WO2012066717A1 - Pneumatique - Google Patents
Pneumatique Download PDFInfo
- Publication number
- WO2012066717A1 WO2012066717A1 PCT/JP2011/005636 JP2011005636W WO2012066717A1 WO 2012066717 A1 WO2012066717 A1 WO 2012066717A1 JP 2011005636 W JP2011005636 W JP 2011005636W WO 2012066717 A1 WO2012066717 A1 WO 2012066717A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- recesses
- region
- pneumatic tire
- valley portions
- tire
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C13/00—Tyre sidewalls; Protecting, decorating, marking, or the like, thereof
- B60C13/001—Decorating, marking or the like
Definitions
- the invention relates to a pneumatic tire, and relates particularly to a design of a sidewall surface of a pneumatic tire.
- the rolling resistance of the pneumatic tire is required to be reduced.
- various embodiments in which the structure of the pneumatic tire, a tread pattern design, and so on are modified.
- the air resistance of a rolling pneumatic tire is affected by unevenness of a tread pattern provided on a surface of a tread portion and unevenness of a mark and a pattern provided on a sidewall surface.
- Japanese Patent No. 3028492 describes a pneumatic tire which can reduce air resistance without losing tire performance.
- a large number of recesses or protrusions with an equivalent diameter of 3 to 15 mm are distributed on a surface of a sidewall portion all over the circumference.
- the recesses or protrusions are provided in a region of at least 10% of the surface area of the sidewall portion on the upper and lower portions in the radial direction around the position of a tire maximum width W.
- the recesses or protrusions are intended to cause separation of an air layer on the tire surface move backward as much as possible, whereby generation of a vortex flow is suppressed.
- the air resistance in high-speed driving is reduced without losing the tire performance, and the maximum speed of a vehicle can be enhanced.
- the air vent holes can solve the air accumulation problem in the tire mold, however, partial fluidized rubber of the unvulcanized tire flows into the air vent holes after the air is vented. Consequently, a large number of whisker-like protrusions, that is, spews are generated on the sidewall surface of the pneumatic tire.
- spews are protruded portions of side wall rubber corresponding to the shape of the air vent hole.
- the spews are not preferable for tire products, the spews may be cut in an inspection process. However, the protrusions of the spews cannot be completely removed even by the cutting, so that convex-shaped spew traces of approximately 0.5 to 1 mm remain.
- the spew traces are not preferable for the appearance of the pneumatic tire and may be an obstacle to reduction of the air resistance.
- an embodiment of the present invention provides a pneumatic tire.
- the pneumatic tire includes: a plurality of dimple-like recesses provided in a first region including a tire maximum width position of a sidewall surface of the pneumatic tire; and a plurality of linear valley portions formed by serration of the sidewall surface, the linear valley portions extending linearly in one direction in the first region and provided around each of the recesses so as to enclose each of the recesses.
- an interval distance between the linear valley portions is preferably smaller than the equivalent diameter.
- the equivalent diameter is preferably 3 to 10 times the interval distance between the linear valley portions.
- the equivalent diameter is preferably 3 to 15 mm.
- the first region includes a second region in which the recesses are arranged in a cluster, and in the second region, an area ratio of entire area occupied by the recesses to a surface area of the second region is 25 to 60%.
- each of the valley portions is preferably smaller than the depth from the sidewall surface of each of the recesses. Then, each of the recesses is preferably formed to be more depressed than a bottom surface of any of the valley portions adjacent to each of the recesses.
- Hardness according to a durometer hardness test (type A) specified in JIS K6253 under temperature of 20 degrees Celsius of a side rubber member used in the first region can be 56 to 65.
- the pneumatic tire can include a circumferential rib-like protrusion continuously extending in a tire circumferential direction and keeping contact with a side edge periphery in a tire radial direction of the first region.
- the protrusion can be provided with a spew point-like projection at a top portion thereof.
- a ridge formed between adjacent valley portions of the first region can be connected to the circumferential rib-like protrusion.
- the equivalent diameter of the outermost recess is preferably larger than the equivalent diameter of the innermost recess, and the equivalent diameter preferably increases from an inside to an outside in the tire radial direction successively or in a step-by-step manner between the innermost recess and the outermost recess.
- the valley portions are terminated immediately before the valley portions are abutted against the recesses so that the valley portions do not connect to the recesses.
- rows of the recesses extending in one direction are preferably provided in each certain circumferential angle in the tire circumferential direction.
- the pneumatic tire can include: an undecorated region having a smooth surface without the valley portions and provided so as to be adjacent to an side edge periphery of the first region; and a mark region representing a mark including characters, symbols, or a combination of characters and symbols and provided so as to be surrounded by the undecorated region.
- a top portion of a ridge formed between adjacent valley portions in the first region is preferably located at a depressed position relative to the smooth surface.
- a sidewall surface has no spew or spew trace, and the air resistance can be reduced. Even if the thickness of a sidewall rubber member of the pneumatic tire is reduced in order to reduce the rolling resistance, an appearance failure of the sidewall surface hardly occurs.
- FIG. 1 is a view illustrating a surface of a sidewall portion of a pneumatic tire of the present embodiment.
- FIG. 2 is an enlarged view of a first region and a mark region in the present embodiment.
- FIG. 3 is an enlarged view for explaining an arrangement of a valley portion and a recess in the present embodiment.
- FIG. 4 is a plan view for explaining an arrangement of the valley portion and the recess in the present embodiment.
- FIG. 5 indicate specifications and evaluation results of examples conventional examples.
- FIG. 1 is a view illustrating a surface of a sidewall portion 10 of the pneumatic tire of the present embodiment.
- the sidewall portion 10 is positioned between a tire tread portion (a portion represented by a circular arc 12 in FIG. 1) and a bead portion (a portion represented by a circular arc 14 in FIG. 1).
- the pneumatic tire of the present embodiment has well-known structure and shape, which is to say, the pneumatic tire principally has structural core members including a carcass, belts and bead cores (not illustrated), and rubber members including a tread rubber member, side rubber member, bead filler rubber members, and an inner liner rubber member. Thus, the description of those members will be omitted.
- the pneumatic tire of the present embodiment is, for example, a passenger car tire specified in chapter A of JATMA YEAR BOOK 2009 (Japan Automobile Tyre Manufacturers Association).
- the pneumatic tire of the present embodiment can be applied to a tire for a small truck specified in chapter B and a tire for truck and bus specified in chapter C.
- a tire circumferential direction in this specification refers to a direction in which a tread surface of the tire moves when a tire is rotating around a tire rotation axis.
- a tire radial direction refers to a direction extending vertically to the tire rotation axis.
- a C direction is indicative of the tire circumferential direction
- an R direction is indicative of the tire radial direction.
- a plurality of dimple-like recesses (white circles illustrated in FIG. 1) 16 are provided in a first region R 1 including a tire maximum width position on a surface of the sidewall portion 10 of the pneumatic tire.
- the tire maximum width position means a position in the tire radial direction where the tire width in a tire width direction is at the maximum.
- a plurality of linear valley portions 18 which extend in one direction are provided around each of the recesses 16 so as to enclose each of the recesses 16.
- the linear valley portions 18 are formed by serration of the sidewall surface. Between the adjacent valley portions 18, a ridge (see FIG. 3) 20 extends along the valley portions 18. By virtue of the provision of the valley portions 18, the ridge 20 is formed, and a serration pattern is formed by the valley portions 18 and the ridges 20.
- Undecorated regions R 2 and R 3 having a smooth surface 22 (see FIG. 3) with no valley portions 18 are provided so as to be adjacent to a side edge periphery of the first region R 1 .
- Mark regions R 4 and R 5 representing a mark including characters, symbols, or a combination of characters and symbols are provided so as to be surrounded by the undecorated regions R 2 and R 3 .
- the mark region R 5 includes a mark that allows the present applicant name to be identified.
- the mark region R 4 includes a mark of the brand name "ABCDEF"of the pneumatic tire of the present embodiment.
- the width of the first region R 1 gets smaller at the positions in the tire circumferential direction where the undecorated regions R 2 and R 3 are provided.
- the first region R 1 is provided inward in the tire radial direction, and the undecorated regions R 2 and R 3 are provided outward in the tire radial direction.
- the small width portions of the first region R 1 and the undecorated regions R 2 and R 3 are provided so as to keep contact with each other along the tire circumferential direction.
- the undecorated regions R 2 and R 3 have at their edge in the tire circumferential direction a plurality of the recesses 16 provided in a row along each of the side edge peripheries of the undecorated regions R 2 and R 3 .
- FIG. 2 is an enlarged view of the first region R 1 and the undecorated region R 3 .
- a plurality of lines illustrated in the first region R 1 in FIG. 2 represent the valley portions 18 forming the serration pattern.
- the valley portions 18 extend linearly in the tire radial direction in the first region R 1 and is curved and extend further in a region R 6 beyond the region R 1 .
- the region R 6 is provided inward in the tire radial direction of the first region R 1 .
- An interval distance between the linear valley portions 18 illustrated by the straight lines in FIG. 2 is small relative to an equivalent diameter of a circle when a size of an occupied area of each of the recesses 16 on the sidewall surface is represented by the equivalent diameter of the circle.
- the contour of the recess 16 is a circular shape, it is not limited to the circular shape.
- the contour of the recess 16 may be a triangular shape, a quadrangular shape, a pentagonal shape, or a hexagonal shape.
- the equivalent diameter is 3 to 15 mm, for example.
- the equivalent diameter is preferably 3 to 10 mm, and more particularly 4 to 8 mm. It is preferable that the equivalent diameter is 3 to 10 times the interval distance between the adjacent valley portions 18.
- the first region R 1 has a partial region (a second region) in which the recesses 16 are arranged at a certain interval in a cluster. It is preferable from a viewpoint of reduction of the air resistance that an area ratio of the entire area occupied by the recesses 16 to a surface area of the partial region is 25 to 60%.
- FIG. 3 is an enlarged view for explaining an arrangement of the valley portion 18 and the recess 16. It is preferable that the depth from the sidewall surface of the valley portion 18 is smaller than the depth from the sidewall surface of the recess 16.
- the sidewall surface is the smooth surface 22 of the undecorated regions R 2 and R 3 .
- the depth from the sidewall surface of the valley portion 18 is smaller than the depth from the sidewall surface of the recess 16, whereby the appearance failure can be effectively reduced, and, at the same time, the air resistance can also be effectively reduced. It is preferable that the depth of the valley portion 18 is smaller by 0.2 to 1.0 mm than the depth of the recess 16.
- the subtraction of the depth of the valley portion 18 from the depth of the recess 16 is less than 0.2 mm, the effect of reducing the air resistance is reduced. Meanwhile, when the subtraction of the depth of the valley portion 18 from the depth of the recess 16 is more than 1.0 mm, the appearance failure easily occurs.
- the ridge 20 located between the adjacent valley portions 18 is depressed with reference to the smooth surface 22. Accordingly, in the sidewall surface, the ridge 20, the valley portion 18, and the recess 16 are depressed more deeply in this order with reference to the smooth surface 22.
- the depression means that the level of the sidewall shifts toward a tire inner surface facing a tire cavity region between the tire and a rim to which the tire is mounted.
- the recesses 16 have the same depth and also the valley portions 18 have the same depth, they may not necessarily have the same depth and their depths may be variable. As illustrated in FIG. 3, it is preferable that the recess 16 is formed so as to be more depressed than the bottom surfaces of the valley portions 18 adjacent to the recess 16. Even if rubber with a hardness (measured at a temperature of 20 degrees Celsius using a durometer of type A according to a durometer hardness test specified in JIS K6253) of 56 to 65 is used for a side rubber member in the first region R 1 , the appearance failure due to the air accumulation in the vulcanization hardly occurs.
- a circumferential rib-like protrusion 24 (see FIG. 1) are continuously extends in a tire circumferential direction and keeps contact with a side edge periphery in a tire radial direction of the first region R 1 .
- the circumferential rib-like protrusion 24 corresponds to a vent groove communicating the vent holes of the vulcanization tire mold. Ridges formed between adjacent valley portions 18 in the first region R 1 are connected to the circumferential rib-like protrusion 24.
- the vent groove allows air to flow in order to prevent the occurrence of the air accumulation, so that air flowing through linear recesses of the vulcanization tire mold corresponding to the ridges 20 is discharged from the vent holes.
- the circumferential rib-like protrusion 24 has at its top portion a spew point-like projection as the spew trace corresponding to the vent hole.
- the width of the circumferential rib-like protrusion 24 is 0.3 to 1.0 mm, for example, and the height from the sidewall surface of the circumferential rib-like projection 24 is 0.2 to 1.0 mm.
- the width and the height of the circumferential rib-like protrusion 24 may vary in the tire circumferential direction. As described above, it is preferable from a viewpoint of suppression of the appearance failure due to the air accumulation that the circumferential rib-like protrusion 24 corresponding to the vent groove of the vulcanization tire mold is provided.
- the equivalent diameter at the outermost recess located at the outermost position in the tire radial direction of the recesses 16 is compared with the equivalent diameter at the innermost recess located at the innermost position in the tire radial direction of the recesses 16, the equivalent diameter of the outermost recess is larger than the equivalent diameter of the innermost recess. Further, between the outermost recess and the innermost recess in the tire radial direction, the equivalent diameter of the recess 16 provided outward in the tire radial direction is larger than or equal to the equivalent diameter of the recess 16 provided inward in the tire radial direction.
- the equivalent diameter of the recess 16 increases from an inside to an outside in the tire radial direction successively or in a step-by-step manner between the innermost recess and the outermost recess.
- the equivalent diameter is changed thus, whereby the turbulence separation is effectively eliminated corresponding to the fact that the closer to the outside of the tire radial direction, the higher the tire rotation speed.
- FIG. 4 is a plan view for explaining an arrangement of the valley portion 18 and the recess 16. As illustrated in FIG. 4, it is preferable from a viewpoint of producing the vulcanization tire mold at low cost that the valley portions 18 are terminated immediately before the valley portions 18 are abutted against the recesses 16 so that the valley portions 18 do not connect to the recesses 16. It is preferable that the extension of the valley portions 18 is stopped within a range of more than 0 mm and not more than 0.2 mm, for example, from the outer circumference of each recess 16. It is further preferable that the first region R 1 has rows of the recesses 16 substantially linearly extending in one direction and provided in each certain circumferential angle in the tire circumferential direction.
- the extending direction of the row of the recesses 16 is a direction of not less than 30 degrees and less than 90 degrees to the tire circumferential direction.
- the rows of the recesses 16 are provided in the tire circumferential direction at a certain circumferential angle of 1 degree to 2 degrees, for example.
- the serration pattern formed by a plurality of the valley portions 18 extending in one direction is provided, the serration pattern may have a plurality of the valley portions 18 extending in different directions and intersecting with each other.
- the above pneumatic tire having the sidewall portion 10 is produced, and the effects are studied.
- the size of the produced pneumatic tires is 185/65R15.
- four produced pneumatic tires are mounted to a motor assist drive of passenger car (front-wheel drive) of 1500 cc displacement, and the fuel efficiency is evaluated. Meanwhile, the appearance failure due to the air accumulation of the produced pneumatic tire is evaluated.
- the fuel consumption (litter/km) is calculated from the fuel consumed when the passenger car is driven at the speed of 100 km/h and 500 laps on a round course of 2 km in a round.
- the fuel efficiency is represented by an index when the fuel efficiency of the pneumatic tire of a conventional example is 100. As the index becomes larger, the fuel efficiency is improved.
- an average ratio (%) of non-defective products with no appearance failure due to the air accumulation is calculated when 100 pneumatic tires with specifications indicated in the table 1 in FIG.5 are produced.
- the table 1 is indicative of the specifications of the produced pneumatic tires and the evaluation results.
- the recesses 16 are provided, but the valley portions 18 are not provided, that is, no serration pattern is provided.
- the recesses 16 are provided, but the valley portions 18 are not provided, that is, no serration pattern is provided.
- no vent hole is provided at the portion corresponding to the sidewall surface of the vulcanization tire mold, that is, no spew trace is provided on the sidewall surface.
- the side pattern illustrated in FIGs. 1 and 2 is used.
- the equivalent diameter of the recesses 16 is preferably 3 to 15 mm from viewpoints of the improvement of the fuel efficiency and, furthermore, the reduction of the air resistance.
- the area ratio of the entire area occupied by the recesses 16 to a surface area of the partial region where the recesses 16 are arranged in a cluster is preferably 25 to 60% from viewpoints of the improvement of the fuel efficiency and, furthermore, the reduction of the air resistance.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Tires In General (AREA)
Abstract
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112011102635.8T DE112011102635B4 (de) | 2010-11-17 | 2011-10-06 | Luftreifen |
CN201180021949.4A CN102869524B (zh) | 2010-11-17 | 2011-10-06 | 充气轮胎 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010256439A JP4803316B1 (ja) | 2010-11-17 | 2010-11-17 | 空気入りタイヤ |
JP2010-256439 | 2010-11-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012066717A1 true WO2012066717A1 (fr) | 2012-05-24 |
Family
ID=44883351
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/005636 WO2012066717A1 (fr) | 2010-11-17 | 2011-10-06 | Pneumatique |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP4803316B1 (fr) |
CN (1) | CN102869524B (fr) |
DE (1) | DE112011102635B4 (fr) |
WO (1) | WO2012066717A1 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104339988A (zh) * | 2013-08-09 | 2015-02-11 | 住友橡胶工业株式会社 | 充气轮胎 |
WO2015078882A1 (fr) * | 2013-11-29 | 2015-06-04 | Compagnie Generale Des Etablissements Michelin | Pneumatique comportant un motif de masquage de defaut sur un flanc |
WO2015078881A1 (fr) * | 2013-11-29 | 2015-06-04 | Compagnie Generale Des Etablissements Michelin | Pneumatique comportant un motif de masquage de defaut sur un flanc |
FR3016831A1 (fr) * | 2014-01-30 | 2015-07-31 | Michelin & Cie | Pneumatique comportant un motif de masquage de defaut sur un flanc |
US10384493B2 (en) | 2013-01-18 | 2019-08-20 | The Yokohama Rubber Co., Ltd. | Pneumatic tire |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6046947B2 (ja) * | 2012-08-20 | 2016-12-21 | 住友ゴム工業株式会社 | ランフラットタイヤ |
JP5970324B2 (ja) | 2012-10-10 | 2016-08-17 | 東洋ゴム工業株式会社 | タイヤモールド、空気入りタイヤの製造方法、及び、空気入りタイヤ |
JP6232844B2 (ja) * | 2013-08-26 | 2017-11-22 | 横浜ゴム株式会社 | 空気入りタイヤ |
JP6331289B2 (ja) * | 2013-08-26 | 2018-05-30 | 横浜ゴム株式会社 | 空気入りタイヤ |
JP6149607B2 (ja) * | 2013-08-26 | 2017-06-21 | 横浜ゴム株式会社 | 空気入りタイヤ |
DE112015004233T5 (de) * | 2014-09-17 | 2017-06-14 | The Yokohama Rubber Co., Ltd. | Luftreifen |
DE102016218487A1 (de) * | 2016-09-27 | 2018-03-29 | Continental Reifen Deutschland Gmbh | Fahrzeugreifen |
DE102017209900A1 (de) * | 2017-06-13 | 2018-12-13 | Continental Reifen Deutschland Gmbh | Fahrzeugreifen |
JP6947578B2 (ja) * | 2017-08-01 | 2021-10-13 | Toyo Tire株式会社 | 空気入りタイヤ |
JP6948930B2 (ja) * | 2017-12-13 | 2021-10-13 | 株式会社ブリヂストン | タイヤ |
CN111216496A (zh) * | 2018-11-26 | 2020-06-02 | 正新橡胶(中国)有限公司 | 一种橡胶轮胎 |
KR102561573B1 (ko) * | 2021-07-14 | 2023-07-31 | 한국타이어앤테크놀로지 주식회사 | 타이어 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0328492B2 (fr) | 1983-07-11 | 1991-04-19 | Tanaka Precious Metal Ind | |
US5303758A (en) * | 1992-06-15 | 1994-04-19 | The Goodyear Tire & Rubber Company | Tire sidewall design patterns |
US20040003881A1 (en) * | 2002-07-04 | 2004-01-08 | Masahiro Ebiko | Pneumatic tire |
EP2022615A1 (fr) * | 2006-05-30 | 2009-02-11 | The Yokohama Rubber Co., Ltd. | Matrice de moulage pour la vulcanisation d'un pneu |
WO2009139182A1 (fr) * | 2008-05-16 | 2009-11-19 | 住友ゴム工業株式会社 | Pneumatique |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0696943B2 (ja) | 1989-01-31 | 1994-11-30 | 飛島建設株式会社 | シールド掘進機の掘進方向制御方法及び装置 |
JPH04238703A (ja) * | 1991-01-10 | 1992-08-26 | Sumitomo Rubber Ind Ltd | 空気入りタイヤ |
JP3028492B2 (ja) * | 1991-03-27 | 2000-04-04 | 横浜ゴム株式会社 | 空気入りタイヤ |
JPH0680003A (ja) * | 1992-09-02 | 1994-03-22 | Bridgestone Corp | 空気入りタイヤ |
JP2000016030A (ja) * | 1998-07-07 | 2000-01-18 | Yokohama Rubber Co Ltd:The | 空気入りラジアルタイヤ |
JP4471272B2 (ja) * | 2004-04-23 | 2010-06-02 | 東洋ゴム工業株式会社 | 空気入りタイヤ |
JP5399064B2 (ja) * | 2008-12-29 | 2014-01-29 | 住友ゴム工業株式会社 | ランフラットタイヤ |
DE102010036765A1 (de) * | 2010-07-30 | 2012-02-02 | Continental Reifen Deutschland Gmbh | Fahrzeugluftreifen |
-
2010
- 2010-11-17 JP JP2010256439A patent/JP4803316B1/ja active Active
-
2011
- 2011-10-06 CN CN201180021949.4A patent/CN102869524B/zh active Active
- 2011-10-06 DE DE112011102635.8T patent/DE112011102635B4/de not_active Expired - Fee Related
- 2011-10-06 WO PCT/JP2011/005636 patent/WO2012066717A1/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0328492B2 (fr) | 1983-07-11 | 1991-04-19 | Tanaka Precious Metal Ind | |
US5303758A (en) * | 1992-06-15 | 1994-04-19 | The Goodyear Tire & Rubber Company | Tire sidewall design patterns |
US20040003881A1 (en) * | 2002-07-04 | 2004-01-08 | Masahiro Ebiko | Pneumatic tire |
EP2022615A1 (fr) * | 2006-05-30 | 2009-02-11 | The Yokohama Rubber Co., Ltd. | Matrice de moulage pour la vulcanisation d'un pneu |
WO2009139182A1 (fr) * | 2008-05-16 | 2009-11-19 | 住友ゴム工業株式会社 | Pneumatique |
Non-Patent Citations (1)
Title |
---|
"JATMA YEAR BOOK", 2009 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10384493B2 (en) | 2013-01-18 | 2019-08-20 | The Yokohama Rubber Co., Ltd. | Pneumatic tire |
CN104339988A (zh) * | 2013-08-09 | 2015-02-11 | 住友橡胶工业株式会社 | 充气轮胎 |
EP2835275A1 (fr) * | 2013-08-09 | 2015-02-11 | Sumitomo Rubber Industries, Ltd. | Pneu |
WO2015078882A1 (fr) * | 2013-11-29 | 2015-06-04 | Compagnie Generale Des Etablissements Michelin | Pneumatique comportant un motif de masquage de defaut sur un flanc |
WO2015078881A1 (fr) * | 2013-11-29 | 2015-06-04 | Compagnie Generale Des Etablissements Michelin | Pneumatique comportant un motif de masquage de defaut sur un flanc |
FR3014024A1 (fr) * | 2013-11-29 | 2015-06-05 | Michelin & Cie | Pneumatique comportant un motif de masquage de defaut sur un flanc |
FR3014023A1 (fr) * | 2013-11-29 | 2015-06-05 | Michelin & Cie | Pneumatique comportant un motif de masquage de defaut sur un flanc |
CN105793070A (zh) * | 2013-11-29 | 2016-07-20 | 米其林企业总公司 | 包括侧壁上的缺陷掩饰图案的轮胎 |
US10239362B2 (en) | 2013-11-29 | 2019-03-26 | Compagnie Generale Des Etablissements Michelin | Tire comprising a defect-masking pattern on a sidewall |
FR3016831A1 (fr) * | 2014-01-30 | 2015-07-31 | Michelin & Cie | Pneumatique comportant un motif de masquage de defaut sur un flanc |
WO2015113921A1 (fr) * | 2014-01-30 | 2015-08-06 | Compagnie Generale Des Etablissements Michelin | Pneumatique comportant un motif de masquage de defaut sur un flanc |
Also Published As
Publication number | Publication date |
---|---|
CN102869524A (zh) | 2013-01-09 |
JP2012106583A (ja) | 2012-06-07 |
DE112011102635T5 (de) | 2013-06-27 |
CN102869524B (zh) | 2015-04-15 |
JP4803316B1 (ja) | 2011-10-26 |
DE112011102635B4 (de) | 2014-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012066717A1 (fr) | Pneumatique | |
US8381786B2 (en) | Pneumatic tire | |
JP6186147B2 (ja) | 空気入りタイヤ | |
JP5251709B2 (ja) | 空気入りタイヤ | |
JP5115516B2 (ja) | 空気入りタイヤ | |
EP2527164B1 (fr) | Pneu pneumatique | |
US20120285592A1 (en) | Pneumatic tire | |
US9902208B2 (en) | Pneumatic tire | |
JP6153763B2 (ja) | 空気入りタイヤ | |
US20150360521A1 (en) | Pneumatic tire | |
US10384493B2 (en) | Pneumatic tire | |
JP2008062749A (ja) | 空気入りタイヤ | |
WO2016043191A1 (fr) | Pneumatique | |
JP6634711B2 (ja) | 空気入りタイヤ | |
EP3738793B1 (fr) | Pneumatique | |
JP2011079406A (ja) | 空気入りタイヤ | |
CN111629911B (zh) | 充气轮胎 | |
JP4468006B2 (ja) | 空気入りタイヤ | |
JP5425707B2 (ja) | 空気入りタイヤ | |
JP6248374B2 (ja) | 空気入りタイヤ | |
JP4893355B2 (ja) | 空気入りタイヤ | |
JP2009274503A (ja) | 空気入りタイヤ | |
US20240208273A1 (en) | Pneumatic tire | |
JP2011051425A (ja) | 空気入りタイヤ | |
JP4815673B2 (ja) | 空気入りラジアルタイヤおよびその金型 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180021949.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11776260 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120111026358 Country of ref document: DE Ref document number: 112011102635 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11776260 Country of ref document: EP Kind code of ref document: A1 |