷却する技術が提案されている。たとえば特開2007-69733号公報(特許文献2)には、膨張弁から圧縮機へ至る冷媒通路に、空調用の空気と熱交換する熱交換器と、発熱体と熱交換する熱交換器と、を並列に配置し、空調装置用の冷媒を利用して発熱体を冷却するシステムが開示されている。
 特開2005-90862号公報(特許文献3)には、空調用の冷凍サイクルの減圧器、蒸発器および圧縮機をバイパスするバイパス通路に、発熱体を冷却するための発熱体冷却手段を設けた、冷却システムが開示されている。特開2001-309506号公報(特許文献4)には、車両走行モータを駆動制御するインバータ回路部の冷却部材に車両空調用冷凍サイクル装置の冷媒を還流させ、空調空気流の冷却が不要な場合に車両空調用冷凍サイクル装置のエバポレータによる空調空気流の冷却を抑止する、冷却システムが開示されている。
 一方、車両に搭載される充電器を冷却するための種々の技術が、従来提案されている。たとえば特開平4-275492号公報(特許文献5)には、電源からの電力を整流して電池を充電する充電器を電気自動車に設け、充電器を経由するように冷却液循環経路を配管し、冷却液ポンプにより冷却液循環経路内の冷却液を循環させる冷却装置が開示されている。特開平7-312805号公報(特許文献6)には、車両搭載用充電器の本体ケースに冷却流体を循環させるための循環パイプの両端を接続し、循環パイプに冷却流体を循環させる電動ポンプモータを設けるとともに冷却流体を冷却するラジエータを設ける装置が開示されている。
特開2000-73763号公報 特開2007-69733号公報 特開2005-90862号公報 特開2001-309506号公報 特開平4-275492号公報 特開平7-312805号公報
 特開平4-275492号公報(特許文献5)および特開平7-312805号公報(特許文献6)に記載の冷却装置では、充電器を冷却するために冷却流体を循環させる動力源として専用のポンプを設ける必要があるので、装置構成が複雑になり、加えて装置のコストも増大する。
 近年、車両の外部の電源から電力供給を受けて車両に搭載された蓄電池(リチウムイオン二次電池)を充電することが可能な電動車両の実用化が進められている。このような車両としては、PHV(Plug-in Hybrid Vehicle)やEV(電気自動車)がある。この場合の充電時間は、100V電源を使用した場合8時間程度、200V電源を使用した場合でも4時間程度と、長時間を要する。特開平4-275492号公報(特許文献5)および特開平7-312805号公報(特許文献6)に記載の冷却装置では、長時間に亘る充電の間、冷却流体を循環させるためにポンプを運転し続ける必要があるので、ポンプでの電力消費が増大し、またポンプ寿命の短縮も懸念される。
 本発明は上記の課題に鑑みてなされたものであり、その主たる目的は、装置構成を単純にでき、消費動力を低減できる、充電器の冷却装置を提供することである。
 本発明に係る冷却装置は、電源からの電力供給を受け蓄電池を充電するための充電器を冷却する冷却装置であって、冷媒を循環させるための圧縮機と、冷媒を凝縮するための凝縮器と、凝縮器によって凝縮された冷媒を減圧する減圧器と、減圧器によって減圧された冷媒を蒸発させるための蒸発器と、凝縮器から蒸発器に向けて流通する冷媒の経路上に設けられ、凝縮器からの冷媒を用いて充電器を冷却するための冷却部と、を備える。
 上記冷却装置において、充電器は、冷媒が流通する配管に直接接触してもよい。また冷却装置は、充電器と冷媒が流通する配管との間に介在して配置されたヒートパイプを備えてもよい。
 上記冷却装置において好ましくは、冷却部は、凝縮器から減圧器に向けて流通する冷媒の経路上に設けられる。冷却装置は、冷却部から減圧器に向けて流通する冷媒の経路上に設けられた他の凝縮器を備えてもよく、この場合、凝縮器は、冷媒から熱を放出させる放熱能力が他の凝縮器よりも高くてもよい。また好ましくは、冷却装置は、凝縮器の出口から減圧器の入口へ向かう冷媒が流通する、並列に配置された第一通路および第二通路を備え、冷却部は第二通路に設けられてもよい。この場合冷却装置は、第一通路に配置され、第一通路を流れる冷媒の流量と第二通路を流れる冷媒の流量とを調節する、流量調整弁を備えてもよい。
 上記冷却装置において好ましくは、冷却部から減圧器に向けて流通する冷媒の経路と、圧縮機から凝縮器に向けて流通する冷媒の経路と、を連通する、連通路を備える。冷却装置は、冷却部の出口から減圧器の入口へ向かう冷媒の流れと、冷却部の出口から連通路へ向かう冷媒の流れと、を切り換える、切換弁を備えてもよい。この場合、冷却部は、凝縮器よりも下方に配置されていてもよい。
 上記冷却装置において好ましくは、冷却部は、充電器よりも冷媒の流れの上流側に配置された電気機器を含み、凝縮器からの冷媒を用いて電気機器を冷却する。
 本発明の冷却装置によると、装置構成を単純にすることができ、かつ消費動力を低減することができる。
実施の形態1の冷却装置の構成を示す模式図である。 実施の形態1の蒸気圧縮式冷凍サイクルの冷媒の状態を示すモリエル線図である。 実施の形態2の冷却装置の構成を示す模式図である。 実施の形態2の蒸気圧縮式冷凍サイクルの冷媒の状態を示すモリエル線図である。 実施の形態3の冷却装置の構成を示す模式図である。 実施の形態4の冷却装置の構成を示す模式図である。 実施の形態4の蒸気圧縮式冷凍サイクルの運転中の、充電器を冷却する冷媒の流れを示す模式図である。 実施の形態4の蒸気圧縮式冷凍サイクルの停止中の、充電器を冷却する冷媒の流れを示す模式図である。 実施の形態5の冷却装置の構成を示す模式図である。 実施の形態5の蒸気圧縮式冷凍サイクルの運転中の、充電器を冷却する冷媒の流れを示す模式図である。 実施の形態5の蒸気圧縮式冷凍サイクルの停止中の、充電器を冷却する冷媒の流れを示す模式図である。 実施の形態6の冷却装置の構成を示す模式図である。 実施の形態6の蒸気圧縮式冷凍サイクルの冷媒の状態を示すモリエル線図である。 実施の形態7の冷却装置の構成を示す模式図である。 流量調整弁の開度制御の概略を示す図である。 実施の形態7の蒸気圧縮式冷凍サイクルの運転中の、充電器を冷却する冷媒の流れを示す模式図である。 実施の形態7の蒸気圧縮式冷凍サイクルの停止中の、充電器を冷却する冷媒の流れを示す模式図である。 実施の形態8の冷却装置の構成を示す、蒸気圧縮式冷凍サイクルの運転中の、充電器を冷却する冷媒の流れを示す模式図である。 実施の形態8の冷却装置の構成を示す、蒸気圧縮式冷凍サイクルの停止中の、充電器を冷却する冷媒の流れを示す模式図である。
 以下、図面に基づいてこの発明の実施の形態を説明する。なお、以下の図面において、同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。
 (実施の形態1)
 図1は、実施の形態1の冷却装置1の構成を示す模式図である。図1に示すように、冷却装置1は、蒸気圧縮式冷凍サイクル10を備える。蒸気圧縮式冷凍サイクル10は、たとえば、車両の車内の冷房を行なうために、車両に搭載される。蒸気圧縮式冷凍サイクル10を用いた冷房は、たとえば、冷房を行なうためのスイッチがオンされた場合、または、自動的に車両の室内の温度を設定温度になるように調整する自動制御モードが選択されており、かつ、車室内の温度が設定温度よりも高い場合に行なわれる。
 蒸気圧縮式冷凍サイクル10は、圧縮機12と、凝縮器14と、減圧器の一例としての膨張弁16と、蒸発器18と、を含む。蒸気圧縮式冷凍サイクル10はまた、圧縮機12と凝縮器14とを連通する冷媒通路21と、凝縮器14と膨張弁16とを連通する冷媒通路22と、膨張弁16と蒸発器18とを連通する冷媒通路23と、蒸発器18と圧縮機12とを連通する冷媒通路24と、を含む。蒸気圧縮式冷凍サイクル10は、圧縮機12、凝縮器14、膨張弁16および蒸発器18が、冷媒通路21~24によって連結されて構成される。
 圧縮機12は、車両に搭載されたモータまたはエンジンを動力源として作動し、冷媒ガスを断熱的に圧縮して過熱状態冷媒ガスとする。圧縮機12は、作動時に蒸発器18から冷媒通路24を経由して流通する気相冷媒を吸入圧縮して、冷媒通路21に吐出する。圧縮機12は、冷媒通路21に冷媒を吐出することで、蒸気圧縮式冷凍サイクル10に冷媒を循環させる。
 凝縮器14は、圧縮機12において圧縮された過熱状態冷媒ガスを、外部媒体へ等圧的に放熱させて冷媒液とする。圧縮機12から吐出された気相冷媒は、凝縮器14において周囲に放熱し冷却されることによって、凝縮(液化)する。凝縮器14は、冷媒を流通するチューブと、チューブ内を流通する冷媒と凝縮器14の周囲の空気との間で熱交換するためのフィンと、を含む。凝縮器14は、車両の走行によって発生する自然の通風によって供給された冷却風と冷媒との間で、熱交換を行なう。凝縮器14における熱交換によって、冷媒の温度は低下し冷媒は液化する。
 膨張弁16は、冷媒通路22を流通する高圧の液相冷媒を小さな孔から噴射させることにより膨張させて、低温・低圧の霧状冷媒に変化させる。膨張弁16は、凝縮器14によって凝縮された冷媒液を減圧して、気液混合状態の湿り蒸気とする。なお、冷媒通路22を流通する冷媒液を減圧するための減圧器は、絞り膨張する膨張弁16に限られず、毛細管であってもよい。
 蒸発器18は、その内部を流通する霧状冷媒が気化することによって、蒸発器18に接触するように導入された周囲の空気の熱を吸収する。蒸発器18は、膨張弁16によって減圧された冷媒を用いて、冷媒の湿り蒸気が蒸発して冷媒ガスとなる際の気化熱を、被冷却部としての車両の室内の空気から吸収して、車両の室内の冷房を行なう。熱が蒸発器18に吸収されることによって温度が低下した空気が車両の室内に再び戻されることによって、車両の室内の冷房が行なわれる。冷媒は、蒸発器18において周囲から吸熱し加熱される。
 蒸発器18は、冷媒を流通するチューブと、チューブ内を流通する冷媒と蒸発器18の周囲の空気との間で熱交換するためのフィンと、を含む。チューブ内には、湿り蒸気状態の冷媒が流通する。冷媒は、チューブ内を流通する際に、フィンを経由して車両の室内の空気の熱を蒸発潜熱として吸収することによって蒸発し、さらに顕熱によって過熱蒸気になる。気化した冷媒は、冷媒通路24を経由して圧縮機12へ流通する。圧縮機12は、蒸発器18から流通する冷媒を圧縮する。
 冷媒通路21は、冷媒を圧縮機12から凝縮器14に流通させるための通路である。冷媒は、冷媒通路21を経由して、圧縮機12の出口から凝縮器14の入口へ向かって流通する。冷媒通路22は、冷媒を凝縮器14から膨張弁16に流通させるための通路である。冷媒は、冷媒通路22を経由して、凝縮器14の出口から膨張弁16の入口へ向かって流通する。冷媒通路23は、冷媒を膨張弁16から蒸発器18に流通させるための通路である。冷媒は、冷媒通路23を経由して、膨張弁16の出口から蒸発器18の入口へ向かって流通する。冷媒通路24は、冷媒を蒸発器18から圧縮機12に流通させるための通路である。冷媒は、冷媒通路24を経由して、蒸発器18の出口から圧縮機12の入口へ向かって流通する。
 蒸気圧縮式冷凍サイクル10内を、図1に示すA点、B点、C点、D点、E点およびF点を順に通過するように冷媒が流れ、圧縮機12と凝縮器14と膨張弁16と蒸発器18とに冷媒が循環する。冷媒は、圧縮機12と凝縮器14と膨張弁16と蒸発器18とが冷媒通路21~24によって順次接続された冷媒循環流路を通って、蒸気圧縮式冷凍サイクル10内を循環する。
 なお、蒸気圧縮式冷凍サイクル10の冷媒としては、たとえば二酸化炭素、プロパンやイソブタンなどの炭化水素、アンモニアまたは水などを用いることができる。
 膨張弁16から蒸発器18へ向かって流れる冷媒が流通する冷媒通路23には、冷却部80が設けられている。冷却部80は、膨張弁16から蒸発器18に向けて流通する冷媒の経路上に設けられている。冷却部80が設けられるので、冷媒通路23は、冷却部80よりも上流側(膨張弁16に近接する側)の冷媒通路23aと、冷却部80よりも下流側(蒸発器18に近接する側)の冷媒通路23bと、に二分割されている。冷却部80は、凝縮器14から出て膨張弁16で減圧された低温低圧の冷媒を用いて、充電器71を冷却する。
 冷却部80は、車両に搭載される電気機器であるHV(Hybrid Vehicle)機器熱源30と、充電器71と、冷媒が流通する配管である冷却通路81とを含む。HV機器熱源30と充電器71とは、発熱源の一例である。膨張弁16から出て冷媒通路23aを流れる冷媒は、冷却通路81内を流通し、冷媒通路23bを経由して蒸発器18へ至る。冷却通路81の上流側の端部は、冷媒通路23aに接続される。冷却通路81の下流側の端部は、冷媒通路23bに接続される。冷媒通路23aは、膨張弁16から冷却部80に冷媒を流通させるための通路である。冷媒通路23bは、冷却部80から蒸発器18に冷媒を流通させるための通路である。冷媒は、冷媒通路23aを経由して膨張弁16から冷却部80へ向かって流通し、冷媒通路23bを経由して冷却部80から蒸発器18へ向かって流通する。
 凝縮器14から膨張弁16を経由して冷却部80へ流通し、冷却通路81を経由して流れる冷媒は、HV機器熱源30および充電器71から熱を奪って、HV機器熱源30および充電器71を冷却させる。冷却部80は、冷却通路81によってHV機器熱源30および充電器71と冷媒との間で熱交換が可能な構造を有するように設けられる。本実施の形態においては、冷却部80は、たとえば、HV機器熱源30および充電器71の筐体に冷却通路81の外周面が直接接触するように形成された冷却通路81を有する。冷却通路81は、HV機器熱源30および充電器71のそれぞれの筐体と隣接する部分を有する。当該部分において、冷却通路81を流通する冷媒と、HV機器熱源30および充電器71との間で、熱交換が可能となる。
 HV機器熱源30は、電力の授受によって発熱する電気機器を含む。電気機器は、たとえば、直流電力を交流電力に変換するためのインバータ、回転電機であるモータジェネレータ、蓄電装置であるバッテリ、バッテリの電圧を昇圧させるためのコンバータ、バッテリの電圧を降圧するためのDC/DCコンバータなどの、少なくともいずれか一つを含む。バッテリは、リチウムイオン電池あるいはニッケル水素電池等の二次電池である。バッテリに代えてキャパシタが用いられてもよい。
 充電器71は、配線73を介して、充放電可能な蓄電池72と電気的に接続されている。充電器71は、電力変換用のスイッチング素子を含み、外部電源から供給される電力を所定の充電電圧(直流)に変換する。充電器71によって電圧変換された電力は蓄電池72へ供給され、蓄電池72が充電される。
 図2は、実施の形態1の蒸気圧縮式冷凍サイクル10の冷媒の状態を示すモリエル線図である。図2中の横軸は、冷媒の比エンタルピー(単位:kJ/kg)を示し、縦軸は、冷媒の絶対圧力(単位:MPa)を示す。図中の曲線は、冷媒の飽和蒸気線および飽和液線である。図2中には、圧縮機12から凝縮器14、膨張弁16を経由して冷媒通路23aへ流入し、HV機器熱源30および充電器71を冷却し、冷媒通路23bから蒸発器18を経由して圧縮機12へ戻る、図1に示す蒸気圧縮式冷凍サイクル10中の各点(すなわちA、B,C,D,EおよびF点)における冷媒の熱力学状態が示される。
 図2に示すように、圧縮機12に吸入された過熱蒸気状態の冷媒(A点)は、圧縮機12において等比エントロピー線に沿って断熱圧縮される。圧縮するに従って冷媒の圧力と温度とが上昇し、高温高圧の過熱度の大きい過熱蒸気になって(B点)、冷媒は凝縮器14へと流れる。凝縮器14へ入った高圧の冷媒蒸気は、凝縮器14において冷却され、等圧のまま過熱蒸気から乾き飽和蒸気になり、凝縮潜熱を放出し徐々に液化して気液混合状態の湿り蒸気になり、冷媒の全部が凝縮すると飽和液になり、さらに顕熱を放出して過冷却液になる(C点)。
 その後冷媒は、膨張弁16に流入する。膨張弁16において、過冷却液状態の冷媒は絞り膨張され、比エンタルピーは変化せず温度と圧力とが低下して、低温低圧の気液混合状態の湿り蒸気となる(D点)。
 膨張弁16から出た湿り蒸気状態の冷媒は、冷媒通路23aを経由して、冷却部80の冷却通路81へ流れ、HV機器熱源30および充電器71を冷却する。HV機器熱源30および充電器71との熱交換により、冷媒の乾き度が小さくなる。つまり、飽和液と乾き飽和蒸気とが混合した2相流である湿り蒸気状態のうち、飽和液が蒸発して減少し、気化した飽和液が乾き飽和蒸気になるので乾き飽和蒸気がより多くなる。HV機器熱源30を冷却することで一部の冷媒が蒸発し(E点)、充電器71を冷却することで一部の冷媒がさらに蒸発する(F点)。
 その後冷媒は、蒸発器18において、外部から熱を吸収して蒸発潜熱によって等圧のまま蒸発する。全ての冷媒が乾き飽和蒸気になると、さらに顕熱によって冷媒蒸気は温度上昇して、過熱蒸気となり(A点)、圧縮機12に吸入される。冷媒はこのようなサイクルに従って、圧縮、凝縮、絞り膨張、蒸発の状態変化を連続的に繰り返す。
 なお、上述した蒸気圧縮式冷凍サイクルの説明では、理論冷凍サイクルについて説明しているが、実際の蒸気圧縮式冷凍サイクル10では、圧縮機12における損失、冷媒の圧力損失および熱損失を考慮する必要があるのは勿論である。
 蒸気圧縮式冷凍サイクル10の運転中に、冷媒は、蒸発器18において気化熱を車両の室内の空気から吸収して、車室内の冷房を行なう。加えて冷媒は、HV機器熱源30および充電器71と熱交換することで、HV機器熱源30および充電器71を冷却する。冷却装置1は、車両に搭載された発熱源であるHV機器熱源30と充電器71を、車両の室内の空調用の蒸気圧縮式冷凍サイクル10を利用して、冷却する。なお、HV機器熱源30および充電器71を冷却するために必要とされる温度は、少なくともHV機器熱源30および充電器71の温度範囲として目標となる温度範囲の上限値よりも低い温度であることが望ましい。
 以上のように、本実施の形態の冷却装置1では、蒸発器18において被冷却部を冷却するために設けられた蒸気圧縮式冷凍サイクル10を利用して、充電器71の冷却が行なわれる。充電器71の冷却のために、専用の水循環ポンプまたは冷却ファンなどの機器を設ける必要はない。そのため、充電器71の冷却装置1のために必要な構成を低減でき、装置構成を単純にできるので、冷却装置1の製造コストを低減することができる。加えて、充電器71の冷却のためにポンプや冷却ファンなどの動力源を運転する必要がなく、動力源を運転するための消費動力を必要としない。したがって、充電器71の冷却のための消費動力を低減することができる。
 充電器71は、蒸気圧縮式冷凍サイクル10の凝縮器14から蒸発器18に至る冷媒の経路の一部を形成する冷却通路81の外周面に直接接続されて、冷却される。冷却通路81の外部に充電器71が配置されるので、冷却通路81の内部を流通する冷媒の流れに充電器71が干渉することはない。そのため、蒸気圧縮式冷凍サイクル10の圧力損失は増大しないので、圧縮機12の動力を増大させることなく、充電器71を冷却することができる。
 冷却部80において、HV機器熱源30が冷媒の流れの上流側に配置され、充電器71が下流側に配置される。HV機器熱源30は、充電器71よりも冷媒の流れの上流側に配置されている。冷媒は、HV機器熱源30と充電器71とから順に熱を受け取ることで加熱される。充電器71は、HV機器熱源30と熱交換して加熱された後の冷媒によって冷却される。HV機器熱源30を冷却する冷媒の乾き度と、充電器71を冷却する冷媒の乾き度と、を比較すると、下流側に配置された充電器71を冷却する冷媒の乾き度の方がより大きくなっている。
 このように、HV機器熱源30に対して充電器71を下流側に配置すれば、HV機器熱源30を冷却する冷媒の放熱能力が相対的に高くなり、HV機器熱源30をより確実に冷却できる。HV機器熱源30は車両の運転のために必要な機器であり、冷却が不十分のためHV機器熱源30が故障すると、車両の運転ができなくなる。より冷却を必要とするHV機器熱源30を上流側に配置して確実に冷却されるようにすれば、冷媒が何らかの理由で気化して冷却能力が低下したときに、HV機器熱源30をより壊れにくくすることができる。したがって、車両の信頼性を向上することができる。
 (実施の形態2)
 図3は、実施の形態2の冷却装置1の構成を示す模式図である。実施の形態1では膨張弁16と蒸発器18との間の冷媒通路23に冷却部80が設けられたのに対し、実施の形態2の冷却装置1では、凝縮器14から膨張弁16に向けて流通する冷媒の経路である冷媒通路22上に、冷却部80が設けられている。冷却部80が設けられるので、冷媒通路22は、冷却部80よりも上流側(凝縮器14に近接する側)の冷媒通路22aと、冷却部80よりも下流側(膨張弁16に近接する側)の冷媒通路22bと、に二分割されている。
 図4は、実施の形態2の蒸気圧縮式冷凍サイクルの冷媒の状態を示すモリエル線図である。図4中の横軸は、冷媒の比エンタルピー(単位:kJ/kg)を示し、縦軸は、冷媒の絶対圧力(単位:MPa)を示す。図中の曲線は、冷媒の飽和蒸気線および飽和液線である。図4中には、図3に示す蒸気圧縮式冷凍サイクル10中の各点(すなわちA、B,G,H,IおよびJ点)における冷媒の熱力学状態が示される。
 図4に示すように、圧縮機12に吸入された過熱蒸気状態の冷媒(A点)は、圧縮機12において等比エントロピー線に沿って断熱圧縮される。圧縮するに従って冷媒の圧力と温度とが上昇し、高温高圧の過熱度の大きい過熱蒸気になって(B点)、冷媒は凝縮器14へと流れる。凝縮器14へ入った高圧の冷媒蒸気は、凝縮器14において冷却され、等圧のまま過熱蒸気から乾き飽和蒸気になり、凝縮潜熱を放出し徐々に液化して気液混合状態の湿り蒸気になり、冷媒の全部が凝縮すると飽和液になり、さらに顕熱を放出して過冷却液になる(G点)。
 液化した冷媒は、G点から冷媒通路22aを経由して冷却部80の冷却通路81へ流れ、HV機器熱源30および充電器71を冷却する。HV機器熱源30との熱交換により、冷媒の過冷却度が小さくなり、過冷却液の状態の冷媒の温度が上昇する(H点)。その後充電器71との熱交換により、冷媒の過冷却度はさらに小さくなり、液冷媒の飽和温度に近づく(I点)。
 その後冷媒は、膨張弁16に流入する。膨張弁16において、過冷却液状態の冷媒は絞り膨張され、比エンタルピーは変化せず温度と圧力とが低下して、低温低圧の気液混合状態の湿り蒸気となる(J点)。膨張弁16から出た湿り蒸気状態の冷媒は、蒸発器18において、外部から熱を吸収して蒸発潜熱によって等圧のまま蒸発する。全ての冷媒が乾き飽和蒸気になると、さらに顕熱によって冷媒蒸気は温度上昇して、過熱蒸気となり(A点)、圧縮機12に吸入される。
 冷媒は、凝縮器14において過冷却液になるまで冷却され、HV機器熱源30および充電器71から顕熱を受けて飽和温度をわずかに下回る温度にまで加熱される。その後膨張弁16を通過することで、冷媒は低温低圧の湿り蒸気になる。膨張弁16の出口において、冷媒は、車両の室内の冷房のために本来必要とされる温度および圧力を有する。凝縮器14は、冷媒を十分に冷却できる程度に、その放熱能力が定められている。
 膨張弁16を通過した後の低温低圧の冷媒を充電器71の冷却に使用すると、蒸発器18における車室内の空気の冷却能力が減少して、車室用の冷房能力が低下する。これに対し、本実施の形態の冷却装置1では、凝縮器14において冷媒を十分な過冷却状態にまで冷却し、凝縮器14の出口の高圧の冷媒を充電器71の冷却に使用する。そのため、車室内の空気を冷却する冷房の能力に影響を与えることなく、充電器71を冷却することができる。
 凝縮器14の仕様(すなわち、凝縮器14のサイズまたは放熱性能)は、凝縮器14を通過した後の液相冷媒の温度が車室内の冷房のために必要とされる温度よりも低下するように、定められる。凝縮器14の仕様は、HV機器熱源30および充電器71を冷却しない場合の蒸気圧縮式冷凍サイクルの凝縮器よりも、冷媒がHV機器熱源30および充電器71から受け取ると想定される熱量分だけ大きい放熱量を有するように、定められる。このような仕様の凝縮器14を備える冷却装置1は、車両の室内の冷房性能を維持しつつ、圧縮機12の動力を増加させることなく、充電器71を適切に冷却することができる。
 (実施の形態3)
 図5は、実施の形態3の冷却装置1の構成を示す模式図である。実施の形態2では、冷媒が流通する冷却通路81に充電器71が直接接触する構成であったのに対し、実施の形態3の冷却装置1は、充電器71と冷却通路81との間に介在して配置されたヒートパイプ82を備える。ヒートパイプ82は、ウィック式、サーモサイフォン式、自励振動式など、任意の公知のヒートパイプであってもよい。
 充電器71は、蒸気圧縮式冷凍サイクル10の凝縮器14から蒸発器18に至る冷媒の経路の一部を形成する冷却通路81の外周面に、ヒートパイプ82を介して接続され、充電器71から冷却通路81へヒートパイプ82を経由して熱伝達することにより、冷却される。冷却通路81の外部に充電器71が配置されるので、冷却通路81の内部を流通する冷媒の流れに充電器71が干渉することはない。そのため、蒸気圧縮式冷凍サイクル10の圧力損失は増大しないので、圧縮機12の動力を増大させることなく、充電器71を冷却することができる。
 充電器71をヒートパイプ82の加熱部とし冷却通路81をヒートパイプ82の冷却部とすることで、冷却通路81と充電器71との間の熱伝達効率が高められるので、充電器71の冷却効率を向上できる。たとえばウィック式のヒートパイプ82を使用することができる。ヒートパイプ82によって充電器71から冷却通路81へ確実に熱伝達することができるので、充電器71と冷却通路81との間に距離があってもよく、充電器71に冷却通路81を接触させるために冷却通路81を複雑に配置する必要がない。その結果、充電器71の配置の自由度を向上することができる。
 (実施の形態4)
 図6は、実施の形態4の冷却装置1の構成を示す模式図である。実施の形態4の冷却装置1は、冷却部80の下流側の冷媒通路22b,22cと凝縮器14の上流側の冷媒通路21と、を連通する連通路51を備える点で、実施の形態3と異なっている。連通路51は、冷却部80の出口から膨張弁16の入口に向けて流通する冷媒の経路と、圧縮機12の出口から凝縮器14の入口に向けて流通する冷媒の経路と、を連通する。
 連通路51には、冷却部80の出口の冷媒通路22bから冷媒通路22cを経由して膨張弁16の入口へ向かう冷媒の流れと、冷却部80の出口の冷媒通路22bから連通路51へ向かう冷媒の流れと、を切り換える、切換弁52が設けられている。本実施の形態の切換弁52は、開閉弁56である。連通路51は、開閉弁56よりも上流側の連通路51aと、開閉弁56よりも下流側の連通路51bと、に二分割される。
 開閉弁56の開閉状態を変化させることにより、充電器71を冷却した後の冷媒通路22bを流通する冷媒を、冷媒通路22cを経由させて膨張弁16へ流通させることができ、または、連通路51を経由させて凝縮器14へ流通させることができる。切換弁52の一例である開閉弁56を使用して冷媒の経路を切り換えることにより、充電器71を冷却した後の冷媒を、冷媒通路32b,22を経由させて膨張弁16へ、または、連通路51および冷媒通路21を経由して凝縮器14へ、のいずれかの経路を任意に選択して、流通させることができる。
 図7は、実施の形態4の蒸気圧縮式冷凍サイクル10の運転中の、充電器71を冷却する冷媒の流れを示す模式図である。図7に示すように、圧縮機12を駆動させ、蒸気圧縮式冷凍サイクル10が運転しているときには、冷却部80を流れ充電器71を冷却した冷媒が冷媒通路22b,22cを経由して膨張弁16へ流通し、連通路51には冷媒が流れないように、開閉弁56は全閉(弁開度0%)とされる。冷媒が冷却装置1の全体を流れるように冷媒の経路が選択されるので、蒸気圧縮式冷凍サイクル10の冷却能力を確保できるとともに、充電器71を効率よく冷却することができる。
 図8は、実施の形態4の蒸気圧縮式冷凍サイクル10の停止中の、充電器71を冷却する冷媒の流れを示す模式図である。図8に示すように、圧縮機12を停止させ、蒸気圧縮式冷凍サイクル10が停止しているときには、冷媒を冷却部80から凝縮器14へ循環させるように、開閉弁56を全開(弁開度100%)にし、さらに膨張弁16を全閉(弁開度0%)にする。連通路51を経由して冷媒を循環させることにより、凝縮器14から、冷媒通路22aを経由して冷却部80へ至り、さらに冷媒通路22b、連通路51a,51bおよび冷媒通路21bを順に経由して凝縮器14へ戻る、閉じられた環状の経路が形成される。
 この環状の経路を経由して、圧縮機12を動作することなく、凝縮器14と冷却部80との間に冷媒を循環させることができる。冷媒は、充電器71を冷却するとき、充電器71から蒸発潜熱を受けて蒸発する。充電器71で気化された冷媒蒸気は、冷媒通路22a、連通路51および冷媒通路21bを順に経由して、凝縮器14へ流れる。凝縮器14において、自然の通風またはエンジン冷却用のラジエータファンなどの冷却ファンからの強制通風により、冷媒蒸気は冷却されて凝縮する。凝縮器14で液化した冷媒液は、冷媒通路22aを経由して、冷却部80へ戻る。
 このように、充電器71と凝縮器14とを経由する環状の経路によって、充電器71を加熱部とし凝縮器14を冷却部とする、ヒートパイプが形成される。したがって、蒸気圧縮式冷凍サイクル10が停止しているとき、すなわち車両用の冷房が停止しているときにも、圧縮機12を起動する必要なく冷媒を自然循環させ、充電器71を確実に冷却することができる。充電器71の冷却のために圧縮機12を常時運転する必要がないことにより、圧縮機12の消費動力を低減することができ、加えて、圧縮機12を長寿命化できるので圧縮機12の信頼性を向上することができる。
 図7および図8には、地面60が図示されている。地面60に対して垂直な鉛直方向において、冷却部80は、凝縮器14よりも下方に配置されている。凝縮器14と充電器71との間に冷媒を循環させる環状の経路において、充電器71が下方に配置され、凝縮器14が上方に配置される。凝縮器14は、充電器71よりも高い位置に配置される。
 この場合、充電器71で加熱され気化した冷媒蒸気は、環状の経路内を上昇して凝縮器14へ到達し、凝縮器14において冷却され、凝縮されて液冷媒となり、重力の作用により環状の経路内を下降して充電器71へ戻る。つまり、充電器71と、凝縮器14と、これらを連結する冷媒の経路とによって、サーモサイフォン式のヒートパイプが形成される。ヒートパイプを形成することで充電器71から凝縮器14への熱伝達効率を向上することができるので、蒸気圧縮式冷凍サイクル10が停止しているときにも、動力を加えることなく、充電器71をより効率よく冷却することができる。
 (実施の形態5)
 図9は、実施の形態5の冷却装置1の構成を示す模式図である。図10は、実施の形態5の蒸気圧縮式冷凍サイクル10の運転中の、充電器71を冷却する冷媒の流れを示す模式図である。図11は、実施の形態5の蒸気圧縮式冷凍サイクル10の停止中の、充電器71を冷却する冷媒の流れを示す模式図である。実施の形態4と比較して、実施の形態5の冷却装置1は、切換弁52を構成する三方弁53をさらに備える点で異なっている。三方弁53は、冷媒通路22と連通路51との分岐点に配置され、冷媒通路22b、冷媒通路22cおよび連通路51aの連通状態を切り換える。
 蒸気圧縮式冷凍サイクル10が運転しているときには、開閉弁56が全閉(弁開度0%)とされ、一方三方弁53は、冷媒通路22bと冷媒通路22cとを連通させ、連通路51aと冷媒通路22b,22cとを非連通にするように操作される。これにより、冷却部80を流れ充電器71を冷却した冷媒は、冷媒通路22b,22cを経由して膨張弁16へ流通し、連通路51には冷媒が流れないように、設定される。
 蒸気圧縮式冷凍サイクル10が停止しているときには、開閉弁56が全開(弁開度100%)とされ、一方三方弁53は、冷媒通路22bと連通路51aとを連通させ、冷媒通路22cと冷媒通路22bおよび連通路51aとを非連通にするように操作される。これにより、冷却部80を流れ充電器71を冷却した冷媒は、冷却部80から凝縮器14へ循環し、冷媒通路22cには冷媒が流れないように、設定される。連通路51を経由して冷媒を循環させることにより、凝縮器14から、冷媒通路22aを経由して冷却部80へ至り、さらに冷媒通路22b、連通路51a,51bおよび冷媒通路21bを順に経由して凝縮器14へ戻る、閉じられた環状の経路が形成される。
 冷媒通路22と連通路51との分岐点に三方弁53を配置することにより、冷却部80の出口の冷媒通路22bから冷媒通路22cを経由して膨張弁16の入口へ向かう冷媒の流れと、冷却部80の出口から連通路51へ向かい凝縮器14へ循環する冷媒の流れと、をより確実に切り換えることができる。
 (実施の形態6)
 図12は、実施の形態6の冷却装置1の構成を示す模式図である。実施の形態6の冷却装置1は、凝縮器14と膨張弁16とを連結し、冷却部80から膨張弁16に向けて流通する冷媒の経路となる冷媒通路22上に、凝縮器14と異なる他の凝縮器としての凝縮器15が配置されている点で、実施の形態5と異なっている。
 実施の形態6の冷却装置1は、第一の凝縮器としての凝縮器14と、第二の凝縮器としての凝縮器15と、を備える。凝縮器14と膨張弁16との間に冷却部80、三方弁53および凝縮器15が設けられるので、冷媒通路22は、冷却部よりも上流側(凝縮器14に近接する側)の冷媒通路22aと、冷却部80と三方弁53とを連結する冷媒通路22bと、三方弁53と凝縮器15とを連結する冷媒通路22cと、凝縮器15よりも下流側(膨張弁16に近接する側)の冷媒通路22dと、に分割されている。蒸気圧縮式冷凍サイクル10において、圧縮機12から吐出された高圧の冷媒は、凝縮器14と凝縮器15との両方によって凝縮される。
 図13は、実施の形態6の蒸気圧縮式冷凍サイクル10の冷媒の状態を示すモリエル線図である。図13中の横軸は、冷媒の比エンタルピー(単位:kJ/kg)を示し、縦軸は、冷媒の絶対圧力(単位:MPa)を示す。図中の曲線は、冷媒の飽和蒸気線および飽和液線である。図13中には、図12に示す蒸気圧縮式冷凍サイクル10中の各点(すなわちA、B,G,H,I,KおよびJ点)における冷媒の熱力学状態が示される。
 実施の形態6の蒸気圧縮式冷凍サイクル10を示すモリエル線図は、凝縮器14から膨張弁16へ至る系統を除いて、図4に示す実施の形態2のモリエル線図と同じである。つまり、図4に示すモリエル線図におけるI点からJ点、A点を経由してB点へ至る冷媒の状態と、図13に示すモリエル線図におけるK点からJ点、A点を経由してB点へ至る冷媒の状態と、は同じである。そのため、実施の形態6の蒸気圧縮式冷凍サイクル10に特有の、B点からK点へ至る冷媒の状態について、以下に説明する。
 圧縮機12によって断熱圧縮された高温高圧の過熱蒸気状態の冷媒(B点)は、凝縮器14において冷却される。冷媒は、等圧のまま顕熱を放出して過熱蒸気から乾き飽和蒸気になり、凝縮潜熱を放出し徐々に液化して気液混合状態の湿り蒸気になり、冷媒の全部が凝縮して飽和液になる(G点)。
 凝縮器14から流出した飽和液状態の冷媒は、G点から冷媒通路22aを経由して冷却部80へ流れる。冷却部80において、凝縮器14を通過して凝縮された液冷媒に熱を放出することで、HV機器熱源30が冷却される。HV機器熱源30との熱交換により、冷媒が加熱され、冷媒の乾き度が増大する。冷媒は、HV機器熱源30から潜熱を受け取って一部気化することにより、飽和液と飽和蒸気とが混合した湿り蒸気となる(H点)。その後冷媒は、充電器71との熱交換によりさらに加熱され、乾き度がさらに増大する(I点)。冷媒に潜熱を放出することで、充電器71が冷却される。
 その後冷媒は、冷媒通路22b,22cを経由して、凝縮器15に流入する。冷媒の湿り蒸気は、凝縮器15において再度凝縮され、冷媒の全部が凝縮すると飽和液になり、さらに顕熱を放出して過冷却された過冷却液になる(K点)。その後膨張弁16を通過することで、冷媒は低温低圧の湿り蒸気になる(J点)。
 凝縮器15において十分に冷媒を冷却することにより、膨張弁16の出口において、冷媒は、車両の室内の冷房のために本来必要とされる温度および圧力を有する。そのため、蒸発器18において冷媒が蒸発するときに外部から受け取る熱量を十分に大きくすることができる。このように、冷媒を十分に冷却できる凝縮器15の放熱能力を定めることにより、車室内の空気を冷却する冷房の能力に影響を与えることなく、充電器71を冷却することができる。したがって、充電器71の冷却能力と、車室用の冷房能力との両方を、確実に確保することができる。
 実施の形態2の蒸気圧縮式冷凍サイクル10では、圧縮機12と膨張弁16との間に凝縮器14が配置され、凝縮器14において冷媒を飽和液の状態からさらに冷却し、冷媒が所定の過冷却度を有するまで冷却する必要があった。過冷却液の状態の冷媒を冷却すると、冷媒の温度が大気温度に近づき、冷媒の冷却効率が低下するので、凝縮器14の容量を増大させる必要がある。その結果、凝縮器14のサイズが増大し、車載用の冷却装置1として不利になるという問題がある。一方、車両へ搭載するために凝縮器14を小型化すると、凝縮器14の放熱能力も小さくなり、その結果、膨張弁16の出口における冷媒の温度を十分に低くできず、車室用の冷房能力が不足する虞がある。
 これに対し、実施の形態6の蒸気圧縮式冷凍サイクル10では、圧縮機12と膨張弁16との間に二段の凝縮器14,15を配置し、充電器71の冷却系である冷却部80が凝縮器14と凝縮器15との間に設けられる。凝縮器14では、図13に示すように、冷媒を飽和液の状態にまで冷却すればよい。充電器71から蒸発潜熱を受け取り一部気化した湿り蒸気の状態の冷媒は、凝縮器15で再度冷却される。湿り蒸気状態の冷媒を凝縮させ完全に飽和液にするまで、冷媒は一定の温度で状態変化する。凝縮器15はさらに、車両の室内の冷房のために必要な程度の過冷却度にまで、冷媒を冷却する。そのため、実施の形態1と比較して、冷媒の過冷却度を大きくする必要がなく、凝縮器14,15の容量を低減することができる。したがって、凝縮器14,15のサイズを低減することができ、小型化され車載用に有利な冷却装置1を得ることができる。
 凝縮器14から冷媒通路22を経由して冷却部80へ流れる冷媒は、充電器71を冷却するときに、充電器71から熱を受け取り加熱される。充電器71において加熱された冷媒が全て気化して乾き蒸気になると、冷媒と充電器71との熱交換量が減少して充電器71を効率よく冷却できなくなり、また冷媒が配管内を流れる際の圧力損失が増大する。そのため、充電器71を冷却した後の冷媒を乾き蒸気にしない程度に、凝縮器14において十分に冷媒を冷却するのが望ましい。
 具体的には、凝縮器14の出口における冷媒の状態を飽和液に近づけ、典型的には凝縮器14の出口において冷媒が飽和液線上にある状態にする。このように冷媒を十分に冷却できる能力を凝縮器14が有する結果、凝縮器14の冷媒から熱を放出させる放熱能力は、凝縮器15の放熱能力よりも高くなる。放熱能力が相対的に大きい凝縮器14において冷媒を十分に冷却することにより、充電器71から熱を受け取った冷媒を湿り蒸気の状態に留めることができ、冷媒と充電器71との熱交換量の減少を回避できるので、充電器71を十分に効率よく冷却することができる。充電器71を冷却した後の湿り蒸気の状態の冷媒は、凝縮器15において効率よく再度冷却され、飽和温度をわずかに下回る程度の過冷却液の状態にまで冷却される。したがって、車室用の冷房能力と充電器71の冷却能力との両方を確保した、冷却装置1を提供することができる。
 (実施の形態7)
 図14は、実施の形態7の冷却装置1の構成を示す模式図である。実施の形態7の冷却装置1では、凝縮器14の出口から膨張弁16の入口へ向かって流れる冷媒が流通する冷媒通路22は、第一通路としての通路形成部26を含む。通路形成部26は、冷媒通路22の一部を形成する。凝縮器14と膨張弁16との間の冷媒通路22は、通路形成部26よりも上流側(凝縮器14に近接する側)の冷媒通路22aと、通路形成部26と、通路形成部26から凝縮器15へ至る冷媒通路22cと、凝縮器15よりも下流側(膨張弁16に近接する側)の冷媒通路22dと、に分割されている。
 冷却装置1は、通路形成部26と並列に配置された第二通路としての、他の冷媒の通路を備える。当該他の冷媒の通路は、冷媒通路31,32と、冷却部80の冷却通路81とを含む。冷却部80は、上記他の冷媒の通路に設けられている。冷媒通路31,32を経由して流れる冷媒は、冷却部80を経由して流れ、発熱源としてのHV機器熱源30および充電器71から熱を奪って、HV機器熱源30および充電器71を冷却させる。冷媒通路31は、冷媒通路22aから冷却部80に冷媒を流通させるための通路である。冷媒通路32は、冷却部80から冷媒通路22cに冷媒を流通させるための通路である。冷媒は、冷媒通路31を経由して冷媒通路22aから冷却部80へ向かって流通し、冷媒通路32を経由して冷却部80から冷媒通路22cへ向かって流通する。凝縮器14から出た高圧の液冷媒が分岐して、冷媒の一部が冷却部80へ流通する。
 凝縮器14の出口から膨張弁16の入口へ向かう冷媒が流通する経路として、冷却部80を通過する経路である冷媒通路31,32および冷却通路81と、冷却部80を通過しない経路である通路形成部26と、が並列に設けられる。そのため、凝縮器14から流出した冷媒の一部のみが、冷却部80へ流れる。冷却部80において充電器71を冷却するために必要な量の冷媒を冷媒通路31,32へ流通させ、充電器71は適切に冷却される。したがって、充電器71が過冷却されることを防止できる。全ての冷媒が冷却部80に流れないので、冷媒通路31,32の冷媒の流通に係る圧力損失を低減することができ、それに伴い、冷媒を循環させるための圧縮機12の運転に必要な消費電力を低減することができる。
 冷媒通路22の一部を形成する通路形成部26は、冷媒通路22の凝縮器14と凝縮器15との間に設けられている。冷媒通路31,32を含む充電器71の冷却系は、通路形成部26と並列に接続されている。凝縮器14から直接凝縮器15へ流れる冷媒の経路と、凝縮器14から冷却部80を経由して凝縮器15へ流れる冷媒の経路と、を並列に設け、一部の冷媒のみを冷媒通路31,32へ流通させることで、充電器71の冷却系に冷媒が流れる際の圧力損失を低減することができる。
 冷却装置1はさらに、流量調整弁28を備える。流量調整弁28は、凝縮器14から膨張弁16へ向かう冷媒通路22に設けられている。流量調整弁28は、冷媒通路22の一部を形成する通路形成部26に配置されている。流量調整弁28は、その弁開度を変動させ、通路形成部26を流れる冷媒の圧力損失を増減させることにより、通路形成部26を流れる冷媒の流量と、冷媒通路31,32および冷却通路81を流れる冷媒の流量と、を任意に調節する。
 たとえば、流量調整弁28を全閉にして弁開度を0%にすると、凝縮器14を出た冷媒の全量が冷媒通路31へ流入する。流量調整弁28の弁開度を大きくすれば、凝縮器14から冷媒通路22へ流れる冷媒のうち、通路形成部26を経由して流れる流量が大きくなり、冷媒通路31,32および冷却通路81を経由して流れ充電器71を冷却する冷媒の流量が小さくなる。流量調整弁28の弁開度を小さくすれば、凝縮器14から冷媒通路22へ流れる冷媒のうち、通路形成部26を経由して凝縮器15へ直接流れる流量が小さくなり、冷媒通路31,32および冷却通路81を経由して冷却部80へ流れ充電器71を冷却する冷媒の流量が大きくなる。
 流量調整弁28の弁開度を大きくすると充電器71を冷却する冷媒の流量が小さくなり、充電器71の冷却能力が低下する。流量調整弁28の弁開度を小さくすると充電器71を冷却する冷媒の流量が大きくなり、充電器71の冷却能力が向上する。流量調整弁28を使用して、冷却部80に流れる冷媒の量を最適に調節できるので、充電器71の過冷却を確実に防止することができ、加えて、冷媒通路31,32の冷媒の流通に係る圧力損失および冷媒を循環させるための圧縮機12の消費電力を、確実に低減することができる。
 流量調整弁28の弁開度調整に係る制御の一例について、以下に説明する。図15は、流量調整弁28の開度制御の概略を示す図である。図15のグラフ(A)~(D)に示す横軸は、時間を示す。グラフ(A)の縦軸は、流量調整弁28がステッピングモータを用いた電気式膨張弁である場合の弁開度を示す。グラフ(B)の縦軸は、流量調整弁28が温度の変動により開閉動作する温度式膨張弁である場合の弁開度を示す。グラフ(C)の縦軸は、発熱源としての充電器71の温度を示す。グラフ(D)の縦軸は、充電器71の出入口温度差を示す。
 冷媒が冷媒通路31,32を経由して冷却部80へ流通することで、充電器71は冷却される。流量調整弁28の弁開度調整は、たとえば、充電器71の温度、または充電器71の出口温度と入口温度との温度差を監視することにより、行なわれる。たとえばグラフ(C)を参照して、充電器71の温度を継続的に計測する温度センサを設け、充電器71の温度を監視する。またたとえば、グラフ(D)を参照して、充電器71の入口温度と出口温度とを計測する温度センサを設け、充電器71の出入口の温度差を監視する。
 充電器71の温度が目標温度を上回る、または、充電器71の出入口温度差が目標温度差(たとえば3~5℃)を上回ると、グラフ(A)およびグラフ(B)に示すように、流量調整弁28の開度を小さくする。流量調整弁28の開度を絞ることにより、上述した通り、冷媒通路31を経由して冷却部80へ流れる冷媒の流量が大きくなるので、充電器71をより効果的に冷却できる。その結果、グラフ(C)に示すように充電器71の温度を低下させて目標温度以下にすることができ、または、グラフ(D)に示すように充電器71の出入口温度差を小さくして目標温度差以下にすることができる。
 このように、流量調整弁28の弁開度を最適に調整することで、充電器71を適切な温度範囲に保つために必要な放熱能力を得られる量の冷媒を確保し、充電器71を適切に冷却することができる。したがって、充電器71が過熱して損傷する不具合の発生を、確実に抑制することができる。
 図14に戻って、実施の形態7の冷却装置1は、冷却部80から凝縮器15に向けて流通する冷媒の経路である冷媒通路32と、圧縮機12から凝縮器14に向けて流通する冷媒の経路である冷媒通路21と、を連通する、連通路51を備える。冷媒通路32は、連通路51との分岐点よりも上流側の冷媒通路32aと、連通路51との分岐点よりも下流側の冷媒通路32bと、に二分割されている。冷媒通路21は、連通路51との分岐点よりも上流側の冷媒通路21aと、連通路51との分岐点よりも下流側の冷媒通路21bと、に二分割されている。
 連通路51には、開閉弁56が設けられている。通路形成部26と冷媒通路22cと冷媒通路32bとの分岐点には、三方弁53が配置されている。三方弁53と開閉弁56とは、冷媒の流れを切り換える切換弁52として機能する。開閉弁56と三方弁53との開閉状態を変化させることにより、充電器71を冷却した後の冷媒通路32aを流通する冷媒を、冷媒通路32bを経由させて凝縮器15へ流通させることができ、または、連通路51を経由させて凝縮器14へ流通させることができる。三方弁53と開閉弁56とを使用して冷媒の経路を切り換えることにより、充電器71を冷却した後の冷媒を、冷媒通路32b,22cを経由させて凝縮器15へ、または、連通路51および冷媒通路21bを経由して凝縮器14へ、のいずれかの経路を任意に選択して、流通させることができる。
 図16は、実施の形態7の蒸気圧縮式冷凍サイクル10の運転中の、充電器71を冷却する冷媒の流れを示す模式図である。図16に示すように、蒸気圧縮式冷凍サイクル10が運転しているときには、冷却部80を流れ充電器71を冷却した冷媒が冷媒通路32b,22cを経由して凝縮器15へ流通し、連通路51には冷媒が流れないように、開閉弁56は全閉(弁開度0%)とされ、三方弁53は全ての経路が全開(弁開度100%)とされる。
 図17は、実施の形態7の蒸気圧縮式冷凍サイクル10の停止中の、充電器71を冷却する冷媒の流れを示す模式図である。図17に示すように、蒸気圧縮式冷凍サイクル10が停止しているときには、冷媒を冷却部80から凝縮器14へ循環させるように、開閉弁56を全開(弁開度100%)にし、膨張弁16を全閉(弁開度0%)し、さらに冷媒通路32bと冷媒通路22cとを非連通にするように三方弁53を操作する。連通路51を経由して冷媒を循環させることにより、凝縮器14から、冷媒通路22a,31を経由して冷却部80へ至り、さらに冷媒通路32a、連通路51a,51bおよび冷媒通路21bを順に経由して凝縮器14へ戻る、閉じられた環状の経路が形成される。
 この環状の経路を経由して、圧縮機12を動作することなく、凝縮器14と冷却部80との間に冷媒を循環させることができる。冷媒は、充電器71を冷却するとき、充電器71から蒸発潜熱を受けて蒸発する。充電器71で気化された冷媒蒸気は、冷媒通路32a、連通路51a,51bおよび冷媒通路21bを順に経由して、凝縮器14へ流れる。凝縮器14において、自然の通風またはエンジン冷却用のラジエータファンなどの冷却ファンからの強制通風により、冷媒蒸気は冷却されて凝縮する。凝縮器14で液化した冷媒液は、冷媒通路22a,31を経由して、冷却部80へ戻る。
 このように、充電器71と凝縮器14とを経由する環状の経路によって、充電器71を加熱部とし凝縮器14を冷却部とする、ヒートパイプが形成される。したがって、蒸気圧縮式冷凍サイクル10が停止しているとき、すなわち車両用の冷房が停止しているときにも、圧縮機12を起動する必要なく、充電器71を確実に冷却することができる。充電器71の冷却のために圧縮機12を常時運転する必要がないことにより、圧縮機12の消費動力を低減することができ、加えて、圧縮機12を長寿命化できるので圧縮機12の信頼性を向上することができる。
 (実施の形態8)
 図18は、実施の形態8の冷却装置1の構成を示す、蒸気圧縮式冷凍サイクル10の運転中の、充電器71を冷却する冷媒の流れを示す模式図である。図19は、実施の形態8の冷却装置1の構成を示す、蒸気圧縮式冷凍サイクル10の停止中の、充電器71を冷却する冷媒の流れを示す模式図である。図16および図17に示す実施の形態7の構成と比較して、実施の形態8の冷却装置1では、切換弁52として機能する三方弁53は冷媒通路32と連通路51との分岐点に配置され、開閉弁56は除かれている。
 図18に示すように、蒸気圧縮式冷凍サイクル10の運転中には、冷媒通路32a,32bを連通状態にし冷媒通路32と連通路51とを非連通状態にするように三方弁53を操作し、流量調整弁28の弁開度を冷却部80に十分な冷媒が流れるように調整する。これにより、充電器71を冷却した後の冷媒を冷媒通路32a,32b,22cを経由させて、確実に凝縮器15へ流通させることができる。一方、図19に示すように、蒸気圧縮式冷凍サイクル10の停止中には、冷媒通路32aと連通路51とを連通状態にし冷媒通路31aと冷媒通路31bとを非連通状態にするように三方弁53を操作し、さらに流量調整弁28を全閉とする。これにより、充電器71と凝縮器14との間に冷媒を循環させる環状の経路を形成することができる。
 冷媒通路32と冷媒通路21,22との連通状態を切り換える切換弁52としては、実施の形態7または8に示す弁のいずれを設けてもよい。または、蒸気圧縮式冷凍サイクル10の運転時および停止時の両方において、冷却部80に冷媒を流通させ、充電器71を効率よく冷却することができる構成であれば、その他の任意の弁を設けてもよい。実施の形態7と比較して、実施の形態8の構成では、開閉弁56が一つ省略されているので、切換弁52の配置に要する空間はより小さくてよいと考えられ、より小型化され車両搭載性に優れた冷却装置1を提供することができる。
 実施の形態8の冷却装置1はさらに、逆止弁55を備える。逆止弁55は、圧縮機12と凝縮器14との間の冷媒通路21の、冷媒通路21と連通路51との接続箇所よりも圧縮機12に近接する側の冷媒通路21aに、配置されている。逆止弁55は、圧縮機12から凝縮器14へ向かう冷媒の流れを許容するとともに、その逆向きの冷媒の流れを禁止する。
 このようにすれば、図19に示すように、流量調整弁28を全閉(弁開度0%)にし、冷媒通路32aから連通路51へ冷媒が流れ冷媒通路32bへは流れないように三方弁53を調整したとき、凝縮器14とHV機器熱源30との間に冷媒を循環させる閉ループ状の冷媒の経路を、確実に形成することができる。
 逆止弁55がない場合、冷媒が連通路51から圧縮機12側の冷媒通路21aへ流れる虞がある。逆止弁55を備えることによって、連通路51から圧縮機12側へ向かう冷媒の流れを確実に禁止できるので、環状の冷媒経路で形成するヒートパイプを使用した、蒸気圧縮式冷凍サイクル10の停止時の充電器71の冷却能力の低下を防止できる。したがって、車両の車室用の冷房が停止しているときにも、充電器71を効率よく冷却することができる。
 また、蒸気圧縮式冷凍サイクル10の停止中に、閉ループ状の冷媒の経路内の冷媒の量が不足する場合には、圧縮機12を短時間のみ運転することで、逆止弁55を経由して閉ループ経路に冷媒を供給できる。これにより、閉ループ内の冷媒量を増加させ、ヒートパイプの熱交換処理量を増大させることができる。したがって、ヒートパイプの冷媒量を確保することができるので、冷媒量の不足のために充電器71の冷却が不十分となることを回避することができる。
 以上のように本発明の実施の形態について説明を行なったが、各実施の形態の構成を適宜組合せてもよい。また、今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。この発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 本発明の冷却装置は、プラグインハイブリッド車、電気自動車などの、充放電可能な蓄電池を外部電源からの電力供給を受けて充電するための充電器を備える車両における、車内の冷房を行なうための蒸気圧縮式冷凍サイクルを使用した充電器の冷却に、特に有利に適用され得る。
 1 冷却装置、10 蒸気圧縮式冷凍サイクル、12 圧縮機、14,15 凝縮器、16 膨張弁、18 蒸発器、21,21a,21b,22,22a,22b,22c,22d,23,23a,23b,24,31,31a,31b,32,32a,32b 冷媒通路、26 通路形成部、28 流量調整弁、30 HV機器熱源、51,51a,51b 連通路、52 切換弁、53 三方弁、55 逆止弁、56 開閉弁、60 地面、71 充電器、72 蓄電池、73 配線、80 冷却部、81 冷却通路、82 ヒートパイプ。

Claims (12)

  1.  電源からの電力供給を受け蓄電池(72)を充電するための充電器(71)を冷却する冷却装置(1)であって、
     冷媒を循環させるための圧縮機(12)と、
     前記冷媒を凝縮するための凝縮器(14)と、
     前記凝縮器(14)によって凝縮された前記冷媒を減圧する減圧器(16)と、
     前記減圧器(16)によって減圧された前記冷媒を蒸発させるための蒸発器(18)と、
     前記凝縮器(14)から前記蒸発器(18)に向けて流通する前記冷媒の経路上に設けられ、前記凝縮器(14)からの前記冷媒を用いて前記充電器(71)を冷却するための冷却部(80)と、を備える、冷却装置(1)。
  2.  前記充電器(71)は、前記冷媒が流通する配管(81)に直接接触する、請求項1に記載の冷却装置(1)。
  3.  前記充電器(71)と前記冷媒が流通する配管(81)との間に介在して配置されたヒートパイプ(82)を備える、請求項1に記載の冷却装置(1)。
  4.  前記冷却部(80)は、前記凝縮器(14)から前記減圧器(16)に向けて流通する前記冷媒の経路上に設けられる、請求項1から請求項3のいずれかに記載の冷却装置(1)。
  5.  前記冷却部(80)から前記減圧器(16)に向けて流通する前記冷媒の経路上に設けられた他の凝縮器(15)を備える、請求項4に記載の冷却装置(1)。
  6.  前記凝縮器(14)は、前記冷媒から熱を放出させる放熱能力が前記他の凝縮器(15)よりも高い、請求項5に記載の冷却装置(1)。
  7.  前記凝縮器(14)の出口から前記減圧器(16)の入口へ向かう前記冷媒が流通する、並列に配置された第一通路(26)および第二通路を備え、
     前記冷却部(80)は、前記第二通路に設けられる、請求項4から請求項6のいずれかに記載の冷却装置。
  8.  前記第一通路(26)に配置され、前記第一通路(26)を流れる前記冷媒の流量と前記第二通路を流れる前記冷媒の流量とを調節する、流量調整弁(28)を備える、請求項7に記載の冷却装置(1)。
  9.  前記冷却部(80)から前記減圧器(16)に向けて流通する前記冷媒の経路と、前記圧縮機(12)から前記凝縮器(14)に向けて流通する前記冷媒の経路と、を連通する、連通路(51)を備える、請求項1から請求項8のいずれかに記載の冷却装置(1)。
  10.  前記冷却部(80)の出口から前記減圧器(16)の入口へ向かう前記冷媒の流れと、前記冷却部(80)の出口から前記連通路(51)へ向かう前記冷媒の流れと、を切り換える、切換弁(52)を備える、請求項9に記載の冷却装置(1)。
  11.  前記冷却部(80)は、前記凝縮器(14)よりも下方に配置されている、請求項9または請求項10に記載の冷却装置(1)。
  12.  前記冷却部(80)は、前記充電器(71)よりも前記冷媒の流れの上流側に配置された電気機器(30)を含み、前記凝縮器(14)からの前記冷媒を用いて前記電気機器(30)を冷却する、請求項1から請求項11のいずれかに記載の冷却装置(1)。
PCT/JP2011/052387 2011-02-04 2011-02-04 冷却装置 WO2012105047A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11857535.6A EP2672200B1 (en) 2011-02-04 2011-02-04 Cooling device
JP2012555669A JP5522275B2 (ja) 2011-02-04 2011-02-04 冷却装置
PCT/JP2011/052387 WO2012105047A1 (ja) 2011-02-04 2011-02-04 冷却装置
US13/979,258 US8893522B2 (en) 2011-02-04 2011-02-04 Cooling device
CN201180066498.6A CN103370583B (zh) 2011-02-04 2011-02-04 冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/052387 WO2012105047A1 (ja) 2011-02-04 2011-02-04 冷却装置

Publications (1)

Publication Number Publication Date
WO2012105047A1 true WO2012105047A1 (ja) 2012-08-09

Family

ID=46602288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052387 WO2012105047A1 (ja) 2011-02-04 2011-02-04 冷却装置

Country Status (5)

Country Link
US (1) US8893522B2 (ja)
EP (1) EP2672200B1 (ja)
JP (1) JP5522275B2 (ja)
CN (1) CN103370583B (ja)
WO (1) WO2012105047A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012192815A (ja) * 2011-03-16 2012-10-11 Nippon Soken Inc 冷却装置
JP2013194937A (ja) * 2012-03-16 2013-09-30 Nippon Soken Inc 冷却装置およびそれを備える車両
CN104344474A (zh) * 2013-08-01 2015-02-11 广东美的暖通设备有限公司 空调系统及其控制方法
WO2017145276A1 (ja) * 2016-02-24 2017-08-31 三菱電機株式会社 空気調和装置
TWI656046B (zh) * 2017-09-30 2019-04-11 大陸商比亞迪股份有限公司 車輛的充電裝置以及車輛
JP2019192446A (ja) * 2018-04-24 2019-10-31 トヨタ自動車株式会社 コネクタ
JP2020090172A (ja) * 2018-12-05 2020-06-11 マツダ株式会社 車両駆動装置
JP2020536005A (ja) * 2017-09-30 2020-12-10 ビーワイディー カンパニー リミテッド 車載電池の温度調整方法及び温度調整システム(関連出願の相互参照) 本願は、2017年9月30日に中国国家知識産権局に提出された出願番号201710945051.5に基づくものであり、かつその優先権を主張するものであり、その全ての内容は参照により本願に組み込まれるものとする。
US11440373B2 (en) 2017-09-30 2022-09-13 Byd Company Limited Temperature regulating system of in-vehicle battery
US11527789B2 (en) 2017-09-30 2022-12-13 Byd Company Limited Temperature adjustment method and temperature adjustment system for vehicle

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013090232A2 (en) * 2011-12-14 2013-06-20 Magna E-Car Systems Of America, Inc. Vehicle with traction motor with preemptive cooling of motor fluid circuit prior to cooling of battery fluid circuit
US9644898B2 (en) * 2013-07-09 2017-05-09 The Boeing Company Systems and methods for heat balance and transport for aircraft hydraulic systems
KR102128584B1 (ko) * 2013-09-16 2020-06-30 엘지전자 주식회사 공기 조화기
US9853335B2 (en) * 2013-12-23 2017-12-26 Rolls-Royce North American Technologies, Inc. Thermal management of energy storage
US10290911B2 (en) * 2015-05-18 2019-05-14 Toyota Motor Engineering & Manufacturing North America, Inc. Cooling loops and vehicles incorporating the same
US11052776B2 (en) 2015-09-24 2021-07-06 Ford Global Technologies, Llc Charging station for electrified vehicles
CN105890210B (zh) * 2016-06-01 2018-09-07 珠海格力电器股份有限公司 一种高温空调机组
PL3257700T3 (pl) * 2016-06-17 2020-02-28 Sandvik Mining And Construction Oy Układ złącza ładowania z czujnikiem, w pojeździe podziemnym
JP6741904B2 (ja) * 2016-12-09 2020-08-19 株式会社デンソー 駆動装置および自動車
CN108248334A (zh) * 2016-12-29 2018-07-06 长城汽车股份有限公司 车载制冷系统、车载制冷系统的控制方法和车辆
DE102017110703B4 (de) * 2017-05-17 2024-03-28 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Kühlvorrichtung und Verfahren zum Betreiben einer Mehrzahl von Ladestationen
DE102017115642B3 (de) * 2017-07-12 2018-07-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Vorrichtung zum elektrischen Laden von Elektrofahrzeugen
DE102017221432A1 (de) 2017-11-29 2019-05-29 Ads-Tec Gmbh Kühlungseinheit und -verfahren für eine Ladestation und entsprechende Stromtankstelle
CN110316006B (zh) * 2019-07-29 2022-06-14 重庆长安新能源汽车科技有限公司 一种电动汽车充电车载设备冷却控制系统及方法
DE102020206529A1 (de) * 2020-05-26 2021-12-02 Ford Global Technologies, Llc System zum Kühlen einer Batterie eines Kraftfahrzeugs, sowie Kraftfahrzeug
RU206650U1 (ru) * 2021-05-12 2021-09-21 Владимир Васильевич Галайко Бытовой компрессионный холодильник
CN114111131B (zh) * 2021-10-20 2023-10-20 华为数字能源技术有限公司 制冷系统和充电系统
AT525276B1 (de) * 2021-12-07 2023-02-15 Avl List Gmbh Verfahren zur temperierung zumindest zweier bauteilanordnungen
DE102021132152A1 (de) 2021-12-07 2023-06-07 Audi Aktiengesellschaft Verfahren zum Laden eines elektrischen Energiespeichers eines Kraftfahrzeugs, Kraftfahrzeug und Ladestation

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493557A (ja) * 1990-08-10 1992-03-26 Toshiba Corp 車両用クーラ
JPH04275492A (ja) 1991-03-04 1992-10-01 Toyota Motor Corp 電気自動車の電力変換手段冷却装置
JPH04120577U (ja) * 1991-04-08 1992-10-28 ダイキン工業株式会社 空気調和機
JPH07280362A (ja) * 1994-04-01 1995-10-27 Nippondenso Co Ltd 冷凍サイクル
JPH07312805A (ja) 1994-05-17 1995-11-28 Toyota Autom Loom Works Ltd 車両搭載用充電器
JPH1126031A (ja) * 1997-07-02 1999-01-29 Denso Corp 電池冷却装置
JP2000073763A (ja) 1998-08-26 2000-03-07 Nissan Motor Co Ltd ハイブリッド車用冷却装置
JP2001309506A (ja) 2000-04-25 2001-11-02 Denso Corp 車両走行モ−タ駆動用インバータ回路装置及びその冷却方法
JP2005090862A (ja) 2003-09-17 2005-04-07 Toyota Motor Corp 冷却システム
JP2007069733A (ja) 2005-09-07 2007-03-22 Valeo Thermal Systems Japan Corp 車両用空調装置を利用した発熱体冷却システム
JP2010280352A (ja) * 2009-06-08 2010-12-16 Honda Motor Co Ltd 車両の制御装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4341086A (en) * 1980-10-06 1982-07-27 Clarion Co., Ltd. Refrigeration system
JPH04120577A (ja) 1990-09-12 1992-04-21 Fujitsu Ltd 像形成装置の転写部材クリーニング法
DE4238364A1 (de) * 1992-11-13 1994-05-26 Behr Gmbh & Co Einrichtung zum Kühlen von Antriebskomponenten und zum Heizen eines Fahrgastraumes eines Elektrofahrzeugs
US5371454A (en) * 1993-03-08 1994-12-06 Marek; Albert Passive battery charging system
DE4330618A1 (de) * 1993-09-09 1995-03-16 Bayerische Motoren Werke Ag Kühlvorrichtung für ein Batterieladegerät und einen Bordnetzwandler in Elektrofahrzeugen
JP3513846B2 (ja) * 1995-10-31 2004-03-31 株式会社デンソー 電気自動車用放熱装置
LU90890B1 (en) * 2002-02-15 2003-08-18 Delphi Tech Inc Cooling of electronics in an electrically driven refrigeration system
KR100467361B1 (ko) * 2002-02-28 2005-01-25 가부시키가이샤 덴소 차량공조장치
AU2003274750A1 (en) * 2002-10-24 2004-05-13 Showa Denko K.K. Refrigeration system, compressing and heat-releasing apparatus and heat-releasing device
JP4062129B2 (ja) * 2003-03-05 2008-03-19 株式会社デンソー 蒸気圧縮式冷凍機
US7228692B2 (en) * 2004-02-11 2007-06-12 Carrier Corporation Defrost mode for HVAC heat pump systems
US20050279127A1 (en) * 2004-06-18 2005-12-22 Tao Jia Integrated heat exchanger for use in a refrigeration system
US7145788B2 (en) * 2004-07-27 2006-12-05 Paccar Inc Electrical power system for vehicles requiring electrical power while the vehicle engine is not in operation
SE527411C2 (sv) * 2004-08-16 2006-02-28 Scania Cv Abp Förfarande och anordning för kylning
EP1842019B1 (de) * 2005-01-14 2012-08-08 Behr GmbH & Co. KG Verdampfer, insbesondere für eine klimaanlage eines kraftfahrzeuges
JP2006273049A (ja) * 2005-03-28 2006-10-12 Calsonic Kansei Corp 車両用空調装置
JP2007155229A (ja) * 2005-12-06 2007-06-21 Sanden Corp 蒸気圧縮式冷凍サイクル
JP4897298B2 (ja) * 2006-01-17 2012-03-14 サンデン株式会社 気液分離器モジュール
US8166774B2 (en) * 2006-01-25 2012-05-01 Visteon Global Technologies, Inc. Heat exchanger with an expansion stage
JP2008074377A (ja) * 2006-03-02 2008-04-03 Denso Corp 車両用ブライン式冷却装置およびその運転制御方法
US8796588B2 (en) * 2006-03-14 2014-08-05 Rtr Technologies, Inc. Heated floor panel for transit vehicle
JP2010107180A (ja) * 2008-02-06 2010-05-13 Daikin Ind Ltd 冷凍装置
WO2012029270A1 (ja) * 2010-08-30 2012-03-08 住友重機械工業株式会社 ショベル

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493557A (ja) * 1990-08-10 1992-03-26 Toshiba Corp 車両用クーラ
JPH04275492A (ja) 1991-03-04 1992-10-01 Toyota Motor Corp 電気自動車の電力変換手段冷却装置
JPH04120577U (ja) * 1991-04-08 1992-10-28 ダイキン工業株式会社 空気調和機
JPH07280362A (ja) * 1994-04-01 1995-10-27 Nippondenso Co Ltd 冷凍サイクル
JPH07312805A (ja) 1994-05-17 1995-11-28 Toyota Autom Loom Works Ltd 車両搭載用充電器
JPH1126031A (ja) * 1997-07-02 1999-01-29 Denso Corp 電池冷却装置
JP2000073763A (ja) 1998-08-26 2000-03-07 Nissan Motor Co Ltd ハイブリッド車用冷却装置
JP2001309506A (ja) 2000-04-25 2001-11-02 Denso Corp 車両走行モ−タ駆動用インバータ回路装置及びその冷却方法
JP2005090862A (ja) 2003-09-17 2005-04-07 Toyota Motor Corp 冷却システム
JP2007069733A (ja) 2005-09-07 2007-03-22 Valeo Thermal Systems Japan Corp 車両用空調装置を利用した発熱体冷却システム
JP2010280352A (ja) * 2009-06-08 2010-12-16 Honda Motor Co Ltd 車両の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2672200A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012192815A (ja) * 2011-03-16 2012-10-11 Nippon Soken Inc 冷却装置
JP2013194937A (ja) * 2012-03-16 2013-09-30 Nippon Soken Inc 冷却装置およびそれを備える車両
CN104344474A (zh) * 2013-08-01 2015-02-11 广东美的暖通设备有限公司 空调系统及其控制方法
WO2017145276A1 (ja) * 2016-02-24 2017-08-31 三菱電機株式会社 空気調和装置
JPWO2017145276A1 (ja) * 2016-02-24 2018-09-13 三菱電機株式会社 空気調和装置
JP7075485B2 (ja) 2017-09-30 2022-05-25 ビーワイディー カンパニー リミテッド 車載電池の温度調整方法及び温度調整システム
TWI656046B (zh) * 2017-09-30 2019-04-11 大陸商比亞迪股份有限公司 車輛的充電裝置以及車輛
US11527789B2 (en) 2017-09-30 2022-12-13 Byd Company Limited Temperature adjustment method and temperature adjustment system for vehicle
JP2020536005A (ja) * 2017-09-30 2020-12-10 ビーワイディー カンパニー リミテッド 車載電池の温度調整方法及び温度調整システム(関連出願の相互参照) 本願は、2017年9月30日に中国国家知識産権局に提出された出願番号201710945051.5に基づくものであり、かつその優先権を主張するものであり、その全ての内容は参照により本願に組み込まれるものとする。
US11440373B2 (en) 2017-09-30 2022-09-13 Byd Company Limited Temperature regulating system of in-vehicle battery
US11271261B2 (en) 2017-09-30 2022-03-08 Byd Company Limited Temperature adjustment method and temperature adjustment system for vehicle-mounted battery
JP2019192446A (ja) * 2018-04-24 2019-10-31 トヨタ自動車株式会社 コネクタ
JP7006483B2 (ja) 2018-04-24 2022-02-10 トヨタ自動車株式会社 コネクタ
JP7118363B2 (ja) 2018-12-05 2022-08-16 マツダ株式会社 車両駆動装置
JP2020090172A (ja) * 2018-12-05 2020-06-11 マツダ株式会社 車両駆動装置

Also Published As

Publication number Publication date
EP2672200B1 (en) 2017-10-18
EP2672200A1 (en) 2013-12-11
CN103370583B (zh) 2015-09-23
JPWO2012105047A1 (ja) 2014-07-03
JP5522275B2 (ja) 2014-06-18
EP2672200A4 (en) 2015-01-14
US20130298588A1 (en) 2013-11-14
CN103370583A (zh) 2013-10-23
US8893522B2 (en) 2014-11-25

Similar Documents

Publication Publication Date Title
JP5522275B2 (ja) 冷却装置
JP5755490B2 (ja) 冷却装置
JP5815284B2 (ja) 冷却装置
JP5655954B2 (ja) 冷却装置および冷却装置の制御方法
JP5373841B2 (ja) 冷却装置
JP2012172917A (ja) 冷却装置
JP5798402B2 (ja) 冷却装置
JP5669778B2 (ja) 冷却装置およびそれを備える車両
JP5837369B2 (ja) 冷却装置の制御装置および制御方法
WO2013051114A1 (ja) 冷却装置の制御方法
JP2012192815A (ja) 冷却装置
JP5852368B2 (ja) 冷却装置
JP2013023186A (ja) 冷却装置
JP2012245857A (ja) 冷却装置、冷却装置の制御方法および制御装置
JP2012245856A (ja) 冷却装置
JP5320419B2 (ja) 冷却装置
JP2014051118A (ja) 冷却装置
JP5917966B2 (ja) 冷却装置およびそれを備える車両
JP5618011B2 (ja) 冷却装置の制御方法
JP2014088996A (ja) 冷却装置
JP2014081127A (ja) 冷却装置およびその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857535

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012555669

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13979258

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011857535

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011857535

Country of ref document: EP