WO2012090344A1 - 始動補助部材付高圧放電ランプ、ランプユニット、ランプシステム、及びプロジェクタ - Google Patents

始動補助部材付高圧放電ランプ、ランプユニット、ランプシステム、及びプロジェクタ Download PDF

Info

Publication number
WO2012090344A1
WO2012090344A1 PCT/JP2011/003881 JP2011003881W WO2012090344A1 WO 2012090344 A1 WO2012090344 A1 WO 2012090344A1 JP 2011003881 W JP2011003881 W JP 2011003881W WO 2012090344 A1 WO2012090344 A1 WO 2012090344A1
Authority
WO
WIPO (PCT)
Prior art keywords
lamp
dielectric
discharge
sealing portion
lamp unit
Prior art date
Application number
PCT/JP2011/003881
Other languages
English (en)
French (fr)
Inventor
俊介 小野
匡宏 山本
宏樹 小川
和之 岡野
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012504955A priority Critical patent/JP5113957B2/ja
Priority to US13/393,786 priority patent/US8690360B2/en
Priority to CN201180003528.9A priority patent/CN102687234B/zh
Publication of WO2012090344A1 publication Critical patent/WO2012090344A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/54Igniting arrangements, e.g. promoting ionisation for starting
    • H01J61/547Igniting arrangements, e.g. promoting ionisation for starting using an auxiliary electrode outside the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/84Lamps with discharge constricted by high pressure
    • H01J61/86Lamps with discharge constricted by high pressure with discharge additionally constricted by close spacing of electrodes, e.g. for optical projection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2026Gas discharge type light sources, e.g. arcs

Definitions

  • the present invention relates to a high-pressure discharge lamp with a starting auxiliary member, a lamp unit, a lamp system, and a projector, and more particularly to a technique for reducing the discharge start voltage of the lamp.
  • a lamp system using a high pressure discharge lamp such as a metal halide lamp, a xenon lamp or a high pressure mercury lamp is used.
  • a conventional general high-pressure discharge lamp has a quartz glass envelope in which a pair of sealing portions are connected to a substantially spherical light-emitting portion including a discharge space. Inside each sealing portion, discharge electrodes and external lead wires are provided at both ends in the longitudinal direction of the metal foil. A predetermined discharge gas and mercury are sealed in the discharge space, and the discharge electrodes are arranged to face each other at a constant interval in the discharge space. At the time of lighting, a pair of discharge electrodes are used as counter electrodes, and light is emitted by arc discharge generated between the electrodes.
  • the external lead wire is disposed so as to be partially exposed to the outside of the sealing portion, and is supplied with power from an external lighting circuit.
  • the high-pressure discharge lamp having the above configuration is used as a lamp unit in combination with a reflecting mirror having a reflecting surface in order to efficiently emit the light emitted from the light emitting portion forward.
  • the discharge start voltage of a high-pressure discharge lamp is a high voltage on the order of kV, and the lighting circuit needs to generate an applied voltage that exceeds the discharge start voltage. Electronic parts must be used. In addition, sufficient consideration for insulation is required for cables and connectors that are subjected to high voltage, as well as peripheral components. Therefore, the high discharge start voltage of the high-pressure discharge lamp is a major obstacle to downsizing and cost reduction of the lamp system including the lighting circuit, and it is desired to reduce the discharge start voltage.
  • a method of arranging a so-called proximity conductor 21X as a starting auxiliary member on the outer surface in the vicinity of the light emitting unit 100 has been known for a long time as shown in the lamp 10X of FIG. (For example, refer to Patent Document 1).
  • the upstream end portion of the wire-like proximity conductor 21X is connected to the external lead wire 102A exposed from one of the sealing portions 101A and 101B (here 101A), and the proximity conductor 21X is connected to the external lead wire 102A.
  • the sealing part 101A is extended to the sealing part 101B side on the other end side across the light emitting part 100 so as to be close to or in contact with the outer surface of the light emitting part 100 of the lamp 10X, and the light emitting part 100 and the sealing part 101B. It is wound around the outer surface near the boundary.
  • UV light ultraviolet (UV) light is generated and applied to the lamp.
  • UV light By irradiating the ultraviolet rays, a photoelectric effect is generated on the surface of the discharge electrode, and electrons (photoelectrons) are emitted, whereby the start of discharge is promoted and the discharge start voltage is reduced.
  • the present invention has been made in view of the above problems, and firstly, a high-pressure discharge lamp with a starting auxiliary member, a lamp unit, a lamp system, and a discharge starting voltage that is sufficiently lower than the conventional one and excellent in productivity, and The purpose is to provide a projector.
  • a second object is to provide a high-pressure discharge lamp with a starting auxiliary member, a lamp unit, a lamp system, and a projector having a high degree of design freedom by reducing restrictions on the arrangement position of adjacent conductors in addition to the above object.
  • the present invention provides a high-pressure discharge lamp including an envelope and a pair of discharge electrodes disposed facing the discharge space in the envelope, and a reflecting mirror that reflects the light emitted from the lamp.
  • a lamp unit including a starting auxiliary member for the lamp, wherein the envelope includes a light emitting part containing the discharge space, and a first sealing part and a second sealing part connected to the light emitting part.
  • the starting auxiliary member comprises a first metal wire having one end electrically connected to at least one of the discharge electrodes of the high-pressure discharge lamp, and a relative dielectric constant higher than that of the envelope.
  • the other end side of the first metal wire and the dielectric are arranged close to or in contact with each other to such an extent that a discharge is caused by an applied voltage for starting the discharge of the high-pressure discharge lamp. It was set as the structure.
  • “approaching or contacting so that discharge is caused by an applied voltage for initiating discharge of the high-pressure discharge lamp” means “proximate to causing discharge by an applied voltage for initiating discharge of the high-pressure discharge lamp, Alternatively, it means “contact to the extent that discharge is caused by an applied voltage for starting discharge of the high-pressure discharge lamp”.
  • a metal foil is disposed inside the first sealing portion and the second sealing portion, and from one end of the metal foil, the discharge electrode extends into the discharge space, and the other end of the metal foil
  • the external lead wire is extended so as to be partially exposed from the respective sealing portions, and the dielectric is either one of the first sealing portion and the second sealing portion.
  • the first metal wire disposed on the outer surface of the portion may be electrically connected to the external lead wire exposed from the other sealing portion.
  • the high-pressure discharge lamp may be provided with a sub-reflecting mirror that reflects light emitted from the light-emitting portion toward the reflecting mirror.
  • a metal foil is disposed inside the first sealing portion and the second sealing portion, and from one end of the metal foil, the discharge electrode extends to the inside of the light emitting portion, and the other end of the metal foil
  • the external lead wire is extended so as to be partially exposed from the first sealing portion and the second sealing portion, and the dielectric is disposed on the reflecting surface of the reflecting mirror,
  • the metal wire may be configured to be electrically connected to an external lead wire exposed to the outside from either the first sealing portion or the second sealing portion.
  • a metal foil is disposed inside the first sealing portion and the second sealing portion, and from one end of the metal foil, the discharge electrode extends to the inside of the light emitting portion, and the other end of the metal foil
  • the external lead wire is extended so as to be partially exposed to the outside from each sealing portion, and the high-pressure discharge lamp is provided with a sub-reflecting mirror that reflects light emitted from the light emitting portion to the reflecting mirror side.
  • the dielectric may be disposed on the surface of the sub-reflecting mirror.
  • the dielectric may be a reflective film of the reflecting mirror.
  • the high-pressure discharge lamp may further include a sub-reflecting mirror that reflects light emitted from the light-emitting unit toward the reflecting mirror, and the dielectric is a reflecting film of the sub-reflecting mirror. it can.
  • first sealing portion and the second sealing portion are columnar, elliptical columnar, or flat columnar, and the dielectric is ring-shaped, and the first sealing portion or the second sealing portion It can also be set as the structure inserted.
  • the outer diameter of the dielectric may be set to be equal to or smaller than the maximum outer diameter of the light emitting part.
  • the dielectric may be a rectangular parallelepiped.
  • the envelope can be made of quartz glass.
  • the dielectric may be configured to contain a titanium compound.
  • the titanium compound is desirably one or more of titanium oxide, barium titanate, and strontium titanate.
  • the first metal wire may be configured such that the tip or a part of the side thereof is elastically biased in the direction of contact with the dielectric.
  • the first metal wire can be wound around the high-pressure discharge lamp.
  • a second metal wire is electrically connected to an external lead wire having a reverse polarity to the external lead wire from which the first metal wire is extended, and the dielectric is further in proximity to or in contact with the second metal wire. It is also possible to adopt the configuration.
  • the present invention further includes a high-pressure discharge lamp including an envelope and a pair of discharge electrodes disposed facing the discharge space in the envelope, and a starting auxiliary member for the high-pressure discharge lamp.
  • a high-pressure discharge lamp including an envelope and a pair of discharge electrodes disposed facing the discharge space in the envelope, and a starting auxiliary member for the high-pressure discharge lamp.
  • a first metal wire having one end electrically connected to the discharge electrode, and a dielectric having a relative dielectric constant higher than that of the envelope, and the other end side of the first metal wire and the dielectric
  • the body was a high-pressure discharge lamp with a starting assisting member arranged so as to be close to or in contact with the applied voltage for starting discharge of the high-pressure discharge lamp.
  • the present invention is a lamp system characterized in that a lighting circuit is electrically connected to any one of the above-described high-pressure discharge lamps with a starting aid.
  • the present invention is a projector provided with the lamp system.
  • an ultraviolet ray generating device comprising a first metal wire electrically connected to at least one discharge electrode of a high-pressure discharge lamp and a dielectric having a dielectric constant higher than that of the envelope. It is provided as a starting auxiliary member.
  • the first metal line constitutes a counter electrode between the wiring of the discharge electrode having a polarity opposite to that of the first metal line via a dielectric.
  • the other end side of the first metal wire is disposed close to the dielectric so as to cause discharge by an applied voltage for starting discharge of the high-pressure discharge lamp.
  • a voltage is first applied between the counter electrodes by applying a voltage to the lamp, and at the same time, a corona discharge occurs in the vicinity of the dielectric and the first metal wire or in the vicinity of the contact portion.
  • ultraviolet rays are generated and applied to the lamp.
  • the lamp unit of the present invention by using a dielectric having a relative dielectric constant higher than that of the envelope as the dielectric, ultraviolet rays can be generated with a low applied voltage.
  • the dielectric can be provided not only on the lamp but also on the reflecting surface of the reflecting mirror.
  • corona discharge is generated in the vicinity of the contact point between the dielectric and the metal wire, and accordingly, ultraviolet rays are generated as in the case of the lamp. Due to the photoelectrons generated by the irradiation of the ultraviolet rays, the discharge start voltage is reduced inside the light emitting portion, and the discharge starts relatively easily. Therefore, improvement in luminous efficiency can be expected.
  • the lamp unit of the present invention has a particularly high degree of design freedom with respect to the arrangement of the start auxiliary member, and even in a small lamp unit, the discharge start can be appropriately started without causing a decrease in luminous efficiency due to the arrangement of the start auxiliary member.
  • the voltage can be reduced.
  • FIG. 2 is a partial cross-sectional view illustrating a configuration of a lamp unit 1 according to Embodiment 1.
  • 2 is a front view showing a configuration of a lamp 10.
  • FIG. (A) is a perspective view which shows the structure of a dielectric material
  • (b) is a perspective view of the dielectric material of a double structure.
  • 6 is a partial cross-sectional view showing a configuration of a lamp unit 1A according to Embodiment 2.
  • FIG. 6 is a partial cross-sectional view showing a configuration of a lamp unit 1B according to Embodiment 3.
  • FIG. It is a partial cross section figure which shows the structure of the lamp unit 1C which concerns on Embodiment 4.
  • FIG. 10 is a partial cross-sectional view showing a configuration of a lamp unit 1F according to a seventh embodiment.
  • FIG. 12 is a partial cross-sectional view illustrating a configuration of a lamp unit 1G according to an eighth embodiment. It is a partial cross section figure which shows the structure of the lamp unit 1H which concerns on Embodiment 9.
  • FIG. 10 is a partial cross-sectional view showing a configuration of a lamp unit 1F according to a seventh embodiment.
  • FIG. 12 is a partial cross-sectional view illustrating a configuration of a lamp unit 1G according to an eighth embodiment. It is a partial cross section figure which shows the structure of the lamp unit 1H which concerns on Embodiment 9.
  • FIG. 10 is a partial cross-sectional view showing a configuration of a lamp unit 1F according to a seventh embodiment.
  • FIG. 12 is a partial cross-sectional view illustrating a configuration of a lamp unit 1G according to an eighth embodiment. It is a partial cross section figure which shows the structure
  • (A) is the principal part expanded sectional view which shows the structure of the dielectric material and metal wire of Embodiment 1
  • (b) is the principal part expanded sectional view which shows the structure of the dielectric material and metal wire of Embodiment 2.
  • (c) is an enlarged cross-sectional view of the main part showing the structure of the dielectric and the metal wire when there is no pad portion in FIG. 12 (b)
  • (d) is the dielectric and metal when there are a plurality of ends of the metal wire.
  • It is a principal part expanded sectional view which shows the structure of a line
  • (e) is a principal part expanded sectional view which shows the structure of a dielectric material and metal wire in case a dielectric material is a two-layer structure
  • (f) is FIG.
  • FIG. 4B is an enlarged cross-sectional view of a main part illustrating a structure of a dielectric and a metal wire when the dielectric has a two-layer structure in (b), and (g) illustrates a dielectric and a metal wire when the dielectric has a three-layer structure.
  • FIG. 12 is a partial cross-sectional view showing a configuration of a lamp unit 1I according to a tenth embodiment. It is a partial cross section figure which shows the structure of the lamp unit 1J based on Embodiment 11.
  • FIG. It is a partial cross section figure which shows the structure of the reflective mirror and lamp unit 1K based on Embodiment 12.
  • FIG. 12 is a partial cross-sectional view showing a configuration of a lamp unit 1I according to a tenth embodiment. It is a partial cross section figure which shows the structure of the lamp unit 1J based on Embodiment 11.
  • FIG. It is a partial cross section figure which shows the structure of the reflective mirror and lamp unit 1K
  • FIG. 16 is a partial cross-sectional view showing a configuration of a metal halide lamp 1N according to a fifteenth embodiment.
  • (A) is a conceptual diagram which shows the connection structure of the lamp
  • (b) is a figure explaining the mode of the starting experiment using the dielectric material of this invention.
  • (A) is the conceptual diagram which expanded the principal part of FIG.19 (b), (b) is the conceptual diagram which expanded the principal part further.
  • FIG. 1 is a partial cross-sectional view showing a configuration of a projector lamp unit 1 according to the first embodiment. For the sake of explanation, only a part of the reflecting mirror 40 and the connector 110 is shown in the drawing.
  • the lamp unit 1 roughly includes a high-pressure discharge lamp 10, a reflecting mirror 40, a pair of lead wires 120 ⁇ / b> A and 120 ⁇ / b> B, and a connector 110.
  • FIG. 2 is a front view showing the configuration of the lamp 10. In this figure, for the sake of explanation, the inside of the lamp 10 is also shown by a solid line.
  • the high-pressure discharge lamp 10 has a discharge vessel (envelope) 108 made of, for example, quartz glass.
  • the discharge vessel 108 is formed by integrally forming a light emitting part 100 and a pair of, for example, substantially cylindrical sealing parts 101A and 101B extending from both sides of the light emitting part 100.
  • the ring-shaped dielectric 20 is inserted in the outer surface of 101 A of sealing parts.
  • the light emitting unit 100 has a discharge space 105 therein, and the discharge space 105 is filled with, for example, mercury as a luminescent material, a rare gas as a discharge gas at start-up, and a halogen material.
  • mercury is sealed in an amount of 0.15 [mg / mm 3 ] to 0.40 [mg / mm 3 ] per inner volume of the discharge vessel 108, and as an example, 0.30 [mg / Mm 3 ].
  • any of argon (Ar), krypton (Kr), xenon (Xe), or a mixed gas of at least two of them is 0 as the sealed pressure when the lamp is turned off and left at room temperature. It is enclosed within a range of not less than 0.01 [MPa] and not more than 1 [MPa], and argon is 0.03 [MPa] (25 [° C.]) as an example.
  • the halogen substance include iodine (I), bromine (Br), chlorine (Cl), or a mixture of at least two of them, such as 1 ⁇ 10 ⁇ 6 [ ⁇ mol per unit internal volume of the arc tube. / Mm 3 ] or more and 1 ⁇ 10 ⁇ 2 [ ⁇ mol / mm 3 ] or less, for example, bromine is 5 ⁇ 10 ⁇ 4 [ ⁇ mol / mm 3 ].
  • the second sealing portion 101B Only one of the pair of sealing portions 101A and 101B (hereinafter referred to as the second sealing portion 101B) is fixed to the reflecting mirror 40, while the other (hereinafter referred to as the first sealing portion 101A) is fixed. It is not fixed anywhere.
  • the electrode assemblies 107A and 107B are sealed in the second sealing portion 101B and the first sealing portion 101A, respectively.
  • the electrode assemblies 107A and 107B are formed by extending the discharge electrodes 104A and 104B from one end in the longitudinal direction of the metal foils 103A and 103B and extending external lead wires 102A and 102B from the other end in the same direction.
  • Metal foils 103A and 103B are joined to discharge electrodes 104A and 104B and external lead wires 102A and 102B, respectively, by welding or the like.
  • the sealing portions 101A and 101B the metal foils 103A and 103B are sealed near the center thereof, and the discharge electrodes 104A and 104B are arranged so as to protrude into the discharge space 105 inside the light emitting portion 100, respectively.
  • the external lead wires 102A and 102B are arranged so as to protrude outside the sealing portions 101A and 101B, respectively.
  • the discharge electrodes 104A and 104B are counter electrodes made of, for example, a tungsten (W) material.
  • the discharge electrodes 104A and 104B are opposed to each other in the discharge space 105 of the discharge vessel 108 at the distal ends of the discharge electrodes 104A and 104B. In a state of being embedded in the stop portions 101A and 101B, they are arranged in a substantially straight line.
  • the interelectrode distance (discharge gap) which is the distance between the tips, can be set arbitrarily. In the case of the short arc type, for example, it can be set in the range of 0.5 [mm] to 2.0 [mm].
  • the metal foils 103A and 103B are made of, for example, a molybdenum (Mo) material.
  • the external lead wires 102A and 102B are rod-shaped with a diameter of about 0.4 [mm] made of, for example, molybdenum material or tungsten material, and the metal foils 103A and 103B side are embedded in the sealing portions 101A and 101B. The side opposite to the foils 103A and 103B is led out from the sealing portions 101A and 101B to the outside.
  • the diameters of the external lead wires 102A and 102B are not limited to about 0.4 [mm], but in order to improve the airtightness of the sealing portions 101A and 101B, it is preferably 0.5 [mm] or less. .
  • the second sealing portion 101B may be crowned with a metal cap that prevents ultraviolet light emitted from the light emitting portion 100 from passing through the second sealing portion 101B and leaking outside.
  • the metal wire 21 is made of, for example, an iron-chromium (Fe—Cr) alloy material, a molybdenum material, or the like, and is a starting auxiliary member for lowering the discharge starting voltage at the time of starting the lamp together with the dielectric 20 described later. It acts as an ultraviolet ray generating device.
  • the metal wire 21 is electrically connected at one end portion (upstream end portion 21b) to the external lead wire 102B exposed to the outside from the second sealing portion 101B, thereby the discharge electrode 104B. Are also indirectly electrically connected.
  • the metal wire 21 is further routed to the first sealing portion 101A along the outer peripheral surface of the lamp 10, wound around the outer surface of the first sealing portion 101A several times, and then corresponds to the metal foil 103A.
  • the other end portion (downstream end portion 21a) is disposed so as to make point contact with the upper surface of the dielectric 20 inserted into the position. That is, the other end 21a on the downstream side of the metal wire 21 and the dielectric are arranged in contact with each other to such an extent that discharge is caused by an applied voltage for starting discharge of the high-pressure discharge lamp.
  • the downstream end 21a is elastically biased so that the tip or a part of the side is projected from the upper surface of the dielectric 20 (the surface opposite to the first sealing portion 101A) (in the configuration shown in FIG. To make contact at a substantially right angle).
  • the smaller the contact area at this time the greater the electric field concentration during voltage application, and corona discharge and associated ultraviolet rays tend to occur better.
  • the “point contact” referred to here is not limited to a mathematical definition, but refers to a contact in which the contact area between the metal wire 21 and the dielectric 20 is minimized.
  • the other end side of the metal wire 21 is not limited to the other end portion 21a on the downstream side, and may be any portion as long as it is the other end side of the metal wire 21.
  • the metal wire 21 does not necessarily have to be wound around the first sealing portion 101A.
  • the metal wire 21 is structurally stabilized by being wound, and the light emitting unit 100 is wound by the wound metal wire 21. This is desirable because it can be expected to reduce the discharge start voltage by encouraging the generation of a strong electric field in the vicinity.
  • the dielectric 20 is a main characteristic part of the lamp unit 1, has a higher dielectric constant than the constituent material (quartz glass) of the envelope 108 of the high-pressure discharge lamp 10, and is in operation of the high-pressure discharge lamp.
  • a material having sufficient heat resistance against heat generation of, for example, a ceramic material that is baked and hardened by heat-treating a metal oxide at a high temperature is used.
  • quartz glass high-purity SiO 2
  • quartz glass has a relative dielectric constant of about 3.5 to 4.0, so any material having a relative dielectric constant higher than these upper limit values may be used.
  • titanium compounds such as barium titanate (BaTiO 3 , relative dielectric constant of about 1200), strontium titanate (SrTiO 3 , relative dielectric constant of about 300), titanium dioxide (TiO 2 , relative dielectric constant of about 100), etc. It is preferable to use one or more selected from titanium oxide and the like.
  • barium titanate and strontium titanate have a very high relative dielectric constant compared to quartz glass, which is desirable.
  • the ceramic material is not limited to a baked and hardened material, and for example, a paste-like ceramic material can be applied and used.
  • the dielectric 20 is formed in a ring shape as shown in the perspective view of FIG.
  • the dielectric 20 is not limited to the structure which consists of a single material, but as shown in FIG.3 (b), with respect to the 1st layer 200 which has the opening part 201, the 2nd which consists of a material different from the 1st layer 200 is shown.
  • a multiple structure in which the layers 210 are stacked may be used.
  • the first layer 200 is made of a ceramic material having a high relative dielectric constant
  • the second layer 210 is not limited to the ceramic material, and may be quartz glass, alumina, metal, or the like.
  • the outer diameter D of the dielectric 20 As the outer diameter D of the dielectric 20 (see FIG. 3A), ideally, light emission from the light emitting unit 100 is not shielded. It should be particularly noted that the light emitted from the light emitting unit 100 is reflected by the reflecting mirror 40 and is not blocked from being emitted forward. For this reason, when assuming a virtual line connecting the maximum outer diameter portion of the light emitting unit 100 to the tip of the first sealing portion 101A (or the second sealing portion 101B), the value does not protrude from the virtual line. Most desirable.
  • the outer diameter D is preferable as a value equal to or smaller than the maximum outer diameter of the light emitting unit 100. However, the outer diameter D is not necessarily limited to the above-described value, and may be acceptable even if it is slightly larger than the maximum outer diameter of the light emitting unit 100.
  • the length L of the dielectric 20 it is desirable that the wider the surface area is, the more abundant charges can be accumulated near the outer surface of the dielectric 20 when a voltage is applied, which can be expected to contribute to an increase in corona discharge. However, care should be taken not to block the light emission of the light emitting unit 100.
  • the dielectric 20 can be fixed to the first sealing portion 101A using, for example, an adhesive such as cement having a low coefficient of thermal expansion and excellent heat resistance.
  • the reflecting mirror 40 is, for example, a dichroic reflecting mirror, and includes a flange portion 42 formed with a concave reflecting surface 41 that selectively reflects light having a specific wavelength to the front surface from the light emitted from the light emitting portion 100, and And a cylindrical portion 43 extending rearward of the portion 42.
  • the second sealing portion 101B and the metal wire 21 of the high-pressure discharge lamp 10 are inserted into the cylindrical portion 43 from the reflective surface 41 side of the collar portion 42, and the focal point of the reflective surface 41 and the pair of discharge electrodes of the high-pressure discharge lamp 10 In a state where the center position between 104A and 104B is substantially matched, the gap between the second sealing portion 101B and the cylindrical portion 43 is filled with cement as the fixing agent 44 and fixed.
  • the fixing agent 44 is not limited to cement, and a commercially available product available as a heat-resistant fixing agent for a lamp may be used.
  • each lead wire 120A, 120B is composed of covered conductors 126A, 126B, nickel wires 122A, 122B, and connecting members 124A, 124B connecting them.
  • Sleeves 121A and 121B as connecting terminals are attached to the leading ends of the lead wires 120A and 120B on the nickel wires 122A and 122B side, and connected to the internal space 112 on the leading ends of the coated conductors 126A and 126B.
  • a resin-made external connection connector 110 containing terminals 127A and 127B (127A not shown) is attached.
  • the lead wires 120A and 120B are not limited to the above configuration, and may be, for example, a single wire instead of a connecting wire.
  • the connection terminal is not limited to the sleeves 121A and 121B, and may be any member having conductivity.
  • the lead wires 120A and 120B are electrically connected to the external lead wires 102A and 102B of the electrode assemblies 107A and 107B of the high-pressure discharge lamp 10 via sleeves 121A and 121B, respectively.
  • the coated conductors 126A and 126B are obtained by coating conductive core materials 123A and 123B with insulating coating materials 125A and 125B.
  • the core materials 123A and 123B and the nickel wires 122A and 122B are connected to the connecting members 124A, Connected by 124B.
  • the nickel wires 122A and 122B are not limited to pure nickel wires, and may be made of a nickel alloy such as copper-nickel (Cu-Ni).
  • the sleeves 121A and 121B are connection terminals for improving the bonding strength between the external lead wires 102A and 102B and the lead wires 120A and 120B, and a cylindrical body made of an iron-nickel (Fe—Ni) alloy is made of nickel wire.
  • the lead wires 120A and 120B are attached to the lead wires 120A and 120B by being externally fitted to the lead wires 122A and 122B.
  • the material of the sleeves 121A and 121B is not limited to an iron-nickel alloy, but is preferably a material that is compatible with the external lead wire 102B.
  • the sleeves 121A and 121B are joined to the external lead wires 102A and 102B, for example, by welding. Specifically, the external lead wires 102A and 102B and the sleeves 121A and 121B are orthogonal to each other, and the sleeves 121A and 121B are bent into a “ ⁇ ” shape so as to embrace the external lead wires 102A and 102B. It is welded with. In this way, the contact area between the sleeves 121A and 121B and the external lead wires 102A and 102B is increased by bending the " ⁇ " shape into a " ⁇ " shape, thereby increasing the bonding strength.
  • the sleeves 121A and 121B and the external lead wires 102A and 102B may be joined by a method other than welding, such as screw tightening, caulking, or crimping, but welding with high joining strength is more preferable.
  • a high frequency voltage of about several hundred to 100 [kHz] is applied to the lamp 10 and the metal wire 21 from the outside at the start of discharge.
  • the downstream end portion 21a of the metal wire 21 is arranged so as to be close to (in contact with the lamp unit 1) the dielectric 20 to such an extent that discharge is caused by the applied voltage. Accordingly, a strong electric field is generated between the downstream end 21a of the metal wire 21 and the applied contact on the outer surface of the dielectric 20, and corona discharge (electron emission) is generated.
  • the dielectric breakdown of the rare gas is promoted between the pair of discharge electrodes 104A and 104B, and a spark discharge is generated at a relatively low applied voltage.
  • the spark discharge once generated between the discharge electrodes 104A and 104B then shifts to arc discharge, and the mercury 10 is lit with good luminous efficiency as the mercury evaporates.
  • the dielectric 20 is made of a material having a dielectric constant much higher than that of quartz glass (for example, a titanium compound), the surface of the dielectric 20 is rich in charges due to charging. Accumulated. As a result, between the downstream end 21a of the metal wire 21 and the dielectric 20, corona discharge and accompanying ultraviolet rays are generated with an applied voltage considerably lower than in the prior art.
  • the dielectric 20 having a high relative dielectric constant is interposed between the downstream end portion 21a of the metal wire 21 and the metal foil 103A and the discharge electrode 104A in the sealing portion 101A.
  • the electric field at the contact portion of the body 20 is increased, and abundant ultraviolet rays can be generated.
  • a trigger is applied at an applied voltage of about 1.5 [kV] to 2.0 [kV] at the start. Corona discharge occurred near the downstream end of the line, and light emission in the light emitting part was confirmed with an applied voltage of about 3 [kV].
  • corona discharge is generated at an applied voltage of about 300 [V] to 800 [V], and discharge starts in the light emitting unit at an applied voltage of 1.5 [kV] or less. I was able to confirm. This is a sufficiently low discharge start voltage as in the case where radioactive gas is used as the starting auxiliary means.
  • the lamp unit 1 achieves a reduction in the applied voltage generated by the lighting circuit due to the coexistence of a reduction in the discharge start voltage and a good startability. As a result, it is possible to expect a reduction in size and cost of a lamp system including a lighting circuit.
  • the lamp unit 1 does not mainly use a strong electric field as in the technique described in Patent Document 2, but aims to reduce the discharge start voltage of the lamp 10 by using ultraviolet irradiation. Therefore, there is no need to provide a minute gap between the sealing portions 101A and 101B and the electrode assemblies 107A and 107B inside the envelope 108, and accuracy management of the gap can be avoided, so that there is good productivity. is doing.
  • (Performance confirmation experiment) 19 and 21 are diagrams schematically showing the contents of a performance confirmation experiment (lighting test) related to the startability of the high-pressure discharge lamp conducted by the inventors of the present application. The inventors of the present application constructed the experimental trigger member 50 using a material having a sufficiently high relative dielectric constant, and examined the startability of the lamp 10.
  • a circuit in which an AC high voltage generator is connected to the external lead wires 102A and 102B of the lamp 10 is basically used.
  • the lamp 10 and the trigger member 50 are connected. And connected in parallel.
  • the trigger member 50 has a metal foil 103A and an external lead wire 102A disposed inside a sealing portion 51 simulating the sealing portions 101A and 101B of the lamp 10, and sealed.
  • a dielectric 20X is arranged outside the stopper 51.
  • An external lead wire 102A and a metal wire 52 were connected to the AC high voltage generator.
  • the output current of the AC high voltage generator is limited to a level (about 10 [mA] or less) that can maintain the spark discharge but does not shift to the arc discharge.
  • a voltage was applied to this circuit while increasing the voltage value of a sine wave AC voltage having a frequency of 10 [kHz].
  • the voltage value (peak value) is increased to about 300 [V] to 800 [V]
  • corona discharge is generated in the vicinity of the contact point between the downstream end 52a of the metal wire 52 and the dielectric 20X. Occurred (FIG. 20B).
  • the voltage value was further increased, the corona discharge spread around the contact point and the ultraviolet ray increased.
  • the ultraviolet rays were applied to the inside of the light emitting unit 100 of the lamp 10, and the occurrence of spark discharge (discharge start) in the lamp 10 was confirmed in the range where the applied voltage was 1.5 [kV] or less (FIG. 19B).
  • corona discharge and ultraviolet rays can be generated at the application contact on the dielectric even with a low applied voltage of about 800 [V] or less, and an application of 1.5 [kV] or less.
  • the discharge of the lamp can be started by the voltage.
  • the starting auxiliary member metal wire and dielectric
  • the high pressure discharge lamp is started with a sufficiently low applied voltage value. be able to.
  • the dielectric of the present invention acts not as an electric field adjusting means for generating a strong electric field but as a means for generating ultraviolet rays accompanying corona discharge, and this ultraviolet irradiation effect promotes the start-up of the light emitting part. It is a point. Therefore, the trigger member and the high-pressure discharge lamp can be arranged separately from each other as long as the ultraviolet rays generated by corona discharge near the contact point between the dielectric and the metal wire can reach the light emitting part by a certain amount or more. it can.
  • the high-pressure discharge lamp of the present invention has few restrictions on the arrangement position of the dielectric, and exhibits a very high degree of freedom in design, for example, the dielectric can be arranged in the reflector as in another embodiment described later. It can be done.
  • the dielectric 20 is provided between the metal wire 21 and the first sealing portion 101A, the first seal serving as a counter electrode with respect to the metal wire 21 is provided.
  • the distance from the electrode assembly 107A in the stopper 101A is relatively wide.
  • the starting voltage is reduced by using the ultraviolet rays generated around the contact point between the metal wire 21 and the dielectric 20, the increase in the distance is not so problematic. This is a significant feature of the present invention compared to the conventional configuration (such as Patent Documents 1 and 2) in which a metal wire is as close as possible to the sealing portion and a strong electric field is generated around the metal wire.
  • FIG. 4 is a partial cross-sectional view showing the configuration of the lamp unit 1A according to the second embodiment.
  • the difference from the first embodiment is that a rectangular parallelepiped dielectric 20A is disposed on the first sealing portion 101A, and the downstream end 21a of the metal wire 21 is brought into point contact with the upper surface of the dielectric 20A. .
  • the dielectric 20A is fixed on the first sealing portion 101A using an adhesive such as cement.
  • FIG. 5 is a partial cross-sectional view showing the configuration of the lamp unit 1B according to the third embodiment.
  • the lamp unit 1B is characterized in that a rectangular parallelepiped dielectric 20B is provided on the first sealing portion 101A of the lamp 10, and the metal wires 21 and 22 connected to the external lead wires 102A and 102B of each polarity are connected to the dielectric 20B. The point is in contact with the point.
  • a downstream end 22a of the metal wire 22 extended from the external lead wire 102A is connected to the dielectric 20B via a pad portion 22c made of a metal material.
  • the metal wire 21 adjacent to the light emitting unit 100 is extended from the external lead wire 102B and is in point contact with the dielectric 20B.
  • the same effect as that of the first embodiment can be obtained in the lamp unit 1B having such a configuration. Further, since the bipolar metal wires 21 and 22 are in contact with the dielectric 20B having a dielectric constant much higher than that of quartz glass, corona discharge and ultraviolet rays are generated at a relatively low applied voltage at the time of starting. Can do. For this reason, a particularly favorable reduction in the discharge start voltage can be expected.
  • FIG. 6 is a partial cross-sectional view showing a configuration of a lamp unit 1C according to the fourth embodiment.
  • the lamp unit 1C is characterized in that a thin dielectric 20C is arranged on the lower surface of the reflecting surface 41 of the reflecting mirror 40, and the downstream end 22a of the metal wire 22 extended from the nickel wire 122A is point-contacted on the upper surface. There is in point. Although the metal wire 22 penetrates the inside of the reflecting mirror 40 here, it is not limited to this structure.
  • FIG. 7 is a partial cross-sectional view showing the configuration of the lamp unit 1D according to the fifth embodiment.
  • the lamp unit 1D is common to the third embodiment in that the dielectric 20D is embedded in the reflecting surface 41 of the reflecting mirror 40.
  • the dielectric 20D makes point contact with the downstream end 22a of the metal wire 22 extended from the external lead wire 102A on its upper surface.
  • the lower surface side of the dielectric 20D is in contact with the downstream end portion 21a of the metal wire 21 extended from the external lead wire 102B via the pad portion 21c.
  • the dielectric 20D is exposed both inside and outside the reflecting mirror 40, when the bipolar metal wires 21 and 22 are brought into contact with the dielectric 20D, one of the metal wires 21 is reflected. It can be placed outside the mirror 40. Therefore, compared to the case where both bipolar metal wires 21 and 22 are arranged inside the reflecting mirror 40, the amount of light that the metal wires 21 and 22 block the light can be reduced. As a result, even in a small lamp unit, it is possible to reduce the discharge start voltage while suppressing a decrease in light emission efficiency by disposing the dielectric 20D and the metal wires 21 and 22.
  • the dielectric since the dielectric is arranged in the reflecting mirror, the amount of the dielectric blocks light compared to the case where the dielectric is arranged in the vicinity of the lamp as in the previous embodiment. Can be reduced. Therefore, even in a small lamp unit, it is possible to reduce the discharge start voltage while suppressing the decrease in the light emission efficiency by disposing the dielectric 20D and the metal wires 21 and 22.
  • the lamp units 1C and 1D according to the third and fourth embodiments corona discharge and ultraviolet rays are generated near the contact with the downstream end 22a of the metal wire on the top surfaces of the dielectrics 20C and 20D, respectively, at the time of starting. . By irradiating the light emitting unit 100 of the lamp 10 with this ultraviolet light, a discharge start voltage can be reduced as compared with the prior art.
  • FIG. 8 is a partial sectional view showing a configuration of a lamp unit 1E according to the sixth embodiment.
  • the lamp unit 1E is characterized in that the metal wire 21 extending from the end portion 21b from the external lead wire 102B is passed through the reflecting mirror 40 and the downstream end portion 21a is in point contact with the lower portion of the reflecting surface 41. .
  • FIG. 9 is a partial cross-sectional view showing the configuration of the lamp unit 1F according to the seventh embodiment. Contrary to the lamp unit 1E, the metal wire 22 extended from the end portion 21b from the external lead wire 102B is connected to the lamp. 10, the downstream end 22 a is brought into point contact with the upper portion of the reflection surface 41.
  • the lamp unit 1G is basically the same as the lamp unit 1E, but the inside of the fixing agent 44 filled with the metal wire 21 in the cylindrical portion 43 of the reflecting mirror 40. Is configured to be inserted.
  • the reflecting film on the reflecting surface 41 of the reflecting mirror 40 is a dielectric multilayer film.
  • this dielectric multilayer film is made of titanium oxide, it functions as a dielectric having a higher dielectric constant than quartz glass. Accordingly, at the time of start-up, corona discharge and accompanying ultraviolet rays are generated at a relatively low applied voltage in the vicinity of the contact point with the end 21a of each metal wire 21. The ultraviolet light is irradiated onto the light emitting unit 100, and photoelectrons are generated inside the light emitting unit 100, whereby a reduction in the discharge start voltage can be realized.
  • FIG. 11 shown next is a partial cross-sectional view showing the configuration of the lamp unit 1H according to the ninth embodiment.
  • the lamp unit 1H is characterized in that the dielectric 20H is disposed on the surface of the reflecting surface 41 of the reflecting mirror 40, the metal wire 23 is extended from the end 23c connected to the coated conductor 126C, which is an independent wiring, and the downstream side thereof.
  • the end 23a is in point contact with the surface of the dielectric 20H.
  • the dielectric 20H is provided on the reflecting surface.
  • the dielectric 20H is provided on the lamp 100, the dielectric 20H is provided on a sub-reflecting mirror described later. If the reflecting surface of the reflecting mirror or the sub-reflecting mirror is a dielectric, the present invention can be applied.
  • FIG. 12 is an enlarged cross-sectional view of the main part showing the structure of the dielectric and metal wire of each configuration.
  • the shape of the dielectric of the present invention is not particularly limited. For example, if it is in a ring shape as in the first embodiment, it is easy to fit into the cylindrical first sealing portion 101A of the high-pressure discharge lamp 10, and the both are securely fixed. On the other hand, if it is a rectangular parallelepiped shape or a plate shape, it can be easily attached on the reflecting surface of the reflecting mirror 40 or by embedding.
  • the dielectric is not limited to a single layer structure made of a single material. As shown in FIG. 12E, two or more layers made of different materials can be stacked. In the drawing, a dielectric 20C ′ having a two-layer structure of 20C1 and 20C2 is shown.
  • the layer on the surface on which corona discharge is to be generated is made of a ceramic material having a high relative dielectric constant, and the layer on the other surface is not limited thereto and may be quartz glass, alumina, metal, or the like.
  • Such a configuration can also be adopted when the reflecting surfaces 41 and 46 of the reflecting mirror 40 and the sub-reflecting mirror 45 are configured as a dielectric having a high relative dielectric constant.
  • the downstream end 22a of the metal wire 22 is brought into contact with the upper surface of the rectangular parallelepiped dielectric 20C (otherwise, the second embodiment).
  • the metal wire 22 may be brought into contact with a dielectric (20C in the drawing) at the plurality of end portions 22a1, 22a2, and 22a3.
  • all end portions may be brought into contact with one surface having a dielectric, or a plurality of end portions may be brought into contact with a plurality of surfaces having different dielectrics. .
  • FIG. 12B illustrates the dielectric 20B of the third embodiment, but the same applies to the fifth embodiment.
  • a dielectric having a multilayer structure a stacked structure of layers 20D1 and 20D2 made of different materials in this figure.
  • a three-layer dielectric 20D ′ ′ in which a layer 20D4 made of a different material is stacked between a pair of layers 20D3 and 20D5 made of the same material can also be adopted.
  • the pad portion 21c is a metal member for ensuring electric field strength as a counter potential of the metal wire 22a, but is not an essential configuration. Accordingly, this can be omitted as shown in FIG.
  • the metal member for example, a nickel sheet or the like can be used.
  • FIG. 13 is a partial cross-sectional view (only the sub-reflecting mirror 45 is shown) showing the configuration of the sub-reflector-equipped lamp 1I according to Embodiment 10.
  • a known sub-reflecting mirror 45 having a bowl-shaped reflecting surface 46 is provided to the first sealing portion 101A of the lamp 10, and the reflected light is on the second sealing portion 101B side. It is arrange
  • the end portion 24B of the metal wire 24 is connected to the external lead wire 102B of the lamp 10, and the downstream end portion 24a of the metal wire 24 is in point contact with the dielectric 20I.
  • corona discharge is generated between the downstream end 24a of the metal wire 24 and the ring-shaped dielectric 20I at the time of starting.
  • the ultraviolet rays generated in association with this are reflected directly or by the reflecting surface of the reflecting mirror to irradiate the light emitting unit 100, and the start of discharge is promoted between the pair of discharge electrodes 104A and 104B.
  • discharge is generated at an applied voltage sufficiently lower than that in the conventional case, and a reduction in the discharge start voltage can be realized.
  • the sub-reflector-equipped lamp 1J according to the eleventh embodiment shown in FIG. 14 is substantially the same as the sub-reflector-equipped lamp 1I according to the tenth embodiment, but the reflecting film on the reflecting surface 46 of the sub-reflecting mirror 45. Is a dielectric multilayer film made of titanium oxide, and the downstream end 24 a of the metal wire 24 is brought into contact with the reflecting surface 46.
  • FIG. 15 is a partial cross-sectional view (only the sub-reflecting mirror 45 and the reflecting mirror 40 are shown in cross section) showing the configuration of the lamp unit 1K according to the twelfth embodiment.
  • a ring-shaped dielectric 20K is inserted into the outer surface of the first sealing portion 101A, and the metal wire 24 having the upstream end portion 20b connected to the external lead wire 102B has a downstream end thereof.
  • the portion 24a is in point contact with the upper surface of the dielectric 20K.
  • the metal wire 24 is disposed so as to penetrate the fixing agent 44 filled in the cylindrical portion 43 of the reflecting mirror 40.
  • the metal wire 24 shown in FIG. 15 passes between the cylindrical portion 43 of the reflecting mirror 40 and the first sealing portion 101A.
  • the two sealing portions 101B may be extended.
  • the metal wire 24 passes between the cylindrical portion 43 of the reflecting mirror 40 and the first sealing portion 101A, the metallic wire 24 is connected to the cylindrical portion 43 of the reflecting mirror 40 and the first sealing portion 101A. Therefore, the metal wire 24 can be easily arranged.
  • FIG. 16 shown next is a partial cross-sectional view (only the sub-reflecting mirror 45 and the reflecting mirror 40 are shown in cross section) showing the configuration of the lamp unit 1L according to Embodiment 13.
  • a ring-shaped dielectric 20L is inserted into the second sealing portion 101B, and the downstream end 22a of the metal wire 24 extended from the external lead wire 101A is a dielectric. Point contact with the upper surface of 20L.
  • a dielectric in the lamp 10 when disposing a dielectric in the lamp 10, it may be disposed in either the first sealing portion 101A or the second sealing portion 102B. However, it should be noted that if the disposed dielectric 20L largely shields the light emitted from the light emitting unit 100, the luminous efficiency is affected. In the thirteenth embodiment, since the emitted light from the sub-reflecting mirror 45 slightly hits the dielectric 20L, it is desirable to make the outer diameter of the dielectric 20L smaller than the maximum outer diameter of the lamp 10.
  • the metal wire 24 shown in FIG. 16 passes between the sub-reflecting mirror 45 and the second sealing portion 101B, but is not limited thereto, and wraps around from the outside of the sub-reflecting mirror 45. It may be extended to the first sealing portion 101A side.
  • the metal wire 24 passes between the sub-reflecting mirror 24 and the second sealing portion 101B, the metal wire 24 can be fixed between the sub-reflecting mirror 24 and the second sealing portion 101B.
  • the metal wire 24 can be easily arranged.
  • FIG. 17 is a partial cross-sectional view (only the outer tube 301 is shown in cross section) showing the configuration of the metal halide lamp 1M according to the fourteenth embodiment.
  • the power feeders 401a and 401b are exposed from the pair of thin tube portions 400a and 400b extended from the arc tube 400 made of quartz glass, and power supply lines are respectively connected to the power feeders 401a and 401b.
  • 302a and 302b are connected.
  • the arc tube 400 is filled with a rare gas such as Ar as a starting discharge gas and a luminescent material made of a metal halide.
  • the opening of the outer tube 301 is closed with a base 300.
  • Reference numeral 303 denotes a getter for adsorbing an impurity gas such as an oxygen component or water vapor existing inside the outer tube 301.
  • a dielectric 30M is disposed on the outer surface of a quartz glass sealing body that covers one power supply body 401b.
  • a metal wire 25 extending from the electrode supply line 302a is in point contact with the outer surface of the dielectric 30M.
  • FIG. 18 is a partial cross-sectional view (only the outer tube 301 is shown in cross section) showing the configuration of the metal halide lamp 1N according to the fifteenth embodiment.
  • the difference from the metal halide lamp 1M is that the dielectric is provided on the electrode supply line side, and the metal wire extended from the power supply body (power supply line) is in point contact with the dielectric surface.
  • FIG. 21 is a partially broken perspective view showing an image display device 500 having a lamp system including the lamp unit 1 and a lighting circuit according to the first embodiment, and the top plate of the housing is shown so that the inside can be seen. Removed.
  • An image display apparatus 500 shown in the figure is a projection-type liquid crystal front projector that projects an image toward a screen (not shown) installed in front.
  • the image display device 500 includes a lamp unit 1 serving as a light source, an optical unit 502 having three liquid crystal panels (not shown), a control unit 503 for driving and controlling the liquid crystal panel, and the like in a housing 501, a projection lens. 504, a cooling fan unit 505, and a power supply unit 506 for supplying power supplied from a commercial power source to the control unit 503 and a lighting circuit (not shown) of the lamp unit 1 are housed.
  • the image display device 500 includes a lamp system including the lamp unit 1 with a reduced discharge start voltage and a lighting circuit with a low applied voltage at start-up, the image display device 500 is smaller and less expensive than a conventional image display device. Can be achieved.
  • the lamp unit applied to the image display apparatus 500 may naturally be a lamp unit of another embodiment.
  • the dielectric is not limited to the configuration in which only one dielectric is provided in the lamp, and a plurality of dielectrics may be provided.
  • a plurality of lamps may be provided on the sealing part of the lamp, or may be provided on both the sealing part and the reflecting mirror (or sub-reflecting mirror).
  • a plurality of dielectrics may be provided for the reflecting mirror.
  • “close enough to cause discharge by an applied voltage for starting discharge of the high-pressure discharge lamp” specifically means that the shortest distance between the dielectric and the other end of the metal wire is within 2 [mm]. Preferably there is. In this case, even if the dielectric and the metal wire are not in contact, the effect of reducing the discharge start voltage can be obtained more reliably.
  • the metal wire when the dielectric is disposed on the outer surface of one of the sealing portions of the lamp and the downstream end of the metal wire is close to or in contact with only one surface of the dielectric, the metal wire
  • the present invention is not limited to this. The approximation effect can be obtained even when the downstream end of the metal wire is close to or in contact with the side surface of the dielectric.
  • the light emitting portion can be satisfactorily irradiated with ultraviolet rays generated by corona discharge at start There is an advantage.
  • the dielectric can have various shapes such as a rectangular parallelepiped, a cylinder, a prism, a sphere, or a shape in which a notch is provided.
  • a slit along the longitudinal direction of the seal portion may be formed.
  • it is easy to cope with thermal expansion and contraction of the sealing portion, and the fixing force to the sealing portion can be improved.
  • the dielectric when the dielectric is fixed to a lamp, a reflecting mirror or the like via an adhesive or the like, irregularities may be formed on the surface of the dielectric that contacts the adhesive. In this case, the adhesion of the dielectric can be increased.
  • the dielectric when the dielectric is disposed on the outer surface of the sealing portion of the lamp, the dielectric may also serve as a heat retaining member.
  • the rated power for example, 50 [%] or less
  • the cold spot temperature in the discharge space is prevented from being excessively lowered, whereby the luminous flux is reduced. It can suppress that it falls.
  • the dielectric may be disposed in both sealing portions, and one of the dielectrics may be in a state where it is not electrically connected to any member.
  • a heat retaining member other than the dielectric such as a metal coil, may be provided on the outer surface of the lamp sealing portion.
  • the lead wire and the sleeve are not indispensable, and the lead wire and the sleeve may not be provided.
  • the lead wire is provided but the sleeve is not provided, and the lead wire may be electrically connected to the external lead wire without the sleeve.
  • the high-pressure discharge lamp with a starting assisting member, the lamp unit, the lamp system, and the projector according to the present invention are particularly those in which the discharge start voltage of the lamp is reduced as compared with the prior art. Therefore, it can be widely used for image display devices such as liquid crystal projectors and DLP (Digital Light Processing) projectors.
  • image display devices such as liquid crystal projectors and DLP (Digital Light Processing) projectors.
  • the dielectric is provided on the lamp, it can be widely used in various small image display devices, and its industrial applicability is extremely high.

Landscapes

  • Discharge Lamps And Accessories Thereof (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

 本発明は、第一に、放電開始電圧を低減させた始動補助部材付高圧放電ランプ、ランプユニット、並びにランプシステムを提供する。第二に、上記目的に加え、近接導体の配置位置の制約を低減し、高い設計自由度を有する始動補助部材付高圧放電ランプ、ランプユニット、並びにランプシステムを提供する。ランプユニット(1)の高圧放電ランプ(10)において、第一封止部(101A)の外表面にチタン化合物からなる、石英よりも極めて高い比誘電率のリング状の誘電体(20)を配設する。第二封止部(101B)から露出する外部リード線(102B)と接続した金属線(21)の下流側端部(21a)を誘電体(20)に点接触させる。始動時には下流側端部(21a)と誘電体(20)の接点付近でコロナ放電を発生させて紫外線を照射させ、発光部(100)の放電開始電圧の低減を図る。

Description

始動補助部材付高圧放電ランプ、ランプユニット、ランプシステム、及びプロジェクタ
 本発明は、始動補助部材付高圧放電ランプ、ランプユニット、ランプシステム、及びプロジェクタに関し、特にランプの放電開始電圧を低減させる技術に関する。
 液晶プロジェクタやDLP(Digital Light Processing)プロジェクタ等の画像表示装置等において、メタルハライドランプやキセノンランプや高圧水銀ランプ等の高圧放電ランプを用いたランプシステムが利用されている。
 従来の一般的な高圧放電ランプは、放電空間を内包する略球状の発光部に対し、一対の封止部が連接された、石英ガラス製の外囲器を有する。各封止部の内部には、金属箔の長手方向両端部に、放電電極と外部リード線が設けられる。放電空間には所定の放電ガスと水銀が封入され、放電電極はこの放電空間で一定間隔をおいて対向配置される。点灯時には一対の放電電極を対向電極とし、当該電極間で生じるアーク放電によって発光する。前記外部リード線は部分的に封止部外部に露出するように配され、外部の点灯回路より電力供給を受ける。
 以上の構成の高圧放電ランプには、発光部の発光を効率よく前方に出射させるため、反射面を有する反射鏡が組み合わされ、ランプユニットとして用いられる。
 従来より、高圧放電ランプにおいては、放電開始電圧の低減が要求されている。一般に、高圧放電ランプの放電開始電圧はkVオーダーの高電圧であり、点灯回路は放電開始電圧を超える印加電圧を生成する必要があるために、その高電圧発生回路に大型のトランスや高耐圧の電子部品等を用いなければならない。また高電圧がかかっているケーブルやコネクタ等、ならびにその周辺部品には絶縁のための十分な配慮が必要になる。したがって、高圧放電ランプの放電開始電圧が高いことは、点灯回路を含むランプシステムの小型化や低価格化を図る上での大きな障害となっており、放電開始電圧の低減が望まれている。
 高圧放電ランプの放電開始電圧を低減させる方策として、図22のランプ10Xに示すように、いわゆる近接導体21Xを始動補助部材として発光部100近傍の外表面に配設する方法が古くから知られている(例えば特許文献1を参照)。これは、具体的には前記いずれかの封止部101A、101B(ここでは101A)から露出した外部リード線102Aにワイヤー状の近接導体21Xの上流側端部を接続し、当該近接導体21Xをランプ10Xの発光部100の外面に近接または接触するように、発光部100を渡って前記封止部101Aとは他端側の封止部101B側に延伸させ、発光部100と封止部101Bの境界付近の外表面に巻回したものである。これにより始動時には、外部リード線21Xに電圧印加することで、放電空間105内の一対の放電電極104A、104B間で生じる放電に先立ち、近接導体21Xと前記逆極性の放電電極(図22では放電電極104B)との間で強電界を発生させる。この強電界により当該放電電極104Bからの電子放出を促すことで、ランプ10Xの放電開始電圧の低減を図っている。しかしながら、上記した近接導体21Xを用いた場合でも、ランプ10Xの放電開始電圧を十分に低減させる効果が得られているとは言い難い。
 また別の方策として、発光部内に放射性ガス(例えば、Kr85等)を封入して放電開始電圧を低減させる方法も存在する。当該方法はランプの放電開始電圧を十分に低減させる効果があるものの、近年の環境意識の高まりへの配慮という点でも当該方法以外の選択ができることが好ましい。
 そこで、近年、近接導体ワイヤーの構造に工夫を講じてさらに始動補助効果の高めた方策が提案されている(例えば特許文献2を参照)。これは、前記いずれかの外部リード線に近接導体ワイヤーの上流側端部を接続して、下流側端部を前記外部リード線と逆極性の金属箔が封止された石英ガラス製の封止部外表面に実質的に1点のみで接触するように配設したものである。これにより始動時に外部リード線に電圧印加することで、一対の放電電極間で生じる放電に先立ち、近接導体ワイヤーの下流側端部と石英ガラス製の封止部外表面の接触点においてコロナ放電が生じる。この放電に伴って紫外線(UV)が発生し、前記ランプに照射される。この紫外線の照射により、放電電極の表面で光電効果が生じ、電子(光電子)が放出されることで、放電開始が促され放電開始電圧の低減が図られるものである。
WO2004/090934 特開2009-181927号公報 特許第3938038号公報 特開2004-139955号公報
 しかしながら、上記した近接導体を用いた場合でも、前記の放射性ガスを用いた場合ほどの効果は得られず、点灯回路を含むランプシステムの小型化や低価格化に十分に寄与できるものではない。また、近接導体の配設位置が限定されるなどの制約もあるため、ランプの小型化を図る場合には適用が困難である。
 特許文献2とは異なる観点での方策として、封止部内部に金属または金属化合物を混入させて当該封止部内部の比誘電率を向上させ、強電界の発生を促す方法が提案されているが(例えば特許文献3を参照)、それでも放電開始電圧を効果的に低減する効果は得られにくい。また、特許文献3記載の技術では、外囲器の内部において封止部と電極との間に電界形成のための一定の空隙を設けているが、高圧放電ランプにおける封止部内部の空隙は点灯中の高圧ガスによる封止部を起点としたランプ破裂の危険につながるため、このような構成を実現させる設計は非常に困難であるし、さらに封止部内部に金属化合物を混入させること自体が封止部の耐圧信頼性を損なうことにつながるため、ガス圧の高い高圧放電ランプでは採用が困難である。
 また、発光部の近傍に補助放電管を配置し、当該補助放電管の発光で生じた紫外線を利用して放電開始電圧の低減をねらった構成も考えられている(例えば特許文献4を参照)。しかしながら、この方法も効果があまり高くない他、ランプユニットを構成する場合などに放電管の配置位置が制約される新たな問題が生じる。
 このように高圧放電ランプにおいては、放電開始電圧を低減させる点において未だ改良の余地が存在する。
 本発明は上記課題に鑑みてなされたものであって、第一に、従来に比べて十分に放電開始電圧が低く、生産性に優れる始動補助部材付高圧放電ランプ、ランプユニット、ランプシステム、及びプロジェクタの提供を目的とする。
 また、第二に、上記目的に加え、近接導体の配置位置の制約を低減することにより、高い設計自由度を有する始動補助部材付高圧放電ランプ、ランプユニット、ランプシステム、及びプロジェクタの提供を目的とする。
 上記目的を達成するため、本発明は、外囲器および当該外囲器内の放電空間に臨んで配された一対の放電電極を備える高圧放電ランプと、当該ランプの発光を反射する反射鏡と、当該ランプの始動補助部材とを備えるランプユニットであって、前記外囲器は、前記放電空間を内包する発光部と、前記発光部に連接された第一封止部および第二封止部とを備えてなり、前記始動補助部材は、前記高圧放電ランプの少なくとも一方の前記放電電極に一端部が電気的に接続された第一金属線と、前記外囲器よりも高い比誘電率を有する誘電体とで構成されており、前記第一金属線の他端側と前記誘電体は、前記高圧放電ランプを放電開始させるための印加電圧によって放電を起こす程度に、近接または接触して配されている構成とした。
 なお、「前記高圧放電ランプを放電開始させるための印加電圧によって放電を起こす程度に、近接または接触」とは、「前記高圧放電ランプを放電開始させるための印加電圧によって放電を起こす程度に近接、または前記高圧放電ランプを放電開始させるための印加電圧によって放電を起こす程度に接触」を意味する。
 ここで、前記第一封止部および第二封止部の内部に金属箔が配され、前記金属箔の一端から、前記放電電極が前記放電空間中に延設され、前記金属箔の他端から、外部リード線が前記各封止部より部分的に外部露出するように延設され、前記誘電体は、前記第一封止部および第二封止部のうち、いずれか一方の封止部の外表面上に配設され、前記第一金属線は、他方の封止部より露出する前記外部リード線に電気的に接続されている構成とすることもできる。
 また、前記高圧放電ランプには、発光部からの発光を前記反射鏡側に反射させる副反射鏡が配設されている構成とすることもできる。
 また、前記第一封止部および第二封止部の内部には金属箔が配され、前記金属箔の一端から、前記放電電極が前記発光部内側に延設され、前記金属箔の他端から、外部リード線が前記第一封止部および第二封止部より部分的に外部露出するように延設され、前記誘電体は、前記反射鏡の反射面に配設され、前記第一金属線は、前記第一封止部または前記第二封止部のいずれかより外部露出する外部リード線に電気的に接続されている構成とすることもできる。
 さらに、前記第一封止部および第二封止部の内部には金属箔が配され、前記金属箔の一端から、前記放電電極が前記発光部内側に延設され、前記金属箔の他端から、外部リード線が前記各封止部より部分的に外部露出するように延設され、前記高圧放電ランプには、発光部からの発光を反射鏡側に反射させる副反射鏡が配設されており、前記誘電体は、当該副反射鏡の表面に配設されている構成とすることも可能である。
 また、前記誘電体は、前記反射鏡の反射膜である構成とすることもできる。
 また、前記高圧放電ランプには、さらに発光部からの発光を前記反射鏡側に反射させる副反射鏡が配設され、前記誘電体は、当該副反射鏡の反射膜である構成とすることもできる。
 また、前記第一封止部および第二封止部は円柱状、楕円柱状、または偏平柱状であり、前記誘電体はリング状であって、前記第一封止部または第二封止部に嵌入されている構成とすることもできる。この場合、前記誘電体の外径は、発光部の最大外径以下に設定されている構成とすることもできる。
 或いは、前記誘電体は直方体状とすることもできる。
 また、前記外囲器を石英ガラスで構成することもできる。
 前記誘電体はチタン化合物を含むように構成することもできる。この場合、前記チタン化合物は、酸化チタン、チタン酸バリウム、チタン酸ストロンチウムの内の1種以上とすることが望ましい。
 前記第一金属線については、その先端または一部側面が前記誘電体との接触方向に弾性付勢されている構成とすることもできる。
 また、前記第一金属線は、前記高圧放電ランプに巻回させることもできる。
 また、前記第一金属線が延設された外部リード線と逆極性の外部リード線には、第二金属線が電気的に接続され、前記誘電体はさらに前記第二金属線と近接または接触している構成とすることも可能である。
 さらに本発明は、外囲器および当該外囲器内の放電空間に臨んで配された一対の放電電極を備える高圧放電ランプと、当該高圧放電ランプの始動補助部材が配され、前記外囲器は、前記放電空間を内包する発光部と、当該封止部に連接された第一封止部および第二封止部とを備えてなり、前記始動補助部材は、前記高圧放電ランプの少なくとも一方の前記放電電極に一端部が電気的に接続された第一金属線と、前記外囲器よりも高い比誘電率を有する誘電体を有し、前記第一金属線の他端側と前記誘電体は、前記高圧放電ランプを放電開始させるための印加電圧によって放電を起こす程度に、近接または接触して配されている、始動補助部材付高圧放電ランプとした。
 また本発明は、上記した本発明のいずれかの始動補助付高圧放電ランプに対し、点灯回路が電気的に接続されてなることを特徴とするランプシステムとした。
 また本発明は、上記ランプシステムを備えたプロジェクタとした。
 上記構成を有する本発明のランプユニットでは、高圧放電ランプの少なくとも一方の放電電極に電気的に接続した第一金属線と、外囲器よりも高い比誘電率の誘電体からなる紫外線発生デバイスを始動補助部材として設けている。ここで第一金属線は誘電体を介し、当該第一金属線とは逆極性の放電電極の配線との間で対向電極を構成する。前記第一金属線の他端側は高圧放電ランプを放電開始させるための印加電圧によって放電を起こす程度に、誘電体に対して近接して配されている。
 従って高圧放電ランプの始動時には、当該ランプに電圧印加することにより、まず前記対向電極間に電圧が印加されると同時に、誘電体と第一金属線との近接または接触部位付近においてコロナ放電が生じる。この放電に伴って紫外線が発生し、前記ランプに照射される。ここで本発明のランプユニットでは前記誘電体として、外囲器よりも高い比誘電率の誘電体を用いることで、低い印加電圧で紫外線を発生させることができる。この紫外線の照射により、放電電極の表面で光電効果が生じ、電子(光電子)が放出されることで、従来に比べて相当に低い値の印加電圧でもランプが放電開始する。よって本発明では、ランプの放電開始電圧の低減を図るとともに、点灯回路が生成する印加電圧の低減も図ることができるため、点灯回路を含むランプシステムの小型化や低価格化を期待することができる。また、特許文献3記載の技術のように、外囲器内部において封止部と電極との間に空隙を設けてさらに封止部内部において金属化合物を混入させる必要がないため、封止部の耐圧信頼性を損なう恐れもない。さらに、放射性ガスを用いる必要がないため、近年の環境意識の高まりへも配慮がなされたものである。
 また、上記構成を有する本発明のランプユニットにおいては、誘電体はランプだけでなく、反射鏡の反射面上に設けることもできる。この場合、誘電体と金属線の印加接点付近でコロナ放電が発生し、これに伴って上記ランプと同様に紫外線が発生する。この紫外線の照射によって生じる光電子により、発光部の内部では放電開始電圧の低減が図られ、比較的容易に放電開始する。よって、発光効率の向上を期待することができる。
 このように本発明のランプユニットは、始動補助部材の配設に関して特に設計自由度が高く、小型のランプユニットにおいても始動補助部材の配設により発光効率の低下を招くことなく、適切に放電開始電圧の低減を図れる。
実施の形態1に係るランプユニット1の構成を示す一部断面図である。 ランプ10の構成を示す正面図である。 (a)は誘電体の構成を示す斜視図であり、(b)は二重構造の誘電体の斜視図である。 実施の形態2に係るランプユニット1Aの構成を示す一部断面図である。 実施の形態3に係るランプユニット1Bの構成を示す一部断面図である。 実施の形態4に係るランプユニット1Cの構成を示す一部断面図である。 実施の形態5に係るランプユニット1Dの構成を示す一部断面図である。 実施の形態6に係るランプユニット1Eの構成を示す一部断面図である。 実施の形態7に係るランプユニット1Fの構成を示す一部断面図である。 実施の形態8に係るランプユニット1Gの構成を示す一部断面図である。 実施の形態9に係るランプユニット1Hの構成を示す一部断面図である。 (a)は実施の形態1の誘電体と金属線の構造を示す要部拡大断面図であり、(b)は実施の形態2の誘電体と金属線の構造を示す要部拡大断面図であり、(c)は図12(b)においてパッド部が無い場合の誘電体と金属線の構造を示す要部拡大断面図(d)は金属線の端部が複数ある場合の誘電体と金属線の構造を示す要部拡大断面図であり、(e)は誘電体が二層構造である場合の誘電体と金属線の構造を示す要部拡大断面図であり、(f)は図12(b)において誘電体が二層構造である場合の誘電体と金属線の構造を示す要部拡大断面図であり、(g)は誘電体が三層構造である場合の誘電体と金属線の構造を示す要部拡大断面図である。 実施の形態10に係る、ランプユニット1Iの構成を示す一部断面図である。 実施の形態11に係る、ランプユニット1Jの構成を示す一部断面図である。 実施の形態12に係る、反射鏡及びランプユニット1Kの構成を示す一部断面図である。 実施の形態13に係る、反射鏡及びランプユニット1Lの構成を示す一部断面図である。 実施の形態14に係る、メタルハライドランプ1Mの構成を示す一部断面図である。 実施の形態15に係る、メタルハライドランプ1Nの構成を示す一部断面図である。 (a)は始動実験に用いるランプと高電圧発生器との接続構成を示す概念図であり、(b)は本発明の誘電体を用いた始動実験の様子を説明する図である。 (a)は図19(b)の要部を拡大した概念図であり、(b)はそのさらに要部を拡大した概念図である。 本発明のランプシステム(画像表示装置)の構成例を示す図である。 従来のランプへの近接導体の配設例を示す図である。
 以下、本実施の形態に係るランプユニット及びランプシステムについて、図面を参照しながら説明する。
 なお、各図面における部材の縮尺は実際のものとは異なる。また、本発明において、数値範囲を示す符号「~」は、その両端の数値を含むものとする。
<実施の形態1>
 図1は、実施の形態1に係るプロジェクタ用のランプユニット1の構成を示す一部断面図である。当図では説明のため、反射鏡40及びコネクタ110の一部のみ断面を図示する。
 図1に示されるように、ランプユニット1は大別すると高圧放電ランプ10、反射鏡40、一対のリード線120A、120B及びコネクタ110を備える。
 (ランプ10の構成について)
 図2は、ランプ10の構成を示す正面図である。当図では説明のため、ランプ10の内部も実線にて図示する。
 高圧放電ランプ10は、例えば石英ガラスからなる放電容器(外囲器)108を有する。この放電容器108は、発光部100と、当該発光部100の両側から延設されて一対をなす、例えば略円柱状の封止部101A、101Bとを一体的に形成してなる。このうち封止部101Aの外表面にはリング状の誘電体20が嵌入されている。
 発光部100は、内部に放電空間105を有し、当該放電空間105には、例えば、発光物質としての水銀、始動時の放電ガスとしての希ガス、及び、ハロゲン物質が封入されている。プロジェクタ用の高圧水銀ランプの場合、水銀は、放電容器108の内容積あたり0.15[mg/mm]~0.40[mg/mm]封入されており、一例として0.30[mg/mm]である。また希ガスとしては、例えば、アルゴン(Ar)、クリプトン(Kr)、キセノン(Xe)のいずれか又はそれらの少なくとも2種の混合ガス等が、ランプ消灯時かつ常温放置下での封入圧力として0.01[MPa]以上1[MPa]以下の範囲内で封入されており、一例としてアルゴンが0.03[MPa](25[℃])である。ハロゲン物質としては、例えば、ヨウ素(I)、臭素(Br)、塩素(Cl)のいずれか又はそれらの少なくとも2種の混合物質などが、発光管の単位内容積あたり1×10-6[μmol/mm]以上1×10-2[μmol/mm]以下の範囲内で封入されており、一例として臭素が5×10-4[μmol/mm]である。
 一対の封止部101A、101Bは、その一方(以下、第二封止部101Bと称する)のみが反射鏡40と固着されているが、他方(以下、第一封止部101Aと称する)はどこにも固着されていない。
 第二封止部101B及び第一封止部101Aには、それぞれ電極組立体107A、107Bが封止されている。
 電極組立体107A、107Bは、金属箔103A、103Bの長手方向各一端側から放電電極104A、104Bを延設し、同方向各他端側から外部リード線102A、102Bを延設してなる。金属箔103A、103Bは、それぞれ放電電極104A、104Bおよび外部リード線102A、102Bと溶接等で接合されている。封止部101A、101Bの内部には、このうち金属箔103A、103Bがその中央付近において封止され、発光部100内側の放電空間105には放電電極104A、104Bがそれぞれ突出するように配され、封止部101A、101Bの外側には外部リード線102A、102Bがそれぞれ突出するように配される。
 放電電極104A、104Bは、例えばタングステン(W)材からなる対向電極であって、互いの先端部において放電容器108の放電空間105内で対向し、且つ、先端部と反対側の端部が封止部101A、101B内に埋め込まれた状態で、略一直線上に並べて配設されている。先端部間の距離である電極間距離(放電ギャップ)は任意に設定できる。ショートアーク形の場合、例えば0.5[mm]~2.0[mm]の範囲に設定することができる。
 金属箔103A、103Bは、例えば、モリブデン(Mo)材で構成されている。
 外部リード線102A、102Bは、例えばモリブデン材やタングステン材で作製された直径約0.4[mm]の棒状であって、金属箔103A、103B側が封止部101A、101B内に埋め込まれ、金属箔103A、103Bとは反対側が封止部101A、101Bから外部に導出されている。ここで外部リード線102A、102Bの直径は約0.4[mm]に限定されないが、封止部101A、101Bの気密性を高めるためには、0.5[mm]以下であることが好ましい。
 なお前記第二封止部101Bには、発光部100から出射された紫外線が当該第二封止部101Bを通過して外部へ漏れるのを防止する金属キャップが冠着されることがある。
 図1に戻って、第一封止部101Aの外表面には、第一金属線(金属線21)の一部が巻回されている。金属線21は、例えば鉄―クロム(Fe-Cr)系合金材、またはモリブデン材等で構成され、後述する誘電体20とともにランプ始動時の放電開始電圧を下げるための始動補助部材であり、後述するように紫外線発生デバイスとして作用する。具体的に金属線21は第二封止部101Bから外部露出された外部リード線102Bに対し、その一端部(上流側端部21b)において電気的に接続され、これにより放電電極104Bに対しても間接的に電気接続されている。金属線21はさらに、ランプ10の外周面に沿って第一封止部101Aまで引き回され、当該第一封止部101Aの外表面に数度巻回された後、金属箔103Aに対応する位置に嵌入された誘電体20の上面に対し、他端部(下流側端部21a)が点接触するように配設されている。すなわち、金属線21の下流側他端部21aと誘電体とは、前記高圧放電ランプを放電開始させるための印加電圧によって放電を起こす程度に接触して配されている。このとき、下流側端部21aは弾性付勢により、その先端または一部側面を誘電体20の上面(第一封止部101Aとは反対側の面)に突き立てるように(当図構成では先端を略直角に突き立てるようにして)接触させる。このときの接点の面積が小さいほど、電圧印加時の電界集中が大きくなり、コロナ放電およびこれに伴う紫外線が良好に生じ易い。なお、ここで言う「点接触」とは数学的定義に限定されず、金属線21と誘電体20の互いの接触面積を極力小さく抑えた接触を指す。
 なお、金属線21の他端側とは、下流側他端部21aに限らず、金属線21の他端側であれば、どの部分であってもよい。
 また、金属線21は、第一封止部101Aに必ずしも巻回させなくても良いが、巻回させることで金属線21が構造上安定するほか、巻回された金属線21によって発光部100周辺に強電界の発生を促すことで放電開始電圧の低減を期待できるため望ましい。
 誘電体20は、ランプユニット1の主たる特徴部分であって、高圧放電ランプ10の外囲器108の構成材料(石英ガラス)よりも高い比誘電率を有し、且つ、高圧放電ランプの点灯中の発熱に対して十分な耐熱性を有する材料、例えば金属酸化物を高温で熱処理することによって焼き固めたセラミック材料を利用して構成される。具体的には、石英ガラス(高純度SiO)の比誘電率が3.5~4.0程度であるため、これらの上限値よりも比誘電率が高い材料であればよい。具体的には、チタン酸バリウム(BaTiO、比誘電率1200程度)やチタン酸ストロンチウム(SrTiO、比誘電率300程度)、二酸化チタン(TiO、比誘電率100程度)等のチタン化合物(チタン酸化物等)の中から選んだ1種以上を用いるのが好適である。特にチタン酸バリウムやチタン酸ストロンチウムの比誘電率は石英ガラスに比べて非常に高いため望ましい。なお、前記セラミック材料としては焼き固めた材料に限定されず、たとえばペースト状のセラミック材料を塗布して用いることも可能である。
 誘電体20は、外観的には図3(a)の斜視図に示すように、リング状に形成されている。なお、誘電体20は単一材料からなる構成に限定されず、図3(b)に示すように、開口部201を持つ第一層200に対し、第一層200と異なる材料からなる第二層210を積層した多重構造(当図では2重構造)としてもよい。ここで、第一層200は比誘電率の高いセラミック材料とし、第二層210は前記セラミック材料に限定されず石英ガラスやアルミナ、金属等でも良い。
 誘電体20の外径D(図3(a)参照)としては、理想的には発光部100からの発光を遮蔽しないようにする。特に注意すべきは、発光部100からの発光が反射鏡40によって反射され、光が前方へ出射されるのを遮蔽しないようにする。このため発光部100の最大外径部分から第一封止部101A(または第二封止部101B)の先端までを結ぶ仮想線を想定するとき、当該仮想線から外にはみ出ない程度の値であることが最も望ましい。或いは、外径Dは発光部100の最大外径以下の値としても好ましい。しかしながら、外径Dは必ずしも上記した値に限られず、若干であれば、発光部100の最大外径以上の値であっても許容できる場合がある。
 誘電体20の長さLとしては表面積を広く確保するほど、電圧印加時に誘電体20の外表面付近に豊富な電荷を蓄積させ、コロナ放電の増大に寄与させることが期待できるため望ましい。但し、発光部100の発光を遮蔽しないように留意する。
 誘電体20は、例えば熱膨張率が低く、耐熱性に優れるセメント等の固着剤を用いて第一封止部101Aに固定することができる。
 (その他のランプ10の構成要素)
 反射鏡40は、例えばダイクロイック反射鏡であり、発光部100からの出射光のうち、特定波長の光を選択的に前面に反射する凹状の反射面41が形成された椀部42と、当該椀部42の後方に延設された筒部43とを有する。高圧放電ランプ10の第二封止部101Bおよび金属線21は、椀部42の反射面41側から筒部43内へと挿入され、反射面41の焦点と高圧放電ランプ10の一対の放電電極104A、104B間の中央位置とが略一致させられた状態で、第二封止部101Bと前記筒部43との隙間に固着剤44としてのセメントが充填されて固着されている。なお、固着剤44としてはセメントに限定されず、ランプ用の耐熱性固着剤として入手可能な市販品を使用しても良い。
 図1に戻って、各リード線120A、120Bは、被覆導線126A、126B、ニッケル線122A、122B、及び、それらを接続する接続部材124A、124Bからなる。各リード線120A、120Bのニッケル線122A、122B側の先端部には、接続端子としてのスリーブ121A、121Bが取り付けられており、被覆導線126A、126B側の先端部には、内部空間112に接続端子127A、127B(127Aは不図示)を内包する樹脂製の外部接続用コネクタ110が取り付けられている。なお、リード線120A、120Bは上記構成に限定されず、例えば継線でなく単線であっても良い。また、接続端子はスリーブ121A、121Bに限定されず、導電性を有する部材であれば良い。
 各リード線120A、120Bは、高圧放電ランプ10の電極組立体107A、107Bの外部リード線102A、102Bに、スリーブ121A、121Bを介してそれぞれ電気的に接続されている。
 被覆導線126A、126Bは、導電性を有する芯材123A、123Bを絶縁性の被覆材125A、125Bで被覆したものであり、前記芯材123A、123Bとニッケル線122A、122Bとが接続部材124A、124Bによって接続されている。なお、ニッケル線122A、122Bは、純ニッケル線に限定されず、銅-ニッケル(Cu-Ni)等のニッケル合金製であっても良い。
 スリーブ121A、121Bは、外部リード線102A、102Bとリード線120A、120Bとの接合強度を向上させるための接続端子であって、鉄-ニッケル(Fe-Ni)合金製の筒状体をニッケル線122A、122Bに外嵌させ、それをかしめることによって、前記リード線120A、120Bに取り付けられている。なお、スリーブ121A、121Bの材料は、鉄-ニッケル合金に限定されないが、外部リード線102Bとのなじみの良い材料であることが好ましい。
 スリーブ121A、121Bは、外部リード線102A、102Bに、例えば溶接により接合されている。具体的には、外部リード線102A、102Bとスリーブ121A、121Bとが直交し、かつ、スリーブ121A、121Bが外部リード線102A、102Bを抱き込むように「く」の字形に折れ曲げられた状態で溶接されている。このように、「く」の字形に折れ曲げることによってスリーブ121A、121Bと外部リード線102A、102Bとの接触面積を大きくして接合強度を高めている。
 なお、スリーブ121A、121Bと外部リード線102A、102Bとは、例えば、ねじ締め、かしめ、圧着など溶接以外の方法によって接合しても良いが、接合強度の強い溶接がより好ましい。
 (誘電体20の効果について)
 以上の構成を持つ実施の形態1のランプユニット1では、まず放電開始時にランプ10および金属線21に対し、外部より数百~100[kHz]程度の高周波電圧を印加する。ここで、金属線21の下流側端部21aは前記印加電圧によって、放電を起こす程度に、誘電体20に対して近接(ランプユニット1においては接触)して配されている。従って、金属線21の下流側端部21aと誘電体20の外表面における印加接点との間で強電界が発生し、コロナ放電(電子放出)を生じる。このコロナ放電に伴って発生する紫外線の照射によって、発光部100内の一対の放電電極104A、104Bの表面で光電効果が生じ、電子(光電子)が放出される。
 これによりランプ10では、一対の放電電極104A、104Bの間で希ガスの絶縁破壊を促進させて、比較的低い印加電圧にて火花放電が発生する。いったん放電電極104A、104B間で発生した火花放電は、その後アーク放電に移行し、水銀の蒸発に伴い良好な発光効率によるランプ10の水銀発光点灯が実現される。
 ここで、石英ガラスの比誘電率よりも非常に高い比誘電率を有する材料(一例としてチタン化合物)で誘電体20が構成されているので、誘電体20の表面には帯電による電荷が豊富に蓄積される。これにより金属線21の下流側端部21aと誘電体20の間では、従来よりも相当に低い印加電圧でコロナ放電およびこれに伴う紫外線が発生する。
 また、金属線21の下流側端部21aと、封止部101A内の金属箔103Aおよび放電電極104Aとの間に、高い比誘電率の誘電体20が介在することで、金属線21と誘電体20の接触部分における電界が増大し、豊富な紫外線を発生させることができる。
 実際に本願発明者らの行った実験によれば、従来型の近接導体ワイヤーを用いた高圧放電ランプでは、始動時に1.5[kV]~2.0[kV]程度の印加電圧で、トリガー線の下流側端部付近でコロナ放電が発生し、3[kV]程度の印加電圧で発光部内の発光が確認された。これに対し、実施の形態1の構成では、300[V]~800[V]程度の印加電圧でコロナ放電が発生するとともに、1.5[kV]以下の印加電圧で発光部内の放電開始を確認することができた。これは前述の、始動補助手段として放射性ガスを用いた場合と同様に、十分に低い放電開始電圧である。
 このような効果が発揮されることにより、ランプユニット1では、放電開始電圧の低減と良好な始動性の両立効果により、点灯回路が生成する印加電圧の低減を実現している。またこれにより、点灯回路を含むランプシステムの小型化や低価格化を期待することができる。
 また、ランプユニット1では特許文献2記載の技術のように、主として強電界を利用するのではなく、紫外線照射を利用してランプ10の放電開始電圧の低減を図る。従って、外囲器108の内部において封止部101A、101Bと電極組立体107A、107Bとの間に微小空隙を設ける必要がなく、当該空隙の精度管理を回避できるため、良好な生産性を有している。
(性能確認実験)
 図19、21は、本願発明者らの行った、高圧放電ランプの始動性に係る性能確認実験(点灯試験)の内容を模式的に示す図である。本願発明者らは、十分に高い比誘電率を持つ材料を用いて実験用トリガー部材50を構成し、ランプ10の始動性を調べた。図19(a)に示すように、交流高電圧発生器をランプ10の各外部リード線102A、102Bと接続した回路を基本とし、同図(b)に示すように、ランプ10及びトリガー部材50とを並列接続した。このトリガー部材50は、図20(a)の構成図のように、ランプ10の封止部101A、101Bを模した封止部51の内部に金属箔103Aおよび外部リード線102Aを配置し、封止部51の外部に誘電体20Xを配置してなる。交流高電圧発生器には、外部リード線102Aと金属線52とを接続した。なおここで、交流高電圧発生器の出力電流は、便宜上、火花放電は維持できるがアーク放電には移行しないレベル(約10[mA]以下)に制限をかけている。
 この回路に周波数10[kHz]の正弦波交流電圧を電圧値を高めながら電圧印加した。電圧値(ピーク値)を300[V]~800[V]程度まで上昇させると、金属線52の下流側端部52aと誘電体20Xの接点付近でコロナ放電が発生し、これに伴って紫外線が発生した(図20(b))。さらに電圧値を上昇させると、コロナ放電は前記接点周囲に拡大し、紫外線も増大した。前記紫外線がランプ10の発光部100内部に照射され、印加電圧が1.5[kV]以下の範囲において、ランプ10の火花放電発生(放電開始)が確認された(図19(b))。なお、ランプ10の火花放電が生じると、発光部内に放電パスが形成されるため、ランプ10に点灯回路から所定の電力が供給されればアーク放電に移行することを意味している。なお追加実験で、交流高電圧発生器の周波数を変化させたところ、500[Hz]から200[kHz]までの範囲では、若干の違いは見られるものの周波数10[kHz]の場合とほぼ同様の効果が得られた。
 このように本発明の高圧放電ランプでは、800[V]以下程度の低い印加電圧でも、誘電体上の印加接点においてコロナ放電および紫外線を発生させることができ、1.5[kV]以下の印加電圧でランプを放電開始させることができる。さらに、その主な特徴として、高圧放電ランプに対して始動補助部材(金属線及び誘電体)を10[cm]程度まで分離配置させても、十分に低い印加電圧値で高圧放電ランプを始動させることができる。ここで特徴的なのは、本発明の誘電体は強電界を発生させるための電界調整手段ではなく、コロナ放電に伴う紫外線を発生させる手段として作用させ、この紫外線照射効果により発光部の始動を促進させている点である。従って、誘電体と金属線の接点付近におけるコロナ放電に伴って発生する紫外線が、一定量以上、発光部に到達できる範囲であれば、トリガー部材と高圧放電ランプを互いに分離して配置させることができる。このため本発明の高圧放電ランプでは、誘電体の配置位置の制約が少なく、たとえば後述する別の実施の形態のように、反射鏡内に誘電体を配置できるなど、極めて高い設計自由度を発揮できるものである。
 また、実施の形態1の高圧放電ランプ10では、金属線21と第一封止部101Aとの間に誘電体20を設けているため、当該金属線21に対して対向電極となる第一封止部101A内の電極組立体107Aとの間の距離が比較的広くなっている。しかしながら本発明では、前記したように金属線21と誘電体20との接点周囲で生じる紫外線を利用して始動電圧の低減を図るものであるため、前記距離の増加はそれほど問題とならない。これは従来、金属線をできるだけ封止部に近接させ、金属線周囲に強電界を発生させようとする構成(特許文献1、2等)に比べ、本発明が有する大きな特徴である。
 以下、本発明の別の実施形態について、実施の形態1との差異を中心に説明する。
<実施の形態2、3>
 図4は実施の形態2に係るランプユニット1Aの構成を示す一部断面図である。実施の形態1との違いは、直方体状の誘電体20Aを第一封止部101A上に配置し、誘電体20Aの上面に金属線21の下流側端部21aを点接触させた点である。誘電体20Aは、第一封止部101A上にセメント等の固着剤を用いて固定されている。
 このランプユニット1Aによっても、始動時には実施の形態1のランプユニット1と同様の効果を期待できる。
 次に、図5は実施の形態3に係るランプユニット1Bの構成を示す一部断面図である。当該ランプユニット1Bの特徴は、直方体状の誘電体20Bをランプ10の第一封止部101A上に設けるとともに、各極性の外部リード線102A、102Bに接続した金属線21、22を誘電体20Bに点接触させた点にある。外部リード線102Aから延長された金属線22の下流側端部22aは、金属材料からなるパッド部22cを介して誘電体20Bと接続されている。一方、発光部100に近接する金属線21は外部リード線102Bより延長され、誘電体20Bに対して点接触している。
 このような構成のランプユニット1Bにおいても実施の形態1と同様の効果が奏される。さらに、石英ガラスに比べて非常に高い比誘電率を持つ誘電体20Bに両極性の金属線21、22が接触しているため、始動時には比較的低い印加電圧でコロナ放電および紫外線を発生させることができる。このため、特に良好な放電開始電圧の低減を期待できる。
 また、本願発明者らの実験によれば、誘電体の片面だけに金属線を接触させた場合と、同じ誘電体の両面に金属線を接触させた場合とを比較すると、後者の方が低い印加電圧でコロナ放電が発生することが確認できた。このコロナ放電に伴って発生する紫外線を利用することで、ランプユニット1Bでは放電開始電圧のさらなる低減を期待できる。
<実施の形態4、5>
 次に、図6は実施の形態4に係るランプユニット1Cの構成を示す一部断面図である。
 ランプユニット1Cの特徴は、厚みの薄い誘電体20Cを反射鏡40の反射面41の下部表面に配設し、その上面にニッケル線122Aより延長した金属線22の下流側先端22aを点接触させた点にある。金属線22は、ここでは反射鏡40の内部を貫通させているが、この構成に限定されない。
 また、図7は実施の形態5に係るランプユニット1Dの構成を示す一部断面図である。ランプユニット1Dは、反射鏡40の反射面41に誘電体20Dを埋設している点では実施の形態3と共通する。ただし、誘電体20Dはその上面において、外部リード線102Aより延長された金属線22の下流側端部22aと点接触する。また、誘電体20Dの下面側は、外部リード線102Bより延長された金属線21の下流側端部21aと、パッド部21cを介して接触している。
 この場合、誘電体20Dが反射鏡40の内側と外側に共に露出しているため、誘電体20Dに対して、両極性の金属線21、22を接触させる場合において、一方の金属線21を反射鏡40の外側に配置することができる。従って、両極性の金属線21、22を共に反射鏡40の内側に配置する場合に比べて金属線21、22が光を遮る量を少なくすることができる。これにより、小型のランプユニットにおいても誘電体20Dおよび金属線21、22の配設により発光効率の低下を抑制しつつ、放電開始電圧の低減を図ることができる。
 これら実施の形態4、5の場合、誘電体が反射鏡に配置されているため、先の実施の形態のように誘電体をランプの近傍に配置する場合に比べて誘電体が光を遮る量を少なくすることができる。従って、小型のランプユニットにおいても誘電体20Dおよび金属線21、22の配設により発光効率の低下を抑制しつつ、放電開始電圧の低減を図ることができる。
 このような実施の形態3、4の各ランプユニット1C、1Dでは、始動時にはそれぞれ誘電体20C、20Dの上面において、金属線の下流側端部22aとの接触付近でコロナ放電および紫外線を発生する。この紫外線が、ランプ10の発光部100に照射されることで、実施の形態1と同様に、従来よりも放電開始電圧の低減が実現できる。
 また、実施の形態4のランプユニット1Dでは、実施の形態2と同様に両極性の金属線22、21を誘電体20Dに接触させているため、放電開始電圧のさらなる低減効果を期待することができる。
 また、ランプユニット1C、1Dにおいては、反射鏡40の反射面41上に占める誘電体20C、20Dの面積は非常に小さいため、反射鏡からの出射光量を損なうおそれも小さい。これは、例えば従来技術(特許文献3等)のように、ランプ10に極めて近い位置に始動補助部材の放電管を設ける必要があった構成に比べ、優れた利点であると言える。
<実施の形態6~8>
 次に、図8は実施の形態6に係るランプユニット1Eの構成を示す一部断面図である。
 ランプユニット1Eの特徴は、外部リード線102Bから端部21bより延長した金属線21を、反射鏡40を貫通させ、その下流側端部21aを反射面41の下部と点接触させた構成にある。
 一方、図9は実施の形態7に係るランプユニット1Fの構成を示す一部断面図であって、ランプユニット1Eとは逆に、外部リード線102Bから端部21bより延長した金属線22をランプ10に巻回した後、下流側端部22aを反射面41の上部と点接触させている。
 或いは図10の実施の形態8に係るランプユニット1Gのように、基本的にはランプユニット1Eと同様であるが、金属線21を反射鏡40の筒部43に充填された固着剤44の内部を挿通させる構成としている。
 このような各構成を有するランプユニット1E、1F、1Gでは、いずれも反射鏡40の反射面41の反射膜が誘電体多層膜である。特に、この誘電体多層膜が酸化チタンで構成されている場合は、石英ガラスよりも高い比誘電率の誘電体として機能する。従って、始動時には各金属線21の端部21aとの接触点付近において、比較的低い印加電圧でコロナ放電およびこれに伴う紫外線を生じる。この紫外線が発光部100に照射され、発光部100内部で光電子が発生することで、放電開始電圧の低減を実現できる。
<実施の形態9>
 次に示す図11は、実施の形態9に係るランプユニット1Hの構成を示す一部断面図である。
 このランプユニット1Hの特徴は、反射鏡40の反射面41の表面に誘電体20Hを配設し、独立配線である被覆導線126Cに接続した端部23cから金属線23を延長し、その下流側端部23aを誘電体20Hの表面に点接触させた点にある。
 以上の構成を持つランプユニット1Hの始動時には、外部から被覆導線126Cに交流電圧を印加する。これにより、金属線23の下流側端部と誘電体20Hの表面の間でコロナ放電および紫外線が発生し、当該紫外線が発光部100に照射されることで、発光部100の始動電圧の低減効果を得ることができる。なお、放電開始後は被覆導線126A、126Bのみに通電を行い、被覆導線126Cへの通電を遮断して、通常の点灯動作を行えばよい。
 このような構成のランプユニット1Hにおいても、ランプユニット1E~1Gと同様の効果を期待することができる。
 なお、図11に示すランプユニット1Hは、誘電体20Hが反射面に設けられているが、誘電体20Hがランプ100に設けられている場合、誘電体20Hが後述する副反射鏡に設けられている場合、反射鏡や副反射鏡の反射面が誘電体である場合等にも適用できる。
 (誘電体と金属線の構造について)
 次に、本発明における誘電体の形状および金属線の配線について説明する。図12は、各構成の誘電体と金属線の構造を示す要部拡大断面図である。
 本発明の誘電体の形状は特に限定されない。例えば実施の形態1のようにリング状とすれば、高圧放電ランプ10の円柱状の第一封止部101Aに嵌入して取り付けが容易であるほか、両者の固定も確実である。一方、直方体状または板体状とすれば、反射鏡40の反射面上、または埋め込みにより容易に取り付けることができる。
 さらに誘電体は、単一材料からなる単層構造に限定されない。図12(e)に示すように、互いに異なる材料からなる層を二層以上積層して構成することもできる。当図では20C1、20C2の二層構造からなる誘電体20C‘を示している。ここではコロナ放電を発生させたい面の層は比誘電率の高いセラミック材料として、他方の面の層はそれに限定されず石英ガラスやアルミナ、金属等でも良い。このような構成は、反射鏡40、副反射鏡45の反射面41、46を高い比誘電率の誘電体として構成する場合にも採れる。
 次に実施の形態1の場合、基本的には図12(a)のように、直方体状の誘電体20Cの上面に金属線22の下流側端部22aを接触させる(その他、実施の形態2の下流側端部21a、実施の形態4、5、13の下流側端部22a、実施の形態9の下流側端部23a、実施の形態12の下流側端部24aもそれぞれ同様である)。この場合、金属線22は、図12(d)に示すように、複数の端部22a1、22a2、22a3において誘電体(図中では20C)と接触させてもよい。なお、同電位の複数の端部を接触させる場合、全ての端部を誘電体のある一面に接触させてもよいし、複数の端部を誘電体の異なる複数の面に接触させてもよい。
 また、誘電体の両面を2本の金属線21、22等で挟む構成については、図12(b)に示すように、パッド部21cを介して金属線21、22を接触させることもできる。ここで図12(b)は実施の形態3の誘電体20Bを図示するが、実施の形態5も同様である。この場合も、図12(f)の誘電体20D’に示すように、多層構造(当図では異なる材料からなる層20D1、20D2の積層構造)の誘電体としてもよい。
 或いは図12(g)に示すように、一対の同じ材料からなる層20D3、20D5の間に、異なる材料からなる層20D4を積層した、3層構造の誘電体20D‘’も採り得る。
 なおパッド部21cは、金属線22aの対向電位として電界強度を確保するための金属部材であるが、必須の構成ではない。従って図12(c)に示すように、これを省略することもできる。なお、金属部材としては、例えばニッケル製のシート等を用いることができる。
 また、2本の金属線21、22は、誘電体の両面を挟む構成に限らず、例えば誘電体の隣り合う面にそれぞれ接触させてもよい。
<実施の形態10、11>
 図13は、実施の形態10に係る副反射鏡付ランプ1Iの構成を示す、一部断面図(副反射鏡45のみ断面図示)である。
 当図に示す副反射鏡付ランプ1Iでは、ランプ10の第一封止部101Aに対し、椀型の反射面46を持つ公知の副反射鏡45を、反射光が第二封止部101B側に出射されるように配設している。そして、副反射鏡45を固定するための固着部47が配された筒部48に対し、リング状の誘電体20Iを配設する。誘電体20Iは筒部48に不図示のセメントで固定されている。ここでランプ10の外部リード線102Bは金属線24の端部24Bが接続され、金属線24の下流側端部24aが誘電体20Iに点接触している。
 このような構成を持つ副反射鏡付ランプ1Iでは、始動時には金属線24の下流側端部24aとリング状の誘電体20Iとの間でコロナ放電が生じる。これに伴い発生した紫外線は直接または反射鏡の反射面で反射されることによって、発光部100に照射され、一対の放電電極104A、104Bの間で放電開始が促進される。これにより副反射鏡付ランプ1Iでは、従来に比べて十分に低い印加電圧にて放電が発生し、放電開始電圧の低減が実現できる。
 次の図14に示す実施の形態11に係る副反射鏡付ランプ1Jは、実施の形態10に係る副反射鏡付ランプ1Iとほぼ同様であるが、副反射鏡45の反射面46の反射膜が酸化チタンで構成される誘電体多層膜であり、金属線24の下流側端部24aを前記反射面46に接触させている。
 このような構成の副反射鏡付ランプ1Jにおいても、実施の形態8と同様の効果を期待することができる。また、副反射鏡付ランプ1Jでは比較的小面積の副反射鏡45の反射面46に誘電体を設ける場合の配置位置の制約がないため、副反射鏡45における反射効果を特に良好に維持することが可能であるという特徴を有する。
<実施の形態12、13>
 図15は、実施の形態12に係るランプユニット1Kの構成を示す、一部断面図(副反射鏡45、反射鏡40のみ断面を図示)である。
 当図に示す構成では、リング状の誘電体20Kが第一封止部101Aの外表面に嵌入され、外部リード線102Bに上流側端部20bが接続された金属線24が、その下流側端部24aにおいて誘電体20Kの上面と点接触されている。金属線24は、反射鏡40の筒部43に充填された固着剤44を貫通するように配設される。
 以上の構成を持つランプユニット1Kでは、始動時には前記点接触部分と、誘電体20Kが配設された第一封止部101Aの内部においてコロナ放電が発生し、これに伴う紫外線が発光部100内部に照射されることで、比較的低い印加電圧にて放電が開始する。
 また、図15に示す金属線24は、反射鏡40の筒部43と第1封止部101Aとの間を通っているが、これに限らず、反射鏡40の外側から回り込んで、第2の封止部101B側に延長されていてもよい。なお、金属線24が反射鏡40の筒部43と第1封止部101Aとの間を通っている場合には、金属線24を反射鏡40の筒部43と第1封止部101Aとの間で固定できるため、金属線24を配置しやすくすることができる。
 次に示す図16は、実施の形態13に係るランプユニット1Lの構成を示す、一部断面図(副反射鏡45、反射鏡40のみ断面を図示)である。ランプユニット1Kとの違いとして、ランプユニット1Lではリング状の誘電体20Lが第二封止部101Bに嵌入され、外部リード線101Aより延長された金属線24の下流側端部22aが、誘電体20Lの上面と点接触している。
 このような構成を持つ、実施の形態13に係るランプユニット1Lにおいても、実施の形態12と同様の効果を期待できる。
 なお、ランプ10に誘電体を配設する場合には、第一封止部101Aおよび第二封止部102Bのいずれに配設してもよい。但し、配設した誘電体20Lが発光部100からの出射光を大きく遮蔽すると、発光効率に影響するため注意する。実施の形態13では、副反射鏡45からの出射光が誘電体20Lに若干当たるため、ランプ10の最大外径よりも誘電体20Lの外径を小さくすることが望ましい。
 また、図16に示す金属線24は、副反射鏡45と第2封止部101Bとの間を通っているが、これに限らず、副反射鏡45の外側から回り込んで。第1の封止部101A側に延長されていてもよい。なお、金属線24が副反射鏡24と第2封止部101Bとの間を通っている場合には、金属線24を副反射鏡24と第2封止部101Bとの間で固定できるため、金属線24を配置しやすくすることができる。
<実施の形態14、15>
 本発明は上記した画像表示装置用のランプユニットの他、店舗や大型施設などで用いられる一般照明用のメタルハライドランプに適用することもできる。
 図17は、実施の形態14に係るメタルハライドランプ1Mの構成を示す、一部断面図(外管301のみ断面を図示)である。
 メタルハライドランプ1Mは、石英ガラスからなる発光管400から延出された一対の細管部400a、400bのそれぞれから給電体401a、401bが外部露出しており、当該給電体401a、401bにそれぞれ電力供給線302a、302bが接続されている。発光管400の内部には、始動時放電ガスとしてのAr等の希ガスと、ハロゲン化金属からなる発光物質が封入される。外管301の開口部は口金300で閉じられている。303は、外管301内部に存在する酸素成分や水蒸気等の不純物ガスを吸着するためのゲッターである。
 ここでメタルハライドランプ1Mでは、一方の給電体401bを覆う石英ガラスの封止体の外面に誘電体30Mが配設されている。誘電体30Mの外表面には、電極供給線302aから延出された金属線25が点接触されている。
 続いて図18は、実施の形態15に係るメタルハライドランプ1Nの構成を示す、一部断面図(外管301のみ断面を図示)である。
 メタルハライドランプ1Mとの違いは、誘電体が電極供給線側に設けられ、給電体(電力供給線)から延出された金属線が誘電体表面と点接触している点である。
 メタルハライドランプ1M、1Nのいずれの場合も、その他の実施の形態1~13と同様の効果が期待できる。
<ランプシステムの実施の形態>
 図21は、実施の形態1のランプユニット1と点灯回路からなるランプシステムを備えた画像表示装置500を示す一部破断斜視図であって、内部の様子がわかるように筐体の天板を取り除いている。当図に示す画像表示装置500は、前方に設置したスクリーン(不図示)に向けて画像を投影する投射型の液晶フロントプロジェクタである。当該画像表示装置500は、筐体501内に、光源としてのランプユニット1、3枚の液晶パネル(不図示)等を有する光学ユニット502、前記液晶パネル等を駆動制御する制御ユニット503、投射レンズ504、冷却ファンユニット505、及び、商用電源から供給される電力を前記制御ユニット503や前記ランプユニット1の点灯回路(不図示)に供給する電源ユニット506等が収納された構成を有する。
 当該画像表示装置500は、放電開始電圧を低減させたランプユニット1と始動時の印加電圧が低い点灯回路からなるランプシステムを備えているため、従来の画像表示装置に比べて小型で低価格化を図ることができる。
 なお、当該画像表示装置500に適用するランプユニットは、当然ながらその他の実施の形態のランプユニットであってもよい。
 また、誘電体はランプにおいて1個のみ設ける構成に限定されず、複数個にわたり設けてもよい。この場合、実施の形態1のように、ランプの封止部上に複数個設けても良いし、封止部と反射鏡(又は副反射鏡)の双方に設けても良い。また、反射鏡に対して複数の誘電体を設けても良い。
 <その他の事項>
 本発明の実施の形態において、誘電体と金属線の下流側端部が高圧放電ランプを放電開始させるための印加電圧によって放電を起こす程度に接触している例を示したが、高圧放電ランプを放電開始させるための印加電圧によって放電を起こす程度に近接している場合にも同様の効果が得られる。
 なお、「高圧放電ランプを放電開始させるための印加電圧によって放電を起こす程度に近接」とは、具体的には、誘電体と金属線の他端側との最短距離が2[mm]以内であることが好ましい。この場合には、誘電体と金属線とが接触していなかったとしても、放電開始電圧の低減効果をより確実に得ることができる。
 本発明において、誘電体が、ランプのいずれか一方の封止部の外表面上に配設され、誘電体の片面だけに金属線の下流側端部が近接または接触する場合において、金属線の下流側端部とランプの封止部の金属箔および放電電極との間に誘電体が介在するように誘電体の上面に金属線が配される構成の例を示したが、これに限定されるものではなく、金属線の下流側端部が誘電体の側面に近接又は接触した場合でも近似の効果が得られる。この場合、金属線の下流側端部と誘電体が近接又は接触する誘電体の面が発光部に最も近い面であれば、始動時のコロナ放電で発生する紫外線を発光部に良好に照射できるという利点がある。
 また、本発明において、誘電体の形状は、直方体、円柱、角柱、球、またはそれらに切欠きを設けた形状等様々な形状のものを用いることができる。
 例えば、誘電体がリング状で、ランプの封止に嵌入されている場合、封止部の長手方向に沿うスリットが形成されていてもよい。この場合、封止部の熱膨張、収縮に対応しやすく、封止部への固定力を向上することができる。
 また、固着剤等を介して誘電体をランプや反射鏡等に固着させる場合、誘電体の固着剤が接触する面に凹凸が形成されていてもよい。この場合、誘電体の固着力を高めることができる。
 また、誘電体をランプの封止部の外表面上に配設する場合、誘電体が保温部材を兼ねていてもよい。この場合、ランプを定格電力よりも大幅に下げた電力(例えば50[%]以下)にて点灯させた場合に、放電空間内の最冷点温度が下がり過ぎるのを抑制することで、光束が低下するのを抑制することができる。
 この場合、誘電体は、両封止部に配設してもよく、一方の誘電体は、電気的にいずれの部材とも接続されていない状態であってもよい。なお、誘電体とは別途、金属製コイル等、誘電体以外の保温部材をランプの封止部の外表面に設けてもよい。
 また、本発明を高圧放電ランプに適用する場合、リード線及びスリーブは不可欠ではなく、それらリード線及びスリーブを備えていない構成であっても良い。
 また、リード線は備えているがスリーブは備えておらず、リード線がスリーブを介さずに外部リード線と電気的に接続されている構成であっても良い。
 本発明に係る始動補助部材付高圧放電ランプ、ランプユニット、ランプシステム、及びプロジェクタは、従来に比べ、特にランプの放電開始電圧を低減させたものである。このため、液晶プロジェクタやDLP(Digital Light Processing)プロジェクタ等の画像表示装置に幅広く利用できる。誘電体をランプ上に設けた場合は、小型の各種画像表示装置に幅広く用いることが可能であり、その産業上の利用可能性は極めて高い。
 1、1A~1H  ランプユニット(反射鏡付ランプ)
 1I、1J  ランプユニット(副反射鏡付ランプ)
 1K、1L  ランプユニット(反射鏡・副反射鏡付ランプ)
 1M、1N  メタルハライドランプ
 10、10X  高圧放電ランプ
 20、20A~20N  誘電体
 20X  実験用誘電体
 21X  近接導体
 21~25  金属線
 21a~24a  上流側端部
 21b~24b、52a  下流側端部
 22c~ パッド部
 40  反射鏡
 41、46  反射面
 45  副反射鏡
 50  実験用トリガー部材
 51  実験用封止部
 52  実験用金属線
 100  発光部
 101A  第一封止部
 101B  第二封止部
 102A、102B  外部リード線
 103A、103B  金属箔
 104A、104B  放電電極
 105  放電空間
 107A、107B  電極組立体
 108  放電容器(外囲器)
 112a、112b  電極組立体
 126A~126C  被覆導線
 200  誘電体外表面
 201  誘電体内表面
 500  ランプシステム(投射型フロントプロジェクタ)

Claims (20)

  1.  外囲器および当該外囲器内の放電空間に臨んで配された一対の放電電極を備える高圧放電ランプと、当該高圧放電ランプから発せられた光を反射する反射鏡と、当該高圧放電ランプの始動補助部材とを備えるランプユニットであって、
     前記外囲器は、前記放電空間を内包する発光部と、前記発光部に連接された第一封止部および第二封止部とを備えてなり、
     前記始動補助部材は、前記高圧放電ランプの少なくとも一方の前記放電電極に一端部が電気的に接続された第一金属線と、前記外囲器よりも高い比誘電率を有する誘電体とを有し、前記第一金属線の他端側と前記誘電体とは、前記高圧放電ランプを放電開始させるための印加電圧によって放電を起こす程度に、近接または接触して配されている
     ことを特徴とするランプユニット。
  2.  前記第一封止部および第二封止部の内部に金属箔が配され、
     前記金属箔の一端から、前記放電電極が前記放電空間中に延設され、
     前記金属箔の他端から、外部リード線が前記各封止部より部分的に外部露出するように延設され、
     前記誘電体は、前記第一封止部および第二封止部のうち、いずれか一方の封止部の外表面上に配設され、
     前記第一金属線は、他方の封止部より露出する前記外部リード線に電気的に接続されている
     ことを特徴とする、請求項1に記載のランプユニット。
  3.  前記高圧放電ランプには、発光部からの発光を前記反射鏡側に反射させる副反射鏡が配設されている
     ことを特徴とする請求項2に記載のランプユニット。
  4.  前記第一封止部および第二封止部の内部には金属箔が配され、
     前記金属箔の一端から、前記放電電極が前記発光部内側に延設され、
     前記金属箔の他端から、外部リード線が前記第一封止部および第二封止部より部分的に外部露出するように延設され、
     前記誘電体は、前記反射鏡の反射面に配設され、
     前記第一金属線は、前記第一封止部または前記第二封止部のいずれかより外部露出する外部リード線に電気的に接続されている
     ことを特徴とする請求項1に記載のランプユニット。
  5.  前記第一封止部および第二封止部の内部には金属箔が配され、
     前記金属箔の一端から、前記放電電極が前記発光部内側に延設され、
     前記金属箔の他端から、外部リード線が前記各封止部より部分的に外部露出するように延設され、
     前記高圧放電ランプには、発光部からの発光を反射鏡側に反射させる副反射鏡が配設されており、
     前記誘電体は、当該副反射鏡の表面に配設されている
     ことを特徴とする請求項1に記載のランプユニット。
  6.  前記誘電体は、前記反射鏡の反射膜である
     ことを特徴とする請求項1記載のランプユニット。
  7.  前記高圧放電ランプには、さらに発光部からの発光を前記反射鏡側に反射させる副反射鏡が配設され、
     前記誘電体は、当該副反射鏡の反射膜である
     ことを特徴とする請求項1記載のランプユニット。
  8.  前記第一封止部および第二封止部は円柱状、楕円柱状、または偏平柱状であり、前記誘電体はリング状であって、前記第一封止部または第二封止部に嵌入されている
     ことを特徴とする請求項2に記載のランプユニット。
  9.  前記誘電体の外径は、発光部の最大外径以下に設定されている
     ことを特徴とする、請求項8に記載のランプユニット。
  10.  前記誘電体は直方体状である
     ことを特徴とする、請求項2に記載のランプユニット。
  11.  前記外囲器が石英ガラスで構成されている
     ことを特徴とする、請求項1に記載のランプユニット。
  12.  前記誘電体はチタン化合物を含んで構成されている
     ことを特徴とする、請求項1に記載のランプユニット。
  13.  前記チタン化合物は、酸化チタン、チタン酸バリウム、チタン酸ストロンチウムの内の1種以上である
     ことを特徴とする、請求項12に記載のランプユニット。
  14.  前記第一金属線は、その先端または一部側面が前記誘電体との接触方向に弾性付勢されている
     ことを特徴とする、請求項1に記載のランプユニット。
  15.  前記第一金属線は、前記高圧放電ランプに巻回されている
     ことを特徴とする、請求項1に記載のランプユニット。
  16.  前記第一金属線が延設された外部リード線と逆極性の外部リード線には、第二金属線が電気的に接続され、
     前記誘電体はさらに前記第二金属線と近接または接触している
     ことを特徴とする、請求項2に記載のランプユニット。
  17.  外囲器および当該外囲器内の放電空間に臨んで配された一対の放電電極を備える高圧放電ランプと、当該高圧放電ランプの始動補助部材が配され、
     前記外囲器は、前記放電空間を内包する発光部と、当該封止部に連接された第一封止部および第二封止部とを備えてなり、
     前記始動補助部材は、前記高圧放電ランプの少なくとも一方の前記放電電極に一端部が電気的に接続された第一金属線と、前記外囲器よりも高い比誘電率を有する誘電体を有し、前記第一金属線の他端側と前記誘電体は、前記高圧放電ランプを放電開始させるための印加電圧によって放電を起こす程度に、近接または接触して配されている
     ことを特徴とする始動補助部材付高圧放電ランプ。
  18.  請求項1~16のいずれかに記載の前記高圧放電ランプに対し、点灯回路が電気的に接続されてなる
     ことを特徴とするランプシステム。
  19.  請求項17に記載の始動補助付高圧放電ランプに対し、点灯回路が電気的に接続されてなる
     ことを備えることを特徴とするランプシステム。
  20.  請求項18に記載のランプシステムを備える
     ことを特徴とするプロジェクタ。
PCT/JP2011/003881 2010-12-27 2011-07-06 始動補助部材付高圧放電ランプ、ランプユニット、ランプシステム、及びプロジェクタ WO2012090344A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012504955A JP5113957B2 (ja) 2010-12-27 2011-07-06 始動補助部材付高圧放電ランプ、ランプユニット、ランプシステム、及びプロジェクタ
US13/393,786 US8690360B2 (en) 2010-12-27 2011-07-06 High pressure discharge lamp with start-up assist member, lamp unit, lamp system, and projector
CN201180003528.9A CN102687234B (zh) 2010-12-27 2011-07-06 带有起动辅助构件的高压放电灯、灯单元、灯系统以及投影机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-290895 2010-12-27
JP2010290895 2010-12-27

Publications (1)

Publication Number Publication Date
WO2012090344A1 true WO2012090344A1 (ja) 2012-07-05

Family

ID=46382491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003881 WO2012090344A1 (ja) 2010-12-27 2011-07-06 始動補助部材付高圧放電ランプ、ランプユニット、ランプシステム、及びプロジェクタ

Country Status (4)

Country Link
US (1) US8690360B2 (ja)
JP (1) JP5113957B2 (ja)
CN (2) CN103258714B (ja)
WO (1) WO2012090344A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5216934B1 (ja) * 2012-10-26 2013-06-19 パナソニック株式会社 高圧放電ランプおよび当該高圧放電ランプを用いたプロジェクタ
JP2014110081A (ja) * 2012-11-30 2014-06-12 Panasonic Corp 始動補助部材付高圧放電ランプ
JP2014120428A (ja) * 2012-12-19 2014-06-30 Panasonic Corp 始動補助部材付高圧放電ランプ、及び始動補助部材付高圧放電ランプの製造方法
JP2016031913A (ja) * 2014-07-30 2016-03-07 ウシオ電機株式会社 光源装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10026600B2 (en) * 2011-11-16 2018-07-17 Owlstone Medical Limited Corona ionization apparatus and method
JP6354213B2 (ja) * 2013-03-26 2018-07-11 セイコーエプソン株式会社 光源装置及びプロジェクター
CN105702559A (zh) * 2016-03-28 2016-06-22 毛智杰 一种新型高效节能气体放电灯管的制备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151006A (ja) * 2000-11-15 2002-05-24 Toshiba Lighting & Technology Corp 高圧放電ランプおよび照明装置
JP2004139955A (ja) * 2002-08-20 2004-05-13 Ushio Inc 光源装置
JP3938038B2 (ja) * 2002-12-18 2007-06-27 ウシオ電機株式会社 ショートアーク型放電ランプ
JP2009181927A (ja) * 2008-02-01 2009-08-13 Panasonic Corp 高圧放電ランプシステム、およびそれを用いたプロジェクタ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3528836B2 (ja) * 2002-01-09 2004-05-24 ウシオ電機株式会社 放電ランプ
KR20040002563A (ko) * 2002-06-26 2004-01-07 마쯔시다덴기산교 가부시키가이샤 고압수은램프 및 램프유닛
CN100557762C (zh) 2003-04-09 2009-11-04 松下电器产业株式会社 高压放电灯、高压放电灯的亮灯方法及亮灯装置、高压放电灯装置及其灯单元、图像显示装置、前照灯装置
US7040768B2 (en) 2003-05-22 2006-05-09 Seiko Epson Corporation Light source unit, illumination optical device, projector, and method of manufacturing light source unit
US7025464B2 (en) * 2004-03-30 2006-04-11 Goldeneye, Inc. Projection display systems utilizing light emitting diodes and light recycling
JP2008293912A (ja) * 2007-05-28 2008-12-04 Phoenix Denki Kk 高圧放電灯およびこれを用いた光源装置
JP4682216B2 (ja) * 2007-11-26 2011-05-11 パナソニック株式会社 高圧放電ランプ、それを用いたランプユニットおよびそのランプユニットを用いた投射型画像表示装置
JP5277915B2 (ja) * 2008-12-03 2013-08-28 セイコーエプソン株式会社 点灯装置、光源装置、プロジェクタ及び放電灯の点灯方法
JP2010160933A (ja) * 2009-01-07 2010-07-22 Helios Techno Holding Co Ltd 高圧放電灯

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151006A (ja) * 2000-11-15 2002-05-24 Toshiba Lighting & Technology Corp 高圧放電ランプおよび照明装置
JP2004139955A (ja) * 2002-08-20 2004-05-13 Ushio Inc 光源装置
JP3938038B2 (ja) * 2002-12-18 2007-06-27 ウシオ電機株式会社 ショートアーク型放電ランプ
JP2009181927A (ja) * 2008-02-01 2009-08-13 Panasonic Corp 高圧放電ランプシステム、およびそれを用いたプロジェクタ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5216934B1 (ja) * 2012-10-26 2013-06-19 パナソニック株式会社 高圧放電ランプおよび当該高圧放電ランプを用いたプロジェクタ
JP2014110081A (ja) * 2012-11-30 2014-06-12 Panasonic Corp 始動補助部材付高圧放電ランプ
JP2014120428A (ja) * 2012-12-19 2014-06-30 Panasonic Corp 始動補助部材付高圧放電ランプ、及び始動補助部材付高圧放電ランプの製造方法
JP2016031913A (ja) * 2014-07-30 2016-03-07 ウシオ電機株式会社 光源装置

Also Published As

Publication number Publication date
JP5113957B2 (ja) 2013-01-09
CN103258714B (zh) 2016-03-23
CN102687234B (zh) 2015-05-20
US20120218526A1 (en) 2012-08-30
US8690360B2 (en) 2014-04-08
CN103258714A (zh) 2013-08-21
CN102687234A (zh) 2012-09-19
JPWO2012090344A1 (ja) 2014-06-05

Similar Documents

Publication Publication Date Title
JP5113957B2 (ja) 始動補助部材付高圧放電ランプ、ランプユニット、ランプシステム、及びプロジェクタ
JP4788719B2 (ja) 高圧放電ランプシステム、およびそれを用いたプロジェクタ
JP2008135194A (ja) 光源装置
JP2008140614A (ja) 高圧金属蒸気放電ランプおよび照明器具
CN1187788C (zh) 包括高压放电灯和点火天线的装置
JP2002260591A (ja) 外部電極形蛍光ランプ
JP2011077035A (ja) 容量性始動補助体付き高圧放電ランプ
JP4251474B2 (ja) ショートアーク放電ランプおよび光源装置
US6997579B2 (en) Lamp with reflecting mirror and image projecting apparatus
WO2012056787A1 (ja) 放電ランプおよび放電ランプ装置
US7744249B2 (en) High-pressure discharge lamp, lamp unit and image display device
JPH06314555A (ja) 高圧放電灯およびこれを用いた投光装置
JP3223008B2 (ja) 反射板付メタルハライドランプおよびその点灯装置
JP3221228B2 (ja) 高圧放電ランプ
JP4840589B2 (ja) 高圧放電ランプ装置
JP2005129400A (ja) 光源装置、およびそれを用いた投影型表示装置
JP5216934B1 (ja) 高圧放電ランプおよび当該高圧放電ランプを用いたプロジェクタ
JP4147816B2 (ja) ショートアーク型超高圧放電ランプ
JP2011175856A (ja) 高圧放電ランプおよび照明装置
JP5607711B2 (ja) 始動補助部材付高圧放電ランプ、及び始動補助部材付高圧放電ランプの製造方法
JP2005243361A (ja) 高圧放電ランプ点灯装置および照明装置
JPH07272617A (ja) ショートアーク放電灯、放電灯点灯装置および照明装置
JP2002319368A (ja) 高圧放電灯、光源装置、光源点灯装置、照明装置および画像投影装置
JP2004247132A (ja) ランプ装置
JP2003178719A (ja) 蛍光ランプ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180003528.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012504955

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13393786

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853812

Country of ref document: EP

Kind code of ref document: A1