WO2012098813A1 - クランプ装置 - Google Patents

クランプ装置 Download PDF

Info

Publication number
WO2012098813A1
WO2012098813A1 PCT/JP2011/080185 JP2011080185W WO2012098813A1 WO 2012098813 A1 WO2012098813 A1 WO 2012098813A1 JP 2011080185 W JP2011080185 W JP 2011080185W WO 2012098813 A1 WO2012098813 A1 WO 2012098813A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
coil spring
control device
stepping motor
cpu
Prior art date
Application number
PCT/JP2011/080185
Other languages
English (en)
French (fr)
Inventor
丹羽 久信
克幸 長沼
Original Assignee
シーケーディ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シーケーディ株式会社 filed Critical シーケーディ株式会社
Priority to KR1020137001062A priority Critical patent/KR101284661B1/ko
Priority to JP2012553590A priority patent/JP5216166B2/ja
Priority to CN201180033840.2A priority patent/CN103328163B/zh
Publication of WO2012098813A1 publication Critical patent/WO2012098813A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/02Gripping heads and other end effectors servo-actuated
    • B25J15/0253Gripping heads and other end effectors servo-actuated comprising parallel grippers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members

Definitions

  • the present invention relates to a clamping device including a moving body configured to move linearly based on rotation of a coil spring.
  • Patent Document 1 discloses a clamping device that can accurately clamp a workpiece without programming information on the dimensions and the like of the workpiece in advance.
  • a ball screw 92 is rotatably supported on a frame 91.
  • the ball screw 92 supports a pair of first and second gripping members 93 and 94.
  • a swing finger 95 is swingably supported on the first grip member 93 by a pivot pin 95a, and a non-swing finger 96 is integrally formed with the second grip member 94.
  • the swing finger 95 is configured such that the upper end of the swing finger 95 is swingable between a pair of stoppers 97 a and 97 b provided on the first gripping member 93 and is separated from the stoppers 97 a and 97 b by a spring 98. It is energized in the direction to do.
  • An on / off switch 100 is disposed at the upper end of the first gripping member 93.
  • the on / off switch 100 has a lever 99.
  • the lever 99 is engaged with a protrusion 95 b provided at the upper end of the swing finger 95 to maintain the on / off switch 100 in an open state.
  • the on / off switch 100 is connected to a workpiece gripping confirmation circuit (not shown).
  • the swing finger 95, the pivot pin 95a, stopper 97a, 97b, the on / off switch 100, a lever 99 and the protrusion 95b are required. Therefore, the number of parts of the workpiece gripping device 90 is large, and the configuration is complicated. Further, the lever 99 must be able to electrically connect the on / off switch 100 and the swing finger 95, and the swing finger 95 can swing to operate the on / off switch 100. The structure of the workpiece gripping device 90 is complicated.
  • An object of the present invention is to provide a clamping device capable of accurately clamping a workpiece having an unknown dimension with a simple configuration without programming information about the workpiece in advance.
  • one aspect of the present invention is a clamp device that clamps a workpiece, and includes a retractable coil spring provided in the device body, a drive source that rotates the coil spring, and the coil spring.
  • a moving body that moves in a direction approaching or separating from the workpiece by rotation, a guide portion that linearly moves by restricting rotation of the moving body accompanying rotation of the coil spring, and whether or not the coil spring is contracted.
  • a control unit that controls the drive source to rotate the coil spring so as to move the moving body in a direction in which the moving body approaches or separates from the workpiece based on a detection result by the detection unit.
  • a clamping device is provided.
  • control device controls the drive source to rotate the coil spring so that the moving body is pressed against the workpiece, when the detection of the contraction of the coil spring by the detection unit is triggered.
  • the control device is electrically connected to a host control device that outputs a command related to the operation of the moving body to the control device, and the control device is configured to control the host control when the moving body has been pressed against the workpiece. It is preferable to output a completion signal to the apparatus.
  • an adjustment device is provided for adjusting the drive amount of the drive source from the start of pressure contact of the movable body to the work to the end of pressure contact.
  • the control device controls the drive source to rotate the coil spring in a direction to move the moving body away from the workpiece, and stops after driving the drive source by a predetermined amount when the contraction of the coil spring is released. It is preferable to make it.
  • the control device is electrically connected to a host control device that outputs a command related to the operation of the moving body to the control device, and the control device is configured to control the host control when the moving body is separated from the workpiece. It is preferable to output a completion signal to the apparatus.
  • an adjustment device is provided for adjusting the drive amount of the drive source from the start of separation of the movable body to the end of separation from the workpiece.
  • a workpiece having an unknown dimension can be accurately clamped with a simple configuration without programming information about the workpiece in advance.
  • Sectional drawing which shows the clamp apparatus in the 1st Embodiment of this invention Sectional drawing which shows the clamp apparatus which shows the state which both hand members moved. Sectional drawing which shows the clamp apparatus of the state which clamped the target object with both hand members. Sectional drawing which shows the clamp apparatus in the 2nd Embodiment of this invention. Sectional drawing which shows the clamp apparatus of the state from which both the hand members were spaced apart from the target object. Sectional drawing which shows the clamp apparatus in the 3rd Embodiment of this invention. Sectional drawing which shows the clamp apparatus of a prior art background art.
  • the clamp device 11 has a square cylindrical device body 12. Bearings 16 are fixed to the inner peripheral surfaces of both ends of the apparatus body 12. Both ends of the rod R are rotatably supported by the both bearings 16.
  • the rod R includes a cylindrical first spring fixing portion 15 rotatably supported by the left bearing 16, a columnar second spring fixing portion 17 rotatably supported by the right bearing 16, and both A cylindrical connecting member 19 that connects the spring fixing portions 15 and 17 is formed.
  • the rod R rotates in the apparatus main body 12 with the central axis L of the apparatus main body 12 as the center of rotation.
  • Spring fixing pieces 15a and 17a are provided on the outer peripheral surfaces of the first and second spring fixing portions 15 and 17 so as to protrude over the entire circumference in the circumferential direction of the spring fixing portions 15 and 17, respectively.
  • One end (left end) of the first coil spring 22 is fixed to the spring fixing piece 15 a of the first spring fixing portion 15.
  • the first coil spring 22 is mounted so as to surround half of the first spring fixing portion 15 of the rod R.
  • An annular first guide ring 20 is fixed to the other end (right end) of the first coil spring 22, and the right end of the first coil spring 22 extends in the radial direction of the rod R by the first guide ring 20. Fluctuation is regulated.
  • first guide ring 20 can slide along the rod R as the first coil spring 22 expands and contracts.
  • first coil spring 22 and the first guide ring 20 rotate in synchronization with the rod R.
  • An annular magnet M is embedded in the outer peripheral surface of the first guide ring 20.
  • the second coil spring 23 is fixed to the spring fixing piece 17a of the second spring fixing portion 17.
  • the second coil spring 23 is mounted so as to surround a half of the second spring fixing portion 17 of the rod R.
  • the second coil spring 23 and the first coil spring 22 are arranged so that the spiral directions are opposite to each other.
  • the coil springs 22 and 23 are formed at an equal pitch.
  • the first coil spring 22 and the second coil spring 23 are set to have the same spring force.
  • An annular second guide ring 21 is fixed to the left end of the second coil spring 23, and the second guide ring 21 restricts the left end of the second coil spring 23 from changing in the radial direction of the rod R.
  • the second guide ring 21 is slidable along the rod R as the second coil spring 23 expands and contracts.
  • An annular magnet M is embedded in the outer peripheral surface of the second guide ring 21.
  • the first guide ring 20 and the second guide ring 21 are arranged at the center in the axial direction of the apparatus main body 12 by the urging force of the first and second coil springs 22 and 23.
  • a linear guide rail 12 a is fixed to the outer surface (lower surface in FIG. 1) of the apparatus body 12 so as to extend in the axial direction of the apparatus body 12.
  • a first master jaw 28 and a second master jaw 29 having a rectangular plate shape are attached to the guide rail 12a so as to be movable along the guide rail 12a.
  • a first hand member 32 is fixed to the first master jaw 28, and a second hand member 33 is fixed to the second master jaw 29.
  • a first guide hole 12b and a second guide hole 12c as guide portions are formed in the center of the apparatus body 12 in the axial direction so as to extend linearly in the axial direction of the apparatus body 12.
  • the first master jaw 28 is fixed with a lower end of a cylindrical first pin 30, and the upper end of the first pin 30 is disposed in the apparatus main body 12 through the first guide hole 12 b. . Further, the upper end of the first pin 30 is inserted between the wire rods of the first coil springs 22 adjacent in the axial direction of the apparatus main body 12.
  • the second master jaw 29 is fixed to the lower end of a cylindrical second pin 31 and the upper end of the second pin 31 passes through the second guide hole 12c and is disposed in the apparatus main body 12. Yes. Furthermore, the upper end of the second pin 31 is inserted between the wire rods of the second coil spring 23 adjacent in the axial direction of the apparatus main body 12.
  • the moving body is constituted by the first and second hand members 32 and 33, the first master jaw 28 and the second master jaw 29, and the first and second pins 30 and 31. .
  • the first and second guide rings 20 and 21 are disposed at the center in the axial direction of the apparatus main body 12, and the first and second pins 30 and 31 are first spaced apart from the center in the axial direction of the apparatus main body 12. And the position which contact
  • An annular cover 13 is attached to the inside of the left end of the apparatus main body 12, and the cover 13 prevents the rod R from coming out of the apparatus main body 12.
  • a box-shaped case 14 is attached to the right end of the apparatus main body 12 so as to open toward the apparatus main body 12.
  • a stepping motor 24 (electric motor) as a drive source is fixed to the outer surface of the apparatus main body 12, and a drive shaft 25 of the stepping motor 24 is disposed in the case 14.
  • a drive pulley 26 is fixed to the drive shaft 25, and a driven pulley 27 fixed to the second spring fixing portion 17 of the rod R is disposed below the drive pulley 26.
  • a belt V is stretched between the drive pulley 26 and the driven pulley 27.
  • the control device 40 that controls the driving of the clamp device 11 has a CPU 41 electrically connected to a driver 42.
  • the CPU 41 controls the driver 42
  • the driver 42 is electrically connected to the stepping motor 24.
  • the driver 42 receives a command from the CPU 41 and generates a pulse signal or stops outputting the pulse signal.
  • an attachment groove 12d is formed on the outer peripheral surface of the apparatus main body 12 so as to extend in the axial direction, and a magnetic sensor 34 as a detection unit is attached to the center of the attachment groove 12d in the axial direction.
  • the magnetic sensor 34 can be fixed with a fixing screw at an arbitrary position in the axial direction of the mounting groove 12d. This magnetic sensor 34 is electrically connected to the CPU 41.
  • the magnetic sensor 34 detects magnetism from the magnet M embedded in the first and second guide rings 20 and 21.
  • the control device 40 is electrically connected to a host control device 43 that is separate from the control device 40 via wiring.
  • the host control device 43 outputs a signal for instructing the CPU 41 of the control device 40 to start the approach of the both hand members 32 and 33 to the work W, that is, a clamp start signal for starting the clamping of the work W by the clamp device 11. To do. Further, the host control device 43 instructs the CPU 41 of the control device 40 to start separation of the hand members 32 and 33 from the work W, that is, a clamp release signal for releasing the clamping of the work W by the clamp device 11. Is output.
  • the magnetic sensor 34 moves the magnets M as the first and second coil springs 22 and 23 contract, and more specifically, moves the magnets M from the center in the axial direction of the apparatus main body 12 toward the ends.
  • a change (disappearance) of magnetism associated with is detected, a magnetic disappearance detection signal is output to the CPU 41.
  • the magnetic sensor 34 moves the magnet M in response to the release of the contraction of the first and second coil springs 22, 23, specifically, each magnet directed from the axial end portions of the apparatus main body 12 toward the axial central portion.
  • a change (generation) of magnetism is detected as M moves, a magnetic detection signal is output to the CPU 41. That is, the magnetic sensor 34 detects whether or not the first and second coil springs 22 and 23 are contracted by detecting the presence or absence of magnetism of the magnet M.
  • the CPU 41 When the CPU 41 receives the magnetic disappearance detection signal from the magnetic sensor 34, the CPU 41 outputs to the stepping motor 24 a pulse signal that decelerates the stepping motor 24 and rotates it in the positive direction by a predetermined number of rotations.
  • the driver 42 is controlled as described above. Thereafter, the CPU 41 controls the driver 42 so that the output of the pulse signal from the driver 42 to the stepping motor 24 is stopped.
  • the CPU 41 rotates the stepping motor 24 by a predetermined amount (for example, 180 °) in the forward direction while decelerating the stepping motor 24 in order to press the hand members 32 and 33 against the workpiece W.
  • the driver 42 of the control device 40 is electrically connected to a dip switch 44 as a first adjustment device, and the dip switch 44 can be used to change the number of pulses of the pulse signal output from the driver 42. It has become.
  • the rotation amount (predetermined amount) of the stepping motor 24 from the start of press contact of the first and second hand members 32, 33 to the work W to the end of press contact can be adjusted. . That is, by adjusting (controlling) the amount of contraction of the coil springs 22 and 23, the clamping force for the workpiece W can be adjusted.
  • the CPU 41 When the CPU 41 inputs a magnetic disappearance detection signal from the magnetic sensor 34, the first and second hand members 32 and 33 are only slightly pressed against the workpiece W, and the first and second hand members 32 with respect to the workpiece W are used. , 33 does not reach a clamping force that can properly clamp the workpiece W. Further, when the CPU 41 rotates the stepping motor 24 by a predetermined amount in the forward direction and stops it, the first and second hand members 32 and 33 are appropriately pressed against the workpiece W, and an accurate clamping force is generated. Thus, the workpiece W can be clamped by the first and second hand members 32 and 33.
  • the CPU 41 when the CPU 41 performs control to stop the stepping motor 24, the CPU 41 outputs a completion signal of the press operation (clamping) to the host controller 43.
  • the clamp device 11 is at the origin position and the workpiece W is disposed between the first hand member 32 and the second hand member 33.
  • the clamp start signal is output from the host control device 43 to the CPU 41 of the control device 40, the CPU 41 instructs the driver 42 to output a pulse signal for rotating the stepping motor 24 in the forward direction to the stepping motor 24.
  • the rotation of the stepping motor 24 in the positive direction causes the rod R to rotate in the positive direction, and the first and second coil springs 22 and 23 rotate.
  • the first pin 30 is sent out toward the first guide ring 20 by the rotation of the first coil spring 22.
  • the first pin 30 is guided by the first guide hole 12b so as to linearly move along the axial direction of the apparatus main body 12 while the rotation of the first coil spring 22 in the circumferential direction is restricted.
  • the second pin 31 is sent out toward the second guide ring 21 by the rotation of the second coil spring 23.
  • the second pin 31 is guided by the second guide hole 12c so as to linearly move along the axial direction of the apparatus main body 12 while the rotation of the second coil spring 23 in the circumferential direction is restricted.
  • the first and second hand members 32 and 33 also move linearly in a direction approaching the workpiece W.
  • the first guide ring 20 and the second guide ring 21 rotate at the center in the axial direction of the apparatus main body 12. And if the 1st and 2nd hand members 32 and 33 contact work W, movement of the 1st and 2nd pins 30 and 31 will be controlled.
  • both the coil springs 22 and 23 are contracted by the pressure contact of both the pins 30 and 31 accompanying the rotation of the rod R, and both are elastic. Deform. Then, both coil springs 22 and 23 contract gradually. Then, as the coil springs 22 and 23 contract, the hand members 32 and 33 are slightly pressed against the workpiece W. Note that the clamping force of the workpiece W by the both hand members 32 and 33 at this time does not reach a clamping force that can clamp the workpiece W appropriately.
  • the magnetic sensor 34 detects a change (disappearance) of magnetism from both magnets M and outputs a magnetic disappearance detection signal to the CPU 41.
  • the CPU 41 causes the driver 42 to output a pulse signal that causes the stepping motor 24 to rotate a predetermined amount in the forward direction while decelerating the stepping motor 24. Then, the CPU 41 outputs a pulse signal for rotating the stepping motor 24 in the positive direction by a predetermined amount from the driver 42, then stops the signal output from the driver 42, stops the stepping motor 24, and ends the press contact with the workpiece W.
  • the stepping motor 24 rotates in the positive direction by a predetermined amount from the time when the magnetic disappearance detection signal is input, the rod R further rotates, and the first and second coil springs 22 and 23 rotate. , 23 are compressed, and the clamping force of both hand members 32, 33 against the workpiece W increases. Accordingly, the workpiece W can be clamped by the clamping device 11.
  • the CPU 41 stops the stepping motor 24, that is, when the press contact is finished, the CPU 41 outputs a press contact operation completion signal to the host controller 43.
  • the magnetic sensor 34 detects that both the hand members 32 and 33 are slightly pressed against the workpiece W and both the coil springs 22 and 23 are contracted, the detection result of the magnetic sensor 34 is obtained. Based on this, the CPU 41 of the control device 40 rotates the stepping motor 24 in the positive direction by a predetermined number of revolutions, and then the stepping motor 24 is stopped. Therefore, the clamping device 11 can accurately clamp the workpiece W with a simple configuration without programming information about the workpiece W in advance.
  • the clamping device 11 is controlled by a program that changes the rotation speed of the stepping motor 24 for each dimension of the workpiece W, or a program for each dimension of the workpiece W is stored in the clamping device 11. Further, it is not necessary to input the data for each dimension of the workpiece W. Therefore, the system configuration of the clamping device 11 of the present embodiment is very simple.
  • the CPU 41 of the control device 40 rotates the stepping motor 24 in the positive direction by a predetermined number of rotations upon the input of the magnetic disappearance detection signal, stops it, and then outputs a pressure contact operation completion signal to the host control device 43. To do. Therefore, the host control device 43 can confirm the presence / absence of the workpiece W and detect that both the hand members 32 and 33 have reliably clamped the workpiece W.
  • the clamp device 11 includes a dip switch 44, and the dip switch 44 can easily set and change the number of pulses of various signals such as the rotational speed, rotational speed, and rotational acceleration output to the stepping motor 24. Therefore, by adopting the dip switch 44, it is possible to easily set and change the clamping force and the operating speed of the workpiece W by the both hand members 32 and 33.
  • the clamp device 71 of the second embodiment includes a dip switch 45 as a second adjustment device in addition to the same configuration as that of the first embodiment.
  • a dip switch 45 is electrically connected to the driver 42 of the control device 40, and the number of pulses of the pulse signal output from the driver 42 can be changed using the dip switch 45. .
  • the rotation amount (predetermined amount) of the stepping motor 24 from the start to the end of the separation of the first and second hand members 32, 33 with respect to the work W that is, both The distance between the hand members 32 and 33 can be adjusted.
  • the clamp device 71 performs control so that the distance between the hand members 32 and 33 and the workpiece W is appropriate when the workpiece W is released from the clamp.
  • control performed by the CPU 41 when a clamp release signal is output from the host controller 43 and the magnetic sensor 34 detects a change (generation) of magnetism of the magnet M will be described.
  • the CPU 41 When the CPU 41 receives the magnetic detection signal from the magnetic sensor 34, the pulse signal that rotates the stepping motor 24 in the reverse direction while decelerating the stepping motor 24 triggered by the input of the magnetic detection signal is output to the stepping motor 24.
  • the driver 42 is controlled. Thereafter, the CPU 41 controls the driver 42 so that the output of the pulse signal from the driver 42 to the stepping motor 24 is stopped.
  • the CPU 41 controls the stepping motor 24 to rotate in the reverse direction by a predetermined amount, that is, the first and first steps. After the control for rotating the two coil springs 22 and 23 is performed, the control for stopping the stepping motor 24 is performed.
  • both the hand members 32 and 33 When the CPU 41 inputs a magnetic detection signal from the magnetic sensor 34, the first and second hand members 32 and 33 only release the pressure contact with the work W, and both the hand members 32 and 33 contact the work W. It is in contact. Further, at the time when the CPU 41 rotates the stepping motor 24 by a predetermined amount in the reverse direction, both the hand members 32 and 33 are separated from the workpiece W by an appropriate distance. Specifically, both hand members 32 and 33 are separated from the workpiece W by a distance that can clamp the next workpiece W in a short time. This separation distance is a distance set by the dip switch 45, and is determined according to various conditions such as an error in the dimensions of the workpiece W to be clamped and a plurality of workpieces W having different sizes.
  • the CPU 41 when the CPU 41 performs control to stop the stepping motor 24, the CPU 41 outputs a separation operation completion signal to the host control device 43.
  • the clamp When the clamp is released, when a clamp release signal is output from the host control device 43 to the CPU 41 of the control device 40, the CPU 41 outputs a pulse signal for rotating the stepping motor 24 in the reverse direction to the driver 42 so that the pulse signal is output to the stepping motor 24. To control. At this time, the movement of the two hand members 32 and 33 due to the rotation of the stepping motor 24 in the reverse direction is reduced as compared with the case where both the hand members 32 and 33 are moved to the origin position.
  • the magnetic sensor 34 detects the change (generation) of the magnet M and outputs a magnetic detection signal to the CPU 41.
  • the CPU 41 receives the magnetism detection signal, the CPU 41 outputs a pulse signal for rotating the stepping motor 24 by a predetermined amount while decelerating the stepping motor 24, and then stops the signal output from the driver 42. While stopping, both the hand members 32 and 33 are stopped from the work W. As a result, as shown in FIG.
  • the rod R further rotates and the first and second coil springs 22 and 23 rotate.
  • the first pin 30 is sent out toward the first spring fixing portion 15 by the rotation of the first coil spring 22.
  • the first pin 30 is guided by the first guide hole 12b so as to linearly move along the axial direction of the apparatus main body 12 while the rotation of the first coil spring 22 in the circumferential direction is restricted.
  • the second pin 31 is sent out toward the second spring fixing portion 17 by the rotation of the second coil spring 23.
  • the second pin 31 is guided by the second guide hole 12c so as to linearly move along the axial direction of the apparatus body 12 while the rotation of the second coil spring 23 in the circumferential direction is restricted.
  • both hand members 32 and 33 stop in a state of being separated from the workpiece W.
  • the separation distance between the first hand member 32 and the second hand member 33 is smaller. It is getting shorter. That is, both hand members 32 and 33 are stopped slightly apart from the workpiece W.
  • the clamping device 71 can stop both the hand members 32 and 33 so that the separation distance from the workpiece W is appropriate at the time of releasing the clamp.
  • the magnetic sensor 34 detects the presence or absence of magnetism from the magnet M.
  • the clamp device 11 does not require a complicated configuration like the clamp device described in the background art in order to correspond to the size of each workpiece W, and detects the first and second coil springs 22 and 23 and contraction thereof. Only the magnetic sensor 34 is required. Therefore, it is possible to accurately clamp the workpiece W with a simple configuration without programming information about the workpiece W in advance.
  • the CPU 41 of the control device 40 rotates the stepping motor 24 in the reverse direction by a predetermined number of rotations in response to the input of the magnetic detection signal, stops the operation, and then outputs a separation operation completion signal to the host control device 43. . Therefore, the host controller 43 can detect that both hand members 32 and 33 are separated from the workpiece W.
  • the clamping device 71 includes a dip switch 45, and the dip switch 45 can easily set and change the number of pulses of various signals output to the stepping motor 24, such as the rotational speed, rotational speed, and rotational acceleration. Therefore, by employing the dip switch 45, the distance between the hand members 32 and 33 from the workpiece W and the operating speed can be easily set and changed.
  • a cover 53 is fixed to the left end of the square cylindrical device body 52.
  • a stepping motor 54 as a drive source is fixed to the right end of the apparatus main body 52.
  • a drive shaft 54a of the stepping motor 54 is disposed in the apparatus main body 52, and a connecting member 55 is fixed to the drive shaft 54a so as to be integrally rotatable.
  • a right end of a coil spring 56 is fixed to the connecting member 55, and an annular guide ring 63 is fixed to the left end of the coil spring 56.
  • a magnet M is embedded in the outer peripheral surface of the guide ring 63.
  • a rod 58 is inserted into the coil spring 56, and the rod 58 is slidably supported by a bearing 59 fixed to the inner peripheral surface of the cover 53.
  • a pair of feed rollers 60 are provided so as to enter the gap between the wire rods of the coil spring 56 from a position facing the rod 58 in the radial direction and to extend along the wire rod.
  • a magnet M is embedded in the outer peripheral surface further to the right end side than each feed roller 60.
  • Each feed roller 60 is formed of a support shaft 61, a roller 61a rotatably supported on the support shaft 61, and a rotation prevention roller 61b.
  • the pair of feed rollers 60 protrude from a position where the rear end surface of the roller 61 a in one feed roller 60 always contacts the coil spring 56, and the front end surface of the roller 61 a in the other feed roller 60 always contacts the coil spring 56. ing.
  • the moving body is constituted by the rod 58 and the pair of feed rollers 60.
  • guide grooves 52a as guide portions are formed at respective positions facing each other so as to extend linearly in the axial direction of the apparatus main body 52.
  • a detent roller 61b is disposed in each guide groove 52a.
  • a mounting groove 52b is formed on the outer peripheral surface of the apparatus main body 52 so as to extend in the axial direction, and a magnetic sensor 64 as a detector is attached to the mounting groove 52b.
  • the magnetic sensor 64 can be fixed with a fixing screw at an arbitrary position in the axial direction of the mounting groove 12d.
  • An origin sensor 65 is attached to the attachment groove 52b.
  • the origin sensor 65 is a magnetic sensor.
  • the clamp device 51 includes a control device 68 that controls the drive of the clamp device 51 as in the first embodiment, and a driver 66 is electrically connected to the CPU 67 of the control device 68.
  • the CPU 67 of the control device 68 is electrically connected to the host control device 69, and the magnetic sensor 64 and the origin sensor 65 are electrically connected to the CPU 67.
  • the magnetic sensor 64 detects a magnetic change (generation) when the magnet M embedded in the guide ring 63 approaches as the coil spring 56 contracts, and outputs a magnetic detection signal to the CPU 67.
  • the magnetic sensor 64 detects a change (disappearance) of magnetism when the magnet M embedded in the guide ring 63 is separated as the coil spring 56 is released from contraction, and outputs a magnetic disappearance detection signal to the CPU 67.
  • the workpiece W is arranged in front of the rod 58 in the clamp device 51.
  • the clamp start signal is output from the host control device 69 to the CPU 67 of the control device 68 in a state where the rod 58 is immersed in the clamp device 51 and the clamp device 51 is disposed at the origin position, the CPU 67
  • the driver 66 is controlled so as to output a pulse signal for rotating the stepping motor 54 in the forward direction.
  • the stepping motor 54 When the stepping motor 54 receives the pulse signal from the driver 66, the coil spring 56 rotates in the positive direction due to the rotation of the stepping motor 54 in the positive direction. Then, the feed roller 60 is fed in a direction protruding from the apparatus main body 52 by the rotation of the coil spring 56. At this time, the feed roller 60 linearly moves along the axial direction of the apparatus main body 52 when the rotation prevention roller 61b comes into sliding contact with the guide groove 52a.
  • the rod 58 integrated with the feed roller 60 also moves linearly toward the workpiece W.
  • the coil spring 56 contracts due to the pressure contact of the feed roller 60 as the rod 58 rotates. And elastically deformed. Then, the coil spring 56 is gradually contracted. As the coil spring 56 contracts, the guide ring 63 moves in the direction in which the coil spring 56 contracts, and the rod 58 presses against the workpiece W.
  • the guide ring 63 moves in the direction in which the coil spring 56 contracts, and when the guide ring 63 approaches the magnetic sensor 64, the magnetic sensor 64 detects the change (generation) of the magnet M, and the CPU 67 Outputs a magnetic detection signal. Then, the CPU 67 controls the driver 66 in response to the input of the magnetic detection signal, rotates the stepping motor 54 in the forward direction by a predetermined amount, stops the stepping motor 54, and ends the press contact with the workpiece W.
  • the stepping motor 54 rotates a predetermined amount in the forward direction from the time when the magnetic detection signal is input, the coil spring 56 further rotates, and a clamping force of the rod 58 against the workpiece W is generated along with the rotation. As a result, the workpiece W is appropriately clamped by the rod 58.
  • the CPU 67 When the CPU 67 performs control to stop the stepping motor 54, the CPU 67 outputs a press-contact operation completion signal to the host controller 69. At the time of releasing the clamp, when a clamp release signal is output from the host controller 69 to the CPU 67, the CPU 67 controls the driver 66 to cause the driver 66 to output a pulse signal that causes the stepping motor 54 to rotate in the reverse direction.
  • the stepping motor 54 receives the pulse signal, when the coil spring 56 rotates in the reverse direction due to the rotation of the stepping motor 54 in the reverse direction, the contracted state of the coil spring 56 is gradually released and expands.
  • the magnetic sensor 64 detects the change (disappearance) of the magnet M and outputs a magnetic disappearance detection signal to the CPU 67. . Then, the CPU 67 controls the driver 66 in response to the input of the magnetic disappearance detection signal, rotates the stepping motor 54 by a predetermined amount in the reverse direction, stops the stepping motor 54, and ends the separation.
  • the stepping motor 54 rotates by a predetermined amount in the reverse direction from the time when the magnetic disappearance detection signal is input, the coil spring 56 further rotates, and the feed roller 60 is sent in the direction of immersing the apparatus main body 52 as the coil spring 56 rotates. As the feed roller 60 moves, the rod 58 also moves linearly in a direction away from the workpiece W, and the workpiece W is released from the clamped state.
  • the separation distance between the rod 58 and the workpiece W is shorter than that in the case where the rod 58 is located at the origin position.
  • the CPU 67 When the CPU 67 performs control to stop the stepping motor 54, the CPU 67 outputs a separation operation completion signal to the host controller 69.
  • the CPU 67 controls the driver 66 to cause the driver 66 to output a pulse signal that causes the stepping motor 54 to rotate in the forward direction.
  • the CPU 67 causes the stepping motor 54 to rotate by a predetermined number of revolutions after the detection.
  • the stepping motor 54 is controlled to stop. Therefore, the clamp device 51 does not require a complicated configuration like the clamp device described in the background art to correspond to the size of each workpiece W, and only the coil spring 56 and the magnetic sensor 64 for detecting the contraction are sufficient.
  • the workpiece W can be accurately clamped with a simple configuration regardless of the dimensions of the workpiece W.
  • each pulse signal is generated by the dip switches 44 and 45, but the pulse signal may be generated by other methods.
  • the CPUs 41 and 67 output the completion signals of the pressure contact operation and the separation operation to the host control devices 43 and 69.
  • the output of the completion signal may be omitted.
  • the host control devices 43 and 69 and the control devices 40 and 68 are separate from the clamp devices 11, 51 and 71, but the host control devices 43 and 69 and the control devices 40 and 68 are clamped.
  • the devices 11 and 51 may be integrated.
  • each coil spring 22, 23, 56 may be changed to an unequal pitch.
  • a drive source such as an AC motor, a servo motor, an air motor, or an internal combustion engine may be used instead of the stepping motors 24 and 54.
  • an optical sensor instead of the magnetic sensors 34 and 64, for example, an optical sensor may be used.
  • the magnetic sensor 34 is each coil spring. Sites other than the ends of 22 and 23 may be detected.
  • an adjusting device such as a rotary switch or a push button may be employed instead of the dip switches 44 and 45.
  • the magnetic sensor 34 may detect either one of the magnets M embedded in the first or second guide rings 20 and 21.
  • both hand members 32 and 33 may be driven using one coil spring.
  • both hand members 32 and 33 are driven by the operation of one coil spring using a link mechanism or a transmission mechanism.
  • the control device 40 controls the clamping devices 11 and 71 so that both hand members 32 and 33 are pressed against and separated from the workpiece W, but supports the workpiece W.
  • the clamping device 11 may be controlled as described above. For example, when the long and narrow workpiece W is supported by the clamp devices 11 and 71 so as not to fall down, as shown in FIG. 4, the both hand members 32 and 33 are clamped so as to stop in a state of being in contact with the workpiece W.
  • the device 11 may be controlled.
  • the drive amount of the stepping motors 24 and 54 from the start of press contact to the end of press contact is determined by a fixed amount of rotation, but may be determined by a clamping force applied to the workpiece W. That is, the driving amounts of the stepping motors 24 and 54 may be set so as to give the same clamping force to the workpieces W having different sizes.
  • a pair of feed rollers 60 is used, but a single feed roller 60 may be used.
  • the clamping devices 11, 51, 71 may be controlled in combination with pre-programmed operations such as the size of the workpiece W, the operating speed at the time of separation, and the acceleration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Jigs For Machine Tools (AREA)
  • Manipulator (AREA)

Abstract

クランプ装置(11)は、ステッピングモータ(24)により第1及び第2コイルバネ(22,23)を回転させることで第1及び第2ハンド部材(32,33)を直線移動させ、両ハンド部材(32,33)によりワーク(W)をクランプする。クランプ装置(11)は、第1及び第2ハンド部材(32,33)のワーク(W)に対する接触に伴う第1及び第2コイルバネ(22,23)の収縮を検出する磁気センサ(34)を備える。ステッピングモータ(24)の制御装置(40)は、磁気センサ(34)によって第1及び第2コイルバネ(22,23)の収縮が検出されることを契機に、ステッピングモータ(24)を所定回転数だけ回転させた後、ステッピングモータ(24)を停止させる制御を行う。

Description

クランプ装置
 本発明は、コイルバネの回転に基づき直線移動するように構成された移動体を備えるクランプ装置に関する。
 一般に、一対のハンド部材を利用してワークをクランプするクランプ装置では、ワークを的確にクランプすることが重要である。事前に、ワークの寸法等についての情報をプログラムすることなく、ワークを的確にクランプできるようにしたクランプ装置は、例えば特許文献1に開示されている。図7に示すように、特許文献1のワーク把持装置90において、フレーム91にはボールねじ92が回転可能に支持されている。このボールねじ92には、一対の第1及び第2の把持部材93,94が支持されている。第1の把持部材93には、揺動フィンガー95が枢着ピン95aにより揺動可能に支持され、第2の把持部材94には、非揺動フィンガー96が一体形成されている。
 揺動フィンガー95は、第1の把持部材93に設けられた一対のストッパ97a,97b間で揺動フィンガー95の上端部が揺動自在になっているとともに、バネ98によってストッパ97a,97bから離間する方向に付勢されている。また、第1の把持部材93の上端には、オン・オフスイッチ100が配置される。このオン・オフスイッチ100はレバー99を有する。このレバー99は、揺動フィンガー95の上端に設けられた突部95bに係合することで、オン・オフスイッチ100を開いた状態に維持する。また、オン・オフスイッチ100は図示しないワーク把持確認回路に接続されている。
 そして、ワークを第1及び第2の把持部材93,94でクランプする際、揺動フィンガー95及び非揺動フィンガー96がワークに圧接すると、揺動フィンガー95が揺動する。すると、レバー99が揺動フィンガー95の突部95bから開放され、オン・オフスイッチ100が閉じられる。オン・オフスイッチ100が閉じられることで発生するワーク把持確認回路の出力信号から、第1及び第2の把持部材93,94によってワークが的確にクランプされたことが確認できるようになっている。このため、事前にワークの寸法などについての情報がプログラムされていなくても、ワークを的確にクランプすることができる。
特開平5-329790号公報
 ところで、特許文献1のクランプ装置においては、ワークの寸法に関係なくワークを的確にクランプするための構成として、揺動フィンガー95、枢着ピン95a、ストッパ97a,97b、オン・オフスイッチ100、レバー99、及び突部95bを必要としている。そのため、ワーク把持装置90の部品点数が多く、構成が複雑化してしまっている。また、レバー99によって、オン・オフスイッチ100と揺動フィンガー95とを電気的に接続可能にしなければならず、しかも、オン・オフスイッチ100を動作させるためには揺動フィンガー95を揺動可能に支持しなければならず、ワーク把持装置90の構成が複雑化している。
 本発明の目的は、事前にワークについての情報をプログラムすることなく、しかも簡単な構成で、未知の寸法のワークを的確にクランプすることができるクランプ装置を提供することにある。
 上記問題点を解決するために、本発明の一態様は、ワークをクランプするクランプ装置であって、装置本体に設けられた収縮可能なコイルバネと、前記コイルバネを回転させる駆動源と、前記コイルバネの回転によって前記ワークに対して接近又は離間する方向へ移動する移動体と、前記コイルバネの回転に伴う前記移動体の回転を規制し直線移動させるガイド部と、前記コイルバネが収縮しているか否かを検出する検出部と、前記検出部による検出結果に基づき、前記移動体を前記ワークに接近又は離間させる方向へ移動するように前記コイルバネを回転させるべく前記駆動源を制御する制御装置と、を備えるクランプ装置を提供する。
 前記制御装置は、前記検出部による前記コイルバネの収縮検出を契機に、前記移動体を前記ワークに圧接させるように前記コイルバネを回転させるべく前記駆動源を制御することが好ましい。
 前記制御装置には、前記移動体の動作に係る指令を前記制御装置に出力する上位制御装置が電気的に接続され、前記制御装置は、前記移動体が前記ワークに圧接完了すると、前記上位制御装置に完了信号を出力することが好ましい。
 前記ワークに対する前記移動体の圧接開始から圧接終了までの前記駆動源の駆動量を調節するための調節装置を備えることが好ましい。
 前記制御装置は、前記移動体を前記ワークから離間させる方向へ前記コイルバネを回転させるべく前記駆動源を制御するとともに、前記コイルバネの収縮解除を契機に、前記駆動源を所定量駆動させた後に停止させることが好ましい。
 前記制御装置には、前記移動体の動作に係る指令を前記制御装置に出力する上位制御装置が電気的に接続され、前記制御装置は、前記移動体が前記ワークから離間完了すると、前記上位制御装置に完了信号を出力することが好ましい。
 前記ワークに対する前記移動体の離間開始から離間終了までの前記駆動源の駆動量を調節するための調節装置を備えることが好ましい。
 本発明によれば、事前にワークについての情報をプログラムすることなく、しかも簡単な構成で、未知の寸法のワークを的確にクランプすることができる。
本発明の第1の実施形態におけるクランプ装置を示す断面図。 両ハンド部材が移動した状態を示すクランプ装置を示す断面図。 両ハンド部材で対象物をクランプした状態のクランプ装置を示す断面図。 本発明の第2の実施形態におけるクランプ装置を示す断面図。 両ハンド部材が対象物から離間した状態のクランプ装置を示す断面図。 本発明の第3の実施形態におけるクランプ装置を示す断面図。 従来背景技術のクランプ装置を示す断面図。
 (第1の実施形態)
 以下、本発明の第1の実施形態に係るクランプ装置ついて図1~図5にしたがって説明する。以下の説明において、図面の右側をクランプ装置の右側と定義し、図面の左側をクランプ装置の左側と定義する。
 図1に示すように、クランプ装置11は、四角筒状の装置本体12を有する。装置本体12の両端内周面それぞれには軸受16が固定されている。両軸受16にはロッドRの両端が回転可能に支持されている。このロッドRは、左側の軸受16に回転可能に支持された円柱状の第1バネ固定部15と、右側の軸受16に回転可能に支持された円柱状の第2バネ固定部17と、両バネ固定部15,17を連結する円筒状の連結部材19とにより形成されている。そして、ロッドRは、装置本体12の中心軸Lを回転中心として装置本体12内で回転する。
 第1及び第2バネ固定部15,17それぞれの外周面には、バネ固定片15a,17aが各バネ固定部15,17の周方向全周に亘って突設されている。そして、第1バネ固定部15のバネ固定片15aには、第1コイルバネ22の一端、(左端)が固定されている。この第1コイルバネ22は、ロッドRの第1バネ固定部15の半分を囲むように装着されている。また、第1コイルバネ22の他端(右端)には、円環状をなす第1ガイドリング20が固定されるとともに、この第1ガイドリング20により第1コイルバネ22の右端がロッドRの径方向へ変動することが規制されている。また、第1ガイドリング20は、第1コイルバネ22の伸縮に伴い、ロッドRに沿って摺動可能になっている。そして、ロッドRが回転すると、第1コイルバネ22及び第1ガイドリング20がロッドRと同期して回転する。第1ガイドリング20の外周面には、環状のマグネットMが埋設されている。
 第2バネ固定部17のバネ固定片17aには、第2コイルバネ23の一端、即ち図1では右端が固定されている。この第2コイルバネ23は、ロッドRの第2バネ固定部17の半分を囲むように装着されている。なお、第2コイルバネ23と、第1コイルバネ22とは、螺旋の方向が互いに逆になるように配置されている。各コイルバネ22,23は等ピッチに形成されている。また、第1コイルバネ22と第2コイルバネ23とはバネ力が同じに設定されている。
 第2コイルバネ23の左端には、円環状をなす第2ガイドリング21が固定されるとともに、この第2ガイドリング21により、第2コイルバネ23の左端がロッドRの径方向へ変動することが規制されている。また、第2ガイドリング21は、第2コイルバネ23の伸縮に伴い、ロッドRに沿って摺動可能になっている。そして、ロッドRが回転すると、第2コイルバネ23及び第2ガイドリング21がロッドRと同期して回転する。第2ガイドリング21の外周面には、環状のマグネットMが埋設されている。第1ガイドリング20と第2ガイドリング21は、第1及び第2コイルバネ22,23の付勢力により、装置本体12の軸方向中央に配置されている。
 装置本体12の外面(図1では下面)には、直線状をなすガイドレール12aが装置本体12の軸方向へ延びるように固定されている。ガイドレール12aには、矩形板状をなす第1マスタージョー28及び第2マスタージョー29がガイドレール12aに沿って移動可能に取り付けられている。第1マスタージョー28には、第1ハンド部材32が固定されるとともに、第2マスタージョー29には第2ハンド部材33が固定されている。
 また、装置本体12の軸方向中央には、ガイド部としての第1ガイド孔12b及び第2ガイド孔12cが装置本体12の軸方向へ直線状に延びるように形成されている。第1マスタージョー28には、円柱状をなす第1ピン30の下端が固定されるとともに、この第1ピン30の上端は第1ガイド孔12bを貫通して装置本体12内に配置されている。さらに、第1ピン30の上端は、装置本体12の軸方向に隣り合う第1コイルバネ22の線材同士の間に挿入されている。
 また、第2マスタージョー29には、円柱状をなす第2ピン31の下端が固定されるとともに、第2ピン31の上端は第2ガイド孔12cを貫通して装置本体12内に配置されている。さらに、第2ピン31の上端は、装置本体12の軸方向に隣り合う第2コイルバネ23の線材同士の間に挿入されている。そして、本実施形態では、第1及び第2ハンド部材32,33と、第1マスタージョー28及び第2マスタージョー29と、第1及び第2ピン30,31とから移動体が構成されている。
 第1及び第2ガイドリング20,21が、装置本体12の軸方向中央に配置され、かつ、第1及び第2ピン30,31それぞれが、装置本体12の軸方向中央から離間して第1及び第2ガイド孔12b,12cの内端に当接した位置を、クランプ装置11の原点位置と定義する。この原点位置では、第1ハンド部材32と第2ハンド部材33は最大に離間している。
 装置本体12の左端の内側には、環状のカバー13が取り付けられるとともに、このカバー13によりロッドRの装置本体12からの抜け出しが防止されている。また、装置本体12の右端には、箱状のケース14が装置本体12に向かって開口するように取り付けられている。
 また、装置本体12の外面には駆動源としてのステッピングモータ24(電動モータ)が固定されるとともに、このステッピングモータ24の駆動軸25がケース14内に配置されている。ケース14内において、駆動軸25には駆動プーリ26が固定されるとともに、その駆動プーリ26の下方では、ロッドRの第2バネ固定部17に固定された従動プーリ27が配置されている。また、駆動プーリ26と、従動プーリ27とにはベルトVが架け渡されている。
 そして、本実施形態では、ステッピングモータ24が正方向へ回転すると、駆動プーリ26、ベルトV、及び従動プーリ27を介してロッドRが正方向へ回転するようになっている。一方、ステッピングモータ24が逆方向へ回転すると、駆動プーリ26、ベルトV、及び従動プーリ27を介してロッドRが逆方向へ回転するようになっている。
 クランプ装置11の駆動を制御する制御装置40は、そのCPU41がドライバ42に電気的に接続されている。本実施形態では、CPU41はドライバ42を制御し、このドライバ42はステッピングモータ24に電気的に接続されている。そして、ドライバ42は、CPU41からの指令を受けて、パルス信号を生成したり、パルス信号の出力を停止させたりする。
 また、装置本体12の外周面には、軸方向に延びるように取付溝12dが形成されるとともに、取付溝12dの軸方向中央には、検出部としての磁気センサ34が取り付けられている。この磁気センサ34は、取付溝12dの軸方向における任意の位置で固定ねじで固定可能とされる。この磁気センサ34はCPU41に電気的に接続されている。そして、磁気センサ34は、第1及び第2ガイドリング20,21に埋設されたマグネットMからの磁気を検出する。
 制御装置40は、配線を介して制御装置40とは別体の上位制御装置43に電気的に接続される。上位制御装置43は、制御装置40のCPU41に対し、両ハンド部材32,33のワークWへの接近開始を指示する信号、即ち、クランプ装置11によるワークWのクランプを開始させるクランプ開始信号を出力する。また、上位制御装置43は、制御装置40のCPU41に対し、両ハンド部材32,33のワークWからの離間開始を指示する信号、即ち、クランプ装置11によるワークWのクランプを解除させるクランプ解除信号を出力する。また、磁気センサ34は、第1及び第2コイルバネ22,23の収縮に伴う各マグネットMの移動、詳細には、装置本体12の軸方向中央部から各端部に向けた各マグネットMの移動に伴う磁気の変化(消失)を検出すると、CPU41に磁気消失検出信号を出力する。更に、磁気センサ34は、第1及び第2コイルバネ22,23の収縮の解除に伴うマグネットMの移動、詳細には装置本体12の軸方向各端部側から軸方向中央部に向けた各マグネットMの移動に伴い、磁気の変化(発生)を検出すると、CPU41に磁気検出信号を出力する。即ち、磁気センサ34は、マグネットMの磁気の有無を検出することにより、第1及び第2コイルバネ22,23が収縮しているか否かを検出している。
 CPU41は、磁気センサ34からの磁気消失検出信号を入力すると、その磁気消失検出信号の入力を契機にステッピングモータ24を減速させつつ所定回転数だけ正方向へ回転させるパルス信号がステッピングモータ24に出力されるようにドライバ42を制御する。その後、CPU41は、ドライバ42からステッピングモータ24へのパルス信号の出力が停止されるようにドライバ42を制御する。その結果、磁気消失検出信号の入力後に、両ハンド部材32,33をワークWに圧接させるために、CPU41は、ステッピングモータ24を減速させつつ正方向へ所定量(例えば、180°)だけ回転させる制御、即ち第1及び第2コイルバネ22,23を回転させる制御を行った後、ステッピングモータ24を停止させる制御を行うようになっている。なお、制御装置40のドライバ42には、第1調節装置としてのディップスイッチ44が電気的に接続され、このディップスイッチ44を用いて、ドライバ42から出力されるパルス信号のパルス数が変更可能になっている。ディップスイッチ44によってパルス数を変更することにより、ワークWに対する第1及び第2ハンド部材32,33の圧接開始から圧接終了までのステッピングモータ24の回転量(所定量)が調節可能になっている。即ち、コイルバネ22,23の収縮量を調整(制御)することで、ワークWに対してのクランプ力を調整可能になっている。
 CPU41が、磁気センサ34からの磁気消失検出信号を入力した時点では、第1及び第2ハンド部材32,33はワークWに若干圧接しただけであり、ワークWに対する第1及び第2ハンド部材32,33のクランプ力はワークWを適切にクランプできるだけのクランプ力に達していない。また、CPU41により、ステッピングモータ24を正方向へ所定量回転させて停止させた時点では、ワークWに対して第1及び第2ハンド部材32,33が適切に圧接し、的確なクランプ力が発生しており、ワークWを第1及び第2ハンド部材32,33によりクランプすることが可能になっている。
 また、CPU41は、ステッピングモータ24を停止させる制御を行うと、上位制御装置43に圧接動作(クランプ)の完了信号を出力する。
 次に、上記構成のクランプ装置11の作用について説明する。
 クランプ装置11が原点位置にあるとともに、第1ハンド部材32と第2ハンド部材33との間にワークWが配置された状態であるとする。上位制御装置43から制御装置40のCPU41にクランプ開始信号が出力されると、CPU41はドライバ42に対し、ステッピングモータ24を正方向へ回転させるパルス信号をステッピングモータ24に出力するように指令する。
 図2に示すように、ステッピングモータ24がパルス信号を受けると、ステッピングモータ24の正方向への回転により、ロッドRが正方向へ回転し、第1及び第2コイルバネ22,23が回転する。すると、第1ピン30が、第1コイルバネ22の回転により第1ガイドリング20に向けて送り出される。このとき、第1ピン30は、第1ガイド孔12bにより、第1コイルバネ22の周方向への回転が規制されつつ装置本体12の軸方向に沿って直線移動するようにガイドされる。同時に、第2ピン31が、第2コイルバネ23の回転により第2ガイドリング21に向けて送り出される。このとき、第2ピン31は、第2ガイド孔12cにより、第2コイルバネ23の周方向への回転が規制されつつ装置本体12の軸方向に沿って直線移動するようにガイドされる。
 第1及び第2ピン30,31の直線移動に伴い、第1及び第2ハンド部材32,33もワークWに対し接近する方向へ直線移動する。第1及び第2ハンド部材32,33がワークWに当接する前の状態では、第1ガイドリング20及び第2ガイドリング21は、装置本体12の軸方向中央で回転している。そして、第1及び第2ハンド部材32,33がワークWに当接すると、第1及び第2ピン30,31の移動が規制される。
 両ピン30,31の移動が規制された状態で、ステッピングモータ24の駆動が継続されると、両コイルバネ22,23はロッドRの回転に伴う両ピン30,31の圧接により収縮されて共に弾性変形する。すると、両コイルバネ22,23は、徐々に収縮していく。そして、両コイルバネ22,23の収縮に伴い、両ハンド部材32,33がワークWに若干圧接する。なお、この時点での両ハンド部材32,33によるワークWのクランプ力はワークWを適切にクランプできるだけのクランプ力に達していない。
 このとき、両コイルバネ22,23の一端がバネ固定片15a,17aにそれぞれ固定されているため、両コイルバネ22,23の他端、即ち自由端は互いに離間していく。その結果、図3に示すように、第1及び第2コイルバネ22,23の自由端に設けられた第1及び第2ガイドリング20,21が、装置本体12の軸方向中央部から離間する方向へ移動し、第1ガイドリング20と第2ガイドリング21とが互いに離間する。
 両ガイドリング20,21が互いに離間すると、磁気センサ34が両マグネットMからの磁気の変化(消失)を検出し、CPU41に磁気消失検出信号を出力する。CPU41は、磁気消失検出信号を入力すると、ステッピングモータ24を減速させつつ正方向へ所定量回転させるパルス信号をドライバ42からステッピングモータ24に出力させる。そして、CPU41は、ステッピングモータ24を正方向へ所定量回転させるパルス信号をドライバ42から出力させた後、ドライバ42からの信号出力を停止させ、ステッピングモータ24を停止させるとともにワークWに対する圧接を終了させる。その結果、磁気消失検出信号の入力時点からステッピングモータ24が正方向へ所定量回転すると、ロッドRがさらに回転するとともに、第1及び第2コイルバネ22,23が回転し、その回転に伴いコイルバネ22,23が圧縮され、ワークWに対する両ハンド部材32,33のクランプ力が増大する。よって、クランプ装置11によってワークWのクランプが可能になる。CPU41は、ステッピングモータ24を停止させると、即ち圧接終了となると、上位制御装置43に圧接動作の完了信号を出力する。
 上記実施形態によれば、以下のような効果を得ることができる。
 (1)両ハンド部材32,33がワークWに若干圧接し、両コイルバネ22,23が収縮したことが磁気センサ34により検出されると、その検出を契機に、即ち磁気センサ34の検出結果に基づき、制御装置40のCPU41により、ステッピングモータ24を所定回転数だけ正方向へ回転させた後、ステッピングモータ24が停止される。したがって、クランプ装置11は、事前にワークWについての情報をプログラムすることもなく、簡単な構成でワークWのクランプを的確に行うことができる。
 (2)クランプ装置11によれば、ワークWの寸法毎にステッピングモータ24の回転数を変更するようなプログラムでクランプ装置11を制御したり、ワークWの寸法毎のプログラムをクランプ装置11に記憶させる必要もなく、さらには、ワークWの寸法毎にそのデータを入力する必要もない。よって、本実施形態のクランプ装置11は、システム構成が非常に簡単になる。
 (3)制御装置40のCPU41は、磁気消失検出信号の入力を契機にステッピングモータ24を所定回転数だけ正方向へ回転させ、停止させた後に、圧接動作の完了信号を上位制御装置43に出力する。よって、上位制御装置43は、ワークWの有無の確認及び両ハンド部材32,33がワークWを確実にクランプできたことを検出することができる。
 (4)クランプ装置11はディップスイッチ44を備え、このディップスイッチ44によりステッピングモータ24に出力する回転数、回転速度、回転加速度等の各種信号のパルス数を簡単に設定、変更することができる。よって、ディップスイッチ44を採用することで、両ハンド部材32,33によるワークWのクランプ力及び作動速度を簡単に設定、変更することができる。
 (第2の実施形態)
 次に、本発明の第2の実施形態に係るクランプ装置ついて図4及び図5にしたがって説明する。以下に説明する実施形態は、既に説明した実施形態と同一構成について同一符号を付すなどしてその重複する説明を省略又は簡略する。
 図4に示すように、第2の実施形態のクランプ装置71は、第1の実施形態と同様の構成に加え、第2調節装置としてのディップスイッチ45を備えている。具体的には、制御装置40のドライバ42には、ディップスイッチ45が電気的に接続され、このディップスイッチ45を用いて、ドライバ42から出力されるパルス信号のパルス数が変更可能になっている。ディップスイッチ45によってパルス数を変更することにより、ワークWに対する第1及び第2ハンド部材32,33の離間開始から離間終了までのステッピングモータ24の回転量(所定量)、即ち、ワークWに対する両ハンド部材32,33の離間距離が調節可能になっている。
 クランプ装置71は、ワークWのクランプ解除時に両ハンド部材32,33とワークWの離間距離が適切となるように制御を行う。以下、上位制御装置43からクランプ解除信号が出力され、磁気センサ34がマグネットMの磁気の変化(発生)を検出したときにCPU41が行う制御について説明する。
 CPU41は、磁気センサ34からの磁気検出信号を受信すると、その磁気検出信号の入力を契機にステッピングモータ24を減速させつつ所定量だけ逆方向へ回転させるパルス信号がステッピングモータ24に出力されるようにドライバ42を制御する。その後、CPU41は、ドライバ42からステッピングモータ24へのパルス信号の出力が停止されるようにドライバ42を制御する。その結果、磁気検出信号の入力後に、両ハンド部材32,33をワークWから離間させるために、CPU41は、ステッピングモータ24を減速させつつ逆方向へ所定量だけ回転させる制御、即ち第1及び第2コイルバネ22,23を回転させる制御を行った後、ステッピングモータ24を停止させる制御を行うようになっている。
 CPU41が、磁気センサ34からの磁気検出信号を入力した時点では、第1及び第2ハンド部材32,33はワークWに対する圧接を解除しただけであり、両ハンド部材32,33はワークWに当接した状態である。また、CPU41によりステッピングモータ24を逆方向へ所定量回転させた時点では、両ハンド部材32,33がワークWから適切な距離だけ離れている。詳細には、両ハンド部材32,33は、次のワークWを短時間でクランプできる距離だけワークWから離間している。この離間距離は、ディップスイッチ45で設定される距離であり、クランプ対象となるワークWの寸法の誤差や、大きさの異なる複数のワークWをクランプする場合など種々の条件により定められる。
 また、CPU41は、ステッピングモータ24を停止させる制御を行うと、上位制御装置43に離間動作の完了信号を出力する。
 次に、本実施形態におけるクランプ装置の作用について説明する。
 クランプ解除時には、上位制御装置43から制御装置40のCPU41にクランプ解除信号が出力されると、CPU41は、ステッピングモータ24を逆方向へ回転させるパルス信号がステッピングモータ24に出力されるようにドライバ42を制御する。このとき、ステッピングモータ24の逆方向への回転に伴う両ハンド部材32,33の移動は、両ハンド部材32,33を原点位置まで移動させる場合と比べて、少なくなる。
 すると、ステッピングモータ24の逆方向への回転により、ロッドRが逆方向へ回転すると、第1及び第2コイルバネ22,23が回転する。両コイルバネ22,23の収縮状態が徐々に解除されて伸長していき、両ガイドリング20,21が互いに接近するように装置本体12の軸方向中央部に向けて移動する。
 さらに、装置本体12の軸方向中央で両ガイドリング20,21が互いに当接する。このとき、図4に示すように、磁気センサ34がマグネットMの磁気の変化(発生)を検出し、CPU41に磁気検出信号を出力する。CPU41は、磁気検出信号を入力すると、ステッピングモータ24を減速させつつ、逆方向へ所定量回転させるパルス信号をドライバ42から出力させた後、ドライバ42からの信号出力を停止させ、ステッピングモータ24を停止させるとともに両ハンド部材32,33のワークWからの離間を停止させる。
その結果、図5に示すように、磁気検出信号の入力時点からステッピングモータ24が逆方向へ所定量回転すると、ロッドRがさらに回転するとともに、第1及び第2コイルバネ22,23が回転し、第1ピン30が、第1コイルバネ22の回転により第1バネ固定部15に向けて送り出される。このとき、第1ピン30は、第1ガイド孔12bにより、第1コイルバネ22の周方向への回転が規制されつつ装置本体12の軸方向に沿って直線移動するようにガイドされる。同時に、第2ピン31が、第2コイルバネ23の回転により第2バネ固定部17に向けて送り出される。このとき、第2ピン31は、第2ガイド孔12cにより、第2コイルバネ23の周方向への回転が規制されつつ装置本体12の軸方向に沿って直線移動するようにガイドされる。
 そして、第1及び第2コイルバネ22,23の回転に伴い、両ハンド部材32,33はワークWから離間した状態で停止する。このとき、第1ハンド部材32と第2ハンド部材33とが最も離間している場合(図1に示す状態)に比べ、第1ハンド部材32と第2ハンド部材33との間の離間距離が短くなっている。即ち、ワークWに対して両ハンド部材32,33が少しだけ離れて停止している。そして、CPU41は、ステッピングモータ24を停止させると、即ち離間終了となると、上位制御装置43に離間動作の完了信号を出力する。
 したがって、第2の実施形態によれば、第1の実施形態に記載の(1)~(4)と同様の効果に加え、(5)~(7)に記載の効果を得ることができる。
 (5)また、両ハンド部材32,33がワークWから離間し、両コイルバネ22,23の収縮が解除されたことが磁気センサ34により検出されると、その検出を契機に、即ち磁気センサ34の検出結果に基づき制御装置40のCPU41により、ステッピングモータ24を逆方向へ所定回転数だけ回転させた後にステッピングモータ24が停止される。このため、ワークWから両ハンド部材32,33が離間したときの、第1ハンド部材32及び第2ハンド部材33のワークWからの離間距離が短く、次のワークWをクランプするときに、第1ハンド部材32及び第2ハンド部材33でワークWを短時間でクランプすることができる。このため、工場内の組み立てラインなどにクランプ装置11を用いることで、ラインの生産性を向上させることができる。
 (6)クランプ装置71は、クランプ時には、ワークWのクランプを的確に行うことに加え、クランプ解除時には、ワークWからの離間距離が適切となるように両ハンド部材32,33を停止できる。具体的には、第1及び第2コイルバネ22,23が収縮又は収縮解除され、マグネットMが移動すると、磁気センサ34によってマグネットMからの磁気の有無が検出される。その検出に合わせて両ハンド部材32,33のワークWに対する接近又は離間が制御される。したがって、クランプ装置11は、ワークW毎の寸法に対応するために背景技術で説明したクランプ装置のような複雑な構成を必要とせず、第1及び第2コイルバネ22,23と、その収縮を検出する磁気センサ34だけ必要とする。従って、事前にワークWについての情報をプログラムすることもなく、簡単な構成でワークWのクランプを的確に行うことができる。
 (7)制御装置40のCPU41は、磁気検出信号の入力を契機にステッピングモータ24を所定回転数だけ逆方向へ回転させ、停止させた後に、離間動作の完了信号を上位制御装置43に出力する。よって、上位制御装置43は、両ハンド部材32,33がワークWから離間したことを検出することができる。
 (8)クランプ装置71はディップスイッチ45を備え、このディップスイッチ45によりステッピングモータ24に出力する回転数、回転速度、回転加速度等の各種信号のパルス数を簡単に設定、変更することができる。よって、ディップスイッチ45を採用することで、両ハンド部材32,33のワークWからの離間距離及び作動速度を簡単に設定、変更することができる。
 (第3の実施形態)
 次に、本発明の第3の実施形態に係るクランプ装置ついて図6にしたがって説明する。
 図6に示すように、クランプ装置51において、四角筒状の装置本体52の左端にはカバー53が固定されている。装置本体52の右端には駆動源としてのステッピングモータ54が固定されている。ステッピングモータ54の駆動軸54aは、装置本体52内に配置されるとともに、この駆動軸54aには連結部材55が一体回転可能に固定されている。連結部材55には、コイルバネ56の右端が固着されるとともに、このコイルバネ56の左端には円環状をなすガイドリング63が固定されている。ガイドリング63の外周面にはマグネットMが埋設されている。そして、ステッピングモータ54の正逆両方向への回転に伴いコイルバネ56とガイドリング63とが正逆両方向へ回転するようになっている。
 コイルバネ56内には、ロッド58が挿通されるとともに、このロッド58は、カバー53の内周面に固定された軸受59に摺動可能に支持されている。ロッド58の右端側には、一対の送りローラ60がロッド58の径方向に対向する位置からコイルバネ56の線材間の隙間に入りこみ、かつ線材に沿うように突設されている。また、ロッド58において、各送りローラ60よりも更に右端側の外周面には、マグネットMが埋設されている。各送りローラ60は、支軸61と、この支軸61に回転可能に支持されたローラ61aと、回り止めローラ61bとから形成されている。一対の送りローラ60は、一方の送りローラ60におけるローラ61aの後端面がコイルバネ56に常に接触し、他方の送りローラ60におけるローラ61aの前端面が、コイルバネ56に常に接触する位置に突設されている。そして、本実施形態では、ロッド58と、一対の送りローラ60とから移動体が構成されている。
 また、装置本体52内面において、対向する位置それぞれにはガイド部としてのガイド溝52aが装置本体52の軸方向へ直線状に延びるように形成されている。そして、各ガイド溝52a内には、回り止めローラ61bが配置されている。
 装置本体52の外周面には、軸方向に延びるように取付溝52bが形成されるとともに、取付溝52bには、検出部としての磁気センサ64が取り付けられている。この磁気センサ64は、取付溝12dの軸方向における任意の位置で固定ねじで固定可能とされる。また、取付溝52bには、原点センサ65が取り付けられている。この原点センサ65は磁気センサであり、ロッド58が没入方向へ移動して連結部材55に当接すると、ロッド58の外周面に埋設されたマグネットMの磁気の変化(発生)を検出し、ロッド58が原点復帰したことを検出する。このロッド58が連結部材55に当接した位置を、クランプ装置51の原点位置とする。
 クランプ装置51は、第1の実施形態と同様に、クランプ装置51の駆動を制御する制御装置68を備えるとともに、この制御装置68のCPU67にはドライバ66が電気的に接続されている。また、制御装置68のCPU67は、上位制御装置69に電気的に接続されるとともに、上記磁気センサ64及び原点センサ65はCPU67に電気的に接続されている。磁気センサ64は、コイルバネ56の収縮に伴いガイドリング63に埋設されたマグネットMが近づくと磁気の変化(発生)を検出し、CPU67に磁気検出信号を出力する。また、磁気センサ64は、コイルバネ56の収縮解除に伴いガイドリング63に埋設されたマグネットMが離間すると磁気の変化(消失)を検出し、CPU67に磁気消失検出信号を出力する。
 次に本実施形態におけるクランプ装置51の作用について説明する。
 さて、クランプ装置51におけるロッド58の前方にワークWが配置された状態とする。そして、ロッド58がクランプ装置51に没入し、クランプ装置51が原点位置に配置された状態において、上位制御装置69から制御装置68のCPU67にクランプ開始信号が出力されると、CPU67は、ドライバ66に対し、ステッピングモータ54を正方向へ回転させるパルス信号を出力するようにドライバ66を制御する。
 ステッピングモータ54がドライバ66からのパルス信号を受けると、ステッピングモータ54の正方向への回転により、コイルバネ56が正方向へ回転する。すると、送りローラ60が、コイルバネ56の回転により装置本体52から突出する方向へ送り出される。このとき、送りローラ60は、回り止めローラ61bがガイド溝52aに摺接することにより、装置本体52の軸方向に沿って直線移動する。
 そして、送りローラ60に一体のロッド58もワークWに向けて直線移動する。
 ロッド58の先端がワークWに当接し、送りローラ60の移動が規制された状態で、ステッピングモータ54の駆動が継続されると、コイルバネ56はロッド58の回転に伴う送りローラ60の圧接により収縮されて弾性変形する。すると、コイルバネ56は、徐々に収縮されていく。そして、コイルバネ56の収縮に伴い、ガイドリング63がコイルバネ56の収縮する方向へ移動するとともに、ロッド58がワークWに対し圧接する。
 コイルバネ56の収縮に伴い、ガイドリング63がコイルバネ56の収縮する方向へ移動し、ガイドリング63が磁気センサ64に近づくと、磁気センサ64はマグネットMの磁気の変化(発生)を検出し、CPU67に磁気検出信号を出力する。すると、CPU67は、磁気検出信号の入力を契機にドライバ66を制御して、ステッピングモータ54を正方向へ所定量回転させた後、ステッピングモータ54を停止させ、ワークWに対する圧接を終了させる。そして、磁気検出信号の入力時点からステッピングモータ54が正方向へ所定量回転すると、コイルバネ56がさらに回転し、その回転に伴いロッド58のワークWに対するクランプ力が発生する。その結果、ロッド58によりワークWが適切にクランプされる。
 CPU67は、ステッピングモータ54を停止させる制御を行うと、上位制御装置69に圧接動作の完了信号を出力する。そして、クランプ解除時には、上位制御装置69からCPU67にクランプ解除信号が出力されると、CPU67は、ドライバ66を制御して、ステッピングモータ54に逆方向へ回転させるパルス信号をドライバ66に出力させる。ステッピングモータ54がパルス信号を受けると、ステッピングモータ54の逆方向への回転により、コイルバネ56が逆方向へ回転すると、コイルバネ56の収縮状態が徐々に解除されて伸長していく。
 そして、コイルバネ56の収縮解除に伴い、ガイドリング63がコイルバネ56の磁気センサ64から離間すると、磁気センサ64はマグネットMの磁気の変化(消失)を検出し、CPU67に磁気消失検出信号を出力する。すると、CPU67は、磁気消失検出信号の入力を契機にドライバ66を制御して、ステッピングモータ54を逆方向へ所定量回転させた後、ステッピングモータ54を停止させ、離間を終了させる。磁気消失検出信号の入力時点からステッピングモータ54が逆方向へ所定量回転すると、コイルバネ56がさらに回転し、コイルバネ56の回転に伴い送りローラ60が装置本体52への没入方向へ送り出される。送りローラ60の移動に伴い、ロッド58もワークWから離間する方向へ直線移動し、ワークWのクランプ状態が解除される。
 このとき、ロッド58とワークWとの間の離間距離は、ロッド58が原点位置に位置している場合と比べ、短くなっている。
 CPU67は、ステッピングモータ54を停止させる制御を行うと、上位制御装置69に離間動作の完了信号を出力する。そして、クランプ開始時には、上位制御装置69からCPU67にクランプ開始信号が出力されると、CPU67は、ドライバ66を制御して、ステッピングモータ54に正方向へ回転させるパルス信号をドライバ66に出力させる。
 したがって、第3の実施形態によれば、各実施形態に記載の(2)~(4),(7),(8)と同様の効果に加え、以下に記載の効果を得ることができる。
 (9)ロッド58がワークWに当接し、コイルバネ56が収縮したことが磁気センサ64により検出されると、その検出を契機に、CPU67により、ステッピングモータ54を所定回転数だけ回転させ、その後、停止させるようにステッピングモータ54が制御される。したがって、クランプ装置51は、ワークW毎の寸法に対応するために背景技術に記載のクランプ装置のような複雑な構成を必要とせず、コイルバネ56と、その収縮を検出する磁気センサ64だけで足り、簡単な構成でワークWの寸法に関係なくワークWのクランプを的確に行うことができる。
 (10)ロッド58がワークWへのクランプを解除したことが磁気センサ64により検出されると、その検出を契機に、CPU67により、ステッピングモータ54を所定回転数だけ回転させ、その後停止させるようにステッピングモータ54が制御される。したがって、ロッド58は、ワークWとの離間距離が次のワークWを短時間でクランプできる位置で停止する。このため、短時間でワークWをクランプすることができ、工場内の組み立てラインにクランプ装置51を用いることで、ラインの生産性を向上させることができる。
 なお、上記実施形態は以下のように変更してもよい。
 ・ 各実施形態において、各パルス信号は、ディップスイッチ44,45により生成されるが、他の方式でパルス信号が生成されてもよい。
 ・ 各実施形態において、ステッピングモータ24,54を所定回転数だけ回転させ、停止させた後、CPU41,67は圧接動作及び離間動作の完了信号を上位制御装置43,69に出力するようにしたが、この完了信号の出力は省略されてもよい。
 ・ 各実施形態では、上位制御装置43,69及び制御装置40,68はクランプ装置11,51,71とは別体とされているが、上位制御装置43,69及び制御装置40,68がクランプ装置11,51に一体化されてもよい。
 ・ 各実施形態において、各コイルバネ22,23,56のピッチは不等ピッチに変更されてもよい。
 ・ 各実施形態において、ステッピングモータ24,54の代わりにACモータ、サーボモータ、エアモータ、内燃機関などの駆動源が用いられてもよい。
 ・ 第1及び第2の実施形態において、ステッピングモータ24の駆動軸25に歯車を取り付けるとともに、ロッドRにおける第2バネ固定部17に歯車を取り付け、両歯車を噛合させることにより、ステッピングモータ24の回転がロッドRに伝達されてもよい。
 ・ 各実施形態において、磁気センサ34,64に代わる他の検出器、例えば、光センサが用いられてもよい。
 ・ 第1及び第2の実施形態では、磁気センサ34により、両コイルバネ22,23の収縮に伴う端部(両ガイドリング20,21)の移動が検出されるが、磁気センサ34は、各コイルバネ22,23の端部以外の部位を検出してもよい。
 ・ 各実施形態において、ディップスイッチ44,45の代わりにロータリスイッチや押しボタンなどの調節装置が採用されてもよい。
 ・ 第1及び第2の実施形態において、磁気センサ34は、第1又は第2ガイドリング20,21に埋設されるマグネットMのうちいずれか一方の磁気を検出するようにしてもよい。
 ・ 第1及び第2の実施形態において、両ハンド部材32,33が1つのコイルバネを用いて駆動されてもよい。この場合、リンク機構や伝達機構を用いて、一つのコイルバネの動作により、両ハンド部材32,33が駆動される。
 ・ 第1及び第2の実施形態において、制御装置40は、両ハンド部材32,33がワークWに対して圧接及び離間を行うようにクランプ装置11,71を制御したが、ワークWを支持するようにクランプ装置11を制御してもよい。例えば、クランプ装置11,71によって、細長いワークWを倒れないように支持する場合、図4に示すように、両ハンド部材32,33が、ワークWに当接している状態で停止するようにクランプ装置11が制御されてもよい。
 ・ 各実施形態において、圧接開始から圧接終了までのステッピングモータ24,54の駆動量は一定の回転量により定めたが、ワークWに与えるクランプ力により決定されてもよい。即ち、大きさの異なるワークWに対して、同一のクランプ力を与えるようにステッピングモータ24,54の駆動量が設定されてもよい。
 ・ 第3の実施形態において、一対の送りローラ60を用いたが、単数の送りローラ60を用いてもよい。
 ・ 各実施形態において、クランプ装置11,51,71は、ワークWの大きさや、離間時の作動速度や、加速度など、事前にプログラムした動作と組み合わせて制御されてもよい。

Claims (7)

  1.  ワークをクランプするクランプ装置であって、
     装置本体と、
     前記装置本体に設けられた収縮可能なコイルバネと、
     前記コイルバネを回転させる駆動源と、
     前記コイルバネの回転によって前記ワークに対して接近又は離間する方向へ移動する移動体と、
     前記コイルバネの回転に伴う前記移動体の回転を規制し直線移動させるガイド部と、
     前記コイルバネが収縮しているか否かを検出する検出部と、
     前記検出部による検出結果に基づき、前記移動体を前記ワークに接近又は離間させる方向へ移動するように前記コイルバネを回転させるべく前記駆動源を制御する制御装置と、
    を備えることを特徴とするクランプ装置。
  2.  前記制御装置は、前記検出部による前記コイルバネの収縮検出を契機に、前記移動体を前記ワークに圧接させるように前記コイルバネを回転させるべく前記駆動源を制御することを特徴とする請求項1に記載のクランプ装置。
  3.  前記制御装置には、前記移動体の動作に係る指令を前記制御装置に出力する上位制御装置が電気的に接続され、前記制御装置は、前記移動体が前記ワークに圧接完了すると、前記上位制御装置に完了信号を出力する請求項2に記載のクランプ装置。
  4.  前記ワークに対する前記移動体の圧接開始から圧接終了までの前記駆動源の駆動量を調節するための第1調節装置を備える請求項2又は請求項3に記載のクランプ装置。
  5.  前記制御装置は、前記移動体を前記ワークから離間させる方向へ前記コイルバネを回転させるべく前記駆動源を制御するとともに、前記コイルバネの収縮解除を契機に、前記駆動源を所定量駆動させた後に停止させることを特徴とする請求項1に記載のクランプ装置。
  6.  前記制御装置には、前記移動体の動作に係る指令を前記制御装置に出力する上位制御装置が電気的に接続され、前記制御装置は、前記移動体が前記ワークから離間完了すると、前記上位制御装置に完了信号を出力する請求項5に記載のクランプ装置。
  7.  前記ワークに対する前記移動体の離間開始から離間終了までの前記駆動源の駆動量を調節するための第2調節装置を備える請求項5又は請求項6に記載のクランプ装置。
PCT/JP2011/080185 2011-01-18 2011-12-27 クランプ装置 WO2012098813A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137001062A KR101284661B1 (ko) 2011-01-18 2011-12-27 클램프 장치
JP2012553590A JP5216166B2 (ja) 2011-01-18 2011-12-27 クランプ装置
CN201180033840.2A CN103328163B (zh) 2011-01-18 2011-12-27 夹持装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011008238 2011-01-18
JP2011-008238 2011-04-11

Publications (1)

Publication Number Publication Date
WO2012098813A1 true WO2012098813A1 (ja) 2012-07-26

Family

ID=46515450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080185 WO2012098813A1 (ja) 2011-01-18 2011-12-27 クランプ装置

Country Status (5)

Country Link
JP (1) JP5216166B2 (ja)
KR (1) KR101284661B1 (ja)
CN (1) CN103328163B (ja)
TW (1) TWI455805B (ja)
WO (1) WO2012098813A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10277983A (ja) * 1997-04-08 1998-10-20 Canon Inc ロボットハンド
JP2009208213A (ja) * 2008-03-06 2009-09-17 Yaskawa Electric Corp マニピュレータ装置
JP2011194523A (ja) * 2010-03-19 2011-10-06 Denso Wave Inc 電動ハンド

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2437462Y (zh) * 2000-06-30 2001-07-04 杨润泽 一种平移取料机械手
DE10121115A1 (de) * 2001-04-28 2002-10-31 Leica Microsystems Haltevorrichtung für Wafer
JP3780233B2 (ja) * 2002-07-16 2006-05-31 シーケーディ株式会社 把持装置
JP4028569B2 (ja) * 2005-11-07 2007-12-26 シーケーディ株式会社 クランプ装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10277983A (ja) * 1997-04-08 1998-10-20 Canon Inc ロボットハンド
JP2009208213A (ja) * 2008-03-06 2009-09-17 Yaskawa Electric Corp マニピュレータ装置
JP2011194523A (ja) * 2010-03-19 2011-10-06 Denso Wave Inc 電動ハンド

Also Published As

Publication number Publication date
CN103328163B (zh) 2014-05-07
CN103328163A (zh) 2013-09-25
KR20130018992A (ko) 2013-02-25
TWI455805B (zh) 2014-10-11
KR101284661B1 (ko) 2013-07-10
JP5216166B2 (ja) 2013-06-19
TW201233510A (en) 2012-08-16
JPWO2012098813A1 (ja) 2014-06-09

Similar Documents

Publication Publication Date Title
US10016865B2 (en) Positioning workpieces by clamping devices
US10610991B2 (en) Tool changing method and machine tool
US7637856B2 (en) Machine tool with spindle chuck replacing function
US9694500B1 (en) Mechanism with one sensor for panel present and double sheet detection for grippers
JP5268096B2 (ja) 電動アクチュエータ
CN103551902B (zh) 利用电机自动控制滑台直线运动及精确停止位置的装置
KR20170091153A (ko) 동력 척
JP5216166B2 (ja) クランプ装置
JP2009160672A (ja) マニピュレータ
WO2018109841A1 (ja) ターンテーブル
JP2735136B2 (ja) ロボツトハンド、及び、ロボツトハンドによるワーク把持方法
JP2016000432A (ja) パラレルリンクロボット
JP4596361B2 (ja) ウェハのアライナー装置
JP2017077598A5 (ja)
JP2015083324A (ja) ワーク挿入装置
JP6374284B2 (ja) ワーク保持ガイド付きチャック装置
CN111573264A (zh) 一种基于视觉的筒子纱夹持机构
WO2018008120A1 (ja) 出力装置
JP6913654B2 (ja) 鋼管端部の加工方法および加工装置
US20220325788A1 (en) Cam device, part manufacturing device, bearing manufacturing device, part manufacturing method, machine manufacturing method, and cam device miniaturization method
EP3441204B1 (en) Loading device and method tool using the same
JP2014193504A (ja) グリッパ
JPH0784167A (ja) レンズの芯出し方法および芯出し装置
JP2019025635A (ja) ロボットハンド、ロボットシステム、ロボットハンドの調芯方法
JP2008051610A (ja) 自動クランプ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855937

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012553590

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20137001062

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11855937

Country of ref document: EP

Kind code of ref document: A1