WO2018061748A1 - 車両用電源装置 - Google Patents

車両用電源装置 Download PDF

Info

Publication number
WO2018061748A1
WO2018061748A1 PCT/JP2017/032890 JP2017032890W WO2018061748A1 WO 2018061748 A1 WO2018061748 A1 WO 2018061748A1 JP 2017032890 W JP2017032890 W JP 2017032890W WO 2018061748 A1 WO2018061748 A1 WO 2018061748A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive path
power supply
voltage
unit
control
Prior art date
Application number
PCT/JP2017/032890
Other languages
English (en)
French (fr)
Inventor
皓 滕
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to US16/095,562 priority Critical patent/US10710468B2/en
Priority to CN201780022593.3A priority patent/CN109075600B/zh
Publication of WO2018061748A1 publication Critical patent/WO2018061748A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a vehicle power supply device.
  • a backup system that maintains power supply to a load by supplying power from an auxiliary power supply when a main power supply failure occurs.
  • the power supply system disclosed in Patent Document 1 has a configuration in which a main power supply and a backup load are electrically connected via a power supply device.
  • the backup load is a load that must continue to operate even if an abnormality occurs that causes the main power supply voltage to drop or fail. In this system, even if the main power supply becomes abnormal, Electric power is continuously supplied to the backup load.
  • the auxiliary power supply device it is necessary to charge the auxiliary power supply at an appropriate time. For example, if the output voltage of the auxiliary power supply is at a low level immediately after the ignition switch is turned on, the output voltage of the auxiliary power supply is at an appropriate level that enables backup operation after the ignition switch is turned on. It is necessary to charge until it becomes.
  • the power supply (backup operation) by the auxiliary power supply is detected after the abnormality is detected. There is a problem that the power supply is interrupted until the start. This problem is more likely to occur as the charging time of the auxiliary power source becomes longer.
  • An object of the present invention is to provide a power supply device for a vehicle that can perform a charge / discharge operation capable of maintaining a discharge state before and after the interruption even when the power supply of one power supply unit is interrupted.
  • the vehicle power supply device of the present invention includes: A first conductive path branched from the input-side conductive path; A second conductive path branched from the input-side conductive path as a path different from the first conductive path, and electrically connected to the output-side conductive path; A third conductive path electrically connected to the second conductive path and the output-side conductive path; A first voltage conversion unit that performs at least a charging operation of increasing or decreasing a voltage applied to the first conductive path and applying an output voltage to the conductive path on the second power supply unit side connected to the second power supply unit When, A charging operation in which the voltage applied to the third conductive path is boosted or lowered to apply an output voltage to the conductive path on the second power supply unit side, and applied to the conductive path on the second power supply unit side A second voltage converter that performs at least a discharge operation of increasing or decreasing a voltage and applying an output voltage to the third conductive path; Quick charge control for causing the first voltage converter to perform a charging operation and causing the second voltage converter to
  • the vehicle power supply device can cause both the first voltage conversion unit and the second voltage conversion unit to perform a charging operation when the control unit performs quick charge control. Since the charging time of the second power supply unit can be further shortened by such rapid charging control, the charging voltage of the second power supply unit can be easily increased to an appropriate level at an early stage, and the timing at which the power supply is interrupted is quick charging control. The situation that will come inside will be less likely to occur.
  • the control unit when the control unit performs charge / discharge control, the first voltage conversion unit can perform a charging operation, and the second voltage conversion unit can perform a discharging operation. That is, during the charge / discharge control, the second voltage conversion unit can continue the discharge operation of the second power supply unit while performing the charging operation of the second power supply unit by the first voltage conversion unit. Even if the power supply from the first power supply unit is interrupted during charging by the discharge control, the discharge state of the second power supply unit is continuously maintained before and after the interruption.
  • the second power supply unit can be charged while taking measures against the above problem.
  • the degree of freedom can be increased.
  • FIG. 1 is a circuit diagram schematically illustrating a vehicle power supply system including a vehicle power supply device according to a first embodiment.
  • 3 is a flowchart illustrating a flow of charge control executed after IG is turned on in the vehicle power supply device of the first embodiment. It is explanatory drawing explaining the operation state in the quick charge control in the vehicle power supply device of Example 1.
  • FIG. It is explanatory drawing explaining the operation state in charge / discharge control in the vehicle power supply device of Example 1.
  • FIG. It is explanatory drawing explaining the operation state in one side discharge control in the vehicle power supply device of Example 1.
  • FIG. It is explanatory drawing explaining the operation state in the rapid discharge control in the power supply device for vehicles of Example 1.
  • the control unit performs quick charge control when a start switch that switches a vehicle equipped with the power supply device to a travelable state is turned on, and a predetermined condition is satisfied after the start switch is turned on. It may function to perform charge / discharge control.
  • the vehicle power supply device rapidly charges after the start switch is turned on. Therefore, the output voltage can be increased more quickly. That is, after the start switch is turned on, the second power supply unit can be recovered earlier from the low level state. If the predetermined condition is satisfied after the start of the quick charge control, the quick charge control is terminated early, and charge / discharge control that is strong against power interruption of the first power supply unit (even if power interruption occurs, at that time Control to maintain discharge).
  • the control unit may function to perform charge / discharge control when a shift operation is performed at least in a vehicle on which the power supply device is mounted after the start switch is turned on.
  • this vehicle power supply device can perform quick charge control before the shift operation is performed, the output voltage of the second power supply unit is quickly increased before the vehicle travels, and the second power supply unit is set to a low level. You can recover from the condition earlier. And at least after a shift operation is performed, it can switch to charge / discharge control. In other words, after the possibility that the vehicle will be in the running state, switching to a control that is strong against power interruption of the first power supply unit (control that maintains discharge at that time even if power interruption occurs) Sometimes power can be prevented from being completely cut off.
  • the controller may function to perform charge / discharge control when at least a certain time has elapsed after the start switch is turned on.
  • this vehicle power supply device can perform quick charge control at an initial stage after a certain time has elapsed after the start switch is turned on, the output voltage of the second power supply section can be quickly increased.
  • the second power supply unit can be recovered earlier from the low level state. Then, after at least a certain time has elapsed, it is possible to switch to charge / discharge control that is strong against power interruption of the first power supply unit (control that maintains discharge at that time even when power interruption occurs).
  • a power supply device for a vehicle is a switch that is interposed between a third conductive path, one end is electrically connected to the second voltage converter, and the other end is electrically connected to an output-side conductive path, and is switched between an on state and an off state.
  • a switching unit provided in parallel with the switch unit and having a diode electrically connected to the anode of the second voltage converter and electrically connected to the cathode of the conductive path on the output side. Also good.
  • the control unit may function to perform quick charge control while the switch unit is in an on state and perform charge / discharge control while the switch unit is in an off state.
  • the switch unit of the switching unit when the quick charge control is performed, the switch unit of the switching unit is turned on so that the second voltage conversion unit passes through the second conductive path and the third conductive path from the conductive path on the input side. Current can be allowed to flow into the.
  • the switch part when charge / discharge control is performed, the switch part is turned off to prevent the current from flowing from the input side conductive path to the second voltage conversion part via the second conductive path and the third conductive path. Due to the presence of the diode provided in parallel with the switch unit, the current output from the second voltage conversion unit can flow toward the conductive path on the output side.
  • the vehicle power supply device may include an abnormality detection unit that detects at least an abnormality in the voltage or current of the conductive path on the input side.
  • an abnormality is detected by the abnormality detection unit while the quick charge control or the charge / discharge control is performed, the control unit stops the operation of the first voltage conversion unit and performs the discharge operation on the second voltage conversion unit.
  • One side discharge control may be performed.
  • the control unit when the abnormality detection unit detects an abnormality while the quick charge control or the charge / discharge control is performed, the control unit performs the one-side discharge control.
  • the operation of the first voltage converter can be stopped for protection, and the second voltage converter can be discharged to maintain the power supply state.
  • the discharge operation of the second voltage conversion unit can be continued before and after the abnormality, A situation in which the power supply is completely interrupted immediately after the occurrence of an abnormality is less likely to occur.
  • the vehicle power supply device may include a second switching unit that switches between an on state that allows current to flow between the input-side conductive path and the third conductive path and an off state that blocks current.
  • the control unit may function to turn on the second switching unit when executing the quick charge control and charge / discharge control and to turn off the second switching unit when executing the one-side discharge control.
  • the second switching unit when the quick charge control is performed, the second switching unit is turned on (a state in which current is allowed to flow between the input-side conductive path and the third conductive path) and the input is performed. It is possible to supply current from the side conductive path to the second voltage conversion unit via the second conductive path and the third conductive path.
  • the second switching unit can be turned off, so that the discharge current from the second voltage conversion unit is connected to the input-side conductive path where the abnormality occurs. Can be prevented from flowing in.
  • the first voltage conversion unit boosts or decreases the voltage applied to the first conductive path and outputs the voltage to the conductive path on the second power supply unit side, and applies to the conductive path on the second power supply unit side
  • a discharge operation may be performed in which the generated voltage is stepped up or stepped down and output to the first conductive path.
  • the control unit may function to perform at least rapid discharge control that causes the second voltage conversion unit to perform a discharge operation while causing the first voltage conversion unit to perform a discharge operation.
  • the vehicle power supply device may have a voltage detection unit that detects the output voltage of the second power supply unit.
  • the control unit may function to perform rapid discharge control when the output voltage of the second power supply unit detected by at least the voltage detection unit is equal to or lower than a certain value.
  • the second power supply unit can be used up to a lower voltage range. Therefore, the usable voltage range of the second power supply unit can be expanded.
  • the vehicle power supply device may have a plurality of the first conductive paths branched from the input-side conductive paths.
  • the plurality of first voltage conversion units may have a multiphase configuration provided in parallel between each of the first conductive paths and the conductive paths on the second power supply unit side.
  • This vehicle power supply device has a multi-phase configuration in which a plurality of first voltage converters are provided in parallel, so that the charging capability can be increased.
  • the vehicle power supply device may have a plurality of the third conductive paths.
  • the plurality of second voltage conversion units may have a multiphase configuration provided in parallel between the conductive path on the second power supply unit side and each of the third conductive paths.
  • the vehicle power supply device has a multiphase configuration in which a plurality of second voltage conversion units are provided in parallel, the discharge capacity can be increased. Moreover, even if an open failure or the like occurs in any of the second voltage converters during charge / discharge control, power supply is easily maintained by the discharge operation of the other second voltage converters.
  • a vehicle power supply system 100 shown in FIG. 1 has a configuration including a first power supply unit 3, a second power supply unit 5, and a vehicle power supply device 1 (hereinafter also referred to as a power supply device 1). It is comprised as a system which can supply.
  • the second power supply unit 5 may be configured as a part of the power supply device 1 or may be provided separately from the power supply device 1. In the following description, an example in which the second power supply unit 5 is configured as a part of the power supply device 1 will be described as a representative example.
  • 1st power supply part 3 is comprised by well-known electrical storage means, such as a lead storage battery, for example, and makes a structure which applies a predetermined voltage to the conductive path 14 of an input side while generating a predetermined voltage.
  • the high-potential side terminal of the first power supply unit 3 is electrically connected to the input-side conductive path 14 serving as a power path from the first power supply unit 3, and the low-potential side terminal of the first power supply unit 3 is Electrically connected to ground.
  • the second power supply unit 5 is configured by known power storage means such as an electric double layer capacitor.
  • the second power supply unit 5 is configured, for example, as a capacitor group in which a plurality of capacitors are connected in series, and the terminal having the lowest potential as a whole is connected to the ground via a current detection resistor (resistor 82A). .
  • the terminal having the highest potential is electrically connected to the conductive path 24 on the second power supply unit side.
  • the power supply device 1 mainly includes a first voltage conversion unit 40, a second voltage conversion unit 50, a control unit 60, a first conductive path 21, a second conductive path 22, a third conductive path 23, and a conductive property on the second power supply unit side.
  • the path 24, the second power supply unit 5, the semiconductor switches 71, 72, 73, the current detection circuits 81, 82, 83, etc. are provided, and these are provided on a substrate (not shown) to constitute an integrated unit.
  • the power supply device 1 is a circuit that generates an output voltage to be applied to the output-side conductive path 16 based on the voltage applied to the input-side conductive path 14 by the first power supply unit 3. When the applied voltage drops below a certain level, an output voltage to be applied to the output-side conductive path 16 is generated based on the voltage applied by the second power supply unit 5 to the conductive path 24 on the second power-source side. Configured as a circuit.
  • the wiring provided on the substrate constituting the power supply device 1 is the conductive path 14B
  • the wiring provided outside the power supply apparatus 1 is the conductive path 14A.
  • a wiring provided on a substrate constituting the power supply device 1 is a conductive path 16B
  • a wiring provided outside the power supply device 1 is a conductive path 16A.
  • the power supply device 1 includes a first conductive path 21 and a second conductive path 22 that branch from the input-side conductive path 14, and a third conductive path 23 and a conductive path 16 ⁇ / b> B that branch from the second conductive path 22. Yes.
  • the first conductive path 21 is a conductive path that connects the input-side conductive path 14 and the first voltage conversion unit 40, and the voltage of the input-side conductive path 14 is the first during the step-down operation of the first voltage conversion unit 40. It functions as a path for applying the voltage of the conductive path 14 on the input side to the drain of the switching element 41 so as to be the input voltage of the voltage converter 40. Further, during the boosting operation of the first voltage converter 40, it functions as a path for transmitting the output voltage so that the output voltage of the first voltage converter 40 is applied to the second conductive path 22.
  • the second conductive path 22 branches from the input-side conductive path 14 as a path different from the first conductive path 21 and is electrically connected to the conductive path 16B (a part of the output-side conductive path 16) and the third conductive path 23. It is connected to the.
  • the second conductive path 22 functions as a conductive path that connects the input-side conductive path 14 to each of the output-side conductive path 16 and the third conductive path 23.
  • the third conductive path 23 is a conductive path that connects the second conductive path 22 and the output-side conductive path 16 to the second voltage conversion unit 50, and the second conductive path 22 is in a step-down operation of the second voltage conversion unit 50. It functions as a path for applying the input voltage based on the voltage to the drain of the switching element 51. Further, during the boosting operation of the second voltage converter 50, the second voltage converter 50 functions as a path for transmitting the output voltage so that a voltage based on the output voltage of the second voltage converter 50 is applied to the output-side conductive path 16.
  • the conductive path 24 (fourth conductive path) on the second power supply unit side includes an inductor 43 of the first voltage conversion unit 40, an inductor 53 of the second voltage conversion unit 50, and a terminal on the high potential side of the second power supply unit 5. And a conductive path to which an output voltage (charge voltage) of the second power supply unit 5 is applied.
  • the semiconductor switches 71 and 72 are configured as N-channel MOSFETs, for example. It corresponds to an example of the semiconductor switches 71 and 72 and the second switching unit, and switches between an on state that allows current to flow between the input side conductive path 14 and the third conductive path 23 and an off state that blocks the current. To work. Specifically, if both of the semiconductor switches 71 and 72 are in the on state, it is possible to energize between the input-side conductive path 14 and the third conductive path 23, and both of the semiconductor switches 71 and 72 are in the off state. If there is, it is possible to energize between the conductive path 14 on the input side and the third conductive path 23.
  • the semiconductor switch 71 is interposed in a conductive path 14 ⁇ / b> B that forms part of the input-side conductive path 14, a drain is electrically connected to the first power supply unit 3, and a source is the first conductive path 21 and the second conductive path 22.
  • a drain is electrically connected to the first power supply unit 3
  • a source is the first conductive path 21 and the second conductive path 22.
  • the semiconductor switch 72 is interposed in the second conductive path 22, the drain is electrically connected to the output-side conductive path 16 and the third conductive path 23, and the source is electrically connected to the first conductive path 21 and the second conductive path 22.
  • the off state current is blocked from flowing from the input side conductive path 14 and the first conductive path 21 to the output side conductive path 16 and the third conductive path 23.
  • bidirectional energization in the second conductive path 22 is allowed.
  • the semiconductor switch 73 is configured as an N-channel MOSFET, for example.
  • the semiconductor switch 73 corresponds to an example of a switching unit, and cuts off the ON state that allows bidirectional energization of the third conductive path 23 and the energization in the direction toward the second voltage conversion unit 50 in the third conductive path 23. It is configured to switch to the off state.
  • a portion excluding the body diode 73A (hereinafter also referred to as a diode 73A) is a switch portion 73B.
  • the switch portion 73B is interposed in the third conductive path 23 and one end side is connected to the second voltage conversion portion 50.
  • the other end side is electrically connected to the output-side conductive path 16 and is switched between the on state and the off state.
  • bidirectional energization is allowed in the third conductive path 23.
  • the diode 73A is provided in parallel with the switch unit 73B, and has a configuration in which an anode is electrically connected to the second voltage conversion unit 50 and a cathode is electrically connected to the conductive path 16 on the output side.
  • the first voltage converter 40 is a synchronous rectification type single-phase DCDC converter, and is provided between the first conductive path 21 and the conductive path 24 on the second power supply section side.
  • the first voltage conversion unit 40 uses the voltage applied to the first conductive path 21 as an input voltage, steps down the input voltage, and outputs it to the conductive path 24 on the second power supply unit side connected to the second power supply unit 5. And a function of boosting the input voltage and outputting the voltage to the first conductive path 21 (discharge operation). Function as a step-up / step-down type and bidirectional type DCDC converter.
  • the first voltage converter 40 includes a high-side switching element 41 and a low-side switching element 42 configured as an N-channel MOSFET, an inductor 43, and a capacitor 44.
  • the switching element 41 and the switching element 42 are connected in series between the first conductive path 21 and the ground, the drain of the switching element 41 is connected to the first conductive path 21, and the voltage of the first conductive path 21 is applied.
  • the source of the switching element 41 is connected to the drain of the switching element 42 on the low side and one end of the inductor 43.
  • the source of the switching element 42 is connected to the ground via the resistor 83A.
  • a driving signal (ON signal) and a non-driving signal (OFF signal) are input to the gate of the switching element 41 by a PWM signal from the driving circuit provided in the control unit 60, and switching is performed according to the signal from the driving circuit.
  • the element 41 is switched between an on state and an off state.
  • a driving signal (ON signal) and a non-driving signal (OFF signal) are input to the gate of the switching element 42 by a PWM signal from the driving circuit, and the switching element 42 is turned on according to the signal from the driving circuit. And switch to off state.
  • the drive circuit provided in the control unit 60 applies an ON signal for alternately turning on the switching elements 41 and 42 in each control cycle to the gates of the switching elements 41 and 42.
  • the gate of the switching element 41 is supplied with an ON signal whose phase is substantially inverted with respect to the ON signal supplied to the gate of the switching element 42 and a so-called dead time is ensured.
  • the second voltage conversion unit 50 is a synchronous rectification type single-phase DCDC converter, and is provided between the third conductive path 23 and the conductive path 24 on the second power supply unit side.
  • the second voltage conversion unit 50 uses the voltage applied to the third conductive path 23 as an input voltage, and steps down the input voltage and outputs it to the conductive path 24 on the second power supply unit side (function to perform a charging operation).
  • a step-up / step-down type having a voltage applied to the conductive path 24 on the second power supply unit side as an input voltage, and boosting this input voltage and outputting it to the third conductive path 23 (a function of performing a discharge operation) It functions as a bidirectional type DCDC converter.
  • the second voltage converter 50 includes a high-side switching element 51 and a low-side switching element 52 configured as an N-channel MOSFET, an inductor 53, and a capacitor 54.
  • the switching element 51 and the switching element 52 are connected in series between the third conductive path 23 and the ground, the drain of the switching element 51 is connected to the third conductive path 23, and the voltage of the third conductive path 23 is applied.
  • the source of the switching element 51 is connected to the drain of the switching element 52 on the low side and one end of the inductor 53.
  • the source of the switching element 52 is connected to the ground via the resistor 83A.
  • a drive signal (ON signal) and a non-drive signal (OFF signal) are input to the gate of the switching element 51 by a PWM signal from a drive circuit provided in the control unit 60, and switching is performed according to the signal from the drive circuit.
  • the element 51 is switched between an on state and an off state.
  • a driving signal (ON signal) and a non-driving signal (OFF signal) are input to the gate of the switching element 52 by a PWM signal from the driving circuit, and the switching element 52 is turned on according to the signal from the driving circuit. And switch to off state.
  • the drive circuit provided in the control unit 60 applies an ON signal for alternately turning on the switching elements 51 and 52 in each control cycle to the gates of the switching elements 51 and 52.
  • the gate of the switching element 51 is supplied with an ON signal whose phase is substantially inverted with respect to the ON signal supplied to the gate of the switching element 52 and a so-called dead time is ensured.
  • the control unit 60 includes, for example, a control circuit configured as a microcomputer and a drive circuit that outputs a PWM signal to each of the switching elements 41, 42, 51, and 52 based on a PWM signal emitted from the control circuit.
  • a control circuit provided in the control unit 60.
  • a CPU that can perform various operations, a ROM that stores information such as programs, a RAM that stores temporarily generated information, an A / D converter that converts an analog voltage into a digital value, and the like.
  • the RAM and the A / D converter are connected to each other via a bus.
  • the current detection circuit 81 includes a resistor 81A and a differential amplifier 81B.
  • the voltage drop generated in the resistor 81A is amplified by the differential amplifier 81B, becomes a detection voltage corresponding to the output current, and is converted into a digital value by the A / D converter.
  • the current detection circuit 82 includes a resistor 82A and a differential amplifier 81B.
  • the voltage drop generated in the resistor 82A is amplified by the differential amplifier 82B, becomes a detection voltage corresponding to the output current, and is converted into a digital value by the A / D converter.
  • the current detection circuit 83 includes a resistor 83A and a differential amplifier 83B.
  • the voltage drop generated in the resistor 83A is amplified by the differential amplifier 81B, becomes a detection voltage corresponding to the output current, and is converted into a digital value by the A / D converter.
  • Detection voltages from the current detection circuits 81 to 83 are input to the A / D converter in the control unit 60, and these voltages are changed to digital values by the A / D converter.
  • the control circuit can detect the current at each position where the resistors 81A, 82A, and 83A are provided.
  • the A / D converter in the control unit 60 receives the voltages of the conductive path 14 on the input side, the conductive path 24 on the second power supply unit side, and the third conductive path 23, and these voltages are converted to A Since the digital value is changed by the / D converter, the control circuit in the control unit 60 can detect the voltage at each position. In the example of FIG.
  • the control unit 60 switches the low-side switching element 42 between ON operation and OFF operation.
  • the DC voltage applied to the first conductive path 21 is stepped down and output to the conductive path 24 on the second power supply unit side.
  • the output voltage of the conductive path 24 on the second power supply unit side is determined according to the duty ratio of the PWM signal applied to the gate of the switching element 41.
  • the control unit 60 When performing the step-down operation, the control unit 60 is known to bring the output voltage closer to the target voltage based on the deviation between the output voltage applied to the conductive path 24 on the second power supply unit side and a predetermined target voltage.
  • the feedback calculation is performed by the feedback calculation method (for example, PID calculation method), and the duty of the PWM signal is adjusted.
  • the control unit 60 brings the output voltage closer to the target voltage based on the deviation between the output voltage applied to the first conductive path 21 and a predetermined target voltage.
  • the feedback calculation is performed by a known feedback calculation method (for example, PID calculation method), and the duty of the PWM signal is adjusted.
  • control unit 60 when the control unit 60 causes the second voltage conversion unit 50 to function as a synchronous rectification step-up / step-down converter and performs a step-down operation, the control unit 60 switches between the ON operation and the OFF operation of the low-side switching element 52, By performing in synchronization with the operation of the switching element 51 on the high side, the DC voltage applied to the third conductive path 23 is stepped down and output to the conductive path 24 on the second power supply unit side.
  • the output voltage of the conductive path 24 on the second power supply unit side is determined according to the duty ratio of the PWM signal applied to the gate of the switching element 51.
  • the control unit 60 When performing the step-up operation, the control unit 60 is known to bring the output voltage closer to the target voltage based on the deviation between the output voltage applied to the conductive path 24 on the second power supply unit side and a predetermined target voltage.
  • the feedback calculation is performed by the feedback calculation method (for example, PID calculation method), and the duty of the PWM signal is adjusted.
  • the control unit 60 brings the output voltage closer to the target voltage based on the deviation between the output voltage applied to the third conductive path 23 and a predetermined target voltage.
  • the feedback calculation is performed by a known feedback calculation method (for example, PID calculation method), and the duty of the PWM signal is adjusted.
  • the setting method of the proportional gain, the differential gain, and the integral gain when performing the feedback calculation by the PID method is not limited, and various settings can be made.
  • the control unit 60 can perform at least four types of control: rapid charge control, charge / discharge control, one-side discharge control, and rapid discharge control.
  • the quick charge control is control for causing the first voltage conversion unit 40 to perform a charging operation and causing the second voltage conversion unit 50 to perform a charging operation.
  • the charge / discharge control is control for causing the first voltage conversion unit 40 to perform a charging operation and causing the second voltage conversion unit 50 to perform a discharging operation.
  • the one-side discharge control is control for stopping the operation of the first voltage converter 40 and causing the second voltage converter 50 to perform a discharge operation.
  • the rapid discharge control is control for causing the second voltage conversion unit 50 to perform a discharge operation while causing the first voltage conversion unit 40 to perform a discharge operation.
  • the control shown in FIG. 2 is a process executed when, for example, a start switch that switches a vehicle on which the power supply device 1 is mounted to a travelable state is turned on. Specifically, when an ignition switch (not shown) provided in the vehicle is switched from an off state to an on state, the ignition switch is in an on state from a device (such as an external ECU) provided outside the power supply device 1.
  • an ignition on signal hereinafter also referred to as an IG on signal
  • an ignition off signal hereinafter referred to as IG off
  • IG off an ignition off signal
  • a signal is input to the control unit 60. That is, the ignition switch corresponds to an example of a start switch, and the case where the ignition switch is turned on corresponds to an example of “when the start switch is turned on”.
  • the quick charge mode is a mode in which the control unit 60 performs quick charge control.
  • the control unit 60 maintains both the semiconductor switches 71 and 72 in the on state and also maintains the semiconductor switch 73 in the on state. In such a switch state, as shown in FIG. Either the voltage conversion unit 40 or the second voltage conversion unit 50 is caused to perform a charging operation for supplying a charging current to the second power supply unit 5.
  • the first voltage conversion unit 40 is stepped down so that the voltage of the first conductive path 21 is stepped down and output to the conductive path 24 on the second power supply unit side, and the voltage of the third conductive path 23 is stepped down.
  • the second voltage conversion unit 50 is stepped down so as to output to the conductive path 24 on the second power supply unit side.
  • a charging current is supplied to the second power supply unit 5 by the first voltage conversion unit 40 and the second voltage conversion unit 50, and a relatively large charging current is supplied.
  • the charging voltage increases at a higher rate.
  • control unit 60 performs the quick charge control when the start switch (specifically, the ignition switch) that switches the vehicle on which the power supply device 1 is mounted to the travelable state is turned on.
  • the charge control is continued until a predetermined end condition is satisfied (until there is a quick charge end trigger).
  • the control unit 60 sets the quick charge mode in step S1, and after starting the quick charge control, determines whether or not a predetermined end condition is satisfied (whether there is a quick charge end trigger) in step S2.
  • the “predetermined end condition” is defined when a shift operation is performed in a vehicle on which the power supply device 1 is mounted, or when a certain period of time has elapsed after the ignition switch (start switch) is turned on. It has been.
  • the termination condition that is, when there is no shift operation and the ignition switch (start switch) is turned on in the vehicle on which power supply device 1 is mounted. If the fixed time has not elapsed (No in step S2), the quick charge mode is continued in step S1.
  • step S2 When it is determined that the end condition is satisfied in the process of step S2, that is, when a shift operation is performed in the vehicle on which the power supply device 1 is mounted, or the ignition switch (start switch) is turned on.
  • step S3 When a predetermined time has elapsed (Yes in step S2), the process of step S3 is performed to switch from the quick charge mode to the normal charge mode (charge / discharge mode). That is, the control unit 60 performs a certain period of time after a shift operation is performed in a vehicle on which the power supply device 1 is mounted after the ignition switch (start switch) is turned on, or after the start switch is turned on. When it has elapsed, charge / discharge control is performed.
  • a signal indicating a shift range is input to the power supply device 1 from an external device (for example, a shift-by-wire ECU or the like) provided outside the power supply device 1, and “the ignition switch is turned on.
  • “When a signal indicating a new shift range is input to the power supply device 1 after entering the state” corresponds to an example of “when a shift operation is performed”. For example, immediately after the ignition switch is turned on, a P range signal indicating that the shift range is in the P range is input to the power supply device 1, and the ignition switch (starting switch) is turned on for a certain period of time.
  • the control unit 60 determines that there has been a shift operation, and proceeds to Yes in step S2. .
  • the normal charge mode (charge / discharge mode) set in step S3 is a mode in which the control unit 60 performs charge / discharge control.
  • the control unit 60 maintains both the semiconductor switches 71 and 72 in the on state, and the semiconductor switch 73 is in the off state.
  • the second voltage conversion unit 50 is discharged while performing a charging operation (step-down operation) that causes the first voltage conversion unit 40 to supply a charging current to the second power supply unit 5 as shown in FIG.
  • a discharge operation (step-up operation) for flowing current is performed.
  • the first voltage conversion unit 40 is stepped down so as to step down the voltage of the first conductive path 21 and output it to the conductive path 24 on the second power supply unit side, and the conductive path 24 on the second power supply unit side.
  • the second voltage converter 50 is boosted so as to boost the voltage of the second voltage and output it to the third conductive path 23.
  • the control unit 60 maintains the semiconductor switch 73 in the off state (that is, the switch unit 73B is in the on state), but performs the charge / discharge control as shown in FIG.
  • the semiconductor switch 73 is maintained in an on state (that is, the switch unit 73B is in an on state). That is, during the charge / discharge control, current is blocked from flowing from the second conductive path 22 side to the second voltage conversion unit 50 side via the third conductive path 23, and the second voltage conversion unit 50 performs the third conductive process.
  • the current output to the path 23 flows to the output side conductive path 16 via the body diode 73A.
  • step S4 the control unit 60 determines whether or not a backup trigger has occurred in step S4 (specifically, there is an abnormality in power supply from the conductive path 14 on the input side). Whether it has occurred).
  • the voltage of the input side conductive path 14 is input to the control unit 60, and the control unit 60 monitors the voltage of the input side conductive path 14.
  • step S4 the controller 60 determines whether or not the voltage of the input-side conductive path 14 is equal to or lower than the first threshold voltage, and determines that the voltage of the input-side conductive path 14 is equal to or lower than the first threshold voltage. If it is determined that the backup trigger has occurred (Yes in step S4), the process of step S6 is performed.
  • step S5 it is determined whether or not a charging end condition is satisfied (for example, whether or not the charging voltage of the second power supply unit 5 has reached the charging threshold voltage).
  • Control part 60 performs processing after Step S3, when it judges with charging end conditions not being fulfilled in Step S5 (in the case of No at Step S5).
  • step S5 When it is determined in step S5 that the charge termination condition is satisfied (Yes in step S5), the control unit 60 terminates the above-described charge / discharge control (FIG. 4), and the first voltage conversion unit 40 and the first voltage conversion unit 40 The operation of the two-voltage converter 50 is stopped. In this case, after the charge / discharge control is terminated, for example, the semiconductor switch 73 is maintained in the off state while the semiconductor switches 71 and 72 are maintained in the on state.
  • the controller 60 determines that the voltage of the input-side conductive path 14 is equal to or lower than the first threshold voltage in step S4, and sets the first backup mode (one-side discharge mode) when performing the process of step S6.
  • the first backup mode (one-side discharge mode) is a mode in which the control unit 60 performs one-side discharge control.
  • the control unit 60 maintains both the semiconductor switches 71 and 72 in the off state and maintains the semiconductor switch 73 in the on state.
  • the flow of current from the first conductive path 21 and the second conductive path 22 toward the input-side conductive path 14 is blocked, and the input-side conductive path 14 and the first conductive path 21 to the output-side conductive path. Current flowing toward 16 is also blocked.
  • the operation of the first voltage conversion unit 40 is stopped, and the second voltage conversion unit 50 is caused to perform a discharge operation (step-up operation) that causes a discharge current to flow.
  • the voltage of the conductive path 24 on the second power supply unit side is boosted and output to the third conductive path 23 while maintaining the switching elements 41 and 42 of the first voltage conversion unit 40 in the off state.
  • the second voltage converter 50 is boosted.
  • the one-side discharge control is performed.
  • the second power supply unit 5 can be operated as a backup power supply.
  • the control unit 60 can maintain the discharge of the second voltage conversion unit 50 before and after switching the control from the charge / discharge control to the one-side discharge control, the abnormality of the conductive path 14 on the input side can be detected. The blank period during which power is interrupted does not occur during the period from the start to the backup operation.
  • control unit 60 corresponds to an example of an abnormality detection unit, and at least an abnormality in the voltage of the conductive path 14 on the input side (specifically, the voltage of the conductive path 14 on the input side decreases below the first threshold voltage.
  • a function to detect anomalies A function to detect anomalies.
  • control unit 60 switches to the first backup mode in step S6, and the operation of the first voltage conversion unit 40 Is stopped and one side discharge control is performed to cause the second voltage converter 50 to perform a discharge operation.
  • step S6 After setting the first backup mode (one-side discharge mode) in step S6, the control unit 60 determines whether or not a rapid discharge trigger has occurred in step S7 (specifically, the output voltage of the second power supply unit 5 is the first 2) It is determined whether or not the voltage drops below the threshold voltage.
  • the voltage of the conductive path 24 on the second power supply unit side is input to the control unit 60, and the control unit 60 monitors the voltage of the conductive path 24 on the second power supply unit side. .
  • step S7 the control unit 60 determines whether or not the voltage of the conductive path 24 on the second power supply unit side is equal to or lower than the second threshold voltage, and the voltage of the conductive path 24 on the second power supply unit side is the second threshold value.
  • step S8 When it is determined that the voltage is equal to or lower than the voltage (when it is determined that a rapid discharge trigger has occurred and the result is Yes in step S7), the process of step S8 is performed.
  • the control unit 60 determines in step S7 that the voltage of the conductive path 24 on the second power supply unit side is not equal to or lower than the second threshold voltage (when No in step S7), the setting in step S6 (first backup mode) And the above-described one-side discharge control is continued.
  • the control unit 60 determines in step S7 that the voltage of the conductive path 24 on the second power supply unit side is equal to or lower than the second threshold voltage, the control unit 60 sets the second backup mode (rapid discharge mode) in step S8.
  • the second backup mode is a mode in which the control unit 60 performs rapid discharge control.
  • the control unit 60 keeps the semiconductor switches 72 and 73 in the on state while keeping the semiconductor switch 71 in the off state. As a result, current is blocked from flowing from the first conductive path 21 and the second conductive path 22 toward the input-side conductive path 14, and the first conductive path 21 and the output-side conductive path 16 are electrically connected. It becomes a state.
  • the first voltage conversion unit 40 and the second voltage conversion unit 50 are caused to perform a discharge operation (step-up operation) for causing a discharge current to flow.
  • the first voltage conversion unit 40 is boosted so as to boost the voltage of the conductive path 24 on the second power supply unit side and output the boosted voltage to the first conductive path 21, thereby conducting the conductive path 24 on the second power supply unit side.
  • the second voltage converter 50 is boosted so as to boost the voltage of the second voltage and output it to the third conductive path 23.
  • control unit 60 corresponds to an example of a voltage detection unit and functions to detect the output voltage of the second power supply unit 5.
  • the control unit 60 functions to perform rapid discharge control when at least the output voltage of the second power supply unit 5 detected by the voltage detection unit is equal to or lower than a certain value.
  • the voltage of the input-side conductive path 14 is the first threshold voltage during the quick charge mode (that is, during the quick charge control). If it is continuously determined whether or not the voltage is equal to or lower than the threshold voltage and it is determined that the voltage of the conductive path 14 on the input side is equal to or lower than the first threshold voltage, the processing after step S6 may be performed. Although omitted in FIG. 2, when it is determined in step S ⁇ b> 5 that charging is finished and the operations of the first voltage conversion unit 40 and the second voltage conversion unit 50 are stopped, before the ignition switch is switched to the off state.
  • the power supply device 1 can cause both the first voltage conversion unit 40 and the second voltage conversion unit 50 to perform the charging operation as illustrated in FIG. 3. Since the charging time of the second power supply unit 5 can be further shortened by such rapid charging control, the charging voltage of the second power supply unit 5 can be easily raised to an appropriate level at an early stage, and the timing at which the power supply is interrupted is rapid. A situation that occurs during charge control is less likely to occur.
  • the first voltage conversion unit 40 can perform a charging operation and the second voltage conversion unit 50 can perform a discharging operation as shown in FIG. That is, during the charge / discharge control as shown in FIG. 4, the second voltage conversion unit 50 continues the discharging operation of the second power supply unit 5 while the first voltage conversion unit 40 performs the charging operation of the second power supply unit 5. Therefore, even if the power supply from the first power supply unit 3 is interrupted during charging by the charge / discharge control, the discharge state of the second power supply unit 5 is continuously maintained before and after the interruption.
  • the second power supply unit 5 is charged while taking measures against the above-mentioned problem.
  • the degree of freedom in doing can be increased.
  • the control unit 60 performs the quick charge control when the ignition switch (start switch) that switches the vehicle on which the power supply device 1 is mounted to the travelable state is turned on, and the ignition switch is turned on. After that, the charge / discharge control is performed when a predetermined condition is satisfied. Even if the output voltage of the second power supply unit 5 is at a relatively low level at the time when the ignition switch is turned on, the power supply device 1 configured as described above can be used after the ignition switch is turned on. Since charging can be performed rapidly, the output voltage can be increased more quickly. That is, after the ignition switch is turned on, the second power supply unit 5 can be recovered earlier from the low level state.
  • the ignition switch start switch
  • the quick charge control is terminated early, and charge / discharge control strong against power cut of the first power supply unit 3 (even if power cut occurs, at that time
  • the control can be switched to (a control in which the discharge is maintained).
  • control unit 60 performs charge / discharge control when a shift operation is performed at least in the vehicle on which the power supply device 1 is mounted after the ignition switch (start switch) is turned on. Since the power supply device 1 configured as described above can perform the quick charge control before the shift operation is performed, the output voltage of the second power supply unit 5 is quickly increased before the vehicle travels, and the second The power supply unit 5 can be recovered earlier from the low level state. And at least after a shift operation is performed, it can switch to charge / discharge control. In other words, after the possibility that the vehicle will be in a running state, switching to control that is strong against power interruption of the first power supply unit 3 (control that maintains discharge at that time even if power interruption occurs) It is possible to prevent electric power from being completely cut off during driving.
  • control unit 60 performs charge / discharge control when at least a fixed time has elapsed after the ignition switch (start switch) is turned on. Since the power supply device 1 configured as described above can perform quick charge control in an initial stage before a predetermined time has elapsed after the ignition switch is turned on, the output voltage of the second power supply unit 5 Can be quickly raised, and the second power supply unit 5 can be recovered earlier from the low level state. And at least when a certain time has passed, the charge / discharge control is terminated early and charge / discharge control that is strong against power interruption of the first power supply unit 3 (control in which discharge is maintained at that time even if power interruption occurs) ).
  • the power supply device 1 is interposed in the third conductive path 23, one end side is electrically connected to the second voltage conversion unit 50, and the other end side is electrically connected to the output side conductive path 16, and is turned on and off.
  • a switch unit 73B that switches, and a diode 73A that is provided in parallel with the switch unit 73B and whose anode is electrically connected to the second voltage conversion unit 50 and whose cathode is electrically connected to the conductive path 16 on the output side, are provided.
  • a semiconductor switch 73 switching unit
  • the controller 60 performs quick charge control while turning on the switch unit 73B, and performs charge / discharge control while turning off the switch unit 73B.
  • the switch part 73B of the semiconductor switch 73 (switching part) is turned on so that the second conductive path 22 and the input conductive path 14 are switched on. It is possible to allow current to flow into the second voltage converter 50 via the third conductive path 23.
  • charge / discharge control is performed, a current flows from the conductive path 14 on the input side to the second voltage converter 50 via the second conductive path 22 and the third conductive path 23 by turning off the switch unit 73B.
  • the current output from the second voltage conversion unit 50 can flow toward the conductive path 16 on the output side due to the presence of the diode 73A provided in parallel with the switch unit 73B.
  • the power supply device 1 includes an abnormality detection unit that detects at least an abnormality in the voltage of the conductive path 14 on the input side.
  • the control unit 60 stops the operation of the first voltage conversion unit 40 and discharges it to the second voltage conversion unit 50 when an abnormality is detected by the abnormality detection unit while the quick charge control or the charge / discharge control is performed.
  • One-side discharge control for performing the operation is performed.
  • the control unit 60 performs the one-side discharge control.
  • the power supply state can be maintained by causing the second voltage conversion unit 50 to perform a discharge operation while stopping the operation of the conversion unit 40 and protecting it.
  • the discharge operation of the second voltage conversion unit 50 can be continued before and after the abnormality. For this reason, a situation in which the power supply is completely interrupted immediately after the occurrence of an abnormality is less likely to occur.
  • the power supply device 1 includes semiconductor switches 71 and 72 (second switching units) that switch between an on state that allows current to flow between the input-side conductive path 14 and the third conductive path 23 and an off state that blocks current.
  • the control unit 60 turns on the semiconductor switches 71 and 72 (second switching unit) when executing the quick charge control and charge / discharge control, and switches the semiconductor switches 71 and 72 (second switching) when executing the one-side discharge control. Part) is turned off.
  • the semiconductor switches 71 and 72 are turned on (current flows between the input conductive path 14 and the third conductive path 23. In this state, it is possible to supply a current from the input side conductive path 14 to the second voltage conversion unit 50 via the second conductive path 22 and the third conductive path 23.
  • the semiconductor switches 71 and 72 can be turned off. It is possible to prevent the discharge current from the two-voltage converter 50 from flowing in.
  • the first voltage conversion unit 40 steps down the voltage applied to the first conductive path 21 and outputs it to the conductive path 24 on the second power supply unit side, and is applied to the conductive path 24 on the second power supply unit side.
  • the discharge operation of boosting the voltage and outputting it to the first conductive path 21 can be performed.
  • the control unit 60 can perform rapid discharge control that causes the second voltage conversion unit 50 to perform a discharge operation while causing the first voltage conversion unit 40 to perform a discharge operation.
  • This power supply device 1 can cause both the first voltage conversion unit 40 and the second voltage conversion unit 50 to perform a discharge operation as necessary, and enhances the ability to discharge the second power supply unit 5. It is advantageous when you want.
  • the power supply device 1 has a voltage detection unit that detects the output voltage of the second power supply unit 5.
  • the control unit 60 functions to perform rapid discharge control at least when the output voltage of the second power supply unit 5 detected by the voltage detection unit is equal to or lower than a certain value (second threshold voltage). If the rapid discharge control is performed when the output voltage of the second power supply unit 5 decreases as in this configuration, the second power supply unit 5 can be used up to a lower voltage range. Therefore, the usable voltage range of the second power supply unit 5 can be expanded.
  • the first voltage conversion unit 40 steps down the voltage applied to the first conductive path 21 and applies it to the conductive path 24 on the second power supply unit side, and conducts on the second power supply unit side.
  • the voltage applied to the path 24 can be boosted and the voltage boosting operation applied to the first conductive path 21 can be performed.
  • the second power source In the configuration in which the output voltage of the unit 5 is larger than the output voltage of the first power supply unit 3, the first voltage conversion unit 40 boosts the voltage applied to the first conductive path 21 to increase the conductive path on the second power supply unit side.
  • the second voltage conversion unit 50 boosts the voltage applied to the third conductive path 23 and applies it to the conductive path 24 on the second power supply unit side, and the second power supply unit side
  • the voltage applied to the conductive path 24 may be reduced and the voltage applied to the third conductive path 23 may be lowered (discharge operation).
  • each of the first voltage conversion unit 40 and the second voltage conversion unit 50 is configured as a single-phase DCDC converter.
  • any example in which the first embodiment or the first embodiment is changed is shown.
  • either one or both sides may be a multi-phase DCDC converter.
  • the drain of the switching element 41 of each first voltage conversion unit 40 and one end of the capacitor 44 are electrically connected to the first conductive path 21.
  • each first voltage conversion unit 40 One end of the inductor 43 of each first voltage conversion unit 40 is electrically connected to the conductive path 24 on the second power supply unit side, the other end of the capacitor 44 of each first voltage conversion unit 40 and switching What is necessary is just to connect in parallel so that the source
  • One end of the inductor 43 of each second voltage conversion unit 50 is electrically connected to the conductive path 24 on the second power supply unit side, the other end of the capacitor 54 of each second voltage conversion unit 50 and switching
  • the sources of the elements 52 may be connected in parallel so as to be electrically connected to one end of the resistor 83A.
  • both the first voltage conversion unit 40 and the second voltage conversion unit 50 are configured as a synchronous rectification type DCDC converter. Also in the example, a diode-type DCDC converter in which some switching elements are replaced with diodes may be used.
  • the configuration for detecting that the ignition switch (starting switch) is turned on by the ignition on signal is illustrated.
  • the ignition switch is Any configuration can be used as long as it can be identified as being in the on state. For example, a case where an in-vehicle communication system such as CAN becomes communicable may be a case where the start switch is turned on.
  • start switch is not limited to the ignition switch, and may be an electric vehicle system (EV system) in the case of an electric vehicle, for example.
  • EV system electric vehicle system
  • switching elements 41, 42, 51, 52 switching elements configured as N-channel MOSFETs have been exemplified.
  • the first embodiment or the first embodiment may be a P-channel type MOSFET, or another switching element such as a bipolar transistor or IGBT, and a part thereof may be replaced with a mechanical relay.
  • the control unit 60 corresponding to the abnormality detection unit detects a voltage drop of the input-side conductive path 14 in step S4 illustrated in FIG.
  • it may be determined as abnormal when an overvoltage state in which the voltage of the input side conductive path 14 exceeds a predetermined overvoltage threshold is detected.
  • An abnormality may be determined when an overcurrent state in which the current exceeds a predetermined overcurrent threshold is detected.
  • control unit 60 proceeds to step S6 when the abnormality detection unit detects an abnormality in the overcurrent state when the quick charge control or the charge / discharge control is being performed, and the first voltage conversion unit 40
  • the one-side discharge control may be performed so that the second voltage conversion unit 50 performs the discharge operation while stopping the operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)
  • Dc-Dc Converters (AREA)

Abstract

第1電源部からの電力に基づく急速充電動作と、充電中に第1電源部の電力供給が遮断されても遮断前後で放電状態を維持し得る充放電動作とを行う。 車両用電源装置(1)は、第1導電路(21)に印加された電圧を変換し第2電源部側の導電路(24)に出力電圧を印加する充電動作を少なくとも行う第1電圧変換部(40)と、第3導電路(23)に印加された電圧を変換し第2電源部側の導電路(24)に出力電圧を印加する充電動作と第2電源部側の導電路(24)に印加された変換して第2導電路(22)に出力電圧を印加する放電動作とを少なくとも行う第2電圧変換部(50)とを有する。制御部(60)は、第1電圧変換部(40)に充電動作を行わせ第2電圧変換部(50)に充電動作を行わせる急速充電制御と第1電圧変換部(40)に充電動作を行わせ第2電圧変換部(50)に放電動作を行わせる充放電制御とを行う。

Description

車両用電源装置
 本発明は、車両用電源装置に関するものである。
 車両用の電源装置の分野では、主電源の失陥等が発生した場合に補助電源から電力供給を行うことで負荷への電力供給を維持するようなバックアップシステムが知られている。例えば、特許文献1で開示される電源システムは、主電源とバックアップ負荷とが電源装置を介して電気的に接続される構成をなす。バックアップ負荷は、主電源の電圧が低下したり失陥したりする異常が発生しても動作し続ける必要がある負荷であり、このシステムでは、主電源が異常状態になっても、電源装置からバックアップ負荷に対し継続して電力が供給されるようになっている。
特開2013-176197号公報
 ところで、この種の電源装置では、適切な時期に補助電源を充電する必要がある。例えば、イグニッションスイッチがオン状態に切り替わった直後に補助電源の出力電圧が低レベルになっているような場合、イグニッションスイッチがオン状態に切り替わった後、補助電源の出力電圧がバックアップ動作可能な適正レベルになるまで充電する必要がある。しかし、補助電源の充電中に放電動作を停止させるような既存の技術では、充電中に主電源の失陥異常等が生じると、異常を検知してから補助電源による電力供給(バックアップ動作)を開始するまでの間、電力供給が途絶えてしまうという問題がある。そして、この問題は、補助電源の充電時間が長くなるほど生じやすくなる。
 本発明は、上述した事情に基づいてなされたものであり、第1電源部からの電力によって第2電源部を充電する場合に、充電時間をより短くし得る急速充電動作と、充電中に第1電源部の電力供給が遮断されても遮断前後で放電状態を維持し得る充放電動作とを行い得る車両用の電源装置を提供することを目的とする。
 本発明の車両用電源装置は、
 入力側の導電路から分岐する第1導電路と、
 前記入力側の導電路から前記第1導電路とは異なる経路として分岐し、出力側の導電路に電気的に接続された第2導電路と、
 前記第2導電路及び前記出力側の導電路に電気的に接続された第3導電路と、
 前記第1導電路に印加された電圧を昇圧又は降圧し、第2電源部に接続された第2電源部側の導電路に対して出力電圧を印加する充電動作を少なくとも行う第1電圧変換部と、
 前記第3導電路に印加された電圧を昇圧又は降圧して前記第2電源部側の導電路に対して出力電圧を印加する充電動作と、前記第2電源部側の導電路に印加された電圧を昇圧又は降圧して前記第3導電路に対して出力電圧を印加する放電動作とを少なくとも行う第2電圧変換部と、
 前記第1電圧変換部に充電動作を行わせるとともに前記第2電圧変換部に充電動作を行わせる急速充電制御と、前記第1電圧変換部に充電動作を行わせるとともに前記第2電圧変換部に放電動作を行わせる充放電制御とを少なくとも行う制御部と、
を有する。
 上記車両用電源装置は、制御部が急速充電制御を行う場合には、第1電圧変換部及び第2電圧変換部のいずれにも充電動作を行わせることができる。このような急速充電制御によって第2電源部の充電時間をより短くすることができるため、第2電源部の充電電圧を早期に適正レベルまで高めやすくなるとともに、電力供給が途絶えるタイミングが急速充電制御中に到来してしまうような事態は生じにくくなる。
 また、制御部が充放電制御を行う場合には、第1電圧変換部に充電動作を行わせ、第2電圧変換部に放電動作を行わせることができる。つまり、充放電制御中には、第1電圧変換部によって第2電源部の充電動作を行いつつ、第2電圧変換部によって第2電源部の放電動作を継続することができるため、仮に、充放電制御による充電中に第1電源部からの電力供給が遮断されても、その遮断前後で第2電源部の放電状態が継続的に維持される。
 そして、このように「充電中に第1電源部の電力供給が途絶える問題」に関して有利な2つの制御を使い分けることができるため、上記問題に対して対策しつつ、第2電源部を充電する上での自由度を高めることができる。
実施例1の車両用電源装置を備えた車両用の電源システムを概略的に例示する回路図である。 実施例1の車両用電源装置においてIGオン後に実行される充電制御の流れを例示するフローチャートである。 実施例1の車両用電源装置における急速充電制御中の動作状態を説明する説明図である。 実施例1の車両用電源装置における充放電制御中の動作状態を説明する説明図である。 実施例1の車両用電源装置における一方側放電制御中の動作状態を説明する説明図である。 実施例1の車両用電源装置における急速放電制御中の動作状態を説明する説明図である。
 発明の望ましい形態を以下に例示する。
 制御部は、当該電源装置が搭載された車両を走行可能状態に切り替える始動スイッチがオン状態になった場合に急速充電制御を行い、始動スイッチがオン状態になった後、所定条件が成立した場合に充放電制御を行うように機能してもよい。
 この車両用電源装置は、始動スイッチがオン状態になった時点で第2電源部の出力電圧が相対的に低いレベルであったとしても、始動スイッチがオン状態になった後に急速に充電を行うことができるため、出力電圧をより迅速に上昇させることができる。つまり、始動スイッチがオン状態になった後、第2電源部を低レベル状態からより早期に回復させることができる。そして、急速充電制御の開始後、所定条件が成立した場合には、急速充電制御を早期に終了させて第1電源部の電力遮断に強い充放電制御(電力遮断が生じても、その時点で放電が維持される制御)に切り替えることができる。
 制御部は、始動スイッチがオン状態になった後、当該電源装置が搭載された車両において少なくともシフト操作が行われた場合に充放電制御を行うように機能してもよい。
 この車両用電源装置は、シフト操作が行われる前に急速充電制御を行うことができるため、車両が走行する前に第2電源部の出力電圧を迅速に上昇させ、第2電源部を低レベル状態からより早期に回復させることができる。そして、少なくともシフト操作が行われた後は、充放電制御に切り替えることができる。つまり、車両が走行状態になる可能性が生じた後には、第1電源部の電力遮断に強い制御(電力遮断が生じても、その時点で放電が維持される制御)に切り替えることで、走行時に電力が完全に途絶えること防ぐことができる。
 制御部は、始動スイッチがオン状態になった後、少なくとも一定時間が経過した場合に充放電制御を行うように機能してもよい。
 この車両用電源装置は、始動スイッチがオン状態になった後、一定時間が経過する前の初期段階では、急速充電制御を行うことができるため、第2電源部の出力電圧を迅速に上昇させ、第2電源部を低レベル状態からより早期に回復させることができる。そして、少なくとも一定時間が経過した後は、第1電源部の電力遮断に強い充放電制御(電力遮断が生じても、その時点で放電が維持される制御)に切り替えることができる。
 車両用電源装置は、第3導電路に介在するとともに一端側が第2電圧変換部に電気的に接続され他端側が出力側の導電路に電気的に接続されオン状態とオフ状態とに切り替わるスイッチ部と、スイッチ部と並列に設けられるとともに第2電圧変換部にアノードが電気的に接続され出力側の導電路にカソードが電気的に接続されるダイオードとを備えた切替部を有していてもよい。制御部は、スイッチ部をオン状態としつつ急速充電制御を行い、スイッチ部をオフ状態としつつ充放電制御を行うように機能してもよい。
 この車両用電源装置は、急速充電制御を行うときには、切替部のスイッチ部をオン状態とすることで、入力側の導電路から第2導電路及び第3導電路を介して第2電圧変換部に電流が流れ込むことを許容することができる。一方、充放電制御を行うときには、スイッチ部をオフ状態とすることで入力側の導電路から第2導電路及び第3導電路を介して第2電圧変換部に電流が流れ込むことを遮断しつつ、スイッチ部と並列に設けられたダイオードの存在により、第2電圧変換部から出力される電流を出力側の導電路に向けて流すことができる。
 車両用電源装置は、少なくとも入力側の導電路の電圧又は電流の異常を検出する異常検出部を備えていてもよい。制御部は、急速充電制御又は充放電制御が行われているときに異常検出部によって異常が検出された場合、第1電圧変換部の動作を停止させるとともに第2電圧変換部に放電動作を行わせる一方側放電制御を行うように機能してもよい。
 この車両用電源装置は、急速充電制御又は充放電制御が行われているときに異常検出部が異常を検出した場合、制御部が一方側放電制御を行う。この一方側放電制御により、第1電圧変換部の動作を停止させて保護を図りつつ、第2電圧変換部に放電動作を行わせて電力供給状態を維持することができる。特に、充放電制御が行われているときに入力側の導電路で異常が発生して一方側放電制御に切り替える場合、異常前後で第2電圧変換部の放電動作を継続することができるため、異常発生直後に電力供給が完全に途絶えるような事態が生じにくくなる。
 車両用電源装置は、入力側の導電路と第3導電路との間で電流が流れることを許容するオン状態と遮断するオフ状態とに切り替わる第2切替部を有していてもよい。制御部は、急速充電制御及び充放電制御を実行するときに第2切替部をオン状態とし、一方側放電制御を実行するとき第2切替部をオフ状態とするように機能してもよい。
 この車両用電源装置は、急速充電制御を行う場合には、第2切替部をオン状態(入力側の導電路と第3導電路との間で電流が流れることを許容する状態)とし、入力側の導電路から第2導電路及び第3導電路を介して第2電圧変換部に電流を供給することを可能とすることができる。一方、異常の発生に応じて一方側放電制御を行う場合、第2切替部をオフ状態とすることができるため、異常が生じている入力側の導電路に第2電圧変換部からの放電電流が流れ込んでしまうことを防ぐことができる。
 第1電圧変換部は、前記第1導電路に印加された電圧を昇圧又は降圧して前記第2電源部側の導電路に出力する充電動作と、前記第2電源部側の導電路に印加された電圧を昇圧又は降圧して前記第1導電路に出力する放電動作とを行うように構成されていてもよい。制御部は、前記第1電圧変換部に放電動作を行わせつつ前記第2電圧変換部に放電動作を行わせる急速放電制御を少なくとも行うように機能してもよい。
 この車両用電源装置は、必要に応じて第1電圧変換部及び第2電圧変換部のいずれにも放電動作を行わせることができるようになり、第2電源部を放電させる能力を高めたい場合に有利になる。
 車両用電源装置は、第2電源部の出力電圧を検出する電圧検出部を有していてもよい。制御部は、少なくとも電圧検出部によって検出される第2電源部の出力電圧が一定値以下である場合に急速放電制御を行うように機能してもよい。
 第2電源部の出力電圧が低下した場合に急速放電制御を行うようにすれば、第2電源部をより低い電圧範囲まで使えるようになる。よって、第2電源部の使用可能な電圧範囲を広げることができる。
 車両用電源装置は、入力側の導電路から分岐する複数の前記第1導電路を有していてもよい。そして、複数の前記第1電圧変換部が、各々の前記第1導電路と前記第2電源部側の導電路との間に並列に設けられた多相構成をなしていてもよい。
 この車両用電源装置は、複数の第1電圧変換部が並列に設けられた多相構成をなすため、充電能力を高めることができる。
 車両用電源装置は、複数の前記第3導電路を有していてもよい。そして、複数の前記第2電圧変換部が、前記第2電源部側の導電路と各々の前記第3導電路との間に並列に設けられた多相構成をなしていてもよい。
 この車両用電源装置は、複数の第2電圧変換部が並列に設けられた多相構成をなすため、放電能力を高めることができる。また、充放電制御時にいずれかの第2電圧変換部でオープン故障等が生じても、他の第2電圧変換部の放電動作によって電力供給が維持されやすくなる。
 <実施例1>
 以下、本発明を具体化した実施例1について説明する。
 図1で示す車両用電源システム100は、第1電源部3と、第2電源部5と、車両用電源装置1(以下、電源装置1ともいう)とを備えた構成をなし、負荷に電力を供給し得るシステムとして構成されている。なお、第2電源部5は、電源装置1の一部として構成されていてもよく、電源装置1とは別体として設けられていてもよい。以下の説明では、第2電源部5が電源装置1の一部として構成された例を代表例として説明する。
 第1電源部3は、例えば、鉛蓄電池等の公知の蓄電手段によって構成され、所定電圧を発生させるとともに、入力側の導電路14に所定電圧を印加する構成をなす。第1電源部3の高電位側の端子は、第1電源部3からの電力経路となる入力側の導電路14に電気的に接続され、第1電源部3の低電位側の端子は、グラウンドに電気的に接続されている。
 第2電源部5は、例えば、電気二重層キャパシタ等の公知の蓄電手段によって構成されている。第2電源部5は、例えば、複数のキャパシタが直列に接続されたキャパシタ群として構成され、全体において最も低い電位となる端子は電流検出抵抗(抵抗器82A)を介してグラウンドに接続されている。また、第2電源部5において、最も高い電位となる端子は、第2電源部側の導電路24に電気的に接続されている。
 電源装置1は、主として、第1電圧変換部40、第2電圧変換部50、制御部60、第1導電路21、第2導電路22、第3導電路23、第2電源部側の導電路24、第2電源部5、半導体スイッチ71,72,73、電流検出回路81,82,83などを備え、図示しない基板にこれらが設けられて一体的なユニットとして構成されている。
 電源装置1は、第1電源部3によって入力側の導電路14に印加される電圧に基づき、出力側の導電路16に印加する出力電圧を生成する回路であり、入力側の導電路14に印加される電圧が一定レベル以上低下した場合には、第2電源部5によって第2電源部側の導電路24に印加される電圧に基づき、出力側の導電路16に印加する出力電圧を生成する回路として構成されている。なお、図1では、入力側の導電路14のうち、電源装置1を構成する基板に設けられた配線を導電路14Bとし、電源装置1の外部に設けられた配線を導電路14Aとしている。また、出力側の導電路16のうち、電源装置1を構成する基板に設けられた配線を導電路16Bとし、電源装置1の外部に設けられた配線を導電路16Aとしている。
 電源装置1には、入力側の導電路14から分岐する第1導電路21及び第2導電路22と、第2導電路22から分岐する第3導電路23及び導電路16Bとが設けられている。
 第1導電路21は、入力側の導電路14と第1電圧変換部40とを接続する導電路であり、第1電圧変換部40の降圧動作時には入力側の導電路14の電圧が第1電圧変換部40の入力電圧となるように、入力側の導電路14の電圧をスイッチング素子41のドレインに印加する経路として機能する。また、第1電圧変換部40の昇圧動作時には、第1電圧変換部40の出力電圧が第2導電路22に印加されるように、出力電圧を伝達する経路として機能する。
 第2導電路22は、入力側の導電路14から第1導電路21とは異なる経路として分岐し、導電路16B(出力側の導電路16の一部)及び第3導電路23に電気的に接続されている。第2導電路22は、入力側の導電路14と、出力側の導電路16及び第3導電路23のそれぞれとを接続する導電路として機能する。
 第3導電路23は、第2導電路22及び出力側の導電路16と第2電圧変換部50とを接続する導電路であり、第2電圧変換部50の降圧動作時には第2導電路22の電圧に基づく入力電圧をスイッチング素子51のドレインに印加する経路として機能する。また、第2電圧変換部50の昇圧動作時には、第2電圧変換部50の出力電圧に基づく電圧が出力側の導電路16に印加されるように、出力電圧を伝達する経路として機能する。
 第2電源部側の導電路24(第4導電路)は、第1電圧変換部40のインダクタ43と、第2電圧変換部50のインダクタ53と、第2電源部5の高電位側の端子とを接続する導電路であり、第2電源部5の出力電圧(充電電圧)が印加される導電路である。
 半導体スイッチ71,72は、例えばNチャネル型のMOSFETとして構成されている。半導体スイッチ71,72,第2切替部の一例に相当し、入力側の導電路14と第3導電路23との間で電流が流れることを許容するオン状態と遮断するオフ状態とに切り替わるように機能する。具体的には、半導体スイッチ71,72がいずれもオン状態であれば、入力側の導電路14と第3導電路23との間が通電可能となり、半導体スイッチ71,72がいずれもオフ状態であれば、入力側の導電路14と第3導電路23との間が通電可能となる。半導体スイッチ71は、入力側の導電路14の一部をなす導電路14Bに介在し、ドレインが第1電源部3に電気的に接続され、ソースが第1導電路21及び第2導電路22に電気的に接続されており、オフ状態のときには、第1導電路21及び第2導電路22から第1電源部3側に電流が流れることが遮断される。オン状態のときには、導電路14Bにおける双方向の通電を許容する。半導体スイッチ72は、第2導電路22に介在し、ドレインが出力側の導電路16及び第3導電路23に電気的に接続され、ソースが第1導電路21及び第2導電路22に電気的に接続されており、オフ状態のときには、入力側の導電路14及び第1導電路21から出力側の導電路16及び第3導電路23に電流が流れることが遮断される。オン状態のときには、第2導電路22における双方向の通電を許容する。
 半導体スイッチ73は、例えばNチャネル型のMOSFETとして構成されている。半導体スイッチ73は、切替部の一例に相当し、第3導電路23の双方向の通電を許容するオン状態と、第3導電路23において第2電圧変換部50側に向かう方向の通電を遮断するオフ状態とに切り替わる構成をなす。半導体スイッチ73において、ボディダイオード73A(以下、ダイオード73Aともいう)を除いた部分がスイッチ部73Bであり、スイッチ部73Bは、第3導電路23に介在するとともに一端側が第2電圧変換部50に電気的に接続され他端側が出力側の導電路16に電気的に接続されオン状態とオフ状態とに切り替わる構成をなす。スイッチ部73Bがオン状態のときには、第3導電路23において双方向の通電が許容される。ダイオード73Aは、スイッチ部73Bと並列に設けられるとともに第2電圧変換部50にアノードが電気的に接続され出力側の導電路16にカソードが電気的に接続された構成をなす。
 第1電圧変換部40は、同期整流方式の単相型DCDCコンバータであり、第1導電路21と第2電源部側の導電路24との間に設けられている。第1電圧変換部40は、第1導電路21に印加された電圧を入力電圧とし、この入力電圧を降圧して第2電源部5に接続された第2電源部側の導電路24に出力する機能(充電動作を行う機能)と、第2電源部側の導電路24に印加された電圧を入力電圧とし、この入力電圧を昇圧して第1導電路21に出力する機能(放電動作を行う機能)とを有する昇降圧型且つ双方向型のDCDCコンバータとして機能する。
 第1電圧変換部40は、Nチャネル型のMOSFETとして構成されるハイサイド側のスイッチング素子41及びローサイド側のスイッチング素子42と、インダクタ43と、コンデンサ44とを備える。スイッチング素子41及びスイッチング素子42は、第1導電路21とグラウンドとの間に直列に接続され、スイッチング素子41のドレインは第1導電路21に接続され、第1導電路21の電圧が印加される。スイッチング素子41のソースは、ローサイド側のスイッチング素子42のドレイン及びインダクタ43の一端が接続されている。スイッチング素子42のソースは、抵抗器83Aを介してグラウンドに接続されている。スイッチング素子41のゲートには、制御部60に設けられた駆動回路からのPWM信号により、駆動信号(オン信号)及び非駆動信号(オフ信号)が入力され、駆動回路からの信号に応じてスイッチング素子41がオン状態とオフ状態とに切り替わる。同様に、スイッチング素子42のゲートにも、駆動回路からのPWM信号により駆動信号(オン信号)及び非駆動信号(オフ信号)が入力され、駆動回路からの信号に応じてスイッチング素子42がオン状態とオフ状態とに切り替わる。
 制御部60に設けられた駆動回路は、スイッチング素子41,42夫々を各制御周期で交互にオンするためのオン信号を、スイッチング素子41,42のゲートに印加する。スイッチング素子41のゲートには、スイッチング素子42のゲートに与えられるオン信号に対して位相が略反転しており且つ所謂デッドタイムが確保されたオン信号が与えられる。
 第2電圧変換部50は、同期整流方式の単相型DCDCコンバータであり、第3導電路23と第2電源部側の導電路24との間に設けられている。第2電圧変換部50は、第3導電路23に印加された電圧を入力電圧とし、この入力電圧を降圧して第2電源部側の導電路24に出力する機能(充電動作を行う機能)と、第2電源部側の導電路24に印加された電圧を入力電圧とし、この入力電圧を昇圧して第3導電路23に出力する機能(放電動作を行う機能)とを有する昇降圧型且つ双方向型のDCDCコンバータとして機能する。
 第2電圧変換部50は、Nチャネル型のMOSFETとして構成されるハイサイド側のスイッチング素子51及びローサイド側のスイッチング素子52と、インダクタ53と、コンデンサ54とを備える。スイッチング素子51及びスイッチング素子52は、第3導電路23とグラウンドとの間に直列に接続され、スイッチング素子51のドレインは第3導電路23に接続され、第3導電路23の電圧が印加される。スイッチング素子51のソースは、ローサイド側のスイッチング素子52のドレイン及びインダクタ53の一端が接続されている。スイッチング素子52のソースは、抵抗器83Aを介してグラウンドに接続されている。スイッチング素子51のゲートには、制御部60に設けられた駆動回路からのPWM信号により、駆動信号(オン信号)及び非駆動信号(オフ信号)が入力され、駆動回路からの信号に応じてスイッチング素子51がオン状態とオフ状態とに切り替わる。同様に、スイッチング素子52のゲートにも、駆動回路からのPWM信号により駆動信号(オン信号)及び非駆動信号(オフ信号)が入力され、駆動回路からの信号に応じてスイッチング素子52がオン状態とオフ状態とに切り替わる。
 制御部60に設けられた駆動回路は、スイッチング素子51,52夫々を各制御周期で交互にオンするためのオン信号を、スイッチング素子51,52のゲートに印加する。スイッチング素子51のゲートには、スイッチング素子52のゲートに与えられるオン信号に対して位相が略反転しており且つ所謂デッドタイムが確保されたオン信号が与えられる。
 制御部60は、例えばマイクロコンピュータとして構成される制御回路と、制御回路から発せられるPWM信号に基づいて各スイッチング素子41,42,51,52に対するPWM信号を出力する駆動回路とを備える。制御部60に設けられた制御回路は。様々な演算を行い得るCPU、プログラム等の情報を記憶するROM、一時的に発生した情報を記憶するRAM、アナログの電圧をデジタル値に変換するA/D変換器などを備え、CPUは、ROM、RAM、A/D変換器と互いにバス接続されている。
 電流検出回路81は、抵抗器81A及び差動増幅器81Bを有する。抵抗器81Aに生じた電圧降下は、差動増幅器81Bで増幅されて出力電流に応じた検出電圧となり、A/D変換器でデジタル値に変換される。電流検出回路82は、抵抗器82A及び差動増幅器81Bを有する。抵抗器82Aに生じた電圧降下は、差動増幅器82Bで増幅されて出力電流に応じた検出電圧となり、A/D変換器でデジタル値に変換される。電流検出回路83は、抵抗器83A及び差動増幅器83Bを有する。抵抗器83Aに生じた電圧降下は、差動増幅器81Bで増幅されて出力電流に応じた検出電圧となり、A/D変換器でデジタル値に変換される。
 制御部60内のA/D変換器には、電流検出回路81~83からの検出電圧が入力され、これらの電圧がA/D変換器によってデジタル値に変化されるため、制御部60内の制御回路は、抵抗器81A,82A,83Aが設けられた各位置の電流を検出し得る。また、制御部60内のA/D変換器には、入力側の導電路14、第2電源部側の導電路24、第3導電路23のそれぞれの電圧が入力され、これらの電圧がA/D変換器によってデジタル値に変化されるため、制御部60内の制御回路は、各位置の電圧を検出し得る。なお、図1の例では、入力側の導電路14、第2電源部側の導電路24、第3導電路23のそれぞれの電圧を直接的に制御部60に入力する構成を例示しているが、入力側の導電路14、第2電源部側の導電路24、第3導電路23のそれぞれの電圧を分圧する分圧回路を設け、それぞれの電圧を分圧した電圧を制御部60に入力する構成であってもよい。
 制御部60は、第1電圧変換部40を同期整流方式の昇降圧型コンバータとして機能させ、降圧動作を行う場合には、ローサイド側のスイッチング素子42のオン動作とオフ動作との切り替えを、ハイサイド側のスイッチング素子41の動作と同期させて行うことで、第1導電路21に印加された直流電圧を降圧し、第2電源部側の導電路24に出力する。第2電源部側の導電路24の出力電圧は、スイッチング素子41のゲートに与えるPWM信号のデューティ比に応じて定まる。制御部60は、降圧動作を行う場合、第2電源部側の導電路24に印加される出力電圧と予め定められた目標電圧との偏差に基づいて、出力電圧を目標電圧に近づけるように公知のフィードバック演算方式(例えば、PID演算方式)でフィードバック演算を行い、PWM信号のデューティを調整する。
 制御部60は、第1電圧変換部40で昇圧動作を行う場合、第1導電路21に印加される出力電圧と予め定められた目標電圧との偏差に基づいて、出力電圧を目標電圧に近づけるように公知のフィードバック演算方式(例えば、PID演算方式)でフィードバック演算を行い、PWM信号のデューティを調整する。
 また、制御部60は、第2電圧変換部50を同期整流方式の昇降圧型コンバータとして機能させ、降圧動作を行う場合には、ローサイド側のスイッチング素子52のオン動作とオフ動作との切り替えを、ハイサイド側のスイッチング素子51の動作と同期させて行うことで、第3導電路23に印加された直流電圧を降圧し、第2電源部側の導電路24に出力する。第2電源部側の導電路24の出力電圧は、スイッチング素子51のゲートに与えるPWM信号のデューティ比に応じて定まる。制御部60は、昇圧動作を行う場合、第2電源部側の導電路24に印加される出力電圧と予め定められた目標電圧との偏差に基づいて、出力電圧を目標電圧に近づけるように公知のフィードバック演算方式(例えば、PID演算方式)でフィードバック演算を行い、PWM信号のデューティを調整する。
 制御部60は、第2電圧変換部50で昇圧動作を行う場合、第3導電路23に印加される出力電圧と予め定められた目標電圧との偏差に基づいて、出力電圧を目標電圧に近づけるように公知のフィードバック演算方式(例えば、PID演算方式)でフィードバック演算を行い、PWM信号のデューティを調整する。
 なお、PID方式でフィードバック演算を行うときの比例ゲイン、微分ゲイン、積分ゲインの設定方法は限定されず、様々に設定することができる。
 本構成では、制御部60は、急速充電制御、充放電制御、一方側放電制御、急速放電制御の4つの制御を少なくとも行い得る。急速充電制御は、第1電圧変換部40に充電動作を行わせるとともに第2電圧変換部50に充電動作を行わせる制御である。充放電制御は、第1電圧変換部40に充電動作を行わせるとともに第2電圧変換部50に放電動作を行わせる制御である。一方側放電制御は、第1電圧変換部40の動作を停止させるとともに第2電圧変換部50に放電動作を行わせる制御である。急速放電制御は、第1電圧変換部40に放電動作を行わせつつ第2電圧変換部50に放電動作を行わせる制御である。
 次に、電源装置1で実行される具体的な制御の流れを説明する。
 図2で示す制御は、例えば、当該電源装置1が搭載された車両を走行可能状態に切り替える始動スイッチがオン状態になった場合に実行される処理である。具体的には、車両に設けられた図示しないイグニッションスイッチがオフ状態からオン状態に切り替わった場合に、電源装置1の外部に設けられた装置(外部ECUなど)からイグニッションスイッチがオン状態であることを示すイグニッションオン信号(以下IGオン信号ともいう)が制御部60に入力され、イグニッションスイッチがオフ状態になった場合には、イグニッションスイッチがオフ状態であることを示すイグニッションオフ信号(以下IGオフ信号ともいう)が制御部60に入力されるようになっている。つまり、イグニッションスイッチが始動スイッチの一例に相当し、イグニッションスイッチがオン状態になった場合が、「始動スイッチがオン状態になった場合」の一例に相当する。
 制御部60は、イグニッションスイッチがオン状態に切り替わることに応じて図2の制御を開始した場合、まず、ステップS1の処理を実行し、電源装置1を動作させるモードを急速充電モードとする。この急速充電モードとは、制御部60が急速充電制御を行うモードである。急速充電制御中には、制御部60は、半導体スイッチ71,72をいずれもオン状態で維持するとともに半導体スイッチ73もオン状態で維持し、このようなスイッチ状態で、図3のように第1電圧変換部40及び第2電圧変換部50のいずれにも、第2電源部5に充電電流を供給する充電動作を行わせる。具体的には、第1導電路21の電圧を降圧して第2電源部側の導電路24に出力するように第1電圧変換部40を降圧動作させ、第3導電路23の電圧を降圧して第2電源部側の導電路24に出力するように第2電圧変換部50を降圧動作させる。このような急速充電制御中には、第1電圧変換部40及び第2電圧変換部50によって第2電源部5に対して充電電流が供給され、相対的に大きな充電電流が供給されるため、充電電圧の上昇速度が大きくなる。
 このように、制御部60は、電源装置1が搭載された車両を走行可能状態に切り替える始動スイッチ(具体的には、イグニッションスイッチ)がオン状態になった場合に急速充電制御を行い、この急速充電制御を、所定の終了条件が成立するまで(急速充電終了トリガがあるまで)継続する。
 制御部60は、ステップS1にて急速充電モードとし、急速充電制御を開始した後、ステップS2にて所定の終了条件が成立したか否か(急速充電終了トリガがあったか否か)を判定する。本構成では、電源装置1が搭載された車両においてシフト操作があった場合、又はイグニッションスイッチ(始動スイッチ)がオン状態になってから一定時間が経過した場合が、「所定の終了条件」として定められている。制御部60は、ステップS2にて終了条件が成立していないと判定した場合、即ち、電源装置1が搭載された車両においてシフト操作がなく且つイグニッションスイッチ(始動スイッチ)がオン状態になってから一定時間が経過していない場合(ステップS2にてNoの場合)、ステップS1にて急速充電モードを継続する。
 制御部60は、ステップS2の処理で終了条件が成立したと判定した場合、即ち、電源装置1が搭載された車両においてシフト操作があった場合、又はイグニッションスイッチ(始動スイッチ)がオン状態になってから一定時間が経過した場合(ステップS2にてYesの場合)、ステップS3の処理を行い、急速充電モードから通常充電モード(充放電モード)に切り替える。つまり、制御部60は、イグニッションスイッチ(始動スイッチ)がオン状態になった後に電源装置1が搭載された車両においてシフト操作が行われた場合、又は始動スイッチがオン状態になった後に一定時間が経過した場合に充放電制御を行う。
 本構成では、電源装置1の外部に設けられた外部装置(例えば、シフトバイワイヤECUなど)から電源装置1に対してシフトレンジを示す信号が入力されるようになっており、「イグニッションスイッチがオン状態になった後、電源装置1に対して新たなシフトレンジを示す信号が入力された場合」が「シフト操作があった場合」の一例に相当する。例えば、イグニッションスイッチがオン状態になった直後にシフトレンジがPレンジにあることを示すPレンジ信号が電源装置1に入力されており、イグニッションスイッチ(始動スイッチ)がオン状態になってから一定時間が経過する前にシフトレンジがDレンジにあることを示すDレンジ信号が電源装置1に入力された場合、制御部60は、シフト操作があったと判定し、ステップS2でYesに進むことになる。
 ステップS3で設定される通常充電モード(充放電モード)とは、制御部60が充放電制御を行うモードである。制御部60は、通常充電モード(充放電モード)中に、半導体スイッチ71,72をいずれもオン状態で維持し、半導体スイッチ73はオフ状態とする。このようなスイッチ状態で、図4のように第1電圧変換部40に対し第2電源部5に充電電流を供給させる充電動作(降圧動作)を行わせつつ第2電圧変換部50に対し放電電流を流す放電動作(昇圧動作)を行わせる。具体的には、第1導電路21の電圧を降圧して第2電源部側の導電路24に出力するように第1電圧変換部40を降圧動作させ、第2電源部側の導電路24の電圧を昇圧して第3導電路23に出力するように第2電圧変換部50を昇圧動作させる。
 制御部60は、図3のように急速充電制御を行う場合には、半導体スイッチ73をオフ状態(即ち、スイッチ部73Bをオン状態)で維持するが、図4のように充放電制御を行う場合には、半導体スイッチ73をオン状態(即ち、スイッチ部73Bをオン状態)で維持する。つまり、充放電制御中には、第2導電路22側から第3導電路23を介して第2電圧変換部50側に電流が流れ込むことが遮断され、第2電圧変換部50から第3導電路23に出力される電流が、ボディダイオード73Aを介して出力側の導電路16に流れるようになる。
 制御部60は、ステップS3で通常充電モード(充放電モード)に設定した後、ステップS4でバックアップトリガが生じたか否か(具体的には、入力側の導電路14からの電力供給の異常が生じたか否か)を判定する。本構成では、制御部60に入力側の導電路14の電圧が入力されるようになっており、制御部60は、入力側の導電路14の電圧を監視している。制御部60は、ステップS4において、入力側の導電路14の電圧が第1閾値電圧以下であるか否かを判定し、入力側の導電路14の電圧が第1閾値電圧以下であると判定した場合(バックアップトリガが生じたと判定し、ステップS4でYesとなる場合)、ステップS6の処理を行う。
 制御部60は、ステップS4において、入力側の導電路14の電圧が第1閾値電圧を超えていると判定した場合(バックアップトリガが生じていないと判定し、ステップS4でNoとなる場合)、ステップS5において充電終了条件が成立しているか否か(例えば、第2電源部5の充電電圧が充電閾値電圧に達しているか否か)を判定する。制御部60は、ステップS5において充電終了条件が成立していないと判定した場合(ステップS5でNoの場合)、ステップS3以降の処理を行う。
 制御部60は、ステップS5において充電終了条件が成立していると判定した場合(ステップS5でYesの場合)、上述した充放電制御(図4)を終了し、第1電圧変換部40及び第2電圧変換部50の動作を停止させる。この場合、充放電制御を終了した後は、例えば、半導体スイッチ71、72をオン状態で維持したまま、半導体スイッチ73をオフ状態で維持する。
 制御部60は、ステップS4において入力側の導電路14の電圧が第1閾値電圧以下であると判定し、ステップS6の処理を行う場合、第1バックアップモード(一方側放電モード)とする。この第1バックアップモード(一方側放電モード)とは、制御部60が一方側放電制御を行うモードである。制御部60は、一方側放電制御を行う場合、半導体スイッチ71,72をいずれもオフ状態で維持するとともに半導体スイッチ73をオン状態で維持する。これにより、第1導電路21及び第2導電路22から入力側の導電路14に向けて電流が流れることが遮断され、入力側の導電路14及び第1導電路21から出力側の導電路16に向けて電流が流れることも遮断される。このようなスイッチ状態で、図5のように第1電圧変換部40の動作を停止させつつ第2電圧変換部50に対し放電電流を流す放電動作(昇圧動作)を行わせる。具体的には、第1電圧変換部40のスイッチング素子41、42をオフ状態で維持しつつ、第2電源部側の導電路24の電圧を昇圧して第3導電路23に出力するように第2電圧変換部50を昇圧動作させる。
 このように、上述した充放電制御によって第2電源部5が充電されている最中に地絡や断線などによって入力側の導電路14の電圧低下が生じても、一方側放電制御を行うことで第2電源部5をバックアップ電源として作動させることができる。しかも、制御部60が制御を充放電制御から一方側放電制御に切り替える前後で第2電圧変換部50の放電を途絶えさせることなく維持することができるため、入力側の導電路14の異常の検知からバックアップ動作を行うまでの間に電力が途絶える空白期間が生じなくなる。
 本構成では、制御部60が異常検出部の一例に相当し、少なくとも入力側の導電路14の電圧の異常(具体的には、入力側の導電路14の電圧が第1閾値電圧以下に低下する異常)を検出する機能を有する。そして、制御部60は、ステップS3でのモード設定によって充放電制御が行われているときに異常が検出された場合、ステップS6にて第1バックアップモードに切り替え、第1電圧変換部40の動作を停止させるとともに第2電圧変換部50に放電動作を行わせる一方側放電制御を行う。
 制御部60は、ステップS6で第1バックアップモード(一方側放電モード)に設定した後、ステップS7において急速放電トリガが生じたか否か(具体的には、第2電源部5の出力電圧が第2閾値電圧以下に低下したか否か)を判定する。本構成では、制御部60に第2電源部側の導電路24の電圧が入力されるようになっており、制御部60は、第2電源部側の導電路24の電圧を監視している。制御部60は、ステップS7において、第2電源部側の導電路24の電圧が第2閾値電圧以下であるか否かを判定し、第2電源部側の導電路24の電圧が第2閾値電圧以下であると判定した場合(急速放電トリガが生じたと判定し、ステップS7でYesとなる場合)、ステップS8の処理を行う。一方、制御部60は、ステップS7において第2電源部側の導電路24の電圧が第2閾値電圧以下でない判定した場合(ステップS7でNoとなる場合)、ステップS6の設定(第1バックアップモードの設定)を維持し、上述した一方側放電制御を継続する。
 制御部60は、ステップS7において第2電源部側の導電路24の電圧が第2閾値電圧以下であると判定した場合、ステップS8において第2バックアップモード(急速放電モード)とする。この第2バックアップモード(急速放電モード)とは、制御部60が急速放電制御を行うモードである。制御部60は、急速放電制御を行う場合、半導体スイッチ71をオフ状態としつつ、半導体スイッチ72,73をいずれもオン状態で維持する。これにより、第1導電路21及び第2導電路22から入力側の導電路14に向けて電流が流れることが遮断されつつ、第1導電路21と出力側の導電路16との間が導通状態となる。このようなスイッチ状態で、図6のように第1電圧変換部40及び第2電圧変換部50に対し放電電流を流す放電動作(昇圧動作)を行わせる。具体的には、第2電源部側の導電路24の電圧を昇圧して第1導電路21に出力するように第1電圧変換部40を昇圧動作させ、第2電源部側の導電路24の電圧を昇圧して第3導電路23に出力するように第2電圧変換部50を昇圧動作させる。
 本構成では、制御部60が電圧検出部の一例に相当し、第2電源部5の出力電圧を検出するように機能する。そして、制御部60は、少なくとも電圧検出部によって検出される第2電源部5の出力電圧が一定値以下である場合に急速放電制御を行うように機能する。
 なお、図2では省略して示したが、図2の制御において、急速充電モード中(即ち、急速充電制御が行われている最中)に入力側の導電路14の電圧が第1閾値電圧以下であるか否かを継続的に判定し、入力側の導電路14の電圧が第1閾値電圧以下であると判定した場合、ステップS6以降の処理を行うようにすればよい。また、図2では省略して示したが、ステップS5において充電終了と判定し、第1電圧変換部40及び第2電圧変換部50の動作を停止させた場合、イグニッションスイッチがオフ状態に切り替わる前までは、入力側の導電路14の電圧が第1閾値電圧以下であるか否かを継続的に判定し、入力側の導電路14の電圧が第1閾値電圧以下であると判定した場合、ステップS6以降の処理を行うようにすればよい。
 以下、本構成の効果を例示する。
 電源装置1は、制御部60が急速充電制御を行う場合に、図3のように第1電圧変換部40及び第2電圧変換部50のいずれにも充電動作を行わせることができる。このような急速充電制御によって第2電源部5の充電時間をより短くすることができるため、第2電源部5の充電電圧を早期に適正レベルまで高めやすくなるとともに、電力供給が途絶えるタイミングが急速充電制御中に到来してしまうような事態は生じにくくなる。
 また、制御部60が充放電制御を行う場合には、図4のように第1電圧変換部40に充電動作を行わせ、第2電圧変換部50に放電動作を行わせることができる。つまり、図4のような充放電制御中には、第1電圧変換部40によって第2電源部5の充電動作を行いつつ、第2電圧変換部50によって第2電源部5の放電動作を継続することができるため、仮に、充放電制御による充電中に第1電源部3からの電力供給が遮断されても、その遮断前後で第2電源部5の放電状態が継続的に維持される。
 そして、このように「充電中に第1電源部3の電力供給が途絶える問題」に関して有利な2つの制御を使い分けることができるため、上記問題に対して対策しつつ、第2電源部5を充電する上での自由度を高めることができる。
 図2のように、制御部60は、電源装置1が搭載された車両を走行可能状態に切り替えるイグニッションスイッチ(始動スイッチ)がオン状態になった場合に急速充電制御を行い、イグニッションスイッチがオン状態になった後、所定条件が成立した場合に充放電制御を行うように機能する。このように構成された電源装置1は、イグニッションスイッチがオン状態になった時点で第2電源部5の出力電圧が相対的に低いレベルであったとしても、イグニッションスイッチがオン状態になった後に急速に充電を行うことができるため、出力電圧をより迅速に上昇させることができる。つまり、イグニッションスイッチがオン状態になった後、第2電源部5を低レベル状態からより早期に回復させることができる。そして、急速充電制御の開始後、所定条件が成立した場合には、急速充電制御を早期に終了させて第1電源部3の電力遮断に強い充放電制御(電力遮断が生じても、その時点で放電が維持される制御)に切り替えることができる。
 また、制御部60は、イグニッションスイッチ(始動スイッチ)がオン状態になった後、電源装置1が搭載された車両において少なくともシフト操作が行われた場合に充放電制御を行う。このように構成された電源装置1は、シフト操作が行われる前に急速充電制御を行うことができるため、車両が走行する前に第2電源部5の出力電圧を迅速に上昇させ、第2電源部5を低レベル状態からより早期に回復させることができる。そして、少なくともシフト操作が行われた後は、充放電制御に切り替えることができる。つまり、車両が走行状態になる可能性が生じた後には、第1電源部3の電力遮断に強い制御(電力遮断が生じても、その時点で放電が維持される制御)に切り替えることで、走行時に電力が完全に途絶えること防ぐことができる。
 また、制御部60は、イグニッションスイッチ(始動スイッチ)がオン状態になった後、少なくとも一定時間が経過した場合に充放電制御を行う。このように構成された電源装置1は、イグニッションスイッチがオン状態になった後、一定時間が経過する前の初期段階では、急速充電制御を行うことができるため、第2電源部5の出力電圧を迅速に上昇させ、第2電源部5を低レベル状態からより早期に回復させることができる。そして、少なくとも一定時間が経過した場合には早期に充放電制御を終了させて第1電源部3の電力遮断に強い充放電制御(電力遮断が生じても、その時点で放電が維持される制御)に切り替えることができる。
 電源装置1は、第3導電路23に介在するとともに一端側が第2電圧変換部50に電気的に接続され他端側が出力側の導電路16に電気的に接続されオン状態とオフ状態とに切り替わるスイッチ部73Bと、スイッチ部73Bと並列に設けられるとともに第2電圧変換部50にアノードが電気的に接続され出力側の導電路16にカソードが電気的に接続されるダイオード73Aとを備えた半導体スイッチ73(切替部)を有する。制御部60は、スイッチ部73Bをオン状態としつつ急速充電制御を行い、スイッチ部73Bをオフ状態としつつ充放電制御を行う。このように構成された電源装置1は、急速充電制御を行うときには、半導体スイッチ73(切替部)のスイッチ部73Bをオン状態とすることで、入力側の導電路14から第2導電路22及び第3導電路23を介して第2電圧変換部50に電流が流れ込むことを許容することができる。一方、充放電制御を行うときには、スイッチ部73Bをオフ状態とすることで入力側の導電路14から第2導電路22及び第3導電路23を介して第2電圧変換部50に電流が流れ込むことを遮断しつつ、スイッチ部73Bと並列に設けられたダイオード73Aの存在により、第2電圧変換部50から出力される電流を出力側の導電路16に向けて流すことができる。
 電源装置1は、少なくとも入力側の導電路14の電圧の異常を検出する異常検出部を備える。制御部60は、急速充電制御又は充放電制御が行われているときに異常検出部によって異常が検出された場合、第1電圧変換部40の動作を停止させるとともに第2電圧変換部50に放電動作を行わせる一方側放電制御を行う。
 このように構成された電源装置1は、急速充電制御又は充放電制御が行われているときに異常検出部が異常を検出した場合、制御部60が一方側放電制御を行うため、第1電圧変換部40の動作を停止させて保護を図りつつ、第2電圧変換部50に放電動作を行わせて電力供給状態を維持することができる。特に、充放電制御が行われているときに入力側の導電路14で異常が発生して一方側放電制御に切り替える場合、異常前後で第2電圧変換部50の放電動作を継続することができるため、異常発生直後に電力供給が完全に途絶えるような事態が生じにくくなる。
 電源装置1は、入力側の導電路14と第3導電路23との間で電流が流れることを許容するオン状態と遮断するオフ状態とに切り替わる半導体スイッチ71,72(第2切替部)を有する。制御部60は、急速充電制御及び充放電制御を実行するときに半導体スイッチ71,72(第2切替部)をオン状態とし、一方側放電制御を実行するとき半導体スイッチ71,72(第2切替部)をオフ状態とする。
 この電源装置1は、急速充電制御を行う場合には、半導体スイッチ71,72(第2切替部)をオン状態(入力側の導電路14と第3導電路23との間で電流が流れることを許容する状態)とし、入力側の導電路14から第2導電路22及び第3導電路23を介して第2電圧変換部50に電流を供給することを可能とすることができる。一方、異常の発生に応じて一方側放電制御を行う場合、半導体スイッチ71,72(第2切替部)をオフ状態とすることができるため、異常が生じている入力側の導電路14に第2電圧変換部50からの放電電流が流れ込んでしまうことを防ぐことができる。
 第1電圧変換部40は、第1導電路21に印加された電圧を降圧して第2電源部側の導電路24に出力する充電動作と、第2電源部側の導電路24に印加された電圧を昇圧して第1導電路21に出力する放電動作とを行い得る。そして、制御部60は、第1電圧変換部40に放電動作を行わせつつ第2電圧変換部50に放電動作を行わせる急速放電制御を行い得る。この電源装置1は、必要に応じて第1電圧変換部40及び第2電圧変換部50のいずれにも放電動作を行わせることができるようになり、第2電源部5を放電させる能力を高めたい場合に有利になる。
 電源装置1は、第2電源部5の出力電圧を検出する電圧検出部を有する。制御部60は、少なくとも電圧検出部によって検出される第2電源部5の出力電圧が一定値(第2閾値電圧)以下である場合に急速放電制御を行うように機能する。本構成のように、第2電源部5の出力電圧が低下した場合に急速放電制御を行うようにすれば、第2電源部5をより低い電圧範囲まで使えるようになる。よって、第2電源部5の使用可能な電圧範囲を広げることができる。
 <他の実施例>
 本発明は上記記述及び図面によって説明した実施例に限定されるものではなく、例えば次のような実施例も本発明の技術的範囲に含まれる。
 実施例1では、第1電圧変換部40は、第1導電路21に印加される電圧を降圧して第2電源部側の導電路24に印加する降圧動作と、第2電源部側の導電路24に印加される電圧を昇圧して第1導電路21に印加する昇圧動作とを行い得る構成であったが、実施例1又は実施例1を変更したいずれの例においても、第2電源部5の出力電圧が第1電源部3の出力電圧よりも大きい構成では、第1電圧変換部40は、第1導電路21に印加される電圧を昇圧して第2電源部側の導電路24に印加する昇圧動作(充電動作)と、第2電源部側の導電路24に印加される電圧を降圧して第1導電路21に印加する降圧動作(放電動作)とを行い得る構成とすればよい。同様に、第2電圧変換部50は、第3導電路23に印加される電圧を昇圧して第2電源部側の導電路24に印加する昇圧動作(充電動作)と、第2電源部側の導電路24に印加される電圧を降圧して第3導電路23に印加する降圧動作(放電動作)とを行い得る構成とすればよい。
 実施例1では、第1電圧変換部40及び第2電圧変換部50のそれぞれが単相型のDCDCコンバータとして構成された例を示したが、実施例1又は実施例1を変更したいずれの例においても、いずれか一方側又は両側を多相型のDCDCコンバータとしてもよい。例えば、図1で示す第1電圧変換部40を複数設けた多相構造とする場合、各第1電圧変換部40のスイッチング素子41のドレイン及びコンデンサ44の一端をそれぞれ第1導電路21に電気的に接続し、各第1電圧変換部40のインダクタ43の一端をそれぞれ第2電源部側の導電路24に電気的に接続し、各第1電圧変換部40のコンデンサ44の他端及びスイッチング素子42のソースをそれぞれ抵抗器83Aの一端(グラウンドとは反対側の端部)に電気的に接続するように並列に接続すればよい。また、図1で示す第2電圧変換部50を複数設けた多相構造とする場合、各第2電圧変換部50のスイッチング素子51のドレイン及びコンデンサ54の一端をそれぞれ第3導電路23に電気的に接続し、各第2電圧変換部50のインダクタ43の一端をそれぞれ第2電源部側の導電路24に電気的に接続し、各第2電圧変換部50のコンデンサ54の他端及びスイッチング素子52のソースをそれぞれ抵抗器83Aの一端に電気的に接続するように並列に接続すればよい。
 実施例1では、第1電圧変換部40及び第2電圧変換部50のいずれもが同期整流式のDCDCコンバータとして構成された例を示したが、実施例1又は実施例1を変更したいずれの例においても、一部のスイッチング素子をダイオードに置き換えたダイオード方式のDCDCコンバータとしてもよい。
 実施例1では、イグニッションオン信号によってイグニッションスイッチ(始動スイッチ)がオン状態になったことを検出する構成を例示したが、実施例1又は実施例1を変更したいずれの例においても、イグニッションスイッチがオン状態になったことを特定できる構成であればよい。例えば、CANなどの車載通信システムが通信可能になった場合を始動スイッチがオン状態になった場合としてもよい。
 また、始動スイッチはイグニッションスイッチに限定されず、例えば電気自動車などの場合には、電気自動車のシステム(EVシステム)であってもよい。
 半導体スイッチ71,72,73やスイッチング素子41,42、51,52として、Nチャネル型のMOSFETとして構成されるスイッチング素子を例示したが、実施例1又は実施例1を変更したいずれの例においても、Pチャネル型のMOSFETであってもよいし、バイポーラトランジスタやIGBT等の他のスイッチング素子であってもよく、一部を機械式のリレーに置き換えてもよい。
 実施例1では、図2で示すステップS4において、異常検出部に相当する制御部60が入力側の導電路14の電圧低下を検出した場合に異常と判定したが、実施例1又は実施例1を変更したいずれの例においても、入力側の導電路14の電圧が所定の過電圧閾値を超えた状態となる過電圧状態を検出した場合に異常と判定してもよく、入力側の導電路14の電流が所定の過電流閾値を超えた状態となる過電流状態を検出した場合に異常と判定してもよい。例えば、制御部60は、急速充電制御又は充放電制御が行われているときに異常検出部によって上記過電流状態の異常が検出された場合にステップS6に処理を進め、第1電圧変換部40の動作を停止させるとともに第2電圧変換部50に放電動作を行わせるように一方側放電制御を行ってもよい。
 1…車両用電源装置
 3…第1電源部
 5…第2電源部
 14…入力側の導電路
 16…出力側の導電路
 21…第1導電路
 22…第2導電路
 23…第3導電路
 24…第2電源部側の導電路
 40…第1電圧変換部
 50…第2電圧変換部
 60…制御部(異常検出部、電圧検出部)
 71…半導体スイッチ(第2切替部)
 72…半導体スイッチ(第2切替部)
 73…半導体スイッチ(切替部)
 73A…ダイオード
 73B…スイッチ部

Claims (9)

  1.  第1電源部からの電力経路となる入力側の導電路に電気的に接続された第1導電路と、
     前記入力側の導電路に電気的に接続されるとともに前記第1導電路とは異なる経路として分岐し、出力側の導電路に電気的に接続された第2導電路と、
     前記第2導電路及び前記出力側の導電路に電気的に接続された第3導電路と、
     前記第1導電路に印加された電圧を昇圧又は降圧し、第2電源部に接続された第2電源部側の導電路に対して出力電圧を印加する充電動作を少なくとも行う第1電圧変換部と、
     前記第3導電路に印加された電圧を昇圧又は降圧して前記第2電源部側の導電路に対して出力電圧を印加する充電動作と、前記第2電源部側の導電路に印加された電圧を昇圧又は降圧して前記第3導電路に対して出力電圧を印加する放電動作とを少なくとも行う第2電圧変換部と、
     前記第1電圧変換部に充電動作を行わせるとともに前記第2電圧変換部に充電動作を行わせる急速充電制御と、前記第1電圧変換部に充電動作を行わせるとともに前記第2電圧変換部に放電動作を行わせる充放電制御とを少なくとも行う制御部と、
    を有する車両用電源装置。
  2.  前記制御部は、当該電源装置が搭載された車両を走行可能状態に切り替える始動スイッチがオン状態になった場合に前記急速充電制御を行い、前記始動スイッチがオン状態になった後、所定条件が成立した場合に前記充放電制御を行う請求項1に記載の車両用電源装置。
  3.  前記制御部は、前記始動スイッチがオン状態になった後、当該電源装置が搭載された車両において少なくともシフト操作が行われた場合に前記充放電制御を行う請求項2に記載の車両用電源装置。
  4.  前記制御部は、前記始動スイッチがオン状態になった後、少なくとも一定時間が経過した場合に前記充放電制御を行う請求項2又は請求項3に記載の車両用電源装置。
  5.  前記第3導電路に介在するとともに一端側が前記第2電圧変換部に電気的に接続され他端側が前記出力側の導電路に電気的に接続されオン状態とオフ状態とに切り替わるスイッチ部と、前記スイッチ部と並列に設けられるとともに前記第2電圧変換部にアノードが電気的に接続され前記出力側の導電路にカソードが電気的に接続されるダイオードとを備えた切替部を有し、
     前記制御部は、前記スイッチ部をオン状態としつつ前記急速充電制御を行い、前記スイッチ部をオフ状態としつつ前記充放電制御を行う請求項1から請求項4のいずれか一項に記載の車両用電源装置。
  6.  少なくとも前記入力側の導電路の電圧又は電流の異常を検出する異常検出部を備え、
     前記制御部は、前記急速充電制御又は前記充放電制御が行われているときに前記異常検出部によって異常が検出された場合、前記第1電圧変換部の動作を停止させるとともに前記第2電圧変換部に放電動作を行わせる一方側放電制御を少なくとも行う請求項1から請求項5のいずれか一項に記載の車両用電源装置。
  7.  前記入力側の導電路と前記第3導電路との間で電流が流れることを許容するオン状態と遮断するオフ状態とに切り替わる第2切替部を有し、
     前記制御部は、前記急速充電制御及び前記充放電制御を実行するときに前記第2切替部をオン状態とし、前記一方側放電制御を実行するとき前記第2切替部をオフ状態とする請求項6に記載の車両用電源装置。
  8.  前記第1電圧変換部は、前記第1導電路に印加された電圧を昇圧又は降圧して前記第2電源部側の導電路に出力する充電動作と、前記第2電源部側の導電路に印加された電圧を昇圧又は降圧して前記第1導電路に出力する放電動作とを行い、
     前記制御部は、前記第1電圧変換部に放電動作を行わせつつ前記第2電圧変換部に放電動作を行わせる急速放電制御を少なくとも行う請求項1から請求項7のいずれか一項に記載の車両用電源装置。
  9.  前記第2電源部の出力電圧を検出する電圧検出部を有し、
     前記制御部は、少なくとも前記電圧検出部によって検出される前記第2電源部の出力電圧が一定値以下である場合に前記急速放電制御を行う請求項8に記載の車両用電源装置。
PCT/JP2017/032890 2016-09-30 2017-09-12 車両用電源装置 WO2018061748A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/095,562 US10710468B2 (en) 2016-09-30 2017-09-12 Vehicle power supply device
CN201780022593.3A CN109075600B (zh) 2016-09-30 2017-09-12 车辆用电源装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016193343A JP6358304B2 (ja) 2016-09-30 2016-09-30 車両用電源装置
JP2016-193343 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018061748A1 true WO2018061748A1 (ja) 2018-04-05

Family

ID=61760340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032890 WO2018061748A1 (ja) 2016-09-30 2017-09-12 車両用電源装置

Country Status (4)

Country Link
US (1) US10710468B2 (ja)
JP (1) JP6358304B2 (ja)
CN (1) CN109075600B (ja)
WO (1) WO2018061748A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6365916B1 (ja) * 2018-04-20 2018-08-01 株式会社サンエス 電源装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6766506B2 (ja) * 2016-08-02 2020-10-14 株式会社オートネットワーク技術研究所 異常検出装置及び車載用電源装置
JP6358304B2 (ja) * 2016-09-30 2018-07-18 株式会社オートネットワーク技術研究所 車両用電源装置
JP6448597B2 (ja) * 2016-10-04 2019-01-09 矢崎総業株式会社 Dc/dcコンバータ
JP6705357B2 (ja) * 2016-10-14 2020-06-03 株式会社オートネットワーク技術研究所 車載用のバックアップ装置
JP6751512B2 (ja) * 2016-12-08 2020-09-09 株式会社オートネットワーク技術研究所 車載用電源装置
KR102410515B1 (ko) * 2017-12-07 2022-06-20 현대자동차주식회사 제어장치 및 이를 제어하는 방법
JP2019205293A (ja) * 2018-05-24 2019-11-28 株式会社オートネットワーク技術研究所 車載用電源装置
JP6908002B2 (ja) * 2018-05-24 2021-07-21 株式会社オートネットワーク技術研究所 車載用電源装置
CN109787323A (zh) * 2019-03-12 2019-05-21 北京长城华冠汽车科技股份有限公司 车辆的充放电系统以及车辆
DE102019204748A1 (de) * 2019-04-03 2020-10-08 Robert Bosch Gmbh Energieversorgungsanordnung für ein Steuergerät eines Fahrzeugs
CN112383131A (zh) * 2020-10-30 2021-02-19 天津航空机电有限公司 一种实现双余度供电切换的主控反馈电路
CN112671236B (zh) * 2020-12-31 2023-05-05 Tcl华星光电技术有限公司 电压变换电路以及显示装置
US20220393585A1 (en) * 2021-06-08 2022-12-08 Hamilton Sundstrand Corporation Smart power router and protection for medium voltage dc distribution

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014150672A (ja) * 2013-02-01 2014-08-21 Jtekt Corp 補助電源装置およびこの装置を備える電動パワーステアリング装置
JP2016132402A (ja) * 2015-01-21 2016-07-25 トヨタ自動車株式会社 車両

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3180304B2 (ja) * 1993-06-30 2001-06-25 株式会社エクォス・リサーチ ハイブリット車の電源回路
DE19502224C1 (de) * 1995-01-25 1996-02-15 Daimler Benz Ag Serieller Hybridantrieb, insbesondere für ein Kraftfahrzeug
JPH1031525A (ja) * 1996-07-15 1998-02-03 Fuji Electric Co Ltd 太陽光発電システム
JP4315223B2 (ja) * 2007-09-18 2009-08-19 トヨタ自動車株式会社 電力供給システム
JP2013176197A (ja) 2012-02-24 2013-09-05 Panasonic Corp 電源装置
WO2013136655A1 (ja) * 2012-03-16 2013-09-19 パナソニック株式会社 充放電制御装置
JP6323206B2 (ja) * 2014-06-23 2018-05-16 株式会社リコー 画像形成装置、画像形成方法およびプログラム
WO2016051466A1 (ja) * 2014-09-29 2016-04-07 株式会社日立製作所 無停電電源装置および無停電電源装置の制御方法
CN105720663B (zh) * 2014-12-03 2018-12-21 比亚迪股份有限公司 用于电动车辆的充电柜及其控制方法
CN104539042B (zh) * 2014-12-11 2017-01-04 华为技术有限公司 一种不间断电源系统
CN105846532A (zh) * 2015-01-13 2016-08-10 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 不间断电源及其控制方法
JP6237671B2 (ja) * 2015-02-24 2017-11-29 トヨタ自動車株式会社 電力変換装置
JP2016201929A (ja) * 2015-04-10 2016-12-01 オムロンオートモーティブエレクトロニクス株式会社 電源装置および電源装置の制御方法
CN105591432A (zh) * 2016-01-11 2016-05-18 上海传英信息技术有限公司 一种用于手持设备的快速充电系统
EP3249779B1 (en) * 2016-02-05 2020-09-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Adaptor and charge control method
JP6358304B2 (ja) * 2016-09-30 2018-07-18 株式会社オートネットワーク技術研究所 車両用電源装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014150672A (ja) * 2013-02-01 2014-08-21 Jtekt Corp 補助電源装置およびこの装置を備える電動パワーステアリング装置
JP2016132402A (ja) * 2015-01-21 2016-07-25 トヨタ自動車株式会社 車両

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6365916B1 (ja) * 2018-04-20 2018-08-01 株式会社サンエス 電源装置
JP2019193372A (ja) * 2018-04-20 2019-10-31 株式会社サンエス 電源装置

Also Published As

Publication number Publication date
CN109075600B (zh) 2021-09-21
JP6358304B2 (ja) 2018-07-18
US10710468B2 (en) 2020-07-14
JP2018057215A (ja) 2018-04-05
CN109075600A (zh) 2018-12-21
US20190168634A1 (en) 2019-06-06

Similar Documents

Publication Publication Date Title
JP6358304B2 (ja) 車両用電源装置
US10749217B2 (en) Power source device
JP6801528B2 (ja) 車載用電源部の制御装置及び車載用電源装置
WO2018070231A1 (ja) 車載用のバックアップ装置
US20150097501A1 (en) Electric vehicle power conversion system
JP4715928B2 (ja) 昇降圧コンバータ
WO2018128077A1 (ja) 車載用電源装置の故障検出装置及び車載用電源装置
JP5223758B2 (ja) 電力変換回路の駆動回路
JP2017212805A (ja) 車両用電圧変換装置
WO2023054025A1 (ja) 電力供給装置
US10906484B2 (en) In-vehicle power supply device
JP6748921B2 (ja) 車載用電源回路及び車載用電源装置
JP7482354B2 (ja) 車載電源システム
WO2022131121A1 (ja) 電力変換装置
CN112074430B (zh) 车载用电源装置
WO2019225394A1 (ja) 車載用電源装置
US11476750B2 (en) Vehicle power supply device with charge circuit section
CN112074429B (zh) 车载用电源装置
WO2024105905A1 (ja) 給電制御装置
WO2019225395A1 (ja) 車載用電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855705

Country of ref document: EP

Kind code of ref document: A1