WO2012081716A1 - 鋼板のスケール除去用ノズルおよび鋼板のスケール除去装置並びに鋼板のスケール除去方法 - Google Patents

鋼板のスケール除去用ノズルおよび鋼板のスケール除去装置並びに鋼板のスケール除去方法 Download PDF

Info

Publication number
WO2012081716A1
WO2012081716A1 PCT/JP2011/079271 JP2011079271W WO2012081716A1 WO 2012081716 A1 WO2012081716 A1 WO 2012081716A1 JP 2011079271 W JP2011079271 W JP 2011079271W WO 2012081716 A1 WO2012081716 A1 WO 2012081716A1
Authority
WO
WIPO (PCT)
Prior art keywords
scale
nozzle
scale removal
orifice
steel plate
Prior art date
Application number
PCT/JP2011/079271
Other languages
English (en)
French (fr)
Inventor
建太 苅部
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US13/994,110 priority Critical patent/US9321084B2/en
Priority to CN201180059767.6A priority patent/CN103260779B/zh
Priority to KR1020137014820A priority patent/KR101506827B1/ko
Priority to EP11849326.1A priority patent/EP2653243B1/en
Publication of WO2012081716A1 publication Critical patent/WO2012081716A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • B08B3/022Cleaning travelling work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • B05B1/04Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape in flat form, e.g. fan-like, sheet-like
    • B05B1/042Outlets having two planes of symmetry perpendicular to each other, one of them defining the plane of the jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • B05B1/08Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape of pulsating nature, e.g. delivering liquid in successive separate quantities ; Fluidic oscillators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/14Arrangements for preventing or controlling structural damage to spraying apparatus or its outlets, e.g. for breaking at desired places; Arrangements for handling or replacing damaged parts
    • B05B15/18Arrangements for preventing or controlling structural damage to spraying apparatus or its outlets, e.g. for breaking at desired places; Arrangements for handling or replacing damaged parts for improving resistance to wear, e.g. inserts or coatings; for indicating wear; for handling or replacing worn parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/04Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing
    • B21B45/06Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing of strip material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/04Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing
    • B21B45/08Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing hydraulically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making
    • Y10T29/49323Assembling fluid flow directing devices, e.g., stators, diaphragms, nozzles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49428Gas and water specific plumbing component making
    • Y10T29/49432Nozzle making

Definitions

  • the present invention relates to a scale removing nozzle, a steel plate scale removing device, and a steel plate scale removing method for removing scale on the surface of the steel plate.
  • a steel material rolling line steel material is charged into a heating furnace in an oxidizing atmosphere and heated in a temperature range of 1100 to 1300 ° C. for several hours, followed by hot rolling.
  • a primary scale generated during heating and a secondary scale generated after extraction from the heating furnace are generated.
  • the scale bites into the surface of the steel plate as a product, and remains as scale wrinkles.
  • This scale wrinkle significantly deteriorates the surface quality of the steel sheet and also has a significant effect on product quality because it becomes a starting point for cracks during bending.
  • an antioxidant is applied to the surface of the steel material (see, for example, Patent Document 1), and (2) the heating temperature of the steel material is set below the melting point (about 1170 ° C.) of the firelight (for example, refer to Patent Document 2), (3) Perform rolling in a completely oxygen-free state (for example, refer to Patent Document 3), (4) Set the temperature before rolling and the temperature during rolling to a high temperature (about 1000 ° C. or higher). (5) A proposal has been made to completely remove the generated scale (see, for example, Patent Document 4).
  • the means (1) not only increases the complicated application work, but also increases the manufacturing cost due to the cost of the treatment agent.
  • (2) since the steel material is heated at a low temperature, the burden on the rolling mill increases, and there is a standard that cannot be applied from the viewpoint of securing material properties depending on the steel type. Further, (3) is not realistic because the equipment cost becomes enormous. Moreover, since (4) is extracted from the heating furnace at a high temperature, the fuel unit price increases, and the scale loss increases.
  • a scale removal nozzle used in a scale removal apparatus that performs descaling normally injects high-pressure water onto the surface of a steel sheet, and peels and removes the scale of the steel sheet by the impact force of the injected water.
  • JP-A-1-249214 Japanese Patent Publication No.58-1167 Japanese Patent Publication No. 60-15684 Japanese Patent No. 4084295 Japanese Patent No. 31299967
  • Patent Document 4 the technique described in Patent Document 4 is to review the internal structure of the nozzle for scale removal, and the orifice (discharge hole) at the tip of the nozzle and the taper angle 30 ⁇ from this orifice.
  • a nozzle having a taper portion extending at 80 ° and a large diameter portion connected to the taper portion, wherein the ratio of the inner diameter D1 of the large diameter portion to the short diameter D2 of the orifice (D1 / D2) is 3 or more. ing.
  • Patent Document 4 is a technique that optimizes the internal structure of a conventional scale removal nozzle, there is a limit in greatly improving the descaling capability. Therefore, the present inventor has paid attention to such a problem, and has previously proposed to provide a steel plate scale removal nozzle, a steel plate scale removal device, and a steel plate scale removal method that can remove scale more efficiently. The investigation was repeated using a descaling ability evaluation model (see Patent Document 5).
  • FIG. 1 is a diagram showing a collision model of water droplets on a steel plate in scale removal by jet water.
  • the total impact force (F) and the unit impact force (S) can be expressed by the following equations.
  • F total impact force of water sprayed on the steel sheet surface [N]
  • S unit impact force of water sprayed on the steel sheet surface [Pa]
  • P0 spray pressure [Pa]
  • a orifice area [M 2 ]
  • C sound velocity [m / s]
  • d particle size [m] of water droplet
  • coefficient
  • t time [s] for the shock wave to travel through the droplet.
  • the inventors of the present invention have repeatedly studied based on the above descaling capability evaluation model, and have focused on the particle diameter d [m] of the droplet. And if the droplet can be refined, the total impact force (F) and unit impact force (S) increase, and the new finding that the descaling ability can be improved was obtained. Therefore, various nozzles were prototyped and further research was conducted.
  • the steel plate scale removal nozzle according to one aspect of the present invention sprays water onto the surface of the steel plate, and removes the scale of the steel plate by the impact of the sprayed water.
  • the discharge portion at the tip of the nozzle is a tapered portion provided continuously to the large diameter portion forming the cylindrical flow path, a first orifice formed on the outlet side of the tapered portion, and the first orifice
  • a resonance chamber having a radial dimension larger than the major axis of the first orifice and a second orifice formed on the exit side of the resonance chamber is provided on the outlet side of the first orifice.
  • the conventional scale removal nozzle discharges a continuous jet from an orifice to form a droplet flow.
  • the vibration of a specific frequency depending on the capacity of the resonance chamber is amplified and the periodicity is increased.
  • An intermittent (discontinuous) jet (or pulse jet) is formed. Accordingly, the droplet can be refined by promoting the transition to the droplet flow, and thereby the total impact force (F) and unit impact force generated when the droplet collides with the steel surface. (S) can be increased. As a result, the descaling capability was greatly improved compared to the conventional nozzle.
  • the cross-sectional shape of the resonance chamber is rectangular. preferable. This is because in order to resonate and amplify, it is preferable to reflect the light vertically to the wall surface.
  • the wall surface is a curved surface such as a circular cross section, the flow is diffused and is not easily amplified.
  • the second orifice has an elliptical shape
  • the resonance chamber has an axial height of 0 relative to the major axis of the second orifice. It is preferably formed in the range of 5 to 10 times.
  • a steel plate scale removing apparatus includes a plurality of scale removing nozzles arranged above and below a steel plate that is a rolled material in a rolling process, and each scale removing device.
  • a scale removing device that removes scale on the surface of a rolled material by spraying high-pressure water onto the surface of the rolled material from a nozzle for use in a steel sheet, wherein the scale removing nozzle is used as the scale removing nozzle.
  • the scale removal nozzle according to any one of the above is mounted.
  • each scale removing nozzle is based on the scale removing nozzle according to any one of the scale removing nozzles for the steel sheet according to one aspect of the present invention. Since the effect is exhibited, the scale can be efficiently removed by the above-described action mechanism.
  • the scale removal method of the steel plate which concerns on 1 aspect of this invention WHEREIN:
  • the high-pressure water is supplied from the scale removal nozzle to the scale of the surface of the steel plate which is a rolling material in a rolling process.
  • removing the scale by using the scale removal nozzle according to any one of the scale removal nozzles of the steel sheet according to one aspect of the present invention as the scale removal nozzle.
  • a plurality of nozzles are arranged above and below the rolled material in the rolling step, and high-pressure water is sprayed from the scale removing nozzles onto the surface of the rolled material to remove the scale on the surface of the rolled material.
  • the scale removal nozzle to be used is the scale removal nozzle according to any one of the scale removal nozzles for a steel sheet according to the aspect of the present invention.
  • the scale can be efficiently removed by the above-described action mechanism.
  • the scale on the surface of the rolled material can be efficiently removed.
  • FIG. 1 is an explanatory view showing a collision model of water droplets on a steel plate in scale removal by spray water.
  • FIG. 2 is a schematic configuration diagram showing an example of a rolling line equipped with a steel plate scale removing device according to the present invention.
  • FIG. 3 is a schematic perspective view showing an example of the scale removing nozzle of the present invention.
  • FIG. 4 is a schematic cross-sectional view taken along line XX of FIG.
  • FIG. 5 is a schematic front view of the nozzle discharge section of FIG.
  • FIG. 6 is a diagram showing a discharge portion of a conventional scale removal nozzle used in the comparative example.
  • the rolling process of the steel sheet includes a heating furnace 50 that heats the rolled material (steel sheet) K, and a heating furnace 50 exit side to remove scale from the rolled material K taken out from the heating furnace 50.
  • HTB comprises a heating furnace outlet-side deskeler 60, followed by a rough rolling mill 70 that performs rough rolling, and a finish rolling mill 80 that subsequently performs finish rolling.
  • the scale removing device of the present invention is arranged in each rolling process. That is, the heating furnace outlet-side descaler 60 is provided with adapters 61 for attaching the heating furnace outlet-side scale removing nozzles above and below the rolled material K. Similarly, a scale removal nozzle mounting adapter 62 is provided on the rough rolling entry side (RSB) of the rough rolling mill 70, and a scale removal nozzle attachment adapter 63 is provided on the finishing rolling entry side (FSB) of the finish rolling mill 80. Are arranged above and below the rolled material K, respectively. Each of the scale removal nozzle mounting adapters 61, 62, 63 is equipped with a scale removal nozzle 1 (hereinafter also simply referred to as “nozzle”).
  • nozzle scale removal nozzle 1
  • the scale removal nozzle 1 attached to the adapter 61, 62, 63 for attaching the scale removal nozzle is connected to the pump 30 and the accumulator 40 through a pipe, and sprays high-pressure water onto the surface of the rolled material K. Can do.
  • this scale removal apparatus since this scale removal apparatus has the several pump 30 and the accumulator 40, it can always ensure the pressure and discharge amount of the high pressure water injected stably.
  • FIG. 3 is a schematic perspective view of the nozzle 1
  • FIG. 4 is a schematic cross-sectional view taken along line XX of FIG. 3
  • FIG. 5 is a schematic front view of a discharge portion at the nozzle tip of FIG.
  • the nozzle 1 is mainly composed of a casing 2, a nozzle case 11, and a nozzle tip 12.
  • a flow path (or nozzle hole) is formed in the axial direction of the nozzle 1 by these members.
  • the casing 2 has a substantially cylindrical shape and is provided with a flow path (or nozzle hole) inside so that water can flow into the flow path from one end on the upstream side of the nozzle 1.
  • a nozzle case 11 is attached to the other end of the casing 2.
  • the nozzle case 11 has a substantially cylindrical shape, and a nozzle tip 12 is mounted on the tip end side of the nozzle 1.
  • the nozzle tip 12 is made of cemented carbide, and ejects a discharge flow therefrom.
  • the casing 2 is composed of a first casing 2a that can be fixed to the nozzle case 11 with screws and a second casing 2b that can be fixed to the first casing 2a with screws. ing.
  • a plurality of slits (or inlets) 3 extending in the axial direction are formed at predetermined intervals in the circumferential direction on the circumferential surface and end surface (flat surface) at the upstream end of the second casing 2b.
  • the plurality of slits 3 serve as filters for allowing water to flow in while restricting the inflow of impurities.
  • a rectifying unit (or rectifier or stabilizer) 4 is disposed in the flow path in the second casing 2b.
  • the rectifying unit 4 is for guiding the water flowing in from the slit 3 to the nozzle hole, and includes a plurality of rectifying plates (rectifying blades) 5 extending in the radial direction from the core, and upstream and downstream of the core.
  • the casing 2 that constitutes such a filter and includes the rectifying unit can also be referred to as a filter unit or a rectifying casing.
  • the rectifying plate 5 of the rectifying unit 4 is in contact with the inner wall of the second casing 2b, and the rectifying unit 4 is restricted from moving downstream by fixing means (for example, locking, welding, fixing, etc.). ing.
  • the flow path of the casing 2 extends from the upstream end (inlet) of the second casing 2b to the downstream end of the rectifying unit 4, and has substantially the same inner diameter (that is, the inner diameter of the upstream end of the casing 2b).
  • a cylindrical flow path P1 having the same inner diameter, and an inclined flow path (annular inclination) that reaches a middle portion of the first casing 2a from the downstream end of the rectifying unit 4 toward the downstream direction and narrows in a tapered shape with a gentle inclination.
  • the inclined wall (tapered portion) forming the inclined channel (annular inclined channel) P2 has a taper angle of about 5 to 10 °, for example.
  • a cemented carbide nozzle tip 12 and a flow path having substantially the same inner diameter as the downstream end of the first casing 2a are formed from the tip of the nozzle 1 toward the upstream direction.
  • Bushings (or annular side walls) 17 are sequentially attached.
  • the nozzle tip 12 is regulated by the latching step portion 13 in the direction toward the tip.
  • a nozzle tip 12 serving as a discharge portion at the tip thereof is continuously provided on a taper portion 16 provided continuously with a large diameter portion forming a cylindrical flow path, and on the outlet side of the taper portion 16.
  • a resonance chamber 19 having a radial dimension larger than a major axis of the first orifice 20 is formed continuously on the outlet side of the first orifice 20. Since the resonance chamber 19 is structured to divide the nozzle tip 12 to create a space, the material of the resonance chamber 19 is made of the same cemented carbide as the nozzle tip 12.
  • a cross-sectional shape may be circular, a rectangular shape is preferable. This is because, if the cross-sectional shape of the resonance chamber 19 is a rectangular shape, in order to amplify the resonance, it is preferable to reflect it perpendicularly to the wall surface.
  • the tip surface of the nozzle tip 12 is formed with a curved groove 14 having a U-shaped cross section in the radial direction, and an elliptical discharge hole 15 is formed on the curved concave surface of the curved groove 14 as shown in FIG. Are provided continuously on the exit side of the resonance chamber. Note that the bottom surface of the curved groove 14 may be a curved bottom surface with both end portions raised as it extends in the extending direction (or radial direction) with the discharge hole 15 as the lowermost portion.
  • the nozzle flow path (nozzle hole) extending in the axial direction of the nozzle 1 has an elliptical opening in the curved groove 14 (second orifice) 15 and a rectangular tube-like resonance formed in the nozzle tip 12.
  • a resonance flow path P6 including a chamber 19 and a first orifice 20 formed on the entry side of the resonance chamber 19, and a taper portion extending linearly from the first orifice 20 toward the upstream side of the axis.
  • the flow paths extending in a uniform inner diameter from the upstream end of the tapered portion 16 (in this example, the cylindrical flow paths P3 and P4 from the upstream end of the tapered section 16 to the downstream end of the gently inclined flow path P2) have a large diameter.
  • Part 18 may be used.
  • the elliptical first orifice 20 and the discharge hole 15 both have a major axis / minor axis ratio of about 1.5 to 1.8.
  • the large diameter portion 18 (cylindrical flow path) with respect to the short diameter D2 of the first orifice 20 and the discharge hole 15
  • the ratio (D1 / D2) of the inner diameter D1 of P3 and P4 or the downstream end of the inclined flow path P2 extending in the downstream direction from the rectifying unit is set to about 4.5 to 6.9.
  • the angle (taper angle) ⁇ of the tapered portion 16 is set to about 45 to 55 ° in order to increase the impact force even when the jetted water has a low pressure and / or a low flow rate.
  • a flange for attaching the nozzle 1 to a conduit (not shown) using an adapter (not shown) at an appropriate place of the nozzle case 11 and the casing 2 (in this example, the nozzle case 2).
  • Etc. can be formed.
  • the nozzle case 11 may be provided with a positioning convex portion 25 for the conduit in order to increase the positioning accuracy and inject the discharge flow in a flat or strip shape in a predetermined direction.
  • the nozzle 1 is attached to the adapters 61, 62, and 64 for attaching the scale removing nozzle of the scale removing device.
  • the discharge portion at the tip of the nozzle 1 includes a tapered portion 16 provided continuously to the large diameter portion 18 forming the cylindrical flow path, a first orifice 20 formed on the outlet side of the tapered portion 16, and a first orifice.
  • the vibration of a specific frequency depending on the capacity of the resonance chamber 19 is amplified to form an intermittent (discontinuous) jet (or pulse jet) having periodicity. Accordingly, the droplet can be refined by promoting the transition to the droplet flow. Therefore, the total impact force (F) and unit impact force (F) generated when the droplet collides with the steel surface. It has become possible to increase S).
  • the descaling capability was greatly improved compared to the conventional nozzle. Therefore, according to the scale removing device, the scale removing nozzle 1 attached thereto, and the steel plate scale removing method using the nozzle 1, both the descaling performance and efficiency can be greatly improved.
  • the standard plate width is 1.2 m
  • the standard plate thickness is 220 mm for the outlet side 220 mm of the heating furnace 50
  • the rough rolling inlet side (RSB) 62 is 220 to 70 mm
  • the finishing rolling inlet side (FSB) 63 is 60 to 40 mm was used.
  • the results of comparison experiments with the conventional type are shown in Table 1 below.
  • the height h of the resonance chamber 19 is set to the first and second orifices 15 and 19 according to the injection pressure P0 [Pa], the descaling flow rate [l / min], and the spray distance H [m]. Adjustment is made in the range of 0.5 to 10 times the major axis D3.
  • the descaling capability is 1.3 to 1.5 times the improvement of the descaling capability in any process compared to the conventional one, the power consumption at the pump 30 is 70%, and Reduced flow rate by improving descaling capability is reduced by 30%, and the occurrence rate of quality defects due to descaling capability is less than 50% compared to the conventional one.
  • this scale removal nozzle 1 the descaling performance It can be seen that the efficiency has been greatly improved.
  • the height of the resonance chamber 19 depends on the injection pressure P0 [Pa], the descaling flow rate [l / min], and the spray distance H [m]. It was confirmed that a sufficient effect can be obtained by adjusting the length h in the range of 0.5 to 10 times the major axis D3 of the orifices 15 and 19.
  • the steel plate scale removal nozzle, the steel plate scale removal device, and the steel plate scale removal method according to the present invention are not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. Of course, it is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nozzles (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

スケールを効率よく除去できる鋼板のスケール除去用ノズルを提供する。スケール除去用ノズル1は、ノズル先端の吐出部が、円筒状流路を形成する径大部に連続して設けられたテーパ部16と、テーパ部出側に形成された第一オリフィス20と、第一オリフィス出側に連続して当該第一オリフィス20の長径よりも径方向寸法が大きく設けられた共振室19と、共振室19の出側に形成された第二オリフィス15とを有する。

Description

鋼板のスケール除去用ノズルおよび鋼板のスケール除去装置並びに鋼板のスケール除去方法
 本発明は、鋼板表面のスケールを除去するためのスケール除去用ノズルおよび鋼板のスケール除去装置並びに鋼板のスケール除去方法に関する。
 鋼材の圧延ラインでは、鋼材を酸化性雰囲気の加熱炉に装入し、通常1100~1300℃の温度域で数時間加熱した後に熱間圧延する。熱間圧延の際には、加熱時に生成した一次スケールおよび加熱炉から抽出後に生成する二次スケールが生じる。このようなスケールが除去されずに鋼材が圧延されると、スケールが製品である鋼板表面に食い込み、スケール疵となって残る。このスケール疵は、鋼板の表面性状を著しく損なうとともに、曲げ加工時にクラック発生の起点となるため、製品品質に重大な影響を及ぼす。
 そのため、この問題の解決手段として、(1)鋼材表面に酸化防止材を塗布する(例えば特許文献1参照)、(2)鋼材の加熱温度をファイアライトの融点(約1170℃)以下にする(例えば特許文献2参照)、(3)完全無酸素化状態で圧延を行なう(例えば特許文献3参照)、(4)圧延前の温度、圧延中の温度を高温(約1000℃以上)とする、(5)生成したスケールを完全に除去する(例えば特許文献4参照)、といった提案がされている。
 しかし、(1)の手段は、煩雑な塗布作業が増えるのみならず、処理剤の費用がかかるため製造コストが高くなる。また、(2)は、鋼材を低温で加熱するため、圧延機の負担が増大するとともに、鋼種によっては材料特性を確保する観点から適用できない規格が存在する。また、(3)は、設備コストが莫大となるので現実的ではない。また、(4)は、加熱炉から高温で抽出となるため、燃料の原単価が増加し、スケールロスが増大する。
 そこで、次なる解決手段として、(5)生成したスケールを完全に除去するという、いわゆるデスケーリングを行なう方策が有効である。デスケーリングを行うスケール除去装置に用いられるスケール除去用ノズルは、通常、鋼板の表面に高圧の水を噴射し、その噴射された水の衝撃力によって鋼板のスケールを剥離して除去する。
特開平1−249214号公報 特公昭58−1167号公報 特公昭60−15684号公報 特許第4084295号公報 特許第3129967号公報
 ここで、(5)の解決手段に関し、特許文献4記載の技術は、スケール除去用ノズルの内部構造を見直すものであり、ノズル先端部のオリフィス(吐出孔)と、このオリフィスからテーパ角30~80°で延びるテーパ部と、このテーパ部に連なる径大部とを有する構成とし、オリフィスの短径D2に対する径大部の内径D1の割合(D1/D2)を3以上とするノズルが開示されている。
 しかしながら、特許文献4に記載の技術は、従来のスケール除去用ノズルの内部構造を最適化した技術なので、デスケーリング能力を大幅に向上させる上では限界があった。
 そこで、本発明者は、このような問題点に着目し、スケールを一層効率よく除去できる鋼板のスケール除去用ノズルおよび鋼板のスケール除去装置並びに鋼板のスケール除去方法を提供すべく、以前に提案したデスケーリング能力評価モデル(特許文献5参照)を用いて検討を重ねた。
 つまり、デスケーリング能力は噴射水が鋼材表面に衝突する際に発生する総衝撃力(F)および単位衝撃力(S)で評価することができる。図1は、噴射水によるスケール除去における水滴の鋼板への衝突モデルを示す図である。同図において、総衝撃力(F)および単位衝撃力(S)は、以下の式で示すことができる。
 F=P0×a×C×(3/d)×α×t
 S=F/A
 但し、F:鋼板表面での噴射された水の総衝撃力[N],S:鋼板表面での噴射された水の単位衝撃力[Pa],P0:噴射圧力[Pa],a:オリフィス面積[m],C:音速[m/s],d:水滴の粒子径[m],α:係数,t:衝撃波が液滴中を伝わる時間[s]である。
 本発明者は、上記デスケーリング能力評価モデルに基づき検討を重ねたところ、液滴の粒子径d[m]に着目した。そして、液滴を微細化できれば総衝撃力(F)および単位衝撃力(S)が増加し、デスケーリング能力を向上できるという新たな知見を得た。そこで、種々のノズルを試作し、更に鋭意研究を行なった。その結果、デスケノズル先端のオリフィスの直後に、所定容量の共振室を設け、さらにその後方(吐出側)に同様のオリフィスを形成すれば、液滴が微細化するとともに、液滴の乱流運動エネルギーが増大し、デスケーリング能力が大幅に向上することを見いだし、一層優れたスケール除去用ノズルおよび鋼板のスケール除去装置並びに鋼板のスケール除去方法を発明するに至った。
 すなわち、上記課題を解決するために、本発明の一態様に係る鋼板のスケール除去用ノズルは、鋼板の表面に水を噴射し、その噴射された水の衝撃によって鋼板のスケールを除去するスケール除去用ノズルであって、ノズル先端の吐出部は、円筒状流路を形成する径大部に連続して設けられたテーパ部と、該テーパ部出側に形成された第一オリフィスと、該第一オリフィス出側に連続して当該第一オリフィスの長径よりも径方向寸法が大きく設けられた共振室と、該共振室の出側に形成された第二オリフィスとを有することを特徴とする。
 従来のスケール除去用ノズルは、オリフィスから連続噴流を吐出して液滴流を形成していた。しかし、本発明の一態様に係る鋼板のスケール除去用ノズルによれば、吐出噴流周囲のせん断層で発生した振動のうち、共振室の容量に依存した特定周波数の振動が増幅して周期性をもつ間欠(不連続)噴流(又はパルスジェット)を形成する。これによって、液滴流への移行を促進することで液滴を微細化することができ、これにより、同液滴が鋼材表面に衝突する際に発生する総衝撃力(F)および単位衝撃力(S)を増大させることが可能になった。この結果、従来ノズルに比べてデスケーリング能力が大幅に向上した。
 ここで、本発明の一態様に係る鋼板のスケール除去用ノズルにおいて、前記共振室の横断面形状には、種々の形状を採用可能ではあるが、前記共振室の横断面が矩形であることが好ましい。共振・増幅させるには、壁面に垂直に反射させるのがよいからである。これに対し、横断面が円状のように、壁面が曲面であると流れが放散してしまい増幅されにくい。
 また、本発明の一態様に係る鋼板のスケール除去用ノズルにおいて、前記第二オリフィスは、楕円状をなし、前記共振室は、その軸方向の高さが第二オリフィスの長径に対して、0.5~10倍の範囲に形成されていることは好ましい。
 また、上記課題を解決するために、本発明の一態様に係る鋼板のスケール除去装置は、圧延工程における圧延材である鋼板の上下に配置される複数のスケール除去用ノズルを備え、各スケール除去用ノズルから高圧の水を圧延材表面に噴射して圧延材表面のスケールを除去するスケール除去装置であって、前記スケール除去用ノズルとして、上記本発明の一態様に係る鋼板のスケール除去用ノズルのうちいずれか一の態様のスケール除去用ノズルが装着されていることを特徴とする。
 本発明の一態様に係る鋼板のスケール除去装置によれば、各スケール除去用ノズルが、上記本発明の一態様に係る鋼板のスケール除去用ノズルのうちいずれか一の態様のスケール除去用ノズルによる作用効果を奏するので、上述の作用機序により、スケールを効率よく除去することができる。
 また、上記課題を解決するために、本発明の一態様に係る鋼板のスケール除去方法は、圧延工程における圧延材である鋼板の表面のスケールを、スケール除去用ノズルから高圧の水を圧延材表面に噴射して除去する方法であって、前記スケール除去用ノズルとして、上記本発明の一態様に係る鋼板のスケール除去用ノズルのうちいずれか一の態様のスケール除去用ノズルを用い、当該スケール除去用ノズルを圧延工程での圧延材の上下に複数配置し、各スケール除去用ノズルから高圧の水を圧延材表面に噴射して圧延材表面のスケールを除去することを特徴とする。
 本発明の一態様に係る鋼板のスケール除去方法によれば、使用するスケール除去用ノズルが、上記本発明の一態様に係る鋼板のスケール除去用ノズルのうちいずれか一の態様のスケール除去用ノズルによる作用効果を奏するので、上述の作用機序により、スケールを効率よく除去することができる。
 上述のように、本発明によれば、圧延材表面のスケールを効率よく除去することができる。
図1は、スプレー水によるスケール除去における水滴の鋼板への衝突モデルを示す説明図である。 図2は、本発明に係る鋼板のスケール除去装置を備える圧延ラインの一例を示す概略構成図である。 図3は、本発明のスケール除去用ノズルの一例を示す概略斜視図である。 図4は、図3のX−X線概略断面図である。 図5は、図3のノズル吐出部の概略正面図である。 図6は、比較例で使用した、従来のスケール除去用ノズルの吐出部を示す図である。
 以下、本発明の一態様に係るスケール除去用ノズルを備える鋼板のスケール除去装置の一実施形態について説明する。
 図2に示すように、鋼板の圧延工程は、圧延材(鋼板)Kを加熱する加熱炉50と、この加熱炉50から取り出された圧延材Kからスケールを除去するために加熱炉50出側(HSB)に設置された加熱炉出側デスケラ60と、それに続いて粗圧延を行なう粗圧延機70と、それに続いて仕上げ圧延を行なう仕上げ圧延機80とから構成されている。
 本発明のスケール除去装置は各圧延工程に配置される。すなわち、加熱炉出側デスケラ60には、加熱炉出側スケール除去用ノズルの装着用アダプター61が圧延材Kの上下に配置される。同様に、粗圧延機70の粗圧延入側(RSB)にはスケール除去用ノズルの装着用アダプター62、仕上げ圧延機80の仕上げ圧延入側(FSB)にはスケール除去用ノズルの装着用アダプター63がそれぞれ圧延材Kの上下に配置される。各スケール除去用ノズルの装着用アダプター61、62、63のそれぞれには、後述するスケール除去用ノズル1(以下、単に「ノズル」ともいう)が装着されている。スケール除去用ノズルの装着用アダプター61、62、63に装着されたスケール除去用ノズル1は、ポンプ30、アキュムレータ40に配管を通して接続されており、高圧の水を圧延材Kの表面に噴射することができる。なお、このスケール除去装置は、複数台のポンプ30とアキュムレータ40とを有するため、噴射される高圧水の圧力と吐出量とを常に安定して確保することができる。
 次に、ノズル1について詳しく説明する。なお、図3は、ノズル1の概略斜視図、図4は図3のX−X線概略断面図、図5は図3のノズル先端の吐出部の概略正面図である。
 図3~図5に示すように、ノズル1は、ケーシング2と、ノズルケース11と、ノズルチップ12とから主に構成されている。これらの部材によってノズル1の軸線方向に流路(又はノズル孔)が形成されている。
 ケーシング2は、略円筒状をなしており内部に流路(又はノズル孔)を備え、ノズル1の上流側となる一端から水が流路内に流入可能になっている。ケーシング2の他端にノズルケース11が装着される。ノズルケース11は略円筒状をなし、ノズルチップ12がノズル1の先端部側に装着されている。ノズルチップ12は超硬合金製であり、ここから吐出流を噴出させる。
 なお、この例では、ケーシング2は、ノズルケース11に対してねじによって固定可能な第1のケーシング2aと、第1のケーシング2aに対してねじによって固定可能な第2のケーシング2bとから構成されている。
 第2のケーシング2bの上流側端部での周面及び端面(平坦面)には、軸方向に延びる複数のスリット(又は流入口)3が周方向に所定の間隔ごとに形成されている。複数のスリット3は、不純物の流入を規制しつつ水を流入させるためのフィルタとしてはたらくものである。また、第2のケーシング2b内の流路には、整流ユニット(又は整流器若しくはスタビライザ)4が配設されている。整流ユニット4は、スリット3から流入した水をノズル孔に案内するためのものであり、芯体から放射方向に延びる複数の整流板(整流羽根)5と、芯体の上流側及び下流側に同軸に形成され、かつそれぞれ先端部を上下流方向に向けて形成された鋭角な円錐部(上流側又は下流側が先細り状態の円錐部)6a、6bとを備えている。このようなフィルタを構成し且つ整流ユニットを備えたケーシング2は、フィルタユニット又は整流ケーシングと称することもできる。
 なお、整流ユニット4の整流板5は第2のケーシング2bの内壁に当接しているとともに、整流ユニット4は固定手段(例えば、係止、溶着、固着など)により下流側への移動が規制されている。
 ケーシング2の流路は、第2のケーシング2bの上流側端部(流入口)から整流ユニット4の下流端に至り、かつ実質的に同じ内径(つまり、ケーシング2bの上流側端部の内径と同じ内径)の円筒状流路P1と、前記整流ユニット4の下流端から下流方向に向かって第1のケーシング2aの途中部に至り、かつ緩やかな傾斜でテーパ状に狭まる傾斜流路(環状傾斜流路)P2と、この傾斜流路の下流端から下流方向に向かって延び、かつ実質的に同じ内径(つまり、傾斜流路P2の下流側端部の内径と同じ内径)の円筒状流路P3とを備えている。この例では、傾斜流路(環状傾斜流路)P2を形成する傾斜壁(テーパ部)のテーパ角は、例えば5~10°程度に形成されている。
 ノズルケース11内には、ノズル1の先端部から上流方向に向かって、超硬合金製のノズルチップ12と、前記第1のケーシング2aの下流端と実質的に同じ内径の流路が形成されたブシュ(又は環状側壁)17とが順次装着されている。ノズルチップ12は掛止段部13により先端部方向への抜けが規制されている。
 ここで、ノズル1には、その先端の吐出部となるノズルチップ12が、円筒状流路を形成する径大部に連続して設けられたテーパ部16と、テーパ部16出側に連続して設けられた第一オリフィス20と、第一オリフィス20の出側に連続して当該第一オリフィス20の長径よりも径方向寸法が大きく設けられた共振室19とが形成されている。共振室19は、ノズルチップ12を分断して空間を作る構造としているので、共振室19の材質はノズルチップ12と同じ超硬合金製である。
 なお、共振室19の具体的な構成について、横断面形状は円形であってもよいが、矩形形状が好ましい。共振室19の横断面形状を矩形形状とすれば、共振を増幅させるには、壁面に垂直に反射させるのがよいからである。
 ノズルチップ12の先端面は、断面U字状の湾曲溝14が半径方向に形成されるとともに、湾曲溝14の湾曲凹面に、図5に示すように、楕円形状の吐出孔15が第二オリフィスとして共振室の出側に連続して設けられている。なお、湾曲溝14の底面は、吐出孔15を最下部として延出方向(又は半径方向)に向かうにつれて両端部が隆起した湾曲状底面であってもよい。
 これにより、ノズル1の軸線方向に延びるノズルの流路(ノズル孔)は、湾曲溝14に楕円形状に開口した吐出孔(第二オリフィス)15、ノズルチップ12に形成された角筒状の共振室19、およびこの共振室19の入側に形成された第一オリフィス20とからなる共振流路P6と、第一オリフィス20から軸線の上流方向に向かって直線的に拡径して延びるテーパ部(又は円錐状傾斜壁)16により形成された円錐状流路P5と、ブシュ17内周により形成されてテーパ部16の上流端から軸線方向に沿って均一な内径で上流方向へ連なる円筒状流路P4と、円筒状流路P4の上流端から延びる円筒状径大流路(円筒状流路P4の上流端から整流ユニット4の上流端に至るまでの流路)P3~P1とで構成されている。なお、テーパ部16の上流端から均一な内径で延びる流路(この例では、テーパ部16の上流端から緩やかな傾斜流路P2の下流端までの円筒状流路P3及びP4)を径大部18とすることができる。
 さらに、楕円形状の第一オリフィス20および吐出孔15は、いずれもその長径/短径比が、1.5~1.8程度に形成される。また、第一オリフィス20および吐出孔15と径大部18との関係については、ノズルを小型化するため、第一オリフィス20および吐出孔15の短径D2に対する径大部18(円筒状流路P3及びP4、又は整流ユニットから下流方向に延びる傾斜流路P2の下流端)の内径D1の割合(D1/D2)を、4.5~6.9程度に設定している。さらに、噴射された水が低圧及び/又は低流量であっても衝撃力を高めるため、テーパ部16の角度(テーパ角)θは、45~55°程度に設定している。
 なお、ノズルケース11やケーシング2の適所(この例では、ノズルケース2)には、アダプター(図示せず)を利用して導管(図示せず)にノズル1を取り付けるための鍔部(又はフランジ)などの取付部を形成できる。また、ノズルケース11には、位置決め精度を高め、所定方向にフラット又は帯状に吐出流を噴射させるため、導管に対する位置決め用凸部25を形成してもよい。
 次に、上述した鋼板のスケール除去装置およびこれに装着されたスケール除去用ノズル1、並びにノズル1を用いた鋼板のスケール除去方法の作用・効果について説明する。
 スケール除去装置の、スケール除去用ノズルの装着用アダプター61、62、64には、ノズル1が装着されている。ノズル1の先端の吐出部は、円筒状流路を形成する径大部18に連続して設けられたテーパ部16と、テーパ部16出側に形成された第一オリフィス20と、第一オリフィス20の出側に連続して当該第一オリフィス20の長径よりも径方向寸法が大きく設けられた共振室19と、共振室19の出側に形成された吐出孔(第二オリフィス)15とを有する。したがって、吐出噴流周囲のせん断層で発生した振動のうち、共振室19の容量に依存した特定周波数の振動が増幅して周期性をもつ間欠(不連続)噴流(又はパルスジェット)を形成する。これにより、液滴流への移行を促進することで液滴を微細化することができ、したがって、同液滴が鋼材表面に衝突する際に発生する総衝撃力(F)および単位衝撃力(S)を増大させることが可能になった。この結果、従来ノズルに比べてデスケーリング能力が大幅に向上した。よって、このスケール除去装置およびこれに装着されたスケール除去用ノズル1、並びにノズル1を用いた鋼板のスケール除去方法によれば、デスケーリングの性能、効率ともに大幅に改善することができる。
 以下、上記実施形態で説明したノズル1を実際の圧延材Kの圧延工程のスケール除去装置に採用した例について説明する。鋼材としては、標準板幅1.2m、標準板厚は、加熱炉50の出側220mm、粗圧延入側(RSB)62が、220~70mm、仕上げ圧延入側(FSB)63が、60~40mmを使用した。従来型(図6参照)との比較実験の結果を次の表1に示す。なお、この例では、噴射圧力P0[Pa]、デスケーリング流量[l/min]、およびスプレー距離H[m]に応じて共振室19の高さhを第一および第二オリフィス15,19の長径D3に対して、0.5~10倍の範囲で調整している。
Figure JPOXMLDOC01-appb-T000001
 同表から判るように、デスケーリング能力は、いずれの工程においてもデスケーリング能力の向上が従来比で1.3~1.5倍であり、ポンプ30での電力使用量は70%、そして、デスケーリング能力向上による流量の削減可能代は30%減、また、デスケーリング能力に起因する品質不良発生率も従来比で50%未満となり、このスケール除去用ノズル1によれば、デスケーリングの性能、効率ともに大幅に改善されたことが判る。
 また、従来型(図6参照)との比較実験の結果によれば、噴射圧力P0[Pa]、デスケーリング流量[l/min]、およびスプレー距離H[m]に応じて共振室19の高さhをオリフィス15,19の長径D3に対して、0.5~10倍の範囲で調整すれば、十分な効果が得られることを確認した。
 なお、本発明に係る鋼板のスケール除去用ノズルおよび鋼板のスケール除去装置並びに鋼板のスケール除去方法は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しなければ種々の変形が可能であることは勿論である。
1 (スケール除去用)ノズル
2 ケーシング
4 整流ユニット
11 ノズルケース
12 ノズルチップ
14 湾曲溝
15 吐出孔(第二オリフィス)
16 テーパ部(又は円錐状傾斜壁)
17 ブシュ(又は環状側壁)
18 径大部
19 共振室
20 第一オリフィス
30 ポンプ
40 アキュムレータ
50 加熱炉
60 加熱路出側デスケラ
61、62、63 スケール除去用ノズルの装着用アダプター
70 粗圧延機
80 仕上げ圧延機
K 圧延材(鋼板)
P1 円筒状流路
P2 傾斜流路
P3 円筒状流路
P4 円筒状流路
P5 円錐状流路
P6 共振流路

Claims (5)

  1.  鋼板の表面に水を噴射し、その噴射された水の衝撃によって鋼板のスケールを除去するスケール除去用ノズルであって、
     ノズル先端の吐出部は、円筒状流路を形成する径大部に連続して設けられたテーパ部と、該テーパ部出側に形成された第一オリフィスと、該第一オリフィス出側に連続して当該第一オリフィスの長径よりも径方向寸法が大きく設けられた共振室と、該共振室の出側に形成された第二オリフィスとを有することを特徴とする鋼板のスケール除去用ノズル。
  2.  前記共振室は、横断面が矩形であることを特徴とする請求項1に記載の鋼板のスケール除去用ノズル。
  3.  前記第二オリフィスは楕円状をなし、前記共振室は、その軸方向の高さが第二オリフィスの長径に対して、0.5~10倍の範囲に形成されていることを特徴とする請求項1または2に記載の鋼板のスケール除去用ノズル。
  4.  圧延工程における圧延材である鋼板の上下に配置される複数のスケール除去用ノズルを備え、各スケール除去用ノズルから高圧の水を圧延材表面に噴射して圧延材表面のスケールを除去するスケール除去装置であって、
     前記スケール除去用ノズルとして、請求項1~3のいずれか一項に記載のスケール除去用ノズルが装着されていることを特徴とする鋼板のスケール除去装置。
  5.  圧延工程における圧延材である鋼板の表面のスケールを、スケール除去用ノズルから高圧の水を圧延材表面に噴射して除去する方法であって、
     前記スケール除去用ノズルとして、請求項1~3のいずれか一項に記載のスケール除去用ノズルを用い、当該スケール除去用ノズルを圧延工程での圧延材の上下に複数配置し、各スケール除去用ノズルから高圧の水を圧延材表面に噴射して圧延材表面のスケールを除去することを特徴とする鋼板のスケール除去方法。
PCT/JP2011/079271 2010-12-14 2011-12-13 鋼板のスケール除去用ノズルおよび鋼板のスケール除去装置並びに鋼板のスケール除去方法 WO2012081716A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/994,110 US9321084B2 (en) 2010-12-14 2011-12-13 Descaling nozzle for removing scale from steel sheet, descaling apparatus for removing scale from steel sheet, and descaling method for removing scale from steel sheet
CN201180059767.6A CN103260779B (zh) 2010-12-14 2011-12-13 钢板的氧化皮除去用喷嘴及钢板的氧化皮除去装置以及钢板的氧化皮除去方法
KR1020137014820A KR101506827B1 (ko) 2010-12-14 2011-12-13 강판의 스케일 제거용 노즐과 강판의 스케일 제거 장치 및 강판의 스케일 제거 방법
EP11849326.1A EP2653243B1 (en) 2010-12-14 2011-12-13 Nozzle for removing scale of steel plate, scale removing device for steel plate, and method for removing scale of steel plate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010278435 2010-12-14
JP2010-278435 2010-12-14
JP2011-266195 2011-12-05
JP2011266195A JP5834852B2 (ja) 2010-12-14 2011-12-05 鋼板のスケール除去用ノズルおよび鋼板のスケール除去装置並びに鋼板のスケール除去方法

Publications (1)

Publication Number Publication Date
WO2012081716A1 true WO2012081716A1 (ja) 2012-06-21

Family

ID=46244806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079271 WO2012081716A1 (ja) 2010-12-14 2011-12-13 鋼板のスケール除去用ノズルおよび鋼板のスケール除去装置並びに鋼板のスケール除去方法

Country Status (6)

Country Link
US (1) US9321084B2 (ja)
EP (1) EP2653243B1 (ja)
JP (1) JP5834852B2 (ja)
KR (1) KR101506827B1 (ja)
CN (1) CN103260779B (ja)
WO (1) WO2012081716A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104707739B (zh) * 2013-12-11 2016-10-12 财团法人金属工业研究发展中心 定向高压喷嘴结构及其制作工艺
KR101835986B1 (ko) * 2016-07-25 2018-03-07 시오 컴퍼니 리미티드 유체 공급관
CN109201360B (zh) * 2018-11-09 2023-10-24 北京科技大学 一种双阶高压水射流自振喷嘴装置
JP2021178319A (ja) * 2020-05-15 2021-11-18 スプレイング システムズ カンパニー 改良型のデスケーリングノズルアセンブリ

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581167B2 (ja) 1978-03-03 1983-01-10 川崎製鉄株式会社 表面性状のすぐれた含珪素鋼材の製造方法
JPS6015684B2 (ja) 1977-05-13 1985-04-20 新日本製鐵株式会社 熱間圧延鋼材の製造方法
JPH01249214A (ja) 1988-03-31 1989-10-04 Nisshin Steel Co Ltd 熱延鋼板のスケール疵の防止方法
JPH05317815A (ja) * 1991-03-20 1993-12-03 Fsk Corp 洗浄方法
JPH08257998A (ja) * 1995-03-23 1996-10-08 Ebara Corp キャビテーション・ジェット・ノズル
JP3129967B2 (ja) 1995-06-30 2001-01-31 川崎製鉄株式会社 熱延鋼板のスケール除去方法
JP2001062410A (ja) * 1999-08-31 2001-03-13 Babcock Hitachi Kk 洗浄用ノズル
JP2005034908A (ja) * 2003-06-25 2005-02-10 Jfe Steel Kk 鋼板のスケール除去装置
JP4084295B2 (ja) 2002-12-25 2008-04-30 株式会社共立合金製作所 デスケーリングノズル

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4052002A (en) * 1974-09-30 1977-10-04 Bowles Fluidics Corporation Controlled fluid dispersal techniques
US4389071A (en) * 1980-12-12 1983-06-21 Hydronautics, Inc. Enhancing liquid jet erosion
DE69126891T2 (de) * 1991-10-15 1998-01-15 Pulse Ireland Pulsierungsdüse für selbsterregte schwingung einer bohrflüssigkeitsstrahlströmung
CN2124339U (zh) * 1992-06-27 1992-12-09 石油大学(北京) 自激振荡气蚀结构射流发生器
DE4328303C2 (de) * 1992-12-23 1997-02-13 Juergen Gaydoul Einrichtung zum Entzundern von warmem Walzgut
DE29723832U1 (de) * 1997-10-16 1999-05-20 Piller Entgrattechnik GmbH, 71254 Ditzingen Düse mit starker Strahlturbulenz, insbesondere für eine Flüssigkeits-Entgratungs-/Reinigungsanlage
DE10110324A1 (de) * 2001-03-03 2002-09-05 Sms Demag Ag Verfahren zum Entzundern von Bändern
CZ12485U1 (cs) * 2002-06-25 2002-07-24 Hydrosystem Group, A.S. Fluidická tryska
DE60319273T3 (de) 2002-12-25 2014-03-13 Kyoritsu Gokin Co., Ltd. Entzunderungsdüse
FR2859650B1 (fr) * 2003-09-12 2006-02-24 Gloster Sante Europ Appareil de brumisation d'une composition liquide
KR20070076138A (ko) * 2006-01-18 2007-07-24 야마토 프로텍 가부시키가이샤 노즐
CN201070603Y (zh) * 2007-05-11 2008-06-11 江苏大学 用于高压高气水比水气射流吸风的涡旋式实心锥体喷嘴
WO2009082391A1 (en) * 2007-12-20 2009-07-02 Hewlett-Packard Development Company, L.P. Droplet generator
US7913937B2 (en) * 2008-05-02 2011-03-29 Spraying Systems Co. Descaling spray nozzle assembly

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015684B2 (ja) 1977-05-13 1985-04-20 新日本製鐵株式会社 熱間圧延鋼材の製造方法
JPS581167B2 (ja) 1978-03-03 1983-01-10 川崎製鉄株式会社 表面性状のすぐれた含珪素鋼材の製造方法
JPH01249214A (ja) 1988-03-31 1989-10-04 Nisshin Steel Co Ltd 熱延鋼板のスケール疵の防止方法
JPH05317815A (ja) * 1991-03-20 1993-12-03 Fsk Corp 洗浄方法
JPH08257998A (ja) * 1995-03-23 1996-10-08 Ebara Corp キャビテーション・ジェット・ノズル
JP3129967B2 (ja) 1995-06-30 2001-01-31 川崎製鉄株式会社 熱延鋼板のスケール除去方法
JP2001062410A (ja) * 1999-08-31 2001-03-13 Babcock Hitachi Kk 洗浄用ノズル
JP4084295B2 (ja) 2002-12-25 2008-04-30 株式会社共立合金製作所 デスケーリングノズル
JP2005034908A (ja) * 2003-06-25 2005-02-10 Jfe Steel Kk 鋼板のスケール除去装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2653243A4 *

Also Published As

Publication number Publication date
CN103260779A (zh) 2013-08-21
EP2653243A1 (en) 2013-10-23
JP5834852B2 (ja) 2015-12-24
US20130277445A1 (en) 2013-10-24
KR101506827B1 (ko) 2015-03-27
CN103260779B (zh) 2015-12-09
US9321084B2 (en) 2016-04-26
EP2653243A4 (en) 2016-08-10
KR20130084321A (ko) 2013-07-24
JP2012139728A (ja) 2012-07-26
EP2653243B1 (en) 2019-07-24

Similar Documents

Publication Publication Date Title
TWI252140B (en) Descaling nozzle
JP5834852B2 (ja) 鋼板のスケール除去用ノズルおよび鋼板のスケール除去装置並びに鋼板のスケール除去方法
JP5834853B2 (ja) 鋼板のスケール除去用ノズルおよび鋼板のスケール除去装置並びに鋼板のスケール除去方法
JP4854935B2 (ja) 鋼板のスケール除去装置
JP2010167501A (ja) 鋼板の冷却装置
JPWO2011001935A1 (ja) 熱延鋼板の冷却装置、冷却方法、製造装置、及び、製造方法
JP5469366B2 (ja) スプレーノズル
JP2009101411A (ja) デスケーリングノズル
JP4084295B2 (ja) デスケーリングノズル
JP2011115749A (ja) 整流部材及びそれを備えたノズル
JP2005125278A (ja) 流体噴射ノズル及びそれを用いた鋼材の冷却方法
JP4677056B2 (ja) 熱延鋼板の製造方法
JP2006289417A (ja) 鋼板の冷却装置
JP2014176884A (ja) デスケーリングノズルおよびデスケーリング装置並びにデスケーリング方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11849326

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011849326

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137014820

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13994110

Country of ref document: US