WO2012096239A1 - 受光装置、光学装置および受光装置の製造方法 - Google Patents

受光装置、光学装置および受光装置の製造方法 Download PDF

Info

Publication number
WO2012096239A1
WO2012096239A1 PCT/JP2012/050213 JP2012050213W WO2012096239A1 WO 2012096239 A1 WO2012096239 A1 WO 2012096239A1 JP 2012050213 W JP2012050213 W JP 2012050213W WO 2012096239 A1 WO2012096239 A1 WO 2012096239A1
Authority
WO
WIPO (PCT)
Prior art keywords
light receiving
microlens
receiving device
fluororesin
inp substrate
Prior art date
Application number
PCT/JP2012/050213
Other languages
English (en)
French (fr)
Inventor
猪口 康博
格 斉藤
康 藤村
田中 和典
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US13/979,586 priority Critical patent/US8809985B2/en
Priority to EP12733894.5A priority patent/EP2665102A4/en
Priority to CN201280005421.2A priority patent/CN103329287B/zh
Priority to KR1020137017168A priority patent/KR20140001971A/ko
Publication of WO2012096239A1 publication Critical patent/WO2012096239A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0075Arrays characterized by non-optical structures, e.g. having integrated holding or alignment means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures

Definitions

  • the present invention relates to a light receiving device, an optical device, and a method for manufacturing the light receiving device. More specifically, the present invention relates to a light receiving device, an optical device, and a method for manufacturing the light receiving device having high sensitivity to near-infrared to infrared light having a wavelength of at least 1 to 2.5 ⁇ m.
  • a structure in which microlenses are arranged for each light receiving element is used in order to increase the light utilization efficiency, that is, in order to increase the light receiving sensitivity.
  • a method of forming a monolithic lens by processing the back surface of the InP substrate into a lens shape Patent Document 1.
  • a method is disclosed in which after processing thin-plate silicon, germanium, or sapphire to form a microarray lens, the microarray lens is bonded to a light receiving element array (sensor) (Patent Document 2).
  • Patent Document 3 a resin layer that forms the base of the lens is formed on the sensor, and a resin microlens is formed on the sensor so that fine irregularities are formed on the surface thereof, thereby suppressing reflection and increasing the light collection efficiency. Proposals have also been made (Patent Document 3).
  • the present invention provides a light-receiving device, an optical device, and a method for manufacturing the light-receiving device that can obtain a high-sensitivity and high-quality light-receiving signal at least in the near-infrared to infrared region with a wavelength of 1 ⁇ m to 2.5 ⁇ m. Objective.
  • the light receiving device of the present invention includes a plurality of pixels formed on an InP substrate.
  • This light receiving device includes a microlens positioned for each region corresponding to a pixel on the back surface of the InP substrate, and the microlens has a variation range of transmittance of 25% or less with respect to light having a wavelength of 0.7 ⁇ m to 3 ⁇ m, and It is formed of a resin material having a transmittance of 70% or more.
  • III-V compound semiconductor epitaxially grown on an InP substrate has a band gap corresponding to the wavelength of light in the near infrared region or near infrared to infrared region, and receives light in the near infrared region or near infrared to infrared region. Used to do.
  • the light receiving portion is smaller than the pixel and formed in a predetermined range inside the pixel. This is necessary because each pixel functions independently and crosstalk does not occur between the pixels. Since the light receiving portion is formed in a small range with a distance from the pixel end as viewed in a plan view, not all of the light reaching the back surface of the InP substrate contributes to light reception. For this reason, it is possible to further increase the utilization factor of light reaching the InP substrate.
  • a microlens (condenser lens) can be arranged for each region corresponding to a pixel.
  • the condenser lens can collect parallel or nearly parallel rays near the focal point. For this reason, most or most of the light reaching the back surface of the InP substrate can be condensed on the light receiving portion, and the light utilization efficiency can be increased.
  • the microlens is formed of a resin material having a transmittance fluctuation range of 25% or less and a transmittance of 70% or more with respect to light having a wavelength of 0.7 ⁇ m to 3 ⁇ m.
  • the plurality of pixels may be arranged one-dimensionally or two-dimensionally. In the case of a two-dimensional array, incidence of the back surface of the substrate is inevitable for connection between the readout electrode of the ROIC (readout circuit Read Out IC) and the pixel electrode.
  • ROIC readout circuit Read Out IC
  • the one-dimensional case it may be incident on the back surface of the substrate or incident on the surface of the epitaxial layer opposite to the substrate.
  • substrate back-side incidence is better even in a one-dimensional case, and the present invention assumes substrate back-side incidence even in a one-dimensional arrangement.
  • the micro lens for every some pixel is a sheet form, and is called a micro lens array, a micro lens sheet, etc.
  • the resin material does not substantially contain CH bonds. This is because a resin containing a CH bond has a large absorption band in the wavelength range of 0.7 ⁇ m to 3 ⁇ m. For this reason, when the microlens is formed of a resin material having a CH bond, the received signal is subjected to fluctuation due to the absorption band, which is larger than the received light signal. As a result, the reliability of the received light signal is reduced. By forming the microlens using a resin material that does not substantially contain a CH bond, it is possible to obtain a highly reliable light-receiving signal with high reliability while improving sensitivity.
  • a fluororesin as the material of the microlens.
  • an amorphous fluororesin mainly composed of a transparent alicyclic fluororesin having no CH bond is selected. It is preferable to do this.
  • the material represented by the following chemical formula (1) corresponds to the amorphous fluororesin, and examples thereof include Cytop and Lumiflon (trade name) manufactured by Asahi Glass.
  • a SiN film or a SiON film is preferably coated between the back surface of the InP substrate and the microlens. As a result, it is possible to improve the light receiving sensitivity by obtaining an antireflection effect by the SiN film or the SiON film. At the same time, since the adhesiveness (adhesiveness) between the SiN film or the SiON film and a resin such as a fluororesin is good, the microlens or the microlens array can be securely fixed.
  • a SiN film or SiON film is coated between the back surface of the InP substrate and the microlens, and (i) a treatment agent that enhances the adhesion of the SiN film or SiON film is attached to the surface layer of the SiN film or SiON film.
  • a resin material constituting the microlens contains a treatment agent that enhances adhesion, and the microlens is fixed to the SiN film or SiON film with the treatment agent interposed therebetween. Can be taken.
  • the treatment agent that enhances the above-described adhesion is used. For example, a trace amount additive is mix
  • a certain solvent containing the additive is applied to the SiN film or the SiON film, and then left at a high temperature to volatilize the previous solvent, thereby further improving the adhesive force with the SiN film or the SiON film.
  • an amine silane coupling agent KBM903 manufactured by Shin-Etsu Chemical
  • a mercapto silane coupling agent KBM803 manufactured by Shin-Etsu Chemical
  • a methacrylic silane coupling agent KBM503
  • examples thereof include a silane treating agent having a relatively small CH bond content.
  • the amount of the silane treatment agent used is not from the viewpoint of the adhesiveness between the SiN film or the SiON film and the fluororesin, and the light transmittance decrease in the wavelength range of 0.7 ⁇ m to 3 ⁇ m accompanying the increase of CH bonds. It is preferably about 1 part by weight or less with respect to 100 parts by weight of the crystalline fluororesin.
  • a base treatment layer of a processing agent for enhancing the adhesive force is formed on the back surface of the InP substrate, and the microlens is fixed to the back surface of the InP substrate through the base treatment layer.
  • the SiN film or the SiON film is not used, and the adhesive force is enhanced by the processing agent.
  • a groove or wall having a depth less than the thickness of the microlens may be formed so as to surround the microlens along the pixel boundary.
  • a light receiving portion that includes a light receiving layer and a window layer on an InP substrate and receives light occupying the core of the pixel includes a pn junction formed in the light receiving layer by selectively diffusing impurities from the window layer.
  • the light receiving portion is separated from the region not selectively diffused, and the pixel is surrounded by a region not selectively diffused around the light receiving portion.
  • the microlens is preferably centered on the light receiving portion and covers a region that is not selectively diffused.
  • an impurity region (referred to as an i region) in which the impurity concentration in a region on the side opposite to the side where the impurity element is introduced by selective diffusion is low enough to be regarded as an intrinsic semiconductor is referred to as the impurity introduced by diffusion.
  • a junction formed between the region and the i region can also be included. That is, the pn junction may be a pi junction or an ni junction, and further includes a case where the p concentration or the n concentration in the pi junction or ni junction is as low as the background.
  • the light that has traveled in the above-described interval which is a region that is not selectively diffused, passes without being received.
  • the above microlens By arranging the above microlens, high sensitivity can be obtained even if the light receiving part is formed by selective diffusion.
  • the diameter of the light receiving portion and the minimum width of the region that is not selectively diffused are substantially the same, and the microlens is preferably formed so as to be inscribed in the section of the pixel so as to occupy the pixel. As a result, it is possible to almost eliminate the light irradiation region that is not likely to be received, and to improve the sensitivity.
  • the light-receiving layer can be constituted by a type 2 multiple quantum well (MQW) structure of two different III-V compound semiconductors lattice-matched to InP within a range of ⁇ 0.5%.
  • MQW multiple quantum well
  • type 2 MQW is used in order to give light reception sensitivity to a long wavelength in the near infrared region, light is received at the interface between two different III-V compound semiconductor layers. For this reason, it is usual to form several tens to several hundreds of layer interfaces or pairs in order to ensure sensitivity, but the sensitivity is still insufficient.
  • An optical device includes any one of the light receiving devices described above and a readout circuit (ROIC: ReadOut IC). Accordingly, it is possible to provide an optical device that can obtain a highly-sensitive and highly reliable light-receiving signal.
  • the optical device may be any device including the light receiving device and the readout circuit.
  • the method of manufacturing a light receiving device includes a step of forming an array of light receiving elements on a InP substrate using light receiving elements having a light receiving sensitivity of at least a wavelength of 1 ⁇ m to 2.5 ⁇ m as pixels, and a back surface of the InP substrate for each pixel.
  • the fluororesin-containing agent whose viscosity is adjusted by dissolving the fluororesin in a solvent is discharged using a micronozzle, and droplets or peaks of the fluororesin-containing agent are formed for each pixel region.
  • the microlens array is formed using a fluororesin by forming a shaped body and then drying.
  • the above-mentioned fluororesin-containing agent is a fluororesin-containing agent whose viscosity is adjusted by dissolving an amorphous fluororesin and a silane coupling agent as a treatment agent (for example, aminosilane coupling agent) in a solvent at a ratio of 100: 0.1. It is good. This is discharged using a micro nozzle to form a droplet or a mountain of fluororesin-containing agent for each pixel region, and then dried to form the microlens array made of fluororesin. .
  • a step of performing a drying treatment after spraying a silane coupling agent as a treatment agent on the InP substrate before forming droplets or ridges of the fluororesin-containing agent is included. You can also. Furthermore, a coating film of SiN film or SiON film may be formed on the back surface of the InP substrate, and fixing with the microlens array by the fluororesin may be further stabilized by the adhesive force of the SiN film or SiON film.
  • a treatment agent for enhancing the adhesion of the SiN film or the SiON film is applied to the surface layer of the SiN film or the SiON film, and then the microlens array is formed, The adhesion strength of the lens array may be increased.
  • a fluororesin-containing microlens array can be efficiently and easily obtained by discharging the fluororesin-containing agent into droplets by micropotting or ink jetting and performing a drying treatment. Since the fluororesin-containing agent has water repellency, it can form a drop or mountain with a large contact angle with the base. As a result, it is possible to easily obtain a light receiving device that is economical, has high sensitivity, and provides a high-quality light receiving signal.
  • adjacent pixels are used so that the droplet-shaped or mountain-shaped fluororesin-containing agent does not come into contact with the fluororesin-containing agent droplet-shaped or mountain-shaped body of the adjacent pixel and fuse. It is preferable to provide a groove or a wall at the boundary.
  • the fluororesin-containing agent is close to a liquid because the solvent accounts for about 90%. For this reason, when droplets of adjacent pixels come into contact with each other, they are fused due to the influence of surface tension and the like, resulting in a shape that does not form a microlens body because water repellency is impaired.
  • a microlens can be formed from each droplet or Yamashiro body.
  • a sprayer is applied to the InP substrate before forming the fluororesin-containing agent droplets or peaks.
  • the substrate can be sprayed 2.3 times with a silane coupling agent, which is a treatment agent, and the substrate can be dried at 85 ° C. for about 2 hours.
  • the drying process has a wavelength region of 0.7 ⁇ m to 3 ⁇ m. It is possible to suppress the presence of an extra CH-binding substance that adversely affects the light transmittance in the microlens or the like.
  • the coating layer can be formed as a SiN film, a hydrophilic resist film, etc., and these walls can be easily formed to form one microlens for each pixel without causing fusion of droplets. it can.
  • Another method of manufacturing a light receiving device includes a step of forming an array of light receiving elements on a InP substrate using light receiving elements having a light receiving sensitivity of at least a wavelength of 1 ⁇ m to 2.5 ⁇ m, and a pixel on the back surface of the InP substrate. And a step of providing a microlens mainly composed of a fluororesin and forming a microlens array on the entire InP substrate. Then, the microlens array forming step includes a step of preparing a female mold of the microlens array, and a fluororesin-containing agent in which the viscosity is adjusted by dissolving the fluororesin in a solvent and applied to the back surface of the InP substrate. And a step of forming a microlens array in which convex lenses that become microlenses are arranged by pressing a mold while aligning with pixels on a moderately dry coating layer. .
  • a microlens array can be formed efficiently and easily. Any method may be used for applying the fluororesin-containing agent to the back surface of the InP substrate. For example, a screen printing method, a spin coating method, or the like may be used.
  • the adhesion of the microlens array and the InP substrate is performed with the SiN film or the SiON film coated, as in the method using the micronozzle. Stabilization may be achieved.
  • any of the treatment agents that enhance the adhesive force regardless of the presence or absence of the coating film may be performed to enhance adhesion.
  • a high-quality light-receiving signal can be obtained with high sensitivity at least in the near-infrared to infrared region with a wavelength of 1 ⁇ m to 2.5 ⁇ m.
  • FIG. 2 is a plan view of a part of the light receiving device of FIG. 1. It is a figure which shows the relationship between the transmittance
  • FIG. 6 is a diagram showing the relationship between the transmittance of fluororesin and the wavelength, and showing a wavelength range of 0.7 ⁇ m to 2.0 ⁇ m. It is a modification of the light receiving device of FIG. 1, and is a view showing a light receiving device and an optical device incorporating the same according to the present invention.
  • FIG. 3 is a flowchart showing a method for manufacturing the light receiving device in the first embodiment. It is a flowchart which shows the formation method of a groove
  • 10 is a flowchart showing a method for manufacturing the light receiving device in the second embodiment. It is a figure which shows the light-receiving device and optical device in Embodiment 3 of this invention. It is a figure which shows the light reception layer in the light-receiving device of FIG. 9A. It is a figure which shows the light-receiving device and optical device in Embodiment 4 of this invention. It is the elements on larger scale of the light-receiving device of Embodiment 5 of this invention.
  • 1 InP substrate 3 light receiving layer, 3a GaAsSb, 3b InGaAs, 4 diffusion concentration distribution adjusting layer, 5 window layer, 6 p-type region, 9 bump, 11 pixel electrode (p part electrode), 15 pn junction, 17 selective diffusion mask Pattern (protective film), 21 microlens, 21a layer of fluororesin-containing agent, 22 groove, 23 wall, 27 SiN film or SiON film, 29 base treatment layer, 33 type 2 MQW light-receiving layer, 35 type, 35f type Surface, 50 light receiving device, 70 ROIC, 71 readout electrode, 79 bump, 100 optical device, pair boundary of K MQW, P pixel.
  • FIG. 1 is a diagram showing a light receiving device 50 and an optical device 100 in the embodiment of the present invention.
  • a plurality of pixels P are formed in the light receiving device 50.
  • An InP-based epitaxial layer including the light receiving layer 3 / window layer 5 is formed on the InP substrate 1.
  • a p-type impurity such as zinc (Zn), which is selectively diffused from the opening of the selective diffusion mask pattern 17, is introduced and extends into the light receiving layer 3.
  • the selective diffusion mask pattern 17 also serves as a protective film, and is left as it is after being used for selective diffusion of zinc (Zn) which is a p-type impurity.
  • a reverse bias voltage is applied between a common ground electrode (not shown) and the pixel electrode 11 that is in ohmic contact with the p-type region, and the near-infrared region of interest in the depletion layer protruding from the pn junction 15 Receives light. At this time, electron-hole pairs are generated, which are read by the pixel electrode and the ground electrode to obtain a light reception signal.
  • a readout electrode 71 of a readout circuit (ROIC: Read Out IC) 70 that reads out a received light signal and the pixel electrode 11 of the light receiving device 50 are conductively connected by connection bumps 9 and 79 while facing each other.
  • a microlens 21 serving as a condenser lens is disposed on the back surface of the InP substrate 1.
  • the microlens 21 is a convex lens and is made of a fluororesin. Thereafter, the light transmittance of the fluororesin at a wavelength of 0.7 ⁇ m to 3 ⁇ m is shown. Since the fluororesin does not contain a CH bond, it does not have a large absorption band at a wavelength of 0.7 ⁇ m to 3 ⁇ m.
  • the refractive index of the fluororesin is about 1.3 to 1.5.
  • the pn junction 15 is formed at the tip end portion of the selectively diffused p-type region 6, and light reception is performed in the depletion layer extending from here with a reverse bias voltage. For this reason, in plan view, most of the light irradiated on the back surface of the InP substrate 1 passes through the pn junction 15 (see FIG. 2).
  • FIG. 2 is a plan view of a part of the light receiving device shown in FIG. A two-dimensional array of p-type regions 6 and pixels P is shown. 1 and 2, for example, the opening diameter of the selective diffusion mask pattern 17 for forming the p-type region 6 is 15 ⁇ m, and the pixel pitch is 30 ⁇ m.
  • the plane occupation ratio in the pixel P of the p-type region 6 is about 20%. In other words, after a parallel ray or a substantially parallel ray reaches the InP substrate, the amount of reflection is zero and only about 20% has a possibility of receiving light.
  • formation of the p-type region 6 or the pixel P by selective diffusion needs to have a sufficient interval so that interference such as crosstalk does not occur between adjacent pixels P.
  • the p-type region 6 has a plane occupation ratio of about 20%.
  • the crystal is less susceptible to damage and the dark current can be reduced.
  • the convex lens can collect parallel rays or almost parallel rays irradiated on the convex lens in the vicinity of the light receiving unit or the pn junction 15 located near the focal plane. Light that is reflected from the surface of an object or the like and reaches the light receiving device 50 is almost parallel, and is collected near the focal plane by the action of the convex lens or the microlens 21.
  • 3A and 3B are diagrams showing the transmittance of the fluororesin.
  • the fluororesin exhibits a transmittance of 95% and 93% in the wavelength range of 0.7 ⁇ m to 2.0 ⁇ m and 2.0 ⁇ m to 3.5 ⁇ m.
  • the variation in transmittance with respect to wavelength is large. That is, a resin containing a CH bond has an absorption band in an important wavelength range of 1 ⁇ m to 2.5 ⁇ m.
  • Silicon oxide and the like have a plurality of very large absorption bands at wavelengths of 1 ⁇ m to 3 ⁇ m, which are still important. For this reason, even if a microlens made of resin or silicon oxide containing CH bonds is provided to increase the amount of light that may contribute to light reception and increase the sensitivity, fluctuations in the transmittance of the microlens And is included in the received light signal. For this reason, the reliability of the received light signal is impaired.
  • the fluororesin microlens 21 as in the present embodiment, the amount of light that may contribute to light reception is increased to increase sensitivity, and a highly reliable light reception signal can be obtained. .
  • a groove 22 is provided at the boundary of the pixel.
  • the microlens 21 is provided so as to be inscribed in the square of the pixel P in order to make the area as large as possible, the following problem occurs.
  • the droplets of the fluororesin-containing agent having a viscosity close to that of a liquid are arranged for each pixel by micropotting or ink jetting, they can be easily brought into contact with each other (the manufacturing method will be described later).
  • contact occurs before drying the two droplets are fused due to the influence of surface tension and the like, and the contact angle with the substrate becomes small, the droplet shape is not maintained, and the substrate gets wet. As a result, the lens body is not formed. For this reason, as shown in FIGS. 1 and 2, a groove 22 is provided between the pixels P, and the crossing of the droplets can be prevented by the groove.
  • the groove 22 may be a wall.
  • FIG. 4 is a view showing a light receiving device 50 in which the groove 22 shown in FIG.
  • the wall 23 can also prevent the drop-like body in the pixel P from crossing over.
  • the shape of the groove 22 or the wall 23 can be, for example, the following dimensions. ⁇ Groove>: 1 ⁇ m wide, 1 ⁇ m to 2 ⁇ m deep ⁇ Wall>: width 1 ⁇ m, height 0.11 ⁇ m to 0.3 ⁇ m
  • FIG. 5 is a flowchart showing a method for manufacturing the light receiving device 50 according to the embodiment of the present invention.
  • a light receiving element array is formed on an InP substrate.
  • the groove 22 or the wall 23 is formed on the back surface of the InP substrate 1 depending on whether the groove 22 or the wall 23 is used.
  • the fluororesin-containing agent for forming the microlens is adjusted.
  • the fluororesin it is preferable to select an amorphous fluororesin mainly composed of a transparent alicyclic fluororesin having no CH bond.
  • an amorphous fluororesin represented by the following chemical formula (1) is preferable, and examples thereof include Cytop and Lumiflon (trade name) manufactured by Asahi Glass.
  • Cytop and Lumiflon trade name
  • the fluctuation range of the transmittance with respect to light having a wavelength of 0.7 ⁇ m to 3 ⁇ m is 25% or less and the transmittance is 70% or more.
  • the dilution solvent may be anything as long as it becomes a solvent such as ethanol, isopropyl alcohol / isobutyl acetate, or water.
  • the fluororesin polymer is preferably 5 to 15%, and the remaining solvent and the like is preferably about 95% to 85%.
  • the curvature of the surface of the drop-shaped body or the mountain-shaped body is focused on the light receiving portion even if the focal length is shortened to some extent (even if it is focused above the pn junction 15). Not much needed. Further, even if the focal length is increased to some extent, the light collection is ensured and the sensitivity is improved.
  • a droplet or a mountain-like body of the fluororesin-containing agent is formed for each pixel P by the micro nozzle.
  • the drying process is started.
  • the solvent is removed by placing in a thermostatic bath maintained at a constant temperature in the range of 70 ° C. to 250 ° C. You may carry out by heating up in steps from a low temperature tank to a high temperature tank divided into several times.
  • FIG. 6A is a flowchart that does not occupy the method for forming the groove 22, and FIG. 6B does not occupy the method for forming the wall 23.
  • dicing is performed along the boundary of the pixel P or the groove is formed by etching.
  • an SiN film is formed on the back surface of the InP substrate 1 by, for example, a CVD (Chemical Vapor Deposition) method.
  • the thickness is preferably the thickness of the wall 23, for example, 0.11 ⁇ m to 0.3 ⁇ m. Thereafter, the region other than the portion that becomes the wall 23 is removed by etching.
  • FIG. 7 is a diagram for explaining the light-receiving device 50 and the optical device 100 and the manufacturing method thereof according to the second embodiment of the present invention.
  • the present embodiment is the same as the first embodiment in that the light receiving device 50 including the microlens 21 and the readout circuit (ROIC) 70 are combined.
  • the present embodiment is different from the first embodiment in that the microlens 21 is formed by the imprint method using a die 35 that is a female die corresponding to the surface shape of the microlens 21.
  • the microlens 21 is drawn after being assembled in the optical device 100, but this is merely for convenience of explanation, and actually, the microlens is formed by pressing a mold.
  • the process is performed for the light receiving device 50 alone before being combined with the readout circuit. Assuming this point, as shown in FIG. 7, the surface 35f of the mold 35 is pressed against the fluororesin-containing layer 21a in a state where it is easy to be plastically processed before it is diluted and dried. 21 arrays are formed.
  • FIG. 8 shows a procedure for forming a microlens array by the imprint method.
  • the pressing mold 35 can be formed with unevenness by lithography using electron beam exposure in order to perform fine processing.
  • quartz or the like is preferably used because wear resistance is required.
  • it is better to adjust the viscosity than in the case of the micropotting method or the ink jet method.
  • the lens is a microlens formed by a micropotting method or a microlens formed by an imprint method can be specified by examining the microlens. Further, since the micropotting method often involves the groove 22 or the wall 23, the micropotting method can also be identified.
  • FIG. 9A is a diagram showing the light receiving device 50 and the optical device 100 according to Embodiment 3 of the present invention
  • FIG. 9B is an enlarged view of the light receiving layer 33 and the like included in the pixel.
  • the light receiving layer 33 in the present embodiment is a type 2 multiple quantum well structure MQW having a basic pair of GaAsSb3a and InGaAs3b.
  • MQW multiple quantum well structure
  • light is received by electrons in the valence band of GaAsSb transitioning to the conduction band of InGaAs to generate electrons / holes.
  • the energy difference between the valence band of GaAsSb and the conduction band of InGaAs is smaller than the energy difference between the valence band and the conduction band in GaAsSb (InGaAs)
  • light having a long wavelength with low energy can be received.
  • the interface of the multiple quantum well structure MQW that is, the interface K illustrated in FIG. 9B.
  • the place where the transition occurs is limited as compared with the transition phenomenon occurring in the bulk. Therefore, even if the number of MQW pairs is increased, the sensitivity is reduced.
  • the light receiving element as the type 2 MQW light receiving layer 33 has a specific structure in order to maintain good crystallinity. For example, if the impurity concentration becomes too high, the crystallinity of MQW is impaired. Therefore, a diffusion concentration distribution adjusting layer 4 for selective diffusion is arranged, and the p-type impurity concentration is rapidly reduced in this diffusion concentration distribution adjusting layer 4.
  • the light receiving layer 33 has a stable concentration distribution in a low range.
  • pixel formation by selective diffusion is also preferable for the crystallinity of type 2 MQW.
  • the light receiving device 50 and the optical device 100 compensates for low light receiving sensitivity due to the light receiving mechanism while expanding the sensitivity to light in the long wavelength region of the near infrared region, so that the sensitivity exceeds a predetermined level. Can be secured.
  • the microlens 21 is made of a fluororesin, a high-quality light reception signal can be obtained in the near infrared region and its long wavelength region.
  • FIG. 10 is a diagram illustrating the light receiving device 50 and the optical device 100 according to the fourth embodiment.
  • the microlens 21 is arranged in direct contact with the back surface of the InP substrate 1.
  • the SiN film or the SiON film 27 is disposed between the microlens 21 and the back surface of the InP substrate 1.
  • the adhesiveness (adhesiveness) between the SiN film or the SiON film and a resin such as a fluororesin is good, the microlens or the microlens array can be securely fixed.
  • the microlens may be manufactured by any one of the first to third embodiments. In FIG. 10, there are no grooves or walls between the microlenses, but the grooves or walls may be disposed between the microlenses 21.
  • an amine silane coupling agent (KBM903 manufactured by Shin-Etsu Chemical), a mercapto silane coupling agent (KBM803 manufactured by Shin-Etsu Chemical), a methacrylic silane coupling agent (KBM503)
  • KBM903 manufactured by Shin-Etsu Chemical
  • KBM803 manufactured by Shin-Etsu Chemical
  • KBM503 methacrylic silane coupling agent
  • Examples thereof include a silane treating agent having a relatively small CH bond content.
  • the amount of the silane treatment agent used is amorphous from the viewpoint of adhesion between the SiN film or SiON film and the fluororesin, and a decrease in transmittance in the wavelength range of 0.7 ⁇ m to 3 ⁇ m accompanying an increase in CH bonds. It is preferably about 1 part by weight or less with respect to 100 parts by weight of the fluororesin.
  • FIG. 11 is a partially enlarged view of the light receiving device 50 according to the fifth embodiment.
  • the SiN film or the SiON film is disposed between the microlens 21 and the InP substrate 1.
  • the base treatment layer 29 is formed on the back surface of the InP substrate 1 in order to improve the adhesion between the fluororesin on which the microlenses are formed and the InP substrate. That is, before forming the droplets or peaks of the fluororesin-containing agent, the silane coupling agent as the treatment agent is sprayed 2.3 times on the back surface of the InP substrate 1 using a sprayer, and the substrate is 85
  • the base treatment layer 29 is formed by performing a drying process at about 2 ° C.
  • the subsequent microlens 21 may be manufactured by any of the methods in the first to fourth embodiments. Thereby, the micro lens 21 is firmly fixed to the back surface of the InP substrate 1. In this case, the amorphous fluororesin forming the microlens 21 does not need to be premixed with a silane coupling agent as a treatment agent, and has a wavelength range of 0.7 ⁇ m to 3 ⁇ m by a drying process. It is possible to reduce the presence of an extra CH-binding substance that adversely affects the light transmittance in the microlens or the like.
  • a high-sensitivity and high-quality light-receiving signal can be obtained in the near infrared to infrared region with a wavelength of about 0.7 ⁇ m to about 3 ⁇ m.
  • these microlenses are made of fluororesin and have flat transmittance-wavelength characteristics with no absorption in the near infrared region and its long wavelength region. Can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

InP基板1の裏面において、画素に対応する領域ごとに位置するマイクロレンズ21を備え、マイクロレンズが、波長0.7μm~3μmの光に対する透過率のレンジが25%以下で、かつ該透過率が70%以上である樹脂材料で形成されていることを特徴とする。

Description

受光装置、光学装置および受光装置の製造方法
 本発明は、受光装置、光学装置および受光装置の製造方法に関する。より具体的には、本発明は、波長が少なくとも1~2.5μmの近赤外~赤外域の光に高い感度を有する受光装置、光学装置および受光装置の製造方法に関するものである。
 高密度で受光素子が二次元アレイ化されたイメージセンサでは、光の利用効率を高めるために、すなわち受光感度を高めるために、受光素子ごとにマイクロレンズを配列する構造が用いられる。たとえばInP基板上に形成された受光素子において、InP基板裏面をレンズ形状に加工してモノリシックレンズとする方法の提案がなされている(特許文献1)。また、薄板状のシリコン、ゲルマニウムまたはサファイアを加工してマイクロアレイレンズを形成した後、このマイクロアレイレンズを、受光素子アレイ(センサ)に貼り合わせる方法が開示されている(特許文献2)。さらにセンサ上にレンズの下地となる樹脂層を形成し、その上に樹脂製マイクロレンズを、その表面に微細な凹凸が生じるように形成することで反射を抑制して集光効率を高める方法の提案もなされている(特許文献3)。
特開平7-30082号公報 特開平10-209414号公報 特開2009-116056号公報
 しかしながら、上記のInP基板にモノリシックにマイクロレンズを形成する場合、均一にレンズ形状を得ることが難しい。とくにInPは、加工が難しい上に屈折率が3.4と高いので、高い加工精度で加工しないと受光部の集光度を高めることが難しい。また、シリコンなどの上にマイクロレンズアレイを形成した場合、受光素子アレイに精度よく位置合わせして貼り合わせることが難しく、製造歩留まりが低下する。
 また樹脂層を下地としたマイクロレンズアレイでは、樹脂による光吸収が生じて所定域の受光感度を劣化させる。
 本発明は、少なくとも波長1μm~2.5μmの近赤外~赤外域に、高感度で、高品位の受光信号を得ることができる受光装置、光学装置および受光装置の製造方法を提供することを目的とする。
 本発明の受光装置は、InP基板に形成された複数の画素を備える。この受光装置では、InP基板の裏面において、画素に対応する領域ごとに位置するマイクロレンズを備え、マイクロレンズが、波長0.7μm~3μmの光に対する透過率の変動幅が25%以下で、かつ該透過率が70%以上である樹脂材料で形成されていることを特徴とする。
 InP基板上にエピタキシャル成長したIII-V族化合物半導体は、近赤外域または近赤外~赤外域の光の波長に対応するバンドギャップを持ち、近赤外域または近赤外~赤外域の光を受光するために用いられる。受光部は画素よりも小さく画素内部の所定範囲に形成される。これは各画素が独立して機能して、画素間でクロストークなどが生じないために必要である。平面的に見て受光部は画素端から距離をあけて小さい範囲に形成されるので、InP基板の裏面に到達した光は、すべてが受光に寄与するわけではない。このため、InP基板に到達する光の利用率をさらに高めることが可能である。
 上記構成によれば、画素に対応する領域ごとにマイクロレンズ(集光レンズ)を配置することができる。集光レンズは、平行光線またはほぼ平行な光線を、焦点付近に集めることができる。このため、InP基板裏面に到達した光の多くまたはほとんどを、受光部に集光することができ、光の利用効率を高めることができる。
 そして、マイクロレンズを、波長0.7μm~3μmの光に対する透過率の変動幅が25%以下で、かつ該透過率が70%以上である樹脂材料で形成する。これにより樹脂材料における加工容易性を得ながら、波長0.7μm~3μmの光に対して信頼性の高いマイクロレンズを得ることができる。このため、少なくとも波長1μm~2.5μmの光を高い感度で受光することができ、マイクロレンズを形成する材料によるかく乱のない、高品位の画像、または高品位の受光信号を得ることができる。
 上記の複数の画素は、一次元に配列されていてもよいし、二次元に配列されていてもよい。二次元配列の場合、ROIC(読み出し回路Read Out IC)の読み出し電極と画素電極との接続のために、基板裏面入射は必然となる。一次元の場合は、基板裏面入射でも、基板と反対側のエピタキシャル層表面入射でもよい。しかしやはりROICの読み出し電極とのバンプ接続の簡便さを考慮すると一次元の場合でも、基板裏面入射のほうがよく、本発明では、一次元配列の場合でも、基板裏面入射を想定している。
 なお、複数の画素ごとにマイクロレンズを設けたものはシート状であり、マイクロレンズアレイ、マイクロレンズシートなどと呼ばれる。
 樹脂材料が、CH結合を実質的に含まないようにするのがよい。これは、CH結合を含む樹脂は、波長0.7μm~3μmの波長域に大きな吸収帯を持つ。このため、CH結合を持つ樹脂材料でマイクロレンズを形成すると、受信信号は、受光信号よりも大きな、上記吸収帯による変動を受ける。この結果、受光信号の信頼性が低下する。CH結合を実質的に含まない樹脂材料を用いて当該マイクロレンズを形成することで、感度を向上させた上で、信頼性の高い高品位の受光信号を得ることができる。
 上記目的を達成するのには、マイクロレンズの材料としてフッ素系樹脂を選択するのがよく、中でもCH結合を有しない透明な脂環式のフッ素樹脂を主成分とする非晶性フッ素樹脂を選択するのが好ましい。具体的には、下記の化学式(1)で表される材料が前記非晶性フッ素樹脂に該当し、旭硝子製サイトップ、ルミフロン(商品名)を挙げることができる。これらのフッ素樹脂を用いた場合、波長0.7μm~3μmの光に対する透過率の変動幅が25%以下で、かつ該透過率が70%以上となる。このため、受光装置の感度を高めた上で、高品質の受光信号を得ることができる。
Figure JPOXMLDOC01-appb-C000002
 InP基板の裏面とマイクロレンズとの間にSiN膜またはSiON膜がコートされているのがよい。
 これによって、SiN膜またはSiON膜による反射防止作用を得て受光感度を向上させることができる。同時に、SiN膜またはSiON膜とフッ素樹脂等の樹脂との接着性(固着性)が良好であるため、マイクロレンズまたはマイクロレンズアレイを確実に固定することができる。
 InP基板の裏面とマイクロレンズとの間にSiN膜またはSiON膜がコートされており、(i)そのSiN膜もしくはSiON膜の表層に当該SiN膜もしくはSiON膜の接着力を増強する処理剤が付されているか、または(ii)マイクロレンズを構成する樹脂材料に接着力を増強する処理剤が含まれており、その処理剤を介在させてマイクロレンズがSiN膜もしくはSiON膜に固定されている構成をとることができる。
 SiN膜またはSiON膜とフッ素樹脂との接着性に問題が有る場合、上記の接着力を増強する処理剤を用いる。たとえば、フッ素樹脂中に微量の添加剤を配合する。あるいは、当該SiN膜またはSiON膜に当該添加剤(接着増強剤)を含むある種の溶剤を塗布後に高温に放置して前溶剤を揮発させることで、SiN膜またはSiON膜との接着力の更なる向上をはかることができる。ここで、微量の処理剤として最適な材料としては、アミン系シランカップリング剤(信越化学製KBM903)やメルカブト系シランカップリング剤(信越化学製KBM803)、メタクリル系シランカップリング剤(KBM503)、等のCH結合含量の比較的少ないシラン処理剤を例示できる。そして、シラン処理剤の使用量としては、SiN膜またはSiON膜とフッ素樹脂との接着性と、CH結合の増加に伴う0.7μm~3μmの波長域における光の透過率低下の観点から、非晶性フッ素樹脂100重量部に対して、概ね1重量部以下とするのが好ましい。
 InP基板の裏面に接着力を増強するための処理剤の下地処理層が形成され、その下地処理層を介在させて、マイクロレンズがInP基板の裏面に固定されている構成をとることもできる。この場合、SiN膜もしくはSiON膜は用いずに、処理剤により接着力を増強する。
 画素の境界に沿ってマイクロレンズを囲むように、該マイクロレンズの厚み以下の、深さの溝または高さの壁、が形成されるのがよい。
 上記の構成によって、隣の画素のマイクロレンズとの接触を避けながら、画素一杯にマイクロレンズを設けることで光の利用効率を向上させることができる。この場合、マイクロレンズは、マイクロノズルによって液滴状の樹脂を滴出させて形成される。
 InP基板上に受光層および窓層を備え、画素の中核を占める光を受光する受光部は、窓層から不純物を選択拡散されて受光層に形成されたpn接合を含み、該受光部は隣の受光部と選択拡散されていない領域で隔てられており、画素は、受光部を中心として選択拡散されていない領域で囲まれている。マイクロレンズは、受光部に中心を合わせ選択拡散されていない領域を覆うのがよい。
 なお、上記のpn接合は、次のように、広く解釈するのがよい。受光層内において、不純物元素が選択拡散で導入される側と反対の面側の領域の不純物濃度が、真性半導体とみなせるほど低い不純物領域(i領域と呼ばれる)であり、上記拡散導入された不純物領域と当該i領域との間に形成される接合をも含むものとできる。すなわち、上記のpn接合は、pi接合またはni接合などであってもよく、さらに、これらpi接合またはni接合におけるp濃度またはn濃度がバックグランド程度に低い場合も含むものとするのがよい。
 上記の構成によって、選択拡散による不純物フロントであるpn接合を主要部とする受光部は、隣の受光部と比較的大きな間隔をあけて位置する。このため、選択拡散されない領域である上記間隔に進行してきた光は、受光されずに通り過ぎる場合が多い。上記のマイクロレンズを配置されることで、選択拡散による受光部の形成を行っても、高い感度を得ることができる。
 受光部の径と、選択拡散されていない領域の最小幅とが、ほぼ同じであり、マイクロレンズは画素を占めるように該画素の区画に内接するように形成されるのがよい。
 これによって、受光される可能性のない光の照射領域をほとんど無くすことができ、感度を向上させることができる。
 受光層は、InPに±0.5%の範囲内で格子整合する異なる二つのIII-V族化合物半導体の、タイプ2の多重量子井戸構造(MQW:Multi Quantum Well)によって構成されることができる。
 近赤外域の長波長に受光感度を持たせるために、タイプ2のMQWを利用すると、異なる二つのIII-V族化合物半導体の層の界面で受光が生じる。このため、感度を確保するために層界面またはペア数を数十~数百、形成するのが普通であるが、それでも感度が不足する。このようなタイプ2のMQWの受光層をもつ場合、マイクロレンズを配置することで、近赤外域の長波長側まで受光波長域を拡大した上で、高い感度を得ることができる。 
 本発明の光学装置は、上記のいずれかの受光装置と、読み出し回路(ROIC:ReadOut IC)とを備えることを特徴とする。
 これによって、高感度であって、かつ高信頼性の受光信号が得られる光学装置を提供することができる。光学装置は、上記の受光装置と読み出し回路とを含めばどのような装置であってもよい。
 本発明の受光装置の製造方法は、InP基板に、少なくとも波長1μm~2.5μmに受光感度を有する受光素子を画素として該受光素子のアレイを形成する工程と、InP基板の裏面に画素ごとにフッ素樹脂を主成分とするマイクロレンズを設け、該InP基板全体にマイクロレンズアレイを形成する工程とを備える。そしてマイクロレンズアレイの形成工程では、フッ素樹脂を溶媒に溶かして粘度を調整したフッ素樹脂含有剤を、マイクロノズルを用いて放出して前記画素の領域ごとにフッ素樹脂含有剤の滴状体または山状体を形成し、次いで乾燥処理してフッ素樹脂による該マイクロレンズアレイを形成することを特徴とする。上記のフッ素樹脂含有剤は、非晶性フッ素樹脂と処理剤としてのシランカップリング剤(例えばアミノシランカップリング剤)を100:0.1の比率で溶媒に溶かして粘度を調整したフッ素樹脂含有剤としてもよい。これを、マイクロノズルを用いて放出して画素の領域ごとにフッ素樹脂含有剤の滴状体または山状体を形成し、次いで乾燥処理してフッ素樹脂による該マイクロレンズアレイを形成することができる。また、必要に応じて、前記フッ素樹脂含有剤の滴状体または山状体を形成する前に、前記InP基板に処理剤としてシランカップリング剤を噴霧した後、乾燥処理を行う工程を含めることもできる。
 さらにInP基板裏面にSiN膜またはSiON膜のコート膜を形成し、そのSiN膜またはSiON膜の接着力により、フッ素樹脂によるマイクロレンズアレイとの固定をより安定化してもよい。
 また、SiN膜もしくはSiON膜を形成する際そのSiN膜もしくはSiON膜の接着力を増強する処理剤をそのSiN膜もしくはSiON膜の表層に付し、その後、前記マイクロレンズアレイを形成して、マイクロレンズアレイの接着力増強をはかってもよい。
 上記の方法によれば、マイクロポッティングまたはインクジェットによってフッ素樹脂含有剤を滴状に放出して、乾燥処理を経てフッ素樹脂製のマイクロレンズアレイを、能率良く簡単に得ることができる。フッ素樹脂含有剤は、撥水性を有するので、下地との間に大きな接触角をもって滴状体または山状体を形成することができる。これによって、経済性に優れ、感度が高く、高品位の受光信号をもたらす受光装置を簡単に得ることができる。
 マイクロレンズアレイの形成工程の前に、滴状または山状のフッ素樹脂含有剤が、隣の画素のフッ素樹脂含有剤の滴状体または山状体と接触して融合しないように、隣り合う画素の境界に溝または壁を設けるのがよい。
 インクジェットまたはマイクロポッティング法では、上記のフッ素樹脂含有剤は、溶媒が9割前後を占めるので液体に近い。このため隣り合う画素の滴状体どうしが接触すると表面張力等の影響で融合してしまい、撥水性が損なわれてマイクロレンズの体をなさない形状となる。上記の溝または壁を画素の境界に設けることで、滴状体どうしの接触を防ぐことができ、個々の滴状体または山城体からマイクロレンズを形成することができる。
 なお、前述のごとく、マイクロレンズが形成されるフッ素樹脂と、InP基板との接着性を向上させる手段として、前記フッ素樹脂含有剤の滴状体または山状体を形成する前にInP基板に噴霧器を用いて、処理剤であるシランカップリング剤を2.3回噴霧し、当該基板を85℃で2時間程乾燥処理させることもできる。この場合、マイクロレンズを形成する非晶質フッ素樹脂中には、処理剤としてのシランカップリング剤を予め配合させる必要もなくなり、かつ、本乾燥工程により、波長0.7μm~3μmの波長域の光透過性に悪影響を与える余分なCH結合物質がマイクロレンズ等に存在することを抑制させることができる。
 壁を設けるとき、InP基板の裏面に被覆層を形成し、次いで、被覆層の壁になる部分以外の部分をエッチングによって除去するのがよい。
 これによって、たとえば被覆層をSiN膜、親水性のレジスト膜などとして、簡単にこれらの壁を形成して、滴状体の融合が生じることなく、画素ごとに一つのマイクロレンズを形成することができる。
 本発明の別の受光装置の製造方法は、InP基板に、少なくとも波長1μm~2.5μmに受光感度を有する受光素子を画素として該受光素子のアレイを形成する工程と、InP基板の裏面に画素ごとにフッ素樹脂を主成分とするマイクロレンズを設け、該InP基板全体にマイクロレンズアレイを形成する工程とを備える。そしてマイクロレンズアレイの形成工程は、マイクロレンズアレイの雌型となる型を準備する工程と、フッ素樹脂を溶媒に溶かして粘度を調整したフッ素樹脂含有剤をInP基板の裏面に塗布して塗布層を形成する工程と、適度に乾燥した塗布層に、画素と位置合わせしながら、型を押し当ててマイクロレンズとなる凸レンズが配列されたマイクロレンズアレイを形成する工程とを備えることを特徴とする。
 上記の押し型を用いる方法によれば、能率よく簡単にマイクロレンズアレイを形成することができる。InP基板の裏面にフッ素樹脂含有剤を塗布する方法は、何でもよいが、たとえばスクリーン印刷法、スピンコート法などを用いるのがよい。
 上記の押し型を用いてマイクロレンズアレイを形成する場合においても、マイクロノズルを用いる方法と同じように、SiN膜またはSiON膜のコート膜を介在させて、マイクロレンズアレイとInP基板との接着の安定化を図ってもよい。また、上記コート膜の有無によらず、接着力を増強する処理剤を、(InP基板裏面に直接付す、フッ素樹脂含有剤に配合する、SiN膜またはSiON膜の表層に付す)のうちのいずれかの処理またはこれらを組み合わせた処理を行って、接着の増強を図ってもよい。
 本発明の受光装置によれば、少なくとも波長1μm~2.5μmの近赤外~赤外域に、高感度で、高品位の受光信号を得ることができる。
本発明の実施の形態1における受光装置および光学装置を示す図である。 図1の受光装置の一部分の平面図である。 フッ素樹脂の透過率と波長の関係を示し、波長2.0μm以上の範囲を示す図である。 フッ素樹脂の透過率と波長の関係を示し、波長0.7μm~2.0μmの範囲を示す図である。 図1の受光装置の変形例であって、本発明の、受光装置およびそれを組み込んだ光学装置を示す図である。 実施の形態1における受光装置の製造方法を示すフローチャートである。 溝の形成方法を示すフローチャートである。 壁の形成方法を示すフローチャートである。 本発明の実施の形態2における受光装置および光学装置を説明するための図である(型を押し当てる工程は、ROICと組み合わせる前に、受光装置単独で行う。)。 実施の形態2における受光装置の製造方法を示すフローチャートである。 本発明の実施の形態3における受光装置および光学装置を示す図である。 図9Aの受光装置内の受光層を示す図である。 本発明の実施の形態4における受光装置および光学装置を示す図である。 本発明の実施の形態5の受光装置の部分拡大図である。
 1 InP基板、3 受光層、3a GaAsSb、3b InGaAs、4 拡散濃度分布調整層、5 窓層、6 p型領域、9 バンプ、11 画素電極(p部電極)、15 pn接合、17 選択拡散マスクパターン(保護膜)、21 マイクロレンズ、21a フッ素樹脂含有剤の層、22 溝、23 壁、27 SiN膜またはSiON膜、29 下地処理層、33 タイプ2のMQWの受光層、35 型、35f 型の表面、50 受光装置、70 ROIC、71 読み出し電極、79 バンプ、100 光学装置、K MQWのペア境界、P 画素。
(実施の形態1)
 図1は、本発明の実施の形態における、受光装置50および光学装置100を示す図である。受光装置50には、複数の画素Pが形成されている。InP基板1には、受光層3/窓層5、を含むInP系エピタキシャル層が形成されている。p型領域6は、選択拡散マスクパターン17の開口部から選択拡散された、たとえば亜鉛(Zn)などのp型不純物が導入され、受光層3内にまで延びている。選択拡散マスクパターン17は保護膜を兼ねており、p型不純物である亜鉛(Zn)の選択拡散に用いられたあとそのまま残されている。画素Pは、図示しない共通のグランド電極と、p型領域上にオーミック接触する画素電極11との間に逆バイアス電圧を印加されて、pn接合15から張り出す空乏層において対象とする近赤外光を受光する。このとき、電子正孔対が発生するが、これを、画素電極およびグランド電極で読み出して受光信号を得る。
 受光信号を読み出す読み出し回路(ROIC:Read Out IC)70の読み出し電極71と、受光装置50の画素電極11とは、対面した状態で、接続バンプ9,79によって導電接続される。このようなROICを用いて受光装置の画素Pからの受光信号を読み出す場合、上述のように基板(裏面)入射となる。
 本実施の形態における特徴は、次の2点である。
(1)InP基板1の裏面に集光レンズとなるマイクロレンズ21が配置されている。このマイクロレンズ21は凸レンズであり、フッ素樹脂で形成されている。このあとフッ素樹脂の波長0.7μm~3μmでの光の透過率を示すが、フッ素樹脂は、CH結合を含まないために、波長0.7μm~3μmに大きな吸収バンドを持たない。またフッ素樹脂の屈折率は1.3~1.5程度である。このため、高精細な加工を行わなくても、凸レンズを画素Pの領域ごとに設けることで、平行光線またはほぼ平行光線を、焦点面付近に位置する受光部またはpn接合15の付近に光を集めることができる。マイクロレンズの表面の曲率は、焦点距離がある程度短くなっても(pn接合15より上部でフォーカスしても)、当該上部でクロスしたあと拡大して受光部には集光されるので精度はそれほど必要としない。また、焦点距離がある程度長くなっても、光束は確実に受光部に集められる。
 この結果、受光感度を高めることができる。上記のように、pn接合15は、選択拡散されたp型領域6の先端部に形成され、ここから逆バイアス電圧で張り出す空乏層において受光が遂行される。このため、平面的にみて、InP基板1の裏面に照射された光のうち、多くの部分はpn接合15を通らずに通過してしまう(図2参照)。
 図2は、図1に示す受光装置の一部の平面図である。p型領域6および画素Pの二次元配列を示している。図1および図2において、たとえば、p型領域6を形成するための選択拡散マスクパターン17の開口径は15μmであり、画素ピッチは30μmである。p型領域6の画素Pにおける平面占有率は、20%程度である。換言すれば、平行光線またはほぼ平行な光線がInP基板に到達したあと、反射する分はゼロとして、約20%程度が受光する可能性を持つにすぎない。
 一般に、選択拡散によるp型領域6または画素Pの形成は、隣り合う画素P間でクロストークなどの干渉が生じないように、十分な間隔をとる必要がある。また、選択拡散では、深さ方向だけでなく、開口部から導入された不純物が、わずかであるが横方向に拡散することも考慮する必要がある。このため、平面的にみて、p型領域6の直径と同程度の間隔(p型領域6の間の選択拡散されていない領域の最小幅)をあけているのが実情である。この結果、図2に示すように、p型領域6は、20%程度の平面占有率となる。ただ、画素Pの他の画素からの独立性を保つための他の方法、たとえば画素の境界に、メサエッチングによって深い溝を入れる方法に比べて、結晶が損傷を受けにくく、暗電流を低くできる利点を有する。
 図2に示すように、感度を上げるためマイクロレンズ21を画素に内接するように一杯に形成すると、上記の受光に寄与する可能性のある光は、78%程度に大きく向上する。図1に示すように、凸レンズは、その凸レンズに照射された平行光線またはほぼ平行光線を、焦点面付近に位置する受光部またはpn接合15の付近に集めることができる。物体等の表面から反射されて受光装置50に到達する光は、ほとんど平行であり、凸レンズまたはマイクロレンズ21の作用により焦点面付近に集光される。
 図3Aおよび図3Bは、フッ素樹脂の透過率を示す図である。フッ素樹脂は、図3B,図3Aに示すように、0.7μm~2.0μm、2.0μm~3.5μmの波長域で、95%、93%の透過率を示す。その上、透過率の変動がなく、波長に対してほとんどフラットである。
 CH結合を含む樹脂の場合、波長に対する透過率の変動が大きい。すなわちCH結合を含む樹脂は、波長1μm~2.5μmという肝心要の重要な波長域に吸収帯を持つ。また、酸化ケイ素などは、やはり肝心な波長1μm~3μmに非常に大きな吸収帯を、複数、持つ。このためCH結合を含む樹脂や酸化ケイ素によるマイクロレンズを設けて、受光に寄与する可能性のある光量を増やして感度を上げることができたとしても、マイクロレンズの透過率の変動が、集光によって強調されて受光信号に含まれてしまう。このため受光信号の信頼性を損なうことになる。
 本実施の形態のように、フッ素樹脂製のマイクロレンズ21を用いることで、受光に寄与する可能性のある光量を増やして感度を上げた上で、高い信頼性の受光信号を得ることができる。
(2)もう一つの点は、画素の境界に溝22を設けていることである。マイクロレンズ21は、できるだけ大きい面積とするために、画素Pの正方形内に内接するように設ける場合、次の問題を生じる。マイクロポッティングまたはインクジェットによって、液体に近い粘度のフッ素樹脂含有剤の滴状体を画素ごとに配置するとき、目一杯大きくすると相互に接触しやすくなる(製造方法については、このあと説明する)。乾燥前に接触が生じると表面張力等の影響で、その二つの滴状体は融合して、下地との接触角が小さくなり滴状を維持しなくなり、下地に濡れるような形態をとる。この結果、レンズの体をなさなくなる。このため、図1および図2に示すように、画素P間に溝22を設けて、溝によって滴状体の越境を防止することができる。
 上記の溝22は、壁であってもよい。図4は、図1に示す溝22を壁23に置き換えた受光装置50を示す図である。壁23によっても、画素P内の滴状体の越境を防止することができる。
 溝22または壁23の形状は、たとえば、次の寸法とすることができる。
<溝>:幅1μm、深さ1μm~2μm
<壁>:幅1μm、高さ0.11μm~0.3μm
 図5は、本発明の実施の形態の受光装置50の製造方法を示すフローチャートである。まず、InP基板に受光素子アレイを形成する。次いで、図1または図4に示すように、溝22とするか、または壁23とするかに応じて、InP基板1の裏面に、溝22または壁23を形成する。
 この間、マイクロレンズを形成するためのフッ素樹脂含有剤を調整しておく。フッ素樹脂としては、CH結合を有しない透明な脂環式のフッ素樹脂を主成分とする非晶性フッ素樹脂を選択するのが好ましい。具体的には、下記の化学式(1)で表される非晶性フッ素樹脂が好ましく、例えば旭硝子製サイトップ、ルミフロン(商品名)を挙げることができる。これらのフッ素樹脂を用いた場合、波長0.7μm~3μmの光に対する透過率の変動幅が25%以下で、かつ該透過率が70%以上となる。
Figure JPOXMLDOC01-appb-C000003
 希釈溶剤としては、エタノール、イソプロピルアルコール/酢酸イソブチル、水など溶媒となるものであれば何でもよい。マイクロノズルを用いて、インクジェットまたはマイクロポッティングによって滴状体を画素ごとに置く場合、たとえばフッ素樹脂ポリマーは5~15%、残りの溶媒等は95%~85%程度とするのがよい。上述のように、滴状体または山状体の表面の曲率は、焦点距離がある程度短くなっても(pn接合15より上部でフォーカスしても)、受光部には集光されるので精度はそれほど必要としない。また、焦点距離がある程度長くなっても、集光は確実にされて感度を向上させる。
 マイクロノズルによって画素Pごとにフッ素樹脂含有剤の滴状体または山状体を形成してゆく。すべての画素Pに滴状体を配置した後、乾燥処理に入る。乾燥処理では、70℃~250℃の範囲内の一定温度に保持した恒温槽に入れて、溶媒を除去する。数回に分けて、低温槽から高温槽へと段階的に昇温して行ってもよい。
 図6Aは溝22の形成方法を、また図6Bは壁23の形成方法を占めずフローチャートである。溝22の場合は、画素Pの境界に沿ってダイシングをするか、またはエッチングによって溝を形成する。また、壁23の場合は、InP基板1の裏面に、たとえばCVD(Chemical Vapor Deposition)法によってSiN膜を形成する。厚みは壁23の厚み、たとえば0.11μm~0.3μmとするのがよい。このあと、エッチングによって、壁23となる部分以外の領域を除去する。
 上記の製造方法によれば、とくに大掛かりな装置を必要としないで、簡単かつ容易に、マイクロポッティング法またはインクジェット法によって、滴状体または山状体の画素からの越境を防止しながら、高い製造歩留まりで、感度を大きく向上させるマイクロレンズ21の配列を得ることができる。
(実施の形態2)
 図7は、本発明の実施の形態2における受光装置50および光学装置100、並びにこれらの製造方法、を説明するための図である。本実施の形態においても、マイクロレンズ21を備える受光装置50と、読み出し回路(ROIC)70とが組み合わされている点では、実施の形態1と同じである。本実施の形態では、マイクロレンズ21が、マイクロレンズ21の表面形状に対応する雌型である型35を用いてインプリント法で形成される点で、実施の形態1と異なる。
 ただし、図7では、光学装置100に組み上げたあとマイクロレンズ21を形成するように描いてあるが、これはあくまで説明の便宜上のことであって、実際は、型を押し当ててマイクロレンズを形成する工程は、読み出し回路と組み合わせる前に、受光装置50単独について行う。この留意点を前提として、図7に要点を示すように、希釈された乾燥前で、塑性加工しやすい状態のフッ素樹脂含有層21aに対して、型35の表面35fを押し当てて、マイクロレンズ21の配列を形成する。
 図8にインプリント法によるマイクロレンズ配列を形成する手順を示す。インプリント法においては型35の製作が重要である。この押し当て用の型35は、微細な加工を行うため電子ビーム露光によるリソグラフィによって凹凸を付けて形成することができる。型35の材料は、耐摩耗性が要求されることから石英などを用いるのがよい。
 フッ素樹脂含有剤の層21aを形成するとき、粘度の調整は、マイクロポッティング法またはインクジェット法の場合よりも、固めにするのがよい。上記の方法で製作された型35を押し当てることで、マイクロレンズ21の配列を簡単に得ることができる。
 マイクロポッティング法で形成されたマイクロレンズか、またはインプリント法で形成されたマイクロレンズかは、マイクロレンズを検鏡することで特定することができる。また、マイクロポッティング法では、溝22または壁23を伴う場合が多いので、これによっても識別することができる。
(実施の形態3)
 図9Aは、本発明の実施の形態3における受光装置50および光学装置100を示す図であり、図9Bは、画素に含まれる受光層33等の拡大図である。本実施の形態における受光層33は、GaAsSb3aとInGaAs3bとを基本のペアとするタイプ2の多重量子井戸構造MQWである。このタイプ2のMQWでは、GaAsSbの価電子帯の電子が、InGaAsの伝導帯に遷移して、電子/正孔を生じることで、受光が起きる。GaAsSbの価電子帯とInGaAsの伝導帯とのエネルギ差は、GaAsSb(InGaAs)内の価電子帯と伝導帯とのエネルギ差よりも小さいので、エネルギの低い長波長の光を受光することができる。しかし、上記のように、GaAsSbの価電子帯の電子が、InGaAsの伝導帯に遷移するため、多重量子井戸構造MQWの界面、すなわち図9Bに例示する界面Kにおいてのみ受光が生じる。このようにタイプ2のMQWでは、バルク内で生じる遷移現象に比べて遷移が生じる場所が限られるため、たとえMQWのペア数を多くしても、感度は小さくなる。
 また、タイプ2のMQWの受光層33とする受光素子では、良好な結晶性を保つために特有の構造を伴う。たとえば不純物濃度があまり高くなるとMQWの結晶性が害されるため、選択拡散のための拡散濃度分布調整層4を配置して、この拡散濃度分布調整層4内で、p型不純物濃度を急減させて、受光層33には、低い範囲に安定した濃度分布を入れるようにする。また、選択拡散による画素形成そのものも、タイプ2のMQWの結晶性には好ましい。
 タイプ2のMQWの受光層33を有し、受光感度を長波長側に拡大することはできるものの、本質的に感度が低いのは受光メカニズムによる。このような受光装置において、上述のマイクロレンズ21は、大きな威力を発揮することができる。すなわち、本実施の形態の受光装置50および光学装置100は、近赤外域の長波長域の光に感度を拡大しながら、その受光メカニズムに起因する低い受光感度を補って、所定レベル以上の感度を確保することができる。また、マイクロレンズ21は、フッ素樹脂製であるため、近赤外域およびその長波長域で、高品位の受光信号を得ることができる。
(実施の形態4)
 図10は、実施の形態4における受光装置50および光学装置100を示す図である。実施の形態1~3では、マイクロレンズ21は、InP基板1の裏面に、直接、接して配置される。しかし、本実施の形態では、マイクロレンズ21とInP基板1の裏面との間にSiN膜またはSiON膜27が配置されている。これによって、SiN膜またはSiON膜27による反射防止作用を得て受光感度を向上させることができる。同時に、SiN膜またはSiON膜とフッ素樹脂等の樹脂との接着性(固着性)が良好であるため、マイクロレンズまたはマイクロレンズアレイを確実に固定することができる。マイクロレンズは、実施の形態1~3のいずれの方法で製作してもよい。また、図10には、マイクロレンズ間の溝や壁はないが、その溝または壁をマイクロレンズ21の間に配置してもよい。
 所定の場合には、SiN膜またはSiON膜とフッ素樹脂との接着性に問題が生じることがある。このような場合には、フッ素樹脂中に微量の添加剤を配合する。あるいは、当該SiN膜またはSiON膜に当該添加剤を含むある種の溶剤を塗布後に高温に放置して前溶剤を揮発させることで、SiN膜またはSiON膜との接着力の更なる向上をはかることができる。ここで、微量の処理剤として最適な材料としては、アミン系シランカップリング剤(信越化学製KBM903)やメルカブト系シランカップリング剤(信越化学製KBM803)、メタクリル系シランカップリング剤(KBM503)、等のCH結合含量の比較的少ないシラン処理剤を例示できる。そして、シラン処理剤の使用量としては、SiN膜またはSiON膜とフッ素樹脂との接着性と、CH結合の増加に伴う0.7μm~3μmの波長域における透過率低下の観点から、非晶性フッ素樹脂100重量部に対して、概ね1重量部以下とするのが好ましい。
(実施の形態5)
 図11は、実施の形態5における受光装置50の部分拡大図である。実施の形態4では、SiN膜またはSiON膜をマイクロレンズ21とInP基板1との間に配置した。本実施の形態では、マイクロレンズが形成されるフッ素樹脂と、InP基板との接着性を向上させるために、InP基板1の裏面に下地処理層29を形成する。すなわち、フッ素樹脂含有剤の滴状体または山状体を形成する前にInP基板1の裏面に、噴霧器を用いて処理剤であるシランカップリング剤を2.3回噴霧し、当該基板を85℃で2時間程乾燥処理させることで、下地処理層29を形成する。このあとのマイクロレンズ21は、実施の形態1~4のいずれの方法で製造してもよい。これによって、マイクロレンズ21は、InP基板1の裏面に強固に固着される。
 この場合、マイクロレンズ21を形成する非晶質フッ素樹脂中には、処理剤としてのシランカップリング剤を予め配合させる必要もなくなり、かつ、乾燥工程により、波長0.7μm~3μmの波長域の光透過性に悪影響を与える余分なCH結合物質がマイクロレンズ等に存在するのを減らすことができる。
 上記において、本発明の実施の形態および実施例について説明を行ったが、上記に開示された本発明の実施の形態および実施例は、あくまで例示であって、本発明の範囲はこれら発明の実施の形態に限定されない。本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。
 本発明の受光装置等によれば、所定のマイクロレンズを配置することで、波長が0.7μmから3μm程度までの近赤外~赤外域に、高感度で、高品位の受光信号を得ることができる。また、これらのマイクロレンズは、フッ素樹脂製とすることで、近赤外域およびその長波長域で吸収のないフラットな透過率-波長特性なので、樹脂による加工容易性という利点を得ながら、高い信頼性の受光信号を得ることができる。

Claims (20)

  1.  InP基板に形成された複数の画素を備える受光装置であって、
     前記InP基板の裏面において、前記画素に対応する領域ごとに位置するマイクロレンズを備え、
     前記マイクロレンズが、波長0.7μm~3μmの光に対する透過率の変動幅が25%以下で、かつ該透過率が70%以上である樹脂材料で形成されていることを特徴とする、受光装置。
  2.  前記樹脂材料が、CH結合を含まないことを特徴とする、請求項1に記載の受光装置。
  3.  前記樹脂材料がフッ素樹脂であることを特徴とする、請求項1または2に記載の受光装置。
  4.  前記フッ素樹脂が、化学式(1)で表される基本単位を持つ非晶質フッ素樹脂であることを特徴とする、請求項3に記載の受光装置。
    Figure JPOXMLDOC01-appb-C000001
  5.  前記InP基板の裏面と前記マイクロレンズとの間にSiN膜またはSiON膜がコートされていることを特徴とする、請求項1~4のいずれか1項に記載の受光装置。
  6.  前記InP基板の裏面と前記マイクロレンズとの間にSiN膜またはSiON膜がコートされており、(i)そのSiN膜もしくはSiON膜の表層に当該SiN膜もしくはSiON膜の接着力を増強する処理剤が付されているか、または(ii)前記マイクロレンズを構成する前記樹脂材料に接着力を増強する処理剤が含まれており、その処理剤を介在させて前記マイクロレンズが前記SiN膜もしくはSiON膜固定されていることを特徴とする、請求項1~4のいずれか1項に記載の受光装置。
  7.  前記InP基板の裏面に接着力を増強するための処理剤の下地処理層が形成され、その下地処理層を介在させて、前記マイクロレンズが前記InP基板の裏面に固定されていることを特徴とする、請求項1~4のいずれか1項に記載の受光装置。
  8.  前記画素の境界に沿って前記マイクロレンズを囲むように、該マイクロレンズの厚み以下の、深さの溝または高さの壁、が形成されていることを特徴とする、請求項1~7のいずれか1項に記載の受光装置。
  9.  前記InP基板上に受光層および窓層を備え、前記画素の中核を占める光を受光する受光部は、前記窓層から不純物を選択拡散されて前記受光層に形成されたpn接合を含み、該受光部は隣の受光部と選択拡散されていない領域で隔てられており、前記画素は、前記受光部を中心として前記選択拡散されていない領域で囲まれており、前記マイクロレンズは、前記受光部に中心を合わせ前記選択拡散されていない領域を覆うことを特徴とする、請求項1~8のいずれか1項に記載の受光装置。
  10.  前記pn接合は、pi接合またはni接合などであってもよく、さらに、これらpi接合またはni接合におけるp濃度またはn濃度がバックグランド程度に低い場合も含むものであることを特徴とする、請求項9に記載の受光装置。
  11.  前記受光部の径と、前記選択拡散されていない領域の最小幅とが、ほぼ同じであり、前記マイクロレンズは前記画素を占めるように該画素の区画に内接するように形成されていることを特徴とする、請求項9または10に記載の受光装置。
  12.  前記受光層は、InPに±0.5%の範囲内で格子整合する二つのIII-V族化合物半導体の、タイプ2の多重量子井戸構造(MQW:Multi Quantum Well)によって構成されることを特徴とする、請求項9~11のいずれか1項に記載の受光装置。
  13.  請求項1~12のいずれか1項に記載の受光装置と、読み出し回路(ROIC:Read Out IC)とを備えることを特徴とする、光学装置。
  14.  InP基板に、少なくとも波長1μm~2.5μmに受光感度を有する受光素子を画素として該受光素子のアレイを形成する工程と、
     前記InP基板の裏面に前記画素ごとにフッ素樹脂を主成分とするマイクロレンズを設け、該InP基板全体にマイクロレンズアレイを形成する工程とを備え、
     前記マイクロレンズアレイの形成工程では、フッ素樹脂を溶媒に溶かして粘度を調整したフッ素樹脂含有剤を、マイクロノズルを用いて放出して前記画素の領域ごとにフッ素樹脂含有剤の滴状体または山状体を形成し、次いで乾燥処理してフッ素樹脂による該マイクロレンズアレイを形成することを特徴とする、受光装置の製造方法。
  15.  前記マイクロレンズアレイの形成工程の前に、前記滴状または山状のフッ素樹脂含有剤が、隣の画素のフッ素樹脂含有剤の滴状体または山状体と接触して融合しないように、隣り合う前記画素の境界に溝または壁を設けることを特徴とする、請求項14に記載の受光装置の製造方法。
  16.  前記壁を設けるとき、前記InP基板の裏面に被覆層を形成し、次いで、被覆層の前記壁になる部分以外の部分をエッチングによって除去することを特徴とする、請求項15に記載の受光装置の製造方法。
  17.  InP基板に、少なくとも波長1μm~2.5μmに受光感度を有する受光素子を画素として該受光素子のアレイを形成する工程と、
     前記InP基板の裏面に前記画素ごとにフッ素樹脂を主成分とするマイクロレンズを設け、該InP基板全体にマイクロレンズアレイを形成する工程とを備え、
     前記マイクロレンズアレイの形成工程は、
      前記マイクロレンズアレイの雌型となる型を準備する工程と、
      前記フッ素樹脂を溶媒に溶かして粘度を調整したフッ素樹脂含有剤を前記InP基板の裏面に塗布して塗布層を形成する工程と、
      適度に乾燥した前記塗布層に、前記画素と位置合わせしながら、前記型を押し当ててマイクロレンズとなる凸レンズが配列されたマイクロレンズアレイを形成する工程とを備えることを特徴とする、受光装置の製造方法。
  18.  前記InP基板に前記受光素子のアレイを形成した後で前記マイクロレンズを設ける前に、そのInP基板にSiN膜またはSiON膜のコート膜を形成し、その後、前記コート膜に接して前記マイクロレンズを設けることを特徴とする、請求項14~17のいずれか1項に記載の受光装置の製造方法。
  19.  前記InP基板に、(i)SiN膜もしくはSiON膜を形成し、その形成の際そのSiN膜もしくはSiON膜の表層に当該SiN膜もしくはSiON膜の接着力を増強する処理剤を付し、その後、前記マイクロレンズアレイを形成する、かまたは(ii)SiN膜もしくはSiON膜を形成し、次いで前記フッ素樹脂に予め接着力を増強する処理剤を含ませたフッ素樹脂含有剤を用いて前記マイクロレンズを設けることを特徴とする、請求項14~17のいずれか1項に記載の受光装置の製造方法。
  20.  前記InP基板の裏面に、接着力を増強する処理剤の下地処理層を形成し、その下地処理層上に前記マイクロレンズを設けることを特徴とする、請求項14~17のいずれか1項に記載の受光装置の製造方法。
PCT/JP2012/050213 2011-01-14 2012-01-07 受光装置、光学装置および受光装置の製造方法 WO2012096239A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/979,586 US8809985B2 (en) 2011-01-14 2012-01-07 Light receiving device, optical device, and method for producing light receiving device
EP12733894.5A EP2665102A4 (en) 2011-01-14 2012-01-07 Light receiving device, optical device, and method for manufacturing light receiving device
CN201280005421.2A CN103329287B (zh) 2011-01-14 2012-01-07 光接收装置、光学装置和用于制造光接收装置的方法
KR1020137017168A KR20140001971A (ko) 2011-01-14 2012-01-07 수광 장치, 광학 장치 및 수광 장치의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011006139 2011-01-14
JP2011-006139 2011-01-14
JP2011109658A JP2012160691A (ja) 2011-01-14 2011-05-16 受光装置、光学装置および受光装置の製造方法
JP2011-109658 2011-05-16

Publications (1)

Publication Number Publication Date
WO2012096239A1 true WO2012096239A1 (ja) 2012-07-19

Family

ID=46507139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050213 WO2012096239A1 (ja) 2011-01-14 2012-01-07 受光装置、光学装置および受光装置の製造方法

Country Status (6)

Country Link
US (1) US8809985B2 (ja)
EP (1) EP2665102A4 (ja)
JP (1) JP2012160691A (ja)
KR (1) KR20140001971A (ja)
CN (1) CN103329287B (ja)
WO (1) WO2012096239A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014188105A1 (fr) * 2013-05-22 2014-11-27 Electricite De France Procédé de fabrication d'un dispositif photosensible
US9373733B2 (en) * 2014-06-16 2016-06-21 Sumitomo Electric Industries, Ltd. Semiconductor light-receiving device and semiconductor light-receiving device array

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6112472B2 (ja) * 2013-01-15 2017-04-12 住友電気工業株式会社 受光デバイスの製造方法
JP6163851B2 (ja) * 2013-04-25 2017-07-19 凸版印刷株式会社 ウェハレベルレンズ及びその製造方法
JP6500442B2 (ja) * 2014-02-28 2019-04-17 住友電気工業株式会社 アレイ型受光素子
JP2016096163A (ja) * 2014-11-12 2016-05-26 ソニー株式会社 固体撮像装置および製造方法、並びに電子機器
US10867834B2 (en) * 2015-12-31 2020-12-15 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor structure and manufacturing method thereof
JP2019078970A (ja) * 2017-10-27 2019-05-23 富士通コンポーネント株式会社 レンズシート及び光モジュール
CN111512444A (zh) 2017-12-28 2020-08-07 索尼半导体解决方案公司 相机封装件、相机封装件的制造方法以及电子设备
CN110391307A (zh) * 2018-04-18 2019-10-29 苏州大学 一种InGaAs探测器与OLED结合的上转换器件的制备方法
WO2022202006A1 (ja) * 2021-03-25 2022-09-29 ソニーセミコンダクタソリューションズ株式会社 光電変換素子及びその製造方法並びに撮像装置
JP2022176627A (ja) * 2021-05-17 2022-11-30 ソニーセミコンダクタソリューションズ株式会社 半導体チップおよびその製造方法、並びに電子機器

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06244392A (ja) * 1993-02-17 1994-09-02 Sharp Corp 固体撮像装置およびその製造方法
JPH0730082A (ja) 1993-07-14 1995-01-31 Nec Corp 半導体基板へのモノリシックレンズ形成方法
JPH10209414A (ja) 1997-01-22 1998-08-07 Nikon Corp 熱型赤外線イメージセンサ
JPH11317475A (ja) * 1998-02-27 1999-11-16 Canon Inc 半導体用封止材樹脂および半導体素子
JP2000307090A (ja) * 1999-04-16 2000-11-02 Toppan Printing Co Ltd 固体撮像素子用マイクロレンズアレイ及びそれを用いた固体撮像素子並びにそれらの製造方法
JP2005268737A (ja) * 2003-11-11 2005-09-29 Ricoh Co Ltd 光伝送素子モジュール
JP2006019526A (ja) * 2004-07-01 2006-01-19 Ibiden Co Ltd 光学素子、パッケージ基板および光通信用デバイス
JP2007227546A (ja) * 2006-02-22 2007-09-06 Sumitomo Electric Ind Ltd 光検出装置
JP2007256674A (ja) * 2006-03-23 2007-10-04 Fujifilm Corp 光結合素子、光コネクタ、及び光伝送システム
JP2009116056A (ja) 2007-11-07 2009-05-28 Sony Corp レンズの製造方法および固体撮像装置の製造方法
JP2009283557A (ja) * 2008-05-20 2009-12-03 Sumitomo Electric Ind Ltd 半導体光デバイスの製造方法
JP2010157667A (ja) * 2009-01-05 2010-07-15 Sumitomo Electric Ind Ltd 検出装置およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02103962A (ja) * 1988-10-13 1990-04-17 Toshiba Corp 固体撮像装置及びその製造方法
JPH0653537A (ja) * 1992-07-31 1994-02-25 Japan Energy Corp 半導体受光素子
JP2002289904A (ja) * 2001-03-23 2002-10-04 Sumitomo Electric Ind Ltd 半導体受光素子とその製造方法
TWI278991B (en) * 2002-07-09 2007-04-11 Toppan Printing Co Ltd Solid image-pickup device and method of manufacturing the same
JP5042835B2 (ja) * 2005-08-17 2012-10-03 出光興産株式会社 含フッ素アダマンタン誘導体、重合性基含有含フッ素アダマンタン誘導体及びそれを含有する樹脂組成物
JP5172584B2 (ja) * 2008-10-07 2013-03-27 株式会社東芝 撮像装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06244392A (ja) * 1993-02-17 1994-09-02 Sharp Corp 固体撮像装置およびその製造方法
JPH0730082A (ja) 1993-07-14 1995-01-31 Nec Corp 半導体基板へのモノリシックレンズ形成方法
JPH10209414A (ja) 1997-01-22 1998-08-07 Nikon Corp 熱型赤外線イメージセンサ
JPH11317475A (ja) * 1998-02-27 1999-11-16 Canon Inc 半導体用封止材樹脂および半導体素子
JP2000307090A (ja) * 1999-04-16 2000-11-02 Toppan Printing Co Ltd 固体撮像素子用マイクロレンズアレイ及びそれを用いた固体撮像素子並びにそれらの製造方法
JP2005268737A (ja) * 2003-11-11 2005-09-29 Ricoh Co Ltd 光伝送素子モジュール
JP2006019526A (ja) * 2004-07-01 2006-01-19 Ibiden Co Ltd 光学素子、パッケージ基板および光通信用デバイス
JP2007227546A (ja) * 2006-02-22 2007-09-06 Sumitomo Electric Ind Ltd 光検出装置
JP2007256674A (ja) * 2006-03-23 2007-10-04 Fujifilm Corp 光結合素子、光コネクタ、及び光伝送システム
JP2009116056A (ja) 2007-11-07 2009-05-28 Sony Corp レンズの製造方法および固体撮像装置の製造方法
JP2009283557A (ja) * 2008-05-20 2009-12-03 Sumitomo Electric Ind Ltd 半導体光デバイスの製造方法
JP2010157667A (ja) * 2009-01-05 2010-07-15 Sumitomo Electric Ind Ltd 検出装置およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2665102A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014188105A1 (fr) * 2013-05-22 2014-11-27 Electricite De France Procédé de fabrication d'un dispositif photosensible
FR3006108A1 (fr) * 2013-05-22 2014-11-28 Electricite De France Procede de fabrication d'un dispositif photosensible
CN105378944A (zh) * 2013-05-22 2016-03-02 法国电力公司 构造光敏装置的方法
US9923106B2 (en) 2013-05-22 2018-03-20 Electricite De France Method for fabricating a photosensitive device
US9373733B2 (en) * 2014-06-16 2016-06-21 Sumitomo Electric Industries, Ltd. Semiconductor light-receiving device and semiconductor light-receiving device array

Also Published As

Publication number Publication date
US20130292646A1 (en) 2013-11-07
CN103329287B (zh) 2015-11-25
JP2012160691A (ja) 2012-08-23
EP2665102A4 (en) 2018-04-04
US8809985B2 (en) 2014-08-19
CN103329287A (zh) 2013-09-25
EP2665102A1 (en) 2013-11-20
KR20140001971A (ko) 2014-01-07

Similar Documents

Publication Publication Date Title
WO2012096239A1 (ja) 受光装置、光学装置および受光装置の製造方法
JP5185208B2 (ja) フォトダイオード及びフォトダイオードアレイ
JP5568979B2 (ja) 検出装置、受光素子アレイ、および検出装置の製造方法
US20140319464A1 (en) Light receiving element and method for manufacturing same
WO2010098224A1 (ja) 半導体光検出素子
JP5805680B2 (ja) フォトダイオード及びフォトダイオードアレイ
KR20110128789A (ko) 반도체 광 검출 소자
JP2010098329A (ja) フォトダイオードアレイ、その製造方法、及び放射線検出器
US20110259407A1 (en) Solar cell including microlens and method of fabricating the same
US10312390B2 (en) Light receiving device and method of producing light receiving device
JP2016129225A (ja) 半導体受光装置、半導体受光素子
US11705469B2 (en) Germanium based focal plane array for the short infrared spectral regime
US20110284981A1 (en) Image sensor comprising microlens array, and manufacturing method thereof
JPWO2014045334A1 (ja) 半導体受光素子及びその製造方法
US20230197758A1 (en) Photodetecting device with enhanced collection efficiency
JP2016066682A (ja) 赤外線受光装置、半導体受光素子
US20150364618A1 (en) Semiconductor light-receiving device and semiconductor light-receiving device array
JP6790004B2 (ja) 半導体受光素子およびその製造方法
JP4094471B2 (ja) 半導体受光装置
JP2014110391A (ja) 受光素子アレイ、その製造法、およびセンシング装置
JPH04263475A (ja) 半導体受光素子及びその製造方法
JP2017168491A (ja) 赤外線イメージセンサ、及び赤外線イメージセンサの製造方法
JPH0290685A (ja) 半導体受光素子
JPH03152978A (ja) 半導体受光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12733894

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137017168

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13979586

Country of ref document: US

Ref document number: 2012733894

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE