WO2012086820A1 - 膜の支持体 - Google Patents

膜の支持体 Download PDF

Info

Publication number
WO2012086820A1
WO2012086820A1 PCT/JP2011/079950 JP2011079950W WO2012086820A1 WO 2012086820 A1 WO2012086820 A1 WO 2012086820A1 JP 2011079950 W JP2011079950 W JP 2011079950W WO 2012086820 A1 WO2012086820 A1 WO 2012086820A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
tensile strength
support
membrane
width direction
Prior art date
Application number
PCT/JP2011/079950
Other languages
English (en)
French (fr)
Inventor
勝己 大坂
彰洋 大久保
大輔 藤枝
Original Assignee
阿波製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阿波製紙株式会社 filed Critical 阿波製紙株式会社
Priority to US13/996,274 priority Critical patent/US10080995B2/en
Priority to CN201180062366.6A priority patent/CN103429327B/zh
Priority to KR1020137019522A priority patent/KR101909306B1/ko
Publication of WO2012086820A1 publication Critical patent/WO2012086820A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/105Support pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/48Polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • B32B5/265Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a non-woven fabric layer
    • B32B5/266Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a non-woven fabric layer next to one or more non-woven fabric layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24628Nonplanar uniform thickness material

Definitions

  • the present invention relates to a membrane support that adheres a membrane to one adhesive surface, and more particularly to a membrane support that is optimal for attaching a separation membrane to an adhesive surface.
  • Patent Document 1 a support having a two-layer structure in which a high-density nonwoven fabric and a low-density nonwoven fabric are laminated has been proposed as a support for a separation membrane.
  • Patent Document 3 a support having a single-layer structure in which a high-density nonwoven fabric and a low-density nonwoven fabric are laminated.
  • the rigidity of the support becomes weaker, and when the separation membrane is applied to one side of the support and provided, Due to the contraction, there is a problem that the curve in the width direction is large, that is, the curve is bent so that the central portion is concave. If the curvature in the width direction becomes large, it may cause problems such as inability to pass the line successfully in the next step of cutting the separation membrane into a flat plate and stacking it with the channel material.
  • JP 60-238103 A Japanese Patent Laid-Open No. 61-222506 JP-A-10-225630 JP 2002-95937 A
  • the present invention has been made to solve such conventional problems.
  • the main object of the present invention is to support a membrane capable of reducing defects in the production line by suppressing the bending in the width direction in a state where the membrane is formed on the adhesive surface while reducing the basis weight of the support and reducing the basis weight.
  • Another object of the present invention is to effectively prevent the film from being curled into a cylindrical shape due to the contraction of the film in a state where the film is formed on the adhesive surface, and to solve the problem in the next process of the production line. It is to provide a support.
  • the support of the membrane of the present invention is a support in which the membrane 2 is attached to the adhesive surface 12, and a plurality of nonwoven fabric sheets 1 formed by three-dimensionally gathering fibers are laminated, and by heat and pressure treatment, The fibers of the nonwoven fabric sheet 1 are combined to form a sheet.
  • the support is formed by laminating a plurality of nonwoven fabric sheets 1 having different tensile strength aspect ratios (k), which is the ratio (f2 / f1) of the tensile strength (f2) in the length direction to the tensile strength (f1) in the width direction.
  • k tensile strength aspect ratios
  • the length direction of a nonwoven fabric sheet is the length direction of the nonwoven fabric sheet manufactured by the sheet form of predetermined width
  • the transfer direction of the nonwoven fabric sheet conveyed along a line is meant It shall be.
  • the aspect ratio (k) of the tensile strength of the nonwoven fabric sheet is the tensile strength (f2) in the length direction (longitudinal direction) with respect to the tensile strength (f1) in the width direction (lateral direction) of the nonwoven fabric sheet. Ratio (f2 / f1).
  • the above support is characterized in that, while reducing the basis weight of the support and making it thin, it suppresses bending in the width direction and reduces defects in the production line in a state where a film is formed on the adhesive surface. That is, the above-mentioned support is a state in which a plurality of laminated nonwoven fabric sheets are heat-pressed and bonded into a sheet shape, and the adhesive surface of the membrane is a plurality of nonwoven fabrics having different tensile strength ratios (f2 / f1). This is because by laminating the sheets, the sheet is curved in advance in the width direction so that the central portion is convex. This support is curved in the width direction by the heat and pressure treatment.
  • the aspect ratio of the tensile strength which is the ratio (f2 / f1) of the tensile strength (f2) in the length direction to the tensile strength (f1) in the width direction. It is because the several nonwoven fabric sheet 1 from which (k) differs is laminated
  • the ratio (f2 / f1) of the tensile strength (f2) in the length direction to the tensile strength (f1) in the width direction of the nonwoven fabric sheet is increased, the shrinkage force in the width direction due to the heat and pressure treatment increases.
  • the adhesion surface is centered in the width direction.
  • the support body in which the adhesive surface of the film is curved in the center convex in the width direction in advance is formed by forming a film on the adhesive surface which is the convex surface, and thereby shrinks when the applied film is cured.
  • the bending in the width direction is offset, that is, the bending provided in the reverse direction by the heating and pressurizing treatment can suppress the bending in the width direction due to the contraction of the film, and reduce problems in the next process.
  • the above support is curved by the difference in shrinkage in the width direction of the nonwoven fabric sheet, like a bimetal that is deformed by expansion and contraction, the difference in the aspect ratio (k) of the tensile strength of each nonwoven fabric sheet is adjusted.
  • the bending in the width direction in the heat-pressed state can be controlled more precisely and the direction in which the bending is performed can be reliably and stably specified.
  • the membrane 2 provided on the adhesive surface 12 can be a separation membrane.
  • this support can suppress the inconvenience at the time of manufacturing the separation membrane by suppressing the adhesion surface from being bent into the central recess by contraction of the formed separation membrane.
  • the nonwoven fabric sheet 1 can be laminated on the membrane support of the present invention.
  • the above support body has the simplest structure, and the adhesive surface of the film can be curved in the central direction in the width direction while the basis weight of the support body is light and thin.
  • the support of the film of the present invention can be obtained by making the nonwoven fabric sheet 1 into a wet papermaking nonwoven fabric.
  • the above support has a feature that the fibers can be uniformly distributed over the entire support since the nonwoven sheet is subjected to wet papermaking.
  • the support of the membrane of the present invention can make the nonwoven fabric sheet 1 a dry and three-dimensionally assembled nonwoven fabric.
  • the above support has a feature that the strength of the entire support can be increased because the non-woven fabric sheet is three-dimensionally assembled in a dry manner.
  • the membrane support of the present invention may include a nonwoven fabric in which the nonwoven fabric sheet 1 is wet-made and a nonwoven fabric that is three-dimensionally assembled in a dry manner.
  • the difference in aspect ratio (k) of the tensile strength of the nonwoven fabric sheet 1 can be 1.5 or more, preferably 2.5 or more.
  • the nonwoven fabric sheet 1 can be composed of polyester fibers or polyolefin fibers.
  • the membrane support of the present invention has a basis weight of 50 to 100 g / m 2 , a thickness of 50 to 150 ⁇ m, and an air permeability of 0.3 to 6.0 cc / layer. It can be set to cm 2 / sec.
  • a separation membrane in which a polymer membrane made of a polymer resin layer is provided on the adhesive surface of the support, for example, a microfiltration membrane, an ultrafiltration membrane, a nanofiltration membrane, a reverse osmosis membrane, or the like is optimal.
  • These separation membranes are a process in which a polymer membrane is formed on the adhesive surface, and a force that curves the adhesive surface to a central recess acts due to shrinkage during curing of the applied polymer resin.
  • the body has an adhesive surface that forms a polymer film curved in advance to the central convexity, a polymer resin layer is formed on this surface, and the adhesive surface becomes centrally concave due to shrinkage during curing of the polymer resin. Even if a bending force is applied to the substrate, the separation membrane is curved in the opposite direction, i.e., it is counteracted by the tensile force of the support that has the adhesive surface curved in the center, preventing the separation membrane from bending in the width direction.
  • the support of the present invention does not necessarily need to be provided with a separation membrane on the adhesive surface, and a non-separation membrane, for example, an uncured paste-like plastic is applied and the plastic is cured.
  • a film can be provided on the adhesive surface, and the support can be reinforced with this film, or the surface can be smoothed, or can be used for a support that is easy to slip.
  • the support of the membrane is formed by three-dimensionally gathering the fibers in a wet or dry manner to form a nonwoven sheet, laminating a plurality of nonwoven sheets, and heating and pressurizing the laminated sheets to form the nonwoven sheet fibers. Combined to form a sheet.
  • the nonwoven fabric sheet to be laminated so that the support body is curved in the width direction in a state in which a laminated sheet in which a plurality of nonwoven fabric sheets are laminated is heated and pressurized and processed into a sheet shape
  • k aspect ratios of the tensile strength
  • the tensile strength aspect ratio (k) is the tensile strength (f2) in the length direction / width direction. It is specified by the tensile strength (f1).
  • the use of nonwoven fabric sheets with different tensile strength aspect ratios (k) results in a difference in shrinkage in the width direction of the nonwoven fabric sheets laminated by heat and pressure treatment. Is curved in the width direction.
  • the nonwoven fabric sheet having a low tensile strength in the width direction that is, the aspect ratio (k) of the tensile strength is large.
  • the nonwoven fabric sheet has a large shrinkage
  • the nonwoven fabric sheet having a small tensile strength aspect ratio (k) has a small shrinkage and bends in the width direction due to the difference in shrinkage.
  • a support in which a plurality of non-woven sheets are laminated and heat-pressed can control the curvature in the width direction more accurately by controlling the difference in the aspect ratio (k) of the tensile strength of each non-woven sheet. .
  • the curvature in the width direction can be increased by increasing the difference in the aspect ratio (k) of the tensile strength, and conversely, the curvature can be decreased by decreasing the difference in the aspect ratio (k) of the tensile strength.
  • the film attached to the adhesive surface of the support shrinks when cured, causing the support to bend.
  • Nonwoven sheets are manufactured by various manufacturing methods such as dry and wet.
  • the nonwoven fabric sheet is preferably produced by mixing main fibers and binder fibers.
  • Synthetic fibers such as polyester fiber, polyolefin fiber, nylon fiber, aramid fiber, polyphenylene sulfide fiber, polyvinyl alcohol fiber, etc. can be used alone or in combination as the main fiber and binder fiber used in the nonwoven fabric sheet. it can.
  • Nonwoven fabric sheets containing these binder fibers can be made tough by heating and pressing to bond the fibers at intersections.
  • a nonwoven fabric sheet can also be manufactured without adding a binder fiber. However, the support obtained by heating and pressurizing the nonwoven fabric sheet to which the binder fiber is added improves the strength by welding the intersection of the fiber to the fiber, and the surface becomes smooth. More preferred.
  • polyester fiber is preferably used.
  • the use of polyester binder fibers is optimal from the comprehensive viewpoints such as mechanical strength, suitability for heat processing, and cost.
  • a low melting point polyester fiber, an unstretched polyester fiber or the like can be used as the polyester binder fiber.
  • the melting point of the polyester binder fiber is preferably in the range of 110 to 260 ° C. at a lower temperature than that of the main fiber.
  • the amount of binder fiber to be mixed should be determined in consideration of the degree of binding of the main fibers.
  • the content is preferably 20 to 80% by weight, more preferably 30 to 70% by weight.
  • the fibers constituting the nonwoven fabric sheet are suitably those having a fiber diameter of 3 to 30 ⁇ m, preferably 5 to 20 ⁇ m, and a fiber length of 1 to 25 mm, preferably 3 to 15 mm.
  • the support has a basis weight of 50 to 100 g / m 2 , a total thickness of 50 to 150 ⁇ m, and an air permeability of 0.3 in a state where a plurality of nonwoven fabric sheets are laminated and heated and pressurized. It is set to -6.0cc / cm ⁇ 2 > / sec.
  • the nonwoven fabric sheet is manufactured by various manufacturing methods such as a wet type or a dry type with the above-mentioned mixing amount.
  • the nonwoven fabric sheet manufactured by the wet method is characterized in that the fibers can be uniformly distributed as a whole.
  • the present invention can use a nonwoven fabric sheet produced by a dry process or other methods.
  • stacked mutually can also laminate
  • the main fiber and binder fiber are first uniformly dispersed in water, and then the final fiber concentration is adjusted to 0.01 to 0.50% by weight through the steps of screen (removal of foreign matter, lumps, etc.). And paper making.
  • chemicals such as a dispersion aid, an antifoaming agent, a hydrophilic agent, and an antistatic agent may be added in the process.
  • a non-woven fabric sheet produced by a wet process can be obtained by laminating a plurality of non-woven fabric sheets produced separately by a paper machine, heat-pressing them, and combining them into a single sheet to form a support.
  • stacking the several nonwoven fabric sheet manufactured by the wet has the feature which can be made more uniform.
  • bonds it in the sheet form is made into the nonwoven fabric sheet to laminate
  • a non-woven fabric sheet manufactured in a wet process is made by laminating and laminating a plurality of non-woven fabric sheets in a paper making process, and heating and pressurizing one non-woven fabric sheet laminated in a plurality of layers to form a support. You can also.
  • This nonwoven fabric sheet can be laminated by laminating a plurality of nonwoven fabric sheets together by one or several types of systems such as a circular mesh, a short mesh, a long mesh, a slanted wire mesh, and a suction former.
  • the support body in which a plurality of non-woven sheets are laminated and laminated in the paper making process and the non-woven sheet is heated and pressurized is also characterized by being uniform throughout.
  • the support is provided with a difference in the aspect ratio (k) of the tensile strength in the length direction and the width direction of each nonwoven fabric sheet laminated in the paper making process in which a plurality of nonwoven fabric sheets are joined together. It is bent in the width direction by the difference in contraction force in the pressure treatment.
  • the respective nonwoven fabric sheets laminated together are adjusted in the paper making process so that the aspect ratio (k) of the tensile strength becomes a predetermined value.
  • the aspect ratio (k) of the tensile strength of the nonwoven fabric sheet it is suitable to make paper on an inclined wire mesh.
  • the aspect ratio (k) of the tensile strength can be adjusted by adjusting the concentration of the raw material dispersion, the water flow velocity, the wire speed of the inclined wire mesh, the angle of inclination, and the like.
  • the nonwoven fabric sheet gathers fibers so that the fiber orientation in the length direction is stronger than the orientation in the width direction, thereby increasing the tensile strength in the length direction and weakening the tensile strength in the width direction.
  • the aspect ratio (k) of the tensile strength can be increased.
  • a non-woven fabric sheet produced by a wet method can make a paper using a circular net, a short net, a long net, a suction former or the like to adjust the difference in the aspect ratio (k) of the tensile strength.
  • Non-woven fabric sheet manufactured by dry process is manufactured by combining one kind or several kinds such as chemical bond, thermal bond, spun lace, needle punch, stitch bond, spun bond, and melt blow. Furthermore, a non-woven fabric sheet manufactured by a dry process is manufactured by supplying fibers without directionality on a moving belt. This nonwoven fabric sheet has a tensile strength that is the ratio (f2 / f1) of the tensile strength (f2) in the longitudinal direction to the tensile strength (f1) in the width direction due to the moving speed of the belt and the directionality of the fibers supplied to the belt. Controls the aspect ratio (k).
  • the fibers are assembled so that the fiber orientation in the length direction is stronger than the orientation in the width direction, and the tensile strength in the length direction is increased,
  • the aspect ratio (k) of the tensile strength can be increased.
  • the nonwoven fabric sheet when the aspect ratio (k) of the tensile strength is increased, the shrinkage force in the width direction by the heat and pressure treatment is increased. This is because the tensile strength in the length direction is stronger than the tensile strength in the width direction, so that in the state where the binder fibers are joined at the intersection in the heat and pressure treatment, it becomes easier to shrink in the width direction than in the length direction. is there. Furthermore, the nonwoven fabric sheets laminated on each other are curved in the width direction in a state where they are heated and pressurized and bonded into a sheet shape by giving a difference of a predetermined value or more in the aspect ratio (k) of the tensile strength.
  • the shrinkage force of each nonwoven fabric sheet is balanced and curved in the width direction in a state where the nonwoven fabric sheets are bonded together by heating and pressing. It will not be done.
  • the support of the present invention heats and pressurizes the laminated nonwoven sheets by subjecting the laminated nonwoven sheets to a central convex shape in the width direction by heating and pressing the laminated nonwoven sheets. In the state of pressure treatment, a force that contracts in the width direction acts on both the bonding surface and the opposing surface.
  • the shrinking force acting on the facing surface is adjusted to be larger than the shrinking force acting on the bonding surface
  • the facing surface side of the support is curved in a central recess in the width direction, and the bonding surface side is widened. Curve in a central convex direction. Therefore, the nonwoven fabric sheets laminated on each other are laminated on the surface which becomes the opposite surface which is the surface opposite to the adhesive surface, rather than the aspect ratio (k1) of the tensile strength of the nonwoven fabric sheet laminated on the surface which becomes the adhesive surface.
  • the aspect ratio (k2) of the tensile strength of the nonwoven fabric sheet is made larger than the shrinkage force acting on the adhesive surface.
  • the support body controls the curvature in the width direction in the shrinkage that has been subjected to the heat and pressure treatment by the difference in the aspect ratio (k) of the tensile strength of the laminated nonwoven fabric sheet. If the difference in the aspect ratio (k) of the tensile strength of the nonwoven fabric sheets to be laminated is too small, the curvature in the width direction of the support itself is reduced, and the curvature due to film contraction cannot be offset. Therefore, the difference in the aspect ratio (k) of the tensile strength of the laminated nonwoven fabric sheet is preferably 1.5 or more, more preferably 2.5 or more.
  • the difference in the aspect ratio (k) of the tensile strength of the nonwoven fabric sheets to be laminated is preferably 15 or less, more preferably 10 or less.
  • the difference in the aspect ratio (k) of the tensile strength of the nonwoven fabric sheet is set to an optimum value in consideration of the shrinkage of the film to be formed.
  • the nonwoven fabric sheet produced in a wet manner has an aspect ratio (k) of tensile strength that is greater than 1 in most cases
  • the aspect ratio (k1) of tensile strength of the nonwoven fabric sheet laminated on the opposite side of the adhesive surface is 2 .5 or more, preferably 3.5 or more
  • the shrinkage force in the heat-pressed state is increased
  • the aspect ratio (k2) of the tensile strength of the nonwoven fabric sheet on the adhesive surface is laminated on the opposite side.
  • the adhesive surface is curved in the central direction in the width direction so as to be 1.5 or more, preferably 2.5 or more smaller than the aspect ratio (k1) of the tensile strength of the nonwoven fabric sheet.
  • FIG. 1 shows an example of a hot-pressure processing facility 20. This figure has shown the state which carries out a heating-pressing process continuously, conveying the two nonwoven fabric sheets 1 laminated
  • a heating roll 21 and an elastic roll 22 In the hot-pressure processing equipment 20 shown in the figure, two rolls that are transported with the nonwoven fabric sheet 1 interposed therebetween are used as a heating roll 21 and an elastic roll 22.
  • This hot-pressure processing equipment 20 adjusts the surface temperature of the heating roll 21, the clamping force between the heating roll 21 and the elastic roll 22, and the transfer speed of the nonwoven fabric sheet 1, that is, the degree of heating and pressing by adjusting the pressing time. I have control. However, the heat and pressure processing equipment can be transferred while being sandwiched between two heating rolls and subjected to heat and pressure treatment.
  • the surface temperature of the heating roll 21 is 150 to 260 ° C., preferably 200 to 250 ° C.
  • the pressure between the heating roll 21 and the elastic roll 22 is 40 to 250 kg / cm, preferably 100 to 200 kg / cm
  • the transfer rate of the nonwoven fabric sheet 1 is 10 to 100 m / min, preferably 20 to 60 m / min, and is heated and pressurized.
  • the surface temperature of the heating roll, the clamping force of the two rolls, and the transfer speed of the nonwoven fabric sheet are adjusted according to the required support specifications.
  • the heat input becomes strong, and conversely, the surface temperature of the heating roll and the sandwiching force of the roll are low, and the nonwoven fabric
  • heat input is weakened.
  • An optimal support can be obtained by adjusting the above conditions well and adjusting the thickness and blending ratio of the raw material fibers used in the papermaking process.
  • FIG. 2 and FIG. 3 show a state in which two nonwoven fabric sheets 1 having a difference in aspect ratio (k) of tensile strength are laminated, and this laminated sheet is heated and pressed to be combined into a sheet shape.
  • molded support body 10 curves in the width direction is shown.
  • the aspect ratio (k1) of the tensile strength of the first nonwoven fabric sheet 1A laminated on the surface that becomes the facing surface 11 is the tensile strength of the second nonwoven fabric sheet 1B laminated on the surface that becomes the adhesive surface 12.
  • the strength is adjusted to be larger than the aspect ratio (k2), and as shown by arrows A and B in FIG.
  • the contraction force (indicated by arrow A) on the facing surface 11 side is the adhesion surface 12 side. 3 and is curved in the width direction with the adhesive surface 12 as a central convex and the opposing surface 11 as a central concave, as shown in FIG. 3 (b).
  • stack is made into two sheets, and the 1st nonwoven fabric sheet 1A laminated
  • a state is shown in which a single support 10 is formed by pressure treatment and bonding to each other.
  • the support is not shown, but three or more nonwoven fabric sheets can be laminated and subjected to heat and pressure treatment, and these can be combined with each other to form a support.
  • This support has an aspect ratio (k1) of the tensile strength of the first nonwoven fabric sheet laminated on the opposite surface side and an aspect ratio (k2) of the tensile strength of the second nonwoven fabric sheet laminated on the adhesive surface side.
  • the bending state in the width direction of the support can be adjusted by adjusting the aspect ratio (k3) of the tensile strength of the intermediate nonwoven fabric sheet laminated in the middle.
  • the heat and pressure treatment is performed simultaneously in a state where a plurality of nonwoven fabric sheets are laminated, but the plurality of nonwoven fabric sheets laminated to each other are subjected to heat and pressure processing as a pre-process.
  • a pre-process can also be used. That is, a nonwoven fabric sheet that has been preliminarily heated and pressed can be combined with a nonwoven fabric sheet that has not been heated and pressed, and then heated and pressurized.
  • the support manufactured as described above is provided with the film 2 attached to the adhesive surface 12 in the film forming process.
  • 4 and 5 show a process of applying a polymer solution 31 to the adhesive surface 12 and providing the semipermeable membrane 2A on this surface in a general film forming process facility 30.
  • FIG. As shown in this figure, while rotating the support 10 along the drum 32, the polymer solution 31 is attached to the surface of the convex surface which is the adhesive surface 12 in the form of a film.
  • the polymer solution 31 is filled in a hopper 33 disposed above the drum 32. The lower end of the hopper 33 is brought close to the adhesive surface 12 of the support 10 so that the polymer solution 31 does not leak from the boundary with the support 10.
  • the support 10 In order to cure the polymer solution 31 applied to the support 10, the support 10 is separated from the drum 32 and introduced into the coagulation tank 35.
  • the support 10 introduced into the coagulation tank 35 is conveyed to the transfer roll 34 and immersed in the coagulation tank 35.
  • polysulfone dissolved in N, N-dimethylformamide (DMF) at a concentration of 16.5% by weight can be used. Since this polymer solution 31 has a property that polysulfone gels and solidifies when it comes into contact with water, it is immersed in a coagulation tank 35 containing water to be gelled. After that, the support 10 that has passed through the coagulation tank 35 is immersed in the cleaning tank 36 and coagulated while cleaning the remaining DMF. As described above, a 20 to 100 ⁇ m polysulfone layer is provided as the semipermeable membrane 2A on the adhesive surface 12 of the support 10.
  • DMF N, N-dimethylformamide
  • the support 10 is curved in the width direction on the adhesive surface 12 side by the contraction force (indicated by an arrow C) of the semipermeable membrane 2A formed on the adhesive surface 12. try to.
  • the support is greatly curved in the width direction, and it may not be possible to carry the roll well.
  • the film 2 is curved in advance in a direction opposite to the bending direction due to the shrinkage at the time of curing of the film 2, that is, the adhesive surface 12 is centrally convex in the width direction.
  • the support 10 in which the adhesive surface 12 is curved in the reverse direction in advance is formed by forming the film 2 on the adhesive surface 12 that is a convex surface, so that the width of the applied film 2 due to shrinkage at the time of curing is applied.
  • the bending in the direction is offset, and the bending in the width direction due to the contraction force of the film 2 is suppressed. That is, the bending provided in the reverse direction by the heat and pressure treatment suppresses the bending in the width direction due to the contraction of the film and prevents the support 10 from being greatly bent.
  • membrane 2 can perform roll conveyance smoothly.
  • an active layer (skin layer) is coated on the surface of the semipermeable membrane 2A.
  • cellulose-based materials such as cellulose acetate, polyamide-based materials, polyimide-based materials, and the like are used depending on applications.
  • the active layer is deposited thinner than the semipermeable membrane.
  • the semipermeable membrane before coating the active layer is said to be a microfiltration membrane or ultrafiltration membrane, and the semipermeable membrane at the stage where the active layer is coated is called a nanofiltration membrane or reverse osmosis membrane. .
  • nanofiltration membrane or reverse osmosis membrane There are many uses in various fields such as fresh water, dairy, food, medicine, chemistry, nuclear industry, dyeing and processing, and it can be used as a support for each semipermeable membrane.
  • Nonwoven sheet making process 1 56% stretched polyethylene terephthalate (PET) fiber having a fiber diameter of 7 ⁇ m and a fiber length of 5 mm and 44% unstretched PET fiber having a fiber diameter of 11 ⁇ m and a fiber length of 5 mm were sufficiently dispersed in water in a chest, Adjusting the aspect ratio (k) of the tensile strength by adjusting the aqueous slurry with a fiber concentration of 0.05%, sending it to the inclined wire mesh paper machine, and adjusting the water flow rate of the aqueous slurry and the paper speed of the inclined wire mesh.
  • a base paper A of a wet nonwoven fabric sheet formed by three-dimensionally gathering fibers was made.
  • the tensile strength tester (f2) in the length direction (longitudinal direction) and the tensile strength in the width direction (transverse direction) are used in a tensile tester that cuts the produced base paper A into a width of 50 mm and sets the distance between grips to 180 mm.
  • (F1) was measured, and the aspect ratio (k) of the tensile strength, which is the ratio (f2 / f1) of the tensile strength (f2) in the length direction to the tensile strength (f1) in the width direction, was obtained.
  • This base paper A had a basis weight of 38 g / m 2 and an aspect ratio (k) of tensile strength of 6.7.
  • Nonwoven sheet making process 2 60% stretched PET fiber having a fiber diameter of 12 ⁇ m and a fiber length of 5 mm and 40% of unstretched PET fiber having a fiber diameter of 11 ⁇ m and a fiber length of 5 mm were sufficiently dispersed in water in a chest to obtain a fiber concentration of 0.05 % Of the aqueous slurry is sent to a slanted wire mesh paper machine, and the water flow rate of the aqueous slurry and the slanted wire mesh papermaking speed are adjusted to adjust the aspect ratio (k) of the tensile strength and the three-dimensional fiber.
  • the base paper F of the wet nonwoven fabric sheet formed by assembly was made.
  • the tensile strength tester (f2) in the length direction (longitudinal direction) and the tensile strength in the width direction (transverse direction) are used in a tensile tester that cuts the base paper F into 50 mm width and sets the distance between grips to 180 mm.
  • (F1) was measured, and the aspect ratio (k) of the tensile strength, which is the ratio (f2 / f1) of the tensile strength (f2) in the length direction to the tensile strength (f1) in the width direction, was obtained.
  • This base paper F had a basis weight of 38 g / m 2 and an aspect ratio (k) of tensile strength of 1.8.
  • the support of Example 1 obtained as described above had a basis weight of 78 g / m 2 , a thickness of 93 ⁇ m, and an air permeability of 0.8 cc / cm 2 / sec.
  • the tensile strength tester (f2) in the length direction (longitudinal direction) and the tensile strength in the width direction (lateral direction) were measured using a tensile tester in which the support was cut to a width of 15 mm and the distance between the grips was set to 180 mm.
  • (f1) was measured and the aspect ratio (k) of the tensile strength was determined, it was 3.5.
  • this support was cut into a sheet having a size of 400 mm (width) ⁇ 1000 mm (length), and the degree of bending in the width direction was confirmed.
  • the surface on the base paper F side was curved in a central convex in the width direction
  • the surface on the base paper A side was curved in a central concave in the width direction.
  • a photograph of this support is shown in FIG. However, this photograph shows a state where the support is placed on a horizontal base with the base paper F side as the bottom surface and the base paper A side as the top surface. As can be seen from this photograph, the obtained support was curved with both edges in the width direction floating about 20 mm from the upper surface of the table.
  • aspect ratio of the tensile strength in m 2 and (k) 6.7 base paper a the aspect ratio of the tensile strength at a basis weight 38 g / m 2 (k) has papermaking 3.6 of base paper E.
  • the obtained two non-woven sheets (base paper A and base paper E) are laminated, and the heat and pressure processing equipment 20 in which the heating roll 21 and the elastic roll 22 are combined is subjected to heat and pressure treatment under the same conditions as in Example 1.
  • the laminated nonwoven fabric sheets were combined into a sheet shape.
  • the support of Example 2 obtained as described above had a basis weight of 78 g / m 2 , a thickness of 93 ⁇ m, and an air permeability of 0.7 cc / cm 2 / sec.
  • the tensile strength tester (f2) in the length direction (longitudinal direction) and the tensile strength in the width direction (lateral direction) were measured using a tensile tester in which the support was cut to a width of 15 mm and the distance between the grips was set to 180 mm.
  • (f1) was measured and the aspect ratio (k) of the tensile strength was determined, it was 4.5.
  • this support was cut into a sheet having a size of 400 mm (width) ⁇ 1000 mm (length), and the degree of bending in the width direction was confirmed.
  • the surface on the base paper E side was curved in a central convex in the width direction
  • the surface on the base paper A side was curved in a central concave in the width direction.
  • aspect ratio of the tensile strength in m 2 (k) and the base paper B 3.6, the aspect ratio of tensile strength at a basis weight 38g / m 2 (k) has papermaking base paper F of 1.8.
  • the obtained two non-woven sheets (base paper A and base paper F) are laminated, and the heat and pressure processing equipment 20 in which the heating roll 21 and the elastic roll 22 are combined, heat and pressure treatment is performed under the same conditions as in Example 1.
  • the laminated nonwoven fabric sheets were combined into a sheet shape.
  • the support of Example 3 obtained as described above had a basis weight of 78 g / m 2 , a thickness of 93 ⁇ m, and an air permeability of 0.9 cc / cm 2 / sec.
  • the tensile strength tester (f2) in the length direction (longitudinal direction) and the tensile strength in the width direction (lateral direction) were measured using a tensile tester in which the support was cut to a width of 15 mm and the distance between the grips was set to 180 mm.
  • (f1) was measured and the aspect ratio (k) of the tensile strength was determined, it was 2.6.
  • this support was cut into a sheet having a size of 400 mm (width) ⁇ 1000 mm (length), and the degree of bending in the width direction was confirmed.
  • the surface on the base paper F side was curved in a central convex in the width direction
  • the surface on the base paper B side was curved in a central concave in the width direction.
  • the obtained two non-woven sheets (base paper A and base paper D) are laminated, and the heat and pressure processing equipment 20 in which the heating roll 21 and the elastic roll 22 are combined is subjected to heat and pressure treatment under the same conditions as in Example 1.
  • the laminated nonwoven fabric sheets were combined into a sheet shape.
  • the support of Comparative Example 1 obtained as described above had a basis weight of 79 g / m 2 , a thickness of 92 ⁇ m, and an air permeability of 0.5 cc / cm 2 / sec.
  • the tensile strength tester (f2) in the length direction (longitudinal direction) and the tensile strength in the width direction (lateral direction) were measured using a tensile tester in which the support was cut to a width of 15 mm and the distance between the grips was set to 180 mm.
  • (f1) was measured and the aspect ratio (k) of the tensile strength was determined, it was 5.7.
  • the support was cut into a sheet having a size of 400 mm (width) ⁇ 1000 mm (length), and the degree of bending in the width direction was confirmed, but this support was bent in the width direction. It wasn't.
  • the base sheet B of the wet non-woven sheet is made by adjusting the aspect ratio (k) of the tensile strength to 3.6, and in the non-woven sheet making process 2, the aspect ratio of the tensile strength
  • the aspect ratio (k) of the tensile strength is 3 at a basis weight of 38 g / m 2 in the same manner as in Example 1 except that the base paper E of the wet nonwoven fabric sheet is prepared by adjusting so that (k) is 3.6.
  • a base paper B having a basis weight of 38 g / m 2 and a tensile strength aspect ratio (k) of 3.6 was made.
  • the obtained two non-woven sheets (base paper B and base paper E) are laminated, and the heat and pressure processing equipment 20 in which the heating roll 21 and the elastic roll 22 are combined is subjected to heat and pressure treatment under the same conditions as in Example 1.
  • the laminated nonwoven fabric sheets were combined into a sheet shape.
  • the support of Comparative Example 2 obtained as described above had a basis weight of 78 g / m 2 , a thickness of 92 ⁇ m, and an air permeability of 0.8 cc / cm 2 / sec.
  • the tensile strength tester (f2) in the length direction (longitudinal direction) and the tensile strength in the width direction (lateral direction) were measured using a tensile tester in which the support was cut to a width of 15 mm and the distance between the grips was set to 180 mm.
  • (f1) was measured and the aspect ratio (k) of tensile strength was determined, it was 3.7.
  • the support was cut into a sheet having a size of 400 mm (width) ⁇ 1000 mm (length), and the degree of bending in the width direction was confirmed, but this support was bent in the width direction. It wasn't.
  • aspect ratio of the tensile strength in m 2 (k) and the base paper C of 1.8, the aspect ratio of tensile strength at a basis weight 38g / m 2 (k) has papermaking base paper F of 1.8.
  • the obtained two non-woven sheets (base paper C and base paper F) are laminated, and heat and pressure processing equipment 20 in which the heating roll 21 and the elastic roll 22 are combined is subjected to heat and pressure treatment under the same conditions as in Example 1.
  • the laminated nonwoven fabric sheets were combined into a sheet shape.
  • the support of Comparative Example 3 obtained as described above had a basis weight of 79 g / m 2 , a thickness of 94 ⁇ m, and an air permeability of 1.0 cc / cm 2 / sec.
  • the tensile strength tester (f2) in the length direction (longitudinal direction) and the tensile strength in the width direction (lateral direction) were measured using a tensile tester in which the support was cut to a width of 15 mm and the distance between the grips was set to 180 mm.
  • (f1) was measured and the aspect ratio (k) of the tensile strength was determined, it was 1.8.
  • the support was cut into a sheet having a size of 400 mm (width) ⁇ 1000 mm (length), and the degree of bending in the width direction was confirmed, but this support was bent in the width direction. It wasn't.
  • Table 1 shows the physical properties of the supports obtained in Examples 1 to 3 and Comparative Examples 1 to 3.
  • a separation membrane was provided on the adhesive surfaces of the supports obtained in Examples 1 to 3 and Comparative Examples 1 to 3 as follows.
  • the supports of Examples 1 and 3 have the surface on the base paper F side as the adhesive surface
  • the support of Example 2 has the surface on the base paper E side as the adhesive surface
  • the support of Comparative Examples 1 to 3 The body was provided with a separation membrane by the general film forming process equipment 30 shown in FIG. 4 with the surfaces of the base paper D side, base paper E side, and base paper F side as adhesive surfaces.
  • a polymer solution in which polysulfone is dissolved in N, N-dimethylformamide (DMF) at a concentration of 16.5% is applied to the adhesive surface of the support, and immersed in a coagulation tank containing water. Gelation was then performed, and the remaining DMF was immersed in a washing tank and solidified while washing, and a separation membrane was provided on the adhesive surface.
  • a polysulfone layer having a thickness of 35 ⁇ m was laminated on the adhesive surfaces of the supports of Examples 1 to 3 and Comparative Examples 1 to 3 to provide a separation membrane.
  • Example 1 As can be seen from the photograph of FIG. 7, the support of Example 1 is in a state where both edges in the width direction are lifted by about 20 mm from the upper surface of the table, with the separation membrane stacking surface as the upper surface. It was only curved. This support was able to pass through the next process without any problems, and no problems occurred.
  • Example 2 The support of Example 2 was curved in such a manner that both edges in the width direction floated about 25 mm from the top surface of the table with the separation membrane stacking surface as the top surface and placed on a horizontal table. I was able to pass through and there was no problem.
  • Example 3 The support of Example 3 was curved in a state where both edges in the width direction floated about 30 mm from the upper surface of the table with the separation membrane stacking surface as the upper surface and placed on a horizontal table. I was able to pass through and there was no problem.
  • the support of Comparative Example 1 was placed on a horizontal table with the separation membrane stacking surface as the upper surface, and the separation membrane contracted to move from both ends in the width direction toward the center. Then, it was curled into a cylinder having a diameter of about 30 mm with the separation membrane inside. This support was curled into a cylindrical shape, and thus failed to pass the next process well, resulting in problems.
  • the support of Comparative Example 2 was placed on a horizontal table with the separation membrane stacking surface as the upper surface, and the separation membrane contracted to move from both ends in the width direction toward the center. Then, it was curled into a cylinder having a diameter of about 35 mm with the separation membrane inside. This support was curled into a cylindrical shape, and thus failed to pass the next process well, resulting in problems.
  • the support of Comparative Example 3 was placed on a horizontal table with the separation membrane stacking surface as the upper surface, and the separation membrane contracted to move from both ends in the width direction toward the center. Then, it was curled into a cylinder having a diameter of about 40 mm with the separation membrane inside. This support was curled into a cylindrical shape, and thus failed to pass the next process well, resulting in problems.
  • the degree of curvature in the width direction of the supports of Examples 1 to 3 and Comparative Examples 1 to 3 on which the separation membrane was formed hardly occurred in the supports of Examples 1 to 3.
  • Comparative Examples 1 to 3 the curl increased in the order of Comparative Example 3, Comparative Example 2, and Comparative Example 1.
  • the support of the example has a tensile strength higher than that of the support of comparative example 3.
  • the aspect ratio (k) is large, and the support of Example 1 is the same as the support of Example 2 although the support of Example 1 and the support of Comparative Example 2 have the same aspect ratio (k) of tensile strength.
  • the bending in the width direction when the separation membrane was laminated on the adhesive surface was extremely reduced. Also from this result, it can be inferred that the adhesive surface of the support is preliminarily curved centrally in the width direction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Laminated Bodies (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)

Abstract

【課題】支持体の坪量を軽くして薄くしながら、接着面に膜を形成する状態で、幅方向の湾曲を抑制して、製造ラインにおける不具合を低減する。接着面に膜が形成された状態で、膜の収縮によって筒状にカールされるのを有効に防止して、製造ラインの次工程における不具合を解消する。 【解決手段】膜の支持体は、接着面12に膜2が付着される支持体であって、繊維を立体的に集合してなる複数の不織布シート1を積層すると共に、加熱加圧処理によって、不織布シート1の繊維を結合してシート状としている。支持体は、幅方向の引張強度(f1)に対する長さ方向の引張強度(f2)の比率(f2/f1)である引張強度の縦横比(k)が異なる複数の不織布シート1を積層しており、加熱加圧処理された状態において、膜2の接着面12を幅方向に、中央凸に湾曲させている。

Description

膜の支持体
 本発明は、片面の接着面に膜を付着する膜の支持体に関し、とくに、接着面に分離膜を付着するのに最適な膜の支持体に関するものである。
 分離膜の支持体として、従来、高密度の不織布と低密度の不織布とを積層した二層構造の支持体が提案されている(特許文献1及び特許文献2参照)。他方、製造方法を簡略化し、製造コストを低減するために1層構造の支持体の提案もある(特許文献3参照)。
 分離膜が使用される市場が伸びていくに従い、コスト競争も激しくなり、支持体を含めた部材へのコストダウンの要望も強くなってきている。また、スパイラル型モジュールに組み込まれて使用される場合には、その一定体積に分離膜の面積を多く収納できる方が、性能上有利となるために、支持体を含めた部材も薄いものが求められている。上記2つの要望を満たすためには、支持体の坪量を軽くして薄くするのが効率的である。
 しかしながら、支持体の坪量を軽くして薄くしていくと、支持体の剛性が弱くなり、支持体の片面に分離膜を塗布して設けた際に、塗布された分離膜の硬化時の収縮によって、幅方向の湾曲が大きく、すなわち中央部が凹状となるように湾曲する弊害が生じる。幅方向の湾曲が大きくなると、分離膜を平板状にカットして流路材と重ねて組み込む次の工程において、ラインを上手く通過することができない等の不具合が生じる原因となる。
特開昭60-238103号公報 特開昭61-222506号公報 特開平10-225630号公報 特開2002-95937号公報
 以上の問題点を解決するために、本発明者らは、支持体に分離膜を積層する際に、幅方向の湾曲を軽減できる支持体とその製造方法を開発した(特許文献4参照)。この方法は、かかる原因が支持体となる不織布の抄紙条件の設定で軽減されることに着目し、不織布の長さ方向の引張強度(f2)と幅方向の引張強度(f1)との比率(f2/f1)である引張強度の縦横比(k)を2~1とすることで、分離膜形成におけるロール搬送時の幅方向の湾曲を許容範囲に制限するものであった。
 しかしながら、この方法によっても、支持体の坪量および製膜条件によっては、十分に幅方向の湾曲を軽減できずに、次工程で不具合を生じる問題点があった。とくに、分離膜を所定の大きさの平板状にカットする状態では、分離膜が筒状にカールされやすくなり、これにより、次工程でラインを上手く通過できない等の不具合を解消できない場合があった。
 本発明は、従来のこのような問題点を解決するためになされたものである。本発明の主な目的は、支持体の坪量を軽くして薄くしながら、接着面に膜を形成する状態で、幅方向の湾曲を抑制して、製造ラインにおける不具合を低減できる膜の支持体を提供することにある。
 さらに、本発明の他の目的は、接着面に膜が形成された状態で、膜の収縮によって筒状にカールされるのを有効に防止して、製造ラインの次工程における不具合を解消できる膜の支持体を提供することにある。
課題を解決するための手段及び発明の効果
 本発明の膜の支持体は、接着面12に膜2が付着される支持体であって、繊維を立体的に集合してなる複数の不織布シート1を積層すると共に、加熱加圧処理によって、不織布シート1の繊維を結合してシート状としている。支持体は、幅方向の引張強度(f1)に対する長さ方向の引張強度(f2)の比率(f2/f1)である引張強度の縦横比(k)が異なる複数の不織布シート1を積層しており、加熱加圧処理された状態において、膜2の接着面12を幅方向に、中央凸に湾曲させている。
 なお、本明細書において、不織布シートの長さ方向とは、所定の幅のシート状に製造される不織布シートの長さ方向であって、ラインに沿って移送される不織布シートの移送方向を意味するものとする。さらに、本明細書において、不織布シートの引張強度の縦横比(k)とは、不織布シートの幅方向(横方向)の引張強度(f1)に対する長さ方向(縦方向)の引張強度(f2)の比率(f2/f1)を意味している。
 以上の支持体は、支持体の坪量を軽くして薄くしながら、接着面に膜を形成する状態で、幅方向の湾曲を抑制して、製造ラインにおける不具合を低減できる特徴がある。それは、以上の支持体が、積層された複数の不織布シートを加熱加圧処理してシート状に結合する状態で、膜の接着面を、引張強度の比率(f2/f1)が異なる複数の不織布シートを積層することで、予め幅方向に、中央部を凸とするように湾曲させるからである。この支持体が、加熱加圧処理によって幅方向に湾曲するのは、幅方向の引張強度(f1)に対する長さ方向の引張強度(f2)の比率(f2/f1)である引張強度の縦横比(k)が異なる複数の不織布シート1を積層しているからである。不織布シートは、幅方向の引張強度(f1)に対する長さ方向の引張強度(f2)の比率(f2/f1)を大きくすると、加熱加圧処理による幅方向への収縮力が大きくなる。引張強度の比率(f2/f1)が大きくなると、幅方向の引張強度(f1)が弱くなって、加熱加圧処理において幅方向の収縮が大きくなるからである。このため、複数の不織布シートを加熱加圧処理してシート状に結合する支持体は、引張強度の縦横比(k)が異なる複数の不織布シートを積層することで、引張強度の縦横比(k)が大きい不織布シートの方が、引張強度の縦横比(k)が小さい不織布シートよりも幅方向への収縮力が大きくなって幅方向に湾曲する。したがって、膜の接着面側に積層する不織布シートよりも、膜が付着されない対向面側に積層する不織布シートの引張強度の縦横比(k)を大きくすることで、接着面を幅方向に、中央凸に湾曲できる。このように、膜の接着面を予め幅方向に中央凸に湾曲させてなる支持体は、この凸状面である接着面に膜を形成することで、塗布された膜の硬化時の収縮によって幅方向への湾曲が相殺されて、すなわち、加熱加圧処理によって逆方向に設けた湾曲によって、膜の収縮による幅方向の湾曲を抑制して、次工程における不具合を低減できる。とくに、以上の支持体は、伸縮差で変形するバイメタルのように、不織布シートの幅方向の収縮の差で湾曲させるので、各々の不織布シートの引張強度の縦横比(k)の差を調整することで、加熱加圧処理された状態における幅方向の湾曲をより精密にコントロールでき、しかも湾曲させる方向をも確実に安定して特定できる特徴がある。
 本発明の膜の支持体は、接着面12に設けられる膜2を分離膜とすることができる。
 この支持体は、接着面に分離膜を形成する状態で、形成される分離膜の収縮によって、接着面が中央凹に湾曲するのを抑制して、分離膜の製造時における不具合を解消できる。
 本発明の膜の支持体は、2枚の不織布シート1を積層することができる。
 以上の支持体は、最も簡単な構造で、支持体の坪量を軽く、薄くしながら、膜の接着面を幅方向に中央凸に湾曲させることができる。
 本発明の膜の支持体は、不織布シート1を、湿式抄紙された不織布とすることができる。
 以上の支持体は、不織布シートを湿式抄紙するので、支持体の全体にわたって繊維を均一に分布できる特徴がある。
 本発明の膜の支持体は、不織布シート1を、乾式で立体的に集合された不織布とすることができる。
 以上の支持体は、不織布シートを乾式で立体的に集合するので、支持体全体の強度を強くできる特徴がある。
 本発明の膜の支持体は、不織布シート1が、湿式抄紙された不織布と乾式で立体的に集合された不織布とを含むことができる。
 本発明の膜の支持体は、不織布シート1の引張強度の縦横比(k)の差を1.5以上、好ましくは、2.5以上とすることができる。
 本発明の膜の支持体は、不織布シート1を、ポリエステル繊維またはポリオレフィン繊維で構成することができる。
 本発明の膜の支持体は、複数の不織布シート1を積層してなる支持体の坪量を50~100g/m、厚さを50~150μm、通気度を0.3~6.0cc/cm/secとすることができる。
本発明の一実施例にかかる膜の支持体の加熱加圧処理工程を示す概略図である。 加熱加圧処理工程において支持体が幅方向に湾曲する状態を示す概略斜視図である。 加熱加圧処理工程において支持体が幅方向に湾曲する原理を示す概略断面図である。 本発明の一実施例にかかる膜の支持体に分離膜を設ける製膜工程を示す概略図である。 製膜工程において膜の収縮による幅方向の湾曲が抑制される原理を示す概略断面図である。 本発明の実施例1の膜の支持体の写真である。 本発明の実施例1の膜の支持体に分離膜を設けた状態を示す写真である。 比較例1の支持体に分離膜を設けた状態を示す写真である。 比較例2の支持体に分離膜を設けた状態を示す写真である。 比較例3の支持体に分離膜を設けた状態を示す写真である。
 以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための膜の支持体を例示するものであって、本発明は膜の支持体を以下のものに特定しない。さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲」および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。
 以下、本発明の実施例として、片面の接着面に分離膜を付着する支持体について詳述する。この分離膜として、支持体の接着面にポリマー樹脂層からなる高分子膜を設けてなる分離膜、例えば、精密濾過膜、限外濾過膜、ナノ濾過膜、逆浸透膜等が最適である。これらの分離膜は、接着面に高分子膜が製膜される工程で、塗布されたポリマー樹脂の硬化時の収縮により、接着面を中央凹に湾曲させる力が作用するが、本発明の支持体は、高分子膜を製膜する接着面を、予め、中央凸に湾曲させているので、この面にポリマー樹脂層を形成して、このポリマー樹脂の硬化時の収縮により接着面を中央凹に湾曲させる力が作用しても、反対方向に湾曲してなる、すなわち接着面を中央凸に湾曲してなる支持体の引っ張り力に打ち消されて、分離膜が幅方向に湾曲するのを抑制する。ただ、本発明の支持体は、必ずしも、接着面に分離膜を設ける必要はなく、分離膜でない膜、たとえば、未硬化でペースト状のプラスチックを塗布し、このプラスチックを硬化させることで支持体の接着面に膜を設け、この膜で支持体を補強し、あるいは表面を平滑化し、あるいは又は滑りやすくする等の支持体にも使用できる。
 膜の支持体は、繊維を湿式あるいは乾式で立体的に集合して不織布シートとし、複数の不織布シートを積層して、積層された積層シートを加熱加圧処理することで、不織布シートの繊維を結合してシート状としている。さらに、支持体は、複数の不織布シートを積層している積層シートを加熱加圧処理してシート状に加工する状態で支持体が幅方向に湾曲するように、積層される不織布シートには、幅方向(横方向)の引張強度(f1)に対する長さ方向(縦方向)の引張強度(f2)の比率(f2/f1)である引張強度の縦横比(k)が異なるものを使用する。
 ここで、積層される不織布シートには、引張強度の縦横比(k)が異なるものを使用するが、引張強度の縦横比(k)は、長さ方向の引張強度(f2)/幅方向の引張強度(f1)で特定される。
 不織布シートは、引張強度の縦横比(k)を大きくすると、加熱加圧処理による幅方向への収縮力が大きくなる。引張強度の弱い幅方向の収縮が引張強度の強い長さ方向よりも大きくなるからである。したがって、積層される不織布シートに、引張強度の縦横比(k)が異なるものを使用することで、加熱加圧処理によって積層している不織布シートに幅方向の収縮に差が生じ、この収縮差によって幅方向に湾曲される。たとえば、引張強度の縦横比(k)に差のある2枚の不織布シートを積層して加熱加圧処理すると、幅方向の引張強度の弱い不織布シート、すなわち引張強度の縦横比(k)の大きい不織布シートは収縮が大きく、引張強度の縦横比(k)の小さい不織布シートは収縮が小さくなって、収縮の差によって幅方向に湾曲する。複数の不織布シートを積層して加熱加圧処理している支持体は、各々の不織布シートの引張強度の縦横比(k)の差をコントロールすることで、より正確に幅方向の湾曲をコントロールできる。たとえば、引張強度の縦横比(k)の差を大きくして幅方向の湾曲を大きくし、反対に、引張強度の縦横比(k)の差を小さくして湾曲を小さくできる。支持体の接着面に付着される膜は、硬化するときに収縮して支持体を湾曲させる。支持体の湾曲と、膜の収縮による湾曲とが互いに相殺するように、不織布シートの引張強度の縦横比(k)の差を特定して幅方向の湾曲をコントロールすることで、接着面に成膜する状態での湾曲を抑制する。
 不織布シートは、乾式、湿式等の各種製法で製造される。不織布シートは、好ましくは、主体繊維とバインダー繊維を混合して製造される。不織布シートに使用される主体繊維およびバインダー繊維として、ポリエステル繊維、ポリオレフィン繊維、ナイロン繊維、アラミド繊維、ポリフェニレンサルファイド繊維、ポリビニルアルコール繊維等の合成繊維を、単独であるいは複数を混合して使用することができる。これ等のバインダー繊維を含む不織布シートは、加熱加圧処理して繊維を交点で結合して強靭にできる。不織布シートは、バインダー繊維を添加しないで製造することもできる。ただ、バインダー繊維を添加してなる不織布シートを加熱加圧処理した支持体は、バインダー繊維が繊維の交点を溶着することで強度が向上し、表面も平滑になることより、膜の支持体としてより好ましくなる。
 バインダー繊維としては、好ましくは、ポリエステル繊維を使用する。ポリエステル系バインダー繊維を使用することは、機械的強度、熱加工適性、コスト等の総合的な見地から最適である。ポリエステル系バインダー繊維としては、低融点ポリエステル繊維あるいは未延伸ポリエステル繊維等を使用することができる。ポリエステル系バインダー繊維の融点は、主体繊維のそれよりも低温で、110~260℃の範囲であることが好ましい。
 バインダー繊維の混合量は、主体繊維の結合度を考慮して決められるのがよい。好ましくは20~80重量%、さらに好ましくは30~70重量%とするのがよい。バインダー繊維の混合量が少なすぎる場合には、強度が弱く、表面も平滑になりにくくなる。また、バインダー繊維の混合量が多すぎる場合には、コストも高くなり、適当な通気度が得られにくくなる。
 不織布シートを構成する繊維は、繊維径を3~30μm、好ましくは、5~20μmとし、繊維長を1~25mm、好ましくは、3~15mmとするものが適している。さらに、支持体は、複数の不織布シートを積層して加熱加圧処理される状態における、坪量を50~100g/mとし、全体の厚さを50~150μmとし、通気度を0.3~6.0cc/cm/secとしている。
 不織布シートは、前述した混合量で湿式または乾式等の各種製法で製造される。湿式法で製造される不織布シートは、全体的に繊維を均一に分布できる特徴がある。ただし、本発明は、乾式その他の方法で製造した不織布シートを使用できるのはいうまでもない。さらに、互いに積層される不織布シートは、湿式で製造された不織布シートと乾式で製造された不織布シートとを積層することもできる。
 湿式法では、まず主体繊維とバインダー繊維を均一に水中に分散させ、その後スクリーン(異物、塊等除去)等の工程を通り、最終の繊維濃度を0.01~0.50重量%濃度に調整し、抄造する。また、より均一な不織布シートを得るために、工程中で分散助剤、消泡剤、親水剤、帯電防止剤等の薬品を添加する場合もある。
 湿式で製造される不織布シートは、抄紙機で別々に製造された複数枚の不織布シートを積層して加熱加圧処理し、1枚のシート状に結合して支持体とすることができる。このように、湿式で製造された複数枚の不織布シートを積層して加熱加圧処理する支持体は、より均一にできる特長がある。さらに、複数の不織布シートを積層し、加熱加圧処理して1枚のシート状に結合する支持体は、積層する不織布シートに、長さ方向と幅方向の引張強度の縦横比(k)に差のあるものを使用して、加熱加圧処理における収縮力の差によって幅方向に湾曲させる。
 ただ、湿式で製造される不織布シートは、抄造工程において、複数の不織布シートを抄き合わせて積層し、複数層に積層された1枚の不織布シートを加熱加圧処理して支持体とすることもできる。この不織布シートは、円網、短網、長網、傾斜金網、サクションフォーマー等の一種類もしくは数種類の方式で、複数の不織布シートを互いに抄き合わせて積層することができる。このように、抄造工程で複数の不織布シートを抄き合わせて積層し、この不織布シートを加熱加圧処理する支持体も、全体を均一にできる特長がある。さらに、この支持体は、複数の不織布シートを抄き合わす抄造工程において、互いに積層される各々の不織布シートの長さ方向と幅方向の引張強度の縦横比(k)に差を設けて、加熱加圧処理における収縮力の差によって幅方向に湾曲させる。
 互いに積層される各々の不織布シートは、引張強度の縦横比(k)が所定値となるように、抄造工程で調整される。不織布シートの引張強度の縦横比(k)を調整するには、傾斜金網上で抄紙するのが適している。この方法は、原料分散混合液の濃度、水流速度、傾斜金網のワイヤーの速度、傾斜の角度等を調整することにより、引張強度の縦横比(k)を調整できる。不織布シートは、抄造工程において、長さ方向の繊維の配向が幅方向の配向よりも強くなるように繊維を集合させることで、長さ方向の引張強度を強く、幅方向の引張強度を弱くして、引張強度の縦横比(k)を大きくすることができる。ただ、湿式で製造される不織布シートは、円網、短網、長網、サクションフォーマー等を使用して抄紙して、引張強度の縦横比(k)の差を調整できる。
 乾式で製造される不織布シートは、ケミカルボンド、サーマルボンド、スパンレース、ニードルパンチ、ステッチボンド、スパンボンド、メルトブロー等の一種類もしくは数種類を複合して製造される。さらに、乾式で製造される不織布シートは、移動するベルトの上に、繊維を方向性なく供給して製造される。この不織布シートは、ベルトの移動速度や、ベルトに供給する繊維の方向性で、幅方向の引張強度(f1)に対する長手方向の引張強度(f2)の比率(f2/f1)である引張強度の縦横比(k)をコントロールする。たとえば、ベルトの移動速度を速くして繊維を供給することで、長さ方向の繊維の配向が幅方向の配向よりも強くなるように繊維を集合して、長さ方向の引張強度を強く、幅方向の引張強度を弱くして、引張強度の縦横比(k)を大きくすることができる。
 不織布シートは、引張強度の縦横比(k)を大きくすると、加熱加圧処理による幅方向への収縮力が大きくなる。それは、長さ方向における引張強度が、幅方向における引張強度よりも強くなるため、加熱加圧処理でバインダー繊維が交点を結合する状態において、長さ方向よりも幅方向に収縮しやすくなるからである。さらに、互いに積層される不織布シートは、引張強度の縦横比(k)に所定値以上の差を持たせることで、加熱加圧処理してシート状に結合する状態において幅方向に湾曲される。互いに積層される不織布シートの引張強度の縦横比(k)が等しいと、加熱加圧処理してシート状に結合される状態において、それぞれの不織布シートの収縮力が均衡して、幅方向に湾曲されなくなる。本発明の支持体は、積層された複数の不織布シートを加熱加圧処理することによって、膜が設けられる接着面となる面を幅方向に中央凸に湾曲させるが、積層された不織布シートを加熱加圧処理する状態では、接着面と対向面の両面において、幅方向に収縮する力が作用する。このため、対向面に作用する収縮力が接着面に作用する収縮力よりも大きくなるように調整して、支持体の対向面側を幅方向に中央凹に湾曲させて、接着面側を幅方向に中央凸に湾曲させる。したがって、互いに積層される不織布シートは、接着面となる表面に積層される不織布シートの引張強度の縦横比(k1)よりも、接着面と反対側の面である対向面となる表面に積層される不織布シートの引張強度の縦横比(k2)を大きく調整して、対向面に作用する収縮力を接着面に作用する収縮力よりも大きくする。
 支持体は、積層される不織布シートの引張強度の縦横比(k)の差で、加熱加圧処理された収縮における幅方向の湾曲をコントロールする。積層される不織布シートの引張強度の縦横比(k)の差は、小さ過ぎると、支持体自体の幅方向の湾曲が少なくなって、膜の収縮による湾曲を相殺できくなる。したがって、積層される不織布シートの引張強度の縦横比(k)の差は、好ましくは1.5以上、さらに好ましくは2.5以上とする。反対に、積層される不織布シートの引張強度の縦横比(k)の差が大き過ぎると、加熱加圧処理する工程で幅方向に湾曲しようとする力が大きすぎて、シワになったり、上手く巻き取ることができなくなるので、引張強度の縦横比(k)の差は、好ましくは15以下、さらに好ましくは10以下とする。ただ、支持体に付着される膜の収縮も一定でないので、不織布シートの引張強度の縦横比(k)の差は、成膜される膜の収縮を考慮して最適な値に設定される。
 湿式で製造される不織布シートは、引張強度の縦横比(k)が大抵の場合1よりも大きくなるので、接着面の反対側に積層される不織布シートの引張強度の縦横比(k1)を2.5以上、好ましくは3.5以上として、加熱加圧処理された状態での収縮力を大きくし、かつ接着面の不織布シートの引張強度の縦横比(k2)を、反対側に積層される不織布シートの引張強度の縦横比(k1)よりも1.5以上、好ましくは2.5以上小さくなるようにして、接着面を幅方向に中央凸に湾曲させる。
 以上のようにして得られる不織布シートを複数枚積層すると共に、積層された積層シートを熱圧加工設備で加熱加圧処理してシート状に結合する。図1は、熱圧加工設備20の一例を示している。この図は、互いに積層された2枚の不織布シート1を、2本のロールで挟んで移送しながら、連続的に加熱加圧処理する状態を示している。図に示す熱圧加工設備20は、不織布シート1を挟んで移送する2本のロールを、加熱ロール21と弾性ロール22としている。この熱圧加工設備20は、加熱ロール21の表面温度と、加熱ロール21と弾性ロール22の挟着力と、不織布シート1の移送速度、すなわち、押圧時間を調節して加熱加圧処理する程度を制御している。ただ、熱圧加工設備は、2本の加熱ロールで挟着しながら移送して、加熱加圧処理することもできる。加熱ロール21の表面温度は、150~260℃、好ましくは200~250℃とし、加熱ロール21と弾性ロール22で挟着する圧力は、40~250kg/cm、好ましくは100~200kg/cmとし、不織布シート1の移送速度は、10~100m/min、好ましくは20~60m/minとして加熱加圧処理する。
 以上の加熱加圧処理工程においては、要求される支持体の仕様により、加熱ロールの表面温度と、2本のロールの挟着力と、不織布シートの移送速度を調整する。加熱ロールの表面温度と2本のロールの挟着力が高く、不織布シートの移送温度が遅い場合には、熱の入りが強くなり、逆に加熱ロールの表面温度とロールの挟着力が低く、不織布シートの度が速い場合には、熱の入りが弱くなる。上記の条件を上手く調整することと、抄造工程で使用する原料繊維の太さ、配合率を調整することで、最適な支持体を得ることができる。
 ここで、図2と図3は、引張強度の縦横比(k)に差を設けた2枚の不織布シート1を積層し、この積層シートを加熱加圧処理してシート状に結合する状態で、成形された支持体10が幅方向に湾曲する原理図を示している。これらの図において、対向面11となる面に積層される第1の不織布シート1Aの引張強度の縦横比(k1)は、接着面12となる面に積層される第2の不織布シート1Bの引張強度の縦横比(k2)よりも大きく調整しており、図3の(a)の矢印Aと矢印Bで示すように、対向面11側の収縮力(矢印Aで表示)が接着面12側の収縮力(矢印Bで表示)よりも大きくなって、図3の(b)で示すように、接着面12を中央凸として、対向面11を中央凹とする状態で幅方向に湾曲する。
 図1ないし図3では、積層する不織布シート1を2枚とし、対向面11側に積層される第1の不織布シート1Aと、接着面12側に積層される第2の不織布シート1Bとを加熱加圧処理して互いに結合して、1枚の支持体10とする状態を示している。ただ、支持体は、図示しないが、3枚以上の不織布シートを積層して加熱加圧処理し、これらを互いに結合して支持体とすることもできる。この支持体は、対向面側に積層される第1の不織布シートの引張強度の縦横比(k1)と、接着面側に積層される第2の不織布シートの引張強度の縦横比(k2)に加えて、中間に積層される中間の不織布シートの引張強度の縦横比(k3)も調整することで、支持体の幅方向への湾曲状態を調整できる。
 さらに、以上の加熱加圧処理においては、複数の不織布シートを積層する状態で同時に加熱加圧処理しているが、互いに積層される複数枚の不織布シートは、前工程として加熱加圧加工したものを使用することもできる。すなわち、予め加熱加圧加工してなる不織布シートに、加熱加圧前の不織布シートを重ねて加熱加圧処理して結合することもできる。
 以上のようにして製造された支持体は、製膜工程において接着面12に膜2が付着して設けられる。図4と図5は、一般的な製膜工程設備30で、接着面12にポリマー溶液31を塗布して、この面に半透膜2Aを設ける工程を示している。この図に示すように、支持体10をドラム32に沿って回転させながら、接着面12である凸状面の表面にポリマー溶液31を膜状に付着させる。ポリマー溶液31はドラム32の上方に配設されたホッパー33に充填している。ホッパー33は支持体10との境界からポリマー溶液31が漏れないように、下端を支持体10の接着面12に接近させている。支持体10に塗布したポリマー溶液31を硬化させるために、支持体10をドラム32から離して凝固槽35に導入する。凝固槽35に導入された支持体10は、移送ロール34に搬送されて凝固槽35に浸漬される。
 ポリマー溶液31には、例えばポリスルフォンを16.5重量%の濃度で、N,N-ジメチルホルムアミド(DMF)に溶解したものが使用できる。このポリマー溶液31は、水に接触すると、ポリスルフォンがゲル化して固まる性質を持つため、水を入れた凝固槽35に浸漬してゲル化させる。その後、凝固槽35を通過した支持体10は、洗浄槽36に浸漬し、残留しているDMFを洗浄しながら凝固させる。以上のようにして、支持体10の接着面12に、半透膜2Aとして20~100μmのポリスルフォン層を設ける。
 この工程において、支持体10は、図5の(b)に示すように、接着面12に形成される半透膜2Aの収縮力(矢印Cで表示)によって、接着面12側が幅方向に湾曲しようとする。従来の支持体では、この時に、支持体が幅方向に大きく湾曲して、上手くロール搬送できなくなることがあった。これに対して、本発明の支持体10では、膜2の硬化時の収縮による湾曲方向とは逆方向に、すなわち、接着面12が幅方向に中央凸となるように予め湾曲させている。このように、接着面12を予め逆方向に湾曲させてなる支持体10は、凸状面である接着面12に膜2を形成することで、塗布された膜2の硬化時の収縮による幅方向への湾曲が相殺されて、膜2の収縮力による幅方向への湾曲が抑制される。すなわち、加熱加圧処理によって逆方向に設けた湾曲によって、膜の収縮による幅方向の湾曲を抑制して、支持体10が大きく湾曲されるのが阻止される。これにより、膜2が設けられた支持体10は、ロール搬送をスムーズに行うことが可能になる。
 その後、半透膜2Aの表面に活性層(スキン層)をコーティングする。活性層には用途に応じて、酢酸セルロース等のセルロース系、ポリアミド系、ポリイミド系等が使用される。活性層は、半透膜よりも薄く付着される。
 一般的に、活性層をコーティングする前の段階の半透膜が精密濾過膜、限外濾過膜と言われ、活性層をコーティングした段階の半透膜がナノ濾過膜、逆浸透膜と言われる。
 用途としては、造水、酪農、食品、医薬、化学、原子力工業、染色加工業等、多分野に多種用途があり、各々の半透膜の支持体として使用することができる。
 以下に、本発明の実施例について具体的に説明する。ただ、本発明は以下の実施例に限定するものではない。
 なお、以下の例の物性は次のようにして求めた。また、以下の例において、%は特に断らない限り、重量%を意味する。
 《坪量》JIS P 8124に準拠して測定した。
 《厚さ》JIS P 8118に準拠して測定した。
 《引張強度》JIS P 8113に準拠して測定した。
 《引張強度の縦横比(k)》JIS P 8113に準拠して不織布シートの長さ方向(縦方向)の引張強度(f2)と幅方向(横方向)の引張強度(f1)を測定し、以下の式に基づいて引張強度の縦横比(k)を求めた。
 引張強度の縦横比(k)=長さ方向の引張強度(f2)/幅方向の引張強度(f1)
 《通気度》JIS L 1096に準拠して、フラジール形試験機を用いて測定した。
[不織布シートの抄造工程1]
 繊維径が7μmで繊維長が5mmの延伸ポリエチレンテレフタレート(PET)繊維56%と、繊維径が11μmで繊維長が5mmの未延伸PET繊維44%を、チェスト内で水中に充分に分散させて、繊維濃度0.05%の水性スラリーを調整し、これを傾斜金網抄紙機に送り、水性スラリーの水流速度と傾斜金網の抄紙速度を調整することで、引張強度の縦横比(k)を調整しながら、繊維を立体的に集合してなる湿式不織布シートの原紙Aを抄造した。
 抄造された原紙Aを50mm幅に裁断し、つかみ具の間隔を180mmにセットした引張試験機で、長さ方向(縦方向)の引張強度(f2)と、幅方向(横方向)の引張強度(f1)とを測定し、幅方向の引張強度(f1)に対する長さ方向の引張強度(f2)の比率(f2/f1)である引張強度の縦横比(k)を求めた。
 この原紙Aは、坪量38g/mで、引張強度の縦横比(k)が6.7であった。
[不織布シートの抄造工程2]
 繊維径が12μmで繊維長が5mmの延伸PET繊維60%と、繊維径が11μmで繊維長が5mmの未延伸PET繊維40%を、チェスト内で水中に充分分散させて、繊維濃度0.05%の水性スラリーを調整し、これを傾斜金網抄紙機に送り、水性スラリーの水流速度と傾斜金網の抄紙速度を調整することで、引張強度の縦横比(k)を調整しながら、繊維を立体的に集合してなる湿式不織布シートの原紙Fを抄造した。
 抄造された原紙Fを50mm幅に裁断し、つかみ具の間隔を180mmにセットした引張試験機で、長さ方向(縦方向)の引張強度(f2)と、幅方向(横方向)の引張強度(f1)とを測定し、幅方向の引張強度(f1)に対する長さ方向の引張強度(f2)の比率(f2/f1)である引張強度の縦横比(k)を求めた。
 この原紙Fは、坪量38g/mで、引張強度の縦横比(k)が1.8であった。
[加熱加圧処理工程]
 得られた2枚の不織布シート(原紙Aと原紙F)を積層し、図1に示すように、加熱ロール21と弾性ロール22を組み合わせた熱圧加工設備20で、連続的に加熱熱圧処理した。この工程において、加熱ロール21は、表面温度を230℃とし、加熱ロール21と弾性ロール22とで狭着される圧力は、180kg/cmとし、加工される速度を27m/minとして、積層された不織布シートを加熱加圧処理してシート状に結合した。
 以上のようにして得られた実施例1の支持体は、坪量78g/m、厚さ93μm、通気度が0.8cc/cm/secであった。また、この支持体を15mm幅に裁断し、つかみ具の間隔を180mmにセットした引張試験機で、長さ方向(縦方向)の引張強度(f2)と、幅方向(横方向)の引張強度(f1)とを測定し、引張強度の縦横比(k)を求めると3.5であった。
 さらに、この支持体を400mm(幅)×1000mm(長さ)の寸法のシート状に裁断して、幅方向への湾曲の程度を確認した。この支持体は、原紙F側の表面が幅方向に中央凸に湾曲し、原紙A側の表面が幅方向に中央凹に湾曲していた。この支持体の写真を図6に示す。ただし、この写真は、原紙F側を下面とし、原紙A側を上面として、支持体を水平な台の上に載せた状態を示している。この写真からも分かるように、得られた支持体は、幅方向の両端縁が台の上面から約20mm浮く状態で湾曲していた。
 不織布シートの抄造工程2において、引張強度の縦横比(k)が3.6となるように調整して湿式不織布シートの原紙Eを抄造する以外、実施例1と同様にして、坪量38g/mで引張強度の縦横比(k)が6.7の原紙Aと、坪量38g/mで引張強度の縦横比(k)が3.6の原紙Eを抄造した。
 得られた2枚の不織布シート(原紙Aと原紙E)を積層し、加熱ロール21と弾性ロール22を組み合わせた熱圧加工設備20で、実施例1と同じ条件で加熱熱圧処理して、積層された不織布シートをシート状に結合した。
 以上のようにして得られた実施例2の支持体は、坪量78g/m、厚さ93μm、通気度が0.7cc/cm/secであった。また、この支持体を15mm幅に裁断し、つかみ具の間隔を180mmにセットした引張試験機で、長さ方向(縦方向)の引張強度(f2)と、幅方向(横方向)の引張強度(f1)とを測定し、引張強度の縦横比(k)を求めると4.5であった。
 さらに、この支持体を400mm(幅)×1000mm(長さ)の寸法のシート状に裁断して、幅方向への湾曲の程度を確認した。この支持体は、原紙E側の表面が幅方向に中央凸に湾曲し、原紙A側の表面が幅方向に中央凹に湾曲していた。この支持体を、原紙E側を下面とし、原紙A側を上面として、水平な台の上に載せると、幅方向の両端縁が台の上面から約12mm浮く状態で湾曲していた。
 不織布シートの抄造工程1において、引張強度の縦横比(k)が3.6となるように調整して湿式不織布シートの原紙Bを抄造する以外、実施例1と同様にして、坪量38g/mで引張強度の縦横比(k)が3.6の原紙Bと、坪量38g/mで引張強度の縦横比(k)が1.8の原紙Fを抄造した。
 得られた2枚の不織布シート(原紙Aと原紙F)を積層し、加熱ロール21と弾性ロール22を組み合わせた熱圧加工設備20で、実施例1と同じ条件で加熱熱圧処理して、積層された不織布シートをシート状に結合した。
 以上のようにして得られた実施例3の支持体は、坪量78g/m、厚さ93μm、通気度が0.9cc/cm/secであった。また、この支持体を15mm幅に裁断し、つかみ具の間隔を180mmにセットした引張試験機で、長さ方向(縦方向)の引張強度(f2)と、幅方向(横方向)の引張強度(f1)とを測定し、引張強度の縦横比(k)を求めると2.6であった。
 さらに、この支持体を400mm(幅)×1000mm(長さ)の寸法のシート状に裁断して、幅方向への湾曲の程度を確認した。この支持体は、原紙F側の表面が幅方向に中央凸に湾曲し、原紙B側の表面が幅方向に中央凹に湾曲していた。この支持体を、原紙F側を下面とし、原紙B側を上面として、水平な台の上に載せると、幅方向の両端縁が台の上面から約7mm浮く状態で湾曲していた。
比較例1
 不織布シートの抄造工程2において、引張強度の縦横比(k)が6.7となるように調整して湿式不織布シートの原紙Dを抄造する以外、実施例1と同様にして、坪量38g/mで引張強度の縦横比(k)が6.7の原紙Aと、坪量38g/mで引張強度の縦横比(k)が6.7の原紙Dを抄造した。
 得られた2枚の不織布シート(原紙Aと原紙D)を積層し、加熱ロール21と弾性ロール22を組み合わせた熱圧加工設備20で、実施例1と同じ条件で加熱熱圧処理して、積層された不織布シートをシート状に結合した。
 以上のようにして得られた比較例1の支持体は、坪量79g/m、厚さ92μm、通気度が0.5cc/cm/secであった。また、この支持体を15mm幅に裁断し、つかみ具の間隔を180mmにセットした引張試験機で、長さ方向(縦方向)の引張強度(f2)と、幅方向(横方向)の引張強度(f1)とを測定し、引張強度の縦横比(k)を求めると5.7であった。
 さらに、この支持体を400mm(幅)×1000mm(長さ)の寸法のシート状に裁断して、幅方向への湾曲の程度を確認したが、この支持体は、幅方向への湾曲が生じていなかった。
比較例2
 不織布シートの抄造工程1において、引張強度の縦横比(k)が3.6となるように調整して湿式不織布シートの原紙Bを抄造し、不織布シートの抄造工程2において、引張強度の縦横比(k)が3.6となるように調整して湿式不織布シートの原紙Eを抄造する以外、実施例1と同様にして、坪量38g/mで引張強度の縦横比(k)が3.6の原紙Bと、坪量38g/mで引張強度の縦横比(k)が3.6の原紙Eを抄造した。
 得られた2枚の不織布シート(原紙Bと原紙E)を積層し、加熱ロール21と弾性ロール22を組み合わせた熱圧加工設備20で、実施例1と同じ条件で加熱熱圧処理して、積層された不織布シートをシート状に結合した。
 以上のようにして得られた比較例2の支持体は、坪量78g/m、厚さ92μm、通気度が0.8cc/cm/secであった。また、この支持体を15mm幅に裁断し、つかみ具の間隔を180mmにセットした引張試験機で、長さ方向(縦方向)の引張強度(f2)と、幅方向(横方向)の引張強度(f1)とを測定し、引張強度の縦横比(k)を求めると3.7であった。
 さらに、この支持体を400mm(幅)×1000mm(長さ)の寸法のシート状に裁断して、幅方向への湾曲の程度を確認したが、この支持体は、幅方向への湾曲が生じていなかった。
比較例3
 不織布シートの抄造工程1において、引張強度の縦横比(k)が1.8となるように調整して湿式不織布シートの原紙Cを抄造する以外、実施例1と同様にして、坪量38g/mで引張強度の縦横比(k)が1.8の原紙Cと、坪量38g/mで引張強度の縦横比(k)が1.8の原紙Fを抄造した。
 得られた2枚の不織布シート(原紙Cと原紙F)を積層し、加熱ロール21と弾性ロール22を組み合わせた熱圧加工設備20で、実施例1と同じ条件で加熱熱圧処理して、積層された不織布シートをシート状に結合した。
 以上のようにして得られた比較例3の支持体は、坪量79g/m、厚さ94μm、通気度が1.0cc/cm/secであった。また、この支持体を15mm幅に裁断し、つかみ具の間隔を180mmにセットした引張試験機で、長さ方向(縦方向)の引張強度(f2)と、幅方向(横方向)の引張強度(f1)とを測定し、引張強度の縦横比(k)を求めると1.8であった。
 さらに、この支持体を400mm(幅)×1000mm(長さ)の寸法のシート状に裁断して、幅方向への湾曲の程度を確認したが、この支持体は、幅方向への湾曲が生じていなかった。
 実施例1ないし3、及び比較例1ないし3で得られた支持体の物性を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[製膜工程]
 さらに、実施例1~3、及び比較例1~3で得られた支持体の接着面に、以下のようにして分離膜を設けた。実施例1と3の支持体は、原紙F側の表面を接着面として、また、実施例2の支持体は、原紙E側の表面を接着面として、さらにまた、比較例1~3の支持体は、それぞれ原紙D側、原紙E側、原紙F側の表面を接着面として、図4に示す一般的な製膜工程設備30で分離膜を設けた。この製膜工程において、ポリスルフォンを16.5%の濃度でN,N-ジメチルホルムアミド(DMF)に溶解したポリマー溶液を支持体の接着面に塗布し、水を入れた凝固槽に浸漬してゲル化させ、その後、洗浄槽に浸漬し残留しているDMFを洗浄しながら凝固させて、接着面に分離膜を設けた。
 以上のようにして、実施例1~3、及び比較例1~3の支持体の接着面上に、厚さ35μmのポリスルフォン層を積層して分離膜を設けた。
 以上の製膜工程で分離膜が形成された実施例1~3、及び比較例1~3の支持体を400mm(幅)×500mm(長さ)の寸法のシート状に裁断して、接着面に形成された分離膜の硬化時の収縮による幅方向への湾曲の程度を確認した。図7ないし図10は、シート状に裁断された実施例1及び比較例1~3の支持体が幅方向に湾曲する状態を示す写真である。ただし、これらの写真は、分離膜積層面を上面として、支持体を水平な台の上に載せた状態を示している。
 実施例1の支持体は、図7の写真からも分かるように、分離膜積層面を上面として水平な台の上に載せた状態で、幅方向の両端縁が台の上面から約20mm浮く状態に湾曲しただけであった。この支持体は、次工程も問題なく通過することができて不具合が生じることはなかった。
 実施例2の支持体は、分離膜積層面を上面として水平な台の上に載せた状態で、幅方向の両端縁が台の上面から約25mm浮く状態に湾曲したが、次工程も問題なく通過することができて不具合が生じることはなかった。
 実施例3の支持体は、分離膜積層面を上面として水平な台の上に載せた状態で、幅方向の両端縁が台の上面から約30mm浮く状態に湾曲したが、次工程も問題なく通過することができて不具合が生じることはなかった。
 比較例1の支持体は、図8の写真で示すように、分離膜積層面を上面として水平な台の上に載せた状態で、分離膜の収縮により、幅方向の両端から中央部に向かって、分離膜を内側として、直径を約30mmとする筒状にカールした。この支持体は、筒状にカールしてしまうことで、次工程をうまく通過できずに不具合が生じてしまった。
 比較例2の支持体は、図9の写真で示すように、分離膜積層面を上面として水平な台の上に載せた状態で、分離膜の収縮により、幅方向の両端から中央部に向かって、分離膜を内側として、直径を約35mmとする筒状にカールした。この支持体は、筒状にカールしてしまうことで、次工程をうまく通過できずに不具合が生じてしまった。
 比較例3の支持体は、図10の写真で示すように、分離膜積層面を上面として水平な台の上に載せた状態で、分離膜の収縮により、幅方向の両端から中央部に向かって、分離膜を内側として、直径を約40mmとする筒状にカールした。この支持体は、筒状にカールしてしまうことで、次工程をうまく通過できずに不具合が生じてしまった。
 以上のように、分離膜が形成された実施例1~3、及び比較例1~3の支持体の幅方向の湾曲の度合いは、実施例1~3の支持体ではほとんど湾曲が生じなかったのに対して、比較例1~3においては、比較例3、比較例2、比較例1の順にカールが強くなった。
 とくに、実施例の支持体と比較例の支持体の加熱加圧処理後の引張強度の縦横比(k)を比較すると、実施例の支持体は、比較例3の支持体よりも引張強度の縦横比(k)が大きく、また、実施例1の支持体と比較例2の支持体とは引張強度の縦横比(k)が同等であるにも関わらず、実施例の支持体の方が、接着面に分離膜を積層した際の幅方向の湾曲が極めて少なくなった。この結果からも、支持体の接着面を、予め幅方向に中央凸に湾曲させた効果だと推察できる。
  1…不織布シート      1A…第1の不織布シート
                1B…第2の不織布シート
  2…膜           2A…半透膜
 10…支持体
 11…対向面
 12…接着面
 20…熱圧加工設備
 21…加熱ロール
 22…弾性ロール
 30…製膜工程設備
 31…ポリマー溶液
 32…ドラム
 33…ホッパー
 34…移送ロール
 35…凝固槽
 36…洗浄槽

Claims (10)

  1.  繊維を立体的に集合してなる複数の不織布シート(1)が積層されると共に、加熱加圧処理によって、不織布シート(1)の繊維を結合してシート状としてなる、接着面(12)に膜(2)を付着する膜の支持体であって、
     幅方向の引張強度(f1)に対する長さ方向の引張強度(f2)の比率(f2/f1)である引張強度の縦横比(k)が異なる複数の不織布シート(1)が積層され、加熱加圧処理された状態において、膜(2)の接着面(12)を幅方向に、中央凸に湾曲させてなる膜の支持体。
  2.  前記接着面(12)に設けられる膜(2)が分離膜である請求項1に記載される膜の支持体。
  3.  2枚の不織布シート(1)が積層されてなる請求項1又は2に記載される膜の支持体。
  4.  前記不織布シート(1)が、湿式抄紙された不織布である請求項1ないし3のいずれかに記載される膜の支持体。
  5.  前記不織布シート(1)が、乾式で立体的に集合された不織布である請求項1ないし3のいずれかに記載される膜の支持体。
  6.  前記不織布シート(1)が、湿式抄紙された不織布と乾式で立体的に集合された不織布とを含む請求項1ないし3のいずれかに記載される膜の支持体。
  7.  積層される前記不織布シート(1)の引張強度の縦横比(k)の差が1.5以上である請求項1ないし6のいずれかに記載される膜の支持体。
  8.  積層される前記不織布シート(1)の引張強度の縦横比(k)の差が2.5以上である請求項7に記載される膜の支持体。
  9.  前記不織布シート(1)の繊維が、ポリエステル繊維またはポリオレフィン繊維で構成されてなる請求項1ないし8のいずれかに記載される膜の支持体。
  10.  複数の不織布シート(1)を積層してなる支持体の坪量が50~100g/m、厚さが50~150μm、通気度が0.3~6.0cc/cm/secである請求項1ないし9のいずれかに記載される膜の支持体。
PCT/JP2011/079950 2010-12-24 2011-12-23 膜の支持体 WO2012086820A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/996,274 US10080995B2 (en) 2010-12-24 2011-12-23 Membrane support material
CN201180062366.6A CN103429327B (zh) 2010-12-24 2011-12-23 膜的支撑体
KR1020137019522A KR101909306B1 (ko) 2010-12-24 2011-12-23 막의 지지체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-288945 2010-12-24
JP2010288945A JP5739154B2 (ja) 2010-12-24 2010-12-24 膜の支持体

Publications (1)

Publication Number Publication Date
WO2012086820A1 true WO2012086820A1 (ja) 2012-06-28

Family

ID=46314085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079950 WO2012086820A1 (ja) 2010-12-24 2011-12-23 膜の支持体

Country Status (5)

Country Link
US (1) US10080995B2 (ja)
JP (1) JP5739154B2 (ja)
KR (1) KR101909306B1 (ja)
CN (1) CN103429327B (ja)
WO (1) WO2012086820A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103962012A (zh) * 2013-02-05 2014-08-06 北越纪州制纸株式会社 半透膜支撑体用无纺布

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5809588B2 (ja) * 2012-03-15 2015-11-11 三菱製紙株式会社 半透膜支持体
DK2959509T3 (en) 2013-02-14 2018-08-13 Nanopareil Llc Electrospun hybrid nanofiber felt, method of making it and method of purifying biomolecules
GB2530815A (en) * 2014-09-30 2016-04-06 Eaton Technologies Ip Gmbh & Co Kg Filter element and filter unit
CN105040275B (zh) * 2015-08-31 2017-03-29 常州市康捷特种无纺布有限公司 用于反渗透膜的湿法基材无纺布及其制备方法
JP6612664B2 (ja) * 2016-03-16 2019-11-27 株式会社東芝 繊維配向シート
CN109316974B (zh) * 2018-11-23 2021-04-30 浙江福斯特新材料研究院有限公司 一种半透膜支撑材料
KR102633174B1 (ko) * 2018-12-11 2024-02-01 주식회사 엘지화학 에어 필터 및 공기 청정기
CN110453377B (zh) * 2019-08-20 2021-10-19 浙江福斯特新材料研究院有限公司 支撑材料和半透膜复合材料
CN112619427B (zh) * 2020-12-14 2023-04-07 宁波日新恒力科技有限公司 一种半透膜支撑体及其制备方法
CN112663399B (zh) * 2020-12-16 2022-08-09 宁波日新恒力科技有限公司 一种用于水处理反渗透膜支撑体基材的湿法无纺布及其制备方法
CN112681001A (zh) * 2020-12-16 2021-04-20 宁波日新恒力科技有限公司 一种用于反渗透膜支撑体基材的湿法无纺布及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238103A (ja) * 1984-05-10 1985-11-27 Awa Seishi Kk 分離膜支持体
JPS61222506A (ja) * 1985-03-29 1986-10-03 Japan Vilene Co Ltd 半透膜支持体及びその製造方法
JP2001079368A (ja) * 1999-09-20 2001-03-27 Hour Seishi Kk 分離膜支持体とその製造方法
JP2002095937A (ja) * 2000-09-22 2002-04-02 Hour Seishi Kk 半透膜支持体およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01221593A (ja) * 1988-02-27 1989-09-05 Kanzaki Paper Mfg Co Ltd 金属蒸着ラベル用紙及びその製造方法
JPH0524519Y2 (ja) * 1989-01-20 1993-06-22
JP3153487B2 (ja) * 1997-02-13 2001-04-09 三木特種製紙株式会社 半透膜支持体
EP1044719B8 (en) 1997-02-13 2009-04-22 Miki Tokushu Paper Mfg. Co., Ltd. Support for semipermeable membrane
KR101483475B1 (ko) * 2007-07-31 2015-01-16 도레이 카부시키가이샤 분리막 지지체 및 그 제조 방법
JP5585105B2 (ja) * 2010-02-08 2014-09-10 東レ株式会社 分離膜支持体ならびにそれを用いた分離膜および流体分離素子
CN102188910B (zh) * 2010-02-16 2014-10-22 三菱制纸株式会社 半透膜支撑体及半透膜支撑体的制造方法
CN101905124B (zh) * 2010-07-28 2013-09-25 中材科技股份有限公司 一种可控制收缩量的聚四氟乙烯膜热处理设备及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238103A (ja) * 1984-05-10 1985-11-27 Awa Seishi Kk 分離膜支持体
JPS61222506A (ja) * 1985-03-29 1986-10-03 Japan Vilene Co Ltd 半透膜支持体及びその製造方法
JP2001079368A (ja) * 1999-09-20 2001-03-27 Hour Seishi Kk 分離膜支持体とその製造方法
JP2002095937A (ja) * 2000-09-22 2002-04-02 Hour Seishi Kk 半透膜支持体およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103962012A (zh) * 2013-02-05 2014-08-06 北越纪州制纸株式会社 半透膜支撑体用无纺布

Also Published As

Publication number Publication date
KR20140016256A (ko) 2014-02-07
KR101909306B1 (ko) 2018-10-17
US10080995B2 (en) 2018-09-25
US20130295339A1 (en) 2013-11-07
JP2012135713A (ja) 2012-07-19
CN103429327B (zh) 2015-09-02
JP5739154B2 (ja) 2015-06-24
CN103429327A (zh) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5739154B2 (ja) 膜の支持体
JP5291274B2 (ja) 半透膜支持体およびこれを使用する半透膜の製造方法
US7051883B2 (en) Wetlaid-spunbond laminate membrane support
JP6136269B2 (ja) 水処理用分離膜エレメント
JP3250901B2 (ja) 繊維補強樹脂シートの積層体の製造方法
JP4936435B2 (ja) スパイラル型膜エレメント及びその製造方法
CN1509803A (zh) 生产螺旋形膜片件的方法
CN109316974B (zh) 一种半透膜支撑材料
EP2584081B1 (en) Self-adhesive fiber mat
CN1304093C (zh) 生产螺旋形膜片件的方法
JP4341419B2 (ja) プリフォームの製造方法および複合材料の製造方法
JP5809583B2 (ja) 半透膜支持体
JP6200793B2 (ja) 網状不織布及び強化積層体
JP6537430B2 (ja) 補強シート及びその製造方法
JPH03243309A (ja) プリプレグの製造方法
KR20220023961A (ko) 분리막 엘리먼트 및 그 사용 방법, 그리고 수 처리 장치
JP2017104851A (ja) 分離膜および分離膜エレメント
TW201829193A (zh) 分離組成物
JPS59171616A (ja) プリプレグの積層方法
JP2017124570A (ja) 湾曲形状繊維積層体の製造方法および装置
JP2017217822A (ja) 製本方法及び製本装置とこれに関連する書籍構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11850904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137019522

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13996274

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11850904

Country of ref document: EP

Kind code of ref document: A1