WO2012066682A1 - 車両用補助電源装置 - Google Patents

車両用補助電源装置 Download PDF

Info

Publication number
WO2012066682A1
WO2012066682A1 PCT/JP2010/070725 JP2010070725W WO2012066682A1 WO 2012066682 A1 WO2012066682 A1 WO 2012066682A1 JP 2010070725 W JP2010070725 W JP 2010070725W WO 2012066682 A1 WO2012066682 A1 WO 2012066682A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
output voltage
battery
circuit
switching element
Prior art date
Application number
PCT/JP2010/070725
Other languages
English (en)
French (fr)
Inventor
宣孝 鈴木
糀 芳信
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to KR1020137015200A priority Critical patent/KR101477447B1/ko
Priority to CN201080070183.4A priority patent/CN103201132B/zh
Priority to PCT/JP2010/070725 priority patent/WO2012066682A1/ja
Priority to JP2012544071A priority patent/JP5349698B2/ja
Publication of WO2012066682A1 publication Critical patent/WO2012066682A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • B60L9/22Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines polyphase motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/30Railway vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/30Sensors
    • B60Y2400/308Electric sensors
    • B60Y2400/3086Electric voltages sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an auxiliary power supply device for a vehicle.
  • the auxiliary power supply for a vehicle converts power supplied from an overhead line via a pantograph from direct current to alternating current by a static inverter, and supplies power to vehicle equipment such as an air conditioning system and lighting equipment in the vehicle via a leakage transformer. It is carried out.
  • the static inverter is composed of a plurality of power semiconductor elements, and a control circuit for driving and controlling these power semiconductor elements is driven by DC power supplied from a battery. This battery is charged with electric power supplied from a stationary inverter during operation of the vehicle.
  • the present invention has been made in view of the above, and it is an object of the present invention to provide an auxiliary power supply device for a vehicle that can be activated even when the output voltage of a battery is reduced without increasing the size of the device.
  • an auxiliary power supply for a vehicle is driven by a control circuit that operates by direct current power supplied from a battery, and converts direct current power from an overhead wire into alternating current power.
  • the vehicular auxiliary power supply apparatus that includes the inverter for supplying the AC power to the vehicular equipment including the air conditioning system and the lighting equipment in the vehicular, the output voltage of the battery decreases, and the power is supplied from the battery to the control circuit.
  • the emergency power start device is provided with an emergency power start device that supplies power to the control circuit instead of the battery.
  • Switch circuit for supplying power from the power supply, and DC voltage step-down circuit for dividing and outputting the overhead wire voltage input through the switch circuit
  • a chopper control circuit that controls the output voltage of the DC step-down circuit to be maintained at a constant value, and a converter that receives the output voltage of the DC step-down circuit and outputs a DC voltage equivalent to the output voltage when the battery is normal.
  • the DC step-down circuit is connected to a switching element of one element, a series resistor connected between the switching circuit and the first terminal of the switching element, and a second terminal of the switching element, And a smoothing capacitor for smoothing the output voltage to the converter.
  • the apparatus can be started up even when the output voltage of the battery is lowered without increasing the scale of the apparatus.
  • FIG. 1 is a diagram illustrating a configuration example of an auxiliary power supply device for a vehicle according to an embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of the emergency power activation device.
  • FIG. 3 is a diagram illustrating an example of a waveform of a current flowing through the series resistor.
  • FIG. 1 is a diagram illustrating a configuration example of an auxiliary power supply device for a vehicle according to an embodiment.
  • the auxiliary power supply for a vehicle according to the embodiment includes an input circuit 4, a static inverter 5, a leakage transformer 6, a smoothing capacitor 9, a sequence control circuit 10, a battery 8, A charging circuit 7 and an emergency power activation device 100 are provided.
  • the static inverter 5 converts the DC power supplied from the overhead line 1 through the pantograph 2, the disconnect switch 3, and the input circuit 4 into AC power and outputs the AC power.
  • the static inverter 5 is controlled by a sequence control circuit 10.
  • the leakage transformer 6 converts the AC power output from the static inverter 5 into a predetermined AC voltage, and outputs the AC voltage to a vehicle device 11 such as an air conditioning system or a lighting device in the vehicle.
  • the smoothing capacitor 9 smoothes the output of the leakage transformer 6.
  • Battery 8 supplies power to sequence control circuit 10 via reverse voltage prevention diode 17a.
  • the charging circuit 7 charges the battery 8 by the output of the leakage transformer 6 during operation of the vehicle.
  • the emergency power activation device 100 supplies power to the sequence control circuit 10 via the reverse voltage prevention diode 17b when the output voltage of the battery 8 is reduced at the time of vehicle activation.
  • FIG. 2 is a diagram showing a configuration example of the emergency power activation device.
  • the emergency power start-up device 100 includes a switch circuit 200, a DC step-down circuit 300, a constant voltage circuit 400, a chopper control circuit 500, and a converter 26.
  • the switch circuit 200 includes a b-contact switch 12, a voltage dividing resistor 16, and a switch controller 15.
  • the b-contact switch 12 switches between supply (on) and stop (off) of power input from the overhead wire 1 via the pantograph 2 and the disconnect switch 3.
  • the switch circuit 200 when the voltage value output from the battery 8 is sufficient, the b-contact switch 12 is turned off, and when the voltage value output from the battery 8 falls below a predetermined value, the b-contact switch 12 Is turned on. That is, the switch circuit 200 has a function of supplying power from the overhead wire 1 to the DC step-down circuit 300 when the output voltage of the battery 8 drops below a predetermined value.
  • the DC step-down circuit 300 includes a switching element 18, a series resistor 13, and a smoothing capacitor 19.
  • the series resistor 13 is connected between the b-contact switch 12 and the collector that is the first terminal of the switching element 18.
  • Smoothing capacitor 19 is connected to the emitter, which is the second terminal of switching element 18, and smoothes the output voltage to converter 26.
  • a drive pulse signal is input from the chopper control circuit 500 to the base that is the control terminal of the switching element 18. That is, the DC step-down circuit 300 has a function of dividing the overhead line voltage input via the switch circuit 200 and outputting the divided voltage to the converter 26.
  • the switching element 18 for example, an IGBT (Insulated Gate Bipolar Transistor) can be used.
  • the switching element 18 is one element in the configuration shown in FIG. 2, it can be configured as a switching circuit having a plurality of switching elements in a multistage configuration.
  • the constant voltage circuit 400 includes a voltage dividing resistor 20 and a Zener diode 21, and generates a power supply voltage to be applied to each part of the chopper control circuit 500 by dividing the overhead line voltage input via the switch circuit 200.
  • the chopper control circuit 500 includes a voltage sensor 23, a voltage controller 24, and a comparator 25.
  • the voltage sensor 23 detects the output voltage of the DC step-down circuit 300.
  • the voltage controller 24 outputs a voltage corresponding to the voltage value detected by the voltage sensor 23.
  • the comparator 25 compares the output voltage of the voltage controller 24 with a triangular wave pulse having a predetermined switching frequency (for example, 30 Hz), and generates a drive pulse signal for controlling the switching element 18.
  • the chopper control circuit 500 has a function of driving and controlling the DC step-down circuit 300 by giving a drive pulse signal to the base that is the control terminal of the switching element 18.
  • the converter 26 receives the output voltage of the DC step-down circuit 300 and outputs a DC voltage equivalent to the output voltage when the battery 8 is normal.
  • the converter 26 is constituted by an insulating DC-DC converter such as a flyback type or a forward type.
  • the voltage value of the overhead line 1 in direct current electrification of railways is generally as wide as 500V to 3000V.
  • the voltage dividing ratio of the output voltage of the DC step-down circuit 300 to the overhead line voltage is determined by the resistance value of the series resistor 13 and the impedance value of the configuration after the emitter of the DC step-down circuit 300.
  • the output voltage value of the DC step-down circuit 300 may be set within a predetermined range by changing the voltage dividing ratio.
  • the voltage dividing ratio is changed by changing the resistance value of the series resistor 13, it is possible to cope with systems with different overhead line voltages without changing the configuration of the DC step-down circuit 300 after the emitter. Therefore, as shown in FIG. 2, among the constituent elements constituting the emergency power activation device 100, the constituent elements excluding the switch circuit 200 and the series resistor 13 can be integrated as a module 600, for example.
  • the chopper control circuit 500 has a function of adjusting the duty ratio (conduction ratio) of the drive pulse signal that controls the switching element 18 in accordance with the output voltage value of the DC step-down circuit 300.
  • FIG. 3 is a diagram illustrating an example of a waveform of a current flowing through the series resistor. The example shown in FIG. 3 shows a current waveform when the switching frequency of the drive pulse signal is about 30 Hz and the duty ratio (conduction ratio) is 0.472.
  • the chopper control circuit 500 decreases the duty ratio of the drive pulse signal when the output voltage value of the DC step-down circuit 300 increases, and increases the duty ratio of the drive pulse signal when the output voltage value of the DC step-down circuit 300 decreases.
  • the conduction rate of the current flowing through the series resistor 13 is controlled (hereinafter referred to as “conduction rate control”), and even if the overhead line voltage fluctuates due to this conduction rate control, The output voltage of the DC step-down circuit 300 is maintained at a constant value.
  • the disconnect switch 3 When the vehicle is started, the disconnect switch 3 is turned on by an external control circuit (not shown), and DC power is supplied from the overhead line 1 to the static inverter 5 via the pantograph 2, disconnect switch 3 and input circuit 4.
  • the constant voltage circuit 400 When DC power is supplied from the overhead line 1 to the constant voltage circuit 400, the constant voltage circuit 400 generates power supply voltages for the voltage sensor 23, the voltage controller 24, and the comparator 25.
  • the chopper control circuit 500 is activated when a power supply voltage is supplied from the constant voltage circuit 400 and outputs a drive pulse signal to the switching element 18.
  • the switching element 18 is driven by this drive pulse signal, so that the current flow rate through the series resistor 13 is controlled, and the output voltage of the DC step-down circuit 300 is maintained at a constant value.
  • the converter 26 converts the output voltage of the DC step-down circuit 300 into a DC voltage equivalent to the normal output voltage of the battery 8 and outputs it to the sequence control circuit 10 via the reverse voltage prevention diode 17b.
  • the reverse voltage prevention diode 17a prevents the voltage supplied to the sequence control circuit 10 from being applied to the battery 8 via the reverse voltage prevention diode 17b.
  • the sequence control circuit 10 is activated to drive the stationary inverter 5, AC power is supplied to the vehicle equipment 11 through the leakage transformer 6, and the charging circuit 7 supplies the battery 8 by the output of the leakage transformer 6. Charge.
  • the battery 8 is fully charged, power is supplied from the battery 8 to the sequence control circuit 10 via the reverse voltage prevention diode 17a, and the output voltage of the battery 8 rises to turn off the b-contact switch 12. .
  • the supply of DC power from the overhead wire 1 to the DC step-down circuit 300 and the constant voltage circuit 400 is stopped, and the emergency power activation device 100 stops supplying power to the sequence control circuit 10.
  • the sequence control circuit replaces the battery.
  • An emergency power activation device that supplies power is provided, and the emergency power activation device is input via a switch circuit that supplies power from an overhead wire when the output voltage of the battery drops below a predetermined value.
  • a switching element comprising a DC voltage step-down circuit that divides and outputs the overhead wire voltage, and a converter that receives the output voltage of the DC voltage step-down circuit and outputs a DC voltage equivalent to the output voltage when the battery is normal.
  • the output of the DC step-down circuit is achieved. Since the voltage is maintained at a constant value, the output voltage to the converter can be stably supplied even when the overhead line voltage fluctuates.
  • the voltage dividing ratio of the output voltage of the DC step-down circuit to the overhead line voltage can be changed. Therefore, among the components constituting the emergency power starter, the switch circuit and the series resistance
  • the components except for can be configured as an integrated module, and can be applied to systems having different overhead line voltages without changing the configuration in the module.
  • the configuration shown in the above embodiment is an example of the configuration of the present invention, and can be combined with another known technique, and a part thereof is omitted without departing from the gist of the present invention. Needless to say, it is possible to change the configuration.
  • the vehicular auxiliary power supply apparatus is useful as an invention that can be activated even when the output voltage of the battery is lowered without increasing the scale of the apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

 装置を大規模化することなく、バッテリーの出力電圧が低下した場合でも起動可能な車両用補助電源装置を得ること。バッテリーに代わり電力を供給する非常時電源起動装置100を、バッテリーの出力電圧が低下した場合に架線1から電力を供給するスイッチ回路200と、スイッチ回路200を介して入力された架線電圧を分圧して出力する直流降圧回路300と、直流降圧回路300の出力電圧が入力されバッテリーの正常時における出力電圧と同等の直流電圧を出力するコンバータ26とにより構成し、スイッチング素子18と、スイッチ回路200とスイッチング素子18のコレクタとの間に接続された直列抵抗13と、スイッチング素子18のエミッタに接続された平滑コンデンサ19とにより直流降圧回路300を構成し、直流降圧回路300の出力電圧値に応じて、直列抵抗13に流れる電流の通流率制御を行い、直流降圧回路300の出力電圧を一定値に保つ。

Description

車両用補助電源装置
 本発明は、車両用補助電源装置に関する。
 車両用補助電源装置は、パンタグラフを介して架線から供給された電力を静止形インバータにより直流から交流に変換し、リーケージトランスを介して車両内の空調システムや照明機器などの車両用機器に電力供給を行っている。静止形インバータは、複数個のパワー半導体素子で構成され、これらのパワー半導体素子を駆動制御する制御回路は、バッテリーから供給される直流電力により駆動される。なお、このバッテリーは、車両の運転中には、静止形インバータから供給される電力により充電される。
 一方、何らかの原因により車両起動時にバッテリーの出力電圧が低下している場合には、制御回路の起動に必要な電力が得られず、静止形インバータを起動することができない。日本国内においては、商用電源を供給して起動することも可能であるが、海外においては、商用電源が供給できない状況もあり、救済が困難な場合がある。このような課題を解決する技術として、第1の電力変換装置である静止形インバータに加え、架線から供給される直流電圧のみで動作する第2の電力変換装置を備え、バッテリーの電圧が所定値よりも小さい場合に、この第2の電力変換装置から制御回路に電力を供給する技術が開示されている(例えば、特許文献1)。
特開昭62-217802号公報
 しかしながら、上記従来技術では、架線から供給される直流電圧(例えば、1500V等)から制御回路の駆動に必要な低電圧を得るため、多段のIGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)が必要となる。また、架線から供給される直流電圧に応じてIGBTをより多段化する必要があるため、装置が大規模化する、という課題があった。
 本発明は、上記に鑑みてなされたものであって、装置を大規模化することなく、バッテリーの出力電圧が低下した場合でも起動可能な車両用補助電源装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するため、本発明にかかる車両用補助電源装置は、バッテリーから供給される直流電力により動作する制御回路により駆動され、架線からの直流電力を交流電力に変換するインバータを具備し、車両内の空調システムや照明機器を含む車両用機器に前記交流電力を供給する車両用補助電源装置において、前記バッテリーの出力電圧が低下し、前記バッテリーから前記制御回路に電力を供給できない場合に、前記バッテリーに代わり前記制御回路に電力を供給する非常時電源起動装置を備え、前記非常時電源起動装置は、前記バッテリーの出力電圧が所定値以下に低下した場合に前記架線から電力を供給するスイッチ回路と、前記スイッチ回路を介して入力された架線電圧を分圧して出力する直流降圧回路と、前記直流降圧回路の出力電圧を一定値に保つように制御するチョッパ制御回路と、前記直流降圧回路の出力電圧が入力され前記バッテリーの正常時における出力電圧と同等の直流電圧を出力するコンバータと、を備え、前記直流降圧回路は、一素子のスイッチング素子と、前記スイッチ回路と前記スイッチング素子の第1端子との間に接続された直列抵抗と、前記スイッチング素子の第2端子に接続され、前記コンバータへの出力電圧を平滑する平滑コンデンサと、を備えることを特徴とする。
 本発明によれば、装置を大規模化することなく、バッテリーの出力電圧が低下した場合でも起動することができる、という効果を奏する。
図1は、実施の形態にかかる車両用補助電源装置の一構成例を示す図である。 図2は、非常時電源起動装置の一構成例を示す図である。 図3は、直列抵抗に流れる電流波形の一例を示す図である。
 以下に添付図面を参照し、本発明の実施の形態にかかる車両用補助電源装置について説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。
実施の形態.
 図1は、実施の形態にかかる車両用補助電源装置の一構成例を示す図である。図1に示すように、実施の形態にかかる車両用補助電源装置は、入力回路4と、静止形インバータ5と、リーケージトランス6と、平滑コンデンサ9と、シーケンス制御回路10と、バッテリー8と、充電回路7と、非常時電源起動装置100と、を備えている。
 静止形インバータ5は、架線1からパンタグラフ2、断路スイッチ3、および入力回路4を介して供給された直流電力を交流電力に変換して出力する。この静止形インバータ5は、シーケンス制御回路10により制御される。
 リーケージトランス6は、静止形インバータ5から出力された交流電力を所定の交流電圧に変換して車両内の空調システムや照明機器などの車両用機器11に出力する。平滑コンデンサ9は、リーケージトランス6の出力を平滑する。
 バッテリー8は、逆電圧防止ダイオード17aを介してシーケンス制御回路10に電力を供給する。充電回路7は、車両の運転中においてリーケージトランス6の出力によりバッテリー8を充電する。
 非常時電源起動装置100は、車両の起動時においてバッテリー8の出力電圧が低下していた場合に、逆電圧防止ダイオード17bを介してシーケンス制御回路10に電力を供給する。
 図2は、非常時電源起動装置の一構成例を示す図である。図2に示すように、非常時電源起動装置100は、スイッチ回路200と、直流降圧回路300と、定電圧回路400と、チョッパ制御回路500と、コンバータ26と、を備えている。
 スイッチ回路200は、b接点スイッチ12と、分圧抵抗16と、スイッチ制御器15と、を備えている。b接点スイッチ12は、架線1からパンタグラフ2および断路スイッチ3を介して入力される電力の供給(オン)および停止(オフ)を切り換える。スイッチ回路200は、バッテリー8から出力される電圧値が十分である場合にはb接点スイッチ12がオフとなり、バッテリー8から出力される電圧値が所定値以下に低下した場合に、b接点スイッチ12がオンとなる。すなわち、このスイッチ回路200は、バッテリー8の出力電圧が所定値以下に低下した場合に、架線1から電力を直流降圧回路300に供給する機能を有している。
 直流降圧回路300は、スイッチング素子18と、直列抵抗13と、平滑コンデンサ19と、を備えている。直列抵抗13は、b接点スイッチ12とスイッチング素子18の第1端子であるコレクタとの間に接続される。平滑コンデンサ19は、スイッチング素子18の第2端子であるエミッタに接続され、コンバータ26への出力電圧を平滑する。スイッチング素子18の制御端子であるベースには、チョッパ制御回路500から駆動パルス信号が入力される。すなわち、この直流降圧回路300は、スイッチ回路200を介して入力された架線電圧を分圧してコンバータ26に出力する機能を有している。なお、スイッチング素子18としては、例えばIGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)等を用いることができる。また、スイッチング素子18は、図2に示す構成では一素子としたが、複数のスイッチング素子を多段構成としたスイッチング回路として構成することも可能である。
 定電圧回路400は、分圧抵抗20およびツェナーダイオード21を備え、スイッチ回路200を介して入力された架線電圧を分圧してチョッパ制御回路500の各部に与える電源電圧を生成する。
 チョッパ制御回路500は、電圧センサ23と、電圧コントローラ24と、コンパレータ25と、を備えている。電圧センサ23は、直流降圧回路300の出力電圧を検出する。電圧コントローラ24は、電圧センサ23が検出した電圧値に応じた電圧を出力する。コンパレータ25は、電圧コントローラ24の出力電圧を所定のスイッチング周波数(例えば、30Hz)の三角波パルスと比較してスイッチング素子18を制御する駆動パルス信号を生成する。すなわち、このチョッパ制御回路500は、スイッチング素子18の制御端子であるベースに駆動パルス信号を与えることにより直流降圧回路300を駆動制御する機能を有している。
 コンバータ26は、直流降圧回路300の出力電圧が入力され、バッテリー8の正常時における出力電圧と同等の直流電圧を出力する。このコンバータ26は、例えばフライバック型やフォワード型等の絶縁型のDC-DCコンバータにより構成される。
 ここで、非常時電源起動装置100の構成概念について説明する。鉄道の直流電化における架線1の電圧値としては、一般に500V~3000Vと幅広く、現在、世界的に多用されている電圧値としては、600V、750V、1500V、3000Vの4種類がある。
 一方、架線電圧に対する直流降圧回路300の出力電圧の分圧比は、直列抵抗13の抵抗値と、直流降圧回路300のエミッタ以降の構成のインピーダンス値とにより決まる。実施の形態にかかる非常時電源起動装置100を架線電圧が異なるシステムに対応させるためには、この分圧比を変化させて直流降圧回路300の出力電圧値を所定の範囲内とすればよい。ここで、直列抵抗13の抵抗値を変化させて分圧比を変化させるようにすれば、直流降圧回路300のエミッタ以降の構成を変更することなく、架線電圧の異なるシステムに対応させることができる。したがって、図2に示すように、非常時電源起動装置100を構成する各構成要素のうち、スイッチ回路200および直列抵抗13を除く構成要素を、例えばモジュール600として一体化することも可能である。
 また、チョッパ制御回路500は、直流降圧回路300の出力電圧値に応じて、スイッチング素子18を制御する駆動パルス信号のデューティ比(通流率)を調整する機能を有している。図3は、直列抵抗に流れる電流波形の一例を示す図である。図3に示す例では、駆動パルス信号のスイッチング周波数が約30Hz、デューティ比(通流率)が0.472である場合の電流波形を示している。
 チョッパ制御回路500は、直流降圧回路300の出力電圧値が大きくなると、駆動パルス信号のデューティ比を減少させ、直流降圧回路300の出力電圧値が小さくなると、駆動パルス信号のデューティ比を増加させる。これにより、図3に示すように、直列抵抗13に流れる電流の通流率が制御され(以下、「通流率制御」という)、この通流率制御により、架線電圧が変動した場合でも、直流降圧回路300の出力電圧が一定値に保たれる。
 つぎに、実施の形態にかかる車両用補助電源装置を起動する際の一連の動作について、図1、および図2を参照して説明する。
 車両の起動時には、図示しない外部の制御回路により断路スイッチ3がオン制御され、パンタグラフ2、断路スイッチ3、および入力回路4を介して、架線1から静止形インバータ5に直流電力が供給される。
 ここで、バッテリー8の出力電圧が正常値である場合には、バッテリー8から逆電圧防止ダイオード17aを介してシーケンス制御回路10に電力が供給され、シーケンス制御回路10が起動して静止形インバータ5を駆動し、リーケージトランス6を経て車両用機器11に交流電力が供給される。この場合には、b接点スイッチ12はオフの状態であり、非常時電源起動装置100は、シーケンス制御回路10への電力供給を停止している。なお、このとき、逆電圧防止ダイオード17bは、逆電圧防止ダイオード17aを介してシーケンス制御回路10に供給される電圧が非常時電源起動装置100に印加されるのを防止している。
 一方、何らかの原因によりバッテリー8の出力電圧が低下して所定値以下となると、バッテリー8からシーケンス制御回路10に電力を供給できなくなると共に、b接点スイッチ12はオンとなり、b接点スイッチ12を介して、架線1から直流降圧回路300および定電圧回路400に直流電力が供給される。
 架線1から定電圧回路400に直流電力が供給されると、定電圧回路400は、電圧センサ23、電圧コントローラ24、およびコンパレータ25の電源電圧を生成する。チョッパ制御回路500は、定電圧回路400から電源電圧が供給されると起動し、スイッチング素子18に対する駆動パルス信号を出力する。この駆動パルス信号によりスイッチング素子18が駆動されることにより、直列抵抗13に流れる電流の通流率制御が行われ、直流降圧回路300の出力電圧が一定値に保たれる。
 コンバータ26は、直流降圧回路300の出力電圧をバッテリー8の正常時の出力電圧と同等の直流電圧に変換し、逆電圧防止ダイオード17bを介してシーケンス制御回路10に出力する。なお、このとき、逆電圧防止ダイオード17aは、逆電圧防止ダイオード17bを介してシーケンス制御回路10に供給される電圧がバッテリー8に印加されるのを防止している。
 そして、シーケンス制御回路10が起動して静止形インバータ5を駆動し、リーケージトランス6を経て車両用機器11に交流電力が供給されると共に、充電回路7は、リーケージトランス6の出力によりバッテリー8を充電する。バッテリー8が十分に充電されると、バッテリー8から逆電圧防止ダイオード17aを介してシーケンス制御回路10に電力が供給されると共に、バッテリー8の出力電圧が上昇してb接点スイッチ12はオフとなる。これにより、架線1から直流降圧回路300および定電圧回路400への直流電力の供給が停止され、非常時電源起動装置100は、シーケンス制御回路10への電力供給を停止する。
 以上説明したように、実施の形態の車両用補助電源装置によれば、何らかの原因によりバッテリーの出力電圧が低下し、バッテリーからシーケンス制御回路に電力を供給できない場合に、バッテリーに代わりシーケンス制御回路に電力を供給する非常時電源起動装置を具備し、その非常時電源起動装置を、バッテリーの出力電圧が所定値以下に低下した場合に架線から電力を供給するスイッチ回路と、スイッチ回路を介して入力された架線電圧を分圧して出力する直流降圧回路と、直流降圧回路の出力電圧が入力されバッテリーの正常時における出力電圧と同等の直流電圧を出力するコンバータとにより構成し、一素子のスイッチング素子と、スイッチ回路とスイッチング素子の第1端子との間に接続された直列抵抗と、スイッチング素子の第2端子に接続され、コンバータへの出力電圧を平滑する平滑コンデンサとにより直流降圧回路を構成したので、スイッチング素子の多段化等による装置の大規模化を招くことなく、バッテリーの出力電圧が低下した場合でも起動することが可能な車両用補助電源装置を構成することができる。
 また、直流降圧回路の出力電圧値に応じて、スイッチング素子の制御端子に与える駆動パルス信号のデューティ比を変化させ、直列抵抗に流れる電流の通流率制御を行うことにより、直流降圧回路の出力電圧を一定値に保つようにしたので、架線電圧が変動した場合でも、コンバータへの出力電圧を安定して供給することができる。
 また、直流抵抗の抵抗値を変更することにより、架線電圧に対する直流降圧回路の出力電圧の分圧比を変更できるので、非常時電源起動装置を構成する各構成要素のうち、スイッチ回路と直列抵抗とを除く構成要素を一体のモジュールとして構成することができ、モジュール内の構成を変更することなく、架線電圧の異なるシステムに対応することができる。
 なお、以上の実施の形態に示した構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは言うまでもない。
 以上のように、本発明にかかる車両用補助電源装置は、装置を大規模化することなく、バッテリーの出力電圧が低下した場合でも起動することができる発明として有用である。
 1 架線
 2 パンタグラフ
 3 断路スイッチ
 4 入力回路(リアクトル、充電抵抗器RC、サイリスタBTH)
 5 静止形インバータ
 6 リーケージトランス
 7 充電回路
 8 バッテリー
 9 平滑コンデンサ
 10 シーケンス制御回路
 11 車両用機器
 12 b接点スイッチ
 13 直列抵抗
 15 スイッチ制御器
 16 分圧抵抗
 17a,17b 逆電圧防止ダイオード
 18 スイッチング素子(IGBT)
 19 平滑コンデンサ
 20 分圧抵抗
 21 ツェナーダイオード
 23 電圧センサ
 24 電圧コントローラ
 25 コンパレータ
 26 コンバータ
 100 非常時電源起動装置
 200 スイッチ回路
 300 直流降圧回路
 400 定電圧回路
 500 チョッパ制御回路
 600 モジュール

Claims (7)

  1.  バッテリーから供給される直流電力により動作する制御回路により駆動され、架線からの直流電力を交流電力に変換するインバータを具備し、車両内の空調システムや照明機器を含む車両用機器に前記交流電力を供給する車両用補助電源装置において、
     前記バッテリーの出力電圧が低下し、前記バッテリーから前記制御回路に電力を供給できない場合に、前記バッテリーに代わり前記制御回路に電力を供給する非常時電源起動装置を備え、
     前記非常時電源起動装置は、
     前記バッテリーの出力電圧が所定値以下に低下した場合に前記架線から電力を供給するスイッチ回路と、
     前記スイッチ回路を介して入力された架線電圧を分圧して出力する直流降圧回路と、
     前記直流降圧回路の出力電圧を一定値に保つように制御するチョッパ制御回路と、
     前記直流降圧回路の出力電圧が入力され前記バッテリーの正常時における出力電圧と同等の直流電圧を出力するコンバータと、
     を備え、
     前記直流降圧回路は、
     スイッチング素子と、
     前記スイッチ回路と前記スイッチング素子の第1端子との間に接続された直列抵抗と、
     前記スイッチング素子の第2端子に接続され、前記コンバータへの出力電圧を平滑する平滑コンデンサと、
     を備える
     ことを特徴とする車両用補助電源装置。
  2.  前記スイッチング素子は、一素子構成のスイッチング素子であることを特徴とする請求項1に記載の車両用補助電源装置。
  3.  前記スイッチ回路は、
     前記架線電圧からの電力の供給および停止を切り換えるb接点スイッチと、
     前記バッテリーの正極に一端が接続された分圧抵抗と、
     前記分圧抵抗の他端に接続され、前記分圧抵抗の出力電圧に応じて前記b接点スイッチをオフするスイッチ制御器と、
     を備えることを特徴とする請求項1に記載の車両用補助電源装置。
  4.  前記チョッパ制御回路は、前記直流降圧回路の出力電圧に応じて、前記スイッチング素子の制御端子に付与する駆動パルス信号のデューティ比を変化させ、前記直列抵抗に流れる電流の通流率制御を行うことを特徴とする請求項1に記載の車両用補助電源装置。
  5.  前記チョッパ制御回路は、
     前記直流降圧回路の出力電圧を検出する電圧センサと、
     前記電圧センサが検出した電圧値に応じた電圧を出力する電圧コントローラと、
     前記電圧コントローラの出力電圧を所定のスイッチング周波数の三角波パルスと比較して前記スイッチング素子を制御する駆動パルスを生成するコンパレータと、
     を備えることを特徴とする請求項4に記載の車両用補助電源装置。
  6.  前記直流降圧回路の出力電圧は、前記チョッパ制御回路により前記直列抵抗に流れる電流が前記通流率制御され、前記平滑コンデンサにより平滑化され一定値に保たれることを特徴とする請求項4に記載の車両用補助電源装置。
  7.  前記非常時電源起動装置は、前記スイッチング素子と、前記平滑コンデンサと、前記チョッパ制御回路と、前記コンバータと、が一体的にモジュール化されたことを特徴とする請求項1に記載の車両用補助電源装置。
PCT/JP2010/070725 2010-11-19 2010-11-19 車両用補助電源装置 WO2012066682A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137015200A KR101477447B1 (ko) 2010-11-19 2010-11-19 차량용 보조 전원 장치
CN201080070183.4A CN103201132B (zh) 2010-11-19 2010-11-19 车辆用辅助电源装置
PCT/JP2010/070725 WO2012066682A1 (ja) 2010-11-19 2010-11-19 車両用補助電源装置
JP2012544071A JP5349698B2 (ja) 2010-11-19 2010-11-19 車両用補助電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/070725 WO2012066682A1 (ja) 2010-11-19 2010-11-19 車両用補助電源装置

Publications (1)

Publication Number Publication Date
WO2012066682A1 true WO2012066682A1 (ja) 2012-05-24

Family

ID=46083639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070725 WO2012066682A1 (ja) 2010-11-19 2010-11-19 車両用補助電源装置

Country Status (4)

Country Link
JP (1) JP5349698B2 (ja)
KR (1) KR101477447B1 (ja)
CN (1) CN103201132B (ja)
WO (1) WO2012066682A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029278A1 (en) * 2013-08-29 2015-03-05 Kabushiki Kaisha Toshiba Electric power conversion device, emergency traveling system and railway vehicle
JP2017017852A (ja) * 2015-06-30 2017-01-19 株式会社東芝 ハイブリッドシステム
JP2017055495A (ja) * 2015-09-07 2017-03-16 東洋電機製造株式会社 補助電源装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017214442A1 (de) * 2017-08-18 2019-02-21 Audi Ag Bordnetz für ein Kraftfahrzeug sowie Verfahren zum Betreiben eines Bordnetzes für ein Kraftfahrzeug
KR101853724B1 (ko) 2018-01-09 2018-05-02 선진엔지니어링(주) 전동차 보조전원장치용 베이스 드라이브 유닛
CN109624714B (zh) * 2018-12-29 2022-04-19 银隆新能源股份有限公司 一种电动汽车供电系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002027601A (ja) * 2000-07-03 2002-01-25 Mitsubishi Electric Corp 車両用補助電源装置
WO2005073014A1 (ja) * 2004-01-29 2005-08-11 Mitsubishi Denki Kabushiki Kaisha 車両用補助電源装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62217802A (ja) * 1986-03-19 1987-09-25 Toshiba Corp 電力変換装置
US5631814A (en) * 1995-06-16 1997-05-20 Abraham Lavsky Uninterruptible power supply based on non-invasive connection of backup circuit to switch power supply
JP3739884B2 (ja) * 1997-02-27 2006-01-25 富士通株式会社 電源装置
JP2001178024A (ja) * 1999-12-14 2001-06-29 Sawafuji Electric Co Ltd 非常用電源装置
KR100533504B1 (ko) * 2004-02-03 2005-12-06 주식회사 로템 사구간 통과 제어장치
WO2007132515A1 (ja) * 2006-05-15 2007-11-22 Mitsubishi Denki Kabushiki Kaisha 電気車の制御装置
US8427004B2 (en) * 2006-07-20 2013-04-23 Mitsubishi Electric Corporation Electric-vehicle controller and power storage unit shutoff switch
JP4952229B2 (ja) * 2006-12-18 2012-06-13 トヨタ自動車株式会社 電源回路の制御装置
JP5207908B2 (ja) * 2008-10-06 2013-06-12 三菱電機株式会社 電気車制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002027601A (ja) * 2000-07-03 2002-01-25 Mitsubishi Electric Corp 車両用補助電源装置
WO2005073014A1 (ja) * 2004-01-29 2005-08-11 Mitsubishi Denki Kabushiki Kaisha 車両用補助電源装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029278A1 (en) * 2013-08-29 2015-03-05 Kabushiki Kaisha Toshiba Electric power conversion device, emergency traveling system and railway vehicle
JP2015047047A (ja) * 2013-08-29 2015-03-12 株式会社東芝 電力変換装置、非常用走行システム、及び鉄道車両
JP2017017852A (ja) * 2015-06-30 2017-01-19 株式会社東芝 ハイブリッドシステム
JP2017055495A (ja) * 2015-09-07 2017-03-16 東洋電機製造株式会社 補助電源装置

Also Published As

Publication number Publication date
CN103201132B (zh) 2015-09-30
JPWO2012066682A1 (ja) 2014-05-12
KR101477447B1 (ko) 2014-12-29
CN103201132A (zh) 2013-07-10
KR20130088869A (ko) 2013-08-08
JP5349698B2 (ja) 2013-11-20

Similar Documents

Publication Publication Date Title
CN109168326B (zh) 电源装置
US8384236B2 (en) Vehicle mounted converter
JP6394421B2 (ja) 半導体スイッチング素子の駆動装置
US9601984B2 (en) Power converter
JP6269647B2 (ja) 電源システム
WO2018061748A1 (ja) 車両用電源装置
JP5349698B2 (ja) 車両用補助電源装置
KR102255749B1 (ko) 저전압 dc-dc 컨버터 일체형 충전 장치
US9868358B2 (en) Power conversion system suppressing reduction in conversion efficiency
US10525838B2 (en) Power conversion system
JP2017225280A (ja) 電力変換システム
CN111656666A (zh) 电力转换装置
JP6690466B2 (ja) 電源システム
US11196356B2 (en) Power conversion device
JP5098872B2 (ja) 電力変換回路の駆動回路
JP5353791B2 (ja) 電力変換装置
JP6748921B2 (ja) 車載用電源回路及び車載用電源装置
JP2017225322A (ja) 電力変換システム
JP7035407B2 (ja) 電力変換装置
JP5499850B2 (ja) インバータの放電制御装置
JP6552895B2 (ja) 電力変換装置
JP2013251965A (ja) 電源回路
WO2023112220A1 (ja) 電力変換装置
JP2018057156A (ja) 電力変換器
JP2017103835A (ja) 電力変換装置、これを用いた電源システム及び自動車

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859866

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012544071

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137015200

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10859866

Country of ref document: EP

Kind code of ref document: A1