WO2012077747A1 - 気液接触板、気液接触積層ブロック体、気液接触積層構造体及びガス浄化装置 - Google Patents

気液接触板、気液接触積層ブロック体、気液接触積層構造体及びガス浄化装置 Download PDF

Info

Publication number
WO2012077747A1
WO2012077747A1 PCT/JP2011/078397 JP2011078397W WO2012077747A1 WO 2012077747 A1 WO2012077747 A1 WO 2012077747A1 JP 2011078397 W JP2011078397 W JP 2011078397W WO 2012077747 A1 WO2012077747 A1 WO 2012077747A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid
liquid contact
contact plate
substrate
Prior art date
Application number
PCT/JP2011/078397
Other languages
English (en)
French (fr)
Inventor
達也 辻内
長安 弘貢
田中 裕士
琢也 平田
圭司 藤川
隆士 吉山
祐一郎 里
豊志 中川
大石 剛司
基道 落合
塩屋 圭
市川 俊二
明寛 小島
Original Assignee
三菱重工業株式会社
株式会社明治ゴム化成
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 株式会社明治ゴム化成 filed Critical 三菱重工業株式会社
Priority to DE112011104316.3T priority Critical patent/DE112011104316B4/de
Priority to CN201180040378.9A priority patent/CN103068480B/zh
Priority to US13/813,359 priority patent/US9084961B2/en
Publication of WO2012077747A1 publication Critical patent/WO2012077747A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/26Fractionating columns in which vapour and liquid flow past each other, or in which the fluid is sprayed into the vapour, or in which a two-phase mixture is passed in one direction
    • B01D3/28Fractionating columns with surface contact and vertical guides, e.g. film action
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1406Multiple stage absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • B01D53/185Liquid distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/21Mixing gases with liquids by introducing liquids into gaseous media
    • B01F23/214Mixing gases with liquids by introducing liquids into gaseous media using a gas-liquid mixing column or tower
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/32Packing elements in the form of grids or built-up elements for forming a unit or module inside the apparatus for mass or heat transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/406Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32206Flat sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32224Sheets characterised by the orientation of the sheet
    • B01J2219/32227Vertical orientation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32237Sheets comprising apertures or perforations
    • B01J2219/32241Louvres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32237Sheets comprising apertures or perforations
    • B01J2219/32244Essentially circular apertures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32248Sheets comprising areas that are raised or sunken from the plane of the sheet
    • B01J2219/32251Dimples, bossages, protrusions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32255Other details of the sheets
    • B01J2219/32258Details relating to the extremities of the sheets, such as a change in corrugation geometry or sawtooth edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32255Other details of the sheets
    • B01J2219/32262Dimensions or size aspects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32265Sheets characterised by the orientation of blocks of sheets
    • B01J2219/32272Sheets characterised by the orientation of blocks of sheets relating to blocks in superimposed layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/324Composition or microstructure of the elements
    • B01J2219/32483Plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/332Details relating to the flow of the phases
    • B01J2219/3325Counter-current flow

Definitions

  • the present invention relates to a gas / liquid contact plate, a gas / liquid contact laminate block body, a gas / liquid contact laminate structure, and a gas purification device with good gas / liquid contact efficiency.
  • a gas-liquid contact device using an absorbing liquid As a device for absorbing harmful or beneficial gas, a gas-liquid contact device using an absorbing liquid is known. Mainly in chemical plants and the like, in order to improve the absorption efficiency of gas such as carbon dioxide (CO 2 ) emitted, for example, a cylindrical or rectangular absorption tower is used, and a gas-liquid contact plate is installed inside the tower. Arrangement is made to increase the contact area between the gas and the absorbing liquid. In general, it is known that the gas-liquid contact performance depends on the total surface area of the liquid film. In order to obtain high gas-liquid contact performance, it is preferable that the liquid spreads as much as possible on the surface of the gas-liquid contact plate. In addition, it expresses that wetting performance is favorable when a liquid spreads widely. As the material of the gas-liquid contact plate, a metal material is mainly used.
  • the gas-liquid contact plate is disposed in the container of the absorption tower and the absorbing liquid is sprayed by the nozzle.
  • the gas-liquid contact plate is made of metal, there is a problem that the weight of the gas-liquid contact tower as a whole is increased, and the structural parts that support the gas-liquid contact tower are also increased in size.
  • a polymer material such as a resin can be considered as a material for the gas-liquid contact plate instead of metal.
  • Polymer materials are lightweight, workable, chemically resistant, and inexpensive, but most polymer materials used as industrial materials are hydrophobic, making it difficult to obtain the wetting performance described above. There is a problem.
  • hydrophilic polymers having a hydrophilic property while being a polymer material are also known. If a hydrophilic polymer is used as a material for the gas-liquid contact plate, it is lightweight and has good workability, and the above-described wetting performance is easily obtained. However, the hydrophilic polymer is generally more expensive than the hydrophobic polymer material, and there is a problem that the moldability of a molded article such as a film is poor. Another problem is that hydrophilic polymers are known to absorb water and reduce strength when in contact with water. In view of this, a gas-liquid contact plate has been proposed that has excellent workability, is inexpensive, and has a hydrophilic property at the bottom of the recess that spreads in the width direction of the gas-liquid contact plate (Patent Document 1).
  • the present invention provides a gas-liquid contact plate, a gas-liquid contact laminate block body, a gas-liquid contact laminate structure, and a gas purification that have a simple configuration and good wetting performance even during long-term operation. It is an object to provide an apparatus.
  • the first invention of the present invention for solving the above-mentioned problem is a resin-made material in which the processing liquid flows from the upper side to the lower side of the substrate, and a part of the gas contacting the processing liquid is absorbed by the processing liquid.
  • the gas-liquid contact plate is characterized by having a structure.
  • the second invention is the gas-liquid contact plate according to the first invention, wherein the gas-liquid contact plate has a liquid receiving structure for bringing the processing liquid flowing down from above into contact with the gas-liquid contact plate.
  • the liquid passing structure has a downwardly convex sawtooth shape with a pitch of a predetermined interval on the lower end side of the substrate, and a convexly downward sawtooth shape portion.
  • the gas-liquid contact plate is characterized in that the slope portion is symmetrical and the top surface of the slope portion is a flat portion.
  • the liquid dispersion structure is a plurality of hole groups or protrusion groups having a predetermined interval, and the hole groups or protrusion groups are arranged in a staggered arrangement. It exists in the gas-liquid contact plate characterized by being.
  • the liquid receiving structure includes a convex liquid receiving group having a predetermined interval between the hole group or the protrusion group and an upper edge portion of the substrate. It is in the characteristic gas-liquid contact plate.
  • the sixth invention is the gas-liquid contact plate according to the fifth invention, wherein the liquid receiving group comprises a plurality of cylinders or columns.
  • a seventh invention is the gas-liquid contact plate according to any one of the first to sixth inventions, wherein the surface of the substrate has a hydrophilic rough surface structure.
  • An eighth invention is the gas-liquid contact plate according to any one of the first to seventh inventions, wherein the substrate contains a hydrophilic material.
  • a ninth aspect of the present invention is a gas-liquid contact laminate block body characterized in that the gas-liquid contact plate according to any one of the first to eighth aspects is a laminate that overlaps in a direction perpendicular to the vertical axis direction.
  • a tenth aspect of the invention is a gas-liquid contact laminate structure in which the gas-liquid contact laminate block body of the ninth invention is provided in a plurality of stages alternately with a phase of 90 degrees in the vertical axis direction.
  • the stacking interval of the gas-liquid contact plates constituting the gas-liquid contact stacking block body is the same as the interval between the peaks of the downwardly protruding serrated portions. It is in the gas-liquid contact lamination structure characterized by this.
  • a twelfth aspect of the invention includes a gas purification device main body through which gas flows, a gas-liquid contact laminate structure according to claim 10 or 11 disposed in the gas purification device main body, and a bottom or upper portion of the gas purification device main body.
  • a treatment liquid discharge means for discharging a treatment liquid provided near the bottom of the gas purification apparatus main body.
  • liquid dispersion structure for dispersing the treatment liquid flowing from the upper side to the gas-liquid contact plate and a liquid delivery structure for uniformly flowing the treatment liquid from the gas-liquid contact plate, dispersibility of the treatment liquid and Improved liquid delivery.
  • FIG. 1 is a schematic view of a gas-liquid contact plate according to an embodiment.
  • FIG. 2A is a diagram showing each peak (1 mm) of a downwardly convex saw-tooth-shaped portion.
  • FIG. 2-2 is a diagram showing each crest (3 mm) of a downwardly convex sawtooth portion.
  • FIG. 3 is a schematic diagram illustrating a stacked state of the gas-liquid contact stacked block body according to the example.
  • FIG. 4 is a schematic view of the gas purification device.
  • FIG. 5A is a schematic diagram of liquid delivery according to the embodiment.
  • FIG. 5-2 is a schematic diagram of liquid delivery according to a comparative example.
  • FIG. 6A is a front view including a liquid receiving portion and a liquid dispersion portion according to the embodiment.
  • FIG. 6B is a side view of the liquid receiving unit and the liquid dispersion unit according to the embodiment.
  • FIG. 7 is a schematic view of another gas-liquid contact plate according to the embodiment.
  • FIG. 8A is a diagram illustrating an arrangement state (two-row zigzag arrangement) of holes constituting the hole group according to the example.
  • FIG. 8-2 is a diagram illustrating an arrangement state (three-row zigzag arrangement) of holes constituting the hole group according to the example.
  • FIG. 8-3 is a diagram illustrating an arrangement state (four-row zigzag arrangement) of holes constituting the hole group according to the example.
  • FIG. 9A is a schematic diagram of a substrate in which holes (hole diameter 5 mm) constituting the hole group according to the example are arranged in a two-row staggered arrangement.
  • FIG. 9-2 is a schematic view of a substrate in which holes (hole diameter: 5 mm) constituting the hole group according to the example are arranged in a three-row staggered arrangement.
  • FIG. 9-3 is a schematic view of a substrate in which holes (hole diameter: 5 mm) constituting the hole group according to the example are arranged in a two-row staggered arrangement.
  • FIG. 9-4 is a schematic view of a substrate in which holes (hole diameter: 5 mm) constituting the hole group according to the example are arranged in a three-row staggered arrangement.
  • FIG. 9A is a schematic diagram of a substrate in which holes (hole diameter: 5 mm) constituting the hole group according to the example are arranged in a two-row staggered arrangement.
  • FIG. 9-2 is a schematic view of
  • FIG. 9-5 is a schematic view of a substrate in which holes (hole diameter: 3 mm) constituting a hole group according to a comparative example are arranged in a four-row staggered arrangement.
  • FIG. 9-6 is a schematic view of a substrate in which holes (hole diameter: 4 mm) constituting a hole group according to a comparative example are arranged in a four-row staggered arrangement.
  • FIG. 9-7 is a schematic view of a substrate in which holes (hole diameter: 5 mm) constituting the hole group according to the example are arranged in a four-row staggered arrangement.
  • FIG. 9-5 is a schematic view of a substrate in which holes (hole diameter: 3 mm) constituting a hole group according to a comparative example are arranged in a four-row staggered arrangement.
  • FIG. 9-6 is a schematic view of a substrate in which holes (hole diameter: 4 mm) constituting a hole group according to a comparative example are arranged in a four-row
  • FIG. 9-8 is a schematic view of a substrate in which holes (hole diameter 4 mm) constituting the hole group according to the example are arranged in a three-row staggered arrangement.
  • FIG. 10 is a diagram illustrating a photograph of the evaluation result of the wettability of the substrate according to the test example.
  • FIG. 11 is a diagram illustrating a photograph of the evaluation result of the wettability of the substrate according to the test example.
  • FIG. 12 is a graph showing the relationship between the gas flow rate and the wet area ratio in the difference in the surface treatment of the substrate.
  • FIG. 13 is a diagram in which lateral grooves are formed in the substrate according to the example.
  • FIG. 1 is a schematic view of a gas-liquid contact plate.
  • the gas-liquid contact plate 10 is a gas in which the processing liquid 12 flows from the upper side to the lower side of the substrate 11, and a part of the gas 13 in contact with the processing liquid 12 is absorbed by the processing liquid 12.
  • It is a liquid contact board, Comprising: The lower end part side of the board
  • substrate 11 has the convex saw-tooth shaped part 14 which has a pitch of predetermined spacing.
  • FIG. 2-1 is a view showing each peak (1 mm) of the convex serrated portion 14, and FIG. 2-2 is each peak (3 mm) of the convex serrated portion 14.
  • FIG. 2-1 and 2-2 each of the crests 14-1 to 14-8 of the downwardly convex sawtooth-shaped portion 14 has a symmetric slope portion (6 to 8 mm) 14a,
  • the top surface of the slope portion 14a is composed of a flat portion (1 to 3 mm) 14b.
  • the flat portion 14b is 1 mm.
  • the flat portion 14b is 3 mm.
  • the lower convex saw-tooth-shaped portion 14 receives the processing liquid 12 flowing from the upper side of the substrate 11 in the next gas-liquid contact plate 10 as will be described later. It plays the role of liquid passing structure.
  • the substrate 11 is provided with a plurality of stages of liquid dispersion holes 20 at a predetermined interval.
  • the plurality of stages 20 of liquid dispersion holes are constituted by a plurality of holes 20a, and the holes 20a are arranged in a staggered arrangement.
  • the hole 20a has a hole diameter of 4.5 to 6.0 mm. This is because a dispersion effect is not satisfactorily exhibited in a hole having a diameter of 4 mm.
  • FIG. 3 is a schematic diagram illustrating a stacked state of the gas-liquid contact stacked block body according to the example.
  • a plurality of gas-liquid contact plates 10 shown in FIG. 1 are laminated at a predetermined interval (eight in this embodiment) to form a gas-liquid contact laminated block body 50, and this gas-liquid contact
  • the stacked block bodies 50 are alternately stacked in a plurality of stages (three stages 50-1 to 50-3) with a phase of 90 degrees.
  • the gas-liquid contact laminate block body 50 is stacked in a plurality of stages (three stages 50-1 to 50-3) inside the absorption tower to perform gas treatment.
  • CO 2 contained in the gas 13 is absorbed by the treatment liquid 12.
  • the absorption tower formed by filling the gas-liquid contact plate 10 is provided as one facility of a chemical plant, for example, and is a water-soluble gas such as carbon dioxide, hydrogen halide or ammonia contained in the gas generated in the chemical plant. It can be advantageously used as an absorption tower or a deodorization device for purifying components by absorption with a treatment liquid such as water. It can also be used as a device for dissolving these gas components in water to obtain an aqueous solution as a product.
  • an aqueous solution of an amine compound such as monoethanolamine, diethanolamine, or triethanolamine is used as an absorption liquid used for absorption of carbon dioxide or hydrogen halide.
  • an aqueous solution such as water or dilute sulfuric acid is used as an absorbing solution used for absorbing ammonia.
  • FIG. 4 is a schematic view of a gas purification apparatus using the gas-liquid contact laminate structure of the present invention.
  • the gas-liquid contact laminated block body 50 is provided in a plurality of stages (50-1 to 50-7 in this embodiment) alternately with a phase of 90 degrees in the vertical axis direction to perform multistage processing. It is a gas-liquid contact laminate structure as is done.
  • the gas purification device 70 includes a gas purification device main body 71 through which the gas 13 circulates, and a gas-liquid contact laminated block body 50 disposed in the gas purification device main body 71.
  • a gas-liquid contact laminate structure 60 in which a plurality of stages (50-1 to 50-7 in this embodiment) are alternately provided with a phase of 90 degrees in the vertical axis direction to perform multistage processing, and the gas purification apparatus main body
  • a gas supply port 72 that is a gas introduction unit that introduces the gas 13 from any one of the bottom 71a (or the upper portion 71b) of the 71, and a gas discharge unit that discharges the purified gas 13a from a side different from the installation side of the gas supply port 72
  • a gas discharge port 73, a nozzle 74 which is a processing liquid supply means for supplying the processing liquid 12 from above to the gas-liquid contact laminate structure 60, and a bottom 71 a of the gas purification apparatus main body 71.
  • Treatment liquid Processing liquid discharge means for discharging the 2 are those having a 75.
  • the processing liquid 12 is introduced into the nozzle 74 by a processing liquid tank 76a, a supply pump 76b, and a supply line 76c.
  • reference numeral 77 denotes a mist eliminator that collects mist.
  • the gas purifier and the CO 2 absorber, an amine absorbing solution as the processing liquid 12, a regeneration tower to expel CO 2 provided from the treatment liquid that has absorbed CO 2, established the circulation line for circulating the amine absorbent to, may be treated with CO 2 in the exhaust gas continuously.
  • the gas purification device 70 is provided with a nozzle 74 for spraying the processing liquid 12 from above, and the gas 13 is introduced from a direction (may be the same direction) opposite to the processing liquid 12, Gas-liquid contact with the treatment liquid 12 is performed on the surface of the gas-liquid contact plate 10 that is configured.
  • the gas-liquid contact laminated block bodies 50 are not simply stacked in multiple stages, but are alternately stacked with a phase of 90 degrees as shown in FIG. Liquid dispersion is performed efficiently.
  • FIG. 3 shows a state in which the gas-liquid contact laminated block bodies 50 are stacked in three stages (50-1 to 5-3).
  • first-stage gas-liquid contact laminated block body 50-1 eight gas-liquid contact plates 10-1 to 10-8 are laminated in a direction perpendicular to the paper surface.
  • second-stage gas-liquid contact laminate block body 50-2 eight gas-liquid contact plates are laminated in a direction parallel to the paper surface (in the drawing, one of the gas-liquid contact plates 10- Only 1 is visible).
  • the third-stage gas-liquid contact laminated block body 50-3 eight gas-liquid contact plates 10-1 to 10-8 are laminated in a direction perpendicular to the paper surface.
  • Reference numerals 1 to 14-8 are in contact with the eight gas-liquid contact plates 10-1 to 10-8 of the third-stage gas-liquid contact laminated block body 50-3, respectively.
  • FIG. 5A is a schematic diagram of the liquid delivery structure according to the embodiment.
  • FIG. 5-2 is a schematic diagram of a liquid delivery structure according to a comparative example.
  • a distance D 1 between the crests 14-1 to 14-5 of the downwardly convex serrated portion 14 and a third gas-liquid contact laminated block body 50-3 are configured. It is substantially the same and a multilayer spacing D 2 of the gas-liquid contact plates 10-1 to 10-5 to be.
  • reference numeral 12a indicates a liquid film.
  • the conventional end portion is a straight gas-liquid contact plate, as shown in FIG.
  • reference numeral 102 indicates a liquid pool state.
  • the processing liquid 12 is supplied to the gas-liquid contact plate 101- on the lower stage side. 1 to 101-5 can be passed uniformly.
  • the drop of the liquid causes the peaks 14-1 to 14-8. Will be done. Since the third-stage gas-liquid contact laminated block body 50-3 is provided with a phase of 90 degrees, the gas-liquid contact plates 10-1 to 10- corresponding to the peaks 14-1 to 14-8 are provided. The liquid is dropped to 8 and the delivery of the processing liquid 12 is ensured.
  • the delivery of the treatment liquid 12 dropped from the first-stage gas-liquid contact laminated block body 50-1 is ensured by the liquid delivery section A, and a plurality of liquid dispersion sections provided on the substrate.
  • the treatment liquid 12 spreads over the entire surface of the substrate 11 by the liquid dispersion portion B of the hole group 20 for liquid dispersion in the stage.
  • the gas-liquid contact efficiency between the treatment liquid 12 and the gas 13 is improved. Since these are alternately performed, the liquid dispersion efficiency is improved as a result, and the gas-liquid contact efficiency between the treatment liquid 12 and the gas 13 is improved.
  • FIG. 6A is a front view including a liquid receiving portion and a liquid dispersion portion according to the embodiment.
  • FIG. 6B is a side view thereof.
  • a convex liquid receiving group 30 may be provided between the hole group 20 and the upper edge portion 11a of the substrate 11 with a predetermined interval. Good.
  • the convex liquid receiving group 30 serves as a liquid receiving portion that receives the processing liquid 12 dropped from above.
  • the liquid receiving group 30 is composed of a plurality of cylinders (or columns) 30a.
  • the diameter of the cylinder (or column) 30a is about 9 mm.
  • the processing liquid 12 that has fallen can be obtained even when the position of the peak portion is shifted. Can contact the side wall of the cylinder 30a and guide the processing liquid to the substrate 11 side.
  • a solid column may be used instead of the cylinder 30a. This cylinder or column is formed by integral molding with the substrate.
  • the liquid receiving group 30 can also be formed by forming a hole in the substrate and passing a pipe through the hole. In this case, a spacer is required separately.
  • the gas-liquid contact plate 10 is provided with a projection group 21 with a predetermined interval on a substrate 11.
  • the arrangement of the projection groups 21 is also a staggered arrangement.
  • the projection group 21 serves as a dispersion unit that improves the dispersibility of the treatment liquid 12 flowing through the substrate 11.
  • FIGS. 8-1 to 8-3 are examples of a staggered arrangement of hole groups.
  • FIG. 8A is a diagram illustrating an arrangement state (two-row zigzag arrangement) of holes constituting the hole group according to the example.
  • FIG. 8-2 is a diagram illustrating an arrangement state (three-row zigzag arrangement) of holes constituting the hole group according to the example.
  • FIG. 8-3 is a diagram illustrating an arrangement state (four-row zigzag arrangement) of holes constituting the hole group according to the example.
  • FIGS. 9-1 to 9-8 show an example in which a staggered arrangement of hole groups is provided on the substrate.
  • FIG. 9-1 is a schematic view of a substrate in which 80 holes (hole diameter: 5 mm) constituting the hole group according to the example are arranged in a two-row staggered arrangement.
  • FIG. 9-2 is a schematic view of a substrate in which holes (hole diameter: 5 mm) constituting the hole group according to the example are arranged in a three-row staggered arrangement.
  • FIG. 9-3 is a schematic view of a substrate in which 104 holes are arranged in a two-row staggered arrangement to form the hole group according to the embodiment.
  • FIG. 9-1 is a schematic view of a substrate in which 80 holes (hole diameter: 5 mm) constituting the hole group according to the example are arranged in a two-row staggered arrangement.
  • FIG. 9-2 is a schematic view of a substrate in which holes (hole diameter: 5 mm) constituting the hole group according to the
  • FIG. 9-4 is a schematic view of a substrate in which holes (hole diameter: 5 mm) constituting the hole group according to the example are arranged in a three-row staggered arrangement.
  • FIG. 9-5 is a schematic view of a substrate in which holes (hole diameter: 3 mm) constituting a hole group according to a comparative example are arranged in a four-row staggered arrangement.
  • FIG. 9-6 is a schematic view of a substrate in which holes (hole diameter: 4 mm) constituting a hole group according to a comparative example are arranged in a four-row staggered arrangement.
  • FIG. 9-4 is a schematic view of a substrate in which holes (hole diameter: 5 mm) constituting the hole group according to the example are arranged in a three-row staggered arrangement.
  • FIG. 9-5 is a schematic view of a substrate in which holes (hole diameter: 3 mm) constituting a hole group according to a comparative example are arranged in a four-row staggered arrangement
  • FIG. 9-7 is a schematic view of a substrate in which holes (hole diameter: 5 mm) constituting the hole group according to the example are arranged in a four-row staggered arrangement.
  • FIG. 9-8 is a schematic view of a substrate in which holes (hole diameter 4 mm) constituting the hole group according to the example are arranged in a three-row staggered arrangement.
  • Table 1 shows the staggered arrangement, hole diameter, pitch (P 1 , P 2 ), and number.
  • FIG. 10 and FIG. 11 are diagrams showing photographs of the evaluation results of the wettability of the substrates according to the test examples. In this test, the amount of the treatment liquid was flowed from one place at 10 cc / min.
  • the liquid dispersion effect was good in both the three-row zigzag arrangement and the two-row zigzag arrangement.
  • a four-row staggered array with a hole diameter of 3 mm and a four-row staggered array with a hole diameter of 4 mm have a poor liquid dispersion effect, but a four-row staggered array with a hole diameter of 5 mm and a three-row staggered array with a hole diameter of 4 mm The effect was good.
  • the surface of the substrate 11 has a hydrophilic structure.
  • a resin is used as a material constituting the substrate, the wetting performance is lowered because the hydrophilicity is low. Therefore, wetting performance is improved by making the surface of the substrate 11 have a hydrophilic structure.
  • This structure has a rough surface structure by a known physical process such as a blasting process such as sand blasting or shot blasting, or a scratching process using a scratcher, or has a hydrophilic group by a known chemical process such as a plasma process. What is necessary is just a structure.
  • a hydrophilic material may be contained in the resin that is the material of the substrate and kneaded into the substrate in advance.
  • the resin material that can be used as the substrate 11 in the case of absorbing CO 2 , the resin material having alkali resistance is preferably used because the amine-based absorption liquid is alkaline.
  • Specific examples include polypropylene, acrylonitrile butadiene styrene, nylon, and vinyl chloride.
  • polypropylene is preferably used because it is excellent in alkali resistance.
  • examples of the hydrophilicity-imparting material mixed with the base material include fatty acid ester compounds and polyether compounds.
  • the fatty acid ester compound include glycerin fatty acid ester, polyglycerin fatty acid ester, polyoxyethylene sorbitan fatty acid ester, and sucrose fatty acid ester.
  • the polyether compound include polyoxyethylene alkyl ether and polyoxyethylene alkylphenyl ether.
  • the amount of the hydrophilicity-imparting material added to the substrate is preferably about 1 to 30 parts by weight with respect to 100 parts of the resin.
  • FIG. 12 is a graph showing the relationship between the gas flow rate and the wet area ratio in the difference in the surface treatment of the substrate. As shown in FIG. 12, it was found that blast treatment and plasma treatment were good when 1 was added with a hydrophilizing agent.
  • the lateral groove 80 may be formed on one surface of the substrate 11 in a direction perpendicular to the vertical axis.
  • FIG. 13 is a diagram illustrating an example in which a lateral groove is formed in the substrate 11.
  • the groove width L of the lateral groove 80 is preferably 1.0 mm to 0.3 mm.
  • the length W of the surface of the substrate 11 of the lateral groove 80 adjacent to the lateral groove 80 is preferably 0.75 mm to 0.3 mm. In the case of a lateral groove outside this range, the wetting performance is not good.
  • the dispersibility of the treatment liquid is improved, for example, CO 2 in gas. It can be applied to an absorption tower that absorbs water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Gas Separation By Absorption (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Treating Waste Gases (AREA)

Abstract

 本発明の気液接触板10は、基板11の上側から下側方向に処理液12が流れ、処理液12に接触したガス13の一部が該処理液12に吸収される気液接触板であって、基板11の下端部側が所定間隔のピッチを有する下に凸状の鋸歯状部14を有するものである。また、基板11には、所定間隔を持って複数段の液分散用の孔群20が設けられている。その配列は千鳥状配列としている。

Description

気液接触板、気液接触積層ブロック体、気液接触積層構造体及びガス浄化装置
 本発明は、気液接触効率が良好な気液接触板、気液接触積層ブロック体、気液接触積層構造体及びガス浄化装置に関する。
 有害または有益なガスを吸収するための装置として、吸収液を利用した気液接触装置が知られている。主に化学プラント等では、排出される二酸化炭素(CO2)等のガスの吸収効率を向上させるために、例えば円筒状や矩形塔状の吸収塔を用い、塔の内部に気液接触板を配設してガス及び吸収液の接触面積を増やすことが行われている。一般に、気液接触性能は、液膜の総表面積に依存することが知られている。高い気液接触性能を得るためには、気液接触板の表面において、液ができるだけ濡れ広がることが好ましい。なお、液が広く濡れ広がることを、濡れ性能が良好であると表現する。その気液接触板の材料は、主として金属材料が使用されていた。
 気液接触板は、吸収塔の容器内に配設されノズルにより吸収液が噴霧されるが、吸収液を容器内に均等に噴霧することは困難であり、容器内に複数枚配設されている気液接触板の全表面に対して濡れ性能を均一化することが困難であった。また、気液接触板を金属製にすると、気液接触塔全体としての重量が大きくなり、気液接触塔を支える構造部品も大型化してしまうといった問題がある。
 一方、金属に代わる気液接触板の材料としては、たとえば樹脂等の高分子材料が考えられる。高分子材料は軽量で、かつ加工性がよく、耐薬品性があり、さらに安価であるが、工業用材料として用いられる高分子材料はほとんどが疎水性であり、前記した濡れ性能が得られにくいといった問題がある。
 最近では高分子材料でありながら親水性を有する、いわゆる親水性ポリマーも知られている。親水性ポリマーを気液接触板の材料として使用すれば、軽量で、かつ加工性がよく、しかも前記した濡れ性能が得やすい。しかし、親水性ポリマーは、疎水性の高分子材料に比べて一般に高価であり、フィルム等成形体の成形性が悪いといった問題がある。また、親水性ポリマーは水と接触すると水分を吸収して、強度が低下することが知られている点も問題である。
 そこで、加工性に優れ、安価で、濡れ性能が気液接触板の幅方向に広がる凹部の底部に親水性を有するようにした気液接触板が提案されている(特許文献1)。
特開2003-340268号公報
 しかしながら、前記提案では、凹部の底部内に親水性を施すのは手間がかかると共に、長期間に亙っての運転を行うと親水性処理物が脱落し、濡れ性能が低下するという、問題がある。
 本発明は、前記問題に鑑み、構成が簡易でしかも、長期間に亙っての運転でも濡れ性能が良好な気液接触板、気液接触積層ブロック体、気液接触積層構造体及びガス浄化装置を提供することを課題とする。
 上述した課題を解決するための本発明の第1の発明は、基板の上側から下側方向に処理液が流れ、処理液に接触したガスの一部が該処理液に吸収される樹脂製の気液接触板であって、基板の表面を親水化処理するとともに、上側から流れる処理液を気液接触板に分散させる液分散構造と、処理液を気液接触板から均一に流下させる液渡し構造を有することを特徴とする気液接触板にある。
 第2の発明は、第1の発明において、前記気液接触板は、上側から流下する処理液を気液接触板に接触させる液受け構造を有することを特徴とする気液接触板にある。
 第3の発明は、第1又は2の発明において、前記液渡し構造が、基板の下端部側が所定間隔のピッチを有する下に凸状の鋸歯状であり、下に凸状の鋸歯状部が、左右対称の斜面部と、斜面部の頂面が平坦部とからなることを特徴とする気液接触板にある。
 第4の発明は、第1乃至3のいずれか一つの発明において、前記液分散構造が、所定間隔を持つ複数段の孔群又は突起群であり、孔群又は突起群の配列が千鳥配列であることを特徴とする気液接触板にある。
 第5の発明は、第4の発明において、前記液受け構造が、前記孔群又は突起群と基板の上縁部との間に、所定間隔を持って凸状の液受け群を有することを特徴とする気液接触板にある。
 第6の発明は、第5の発明において、前記液受け群は、複数の円筒又は円柱からなることを特徴とする気液接触板にある。
 第7の発明は、第1乃至6のいずれか一つの発明において、前記基板の表面が親水性の粗面構造であることを特徴とする気液接触板にある。
 第8の発明は、第1乃至7のいずれか一つの発明において、前記基板が親水性材料を含有してなることを特徴とする気液接触板にある。
 第9の発明は、第1乃至8のいずれか一つの発明の気液接触板を鉛直軸方向と直交する方向に重なる積層体であることを特徴とする気液接触積層ブロック体にある。
 第10の発明は、第9の発明の気液接触積層ブロック体が鉛直軸方向に、90度の位相をもって交互に複数段設けてなることを特徴とする気液接触積層構造体にある。
 第11の発明は、第10の発明において、前記気液接触積層ブロック体を構成する気液接触板の積層間隔と、下に凸状の鋸歯状部の山部同士の間隔とが同一であることを特徴とする気液接触積層構造体にある。
 第12の発明は、ガスが流通するガス浄化装置本体と、該ガス浄化装置本体内に配設される請求項10又は11の気液接触積層構造体と、前記ガス浄化装置本体の底部又は上部のいずれかよりガスを導入するガス導入手段と、ガス導入手段側と異なる側よりガスを排出するガス排出手段と、前記気液接触積層構造体に対して上方から処理液を供給する処理液供給手段と、ガス浄化装置本体の底部付近に設けられた処理液を排出する処理液排出手段とを具備することを特徴とするガス浄化装置にある。
 本発明によれば、上側から流れる処理液を気液接触板に分散させる液分散構造と、処理液を気液接触板から均一に流下させる液渡し構造を有することで、処理液の分散性及び液受渡し性が向上する。
図1は、実施例に係る気液接触板の概略図である。 図2-1は、下に凸状の鋸歯状部の各山部(1mm)を示す図である。 図2-2は、下に凸状の鋸歯状部の各山部(3mm)を示す図である。 図3は、実施例に係る気液接触積層ブロック体の積層状態を示す概略図である。 図4は、ガス浄化装置の概略図である。 図5-1は、実施例に係る液受け渡しの模式図である。 図5-2は、比較例に係る液受け渡しの模式図である。 図6-1は、実施例に係る液受け部と液分散部を備えた正面図である。 図6-2は、実施例に係る液受け部と液分散部を備えた側面図である。 図7は、実施例に係る他の気液接触板の概略図である。 図8-1は、実施例に係る孔群を構成する孔の配列状態(二列千鳥配列)を示す図である。 図8-2は、実施例に係る孔群を構成する孔の配列状態(三列千鳥配列)を示す図である。 図8-3は、実施例に係る孔群を構成する孔の配列状態(四列千鳥配列)を示す図である。 図9-1は、実施例に係る孔群を構成する孔(孔径5mm)を二列千鳥配列で配置した基板の概略図である。 図9-2は、実施例に係る孔群を構成する孔(孔径5mm)を三列千鳥配列で配置した基板の概略図である。 図9-3は、実施例に係る孔群を構成する孔(孔径5mm)を二列千鳥配列で配置した基板の概略図である。 図9-4は、実施例に係る孔群を構成する孔(孔径5mm)を三列千鳥配列で配置した基板の概略図である。 図9-5は、比較例に係る孔群を構成する孔(孔径3mm)を四列千鳥配列で配置した基板の概略図である。 図9-6は、比較例に係る孔群を構成する孔(孔径4mm)を四列千鳥配列で配置した基板の概略図である。 図9-7は、実施例に係る孔群を構成する孔(孔径5mm)を四列千鳥配列で配置した基板の概略図である。 図9-8は、実施例に係る孔群を構成する孔(孔径4mm)を三列千鳥配列で配置した基板の概略図である。 図10は、試験例に係る基板の濡れ性の評価結果の写真を表す図である。 図11は、試験例に係る基板の濡れ性の評価結果の写真を表す図である。 図12は、基板の表面処理の相違におけるガス流速と濡れ面積比との関係を示すグラフである。 図13は、実施例に係る基板に横溝を形成した図である。
 以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。
 本発明による実施例に係る気液接触板について、図面を参照して説明する。図1は、気液接触板の概略図である。
 図1に示すように、気液接触板10は、基板11の上側から下側方向に処理液12が流れ、処理液12に接触したガス13の一部が該処理液12に吸収される気液接触板であって、基板11の下端部側が所定間隔のピッチを有する下に凸状の鋸歯状部14を有するものである。
 図2-1は、下に凸状の鋸歯状部14の各山部(1mm)を示す図、図2-2は、下に凸状の鋸歯状部14の各山部(3mm)を示す図である。
 図2-1及び図2-2に示すように、下に凸状の鋸歯状部14の各山部14-1~14-8は、各々左右対称の斜面部(6~8mm)14aと、斜面部14aの頂面が平坦部(1~3mm)14bとから構成されている。
 図2-1に示すように、斜面部14aが8mmの場合には、平坦部14bが1mmとしている。また、図2-2に示すように、斜面部14aが6mmの場合には、平坦部14bが3mmとしている。
 この下に凸状の鋸歯状部14は、気液接触板10を複数段重ねた場合、後述するように、基板11の上側から流れてきた処理液12を次の気液接触板10に受け渡す液渡し構造の役割を果たしている。
 また、図1に示すように、基板11には、所定間隔を持って複数段の液分散用の孔群20が設けられている。
 この複数段の液分散用の孔群20は複数の孔20aから構成されており、その孔20aの配列は千鳥状配列とした液分散構造としている。
 この孔20aとしては、孔の直径4.5~6.0mmとしている。
 これは、直径が4mmの孔では分散効果が良好に発揮されないからである。
 図3は、実施例に係る気液接触積層ブロック体の積層状態を示す概略図である。
 図3に示すように、図1に示す気液接触板10は所定間隔を有して複数(本実施例では8枚)積層されて気液接触積層ブロック体50を構成し、この気液接触積層ブロック体50を90度の位相をもって交互に複数段(3段50-1~50-3)重ねている。
 この気液接触積層ブロック体50とすることで、吸収塔の内部にこの気液接触積層ブロック体50を複数段(3段50-1~50-3)重ねて充填して、ガス処理をし、ガス13中に含まれる例えばCO2を処理液12に吸収させるようにしている。
 この気液接触板10を充填してなる吸収塔は、例えば化学プラントの一設備として備えられ、化学プラント内で発生したガス中に含まれる例えば二酸化炭素、ハロゲン化水素やアンモニアなどの水溶性ガス成分を水等の処理液による吸収で浄化するための吸収塔、あるいは脱臭装置として有利に使用することができる。また、これらのガス成分を水中に溶かして水溶液を製品として得るための溶かし込み装置としても使用することができる。
 ここで、処理液12としては、例えば二酸化炭素やハロゲン化水素の吸収に用いられる吸収液としては、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミン系化合物の水溶液が用いられる。また、アンモニアの吸収に用いられる吸収液としては、水、希硫酸等の水溶液が用いられる。
 図4は、本発明の気液接触積層構造体を用いたガス浄化装置の概略図である。ガス浄化装置の吸収塔内では、気液接触積層ブロック体50が鉛直軸方向に、90度の位相をもって交互に複数段(本実施例では50-1~50-7)設けて、多段処理を行うような気液接触積層構造体としている。
 図4に示すように、本実施例に係るガス浄化装置70は、ガス13が流通するガス浄化装置本体71と、該ガス浄化装置本体71内に配設される気液接触積層ブロック体50が鉛直軸方向に、90度の位相をもって交互に複数段(本実施例では50-1~50-7)設けて、多段処理を行うような気液接触積層構造体60と、前記ガス浄化装置本体71の底部71a(又は上部71b)のいずれかよりガス13を導入するガス導入手段であるガス供給口72と、前記ガス供給口72の設置側と異なる側より浄化ガス13aを排出するガス排出手段であるガス排出口73と、前記気液接触積層構造体60に対して上方から処理液12を供給する処理液供給手段であるノズル74と、ガス浄化装置本体71の底部71a付近に設けられた処理液12を排出する処理液排出手段(排出ライン75a、使用済処理液タンク75bからなる)75とを具備するものである。なお、処理液12は処理液タンク76a、供給ポンプ76b及び供給ライン76cによりノズル74に導入されている。なお、図中、符号77はミストを捕集するミストエリミネータを図示する。
 また、このガス浄化装置をCO2吸収塔とし、処理液12としてアミン吸収液を用い、CO2を吸収した処理液からCO2を追い出す再生塔を設け、アミン吸収液を循環させる循環ラインを設置して、連続して排ガス中のCO2を処理するようにしてもよい。
 このガス浄化装置70は、上方からは処理液12を噴霧するノズル74が設けられ、ガス13は処理液12と対向する方向(同一方向でもよい)から導入され、気液接触積層ブロック体50を構成する気液接触板10の表面で処理液12との気液接触を行うようにしている。
 この多段に積層させる際に、気液接触積層ブロック体50を単に多段に重ねるのではなく、図3に示すように、90度の位相をもって交互に重ねることで、処理液12の落下、液受け渡し、液分散を効率的に行っている。
 具体的には、図3では、気液接触積層ブロック体50を3段(50-1~5-3)重ねている状態を示している。先ず、第1段の気液接触積層ブロック体50-1では、紙面と直交する方向に8枚の気液接触板10-1~10-8が積層されている。そして、第2段の気液接触積層ブロック体50-2では、紙面と平行する方向に8枚の気液接触板が積層されている(図面ではその内の一枚の気液接触板10-1のみが見えている)。そして、第3段の気液接触積層ブロック体50-3では、紙面と直交する方向に8枚の気液接触板10-1~10-8が積層されている。
 そして、第2段の気液接触積層ブロック体50-2の気液接触板10-1の下方に形成された所定間隔のピッチを有する下に凸状の鋸歯状部14の各山部14-1~14-8は、第3段の気液接触積層ブロック体50-3の8枚の気液接触板10-1~10-8にそれぞれ当接している。
 図5-1は、実施例に係る液受渡し構造の模式図である。図5-2は、比較例に係る液受渡し構造の模式図である。なお、図5-1では、図3の一部を抜き出している。また、処理液は2本のみ流下させた状態である。
 図5-1に示すように、下に凸状の鋸歯状部14の各山部14-1~14-5同士の間隔D1と、第3の気液接触積層ブロック体50-3を構成する気液接触板10-1~10-5の積層間隔D2とを略同一としている。図中、符号12aは液膜を図示する。
 なお、従来の端部が直線状の気液接触板の場合には、図5-2に示すように、下段の位相を90度変えた場合には、気液接触板が傾いている場合に上段側の気液接触板101-1の下縁部分と下段側の気液接触板101-1~101-5との各当接部分において、処理液12の落下が不均一になる。図中、符号102は液溜り状態を図示する。
 これに対して、本発明のように、下に凸状の鋸歯状部14の各山部14-1~14-8を形成することで、処理液12を下段側の気液接触板101-1~101-5に均一に渡すことができる。
 すなわち、第2段目の気液接触積層ブロック体50-2から処理液12が落下する際に、鋸歯状部14を設けているので、液の落下がその山部14-1~14-8によって行われることとなる。そして、第3段目の気液接触積層ブロック体50-3が90度の位相をもって設けられているので、山部14-1~14-8に対応する気液接触板10-1~10-8に液が落下され、処理液12の受け渡しが確実となる。
 このように、第1段の気液接触積層ブロック体50-1から落下される処理液12の液の受け渡しが、液渡し部Aにより確実となると共に、基板に設けた液分散部である複数段の液分散用の孔群20の液分散部Bにより、基板11の表面全体に処理液12が広がることとなる。この結果、処理液12とガス13との気液接触効率が向上する。
 そして、これらが交互に行われるので、結果として液分散効率が向上し、処理液12とガス13との気液接触効率が向上することとなる。
 図6-1は、実施例に係る液受け部と液分散部を備えた正面図である。図6-2は、その側面図である。
 図6-1及び図6-2に示すように、前記孔群20と基板11の上縁部11aとの間には、所定間隔を持って凸状の液受け群30を設けるようにしてもよい。
 この凸状の液受け群30は、上方から落下した処理液12を受止める液受止部の役割を果たしている。
 この前記液受け群30は、複数の円筒(又は円柱)30aから構成されている。
 円筒(又は円柱)30aの径は9mm程度としている。
 これは、図6-1及び図6-2に示すように、液受け群30の複数の円筒30aが存在することで、仮に山部の位置合わせがずれた場合にも、落下した処理液12はこの円筒30aの側壁に当接し、基板11側に処理液を導くことができる。
 円筒30aに代わり中実な円柱としてもよい。この円筒や円柱は基板と一体成形により形成される。なお、基板に穴を形成し、この穴にパイプを通すことで液受け群30とすることもできる。この際には、スペーサが別途必要となる。
 また、図7に示すように、他の実施例に係る気液接触板10は、基板11に所定間隔を持って突起群21が設けられている。
 この突起群21の配列も千鳥状配列としている。
 この突起群21により、基板11を流れる処理液12の分散性を向上させる分散部の役割を果たしている。
 図8-1~図8-3は孔群の千鳥状配列の一例である。
 図8-1は、実施例に係る孔群を構成する孔の配列状態(二列千鳥配列)を示す図である。図8-2は、実施例に係る孔群を構成する孔の配列状態(三列千鳥配列)を示す図である。図8-3は、実施例に係る孔群を構成する孔の配列状態(四列千鳥配列)を示す図である。
 図9-1~図9-8は基板に孔群の千鳥状配列を設けた一例を示す。
 図9-1は、実施例に係る孔群を構成する孔(孔径5mm)を二列千鳥配列で孔を80個配置した基板の概略図である。図9-2は、実施例に係る孔群を構成する孔(孔径5mm)を三列千鳥配列で配置した基板の概略図である。図9-3は、実施例に係る孔群を構成する孔を二列千鳥配列で孔を104個配置した基板の概略図である。図9-4は、実施例に係る孔群を構成する孔(孔径5mm)を三列千鳥配列で配置した基板の概略図である。図9-5は、比較例に係る孔群を構成する孔(孔径3mm)を四列千鳥配列で配置した基板の概略図である。図9-6は、比較例に係る孔群を構成する孔(孔径4mm)を四列千鳥配列で配置した基板の概略図である。図9-7は、実施例に係る孔群を構成する孔(孔径5mm)を四列千鳥配列で配置した基板の概略図である。図9-8は、実施例に係る孔群を構成する孔(孔径4mm)を三列千鳥配列で配置した基板の概略図である。
 表1にこれらの千鳥状配列と孔径、ピッチ(P1、P2)、個数を示す。
Figure JPOXMLDOC01-appb-T000001
 図10及び図11は、試験例に係る基板の濡れ性の評価結果の写真を表す図である。なお、本試験においては、処理液の液量を10cc/分で一箇所から流した。
 図10に示すように、三列千鳥配列及び二列千鳥配列はいずれも液分散効果が良好であった。
 また、図11に示すように、孔径3mmの四列千鳥配列、孔径4mmの四列千鳥配列は液分散効果が悪いが、孔径5mmの四列千鳥配列、孔径4mmの三列千鳥配列は液分散効果が良好であった。
 さらに、基板11の表面が親水性の構造であることが好ましい。
 基板を構成する材料として樹脂を用いる場合には、親水性が低いので、濡れ性能が低下する。そこで、基板11の表面を親水性の構造とすることで、濡れ性能を良好としている。
 この構造は、例えばサンドブラストやショットブラスト等のブラスト処理、スクラッチャーを用いたスクラッチ処理等の公知の物理的処理により粗面構造とするか、プラズマ処理等の公知の化学的処理により親水基を有する構造とすればよい。
 また、基板の材料である樹脂に親水性材料を含有して、予め基板に練りこむようにしてもよい。
 ここで、基板11として使用可能な樹脂材料としては、CO2を吸収するような場合には、アミン系の吸収液などがアルカリ性であることから、耐アルカリ性を有する樹脂材料が好ましく用いられる。具体的には、ポリプロピレン、アクリロニトリルブタジエンスチレン、ナイロン、塩化ビニル等が挙げられる。特に、ポリプロピレンは耐アルカリ性に優れるため、好ましく用いられる。
 また、基材に混合される親水性付与材としては、例えば脂肪酸エステル系化合物、ポリエーテル系化合物等が挙げられる。脂肪酸エステル系化合物としては、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ショ糖脂肪酸エステル等が挙げられる。また、ポリエーテル系化合物としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル等が挙げられる。基材に対する親水性付与材の添加量は、樹脂100部に対して1重量部~30重量部程度とするのが好ましい。
 図12は、基板の表面処理の相違におけるガス流速と濡れ面積比との関係を示すグラフである。
 図12に示すように親水化剤を添加したものを1とすると、ブラスト処理、プラズマ処理が良好であることが判明した。
 また、基板11の表面に鉛直軸と直交する方向に横溝80を基板11の一面亙って形成するようにしてもよい。
 図13は、基板11に横溝を形成した一例を示す図である。
 図13に示すように、基板11の板厚が2mmの場合、横溝80の溝幅Lは1.0mmから0.3mmとするのが好ましい。また横溝80と隣接する横溝80の基板11の表面の長さWは0.75mm~0.3mmとするのが好ましい。
 この範囲以外の横溝の場合には濡れ性能が良好ではない。
 孔を形成した基板より、孔に横溝をつけた基板の方が液の広がりが拡大しているのが確認された。なお、従来の孔も横溝もない通常の基板に対して、孔を形成した基板は共に濡れ面積が大幅に拡大した。
 以上のように、本発明に係る気液接触板、気液接触積層ブロック体、気液接触積層構造体及びガス浄化装置によれば、処理液の分散性が向上し、例えばガス中のCO2を吸収する吸収塔に適用することができる。
 10 気液接触板
 11 基板
 12 処理液
 13 ガス
 14 鋸歯状部

Claims (12)

  1.  基板の上側から下側方向に処理液が流れ、処理液に接触したガスの一部が該処理液に吸収される樹脂製の気液接触板であって、
     基板の表面を親水化処理するとともに、上側から流れる処理液を気液接触板に分散させる液分散構造と、処理液を気液接触板から均一に流下させる液渡し構造を有することを特徴とする気液接触板。
  2.  請求項1において、
     前記気液接触板は、上側から流下する処理液を気液接触板に接触させる液受け構造を有することを特徴とする気液接触板。
  3.  請求項1又は2において、
    前記液渡し構造が、基板の下端部側が所定間隔のピッチを有する下に凸状の鋸歯状であり、下に凸状の鋸歯状部が、左右対称の斜面部と、斜面部の頂面が平坦部とからなることを特徴とする気液接触板。
  4.  請求項1乃至3のいずれか一つにおいて、
     前記液分散構造が、所定間隔を持つ複数段の孔群又は突起群であり、
     孔群又は突起群の配列が千鳥配列であることを特徴とする気液接触板。
  5.  請求項4において、
     前記液受け構造が、前記孔群又は突起群と基板の上縁部との間に、所定間隔を持って凸状の液受け群を有することを特徴とする気液接触板。
  6.  請求項5において、
     前記液受け群は、複数の円筒又は円柱からなることを特徴とする気液接触板。
  7.  請求項1乃至6のいずれか一つにおいて、
     前記基板の表面が親水性の粗面構造であることを特徴とする気液接触板。
  8.  請求項1乃至7のいずれか一つにおいて、
     前記基板が親水性材料を含有してなることを特徴とする気液接触板。
  9.  請求項1乃至8のいずれか一つの気液接触板を鉛直軸方向と直交する方向に重なる積層体であることを特徴とする気液接触積層ブロック体。
  10.  請求項9の気液接触積層ブロック体が鉛直軸方向に、90度の位相をもって交互に複数段設けてなることを特徴とする気液接触積層構造体。
  11.  請求項10において、
     前記気液接触積層ブロック体を構成する気液接触板の積層間隔と、下に凸状の鋸歯状部の山部同士の間隔とが同一であることを特徴とする気液接触積層構造体。
  12.  ガスが流通するガス浄化装置本体と、
     該ガス浄化装置本体内に配設される請求項10又は11の気液接触積層構造体と、
     前記ガス浄化装置本体の底部又は上部のいずれかよりガスを導入するガス導入手段と、
     ガス導入手段側と異なる側よりガスを排出するガス排出手段と、
     前記気液接触積層構造体に対して上方から処理液を供給する処理液供給手段と、
     ガス浄化装置本体の底部付近に設けられた処理液を排出する処理液排出手段とを具備することを特徴とするガス浄化装置。
PCT/JP2011/078397 2010-12-09 2011-12-08 気液接触板、気液接触積層ブロック体、気液接触積層構造体及びガス浄化装置 WO2012077747A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112011104316.3T DE112011104316B4 (de) 2010-12-09 2011-12-08 Laminierte Struktur für Gas-Flüssig-Kontakt und Gasreinigungsvorrichtung
CN201180040378.9A CN103068480B (zh) 2010-12-09 2011-12-08 气液接触板、气液接触层叠块体、气液接触层叠结构体以及气体净化装置
US13/813,359 US9084961B2 (en) 2010-12-09 2011-12-08 Gas-liquid contacting plate, gas-liquid contacting laminated block body, gas-liquid contacting laminated structure and gas purification device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010275119A JP5794775B2 (ja) 2010-12-09 2010-12-09 気液接触板、気液接触積層ブロック体、気液接触積層構造体及びガス浄化装置
JP2010-275119 2010-12-09

Publications (1)

Publication Number Publication Date
WO2012077747A1 true WO2012077747A1 (ja) 2012-06-14

Family

ID=46207230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078397 WO2012077747A1 (ja) 2010-12-09 2011-12-08 気液接触板、気液接触積層ブロック体、気液接触積層構造体及びガス浄化装置

Country Status (5)

Country Link
US (1) US9084961B2 (ja)
JP (1) JP5794775B2 (ja)
CN (1) CN103068480B (ja)
DE (1) DE112011104316B4 (ja)
WO (1) WO2012077747A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108745214A (zh) * 2018-07-11 2018-11-06 江苏揽山环境科技股份有限公司 一种实现混沌状态气液传质传热的反应系统
US11452974B2 (en) 2020-06-19 2022-09-27 Honda Motor Co., Ltd. Unit for passive transfer of CO2 from flue gas or ambient air

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2810707A1 (de) * 2013-06-07 2014-12-10 Sulzer Chemtech AG Packungslage für eine strukturierte Packung
FR3016533B1 (fr) * 2014-01-21 2016-01-15 IFP Energies Nouvelles Plateau distributeur pour colonne d'echange entre un gaz et un liquide avec deflecteur de liquide
JP6390699B2 (ja) 2014-04-01 2018-09-19 株式会社Ihi 充填材の製造方法及び充填材
CN104043323B (zh) * 2014-06-24 2016-06-29 浙江工商大学 一种电晕络合催化烟气脱硝反应装置
CN104857844B (zh) * 2015-05-26 2017-10-13 杭州慈源科技有限公司 一种二氧化碳无害化排放处理装置
JP6641844B2 (ja) 2015-09-30 2020-02-05 株式会社Ihi 充填材
JP7047273B2 (ja) 2017-07-25 2022-04-05 株式会社Ihi 親水化材料、親水化部材及びそれを用いた気液接触装置
CN109607751B (zh) * 2018-12-14 2021-07-13 广西南宁绿泽环保科技有限公司 一种中心源复合膜生物反应器的气水平衡器
CN112933635B (zh) * 2021-03-04 2022-04-12 安徽金禾实业股份有限公司 一种环绕离心式蔗糖-6-酯连续生产设备及生产方法
CN112915565B (zh) * 2021-03-04 2022-04-08 安徽金禾实业股份有限公司 一种旋转式蔗糖-6-酯连续生产设备及生产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5358485A (en) * 1976-11-08 1978-05-26 Mitsubishi Plastics Ind Ltd Packing for gas-liquid contact
JPS5417370A (en) * 1977-07-08 1979-02-08 Mitsubishi Electric Corp Packing for gas-liquid contact
JPS5448681A (en) * 1977-09-27 1979-04-17 Babcock Hitachi Kk Lattice-shaped packing for vapor-liquid contact apparatus
JPS601421U (ja) * 1983-06-15 1985-01-08 三菱重工業株式会社 気液接触装置
JP2003170041A (ja) * 2001-12-07 2003-06-17 Mitsubishi Heavy Ind Ltd 気液接触用の高分子材料製充填物および気液接触装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2042127A (en) * 1933-10-03 1936-05-26 Ici Ltd Apparatus for the treatment of gases or vapors with liquids
GB599400A (en) 1941-04-30 1948-03-11 Delas Condenseurs Improvements in apparatus for bringing a gas into contact with a liquid
US2986379A (en) * 1957-06-04 1961-05-30 Kramig Anna Louise Heat exchanger
HUT42344A (en) 1985-02-01 1987-07-28 Energiagazdalkodasi Intezet Apparatus for originating intensive heat and mass tansport between liquid and steam-gas composite
FR2630819B1 (fr) 1988-04-28 1990-12-07 Air Liquide Dispositif d'echange de chaleur et de matiere, son procede de fabrication, cisaille de mise en oeuvre
CN1042496C (zh) * 1993-11-22 1999-03-17 三菱商事株式会社 物质和/或热交换塔用的液体分配器
EP0657210B1 (de) 1993-12-09 1997-10-22 FAIGLE, Heinz Einbaukörper für Anlagen zum Energie- und/oder Stoffaustausch und/oder zur Bewirkung von chemischen Reaktionen
CN1167486C (zh) * 1999-06-03 2004-09-22 株式会社日本触媒 用于含有易堵塞性物质的有机化合物的精制塔及精制法
FR2815889B1 (fr) 2000-11-02 2003-01-03 Air Liquide Entretoise pour modules de garnissage et appareil de traitement de fluides correspondant
JP2002306958A (ja) * 2001-04-11 2002-10-22 Kansai Electric Power Co Inc:The 気液接触板および気液接触装置
DE10162457A1 (de) 2001-12-19 2003-07-03 Degussa Oberflächenstrukturierte Einbauten für Mehrphasentrennapparate
JP3854538B2 (ja) * 2002-05-27 2006-12-06 三菱重工業株式会社 気液接触板構造と気液接触装置
US20050046052A1 (en) * 2003-07-11 2005-03-03 Kenichi Okada Exhaust gas treating tower

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5358485A (en) * 1976-11-08 1978-05-26 Mitsubishi Plastics Ind Ltd Packing for gas-liquid contact
JPS5417370A (en) * 1977-07-08 1979-02-08 Mitsubishi Electric Corp Packing for gas-liquid contact
JPS5448681A (en) * 1977-09-27 1979-04-17 Babcock Hitachi Kk Lattice-shaped packing for vapor-liquid contact apparatus
JPS601421U (ja) * 1983-06-15 1985-01-08 三菱重工業株式会社 気液接触装置
JP2003170041A (ja) * 2001-12-07 2003-06-17 Mitsubishi Heavy Ind Ltd 気液接触用の高分子材料製充填物および気液接触装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108745214A (zh) * 2018-07-11 2018-11-06 江苏揽山环境科技股份有限公司 一种实现混沌状态气液传质传热的反应系统
US11452974B2 (en) 2020-06-19 2022-09-27 Honda Motor Co., Ltd. Unit for passive transfer of CO2 from flue gas or ambient air

Also Published As

Publication number Publication date
US9084961B2 (en) 2015-07-21
JP5794775B2 (ja) 2015-10-14
CN103068480B (zh) 2016-01-20
US20130127075A1 (en) 2013-05-23
CN103068480A (zh) 2013-04-24
JP2012120999A (ja) 2012-06-28
DE112011104316T5 (de) 2013-09-26
DE112011104316B4 (de) 2022-11-10

Similar Documents

Publication Publication Date Title
JP5794775B2 (ja) 気液接触板、気液接触積層ブロック体、気液接触積層構造体及びガス浄化装置
KR101564580B1 (ko) 폐가스 성상에 따라 처리에 적합하도록 복수기능의 기액접촉수단으로 조합된 폐가스 처리 스크러버
KR101596014B1 (ko) 공기정화장치
KR101478973B1 (ko) 복수기능의 기액접촉수단을 이용한 산성 폐가스 처리 스크러버
CN104324587B (zh) 细孔筛板式鼓泡塔
KR101898890B1 (ko) 수평형 습식 스크러버용 클린 필터를 포함하는 조립체 및 그의 구성방법
JP6855765B2 (ja) 気液接触装置
WO2003001122A1 (fr) Procede et appareil d'epuration de l'air
KR101783373B1 (ko) 반도체공정에서 배출되는 유독성 폐가스를 처리하는 스크러버
US11305244B2 (en) Gas-liquid contact apparatus
KR20080071061A (ko) 유체혼합기
KR101947733B1 (ko) 복수기능의 기액접촉수단을 이용한 폐가스 처리용 수평식 스크러버
WO2016208981A1 (ko) 폐가스 성상에 따라 처리에 적합하도록 복수기능의 기액접촉수단으로 조합된 폐가스 처리 스크러버
WO2011102749A1 (ru) Пакетная вихревая насадка для тепло- и массообменных колонных аппаратов
JPH07121357B2 (ja) 気液接触ユニットおよび気液接触装置
KR101564579B1 (ko) 폐가스 성상에 따라 처리에 적합하도록 복수기능의 기액접촉수단으로 조합된 폐가스 처리 스크러버
JP2020006350A (ja) 気液接触装置
JP5165194B2 (ja) 水膜式スクラバー
CN201686523U (zh) 臭氧光催化污水治理反应器
JP7167513B2 (ja) 気液接触装置
KR101564578B1 (ko) 폐가스 성상에 따라 처리에 적합하도록 복수기능의 기액접촉수단으로 조합된 폐가스 처리 스크러버
JP6862745B2 (ja) 気液接触装置
JP2005224721A (ja) 液分散装置
CN212188493U (zh) 一种燃煤废气的脱硫脱硝装置
US20220168664A1 (en) Hybrid desalination systems and associated methods

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180040378.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846681

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13813359

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120111043163

Country of ref document: DE

Ref document number: 112011104316

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11846681

Country of ref document: EP

Kind code of ref document: A1