WO2024105905A1 - 給電制御装置 - Google Patents

給電制御装置 Download PDF

Info

Publication number
WO2024105905A1
WO2024105905A1 PCT/JP2023/019491 JP2023019491W WO2024105905A1 WO 2024105905 A1 WO2024105905 A1 WO 2024105905A1 JP 2023019491 W JP2023019491 W JP 2023019491W WO 2024105905 A1 WO2024105905 A1 WO 2024105905A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
value
conductive path
voltage
power
Prior art date
Application number
PCT/JP2023/019491
Other languages
English (en)
French (fr)
Inventor
佳佑 若園
一輝 増田
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2024105905A1 publication Critical patent/WO2024105905A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems

Definitions

  • This disclosure relates to a power supply control device.
  • Patent Document 1 discloses a power supply system.
  • the power supply system of Patent Document 1 includes a main battery and a sub-battery, and operates to switch the power supply source to the load from the main battery to the sub-battery when the power supply from the main battery is interrupted.
  • a body diode is provided in the switch between the sub-battery and the load, and when the power from the main battery is interrupted, power is supplied to the load via the body diode even when the switch is off, so the power supply is not interrupted.
  • Patent Document 1 There is a concern that the power supply system in Patent Document 1 may not be able to supply an appropriate voltage to the load if the output voltage of the sub-battery drops.
  • This disclosure provides a technology for a power supply control device capable of backup operation that supplies power based on a power storage unit different from a power supply unit, which makes it easier to supply power more quickly during backup operation and output an appropriate voltage even if the output voltage of the power storage unit changes.
  • the power supply control device includes: A power supply control device is included in an in-vehicle system including a power supply unit that supplies power, a power path that is a path through which power based on the power supply unit is transmitted, and a power storage unit different from the power supply unit, and controls power supply from the power storage unit, a first conductive path to which a voltage based on an output of the power storage unit is applied; An element portion having one end electrically connected to the first conductive path; a second conductive path electrically connected to the other end of the element portion and forming a current path between the element portion and the power path; a voltage conversion unit connected in parallel to the element unit between the power storage unit and the power path; a third conductive path electrically connected to the voltage conversion unit between the voltage conversion unit and the power path; A control unit that controls the voltage conversion unit; Equipped with the voltage conversion unit performs a first conversion operation of stepping up or stepping down a voltage applied to the first conductive path to apply an output voltage to the third conductive path;
  • the technology disclosed herein makes it easier to supply power more quickly during backup operation and to output an appropriate voltage even if the output voltage of the power storage unit changes.
  • FIG. 1 is a circuit diagram illustrating an example of an in-vehicle system including a power supply control device according to a first embodiment.
  • FIG. 2 is a circuit diagram illustrating an example of a voltage conversion unit.
  • FIG. 3 is a flowchart illustrating a flow of backup control performed in the power supply control device of the first embodiment.
  • FIG. 4 is a circuit diagram illustrating an example of an in-vehicle system including the power supply control device of the second embodiment.
  • FIG. 5 is a circuit diagram illustrating an example of an in-vehicle system including a power supply control device according to the third embodiment.
  • FIG. 6 is a circuit diagram illustrating an example of an in-vehicle system including a power supply control device according to the fourth embodiment.
  • FIG. 1 is a circuit diagram illustrating an example of an in-vehicle system including a power supply control device according to a first embodiment.
  • FIG. 2 is a circuit diagram illustrating an example of a voltage conversion unit.
  • FIG. 7 is a circuit diagram illustrating an example of an in-vehicle system including a power supply control device according to the fifth embodiment.
  • FIG. 8 is a circuit diagram illustrating an example of an in-vehicle system including a power supply control device according to the sixth embodiment.
  • a power supply control device is included in an in-vehicle system including a power supply unit that supplies power, a power path that is a path through which power based on the power supply unit is transmitted, and a power storage unit different from the power supply unit, and controls power supply from the power storage unit, a first conductive path to which a voltage based on an output of the power storage unit is applied; An element portion having one end electrically connected to the first conductive path; a second conductive path electrically connected to the other end of the element portion and forming a current path between the element portion and the power path; a voltage conversion unit connected in parallel to the element unit between the power storage unit and the power path; a third conductive path electrically connected to the voltage conversion unit between the voltage conversion unit and the power path; A control unit that controls the voltage conversion unit; Equipped with the voltage conversion unit performs a first conversion operation of stepping up or stepping down a voltage applied to the first conductive path to apply an output voltage to the third conductive path, and a second conversion operation of
  • the power supply control device of [1] above can use a path via the element unit and a path via the voltage conversion unit when performing backup operation to supply power based on the power storage unit.
  • this power supply control device can respond by quickly supplying power using the path via the element unit during times when sufficient power cannot be supplied via the path via the voltage conversion unit.
  • a boost operation is performed by the voltage conversion unit, and a backup operation can be performed to apply the desired output voltage to the third conductive path.
  • the control unit causes the voltage conversion unit to start the first conversion operation so as to apply an output voltage of a first value to the third conductive path;
  • the voltage of the second conductive path is equal to or lower than a second value in the failure state, a current flows from the storage unit to the power path via the element unit,
  • the power supply control device according to claim 1, wherein, at least after the failure state occurs, current flow from the second conductive path side to the power storage unit side in the element unit is interrupted.
  • the power supply control device of [2] above is configured such that when the voltage of the second conductive path is equal to or lower than the second value in the failure state, a current flows from the storage unit to the power path via the element unit.
  • a current flows from the storage unit to the power path via the element unit.
  • the element unit can block the current from flowing from the second conductive path to the storage unit, so that while this blocking function is being exercised, the current based on the output from the voltage conversion unit can be prevented from flowing from the second conductive path to the storage unit.
  • the power supply control device of [3] above when the failure state occurs, can start voltage conversion to apply an output voltage of a first value to the third conductive path, and then switch the voltage conversion to apply an output voltage of a third value lower than the first value. Therefore, after a certain amount of time has passed, this power supply control device can suppress the voltage output by the voltage conversion unit and suppress the output energy.
  • the second conductive path and the third conductive path are configured to be short-circuited, the second value is a value obtained by subtracting a value of a voltage drop occurring in the element portion from a value of a voltage applied to the first conductive path, the first value is greater than the second value;
  • the power supply control device of [4] above can operate, in the event of a failure state, to convert the voltage so as to apply an output voltage of a first value greater than the second value described above, and to bring the voltage of the third conduction path closer to the relatively high target voltage (first value) as soon as possible. After a certain amount of time has passed since the failure state, this power supply control device can suppress the output energy by suppressing the voltage output by the voltage conversion unit to a third value, and can suppress the inflow of current through the element unit by setting the third value to a value greater than the second value.
  • the second conductive path and the third conductive path are configured to be short-circuited, the second value is a value obtained by subtracting a value of a voltage drop that occurs in the element unit when a current flows from the first conductive path to the second conductive path in the element unit from a value of a voltage applied to the first conductive path,
  • the power supply control device according to [3], wherein the third value is smaller than the first value and smaller than the second value.
  • the power supply control device of [5] above can suppress the output energy by suppressing the voltage output by the voltage conversion unit to a third value after a certain amount of time has passed since the failure state, and can further suppress the output energy by setting the third value to a value smaller than the second value.
  • the element portion has a diode and an opening/closing portion provided in parallel with the diode, a voltage based on an output of the power storage unit is applied to an anode of the diode;
  • the cathode of the diode is electrically connected to the second conductive path;
  • the opening/closing unit is in an ON state, bidirectional current flow is permitted, the second value is a first subtraction value obtained by subtracting a value of a voltage drop occurring in the switching unit and the diode from a value of a voltage applied to the first conductive path when the switching unit is in an on state, and a second subtraction value obtained by subtracting a value of a voltage drop occurring in the diode from a value of a voltage applied to the first conductive path when the switching unit is in an off state, the first value is greater than both the first subtraction value and the second subtraction value;
  • the control unit causes the voltage conversion unit to start the first conversion operation of turning on the opening/closing unit and applying the output voltage
  • the element part is configured so that the diode and the opening/closing part are provided in parallel, and the anode of the diode is connected to the first conductive path, and the cathode is connected to the second conductive path. Therefore, in the element part, even if the opening/closing part is in the off state, when the voltage of the second conductive path is lower than the voltage of the first conductive path by a certain value or more, the current is continuously allowed to flow from the first conductive path to the second conductive path, and when the opening/closing part is in the on state, the current is allowed to flow through the opening/closing part.
  • this power supply control device turns the opening/closing part to the on state when the normal state changes to the fault state, thereby reducing the loss in the element part and supplying larger power through the element part at an earlier stage. Furthermore, this power supply control device switches the opening/closing part to the off state in response to the establishment of a predetermined condition during the first conversion operation. Therefore, this power supply control device can prevent the current from flowing back in the element part after the first conversion operation has progressed until the predetermined condition is established. Furthermore, after switching the opening/closing unit to the off state, the power supply control device causes the voltage conversion unit to perform a first conversion operation that applies an output voltage of a third value (a value smaller than the first value and larger than the second subtraction value) to the third conductive path. Therefore, after a certain amount of time has passed, the power supply control device can continue to supply power through the output operation of the voltage conversion unit that suppresses energy while reliably suppressing the forward current in the diode.
  • a third value a value smaller than the first value and
  • the power supply control device of [7] above can continue to pass current through the opening and closing unit after a fault occurs until the voltage of the second conductive path rises, and after the voltage rises, can reliably prevent backflow in the element unit.
  • the power supply control device of [8] above can continue to pass current through the opening and closing unit until a predetermined time has elapsed since the voltage conversion unit started to output current after a failure state occurs, and can reliably prevent backflow in the element unit after the predetermined time has elapsed.
  • the power supply control device of [9] above can allow current to flow through the switching unit after a failure occurs until the current flowing through the element unit reaches or falls below a lower limit, and can reliably prevent backflow in the element unit when the current flowing through the element unit reaches or falls below the lower limit.
  • the power supply control device of [10] above can allow current to flow through the switching unit after a failure state occurs until the current output by the voltage conversion unit to the third conductive path reaches or exceeds a reference value, and can reliably prevent backflow in the element unit when the current output by the voltage conversion unit to the third conductive path reaches or exceeds the reference value.
  • the element portion has a diode and a backflow prevention switch, the diode and the reverse current prevention switch are disposed in series with each other between the first conductive path and the second conductive path, the diode blocks a current flow through itself to the first conductive path side and allows a current flow through itself to the second conductive path side; the reverse current prevention switch blocks a current flow to the second conductive path side through itself when in an off state, and allows a current flow to the second conductive path side through itself when in an on state;
  • the power supply control device according to claim 1, wherein the control unit controls the backflow prevention switch to an off state in the normal state while causing the voltage conversion unit to perform the second conversion operation, and when the failure state occurs, switches the backflow prevention switch to an on state and causes the voltage conversion unit to start the first conversion operation.
  • the power supply control device of [11] above can charge the storage unit in a normal state, and can prevent the current supplied from the voltage conversion unit to the first conductive path from flowing back to the second conductive path by a backflow prevention switch. In the case of a failure, the power supply control device of [11] above can instantly supply power to the second conductive path via the element unit, and can also apply a voltage adjusted by the voltage conversion unit to the third conductive path.
  • FIG. 1 shows an in-vehicle system 2.
  • the in-vehicle system 2 in Fig. 1 mainly includes an in-vehicle power supply system 3 and a load 101.
  • the in-vehicle power supply system 3 is also referred to as a power supply system 3 in the following description.
  • the in-vehicle system 2 is a system that supplies power to the load 101 by the power supply system 3 to operate the load 101.
  • the load 101 is illustrated as an example of an in-vehicle load, but the in-vehicle system 2 may be provided with other loads.
  • the load 101 is an electrical component mounted on the vehicle.
  • the load 101 operates by receiving power supplied via the power path 80.
  • Various well-known in-vehicle components may be used as the load 101.
  • the load 101 may have multiple electrical components or may be a single electrical component.
  • the power supply system 3 is a system that supplies power to the load 101.
  • the power supply system 3 supplies power to the load 101 using the power supply unit 91 or the power storage unit 92 as a power supply source.
  • the power supply system 3 can supply power to the load 101 from the power supply unit 91, and can supply power to the load 101 from the power storage unit 92 if the power supply from the power supply unit 91 is interrupted due to, for example, a malfunction.
  • the power supply system 3 includes a power supply unit 91, a power storage unit 92, a power supply control device 10, a power path 80, a diode 71, and the like.
  • the power supply unit 91 is an on-board power supply capable of supplying power to the load 101.
  • the power supply unit 91 is configured as a known on-board battery such as a lead battery.
  • the power supply unit 91 may be configured with a battery other than a lead battery, and may have a power supply means other than a battery instead of or in addition to a battery.
  • the positive electrode of the power supply unit 91 is electrically connected to the first power path 81, which is a part of the power path 80, in a configuration in which it is shorted to the first power path 81.
  • the negative electrode of the power supply unit 91 is electrically connected to the ground 83 in a configuration in which it is shorted to the ground 83.
  • the power supply unit 91 applies a constant DC voltage to the first power path 81.
  • the voltage applied by the power supply unit 91 to the first power path 81 may vary slightly from the constant value.
  • the storage unit 92 is a power source different from the power source unit 91.
  • the storage unit 92 is a power source that becomes a power supply source at least when the power supply from the power source unit 91 is interrupted.
  • the storage unit 92 is composed of a known storage means such as an electric double layer capacitor (EDLC).
  • EDLC electric double layer capacitor
  • the storage unit 92 may be composed of a capacitor other than an electric double layer capacitor, and may include other storage means (such as a battery) instead of or in addition to a capacitor.
  • the positive electrode of the storage unit 92 is electrically connected to the first conductive path 41 in a configuration in which it is shorted to the first conductive path 41.
  • the negative electrode of the storage unit 92 is electrically connected to the ground 83 in a configuration in which it is shorted to the ground 83.
  • the output voltage of the storage unit 92 (the voltage applied to the first conductive path 41 by the storage unit 92) may be larger or smaller than the output voltage of the power source unit 91 (the voltage applied to the first power path 81 by the power source unit 91).
  • voltage refers to a voltage relative to a ground potential (e.g., 0 V) and is the potential difference with respect to the ground potential.
  • a ground potential e.g., 0 V
  • the voltage applied to the first power path 81 is the potential difference between the potential of the first power path 81 and the ground potential.
  • the voltage applied to the first conductive path 41 is the potential difference between the potential of the first conductive path 41 and the ground potential.
  • the power path 80 is a path through which power based on the power supply unit 91 is transmitted, and is a path through which the power based on the power supply unit 91 is supplied to the load 101.
  • the power path 80 has a first power path 81 provided on the power supply unit 91 side of the diode 71, and a second power path 82 provided on the load 101 side of the diode 71.
  • a voltage equal to or substantially equal to the output voltage of the power supply unit 91 is applied to the first power path 81.
  • One end of the first power path 81 is electrically connected to the positive electrode of the power supply unit 91 in a configuration in which the first end is short-circuited to the positive electrode.
  • the other end of the first power path 81 is electrically connected to the anode of the diode 71.
  • a relay or a fuse may be provided on the first power path 81.
  • One end of the second power path 82 is electrically connected to the cathode of the diode 71. In the example of FIG. 1, the second power path 82 is short-circuited to one end of the load 101.
  • Diode 71 is an element interposed in power path 80. Diode 71 allows current to flow from the first power path 81 side to the second power path 82 side in power path 80, and blocks current from flowing from the second power path 82 side to the first power path 81 side. Diode 71 has the function of preventing current from flowing from the second power path 82 side to the first power path 81 side when a failure state described below occurs and the voltage of the first power path 81 drops significantly below the voltage of the second power path 82.
  • the power supply control device 10 is included in the in-vehicle system 2, and is a device that controls power supply from the power storage unit 92.
  • the power supply control device 10 is a backup device that can output power based on the power storage unit 92.
  • the power supply control device 10 includes a first conductive path 41, a second conductive path 42, a third conductive path 43, a fourth conductive path 44, a control unit 16, a voltage conversion unit 30, an element unit 52, a switch unit 60, a current detection unit 12, a voltage detection unit 14, and the like.
  • the first conductive path 41 is a conductive path electrically connected to one end of the element unit 52.
  • one end of the first conductive path 41 is short-circuited to one end of the element unit 52, and the other end of the first conductive path 41 is short-circuited to the positive electrode, which is one end of the storage unit 92.
  • a voltage based on the output of the storage unit 92 is applied to the first conductive path 41.
  • the potential of the first conductive path 41, the potential of the source of the FET (Field Effect Transistor) constituting the element unit 52, the potential of the anode of the diode 52B, and one end (positive electrode) of the storage unit 92 are all at the same potential.
  • the second conductive path 42 is a conductive path electrically connected to the other end of the element unit 52.
  • the second conductive path 42 forms a current path between the element unit 52 and the power path 80.
  • one end of the second conductive path 42 is shorted to the other end of the element unit 52, and the other end of the second conductive path 42 is shorted to the third conductive path 43.
  • the potential of the second conductive path 42, the potential of the drain of the element unit 52, the potential of the cathode of the diode 52B, and the potential of the third conductive path 43 are all the same potential.
  • the second conductive path 42 is electrically connected to a conductive path (third conductive path 43) arranged between the switch unit 60 and the voltage conversion unit 30.
  • a conductive path third conductive path 43
  • the connection point between the second conductive path 42 and the third conductive path 43 is indicated by the symbol P1.
  • the third conductive path 43 is a conductive path disposed between the voltage conversion unit 30 and the switch unit 60.
  • the third conductive path 43 is electrically connected to the voltage conversion unit 30 between the voltage conversion unit 30 and the power path 80.
  • one end of the third conductive path 43 is electrically connected to the voltage conversion unit 30, and the other end of the third conductive path 43 is electrically connected to the switch unit 60.
  • the fourth conductive path 44 is a conductive path disposed between the switch section 60 and the power path 80.
  • one end of the fourth conductive path 44 is electrically connected to the switch section 60, and the other end of the fourth conductive path 44 is electrically connected to the power path 80.
  • the connection point between the fourth conductive path 44 and the power path 80 is indicated by the symbol P2.
  • the element unit 52 is an element provided between the first conductive path 41 and the second conductive path 42. One end of the element unit 52 is electrically connected to the first conductive path 41. The other end of the element unit 52 is electrically connected to the second conductive path 42.
  • the element unit 52 allows current to flow through itself to the power path 80 side, and can block current flow through itself to the storage unit 92 side.
  • the element unit 52 is configured as an N-channel FET, and has a diode 52B configured as a body diode, and an opening/closing unit 52A provided in parallel with the diode 52B.
  • FIG. 1 the element unit 52 is configured as an N-channel FET, and has a diode 52B configured as a body diode, and an opening/closing unit 52A provided in parallel with the diode 52B.
  • the opening/closing unit 52A is a portion of the element unit 52 configured as an FET excluding the portion configured as a body diode, and is a portion that allows current to flow in both directions when in the on state and blocks current flow in both directions when in the off state. Due to this configuration, a voltage based on the output of the storage unit 92 is applied to the anode of the diode 52B. The cathode of diode 52B is electrically connected to the second conductive path 42.
  • the switch unit 60 is a switch provided between the third conductive path 43 and the power path 80.
  • the switch unit 60 has a switch element 61 and a switch element 62 configured as an N-channel FET.
  • the switch element 61 has a drain electrically connected to the fourth conductive path 44.
  • the body diode of the switch element 61 is oriented such that the power path 80 side is the cathode side, and no current flows from the power path 80 side to the third conductive path 43 side through the body diode.
  • the switch element 62 has a drain electrically connected to the third conductive path 43.
  • the body diode of the switch element 62 is oriented such that the third conductive path 43 side is the cathode side, and no current flows from the third conductive path 43 side to the power path 80 side through the body diode.
  • the on state of the switch unit 60 means that both the switch elements 61 and 62 are on
  • the off state of the switch unit 60 means that both the switch elements 61 and 62 are off.
  • the switch unit 60 blocks current from flowing from the power path 80 to the third conductive path 43.
  • both switch elements 61 and 62 are in the on state, so the switch unit 60 allows current to flow between the third conductive path 43 and the power path 80 through itself.
  • the second conductive path 42 and the third conductive path 43 are short-circuited without passing through the switch unit 60, whether the switch unit 60 is in the on state or the off state.
  • the voltage conversion unit 30 is a device that can step up or step down the input voltage.
  • the voltage conversion unit 30 is connected in parallel to the element unit 52 between the power storage unit 92 and the power path 80.
  • the voltage conversion unit 30 is configured by a known voltage conversion circuit, such as a DC-DC converter.
  • the voltage conversion unit 30 performs voltage conversion between the first conductive path 41 and the third conductive path 43.
  • the voltage conversion unit 30 can perform a first conversion operation of stepping down or stepping up the DC voltage applied to the first conductive path 41 and applying an output voltage to the third conductive path 43.
  • the DC voltage applied to the first conductive path 41 is an input voltage based on power from the power storage unit 92.
  • the voltage conversion unit 30 may have a function of performing a second conversion operation of stepping up or stepping down the voltage applied to the third conductive path 43 and applying the voltage to the first conductive path 41, i.e., a function of performing voltage conversion in both directions.
  • the operation of the voltage conversion unit 30 is controlled by the control unit 16.
  • the voltage conversion unit 30 is equipped with a voltage sensor capable of detecting the voltage value of the third conductive path 43 and a current sensor capable of detecting the value of the current flowing through the third conductive path 43, and the control unit 16 acquires information from these sensors to determine the value of the current flowing through the third conductive path 43 and the value of the voltage of the third conductive path 43.
  • the voltage conversion unit 30 includes switch elements T1, T2, T3, and T4 arranged in a known H-bridge structure and an inductor L, and functions as a DC-DC converter that performs so-called bidirectional step-up and step-down.
  • the switch elements T1 and T2 are connected in series between the first conductive path 41 and ground 83.
  • One end of the switch element T1 is electrically connected to the first conductive path 41 in a configuration in which it is shorted to the first conductive path 41.
  • the other end of the switch element T1 is electrically connected to one end of the switch element T2 and one end of the inductor L in a configuration in which it is shorted to one end of the switch element T2 and one end of the inductor L.
  • the other end of the switch element T2 is electrically connected to the ground 83 in a configuration in which it is shorted to the ground 83.
  • the switch elements T3 and T4 are connected in series between the third conductive path 43 and ground 83.
  • One end of the switch element T3 is electrically connected to the third conductive path 43 in a configuration in which it is shorted to the third conductive path 43.
  • the other end of the switch element T3 is electrically connected to one end of the switch element T4 and the other end of the inductor L in a configuration in which it is short-circuited to one end of the switch element T4 and the other end of the inductor L.
  • the other end of the switch element T4 is electrically connected to ground 83 in a configuration in which it is short-circuited to ground 83.
  • the switch elements T1, T2, T3, and T4 are configured as N-channel type FETs.
  • the control unit 16 is a device that controls the voltage conversion unit 30, the element unit 52, and the switch unit 60.
  • the control unit 16 has an information processing device that has information processing functions, calculation functions, control functions, etc., and may be configured by this information processing device, or may be configured by the information processing device and another device.
  • the control unit 16 may have a common control device that controls all of the voltage conversion unit 30, the element unit 52, and the switch unit 60, or each of the voltage conversion unit 30, the element unit 52, and the switch unit 60 may be controlled by a separate device.
  • the voltage detection unit 14 is a circuit that provides the control unit 16 with a detection value (e.g., an analog voltage value) that can identify the value of the voltage applied to the power path 80.
  • the voltage detection unit 14 may be a circuit that inputs to the control unit 16 a voltage value that is the same as the value of the voltage applied to the power path 80, or a circuit that inputs to the control unit 16 a value proportional to the value of the voltage applied to the power path 80.
  • the voltage detection unit 14 is a voltage divider circuit, and the value obtained by dividing the value of the voltage applied to the first power path 81 by the voltage divider circuit is input to the control unit 16 as the detection value.
  • the control unit 16 identifies the value of the voltage applied to the first power path 81 based on the detection value input from the voltage detection unit 14.
  • the current detection unit 12 is a current sensor that detects the value of the current flowing through the fourth conductive path 44.
  • the detection value input from the current detection unit 12 to the control unit 16 is information that can identify the value of the current flowing through the fourth conductive path 44.
  • the control unit 16 identifies the value of the current flowing through the fourth conductive path 44 based on the detection value input from the current detection unit 12.
  • Fig. 3 is a flowchart showing the flow of control for backup operation.
  • start condition may be, for example, a condition that "the vehicle is in a started state” or another condition.
  • the control unit 16 determines that the above start condition is met when the vehicle equipped with the in-vehicle system 2 is in a started state, and starts the control for the backup operation shown in FIG. 3.
  • a start switch such as an ignition switch in a hybrid vehicle or a power switch in an electric vehicle is turned on.
  • the control unit 16 When the control unit 16 starts the control for the backup operation shown in FIG. 3, it determines that the state is normal (not a failure state) and stops the voltage conversion unit 30. This reduces the power consumption for operating the voltage conversion unit 30 (more specifically, the switch elements T1, T2, T3, and T4).
  • the voltage conversion unit 30 stops the voltage conversion unit 30, for example, in a state in which the current flow from the third conductive path 43 side to the ground 83 side through the voltage conversion unit 30 is blocked. More specifically, the voltage conversion unit 30 stops the voltage conversion unit 30 in a state in which all the switch elements T1, T2, T3, and T4 constituting the voltage conversion unit 30 are in the off state. This makes it possible to avoid the power path 80 being shorted to the ground 83 in the normal state, regardless of the state of the switch unit 60.
  • step S1 the control unit 16 determines whether a predetermined failure state has occurred while the voltage conversion unit 30 is stopped.
  • a failure state is an abnormal state in which the supply of power from the power supply unit 91 to the power path 80 has dropped to a predetermined standard or has stopped.
  • Various known methods can be used to determine a failure state.
  • a failure state is a state in which the voltage of the first power path 81 has dropped below a threshold value.
  • the threshold value in this case is a value that is smaller than the output voltage of the power supply unit 91 when fully charged and is equal to or greater than 0 V.
  • control unit 16 determines in step S1 that a failure state has not occurred, it determines No in step S1 and repeats the determination in step S1.
  • the determination of a failure state is continuously repeated until the above-mentioned predetermined termination condition is met. Note that, in the representative example described below, while the above-mentioned failure state has not occurred, the control unit 16 keeps both the switch unit 60 and the element unit 52 in the off state and stops the voltage conversion unit 30.
  • control unit 16 determines in step S1 that a failure state has occurred (Yes in step S1), it switches the switch unit 60 to the ON state in step S2, switches the element unit 52 to the ON state in step S3, and causes the voltage conversion unit 30 to start the first conversion operation in step S4. In this way, the control unit 16 stops the voltage conversion unit 30 when the supply of power from the power supply unit 91 to the power path 80 is in a normal state where there is no failure state, and causes the voltage conversion unit 30 to start the first conversion operation when a failure state occurs.
  • the control unit 16 turns on the switch unit 60 in step S2, and then switches the element unit 52 to the on state in step S3.
  • the element unit 52 is allowed to pass current through the opening/closing unit 52A and through the diode 52B, making it possible to pass current with reduced loss.
  • the control unit 16 controls the element unit 52 to switch to the on state may be performed simultaneously with step S2, or may be performed before step S2.
  • the second value is a first subtraction value obtained by subtracting the voltage drop caused by the switch unit 52A and the diode 52B from the voltage applied to the first conductive path 41 when the switch unit 52A is in the on state.
  • the second value is a second subtraction value obtained by subtracting the voltage drop caused by the diode 52B from the voltage applied to the first conductive path 41 when the switch unit 52A is in the off state.
  • the first value is greater than the second value, and specifically, the first value is greater than both the first subtraction value and the second subtraction value.
  • the first value is, for example, 15 V.
  • the second subtraction value is, for example, 10.8 V in the period before the element unit 52 is switched to the on state in step S3.
  • the part that executes the control of step S3 may be different from the part that executes the control of step S3 and the part that executes the control of step S4.
  • the dedicated part may be configured, for example, to be able to detect the current flowing through diode 52B, and may maintain element unit 52 in the OFF state when no current flows through diode 52B, and may execute step S3 to switch element unit 52 to the ON state when current flows through diode 52B.
  • the control unit 16 After switching the element unit 52 to the on state in step S3, the control unit 16 causes the voltage conversion unit 30 to start a first conversion operation (step-up operation or step-down operation) in step S4 so as to apply an output voltage of the target value to the third conductive path 43 with the first value as the target value. In this way, when a failure occurs, the control unit 16 causes the voltage conversion unit 30 to start the first conversion operation so as to apply an output voltage of the first value to the third conductive path 43.
  • the control unit 16 continues the conversion operation with the first value as the target value until a predetermined termination condition is met or the process of step S7 is executed.
  • the predetermined termination condition is, for example, that the start switch of the vehicle is turned off. Note that, when the predetermined termination condition is met, the control of FIG. 3 is forcibly stopped.
  • a voltage of a value obtained by subtracting the voltage drop value Vf caused by the diode 52B from the value of the output voltage of the power storage unit 92 (the voltage applied to the first conductive path 41) at the time when the element unit 52 is switched to the on state in step S3 is applied to the second conductive path 42 and the third conductive path 43.
  • the voltage applied to the third conductive path 43 by the voltage conversion unit 30 increases, and the current supplied to the third conductive path 43 by the voltage conversion unit 30 also increases.
  • control unit 16 may control the voltage conversion unit 30 to start voltage conversion simultaneously with step S2, or may be performed before step S2.
  • the control unit 16 may control the voltage conversion unit 30 to start voltage conversion simultaneously with step S3, or may be performed before step S3.
  • the control unit 16 determines whether or not a predetermined condition is satisfied in step S5. After steps S2, S3, and S4 are performed, the control unit 16 repeatedly determines No in step S5 until the predetermined condition is satisfied, and repeats the determination in step S5.
  • the predetermined condition is, for example, "the voltage of the second conductive path has reached a predetermined value equal to or greater than the voltage of the first conductive path.”
  • the predetermined value is the voltage of the first conductive path.
  • the predetermined condition is "the voltage of the second conductive path has reached a predetermined value equal to or greater than the voltage of the first conductive path.”
  • the predetermined value may be another value greater than the voltage of the first conductive path.
  • control unit 16 determines that the above-mentioned predetermined condition is satisfied after steps S2, S3, and S4 have been performed (Yes in step S5), it switches the element unit 52 to the off state in step S6.
  • the element unit 52 is switched to the off state immediately after the voltage of the second conductive path 42 reaches the voltage of the first conductive path 41.
  • current flow through the opening/closing unit 52A is cut off and current flow through the diode 52B only is permitted. In this way, the power supply control device 10 operates to cut off the flow of current from the second conductive path 42 side to the storage unit 92 side in the element unit 52 when the above-mentioned failure state is reached and the predetermined condition is satisfied.
  • the control unit 16 switches the target value of the voltage conversion unit 30 to a third value smaller than the first value in step S7.
  • the control unit 16 causes the voltage conversion unit 30 to perform a first conversion operation of applying an output voltage of a first value to the third conductive path 43, and then causes the voltage conversion unit 30 to perform a first conversion operation of applying an output voltage of a third value to the third conductive path 43.
  • the third value is greater than the second value (the value obtained by subtracting the voltage drop in the element unit 52 from the voltage of the first conductive path 41) at the time of switching to the third value in step S6, and is greater than the second value thereafter.
  • the timing at which the control unit 16 executes step S7 may be the timing at which the voltages of the second conductive path 42 and the third conductive path 43 reach the first value, or may be the timing after a predetermined time has elapsed since the voltages of the second conductive path 42 and the third conductive path 43 reach the first value.
  • the third value is, for example, 10.2V.
  • the control unit 16 when the normal state (a state where the failure state is not present) changes to the failure state, the control unit 16 operates to turn on the switch unit 60, turn on the opening/closing unit 52A, and have the voltage conversion unit 30 start voltage conversion. After switching the switch unit 60 to the on state, the control unit 16 operates to switch the opening/closing unit 52A to the off state if a predetermined condition is met while the voltage conversion unit 30 is performing the first conversion operation. Furthermore, after switching the opening/closing unit 52A to the off state, the control unit 16 causes the voltage conversion unit 30 to perform the first conversion operation of applying an output voltage of a third value to the third conductive path 43. The third value is set to a value greater than the second subtraction value after the target value is switched to the third value in step S7.
  • the power supply control device 10 can use the path via the element unit 52 and the path via the voltage conversion unit 30. For example, the power supply control device 10 can quickly supply power using the path via the element unit 52 during a period when sufficient power is not supplied via the path via the voltage conversion unit 30. On the other hand, when the output voltage of the power storage unit 92 drops, the power supply control device 10 can perform a boost operation using the voltage conversion unit 30 and perform a backup operation to apply a desired output voltage to the third conductive path 43.
  • the power supply control device 10 can block current from flowing from the power path 80 to the voltage conversion unit 30, and when the switch unit 60 is in an on state, the power supply control device 10 can reduce loss when current flows toward the power path 80.
  • the power supply control device 10 is configured such that when the voltage of the second conductive path 42 is equal to or lower than the second value in a failure state, a current flows from the storage unit 92 to the power path 80 via the element unit 52.
  • a current flows from the storage unit 92 to the power path 80 via the element unit 52.
  • control unit 16 can also turn off the switch unit 60 when the supply of power from the power supply unit 91 to the power path 80 is in a normal state where the failure state is not mentioned above, and in this way, the flow of current from the power path 80 to the voltage conversion unit 30 can be blocked. Furthermore, after the above-mentioned failure state occurs, the element unit 52 can block the flow of current from the second conductive path 42 to the storage unit 92. Therefore, while this blocking function is being exercised, it is possible to prevent the current based on the output from the voltage conversion unit 30 from flowing from the second conductive path 42 to the storage unit 92.
  • the power supply control device 10 can perform voltage conversion to apply an output voltage of a first value to the third conductive path 43, and then switch the voltage conversion to apply an output voltage of a third value lower than the first value. Therefore, after a certain amount of time has passed, the power supply control device 10 can suppress the voltage output by the voltage conversion unit 30 and suppress the output energy.
  • the power supply control device 10 When a failure occurs, the power supply control device 10 performs voltage conversion to apply an output voltage of a first value greater than the second value described above, and can operate to bring the voltage of the third conductive path 43 closer to the relatively high target voltage (first value) as soon as possible. Furthermore, after a certain amount of time has passed since the failure occurs, the power supply control device 10 can suppress the output energy by suppressing the voltage output by the voltage conversion unit 30 to a third value smaller than the first value described above. And because the third value is greater than the second value, the flow of current into the second conductive path 42 via the element unit 52 is suppressed.
  • the element unit 52 is configured so that the diode 52B and the switching unit 52A are provided in parallel, and the anode of the diode 52B is connected to the first conductive path 41, and the cathode is connected to the second conductive path 42. Therefore, in the element unit 52, even if the switching unit 52A is in the off state, if the voltage of the second conductive path 42 is lower than the voltage of the first conductive path 41 by a certain value or more, the current is continuously allowed to flow from the first conductive path 41 to the second conductive path 42, and when the switching unit 52A is in the on state, the current is allowed to flow through the switching unit 52A.
  • this power supply control device 10 turns the switching unit 52A on when the normal state changes to the fault state, thereby reducing the loss in the element unit 52 and supplying larger power earlier through the element unit 52. Furthermore, this power supply control device 10 turns the switch unit 60 on, and then turns the switching unit 52A off depending on the establishment of a predetermined condition during the first conversion operation. Therefore, the power supply control device 10 can prevent the current from flowing backward in the element unit 52 after the first conversion operation has progressed until a predetermined condition is satisfied.
  • the power supply control device 10 causes the voltage conversion unit 30 to perform the first conversion operation of applying an output voltage of a third value (a value smaller than the first value and larger than the second subtraction value) to the third conductive path 43. Therefore, after a certain amount of time has passed, the power supply control device 10 can continue to supply power by the output operation of the voltage conversion unit 30 with reduced energy while reliably suppressing the forward current in the diode 52B.
  • the above-mentioned predetermined condition may be that the voltage conversion unit 30 outputs an output voltage of a first value.
  • the power supply control device 10 can continue to pass current through the opening/closing unit 52A after the failure state occurs until the output voltage applied to the third conductive path 43 rises to the first value, and can reliably prevent backflow in the element unit 52 after the output voltage has risen to the first value.
  • the predetermined condition may be "a predetermined time has elapsed since the voltage conversion unit 30 started to output a current to the third conductive path 43 after the above-mentioned failure state."
  • the contents other than the predetermined condition may be the same as those of the first embodiment.
  • this power supply control device 10 can continue to pass current through the opening/closing unit 52A until a predetermined time has elapsed since the voltage conversion unit 30 started to output current, and can reliably prevent backflow in the element unit 52 after the predetermined time has elapsed.
  • ⁇ Modification 2 of First Embodiment> In the representative example of the first embodiment, an example of the predetermined condition is shown, but the predetermined condition may be "the current flowing through the element portion 52 reaching a lower limit value or less.” In the second modified example, the contents other than the predetermined condition can be the same as those of the first embodiment.
  • this power supply control device 10 can allow current to flow through the switching unit 52A until the current flowing through the element unit 52 reaches or falls below a lower limit, and can reliably prevent backflow in the element unit 52 when the current flowing through the element unit 52 reaches or falls below a lower limit.
  • the predetermined condition may be "the current output from the voltage conversion unit 30 to the third conductive path 43 after the above-mentioned failure state reaches a reference value or more."
  • the contents other than the predetermined condition may be the same as those of the first embodiment.
  • this power supply control device 10 can allow current to flow through the opening/closing unit 52A until the current output by the voltage conversion unit 30 to the third conductive path 43 reaches or exceeds a reference value, and can reliably prevent backflow in the element unit 52 when the current output by the voltage conversion unit 30 to the third conductive path 43 reaches or exceeds the reference value.
  • a power supply control device 210 of the second embodiment shown in FIG. 4 differs from the power supply control device 10 of the first embodiment only in that the switch element 62 is omitted from the configuration of FIG. 1 , and in other respects is identical to the power supply control device 10 of the first embodiment.
  • the switch element 61 corresponds to the switch unit.
  • the body diode of the switch element 61 corresponds to an example of the second diode, and the anode of this body diode is electrically connected to the third conductive path 43, and the cathode is electrically connected to the power path 80.
  • the cathode of this body diode may be short-circuited so as to have the same potential as the second power path 82, or may be connected via the current detection unit 12 as shown in FIG. 4. In the configuration of FIG.
  • the power supply control device 310 of the third embodiment shown in FIG. 5 differs from the power supply control device 10 of the first embodiment only in that the position of the switch unit 60 has been changed from the configuration of FIG. 1 , and in all other respects is similar to the power supply control device 10 of the first embodiment.
  • the other end of the second conductive path 42 is electrically connected to the fourth conductive path 44.
  • the second conductive path 42 and the third conductive path 43 are short-circuited via the switch unit 60 when the switch unit 60 is in the on state.
  • the control for backup operation performed by the power supply control device 310 of the third embodiment is the same as that of the first embodiment, and is performed according to the flow shown in FIG. 3.
  • a power supply control device 410 of the fourth embodiment shown in FIG. 6 differs from the power supply control device 10 of the first embodiment only in that the switch unit 60 is omitted from the configuration of FIG. 1 , and in other respects is identical to the power supply control device 10 of the first embodiment.
  • the second conductive path 42 and the third conductive path 43 are short-circuited.
  • the second conductive path 42 and the third conductive path 43 are electrically connected to the power path 80 in a configuration in which they are short-circuited to the power path 80.
  • the voltage of the power path 80 drops
  • the voltage of the second conductive path 42 also drops, and when it falls below the second value, a current flows from the storage unit 92 side to the power path 80 side via the diode 52B of the element unit 52.
  • the power supply control device 410 of FIG. 6 can supply power more quickly by using the path via the element unit 52.
  • the control for backup operation performed by the power supply control device 410 of the fourth embodiment is a process in which step S2 is omitted from the process of FIG. 3.
  • the power supply control device 410 of FIG. 6 when the voltage of the second conductive path 42 becomes equal to or lower than the second value in a failure state, even before the switching unit 52A is switched to the ON state in step S3, the power supply control device 410 can immediately start supplying power through the diode 52B. Furthermore, by switching the switching unit 52A to the ON state, the power supply control device 410 can supply more power through the element unit 52 while reducing losses in the element unit 52. Furthermore, the power supply control device 410 causes the voltage conversion unit 30 to start a conversion operation in step S4.
  • the voltage conversion unit 30 performs a boost operation, and it is possible to perform a backup operation so as to apply a desired output voltage to the third conductive path 43. Furthermore, in the event of a failure, the power supply control device 410 performs voltage conversion to apply an output voltage of a first value greater than the above-mentioned second value, and can operate to bring the voltage of the third conductive path 43 closer to a relatively high target voltage (first value).
  • a power supply control device 510 of the fifth embodiment shown in FIG. 7 has a configuration in which the switch element 62 shown in FIG. 1 is added to the configuration of FIG. 6, and other points are the same as the power supply control device 410 of the fourth embodiment.
  • the switch element 62 corresponds to the switch unit.
  • the power supply control device 410 of the fourth embodiment for example, in a configuration in which the output voltage of the power storage unit 92 is higher than the output voltage of the power supply unit 91, even if there is no failure state, current may flow from the power storage unit 92 side to the power path 80 side via the diode 52B, and the power of the power storage unit 92 may be consumed.
  • the body diode of the switch element 62 can block the flow of current from the power storage unit 92 side to the power path 80 side via the diode 52B. Then, after a failure state occurs, the switch element 62 corresponding to the switch unit is switched to the on state in step S2 of FIG. 3, and power is quickly supplied from the power storage unit 92 side to the power path 80 side via the diode 52B.
  • the power supply control device 10 of the first embodiment is configured to stop the voltage conversion unit 30 in the normal state.
  • a power supply control device 610 of the sixth embodiment shown in Fig. 8 is configured to cause the voltage conversion unit 30 to perform the second conversion operation in the normal state.
  • the power supply control device 610 of the sixth embodiment is configured such that the switch unit 60 is omitted from the configuration of Fig. 1 and an element unit 652 is provided instead of the element unit 52.
  • the element portion 652 has a diode 653 and a reverse current prevention switch 654.
  • the diode 653 and the reverse current prevention switch 654 are arranged in series with each other between the first conductive path 41 and the second conductive path 42.
  • the diode 653 blocks the flow of current through itself to the first conductive path 41 side, and allows the flow of current through itself to the second conductive path 42 side.
  • the reverse current prevention switch 654 is configured as an N-channel type FET. One end (specifically, the drain) of the reverse current prevention switch 654 is electrically connected to the first conductive path 41. A voltage based on the output of the power storage unit 92 is applied to one end (specifically, the drain) of the reverse current prevention switch 654. The other end (specifically, the source) of the reverse current prevention switch 654 is electrically connected to the anode of the diode 655. The cathode of the diode 655 is electrically connected to the second conductive path 42. When the reverse current prevention switch 654 is in the off state, it blocks the flow of current through itself to the second conductive path 42, and when the reverse current prevention switch 654 is in the on state, it allows the flow of current through itself to the second conductive path 42.
  • the reverse current prevention switch 654 has a diode 655 configured as a body diode and an opening/closing unit 656 arranged in parallel to the diode 655.
  • the cathode of the diode 655 and one end of the opening/closing unit 656 are electrically connected to the first conductive path 41.
  • a voltage based on the output of the power storage unit 92 is applied to the cathode of the diode 655 and one end of the opening/closing unit 656.
  • the anode of the diode 655 and the other end of the opening/closing unit 656 are electrically connected to the anode of the diode 653.
  • the cathode of the diode 653 is electrically connected to the second conductive path 42.
  • the opening/closing unit 656 is a part of the reverse current prevention switch 654 configured as a FET excluding the part configured as a body diode, and is a part that allows bidirectional current flow when in the on state and blocks current flow in both directions when in the off state.
  • the opening/closing unit 656 is in the on state, it means that the reverse current prevention switch 654 is in the on state.
  • the opening/closing unit 656 is in the off state, this means that the backflow prevention switch 654 is in the off state.
  • One end of the reverse current prevention switch 654 (i.e., the cathode of the diode 655 and one end of the opening/closing unit 656) constitutes one end of the element unit 652.
  • the cathode of the diode 653 constitutes the other end of the element unit 652.
  • One end of the element unit 652 is electrically connected to the first conductive path 41, and the other end of the element unit 652 is electrically connected to the second conductive path 42.
  • the element unit 652 When the backflow prevention switch 654 is in the on state, the element unit 652 allows current to flow through itself toward the power path 80, and blocks current from flowing through itself toward the power storage unit 92 by the diode 653. When the backflow prevention switch 654 is in the off state, the element unit 652 blocks current flow in both directions.
  • the control unit 16 causes the voltage conversion unit 30 to perform the second conversion operation in the normal state. This charges the power storage unit 92.
  • the second conversion operation is a voltage boost operation.
  • the control unit 16 turns off the backflow prevention switch 654 in the normal state. This allows the power supply control device 610 to prevent the current supplied from the voltage conversion unit 30 to the first conductive path 41 from flowing through the element unit 652 to the second conductive path 42 and the third conductive path 43.
  • the control unit 16 causes the voltage conversion unit 30 to perform the second conversion operation until a failure occurs, thereby charging the power storage unit 92.
  • the control unit 16 switches the backflow prevention switch 654 to the ON state and causes the voltage conversion unit 30 to start the first conversion operation. This immediately starts the supply of power to the power path 80 via the element unit 652.
  • the control unit 16 causes the voltage conversion unit 30 to start the first conversion operation so as to apply an output voltage of the target value to the third conductive path 43, with the first value as the target value, as in step S4 of FIG. 3.
  • the control unit 16 determines whether or not a predetermined condition is met, as in step S5 of FIG. 3. If the control unit 16 determines that the predetermined condition is met, it switches the backflow prevention switch 654 to the OFF state and switches the target value of the voltage conversion unit 30 to a third value smaller than the first value, as in step S7 of FIG. 3.
  • the power supply control device 610 in FIG. 8 causes the voltage conversion unit 30 to perform the second conversion operation in the normal state, and causes the voltage conversion unit 30 to start the first conversion operation in the failure state. Therefore, the power supply control device 610 charges the power storage unit 92 in the normal state, and can supply the voltage adjusted by the voltage conversion unit 30 to the power path 80 in the failure state. Moreover, in the normal state, the power supply control device 610 uses the backflow prevention switch 654 to prevent the current supplied from the voltage conversion unit 30 to the first conductive path 41 from flowing through the element unit 652 to the second conductive path 42 and the third conductive path 43. In the event of a failure state, the power supply control device 610 can immediately supply power to the power path 80 through the element unit 652 by switching the backflow prevention switch 654 to the on state.
  • the power storage unit 92 is provided outside the power supply control device 10, but the power storage unit 92 may be included in the power supply control device 10.
  • the switch unit 60 is configured with a FET, but the switch unit may be configured with a semiconductor switch other than a FET, or may be configured with a mechanical relay.
  • the switch elements T1, T2, T3, and T4 that make up the voltage conversion unit are configured with FETs, but they may also be configured with semiconductor switches other than FETs.
  • a failure state is determined when the voltage of the first power path 81 falls below a threshold value, but this is not limited to the example.
  • a failure state may be determined when the voltage of the first power path 81 falls below a specified value within a specified time, or may be determined using other determination methods.
  • a diode 71 is provided, but a switch such as an FET may be provided instead of the diode 71. In this case, it is sufficient to have a configuration that immediately shuts off the switch when a malfunction occurs.
  • the element unit 52 is configured by a FET, but the element unit may be configured to include a diode instead of the FET, with the anode of the diode connected to the first conductive path 41 and the cathode connected to the second conductive path 42.
  • the processes of steps S3 and S6 in the control of FIG. 3 can be omitted.
  • the second conductive path 42 and the third conductive path 43 are short-circuited with or without the switch unit when the switch unit 60 is in the on state
  • the second value is the value obtained by subtracting the voltage drop occurring in the element unit 52 when a current flows from the first conductive path 41 to the second conductive path 42 in the element unit 52 from the voltage value applied to the first conductive path 41.
  • the third value is smaller than the first value and larger than the second value, but is not limited to this example, and the third value may be smaller than the first value and smaller than the second value.
  • the third value may be smaller than the second value.
  • the same hardware configuration as in any of the above-mentioned embodiments may be adopted, and the process of step S7 in FIG. 3 may be changed to make the third value smaller than the second value, or may be as follows.
  • the element unit 52 may be changed from the configuration in FIG.
  • the element unit may be turned off in step S6 in FIG. 3 to cut off bidirectional current in the element unit, and the third value may be changed in step S7 to be smaller than the first value and smaller than the second value.
  • the output energy can be suppressed by suppressing the voltage output by the voltage conversion unit to the third value, and the output energy can be further suppressed by setting the third value to a value smaller than the second value. At that time, the flow from the first conductive path 41 side to the second conductive path 42 side in the element unit is blocked.
  • the second conversion operation is a step-up operation, but it may be a step-down operation.
  • the element unit 652 may be configured without the backflow prevention switch 654.
  • the element unit 652 may be configured with only the diode 653, or may have the same configuration as the element unit 52 described in the first embodiment.
  • the reverse current prevention switch 654 is disposed closer to the first conductive path 41 than the diode 653, but the diode 653 may be disposed closer to the first conductive path 41 than the reverse current prevention switch 654.
  • the output voltage of the storage unit 92 may be applied to the anode of the diode 653.
  • the other end of the diode 653 may be electrically connected to one end of the reverse current prevention switch 654.
  • the other end of the reverse current prevention switch 654 may be electrically connected to the second conductive path 42.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Dc-Dc Converters (AREA)

Abstract

給電制御装置(10)は、素子部(52)及び電圧変換部(30)、及び制御部(16)を備える。電圧変換部(30)は、第1導電路(41)に印加された電圧を昇圧又は降圧して出力電圧を第3導電路(43)に印加する第1の変換動作と、第3導電路(43)に印加された電圧を昇圧又は降圧して出力電圧を第1導電路(41)に印加する第2の変換動作とを行う。素子部(52)は、自身を介して電力路(80)側へ電流が流れることが許容され、且つ自身を介して蓄電部(92)側へ電流が流れることを遮断可能とされている。制御部(16)は、電源部(91)から電力路(80)への電力の供給が失陥状態ではない通常状態の場合に、電圧変換部(30)を停止させておくか又は電圧変換部(30)に第2の変換動作を行わせ、失陥状態となった場合に、電圧変換部(30)に第1の変換動作を開始させる。

Description

給電制御装置
 本開示は、給電制御装置に関する。
 特許文献1には、電力供給システムが開示される。特許文献1の電力供給システムは、メインバッテリとサブバッテリとを備え、メインバッテリ側からの電力供給が途切れた時に負荷への電力供給元をメインバッテリ側からサブバッテリ側に切り替えるように動作する。特許文献1の電力供給システムは、サブバッテリと負荷との間のスイッチにおいてボディダイオードが設けられ、メインバッテリからの電力が途切れた時、上記スイッチがオフ状態でもボディダイオードを介して負荷に電力が供給されるため電力供給が途切れない。
特開2020-182318号公報
 特許文献1の電力供給システムは、サブバッテリの出力電圧が低下した場合に負荷に適正な電圧を供給できない懸念がある。
 本開示は、電源部とは異なる蓄電部に基づく電力を供給するバックアップ動作が可能な給電制御装置において、バックアップ動作時に、より迅速に電力を供給しやすく、蓄電部の出力電圧が変化しても適切な電圧を出力しやすい技術を提供する。
 本開示の一つである給電制御装置は、
 電力を供給する電源部と、前記電源部に基づく電力が伝送される経路である電力路と、前記電源部とは異なる蓄電部と、を備える車載システムに含まれ、前記蓄電部からの給電を制御する給電制御装置であって、
 前記蓄電部の出力に基づく電圧が印加される第1導電路と、
 自身の一端が前記第1導電路に電気的に接続される素子部と、
 前記素子部の他端に電気的に接続され、前記素子部と前記電力路の間の通電経路をなす第2導電路と、
 前記蓄電部と前記電力路の間において前記素子部に対して並列に接続される電圧変換部と、
 前記電圧変換部と前記電力路の間において前記電圧変換部に電気的に接続される第3導電路と、
 前記電圧変換部を制御する制御部と、
 を備え、
 前記電圧変換部は、前記第1導電路に印加された電圧を昇圧又は降圧して出力電圧を前記第3導電路に印加する第1の変換動作と、前記第3導電路に印加された電圧を昇圧又は降圧して出力電圧を前記第1導電路に印加する第2の変換動作と、を行い、
 前記素子部は、自身を介して前記電力路側へ電流が流れることが許容可能とされ、且つ自身を介して前記蓄電部側へ電流が流れることを遮断可能とされており、
 前記制御部は、前記電源部から前記電力路への電力の供給が失陥状態ではない通常状態の場合に前記電圧変換部を停止させておくか又は前記電圧変換部に前記第2の変換動作を行わせ、前記失陥状態となった場合に、前記電圧変換部に前記第1の変換動作を開始させる。
 本開示に係る技術は、バックアップ動作時に、より迅速に電力を供給しやすく、蓄電部の出力電圧が変化しても適切な電圧を出力しやすい。
図1は、第1実施形態の給電制御装置を含む車載システムの一例を概略的に示す回路図である。 図2は、電圧変換部の一例を概略的に示す回路図である。 図3は、第1実施形態の給電制御装置において行われるバックアップ用の制御の流れを例示するフローチャートである。 図4は、第2実施形態の給電制御装置を含む車載システムの一例を概略的に示す回路図である。 図5は、第3実施形態の給電制御装置を含む車載システムの一例を概略的に示す回路図である。 図6は、第4実施形態の給電制御装置を含む車載システムの一例を概略的に示す回路図である。 図7は、第5実施形態の給電制御装置を含む車載システムの一例を概略的に示す回路図である。 図8は、第6実施形態の給電制御装置を含む車載システムの一例を概略的に示す回路図である。
[本開示の実施形態の説明]
 以下では、本開示に係る実施形態が列記されて例示される。なお、以下で例示される〔1〕~〔11〕の特徴は、矛盾しない組み合わせでどのように組み合わされてもよい。
 〔1〕電力を供給する電源部と、前記電源部に基づく電力が伝送される経路である電力路と、前記電源部とは異なる蓄電部と、を備える車載システムに含まれ、前記蓄電部からの給電を制御する給電制御装置であって、
 前記蓄電部の出力に基づく電圧が印加される第1導電路と、
 自身の一端が前記第1導電路に電気的に接続される素子部と、
 前記素子部の他端に電気的に接続され、前記素子部と前記電力路の間の通電経路をなす第2導電路と、
 前記蓄電部と前記電力路の間において前記素子部に対して並列に接続される電圧変換部と、
 前記電圧変換部と前記電力路の間において前記電圧変換部に電気的に接続される第3導電路と、
 前記電圧変換部を制御する制御部と、
 を備え、
 前記電圧変換部は、前記第1導電路に印加された電圧を昇圧又は降圧して出力電圧を前記第3導電路に印加する第1の変換動作と、前記第3導電路に印加された電圧を昇圧又は降圧して出力電圧を前記第1導電路に印加する第2の変換動作と、を行い、
 前記素子部は、自身を介して前記電力路側へ電流が流れることが許容可能とされ、且つ自身を介して前記蓄電部側へ電流が流れることを遮断可能とされており、
 前記制御部は、前記電源部から前記電力路への電力の供給が失陥状態ではない通常状態の場合に、前記電圧変換部を停止させておくか又は前記電圧変換部に前記第2の変換動作を行わせ、前記失陥状態となった場合に、前記電圧変換部に前記第1の変換動作を開始させる
 給電制御装置。
 上記〔1〕の給電制御装置は、蓄電部に基づく電力を供給するバックアップ動作を行う際に、素子部を介した経路と電圧変換部を介した経路を利用することができる。例えば、この給電制御装置は、電圧変換部を介した経路によって十分な電力供給がなされない時期に素子部を介した経路を利用して迅速に電力を供給する対応が可能である。一方で、蓄電部の出力電圧が低下した場合には、電圧変換部によって昇圧動作を行い、第3導電路に所望の出力電圧を印加するようにバックアップ動作を行う対応が可能である。
 〔2〕前記制御部は、前記失陥状態となった場合に、前記第3導電路に第1の値の出力電圧を印加するように前記電圧変換部に前記第1の変換動作を開始させ、
 前記失陥状態において前記第2導電路の電圧が第2の値以下である場合に前記蓄電部側から前記素子部を介して前記電力路側に電流が流れ、
 少なくとも前記失陥状態となった後、前記素子部において前記第2導電路側から前記蓄電部側に電流が流れることを遮断する
 〔1〕に記載の給電制御装置。
 上記〔2〕の給電制御装置は、上記失陥状態において第2導電路の電圧が第2の値以下である場合に蓄電部側から素子部を介して電力路側に電流が流れる構成をなす。つまり、電圧変換部の出力が「第2導電路の電圧が第2の値を超える程度」に上昇していない時期には、蓄電部に基づく電力を、素子部を介して電力路側に供給することができるため、電圧変換部の出力が低い時期には素子部を介した経路によって電流を補うことができる。更に、少なくとも上記失陥状態となった後には、素子部において第2導電路側から蓄電部側に電流が流れることを遮断することができるため、このような遮断機能が発揮されている間は、電圧変換部からの出力に基づく電流が第2導電路側から蓄電部側に流れ込むことを防ぐことができる。
 〔3〕前記制御部は、前記失陥状態となった場合に、前記第3導電路に前記第1の値の前記出力電圧を印加する前記第1の変換動作を前記電圧変換部に開始させた後、前記第3導電路に前記第1の値よりも小さい第3の値の前記出力電圧を印加する前記第1の変換動作を前記電圧変換部に行わせる
 〔2〕に記載の給電制御装置。
 上記〔3〕の給電制御装置は、前記失陥状態となった場合に、第3導電路に第1の値の出力電圧を印加するように電圧変換を開始させた後、第1の値よりも低い第3の値の出力電圧を印加するように電圧変換を切り替えることができる。よって、この給電制御装置は、ある程度の時間が経過した後には、電圧変換部が出力する電圧を抑え、出力エネルギーを抑制することができる。
 〔4〕前記第2導電路と前記第3導電路が短絡する構成であり、
 前記第2の値は、前記第1導電路に印加される電圧の値から前記素子部で生じる電圧降下分の値を減じた値であり、
 前記第1の値は、前記第2の値よりも大きく、
 前記第3の値は、前記第1の値よりも小さく前記第2の値よりも大きい
 〔3〕に記載の給電制御装置。
 上記〔4〕の給電制御装置は、失陥状態となった場合に、上記の第2の値よりも大きい第1の値の出力電圧を印加するように電圧変換を行い、第3導電路の電圧を相対的に高い目標電圧(第1の値)に早期に近づけるように動作することができる。そして、この給電制御装置は、失陥状態からある程度の時間が経過した後には、電圧変換部が出力する電圧を第3の値に抑えることにより出力エネルギーを抑制し、第3の値を第2の値よりも大きい値とすることで、素子部を介しての電流の流れ込みを抑えることができる。
 〔5〕前記第2導電路と前記第3導電路が短絡する構成であり、
 前記第2の値は、前記第1導電路に印加される電圧の値から、前記素子部において前記第1導電路から前記第2導電路に電流が流れる場合の前記素子部で生じる電圧降下分の値を減じた値であり、
 前記第3の値は、前記第1の値よりも小さく前記第2の値よりも小さい
 〔3〕に記載の給電制御装置。
 上記〔5〕の給電制御装置は、失陥状態からある程度の時間が経過した後には、電圧変換部が出力する電圧を第3の値に抑えることにより出力エネルギーを抑制することができ、第3の値を第2の値よりも小さい値とすることで、上記出力エネルギーをより一層抑えることができる。
 〔6〕前記素子部は、ダイオードと、前記ダイオードに対して並列に設けられる開閉部を有し、
 前記ダイオードのアノードには、前記蓄電部の出力に基づく電圧が印加され、
 前記ダイオードのカソードは、前記第2導電路に電気的に接続され、
 前記開閉部はオン状態のときに双方向の通電が許容され、
 前記第2の値は、前記開閉部がオン状態のときには前記第1導電路に印加される電圧の値から前記開閉部及び前記ダイオードで生じる電圧降下分の値を減じた第1減算値であり、前記開閉部がオフ状態のときには前記第1導電路に印加される電圧の値から前記ダイオードで生じる電圧降下分の値を減じた第2減算値であり、
 前記第1の値は前記第1減算値及び前記第2減算値のいずれよりも大きく、
 前記制御部は、前記通常状態から前記失陥状態に変化した場合に前記開閉部をオン状態とし且つ前記第3導電路に前記第1の値の前記出力電圧を印加する前記第1の変換動作を前記電圧変換部に開始させた後、前記電圧変換部が前記第1の変換動作を行っている状態で所定条件が成立した場合に前記開閉部をオフ状態に切り替え、前記開閉部をオフ状態に切り替えた後、前記第3導電路に前記第3の値の前記出力電圧を印加する前記第1の変換動作を前記電圧変換部に行わせ、
 前記第3の値は、前記第2減算値よりも大きい
 〔4〕に記載の給電制御装置。
 上記〔6〕の給電制御装置は、ダイオードと開閉部が並列に設けられるように素子部が構成され、ダイオードのアノードが第1導電路に接続され、カソードが第2導電路に接続される。よって、素子部では、開閉部がオフ状態であっても、第1導電路の電圧に対して第2導電路の電圧が一定値以上低い場合に、第1導電路から第2導電路に電流が流れることが継続的に許可され、開閉部がオン状態のときには開閉部を介しての通電が許可される。更に、この給電制御装置は、通常状態から失陥状態に変化した場合に開閉部をオン状態にすることで、素子部での損失を低減しつつ素子部を介してより早期により大きな電力を供給できるようにする。更に、この給電制御装置は、第1の変換動作中の所定条件の成立に応じて開閉部をオフ状態に切り替える。よって、この給電制御装置は、所定条件が成立するまで第1の変換動作が進行した後に、素子部において電流が逆流しないようにすることができる。更に、この給電制御装置は、開閉部をオフ状態に切り替えた後、第3導電路に対して第3の値(第1の値よりも小さく第2減算値よりも大きい値)の出力電圧を印加する第1の変換動作を電圧変換部に行わせる。よって、この給電制御装置は、ある程度の時間が経過した後には、ダイオードにおいて順方向の電流を確実に抑制しつつ、エネルギーを抑制した電圧変換部の出力動作によって電力供給を継続することができる。
 〔7〕前記所定条件は、前記第2導電路の電圧が、前記第1導電路の電圧以上の所定値に達したことである
 〔6〕に記載の給電制御装置。
 上記〔7〕の給電制御装置は、失陥状態後に、第2導電路の電圧が上昇するまで開閉部を介した通電を継続することができ、上昇した後には、素子部における逆流を確実に防ぐことができる。
 〔8〕前記所定条件は、前記失陥状態後に前記第1の変換動作を前記電圧変換部に開始させてから所定時間が経過したことである
 〔6〕に記載の給電制御装置。
 上記〔8〕の給電制御装置は、失陥状態後、電圧変換部が電流の出力を開始してから所定時間が経過するまで、開閉部を介した通電を継続することができ、所定時間が経過した後には、素子部における逆流を確実に防ぐことができる。
 〔9〕前記所定条件は、前記素子部を流れる電流が下限値以下に達したことである
 〔6〕に記載の給電制御装置。
 上記〔9〕の給電制御装置は、失陥状態後、素子部を流れる電流が下限値以下に達するまで開閉部を介した通電を許容することができ、素子部を流れる電流が下限値以下に達した場合に、素子部における逆流を確実に防ぐことができる。
 〔10〕前記所定条件は、前記失陥状態後に前記電圧変換部が前記第3導電路に出力する電流が基準値以上に達したことである
 〔6〕に記載の給電制御装置。
 上記〔10〕の給電制御装置は、失陥状態後、電圧変換部が第3導電路に出力する電流が基準値以上に達するまで開閉部を介した通電を許容することができ、電圧変換部が第3導電路に出力する電流が基準値以上に達した場合に、素子部における逆流を確実に防ぐことができる。
 〔11〕前記素子部は、ダイオードと、逆流防止スイッチとを有し、
 前記ダイオード及び前記逆流防止スイッチは、前記第1導電路と前記第2導電路との間において互いに直列に配置され、
 前記ダイオードは、自身を介した前記第1導電路側への電流の流れを遮断し、自身を介した前記第2導電路側への電流の流れを許容し、
 前記逆流防止スイッチは、オフ状態のときに自身を介した前記第2導電路側への電流の流れを遮断し、オン状態のときに自身を介した前記第2導電路側への電流の流れを許容し、
 前記制御部は、前記通常状態の場合に前記逆流防止スイッチをオフ状態に制御しつつ前記電圧変換部に前記第2の変換動作を行わせ、前記失陥状態となった場合に、前記逆流防止スイッチをオン状態に切り替えるとともに前記電圧変換部に前記第1の変換動作を開始させる
 〔1〕に記載の給電制御装置。
 上記〔11〕の給電制御装置は、通常状態の場合に蓄電部を充電することができ、且つ電圧変換部から第1導電路に供給された電流が第2導電路に回り込むことを逆流防止スイッチによって防ぐことができる。そして、上記〔11〕の給電制御装置は、失陥状態となった場合に、素子部を介して即座に第2導電路へ電力を供給することができるとともに、電圧変換部によって調整した電圧を第3導電路に印加することもできる。
[本開示の実施形態の詳細]
 <第1実施形態>
 1.車載システムの概要
 図1には、車載システム2が示される。図1の車載システム2は、主に、車載用電源システム3と負荷101とを備える。車載用電源システム3は、以下の説明において電源システム3とも称される。車載システム2は、電源システム3によって負荷101に電力を供給し、負荷101を動作させるシステムである。図1では、車載用の負荷の一例として負荷101が例示されるが、車載システム2にはこれ以外の負荷が設けられていてもよい。
 負荷101は、車両に搭載される電気部品である。負荷101は、電力路80を介して供給される電力を受けて動作する。負荷101の種類は限定されない。負荷101としては、公知の様々な車載部品が採用され得る。負荷101は、複数の電気部品を有していてもよく、単一の電気部品であってもよい。
 電源システム3は、負荷101に電力を供給するシステムである。電源システム3は、電源部91又は蓄電部92を電力供給源として負荷101に電力を供給する。電源システム3は、電源部91から負荷101に電力を供給することができ、例えば、故障などによって電源部91からの電力供給が途絶えた場合には、蓄電部92から負荷101に電力を供給することができる。
 2.電源システムの概要
 電源システム3は、電源部91、蓄電部92、給電制御装置10、電力路80、ダイオード71などを備える。
 電源部91は、負荷101へ電力を供給し得る車載用電源である。電源部91は、例えば、鉛バッテリ等の公知の車載バッテリとして構成されている。電源部91は、鉛バッテリ以外のバッテリによって構成されていてもよく、バッテリに代えて又はバッテリに加えてバッテリ以外の電源手段を有していてもよい。電源部91の正極は、電力路80の一部である第1電力路81に短絡した構成で第1電力路81に電気的に接続される。電源部91の負極は、グラウンド83に短絡した構成でグラウンド83に電気的に接続される。電源部91は、第1電力路81に一定値の直流電圧を印加する。電源部91が第1電力路81に印加する電圧は、上記一定値から多少変動してもよい。
 蓄電部92は、電源部91とは異なる電源である。蓄電部92は、少なくとも電源部91からの電力供給が途絶えたときに電力供給源となる電源である。蓄電部92は、例えば、電気二重層キャパシタ(EDLC)等の公知の蓄電手段によって構成されている。蓄電部92は、電気二重層キャパシタ以外のキャパシタによって構成されていてもよく、キャパシタに代えて又はキャパシタに加えて他の蓄電手段(バッテリなど)を備えていてもよい。蓄電部92の正極は、第1導電路41に短絡した構成で第1導電路41に電気的に接続される。蓄電部92の負極は、グラウンド83に短絡した構成でグラウンド83に電気的に接続される。蓄電部92の出力電圧(蓄電部92によって第1導電路41に印加される電圧)は、電源部91の出力電圧(電源部91によって第1電力路81に印加される電圧)よりも大きくてもよく、小さくてもよい。
 本明細書において、電圧とは、特に限定が無い限り、グラウンド電位(例えば0V)に対する電圧であり、グラウンド電位との電位差である。例えば、第1電力路81に印加される電圧とは、第1電力路81の電位とグラウンド電位との電位差である。第1導電路41に印加される電圧とは、第1導電路41の電位とグラウンド電位との電位差である。
 電力路80は、電源部91に基づく電力が伝送される経路であり、電源部91に基づく電力を負荷101に供給する経路である。図1の例では、電力路80は、ダイオード71よりも電源部91側に設けられる第1電力路81と、ダイオード71よりも負荷101側に設けられる第2電力路82とを有する。第1電力路81には、電源部91の出力電圧と同一又は略同一の電圧が印加される。第1電力路81の一端は、電源部91の正極に短絡した構成で当該正極に電気的に接続される。第1電力路81の他端は、ダイオード71のアノードに電気的に接続される。第1電力路81には、リレーやヒューズが設けられていてもよい。第2電力路82の一端は、ダイオード71のカソードに電気的に接続される。図1の例では、第2電力路82が負荷101の一端に短絡する。
 ダイオード71は、電力路80に介在する素子である。ダイオード71は、電力路80において第1電力路81側から第2電力路82側へ電流が流れることを許容し、第2電力路82側から第1電力路81側へ電流が流れることを遮断する。ダイオード71は、後述の失陥状態が生じることにより第1電力路81の電圧が第2電力路82の電圧よりも大きく低下した場合に、第2電力路82側から第1電力路81側へ電流が流れることを防止する機能を有する。
 3.給電制御装置の詳細
 給電制御装置10は、車載システム2に含まれ、蓄電部92からの給電を制御する装置である。給電制御装置10は、蓄電部92に基づく電力を出力し得るバックアップ装置である。給電制御装置10は、第1導電路41、第2導電路42、第3導電路43、第4導電路44、制御部16、電圧変換部30、素子部52、スイッチ部60、電流検出部12、電圧検出部14などを備える。
 第1導電路41は、素子部52の一端に電気的に接続される導電路である。図1の例では、第1導電路41の一端が素子部52の一端に短絡し、第1導電路41の他端が蓄電部92の一端である正極に短絡する。第1導電路41には、蓄電部92の出力に基づく電圧が印加される。図1の例では、第1導電路41の電位、素子部52を構成するFET(Field Effect Transistor)のソースの電位、ダイオード52Bのアノードの電位、及び蓄電部92の一端(正極)が互いに同電位とされる。
 第2導電路42は、素子部52の他端に電気的に接続される導電路である。第2導電路42は、素子部52と電力路80の間の通電経路をなす。図1の例では、第2導電路42の一端が素子部52の他端に短絡し、第2導電路42の他端が第3導電路43に短絡する。図1の例では、第2導電路42の電位、素子部52のドレインの電位、ダイオード52Bのカソードの電位、及び第3導電路43の電位が互いに同電位とされる。第2導電路42は、スイッチ部60と電圧変換部30の間に配される導電路(第3導電路43)に電気的に接続される。図1では、第2導電路42と第3導電路43の接続点が符号P1で示される。
 第3導電路43は、電圧変換部30とスイッチ部60の間に配置される導電路である。第3導電路43は、電圧変換部30と電力路80の間において電圧変換部30に電気的に接続される。図1の例では、第3導電路43の一端が電圧変換部30に電気的に接続され、第3導電路43の他端がスイッチ部60に電気的に接続される。
 第4導電路44は、スイッチ部60と電力路80の間に配置される導電路である。図1の例では、第4導電路44の一端がスイッチ部60に電気的に接続され、第4導電路44の他端が電力路80に電気的に接続される。図1では、第4導電路44と電力路80の接続点が符号P2で示される。
 素子部52は、第1導電路41と第2導電路42の間に設けられる素子である。素子部52の一端は、第1導電路41に電気的に接続される。素子部52の他端は、第2導電路42に電気的に接続される。素子部52は、自身を介して電力路80側へ電流が流れることが許容され、且つ自身を介して蓄電部92側へ電流が流れることを遮断可能とされる。図1の例では、素子部52は、Nチャネル型のFETとして構成され、ボディダイオードとして構成されるダイオード52Bと、ダイオード52Bに対して並列に設けられる開閉部52Aを有する。図1の例では、開閉部52Aは、FETとして構成される素子部52において、ボディダイオードとして構成される部分を除く部分であり、オン状態のときに双方向の通電が許容され、オフ状態のときに通電が双方向に遮断される部分である。このような構成であるため、ダイオード52Bのアノードには、蓄電部92の出力に基づく電圧が印加される。ダイオード52Bのカソードは、第2導電路42に電気的に接続される。
 スイッチ部60は、第3導電路43と電力路80の間に設けられるスイッチである。図1の例では、スイッチ部60は、Nチャネル型のFETとして構成されたスイッチ素子61及びスイッチ素子62を有する。スイッチ素子61は、ドレインが第4導電路44に電気的に接続される。スイッチ素子61のボディダイオードの向きは、電力路80側をカソード側とし、当該ボディダイオードを介して電力路80側から第3導電路43側に電流が流れない向きとされている。スイッチ素子62は、ドレインが第3導電路43に電気的に接続される。スイッチ素子62のボディダイオードの向きは、第3導電路43側をカソード側とし、当該ボディダイオードを介して第3導電路43側から電力路80側に電流が流れない向きとされている。図1の例において、スイッチ部60のオン状態とは、スイッチ素子61及びスイッチ素子62がいずれもオン状態であることを意味し、スイッチ部60のオフ状態とは、スイッチ素子61及びスイッチ素子62がいずれもオフ状態であることを意味する。スイッチ部60がオフ状態のときには、スイッチ素子61,62がいずれもオフ状態であるため、スイッチ部60は、電力路80から第3導電路43に電流が流れることを遮断する。スイッチ部60がオン状態のときには、スイッチ素子61,62がいずれもオン状態であるため、スイッチ部60は、第3導電路43と電力路80の間において自身を介した通電を許容する。
 図1の例では、スイッチ部60がオン状態のときでも、スイッチ部60がオフ状態のときでも、第2導電路42と第3導電路43がスイッチ部60を介さずに短絡する構成である。
 電圧変換部30は、入力電圧を昇圧又は降圧し得る装置である。図1の例では、電圧変換部30は、蓄電部92と電力路80の間において素子部52に対して並列に接続される。電圧変換部30は、例えばDCDCコンバータなどの公知の電圧変換回路によって構成されている。
 図1の例では、電圧変換部30は、第1導電路41と第3導電路43との間で電圧変換を行う。電圧変換部30は、第1導電路41に印加される直流電圧を降圧又は昇圧して第3導電路43に出力電圧を印加する第1の変換動作を行い得る。第1の変換動作の際には、第1導電路41に印加される直流電圧は、蓄電部92からの電力に基づく入力電圧である。電圧変換部30は、第3導電路43に印加される電圧を昇圧又は降圧して第1導電路41に電圧を印加するように第2の変換動作を行う機能、即ち、双方向に電圧変換を行う機能を有していてもよい。電圧変換部30の動作は、制御部16によって制御される。なお、電圧変換部30は、第3導電路43の電圧の値を検出し得る電圧センサ及び第3導電路43を流れる電流の値を検出し得る電流センサを備えており、制御部16は、これらのセンサからの情報を取得することで、第3導電路43を流れる電流の値及び第3導電路43の電圧の値を特定する。
 図2の例では、電圧変換部30は、公知のHブリッジ構造で配置されたスイッチ素子T1,T2,T3,T4と、インダクタLと、を備え、いわゆる双方向の昇降圧を実行するDCDCコンバータとして機能する。スイッチ素子T1及びスイッチ素子T2は、第1導電路41とグラウンド83との間に直列に接続される。スイッチ素子T1の一端は、第1導電路41に短絡した構成で第1導電路41に電気的に接続される。スイッチ素子T1の他端は、スイッチ素子T2の一端及びインダクタLの一端に短絡した構成でスイッチ素子T2の一端及びインダクタLの一端に電気的に接続される。スイッチ素子T2の他端は、グラウンド83に短絡した構成でグラウンド83に電気的に接続される。スイッチ素子T3及びスイッチ素子T4は、第3導電路43とグラウンド83との間に直列に接続される。スイッチ素子T3の一端は、第3導電路43に短絡した構成で第3導電路43に電気的に接続される。スイッチ素子T3の他端は、スイッチ素子T4の一端及びインダクタLの他端に短絡した構成でスイッチ素子T4の一端及びインダクタLの他端に電気的に接続される。スイッチ素子T4の他端は、グラウンド83に短絡した構成でグラウンド83に電気的に接続される。スイッチ素子T1,T2,T3,T4は、Nチャネル型のFETとして構成される。
 制御部16は、電圧変換部30、素子部52、スイッチ部60を制御する装置である。制御部16は、情報処理機能、演算機能、制御機能などを有する情報処理装置を有しており、この情報処理装置によって構成されていてもよく、情報処理装置と他の装置とによって構成されていてもよい。例えば、制御部16は、共通の制御装置が、電圧変換部30、素子部52、スイッチ部60をいずれも制御してもよく、電圧変換部30、素子部52、スイッチ部60の各々を別々の装置が制御してもよい。
 電圧検出部14は、電力路80に印加された電圧の値を特定し得る検出値(例えば、アナログ電圧値)を制御部16に与える回路である。電圧検出部14は、電力路80に印加された電圧の値と同一の電圧値を制御部16に入力する回路であってもよく、電力路80に印加された電圧の値に比例した値を制御部16に入力する回路であってもよい。例えば、電圧検出部14は分圧回路とされており、第1電力路81に印加された電圧の値を分圧回路によって分圧した値が検出値として制御部16に入力される。制御部16は、電圧検出部14から入力される検出値に基づいて第1電力路81に印加された電圧の値を特定する。
 電流検出部12は、第4導電路44を流れる電流の値を検出する電流センサである。電流検出部12から制御部16に入力される検出値は、第4導電路44を流れる電流の値を特定し得る情報である。制御部16は、電流検出部12から入力される検出値に基づいて第4導電路44を流れる電流の値を特定する。
 4.給電制御装置の動作
 次の説明は、給電制御装置10によって行われるバックアップ動作用の制御に関する。図3は、バックアップ動作用の制御の流れを示すフローチャートである。
 制御部16は、予め定められた開始条件が成立した場合に、図3に示されるバックアップ動作用の制御を開始する。上記の「開始条件」は、例えば、「車両が始動状態になる」という条件であってもよく、その他の条件であってもよい。以下で説明される代表例では、制御部16は、車載システム2が搭載された車両が始動状態となった場合に上記開始条件の成立と判定し、図3に示されるバックアップ動作用の制御を開始する。車両が始動状態になった場合とは、例えば、ハイブリッド車におけるイグニッションスイッチや電気自動車におけるパワースイッチなどの始動スイッチがオン状態となった場合である。
 制御部16は、図3に示されるバックアップ動作用の制御を開始した時点では、通常状態(失陥状態ではない状態)であると判断し、電圧変換部30を停止させておく。これにより、電圧変換部30(より具体的には、スイッチ素子T1,T2,T3,T4)を動作させるための電力消費が抑えられる。電圧変換部30は、例えば、電圧変換部30を介して第3導電路43側からグラウンド83側へ電流が流れることを遮断した状態で、電圧変換部30を停止させておく。より具体的には、電圧変換部30は、電圧変換部30を構成する全てのスイッチ素子T1,T2,T3,T4をオフ状態にした状態で、電圧変換部30を停止させておく。これにより、スイッチ部60の状態に関わらず、通常状態において電力路80がグラウンド83に短絡することを回避することができる。
 制御部16は、電圧変換部30を停止させた状態で、ステップS1にて、予め定められた失陥状態が生じたか否かを判定する。失陥状態は、電源部91から電力路80への電力の供給が所定の基準まで低下した又は停止した異常状態である。失陥状態の判定方法は公知の様々な方法が採用され得る。以下で説明される代表例では、第1電力路81の電圧が閾値以下に低下した状態が失陥状態である。この場合の閾値は、電源部91の満充電時の出力電圧よりも小さく、0V以上の値である。
 制御部16は、ステップS1において失陥状態が発生していないと判定した場合、ステップS1においてNoの判定を行い、ステップS1の判定を繰り返す。図3の例では、図3の制御が開始された後、失陥状態が発生していない間は、上述の所定の終了条件が成立するまで失陥状態の判定が継続的に繰り返される。なお、以下で説明される代表例では、制御部16は、上記失陥状態が発生していない間は、スイッチ部60及び素子部52をいずれもオフ状態で維持し、電圧変換部30を停止させておく。
 制御部16は、ステップS1において失陥状態が発生したと判定した場合(ステップS1にてYesの場合)、ステップS2においてスイッチ部60をオン状態に切り替え、ステップS3において素子部52をオン状態に切り替え、ステップS4において電圧変換部30に第1の変換動作を開始させる。このように、制御部16は、電源部91から電力路80への電力の供給が失陥状態ではない通常状態の場合に、電圧変換部30を停止させておき、失陥状態となった場合に、電圧変換部30に第1の変換動作を開始させる。
 制御部16は、ステップS2にてスイッチ部60をオン状態とした後、ステップS3にて素子部52をオン状態に切り替える。このような切り替えがなされると、素子部52において、開閉部52Aを介しての通電及びダイオード52Bを介しての通電が許容され、損失を抑えた通電が可能となる。なお、制御部16が素子部52をオン状態に切り替える制御は、ステップS2と同時に行われてもよく、ステップS2の前に行われてもよい。
 本実施形態では、失陥状態において第2導電路42の電圧が第2の値以下である場合に蓄電部92側から素子部52を介して電力路80側に電流が流れるようになっている。第2の値は、開閉部52Aがオン状態のときには第1導電路41に印加される電圧の値から開閉部52A及びダイオード52Bで生じる電圧降下分の値を減じた第1減算値である。第2の値は、開閉部52Aがオフ状態のときには第1導電路41に印加される電圧の値からダイオード52Bで生じる電圧降下分の値を減じた第2減算値である。本実施形態では、第1の値は、第2の値よりも大きく、具体的には、第1の値は、上記第1減算値及び上記第2減算値のいずれよりも大きい。第1の値は、例えば15Vである。第2減算値は、例えばステップS3にて素子部52がオン状態に切り替わる前の期間において10.8Vである。
 制御部16において、ステップS3の制御を実行する部分は、ステップS3の制御を実行する部分やステップS4の制御を実行する部分とは異なっていてもよい。ステップS3の制御を実行する部分が専用で設けられる場合、その専用部分は、例えば、ダイオード52Bに流れる電流を検出可能に構成され、ダイオード52Bに電流が流れていない場合に素子部52をオフ状態で維持し、ダイオード52Bに電流が流れた場合にステップS3を実行して素子部52をオン状態に切り替えてもよい。
 制御部16は、ステップS3にて素子部52をオン状態に切り替えた後、ステップS4にて第1の値を目標値として第3導電路43に目標値の出力電圧を印加するように電圧変換部30に第1の変換動作(昇圧動作又は降圧動作)を開始させる。このように、制御部16は、失陥状態となった場合に、第3導電路43に第1の値の出力電圧を印加するように電圧変換部30に第1の変換動作を開始させる。制御部16は、ステップS4において上記第1の値を目標値とする上記第1の変換動作を電圧変換部30に開始させた場合、所定の終了条件が成立するか、ステップS7の処理を実行するまでは、第1の値を目標値とする上記変換動作を継続させる。所定の終了条件は、例えば、車両の始動スイッチがオフになったことである。なお、所定の終了条件が成立した場合、図3の制御は強制的に中止される。
 電圧変換部30の電圧変換が開始されると、電圧変換部30からの電流は徐々に上昇するが、電圧変換部30の負荷応答性が低いと、即座に大電流を供給することは難しい。このため、ステップS3にて素子部52がオン状態に切り替わった直後においては、素子部52を介して第2導電路42に電流が流れ込む。つまり、ステップS3にて素子部52がオン状態に切り替わった直後においては、電圧変換部30はあまり大きな電流を出力できないが、素子部52を介して大きな電流を流すことができる。ステップS3にて素子部52がオン状態に切り替わった直後においては、第2導電路42及び第3導電路43に対して、ステップS3にて素子部52がオン状態に切り替わった時点の蓄電部92の出力電圧(第1導電路41に印加される電圧)の値からダイオード52Bで生じる電圧降下分の値Vfを減じた値の電圧が印加される。そして、素子部52がオン状態に切り替わってから時間が経過するにつれて、電圧変換部30によって第3導電路43に印加される電圧は上昇し、電圧変換部30によって第3導電路43に供給される電流も上昇する。
 なお、制御部16が電圧変換部30に電圧変換を開始させる制御は、ステップS2と同時に行われてもよく、ステップS2の前に行われてもよい。制御部16が電圧変換部30に電圧変換を開始させる制御は、ステップS3と同時に行われてもよく、ステップS3の前に行われてもよい。
 制御部16は、ステップS4の後、ステップS5において所定条件が成立したか否かを判定する。なお、制御部16は、ステップS2、S3、S4が行われた後、上記所定条件が成立するまでステップS5においてNoの判断を繰り返し、ステップS5の判定を繰り返す。上記所定条件は、例えば、「第2導電路の電圧が第1導電路の電圧以上の所定値に達したこと」である。代表例では、所定値は、第1導電路の電圧である。つまり、代表例では、「第2導電路の電圧が第1導電路の電圧以上に達したこと」が所定条件である。なお、所定値は、第1導電路の電圧よりも大きい別の値であってもよい。
 制御部16は、ステップS2、S3、S4が行われた後、上記所定条件が成立したと判定した場合(ステップS5にてYesの場合)、ステップS6において素子部52をオフ状態に切り替える。つまり、第2導電路42の電圧が第1導電路41の電圧に達した直後に、素子部52がオフ状態に切り替えられる。このような切り替えがなされると、素子部52において、開閉部52Aを介しての通電が遮断され、ダイオード52Bを介しての通電のみが許容される。このように、給電制御装置10は、上述の失陥状態となった後、所定条件が成立した場合に、素子部52において第2導電路42側から蓄電部92側に電流が流れることを遮断するように動作する。
 制御部16は、ステップS6にて素子部52をオフ状態に切り替えた後、ステップS7において、電圧変換部30の目標値を第1の値よりも小さい第3の値に切り替える。このように、制御部16は、失陥状態となった場合に、第3導電路43に第1の値の出力電圧を印加する第1の変換動作を電圧変換部30に行わせた後、第3導電路43に第3の値の出力電圧を印加する第1の変換動作を電圧変換部30に行わせる。第3の値は、ステップS6にて第3の値に切り替えた時点の第2の値(第1導電路41の電圧から素子部52での電圧降下分を減じた値)よりも大きく、それ以降の第2の値よりも大きい。よって、素子部52を介しての電流の流れ込みは抑制される。制御部16がステップS7を実行するタイミングは、第2導電路42及び第3導電路43の電圧が第1の値に達したタイミングであってもよく、第2導電路42及び第3導電路43の電圧が第1の値に達してから所定時間経過した後のタイミングであってもよい。第3の値は、例えば10.2Vである。
 このように、制御部16は、通常状態(失陥状態ではない状態)から失陥状態に変化した場合にスイッチ部60をオン状態とし、開閉部52Aをオン状態とし、電圧変換部30に電圧変換を開始させるように動作する。そして、制御部16は、スイッチ部60をオン状態に切り替えた後、電圧変換部30が第1の変換動作を行っている状態で所定条件が成立した場合に開閉部52Aをオフ状態に切り替えるように動作する。更に、制御部16は、開閉部52Aをオフ状態に切り替えた後、第3導電路43に第3の値の出力電圧を印加する第1の変換動作を電圧変換部30に行わせる。そして、第3の値は、ステップS7にて目標値を第3の値に切り替えた以降の第2減算値よりも大きい値とされている。
 5.効果の例
 給電制御装置10は、蓄電部92に基づく電力を供給するバックアップ動作を行う際に、素子部52を介した経路と電圧変換部30を介した経路を利用することができる。例えば、給電制御装置10は、電圧変換部30を介した経路によって十分な電力供給がなされない時期に素子部52を介した経路を利用して迅速に電力を供給する対応が可能である。一方で、蓄電部92の出力電圧が低下した場合には、電圧変換部30によって昇圧動作を行い、第3導電路43に所望の出力電圧を印加するようにバックアップ動作を行う対応が可能である。更に、給電制御装置10は、スイッチ部60がオフ状態のときには、電力路80側から電圧変換部30側へ電流が流れ込むことを遮断することができ、スイッチ部60がオン状態のときには、電力路80に向けて電流を流す際の損失を低減することができる。
 給電制御装置10は、失陥状態において第2導電路42の電圧が第2の値以下である場合に蓄電部92側から素子部52を介して電力路80側に電流が流れる構成をなす。つまり、電圧変換部30の出力が「第2導電路42の電圧が第2の値を超える程度」に上昇していない時期には、蓄電部92に基づく電力を、素子部52を介して電力路80側に供給することができるため、電圧変換部30の出力が低い時期には素子部52を介した経路によって電流を補うことができる。更に、制御部16は、電源部91から電力路80への電力の供給が上記失陥状態でない通常状態のときに、スイッチ部60をオフ状態とすることもでき、このようにすれば、電力路80側から電圧変換部30側に電流が流れ込むことを遮断することができる。更に、上記失陥状態となった後には、素子部52において第2導電路42側から蓄電部92側に電流が流れることを遮断することができるため、このような遮断機能が発揮されている間は、電圧変換部30からの出力に基づく電流が第2導電路42側から蓄電部92側に流れ込むことを防ぐことができる。
 給電制御装置10は、失陥状態となった場合に、第3導電路43に第1の値の出力電圧を印加するように電圧変換を行った後、第1の値よりも低い第3の値の出力電圧を印加するように電圧変換を切り替えることができる。よって、この給電制御装置10は、ある程度の時間が経過した後には、電圧変換部30が出力する電圧を抑え、出力エネルギーを抑制することができる。
 給電制御装置10は、失陥状態となった場合に、上記の第2の値よりも大きい第1の値の出力電圧を印加するように電圧変換を行い、第3導電路43の電圧を相対的に高い目標電圧(第1の値)に早期に近づけるように動作することができる。更に、給電制御装置10は、失陥状態からある程度の時間が経過した後には、電圧変換部30が出力する電圧を上記の第1の値よりも小さい第3の値に抑えることにより、出力エネルギーを抑制することができる。そして、上記の第3の値は、第2の値よりも大きい値であるため、素子部52を介した第2導電路42側への電流の流れ込みが抑えられる。
 給電制御装置10は、ダイオード52Bと開閉部52Aが並列に設けられるように素子部52が構成され、ダイオード52Bのアノードが第1導電路41に接続され、カソードが第2導電路42に接続される。よって、素子部52では、開閉部52Aがオフ状態であっても、第1導電路41の電圧に対して第2導電路42の電圧が一定値以上低い場合には、第1導電路41から第2導電路42に電流が流れることが継続的に許可され、開閉部52Aがオン状態のときには開閉部52Aを介しての通電が許可される。更に、この給電制御装置10は、通常状態から失陥状態に変化した場合に開閉部52Aをオン状態にすることで、素子部52での損失を低減しつつ素子部52を介してより早期により大きな電力を供給できるようにする。更に、この給電制御装置10は、スイッチ部60をオン状態に切り替えた後、第1の変換動作中の所定条件の成立に応じて開閉部52Aをオフ状態に切り替える。よって、この給電制御装置10は、所定条件が成立するまで第1の変換動作が進行した後に、素子部52において電流が逆流しないようにすることができる。更に、この給電制御装置10は、開閉部52Aをオフ状態に切り替えた後、第3導電路43に対して第3の値(第1の値よりも小さく第2減算値よりも大きい値)の出力電圧を印加する第1の変換動作を電圧変換部30に行わせる。よって、この給電制御装置10は、ある程度の時間が経過した後には、ダイオード52Bにおいて順方向の電流を確実に抑制しつつ、エネルギーを抑制した電圧変換部30の出力動作によって電力供給を継続することができる。
 上記の所定条件は、電圧変換部30が第1の値の出力電圧を出力することであってもよい。この場合、給電制御装置10は、失陥状態後に、第3導電路43に印加される出力電圧が第1の値まで上昇するまでは開閉部52Aを介した通電を継続することができ、出力電圧が第1の値まで上昇した後には、素子部52における逆流を確実に防ぐことができる。
 <第1実施形態の変更例1>
 第1実施形態の代表例では、所定条件の一例が示されたが、上記所定条件は、「上述の失陥状態後に電圧変換部30が第3導電路43に電流を出力し始めてから所定時間が経過したこと」であってもよい。変更例1では、所定条件以外は、第1実施形態と同一の内容とすることができる。
 この給電制御装置10は、上述の失陥状態後、電圧変換部30が電流の出力を開始してから所定時間が経過するまで、開閉部52Aを介した通電を継続することができ、所定時間が経過した後には、素子部52における逆流を確実に防ぐことができる。
 <第1実施形態の変更例2>
 第1実施形態の代表例では、所定条件の一例が示されたが、上記所定条件は、「素子部52を流れる電流が下限値以下に達したこと」であってもよい。変更例2では、所定条件以外は、第1実施形態と同一の内容とすることができる。
 この給電制御装置10は、上述の失陥状態後、素子部52を流れる電流が下限値以下に達するまで開閉部52Aを介した通電を許容することができ、素子部52を流れる電流が下限値以下に達した場合に、素子部52における逆流を確実に防ぐことができる。
 <第1実施形態の変更例3>
 第1実施形態の代表例では、所定条件の一例が示されたが、所定条件は、「上述の失陥状態後に電圧変換部30が第3導電路43に出力する電流が基準値以上に達したこと」であってもよい。変更例3では、所定条件以外は、第1実施形態と同一の内容とすることができる。
 この給電制御装置10は、上述の失陥状態後、電圧変換部30が第3導電路43に出力する電流が基準値以上に達するまで開閉部52Aを介した通電を許容することができ、電圧変換部30が第3導電路43に出力する電流が基準値以上に達した場合に、素子部52における逆流を確実に防ぐことができる。
 <第2実施形態>
 次の説明は、第2実施形態に関する。
 図4に示される第2実施形態の給電制御装置210は、図1の構成からスイッチ素子62が省略された点のみが第1実施形態の給電制御装置10と異なり、その他の点は、第1実施形態の給電制御装置10と同一である。
 図4のように、第2実施形態の給電制御装置210は、スイッチ素子61がスイッチ部に相当する。スイッチ素子61のボディダイオードが第2ダイオードの一例に相当し、このボディダイオードは、アノードが第3導電路43に電気的に接続され、カソードが電力路80に電気的に接続される。このボディダイオードのカソードは第2電力路82と同電位とされるように短絡していてもよく、図4のように電流検出部12を介して接続されていてもよい。図4の構成では、スイッチ部60がオフ状態のときに電力路80の電圧が第3導電路43の電圧よりも一定値以上低下した場合に第3導電路43側から上記ボディダイオードを介して電力路80側に電流が流れる。なお、第2実施形態の給電制御装置210が行うバックアップ動作用の制御は第1実施形態と同一であり、図3のような流れで行われる。
 <第3実施形態>
 次の説明は、第3実施形態に関する。
 図5に示される第3実施形態の給電制御装置310は、図1の構成からスイッチ部60の位置が変更された点のみが第1実施形態の給電制御装置10と異なり、その他の点は、第1実施形態の給電制御装置10と同様である。
 図5の給電制御装置310は、第2導電路42の他端が第4導電路44に電気的に接続されている。この構成では、スイッチ部60がオン状態の際に第2導電路42と第3導電路43がスイッチ部60を介して短絡する。なお、第3実施形態の給電制御装置310が行うバックアップ動作用の制御は第1実施形態と同一であり、図3のような流れで行われる。
 <第4実施形態>
 次の説明は、第4実施形態に関する。
 図6に示される第4実施形態の給電制御装置410は、図1の構成からスイッチ部60が省略された点のみが第1実施形態の給電制御装置10と異なり、その他の点は、第1実施形態の給電制御装置10と同一である。
 図6の給電制御装置410は、第2導電路42と第3導電路43が短絡する。第2導電路42及び第3導電路43は、電力路80に短絡した構成で電力路80に電気的に接続される。図6の構成では、電力路80の電圧が低下すると、第2導電路42の電圧も低下し、第2の値以下となった場合に、蓄電部92側から素子部52のダイオード52Bを介して電力路80側に電流が流れる。つまり、図6の給電制御装置410は、失陥状態において第2導電路42の電圧が第2の値以下となった場合に、素子部52を介した経路を利用してより迅速に電力を供給することができる。
 第4実施形態の給電制御装置410が行うバックアップ動作用の制御は、図3の処理においてステップS2を省略した処理となっている。図6の給電制御装置410は、失陥状態において第2導電路42の電圧が第2の値以下となった場合に、ステップS3にて開閉部52Aがオン状態に切り替わる前であっても、ダイオード52Bを介して即座に電力供給を開始することができる。更に、この給電制御装置410は、開閉部52Aがオン状態に切り替わることで、素子部52での損失を低減しつつ素子部52を介してより大きな電力を供給することができる。更に、この給電制御装置410は、ステップS4にて電圧変換部30に変換動作を開始させる。よって、蓄電部92の出力電圧が低下した場合には、電圧変換部30によって昇圧動作を行い、第3導電路43に所望の出力電圧を印加するようにバックアップ動作を行う対応が可能である。更に、給電制御装置410は、失陥状態となった場合に、上記の第2の値よりも大きい第1の値の出力電圧を印加するように電圧変換を行い、第3導電路43の電圧を相対的に高い目標電圧(第1の値)に近づけるように動作することができる。
 <第5実施形態>
 次の説明は、第5実施形態に関する。
 図7に示される第5実施形態の給電制御装置510は、図6の構成から図1に示されるスイッチ素子62を追加した構成となっており、その他の点は、第4実施形態の給電制御装置410と同一である。
 図7のように、第5実施形態の給電制御装置510は、スイッチ素子62がスイッチ部に相当する。第4実施形態の給電制御装置410では、例えば蓄電部92の出力電圧が電源部91の出力電圧よりも高い構成において、失陥状態でないにもかかわらず、蓄電部92側からダイオード52Bを介して電力路80側へ電流が流れ、蓄電部92の電力が消費されることが生じ得る。これに対し、図7に示される給電制御装置510は、スイッチ素子62のボディダイオードによって、ダイオード52Bを介しての蓄電部92側から電力路80側への電流の流れを遮断することができる。そして、失陥状態となった後、図3のステップS2にてスイッチ部に相当するスイッチ素子62がオン状態に切り替わることで、ダイオード52Bを介しての蓄電部92側から電力路80側への電力供給が迅速に行われる。
 <第6実施形態>
 次の説明は、第6実施形態に関する。
 第1実施形態の給電制御装置10は、通常状態の場合に電圧変換部30を停止させておく構成であった。これに対し、図8に示される第6実施形態の給電制御装置610は、通常状態の場合に電圧変換部30に第2の変換動作を行わせる構成である。また、第6実施形態の給電制御装置610は、図1の構成からスイッチ部60が省略され、素子部52に代えて素子部652を備える構成となっている。
 素子部652は、ダイオード653と、逆流防止スイッチ654と、を有する。ダイオード653及び逆流防止スイッチ654は、第1導電路41と第2導電路42との間において互いに直列に配置される。ダイオード653は、自身を介した第1導電路41側への電流の流れを遮断し、自身を介した第2導電路42側への電流の流れを許容する。
 逆流防止スイッチ654は、Nチャネル型のFETとして構成される。逆流防止スイッチ654の一端(具体的にはドレイン)は、第1導電路41に電気的に接続される。逆流防止スイッチ654の一端(具体的にはドレイン)には、蓄電部92の出力に基づく電圧が印加される。逆流防止スイッチ654の他端(具体的にはソース)は、ダイオード655のアノードに電気的に接続される。ダイオード655のカソードは、第2導電路42に電気的に接続される。逆流防止スイッチ654は、オフ状態のときに自身を介した第2導電路42側への電流の流れを遮断し、オン状態のときに自身を介した第2導電路42側への電流の流れを許容する。
 逆流防止スイッチ654は、ボディダイオードとして構成されるダイオード655と、ダイオード655に対して並列に設けられる開閉部656と、を有する。ダイオード655のカソード及び開閉部656の一端は、第1導電路41に電気的に接続される。ダイオード655のカソード及び開閉部656の一端には、蓄電部92の出力に基づく電圧が印加される。ダイオード655のアノード及び開閉部656の他端は、ダイオード653のアノードに電気的に接続される。ダイオード653のカソードは、第2導電路42に電気的に接続される。開閉部656は、FETとして構成される逆流防止スイッチ654において、ボディダイオードとして構成される部分を除く部分であり、オン状態のときに双方向の通電が許容され、オフ状態のときに通電が双方向に遮断される部分である。開閉部656がオン状態のときとは、逆流防止スイッチ654がオン状態のときのことである。開閉部656がオフ状態のときとは、逆流防止スイッチ654がオフ状態のときのことである。
 逆流防止スイッチ654の一端(つまり、ダイオード655のカソード及び開閉部656の一端)は、素子部652の一端を構成する。ダイオード653のカソードは、素子部652の他端を構成する。素子部652の一端は、第1導電路41に電気的に接続され、素子部652の他端は、第2導電路42に電気的に接続される。
 素子部652は、逆流防止スイッチ654がオン状態のときに、自身を介して電力路80側へ電流が流れることを許容するとともに、ダイオード653によって自身を介して蓄電部92側へ電流が流れることを遮断する。素子部652は、逆流防止スイッチ654がオフ状態のときに、通電を双方向に遮断する。
 制御部16は、通常状態の場合に電圧変換部30に第2の変換動作を行わせる。これにより、蓄電部92が充電される。第2の変換動作は、本実施形態では、昇圧動作である。制御部16は、通常状態の場合に逆流防止スイッチ654をオフ状態にする。これにより、給電制御装置610は、電圧変換部30から第1導電路41に供給された電流が素子部652を介して第2導電路42及び第3導電路43に回り込むことを防止することができる。制御部16は、失陥状態となるまで電圧変換部30に第2の変換動作を行わせ、蓄電部92を充電させる。
 制御部16は、失陥状態となった場合に、逆流防止スイッチ654をオン状態に切り替えるとともに、電圧変換部30に第1の変換動作を開始させる。これにより、素子部652を介した電力路80への電力供給が即座に開始される。制御部16は、図3のステップS4と同じく、第1の値を目標値として第3導電路43に目標値の出力電圧を印加するように電圧変換部30に第1の変換動作を開始させる。その後、制御部16は、図3のステップS5と同じく、所定条件が成立したか否かを判定する。制御部16は、所定条件が成立したと判定した場合、逆流防止スイッチ654をオフ状態に切り替えるとともに、図3のステップS7と同じく、電圧変換部30の目標値を第1の値よりも小さい第3の値に切り替える。
 図8の給電制御装置610は、通常状態の場合に、電圧変換部30に第2の変換動作を行わせ、失陥状態となった場合に、電圧変換部30に第1の変換動作を開始させる。このため、給電制御装置610は、通常状態の場合に、蓄電部92を充電しておき、失陥状態となった場合に、電圧変換部30によって調整した電圧を電力路80に供給することができる。しかも、給電制御装置610は、通常状態の場合に、電圧変換部30から第1導電路41に供給される電流が素子部652を介して第2導電路42及び第3導電路43に回り込むことを逆流防止スイッチ654によって防ぐ。そして、給電制御装置610は、失陥状態となった場合に、逆流防止スイッチ654をオン状態に切り替えることで、即座に、素子部652を介して電力路80に電力供給することができる。
 <他の実施形態>
 本開示は、上記記述及び図面によって説明した実施形態に限定されるものではない。例えば、上述又は後述の実施形態の特徴は、矛盾しない範囲であらゆる組み合わせが可能である。また、上述又は後述の実施形態のいずれの特徴も、必須のものとして明示されていなければ省略することもできる。更に、上述した実施形態は、次のように変更されてもよい。
 上述された実施形態では、給電制御装置10の外部に蓄電部92が設けられるが、蓄電部92が給電制御装置10に含まれた構成であってもよい。
 上述された実施形態では、スイッチ部60がFETによって構成されていたが、FET以外の半導体スイッチによってスイッチ部が構成されていてもよく、機械式リレーによって構成されていてもよい。
 上述された実施形態では、電圧変換部を構成するスイッチ素子T1,T2,T3,T4がFETによって構成されていたが、FET以外の半導体スイッチによって構成されていてもよい。
 上述された実施形態では、第1電力路81の電圧が閾値以下に低下した場合が失陥状態とされるが、この例に限定されない。例えば、第1電力路81において所定時間内で規定値を超える電圧の低下があった場合を失陥状態としてもよく、その他の判定方法で判定してもよい。
 上述された実施形態では、ダイオード71が設けられるが、ダイオード71の代わりにFETなどのスイッチが設けられてもよい。この場合、失陥状態の発生時に即座にスイッチを遮断する構成を有していればよい。
 上述された実施形態では、素子部52がFETによって構成されるが、FETに代えてダイオードを設け、このダイオードのアノードを第1導電路41に接続し、カソードを第2導電路42に接続するように素子部を構成してもよい。この場合、図3の制御において、ステップS3、S6の処理を省略すればよい。
 上述された実施形態では、スイッチ部60がオン状態の際に第2導電路42と第3導電路43がスイッチ部を介して又は介さずに短絡する構成であり、上述の第2の値は、第1導電路41に印加される電圧の値から、素子部52において第1導電路41から第2導電路42に電流が流れる場合の素子部52で生じる電圧降下分の値を減じた値とされている。上述された実施形態は、このような構成のものにおいて、上記第3の値が上記第1の値よりも小さく上記第2の値よりも大きいが、この例に限定されず、上記第3の値が上記第1の値よりも小さく第2の値よりも小さくてもよい。具体的には、第2の値が、第1導電路41に印加される電圧の値から「素子部52がオン状態のときに第1導電路41から第2導電路42に電流が流れる場合に素子部52で生じる電圧降下分の値」を減じた値である場合、この第2の値よりも第3の値のほうが小さくてもよい。この例では、上述のいずれかの実施形態と同一のハードウェア構成を採用した上で、図3のステップS7の処理を、第2の値よりも第3の値を小さくするように変更してもよく、以下のようにしてもよい。例えば、第1実施形態の図1の構成から素子部52を「オフ状態のときに双方向の通電が遮断され、オン状態のときに双方向の通電が許容される構成(例えば、スイッチ部60と同様の構成)に変更した上で、図3のステップS6において素子部をオフ状態とすることにより素子部において双方向の通電を遮断した上で、ステップS7において第3の値を第1の値よりも小さく第2の値よりも小さくするように変更してもよい。この例では、失陥状態からある程度の時間が経過した後には、電圧変換部が出力する電圧を第3の値に抑えることにより出力エネルギーを抑制することができ、第3の値を第2の値よりも小さい値とすることで、上記出力エネルギーをより一層抑えることができる。その際に、素子部において第1導電路41側から第2導電路42側への流れ込みは遮断される。
 上述された第6実施形態では、第2の変換動作が昇圧動作であったが、降圧動作であってもよい。この場合、素子部652は、逆流防止スイッチ654を省略した構成であってもよい。例えば、素子部652は、ダイオード653のみで構成されてもよいし、第1実施形態で説明した素子部52と同じ構成であってもよい。
 上述された第6実施形態では、逆流防止スイッチ654がダイオード653よりも第1導電路41側に配置される構成であったが、ダイオード653が逆流防止スイッチ654よりも第1導電路41側に配置される構成であってもよい。この場合、ダイオード653のアノードには、蓄電部92の出力電圧が印加されてもよい。ダイオード653の他端は、逆流防止スイッチ654の一端に電気的に接続されてもよい。逆流防止スイッチ654の他端は、第2導電路42に電気的に接続されてもよい。
 今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、今回開示された実施の形態に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
2…車載システム
3…車載用電源システム
10…給電制御装置
12…電流検出部
14…電圧検出部
16…制御部
30…電圧変換部
41…第1導電路
42…第2導電路
43…第3導電路
44…第4導電路
52…素子部
52A…開閉部
52B…ダイオード
60…スイッチ部
61…スイッチ素子
62…スイッチ素子
71…ダイオード
80…電力路
81…第1電力路
82…第2電力路
83…グラウンド
91…電源部
92…蓄電部
101…負荷
210…給電制御装置
310…給電制御装置
410…給電制御装置
510…給電制御装置
610…給電制御装置
652…素子部
653…ダイオード
654…逆流防止スイッチ
655…ダイオード
656…開閉部
L…インダクタ
T1…スイッチ素子
T2…スイッチ素子
T3…スイッチ素子
T4…スイッチ素子

Claims (11)

  1.  電力を供給する電源部と、前記電源部に基づく電力が伝送される経路である電力路と、前記電源部とは異なる蓄電部と、を備える車載システムに含まれ、前記蓄電部からの給電を制御する給電制御装置であって、
     前記蓄電部の出力に基づく電圧が印加される第1導電路と、
     自身の一端が前記第1導電路に電気的に接続される素子部と、
     前記素子部の他端に電気的に接続され、前記素子部と前記電力路の間の通電経路をなす第2導電路と、
     前記蓄電部と前記電力路の間において前記素子部に対して並列に接続される電圧変換部と、
     前記電圧変換部と前記電力路の間において前記電圧変換部に電気的に接続される第3導電路と、
     前記電圧変換部を制御する制御部と、
     を備え、
     前記電圧変換部は、前記第1導電路に印加された電圧を昇圧又は降圧して出力電圧を前記第3導電路に印加する第1の変換動作と、前記第3導電路に印加された電圧を昇圧又は降圧して出力電圧を前記第1導電路に印加する第2の変換動作と、を行い、
     前記素子部は、自身を介して前記電力路側へ電流が流れることが許容可能とされ、且つ自身を介して前記蓄電部側へ電流が流れることを遮断可能とされており、
     前記制御部は、前記電源部から前記電力路への電力の供給が失陥状態ではない通常状態の場合に、前記電圧変換部を停止させておくか又は前記電圧変換部に前記第2の変換動作を行わせ、前記失陥状態となった場合に、前記電圧変換部に前記第1の変換動作を開始させる
     給電制御装置。
  2.  前記制御部は、前記失陥状態となった場合に、前記第3導電路に第1の値の出力電圧を印加するように前記電圧変換部に前記第1の変換動作を開始させ、
     前記失陥状態において前記第2導電路の電圧が第2の値以下である場合に前記蓄電部側から前記素子部を介して前記電力路側に電流が流れ、
     少なくとも前記失陥状態となった後、前記素子部において前記第2導電路側から前記蓄電部側に電流が流れることを遮断する
     請求項1に記載の給電制御装置。
  3.  前記制御部は、前記失陥状態となった場合に、前記第3導電路に前記第1の値の前記出力電圧を印加する前記第1の変換動作を前記電圧変換部に開始させた後、前記第3導電路に前記第1の値よりも小さい第3の値の前記出力電圧を印加する前記第1の変換動作を前記電圧変換部に行わせる
     請求項2に記載の給電制御装置。
  4.  前記第2導電路と前記第3導電路が短絡する構成であり、
     前記第2の値は、前記第1導電路に印加される電圧の値から前記素子部で生じる電圧降下分の値を減じた値であり、
     前記第1の値は、前記第2の値よりも大きく、
     前記第3の値は、前記第1の値よりも小さく前記第2の値よりも大きい
     請求項3に記載の給電制御装置。
  5.  前記第2導電路と前記第3導電路が短絡する構成であり、
     前記第2の値は、前記第1導電路に印加される電圧の値から、前記素子部において前記第1導電路から前記第2導電路に電流が流れる場合の前記素子部で生じる電圧降下分の値を減じた値であり、
     前記第3の値は、前記第1の値よりも小さく前記第2の値よりも小さい
     請求項3に記載の給電制御装置。
  6.  前記素子部は、ダイオードと、前記ダイオードに対して並列に設けられる開閉部を有し、
     前記ダイオードのアノードには、前記蓄電部の出力に基づく電圧が印加され、
     前記ダイオードのカソードは、前記第2導電路に電気的に接続され、
     前記開閉部はオン状態のときに双方向の通電が許容され、
     前記第2の値は、前記開閉部がオン状態のときには前記第1導電路に印加される電圧の値から前記開閉部及び前記ダイオードで生じる電圧降下分の値を減じた第1減算値であり、前記開閉部がオフ状態のときには前記第1導電路に印加される電圧の値から前記ダイオードで生じる電圧降下分の値を減じた第2減算値であり、
     前記第1の値は前記第1減算値及び前記第2減算値のいずれよりも大きく、
     前記制御部は、前記通常状態から前記失陥状態に変化した場合に前記開閉部をオン状態とし且つ前記第3導電路に前記第1の値の前記出力電圧を印加する前記第1の変換動作を前記電圧変換部に開始させた後、前記電圧変換部が前記第1の変換動作を行っている状態で所定条件が成立した場合に前記開閉部をオフ状態に切り替え、前記開閉部をオフ状態に切り替えた後、前記第3導電路に前記第3の値の前記出力電圧を印加する前記第1の変換動作を前記電圧変換部に行わせ、
     前記第3の値は、前記第2減算値よりも大きい
     請求項4に記載の給電制御装置。
  7.  前記所定条件は、前記第2導電路の電圧が、前記第1導電路の電圧以上の所定値に達したことである
     請求項6に記載の給電制御装置。
  8.  前記所定条件は、前記失陥状態後に前記第1の変換動作を前記電圧変換部に開始させてから所定時間が経過したことである
     請求項6に記載の給電制御装置。
  9.  前記所定条件は、前記素子部を流れる電流が下限値以下に達したことである
     請求項6に記載の給電制御装置。
  10.  前記所定条件は、前記失陥状態後に前記電圧変換部が前記第3導電路に出力する電流が基準値以上に達したことである
     請求項6に記載の給電制御装置。
  11.  前記素子部は、ダイオードと、逆流防止スイッチとを有し、
     前記ダイオード及び前記逆流防止スイッチは、前記第1導電路と前記第2導電路との間において互いに直列に配置され、
     前記ダイオードは、自身を介した前記第1導電路側への電流の流れを遮断し、自身を介した前記第2導電路側への電流の流れを許容し、
     前記逆流防止スイッチは、オフ状態のときに自身を介した前記第2導電路側への電流の流れを遮断し、オン状態のときに自身を介した前記第2導電路側への電流の流れを許容し、
     前記制御部は、前記通常状態の場合に前記逆流防止スイッチをオフ状態に制御しつつ前記電圧変換部に前記第2の変換動作を行わせ、前記失陥状態となった場合に、前記逆流防止スイッチをオン状態に切り替えるとともに前記電圧変換部に前記第1の変換動作を開始させる
     請求項1に記載の給電制御装置。
PCT/JP2023/019491 2022-11-15 2023-05-25 給電制御装置 WO2024105905A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/042457 WO2024105794A1 (ja) 2022-11-15 2022-11-15 給電制御装置
JPPCT/JP2022/042457 2022-11-15

Publications (1)

Publication Number Publication Date
WO2024105905A1 true WO2024105905A1 (ja) 2024-05-23

Family

ID=91084072

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/042457 WO2024105794A1 (ja) 2022-11-15 2022-11-15 給電制御装置
PCT/JP2023/019491 WO2024105905A1 (ja) 2022-11-15 2023-05-25 給電制御装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042457 WO2024105794A1 (ja) 2022-11-15 2022-11-15 給電制御装置

Country Status (1)

Country Link
WO (2) WO2024105794A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020120464A (ja) * 2019-01-22 2020-08-06 住友電装株式会社 車両用電源制御装置、及び車両用電源装置
JP2022137921A (ja) * 2021-03-09 2022-09-22 住友電装株式会社 充放電制御装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017216799A (ja) * 2016-05-31 2017-12-07 株式会社オートネットワーク技術研究所 電源装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020120464A (ja) * 2019-01-22 2020-08-06 住友電装株式会社 車両用電源制御装置、及び車両用電源装置
JP2022137921A (ja) * 2021-03-09 2022-09-22 住友電装株式会社 充放電制御装置

Also Published As

Publication number Publication date
WO2024105794A1 (ja) 2024-05-23

Similar Documents

Publication Publication Date Title
US10710468B2 (en) Vehicle power supply device
US10992169B2 (en) Vehicle-mounted backup device
JP6451708B2 (ja) 車載用のバックアップ装置
US11173857B2 (en) Control device for on-board power supply unit, and on-board power supply device with a protective relay
US11052771B2 (en) Vehicle-mounted power supply device
US11984758B2 (en) In-vehicle backup power source control apparatus and in-vehicle backup power source apparatus
JP2019195249A (ja) 車両用電源システム
JP2009120081A (ja) 電動パワーステアリング装置
JP6969505B2 (ja) 車載用の電源制御装置および車載用電源システム
JP2017212805A (ja) 車両用電圧変換装置
JP6635298B2 (ja) 充放電装置及び電源装置
WO2024105905A1 (ja) 給電制御装置
US10906484B2 (en) In-vehicle power supply device
JP2017216792A (ja) 車両用電源装置
JP7173421B1 (ja) 給電制御装置
WO2024018614A1 (ja) 車載用制御装置
WO2021100479A1 (ja) 車載用電源制御装置、及び車載用電源装置
US20230318350A1 (en) Backup power supply system and moving vehicle
US10734827B2 (en) Power supply system
WO2024024093A1 (ja) 車載用制御装置
CN118020224A (zh) 车载用控制装置
JP2020063007A (ja) 車両用バックアップ電源装置