WO2012075747A1 - 一种石蜡相变储能材料及其制备方法 - Google Patents

一种石蜡相变储能材料及其制备方法 Download PDF

Info

Publication number
WO2012075747A1
WO2012075747A1 PCT/CN2011/071564 CN2011071564W WO2012075747A1 WO 2012075747 A1 WO2012075747 A1 WO 2012075747A1 CN 2011071564 W CN2011071564 W CN 2011071564W WO 2012075747 A1 WO2012075747 A1 WO 2012075747A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase change
paraffin
energy storage
parts
capsule
Prior art date
Application number
PCT/CN2011/071564
Other languages
English (en)
French (fr)
Inventor
陈振乾
戴晓丽
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2012075747A1 publication Critical patent/WO2012075747A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials
    • C04B20/1029Macromolecular compounds
    • C04B20/1048Polysaccharides, e.g. cellulose, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/023Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being enclosed in granular particles or dispersed in a porous, fibrous or cellular structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0068Ingredients with a function or property not provided for elsewhere in C04B2103/00
    • C04B2103/0071Phase-change materials, e.g. latent heat storage materials used in concrete compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention belongs to the technical field of phase change energy storage materials, and particularly relates to a paraffin phase change energy storage material and a preparation method thereof.
  • phase change material is combined with concrete to make phase change energy storage concrete. It is used as the outer wall material, and the energy utilization and conversion of the phase change material in the phase change process to achieve energy utilization and conversion is beneficial to the energy utilization and conversion.
  • the regulation of the indoor temperature of the building can greatly increase the heat storage effect of the enclosure structure, so that the fluctuation of the heat flow between the indoor and outdoor buildings is weakened, the action time is delayed, the indoor thermal environment is improved, and the purpose of energy saving and comfort is achieved.
  • the paraffin phase change energy storage materials widely used in building energy conservation adopt direct penetration method and encapsulation method when combined with building materials.
  • microcapsule phase change materials exhibits the degradation of thermophysical properties during the continuous cyclic phase transition. When the phase change occurs, there is still liquid leakage and corrosion of the matrix material. It appears as frost on the surface of the material and cannot be used for a long time. Into phase change materials, lack of practical value. 2. The problem of heat storage performance of phase change energy storage building materials.
  • the microcapsule encapsulation method has low content per unit weight of phase change material, low heat storage capacity, and partial microcapsule phase change material has low hydrophilicity, is not easy to be combined with building materials, and the heat transfer efficiency is lowered, and the thermal efficiency of the phase change material cannot be Play effectively.
  • the invention provides a millimeter-level capsule phase change energy storage material and a preparation method thereof, and solves the problem that the existing microcapsule phase change material has low paraffin incorporation amount, poor energy storage performance, easy leakage, and poor stability. technical problem.
  • the phase change material of the invention is a microcapsule material prepared by phase-changing point close to room temperature, paraffin wax with high phase change latent heat and high density polyethylene (polyethylene material with density higher than 0.940 g/cm 3 ) and then coated with calcium alginate.
  • the millimeter-scale capsule phase change material comprises paraffin wax, high density polyethylene, surfactant sodium dodecylbenzene sulfonate, film forming material sodium alginate, cross-linking anhydrous calcium chloride, weight of each component The percentage is paraffin wax 48% ⁇ 56.7%, high density polyethylene 14.2% ⁇ 32%, sodium dodecyl benzene sulfonate 4-5.7%, sodium alginate 10.4% - 15.6%, anhydrous calcium chloride 5.6% - 7.8 %.
  • the preparation method of the millimeter-level capsule phase change material is as follows:
  • paraffin wax is used as the core material
  • high-density polyethylene is used as the supporting material
  • the microcapsule phase change material is prepared by the melting method.
  • the specific process is: heating the mixture of paraffin wax and high-density polyethylene to full melting, when the temperature is heated to The melting effect is better at 138-142 ° C, then it is taken out and stirred evenly, and then cooled in air to a fixed type.
  • the high density polyethylene first solidifies and forms a spatial network structure, and the paraffin wax is bound in the network structure.
  • a phase change material composed of uniform paraffin wax and high density polyethylene is formed, and then the solidified material is pulverized into a microcapsule phase change material having a particle diameter of less than 200 ⁇ m;
  • the paraffin phase change energy storage concrete of the invention comprises 100 parts by weight of cement, 45-52 parts of water, 95-105 parts of sand, 190-210 parts of crushed stone, 50-322 parts of millimeter-sized capsule phase change. material.
  • the method for preparing the paraffin phase change energy storage concrete of the invention firstly inputs the sand, cement, crushed stone and millimeter-level capsule phase change materials into a mixer for dry mixing, so that the capsule phase change material is uniformly dispersed in the dry mixed mixture. Then, water is added for wet mixing to obtain phase change energy storage concrete.
  • a preferred preparation method of the paraffin phase change energy storage concrete of the invention is that the sand, cement, crushed stone and millimeter-level capsule phase change materials are firstly put into the mixer for dry mixing for 30-40 seconds, then the water is mixed with the wet 3- 4 minutes.
  • the phase change concrete component further contains a fiber reinforcing material such as steel fiber having a weight content of 16 to 24 parts or 8-12 parts of basalt fiber.
  • a fiber reinforcing material such as steel fiber having a weight content of 16 to 24 parts or 8-12 parts of basalt fiber.
  • the fiber reinforced phase change energy storage concrete is prepared by first putting steel fiber or basalt fiber together with crushed stone into a mixer for 30-40 seconds to disperse the fiber in the stone, and then sand, cement and millimeter capsule phase. Change the material into the mixer and mix it for 30-40 seconds, then add water and water reducer for 3-4 minutes.
  • the above water reducing agent is a commonly used water reducing agent in construction engineering, such as lignosulfonates, polycyclic aromatic salts, water-soluble resin sulfonates, under the conditions of concrete workability and cement dosage, An additive that can reduce the amount of water used for mixing, increase the strength of concrete, or save the amount of cement under conditions of constant workability and strength.
  • water reducing agents can be used in the present invention, and the phase change energy storage concrete can also be obtained.
  • the paraffin wax used in the present invention is inexpensive among materials such as high density polyethylene, calcium chloride, and sodium alginate, and can be obtained in large quantities.
  • the millimeter-scale capsule phase change material of the present invention has the following advantages over the microcapsule phase change material:
  • the unit weight of the phase change material is high, the encapsulation rate is high, the latent heat of phase change is large, and the heat storage capacity is large.
  • the particle size of the ordinary microcapsule phase change material is in the range of nanometer and micrometer, and a shell-to-core ratio is required to be sufficiently high. Therefore, the maximum amount of paraffin wax is only about 20%, and the maximum amount of paraffin content of the millimeter-scale capsule phase change material can reach about 56%.
  • phase change material After encapsulating the microcapsule phase change material, the surface properties of the phase change material can be effectively improved, and the completely lipophilic surface can be improved to be completely hydrophilic or partially hydrophilic, which expands the application range of the material.
  • the phase change material paraffin and high density polyethylene are both lipophilic materials.
  • the experimental data show that the slope of the Washbum equation which reacts with hydrophilicity is only 3.36cm 2 /min, which is difficult to combine with the matrix material, and the matrix material is prone to cracking and heat transfer performance.
  • the millimeter-scale capsule phase change material of the present invention is coated with a good hydrophilic material such as calcium alginate, and the slope of the hydrophilic Washbum equation which reaches the hydrophilicity reaches 6 cm 2 /min, which is more favorable to the construction.
  • a good hydrophilic material such as calcium alginate
  • the slope of the hydrophilic Washbum equation which reaches the hydrophilicity reaches 6 cm 2 /min, which is more favorable to the construction.
  • the blending of matrix materials such as concrete, gypsum, etc., improves heat transfer efficiency and product stability.
  • the invention adds a millimeter-scale capsule phase change material to the concrete, and the invention has the following advantages compared with the concrete to which the general microcapsule phase change material is added:
  • the microcapsule phase change material has a particle size in the range of nanometers and micrometers, and requires a sufficiently high shell-to-core ratio, and the shell-core mass ratio of the millimeter-scale capsule phase change material having a larger particle diameter is determined by the microcapsule phase change material.
  • the 1/2 is reduced to 1/4, the unit weight of phase change material is high, and the latent heat of phase change is increased to 30kJ/kg. Therefore, the phase change latent heat of the millimeter-scale capsule phase change concrete is larger and the heat storage capacity is higher. Can make full use of the thermal performance of phase change materials.
  • phase change energy storage concrete as a wall building material
  • its phase change energy storage material can undergo solid-liquid phase transition near room temperature, and can store heat in the form of latent heat of phase change, realizing different energy.
  • the conversion between time and space position can greatly enhance the heat storage function of the enclosure structure, and a large amount of heat can be stored with a small amount of material.
  • phase change material paraffin and high density polyethylene are both lipophilic materials
  • the composition of the microcapsule phase change material reacts with a hydrophilic Washbum equation with a slope of only 3.36 cm 2 /min, which is difficult to combine with the concrete matrix material.
  • the phase change energy storage concrete produced has poor stability and the mechanical strength is as low as 13 MPa, which is prone to cracking of the base material.
  • the millimeter-scale capsule phase change material of the present invention is coated with a good hydrophilic material such as calcium alginate, and the slope of the hydrophilic Washbum equation is increased to 6 cm 2 /min, which is more favorable to the building concrete base material.
  • the blending and phase change energy storage concrete has high heat transfer efficiency, good stability, and the mechanical strength is increased to 16.3 MPa, and the base material is not easy to crack.
  • Example 1 Paraffin phase change energy storage material, including paraffin wax having a weight content of 48% of phase change energy storage material, 32% high density polyethylene, 4% sodium dodecylbenzene sulfonate, 10.4% seaweed Sodium, 5.6% anhydrous calcium chloride.
  • Example 2 Paraffin phase change energy storage material, including 55.5% paraffin wax by weight change energy storage material, 23.8% high density polyethylene, 4.7% sodium dodecylbenzene sulfonate, 10.4% seaweed Sodium, 5.6% anhydrous calcium chloride.
  • Example 3 Paraffin phase change energy storage material, including 56.7% paraffin wax, phase change energy storage material, 14.2% high density polyethylene, 5.7% sodium dodecylbenzene sulfonate, 15.6% seaweed Sodium, 7.8% anhydrous calcium chloride.
  • Example 4 Paraffin phase change energy storage concrete, including 45 parts by weight of water, 100 parts of cement, 95 parts of sand, 190 parts of crushed stone, and 50 parts of millimeter-scale capsule phase change material.
  • Example 5 Paraffin phase change energy storage concrete, comprising 48 parts by weight of water, 100 parts of cement, 100 parts of sand, 200 parts of crushed stone, and 116 parts of millimeter capsule phase change material.
  • Example 6 Paraffin phase change energy storage concrete, comprising 51 parts by weight of water, 100 parts of cement, 100 parts of sand, 200 parts of crushed stone, and 322 parts of millimeter-sized capsule phase change material.
  • Example 7 Paraffin phase change energy storage concrete, including 50 parts by weight of water, 100 parts of cement, 105 parts of sand, 210 parts of crushed stone, 116 parts of millimeter capsule phase change material, 16 parts of steel fiber.
  • Example 8 Paraffin phase change energy storage concrete, including 52 parts by weight of water, 100 parts of cement, 100 parts of sand, 200 parts of crushed stone, 203 parts of millimeter capsule phase change material, 24 parts of steel fiber .
  • Example 9 Paraffin phase change energy storage concrete, including 50 parts by weight of water, 100 parts of cement, 100 parts of sand, 200 parts of crushed stone, 116 parts of millimeter capsule phase change material, 8 parts of basalt fiber.
  • Example 10 Paraffin phase change energy storage concrete, including 52 parts by weight of water, 100 parts of cement, 100 parts of sand, 200 parts of crushed stone, 203 parts of millimeter capsule phase change material, 12 parts of basalt fiber .
  • Example 11 First, the steel fiber or basalt fiber is put into the mixer together with the crushed stone for 30-40 seconds to disperse the fiber in the stone, and then the sand, cement and millimeter-level capsule phase change material are put into the mixer and mixed dry 30- 40 seconds, then add water and water reducer 0.6 parts wet mix for 3-4 minutes.
  • Example 12 firstly put steel fiber or basalt fiber together with crushed stone into a mixer for 30-40 seconds to disperse the fiber in the stone, and then put the sand, cement and millimeter-level capsule phase change material into the mixer to dry mix 30- 40 seconds, then add water and water reducing agent 1 part of the wet mix for 3-4 minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Description

一种石蜡相变储能材料及其制备方法 技术领域
本发明属于相变储能材料技术领域,具体涉及一种石蜡相变储能材料及其制备方法。
背景技术
现有的建筑材料多为常物性材料,其热容远达不到理想节能建筑围护结构所要求的热容,导致室内温度波幅度较大,热舒适性低。将相变材料与混凝土相结合,制成相变储能混凝土,用它作外墙体材料,利用相变材料在相变过程中吸能和释能的特点实现能量的利用与转换,有利于建筑物室内温度的调控,可以大大增加围护结构的蓄热作用,使建筑物室内和室外之间的热流波动幅度被减弱,作用时间延迟,改善室内热环境,达到节能与舒适的目的。目前在建筑节能中应用比较广泛的石蜡相变储能材料在与建筑材料结合时采用直接渗透法和囊化封装法。
技术问题
直接渗透法虽然操作简单,但发生相变时产生的液体易发生泄漏或腐蚀基体材料,而现有的囊化封装只能达到纳米和微米级(统称为微胶囊相变材料),其主要存在以下问题:
1.相变储能建筑材料的耐久性和实用性问题。微胶囊相变材料在不断的循环相变过程中出现热物理性质的退化,发生相变时仍有液体泄漏和腐蚀基体材料的现象,表现为在材料表面结霜,不能长期使用,不能大量掺入相变材料,缺乏实用价值。
2.相变储能建筑材料的储热性能问题。微胶囊封装法的单位重量相变材料含量低,储热能力小,同时部分微胶囊相变材料亲水性低,不易与建筑材料相结合,导致传热效率降低,相变材料的热效能不能有效发挥。
现有采用微胶囊相变材料的混凝土,除存在上述问题外,还由于相变材料本身的亲水性差,与混凝土基体材料难结合,同时在相变过程中产生的应力容易破坏基体材料,使得整个混凝土建筑材料的机械强度明显降低,应用范围有限。
技术解决方案
本发明提供了一种毫米级胶囊相变储能材料及其制备方法,解决了已有微胶囊相变材料存在的石蜡可掺入量较低,储能性能差,易渗漏,稳定性差的技术问题。
本发明的相变材料是相变点接近室温,相变潜热大的石蜡与高密度聚乙烯(密度高于0.940g/cm3的聚乙烯材料)制备的微胶囊材料再经海藻酸钙包裹制得的毫米级胶囊相变材料,包含石蜡、高密度聚乙烯、表面活性剂十二烷基苯磺酸钠、成膜材料海藻酸钠、交联剂无水氯化钙,各组分的重量百分比为石蜡48%~56.7%,高密度聚乙烯14.2%~32%,十二烷基苯磺酸钠4-5.7%,海藻酸钠10.4%-15.6%,无水氯化钙5.6%-7.8%。
这种毫米级胶囊相变材料的制备方法如下:
(1)首先以石蜡为芯材,高密度聚乙烯为支撑材料,采用熔融法制备微胶囊相变材料,具体过程为:将石蜡和高密度聚乙烯的混合物加热到全部熔融,当温度加热到138-142℃时熔融效果更好,随后取出搅拌均匀,放在空气中冷却至凝固定型,冷却过程中,高密度聚乙烯首先凝固并形成空间网状结构,而石蜡被束缚在网状结构里,这样就形成了均匀的石蜡和高密度聚乙烯组成的相变材料,然后将凝固成型的材料粉碎成粒径小于200微米的微胶囊相变材料;
(2)采用薄膜包衣技术制备出毫米级胶囊相变材料:①将上述微胶囊置入包衣机内,调节转速为20~30r/min,喷入质量浓度为2~3%的十二烷基苯磺酸钠表面活性剂用于润湿表面,让切粒滚动3~4min;②将质量浓度为4~6%海藻酸钠水溶液均匀喷洒于混合料中,同时开热风干燥,待水分蒸干掉90%左右时,喷入质量浓度为8~12%氯化钙水溶液,包裹 10~15min后,待水分蒸干后再喷入海藻酸钠水溶液;③重复第②步操作,直至胶囊表面光亮为止,进一步干燥后,冷却,出料,制得毫米级胶囊相变材料。
本发明的石蜡相变储能混凝土含有重量含量为100份的水泥,45~52份的水,95-105份的砂,190-210份的碎石,50~322份的毫米级胶囊相变材料。
制备本发明石蜡相变储能混凝土的方法,先将砂、水泥、碎石、毫米级胶囊相变材料按比例投入搅拌机中进行干拌,使胶囊相变材料均匀分散于前述干拌的混合物中,然后加水进行湿拌,制得相变储能混凝土。
本发明石蜡相变储能混凝土的一种优选的制备方法为,先将砂、水泥、碎石、毫米级胶囊相变材料按比例投入搅拌机中干拌30-40秒,然后加水湿拌3-4分钟即可。
为进一步增强混凝土基体的机械强度,在相变混凝土组分中还含有纤维增强材料,如重量含量为16~24份的钢纤维或8-12份的玄武岩纤维。实验数据显示,添加了纤维材料后,相变储能混凝土材料的抗压强度提高了10-15MPa,能有效解决因添加石蜡相变材料后混凝土基体的机械强度降低的问题,使得该建筑材料应用范围更广。
这种纤维增强相变储能混凝土的制备方法为,先将钢纤维或玄武岩纤维与碎石一起投入搅拌机搅拌30-40秒,使纤维分散在石子中,再将砂、水泥、毫米级胶囊相变材料按比例投入搅拌机干拌30-40秒,然后加水和减水剂湿拌3-4分钟即可。
上述减水剂是建筑工程中常用的减水剂,如木质素磺酸盐类、多环芳香族盐类、水溶性树脂磺酸盐类,在混凝土和易性及水泥用量不变条件下,能减少拌合用水量、提高混凝土强度;或在和易性及强度不变条件下,节约水泥用量的外加剂。当然,本发明也可使用其他减水剂,同样能制得所述相变储能混凝土。
有益效果
本发明使用的石蜡与高密度聚乙烯、氯化钙、海藻酸钠等材料价格便宜,可大量获得。本发明的毫米级胶囊相变材料相对于微胶囊相变材料具有以下优点:
(1)其单位重量的相变材料含量高,包裹率高,相变潜热大,储热能力大,普通微胶囊相变材料粒径在纳米和微米范围内,需要足够高的壳芯比,因此石蜡最大掺量只有20%左右,而该毫米级胶囊相变材料石蜡含量最大掺量可达到56%左右。
(2)将微胶囊相变材料包裹后能有效改善相变材料的表面性质,将完全亲油性的表面改善为完全亲水性或部分亲水性,拓展了材料的应用范围。相变材料石蜡与高密度聚乙烯均是亲油性材料,实验数据显示反应其亲水性的Washbum方程斜率只有3.36cm2/min,与基体材料难结合,易出现基体材料开裂、传热性能降低等现象,而本发明的毫米级胶囊相变材料通过海藻酸钙这种良好亲水性材料包覆后,反应其亲水性的Washbum方程斜率达到了6cm2/min,这样更有利于与建筑基体材料如混凝土,石膏等的共混,提高了传热效率和制品的稳定性。
(3)实验证明,本发明与未包裹的微胶囊相变材料相比,经过多次循环之后未包裹的微胶囊相变材料重量损失不断增大,达到了10%,而经过包裹后的毫米级胶囊相变材料重量损失基本维持在3%左右,因此毫米级胶囊相变材料有效的改善了微胶囊相变储能材料易渗漏的问题,提高了产品的耐久性和实用性。还可在保证稳定性的同时,更大限度地提高相变材料的含量,提高蓄热能力。
本发明在混凝土中添加的是毫米级胶囊相变材料,与添加一般微胶囊相变材料的混凝土相比,本发明具有以下优点:
(1)一般微胶囊相变材料粒径都在纳米和微米范围内,需要足够高的壳芯比,而粒径较大的毫米级胶囊相变材料的壳芯质量比由微胶囊相变材料的1/2降低到1/4,其单位重量的相变材料含量高,相变潜热升高到了30kJ/kg,因此毫米级胶囊相变混凝土的相变潜热更大,蓄热能力更高,能更充分的利用相变材料的热效能。利用这种毫米级胶囊相变储能混凝土作为墙体建筑材料,其相变储能材料能在室温附近发生固液相的转变,能够将热量以相变潜热的形式进行储存,实现能量在不同时间,空间位置之间的转换,可大大增强围护结构的储热功能,使用少量的材料就可以储存大量的热能。
(2)因相变材料石蜡与高密度聚乙烯均是亲油性材料,其组成的微胶囊相变材料反应其亲水性的Washbum方程斜率只有3.36cm2/min,与混凝土基体材料难结合,制成的相变储能混凝土稳定性差,机械强度低至只有13MPa,易出现基体材料开裂现象。而本发明的毫米级胶囊相变材料通过海藻酸钙这种良好亲水性材料包覆后,反应其亲水性的Washbum方程斜率升高到了6cm2/min,更有利于与建筑混凝土基体材料的共混,制成的相变储能混凝土传热效率高,稳定性好,机械强度提高到了16.3MPa,基体材料不易开裂。
(3)实验证明,添加一般微胶囊相变储能材料的混凝土在多次循环之后表面已有潮湿现象,而添加相同石蜡含量的毫米级胶囊相变储能混凝土材料在多次循环之后表面潮湿现象不明显,证明毫米级胶囊相变储能混凝土有效改善了已有微胶囊相变混凝土石蜡易渗漏的问题,提高了产品耐久性和实用性。
本发明的实施方式
实施例1:石蜡相变储能材料,包括重量含量占相变储能材料的48%的石蜡,32%的高密度聚乙烯,4%的十二烷基苯磺酸钠,10.4%的海藻酸钠,5.6%的无水氯化钙。
实施例2:石蜡相变储能材料,包括重量含量占相变储能材料的55.5%的石蜡,23.8%的高密度聚乙烯,4.7%的十二烷基苯磺酸钠,10.4%的海藻酸钠,5.6%的无水氯化钙。
实施例3:石蜡相变储能材料,包括重量含量占相变储能材料的56.7%的石蜡,14.2%的高密度聚乙烯,5.7%的十二烷基苯磺酸钠,15.6%的海藻酸钠,7.8%的无水氯化钙。
实施例4:石蜡相变储能混凝土,包括重量含量为45份的水,100份的水泥,95份的砂,190份的碎石,50份的毫米级胶囊相变材料。
实施例5:石蜡相变储能混凝土,包括重量含量占48份的水,100份的水泥,100份的砂,200份的碎石,116份的毫米级胶囊相变材料。
实施例6:石蜡相变储能混凝土,包括重量含量占51份的水,100份的水泥,100份的砂,200份的碎石,322份的毫米级胶囊相变材料。
实施例7:石蜡相变储能混凝土,包括重量含量占50份的水,100份的水泥,105份的砂,210份的碎石,116份的毫米级胶囊相变材料,16份的钢纤维。
实施例8:石蜡相变储能混凝土,包括重量含量52份的水,100份的水泥,100份的砂,200份的碎石,203份的毫米级胶囊相变材料,24份的钢纤维。
实施例9:石蜡相变储能混凝土,包括重量含量占50份的水,100份的水泥,100份的砂,200份的碎石,116份的毫米级胶囊相变材料,8份的玄武岩纤维。
实施例10:石蜡相变储能混凝土,包括重量含量52份的水,100份的水泥,100份的砂,200份的碎石,203份的毫米级胶囊相变材料,12份的玄武岩纤维。
实施例11:先将钢纤维或玄武纤维与碎石一起投入搅拌机搅拌30-40秒,使纤维分散在石子中,再将砂、水泥、毫米级胶囊相变材料按比例投入搅拌机干拌30-40秒,然后加水和减水剂0.6份湿拌3-4分钟即可。
实施例12:先将钢纤维或玄武纤维与碎石一起投入搅拌机搅拌30-40秒,使纤维分散在石子中,再将砂、水泥、毫米级胶囊相变材料按比例投入搅拌机干拌30-40秒,然后加水和减水剂1份湿拌3-4分钟即可。

Claims (10)

  1. 一种石蜡相变储能材料,其特征在于,包含石蜡、高密度聚乙烯、表面活性剂十二烷基苯磺酸钠、成膜材料海藻酸钠、交联剂无水氯化钙,各组分的重量百分比为石蜡48%~56.7%,高密度聚乙烯14.2%~32%,十二烷基苯磺酸钠4-5.7%,海藻酸钠10.4%-15.6%,无水氯化钙5.6%-7.8%。
  2. 根据权利要求1所述的一种石蜡相变储能材料,其特征在于所述石蜡相变储能材料是毫米级胶囊相变材料。
  3. 根据权利要求1所述的一种石蜡相变储能材料,其特征在于所采用的石蜡的熔点为室温。
  4. 一种制造权利要求1所述的石蜡相变储能材料的方法,其特征在于,制造步骤如下:
    (1)首先以石蜡为芯材,高密度聚乙烯为支撑材料,采用熔融法制备微胶囊相变材料,具体过程为:将石蜡和高密度聚乙烯的混合物加热到全部熔融后,取出搅拌均匀,放在空气中冷却至凝固定型,然后粉碎成粒径小于200微米的微胶囊相变材料;
    (2)采用薄膜包衣技术制备出毫米级胶囊相变材料:①将上述微胶囊相变材料置入包衣机内,调节转速为20~30r/min,喷入质量浓度为2~3%的十二烷基苯磺酸钠表面活性剂用于润湿表面,让切粒滚动3~4min;②将质量浓度为4~6%海藻酸钠水溶液均匀喷洒于混合料中,同时开热风干燥,待水分蒸干掉90%左右时,喷入质量浓度为8~12%氯化钙水溶液,包裹 10~15min后,待水分蒸干后再喷入海藻酸钠水溶液;③重复第②步操作,直至胶囊表面光亮为止,进一步干燥后,冷却,出料,制得毫米级胶囊相变材料。
  5. 根据权利要求4所述的一种方法,其特征在于,所述步骤(1)中石蜡和高密度聚乙烯的混合物加热到138-142℃。
  6. 一种石蜡相变储能混凝土,其特征在于,含有重量含量为100份的水泥,45~52份的水,95~105份的砂,190~210份的碎石,50~322份的毫米级胶囊相变材料。
  7. 根据权利要求6所述的石蜡相变储能混凝土,其特征在于,组分中还含有纤维增强材料,所述纤维增强材料为16~24份的钢纤维或8-12份的玄武岩纤维。
  8. 一种制备权利要求6所述石蜡相变储能混凝土的方法,其特征在于,先将砂、水泥、碎石、毫米级胶囊相变材料按比例投入搅拌机中进行干拌,使胶囊相变材料均匀分散于前述干拌的混合物中,然后加水进行湿拌,制得相变储能混凝土。
  9. 根据权利要求8所述一种制备方法,其特征在于,先将砂、水泥、碎石、毫米级胶囊相变材料按比例投入搅拌机中干拌30-40秒,然后加水湿拌3-4分钟即可。
  10. 根据权利要求8所述一种制备方法,其特征在于,先将钢纤维或玄武纤维与碎石一起投入搅拌机搅拌30-40秒,使纤维分散在石子中,再将砂、水泥、毫米级胶囊相变材料按比例投入搅拌机干拌30-40秒,然后加水和减水剂湿拌3-4分钟即可。
PCT/CN2011/071564 2010-12-10 2011-03-07 一种石蜡相变储能材料及其制备方法 WO2012075747A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010105816855A CN102127395B (zh) 2010-12-10 2010-12-10 一种石蜡相变储能材料及其制备方法
CN201010581685.5 2010-12-10

Publications (1)

Publication Number Publication Date
WO2012075747A1 true WO2012075747A1 (zh) 2012-06-14

Family

ID=44265672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/071564 WO2012075747A1 (zh) 2010-12-10 2011-03-07 一种石蜡相变储能材料及其制备方法

Country Status (2)

Country Link
CN (1) CN102127395B (zh)
WO (1) WO2012075747A1 (zh)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103215818A (zh) * 2013-05-04 2013-07-24 辽宁恒星精细化工有限公司 用于纺织品的阻燃涂层胶及其制备方法
CN105693152A (zh) * 2016-01-22 2016-06-22 张川川 一种节能环保复合建筑材料及其制备方法
CN105731483A (zh) * 2016-02-16 2016-07-06 湖北工业大学 反相微乳液法原位包覆制备氮化硼/硼酸钙复合纳米材料的方法
CN111234436A (zh) * 2020-03-31 2020-06-05 戴洪卫 一种磁性微胶囊相变储能材料及其制备方法
CN112808186A (zh) * 2021-01-04 2021-05-18 北京林业大学 一种双壁材疏水阻燃微胶囊的制备方法
CN113045271A (zh) * 2021-03-19 2021-06-29 龙南县彩艺装饰材料厂 一种节能干混砂浆及其生产方法
CN113583416A (zh) * 2021-09-09 2021-11-02 重庆宝能普拉斯复合材料有限公司 一种自修复农用薄膜及其制备工艺
CN113603419A (zh) * 2021-08-06 2021-11-05 兰州交通大学 一种适用于寒区工程的相变储能砂浆及其制备方法
CN114031339A (zh) * 2021-11-25 2022-02-11 湘潭大学 一种相变混凝土及其制备方法
CN114316414A (zh) * 2022-01-27 2022-04-12 福建美庆热传科技有限公司 一种硅油填充复合橡胶相变材料及其制备方法
CN114687220A (zh) * 2021-03-09 2022-07-01 上海爱尔企业发展股份有限公司 一种凉感整理剂及其制备方法与应用
CN114890725A (zh) * 2022-05-20 2022-08-12 东南大学 一种相变控温珊瑚砂饰面砖及其制备方法
CN114890811A (zh) * 2022-04-26 2022-08-12 鞍钢集团矿业有限公司 利用矿山固废制备多孔相变储能材料及方法
CN114890750A (zh) * 2022-05-31 2022-08-12 中铁大桥局集团有限公司 一种高原环境下桥梁主塔用智能温控混凝土及其制备方法
CN114921231A (zh) * 2022-05-25 2022-08-19 安徽理工大学 一种采用乙基纤维素涂层封装的相变微胶囊及其制备方法
CN115246731A (zh) * 2021-12-21 2022-10-28 兰州理工大学 一种相变石膏砌块及其制备方法
CN115746569A (zh) * 2022-12-02 2023-03-07 锐腾新材料制造(苏州)有限公司 一种储能灌封材料
CN116083055A (zh) * 2022-12-07 2023-05-09 北京科技大学 一种蓄热储能相变充填体及其制备方法及应用
CN116285341A (zh) * 2023-04-07 2023-06-23 华北电力大学 一种柔性高导热复合相变薄膜及其制备方法与应用
CN116639915A (zh) * 2023-05-23 2023-08-25 胡钧 一种制备石墨烯装饰板材的方法、石墨烯装饰板材及其用途
CN117843305A (zh) * 2024-01-12 2024-04-09 浙江义乌港有限公司 一种混凝土浆料及其制备方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104096521A (zh) * 2014-07-28 2014-10-15 长安大学 一种相变微胶囊及其制备方法
CN104386981B (zh) * 2014-10-24 2016-07-06 马鞍山市博浪热能科技有限公司 一种具有导热和储热功能的混凝土材料及其制备方法
CN104844037B (zh) * 2015-03-27 2017-01-11 重庆交通大学 用于混凝土箱体结构抵御温差应力的反膨胀添加剂
CN105219352B (zh) * 2015-09-30 2018-02-09 贵州华益能环保科技有限公司 一种相变储能复合微胶囊及制备方法
CN105753394A (zh) * 2016-02-29 2016-07-13 同济大学 一种掺加石蜡微胶囊的高贝利特水泥混凝土
CN105973660B (zh) * 2016-04-26 2018-11-09 中国石油化工股份有限公司 一种人造岩心的制备方法以及由该方法制备的人造岩心
CN106045428B (zh) * 2016-06-01 2017-12-22 深圳广田集团股份有限公司 一种用于建筑节能调温的相变保温粉及其制备方法
CN106753262A (zh) * 2016-12-07 2017-05-31 河南工业大学 一种添加炭纤维的微胶囊定形相变材料及其制备方法
CN107779173A (zh) * 2017-10-12 2018-03-09 北京宇田相变储能科技有限公司 一种提高储热性能的微胶囊及其组合物成型体
CN108102613A (zh) * 2017-11-28 2018-06-01 大连理工大学 一种防霉变有机复合定形相变材料及其制备方法
CN107963858A (zh) * 2017-12-25 2018-04-27 深圳市西柚子科技有限公司 一种新型保温混凝土及其制备方法
CN109734378B (zh) * 2019-01-31 2021-10-01 泰州市康泰建材科技有限公司 一种免发泡高强度泡沫混凝土的制备工艺
CN110791257A (zh) * 2019-10-08 2020-02-14 鞍钢股份有限公司 一种定向传热相变储热材料的制备方法及装置
CN111499253B (zh) * 2020-04-15 2022-03-04 东南大学 一种基于微波控释的外加剂微胶囊及其制备方法
CN111807800B (zh) * 2020-06-28 2022-04-19 北新集团建材股份有限公司 一种纸面石膏板及其制备方法
CN111718573B (zh) * 2020-07-09 2022-10-11 江苏省特种设备安全监督检验研究院 一种石墨烯共混改性相变发泡保温材料及制备方法
CN114806511B (zh) * 2022-04-28 2023-04-07 四川大学 活动式半封装的固-液相变蓄热材料及其制备方法与应用
CN116535869A (zh) * 2023-06-12 2023-08-04 沈阳工学院 一种相变储能控温胶囊及其制备方法
CN117736699A (zh) * 2023-09-16 2024-03-22 广东长特思智能电器科技有限公司 一种基于气相白炭黑的相变温度可调的烷烃相变凝胶及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020061954A1 (en) * 2000-09-27 2002-05-23 Davis Danny Allen Macrocapsules containing microencapsulated phase change materials
CN1887768A (zh) * 2005-06-27 2007-01-03 深圳市海川实业股份有限公司 一种多孔纤维改性混凝土
CN101050354A (zh) * 2007-05-11 2007-10-10 华南理工大学 相变储能微囊及其制备方法与装置
CN101107064A (zh) * 2005-01-18 2008-01-16 巴斯夫股份有限公司 粗粒微囊制剂
CN101284986A (zh) * 2008-06-06 2008-10-15 天津工业大学 一种石蜡类定形相变材料大胶囊的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020061954A1 (en) * 2000-09-27 2002-05-23 Davis Danny Allen Macrocapsules containing microencapsulated phase change materials
CN101107064A (zh) * 2005-01-18 2008-01-16 巴斯夫股份有限公司 粗粒微囊制剂
CN1887768A (zh) * 2005-06-27 2007-01-03 深圳市海川实业股份有限公司 一种多孔纤维改性混凝土
CN101050354A (zh) * 2007-05-11 2007-10-10 华南理工大学 相变储能微囊及其制备方法与装置
CN101284986A (zh) * 2008-06-06 2008-10-15 天津工业大学 一种石蜡类定形相变材料大胶囊的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHI WEI ET AL.: "Properties of Paratt in Phase-Change-Material (PCM) Mass Concrete for Temperature Control", JOURNAL OF BUILDING MATERIALS, vol. 13, no. 3, June 2010 (2010-06-01), pages 414 - 417 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103215818B (zh) * 2013-05-04 2014-08-13 辽宁恒星精细化工有限公司 用于纺织品的阻燃涂层胶及其制备方法
CN103215818A (zh) * 2013-05-04 2013-07-24 辽宁恒星精细化工有限公司 用于纺织品的阻燃涂层胶及其制备方法
CN105693152A (zh) * 2016-01-22 2016-06-22 张川川 一种节能环保复合建筑材料及其制备方法
CN105731483A (zh) * 2016-02-16 2016-07-06 湖北工业大学 反相微乳液法原位包覆制备氮化硼/硼酸钙复合纳米材料的方法
CN105731483B (zh) * 2016-02-16 2018-10-09 湖北工业大学 反相微乳液法原位包覆制备氮化硼/硼酸钙复合纳米材料的方法
CN111234436A (zh) * 2020-03-31 2020-06-05 戴洪卫 一种磁性微胶囊相变储能材料及其制备方法
CN111234436B (zh) * 2020-03-31 2022-12-13 小墨热管理材料技术(深圳)有限公司 一种磁性微胶囊相变储能材料及其制备方法
CN112808186A (zh) * 2021-01-04 2021-05-18 北京林业大学 一种双壁材疏水阻燃微胶囊的制备方法
CN114687220A (zh) * 2021-03-09 2022-07-01 上海爱尔企业发展股份有限公司 一种凉感整理剂及其制备方法与应用
CN113045271B (zh) * 2021-03-19 2022-04-22 龙南县彩艺装饰材料厂 一种节能干混砂浆及其生产方法
CN113045271A (zh) * 2021-03-19 2021-06-29 龙南县彩艺装饰材料厂 一种节能干混砂浆及其生产方法
CN113603419A (zh) * 2021-08-06 2021-11-05 兰州交通大学 一种适用于寒区工程的相变储能砂浆及其制备方法
CN113583416A (zh) * 2021-09-09 2021-11-02 重庆宝能普拉斯复合材料有限公司 一种自修复农用薄膜及其制备工艺
CN114031339A (zh) * 2021-11-25 2022-02-11 湘潭大学 一种相变混凝土及其制备方法
CN114031339B (zh) * 2021-11-25 2022-12-30 湘潭大学 一种相变混凝土及其制备方法
CN115246731A (zh) * 2021-12-21 2022-10-28 兰州理工大学 一种相变石膏砌块及其制备方法
CN114316414A (zh) * 2022-01-27 2022-04-12 福建美庆热传科技有限公司 一种硅油填充复合橡胶相变材料及其制备方法
CN114890811A (zh) * 2022-04-26 2022-08-12 鞍钢集团矿业有限公司 利用矿山固废制备多孔相变储能材料及方法
CN114890725A (zh) * 2022-05-20 2022-08-12 东南大学 一种相变控温珊瑚砂饰面砖及其制备方法
CN114921231A (zh) * 2022-05-25 2022-08-19 安徽理工大学 一种采用乙基纤维素涂层封装的相变微胶囊及其制备方法
CN114890750A (zh) * 2022-05-31 2022-08-12 中铁大桥局集团有限公司 一种高原环境下桥梁主塔用智能温控混凝土及其制备方法
CN114890750B (zh) * 2022-05-31 2023-06-23 中铁大桥局集团有限公司 一种高原环境下桥梁主塔用智能温控混凝土及其制备方法
CN115746569A (zh) * 2022-12-02 2023-03-07 锐腾新材料制造(苏州)有限公司 一种储能灌封材料
CN116083055A (zh) * 2022-12-07 2023-05-09 北京科技大学 一种蓄热储能相变充填体及其制备方法及应用
CN116083055B (zh) * 2022-12-07 2024-06-07 北京科技大学 一种蓄热储能相变充填体及其制备方法及应用
CN116285341A (zh) * 2023-04-07 2023-06-23 华北电力大学 一种柔性高导热复合相变薄膜及其制备方法与应用
CN116639915A (zh) * 2023-05-23 2023-08-25 胡钧 一种制备石墨烯装饰板材的方法、石墨烯装饰板材及其用途
CN116639915B (zh) * 2023-05-23 2023-12-15 胡钧 一种制备石墨烯装饰板材的方法、石墨烯装饰板材及其用途
CN117843305A (zh) * 2024-01-12 2024-04-09 浙江义乌港有限公司 一种混凝土浆料及其制备方法

Also Published As

Publication number Publication date
CN102127395A (zh) 2011-07-20
CN102127395B (zh) 2012-12-19

Similar Documents

Publication Publication Date Title
WO2012075747A1 (zh) 一种石蜡相变储能材料及其制备方法
CN101671149B (zh) 石蜡微胶囊相变蓄热保温砂浆及其制备方法
CN103771808B (zh) 一种含有橡胶粉的相变蓄热水泥砂浆及其制备方法
CN100387544C (zh) 相变抗裂砂浆及其所使用的粒状相变材料的制备方法
CN109721323B (zh) 一种纳米微孔隔热保温材料及其制备方法
CN102432258A (zh) 一种建筑用定型相变储能材料及其制备方法
CN107056210A (zh) 一种储能增强型纸面石膏板、其制备方法和应用
CN106045428B (zh) 一种用于建筑节能调温的相变保温粉及其制备方法
CN106625930A (zh) 一种相变储能的保温实木及其制造方法
CN101429423A (zh) 一种纳米复合相变材料及制备方法
CN104829189B (zh) 一种相变储能复合泡沫混凝土砌块
CN101671136A (zh) 一种基于相变蓄热的新型储能保温砂浆的制备方法
CN102173664A (zh) 一种石墨-石蜡复合相变储能混凝土及其制备方法
CN113372065B (zh) 一种储热混凝土及其制备方法
CN105036627A (zh) 一种相变性屋面自保温陶粒混凝土
CN101747868A (zh) 一种复合相变储能材料及其制备方法
CN108609935A (zh) 一种基于聚合物相变材料的环保相变装饰砂浆及其制备方法
Miao et al. Development of spherical α-Al2O3-based composite phase change materials (PCMs) and its utilization in thermal storage building materials
CN102516944A (zh) 一种封装型复合相变材料及其制备方法
Sonare et al. Review on applications of microencapsulated phase change material in buildings for thermal storage system
CN1458112A (zh) 外墙外保温高强节能墙体保温材料
CN106010456A (zh) 一种用于建筑节能的相变储能粉及其制备方法
CN106186873A (zh) 一种环境友好型相变储能干粉砂浆及其制备方法
KR20200006675A (ko) 저온에서 열 성능이 향상된 모르타르 조성물, 이를 포함하는 콘크리트, 및 모르타르 조성물의 제조방법
CN103320096B (zh) 一种相变蓄能胶囊及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11846687

Country of ref document: EP

Kind code of ref document: A1