WO2012066638A1 - 正極活物質及びその製造方法、並びにこれを用いたリチウム二次電池 - Google Patents

正極活物質及びその製造方法、並びにこれを用いたリチウム二次電池 Download PDF

Info

Publication number
WO2012066638A1
WO2012066638A1 PCT/JP2010/070382 JP2010070382W WO2012066638A1 WO 2012066638 A1 WO2012066638 A1 WO 2012066638A1 JP 2010070382 W JP2010070382 W JP 2010070382W WO 2012066638 A1 WO2012066638 A1 WO 2012066638A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium secondary
secondary battery
active material
solid solution
Prior art date
Application number
PCT/JP2010/070382
Other languages
English (en)
French (fr)
Inventor
佐藤 茂樹
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/070382 priority Critical patent/WO2012066638A1/ja
Priority to JP2012544036A priority patent/JP5674056B2/ja
Priority to US13/885,169 priority patent/US9269948B2/en
Priority to CN201080070173.0A priority patent/CN103222094B/zh
Priority to KR1020137015209A priority patent/KR101531776B1/ko
Publication of WO2012066638A1 publication Critical patent/WO2012066638A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/006Compounds containing, besides manganese, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a positive electrode active material, a method for producing the same, and a lithium secondary battery using the same.
  • the so-called secondary battery that can be charged and discharged has become increasingly important in recent years as a power source for mounting on vehicles or as a power source for personal computers and portable terminals.
  • a lithium secondary battery (typically a lithium ion secondary battery) that is lightweight and obtains a high energy density is expected to be preferably used as a large-sized power source for mounting on a vehicle.
  • This type of lithium secondary battery is charged and discharged by the movement of lithium (Li) ions between the constituent positive electrode and negative electrode, but the most important member in determining battery performance is It is a positive electrode material (positive electrode active material).
  • the discharge capacity is determined by how much the positive electrode active material can occlude / release Li ions.
  • Patent Document 1 various positive electrode active materials that are expected to be capable of realizing higher discharge capacity have been studied (for example, Patent Document 1).
  • a positive electrode active material examples thereof include titanium composite oxides such as Li 2 NiTiO 4 and Li 2 MnTiO 4 .
  • the titanium composite oxide represented by Li 2 NiTiO 4 has a theoretical capacity of about 150 mAh / g in a one-electron reaction, but may have a two-electron reaction, and in that case, a high capacity of about 300 mAh / g is required. Expected to be achieved.
  • titanium composite oxides such as Li 2 NiTiO 4 have a rock salt type crystal structure belonging to the space group Fm-3m, the structure is not suitable for diffusion of Li ions, and the material itself has an electronic conductivity. Very low. For this reason, lithium in the titanium composite oxide cannot be sufficiently extracted, and there is a limit to increasing the capacity. In addition, there is a problem that the crystal structure is unstable, the crystal structure is broken as Li ions enter and exit during charge and discharge, and cycle deterioration is likely to occur.
  • an object of the present invention is to provide a lithium secondary battery that has a titanium composite oxide such as Li 2 NiTiO 4 on the positive electrode and has a high capacity and little cycle deterioration.
  • Another object of the present invention is to provide a method for suitably producing a lithium secondary battery having such performance.
  • the lithium secondary battery provided by the present invention includes a positive electrode and a negative electrode
  • the positive electrode is an oxide represented by the following formula (1): Li 2 M1TiO 4 (1) (Where M1 is at least one metal element selected from the group consisting of Mn, Fe, Co and Ni);
  • the solid solution, the titanium composite oxide of Li 2 M1TiO 4, is obtained by solid solution LiM2O 2 of layered rock-salt structure. This introduces a path for diffusing Li ions into the original structure of Li 2 M1TiO 4 and further imparts electron conductivity. Therefore, as compared with the case where no solid solution LiM2O 2, will be taken out more lithium in Li 2 M1TiO 4, to increase the amount of lithium available for charging and discharging. Further, by a solid solution of LiM2O 2, the crystal structure becomes stable, distortion due to out of the charge and discharge time of the Li ions is reduced. Therefore, the performance deterioration accompanying charging / discharging decreases. If such a positive electrode active material is used, a high-performance lithium secondary battery having a high capacity and little cycle deterioration can be constructed.
  • Li 2 ratio to solid solution M1TiO 4 to LiM2O 2 is, Li 2 M1TiO 4 and LiM2O not particularly limited in the 2 and as long as may form a composition inseparable, Li 2 M1TiO 4 depending on the purpose of the present invention the rate at which a solid solution of LiM2O 2 may be selected as appropriate, but the molar content of Li 2 M1TiO 4 throughout the solid solution, is generally suitable at least 50 mol%, preferably 60 mol% or more, more preferably Is 70 mol% or more, particularly preferably 75 mol% or more.
  • the upper limit of the molar content of Li 2 M1TiO 4 is not particularly limited, it is suitably about 95% or less, preferably 90 mol% or less, and particularly preferably 85 mol% or less.
  • M1 in the above formula (1) is one or more metal elements of Mn, Fe, Co, and Ni.
  • Ni or Mn, or two combinations of Ni and Mn are preferable, and a composition having a high content of such elements is preferable.
  • M1 is Ni or that the content of Ni is high (for example, Ni is contained in M1 by 50 mol% or more). The higher the Ni content, the more preferable in that the discharge capacity of the lithium secondary battery constructed using the positive electrode active material is increased.
  • M2 in the above formula (2) is one or more metal elements of Mn, Co and Ni. Any combination of two or more of these is preferred. In particular, it is preferable to have a combination of Mn, Co and Ni as M2, and it is most preferable that M2 is Ni 1/3 Co 1/3 Mn 1/3 .
  • the manufacturing method of one of the positive electrode active materials for lithium secondary batteries disclosed here is provided.
  • This manufacturing method is Oxides represented by the following formula (1): Li 2 M1TiO 4 (1) (Where M1 is at least one metal element selected from the group consisting of Mn, Fe, Co and Ni);
  • a lithium secondary battery (typically a lithium ion secondary battery) provided with a positive electrode active material containing any solid solution disclosed herein on a positive electrode is mounted on a vehicle because of its high capacity and low cycle deterioration. With performance suitable as a battery. Therefore, according to the present invention, there is provided a vehicle including the lithium secondary battery disclosed herein (which may be in the form of an assembled battery to which a plurality of lithium secondary batteries are connected). In particular, a vehicle (for example, an automobile) including the lithium secondary battery as a power source (typically, a power source of a hybrid vehicle or an electric vehicle) is provided.
  • a power source typically, a power source of a hybrid vehicle or an electric vehicle
  • FIG. 1 is a diagram schematically showing a lithium secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing an electrode body of a lithium secondary battery according to an embodiment of the present invention.
  • FIG. 3 is a diagram schematically showing a test coin cell according to this test example.
  • FIG. 4 is a side view schematically showing a vehicle including a lithium secondary battery according to an embodiment of the present invention.
  • the positive electrode active material included in the positive electrode for the lithium secondary battery of the present embodiment is Oxides represented by the following formula (1): Li 2 M1TiO 4 (1) (Where M1 is at least one metal element selected from the group consisting of Mn, Fe, Co and Ni); When, Oxides represented by the following formula (2): LiM2O 2 (2) (Wherein M2 is at least one metal element selected from the group consisting of Mn, Co and Ni); And a solid solution.
  • Li 2 M1TiO 4 represented by the above formula (1) is a titanium composite oxide having a rock salt type crystal structure belonging to the space group Fm-3m, and M1 in the formula (1) is composed of Mn, Fe, Co and Ni. Of these, one or more metal elements. Among these, Ni or Mn, or two combinations of Ni and Mn are preferable, and a composition having a high content of such elements is preferable. In particular, it is preferable that M1 is Ni or that the content of Ni is high (for example, Ni is contained in M1 by 50 mol% or more). The higher the Ni content, the more preferable in that the discharge capacity of the lithium secondary battery constructed using the positive electrode active material is increased.
  • LiM2O 2 represented by the above formula (2) is a lithium transition metal composite oxide takes a layered rock-salt structure, in the formula (2) M2 is, Mn, of one or more of Co and Ni It is a metal element. Any combination of two or more of these is preferred. In particular, it is preferable that M2 contains all of Mn, Co, and Ni, and it is most preferable that M2 is Ni 1/3 Co 1/3 Mn 1/3 .
  • Solid solution contained in the positive electrode active material according to the present embodiment, the titanium composite oxide of the Li 2 M1TiO 4, are those in which a solid solution of LiM2O 2 of the layered rock-salt structure, LiM2O 2 to Li 2 M1TiO 4
  • a solid solution of LiM2O 2 of the layered rock-salt structure, LiM2O 2 to Li 2 M1TiO 4 There is no particular limitation on the ratio at which Li is dissolved, as long as Li 2 M 1 TiO 4 and LiM 2 O 2 can form an inseparably integrated composition.
  • the proportion that a solid solution of LiM2O 2 to Li 2 M1TiO 4 depending on the purpose of the present arrangement is appropriately selected, preferably, the molar content of Li 2 M1TiO 4 throughout the solid solution be 50 mol% or more More preferably, it is 60 mol% or more, and particularly preferably 70 mol% or more.
  • the upper limit of the molar content of Li 2 M1TiO 4 in the entire solid solution is not particularly limited, but is appropriately 95% or less, preferably 90 mol% or less, and particularly preferably 85 mol% or less. .
  • the concept that “the positive electrode active material includes a solid solution” includes an aspect in which a compound that is not a solid solution exists in a part of the positive electrode active material.
  • the positive electrode active material disclosed herein while mainly a solid solution of Li 2 M1TiO 4 and LiM2O 2, as a mixed component at least one oxide of Li 2 M1TiO 4 and LiM2O 2 in a part thereof May be included.
  • the solid solution of Li 2 M1TiO 4 and LiM 2 O 2 disclosed herein can be synthesized by a solid phase method or a liquid phase method.
  • the solid solution when the solid solution is synthesized by a liquid phase method, the solid solution can be manufactured through a raw material mixture slurry preparation step, a heating step, and a firing step.
  • ⁇ Raw material mixed slurry preparation process In the raw material mixed slurry preparation step, raw materials (Li supply source, Ti supply source, M1 supply source, M2 supply source) for constituting a solid solution appropriately selected according to the constituent elements of the solid solution are mixed with a predetermined solvent. Thus, a raw material mixed slurry is prepared.
  • one or two or more compounds including at least a Li supply source, a Ti supply source, an M1 supply source, and an M2 supply source can be appropriately selected and used.
  • the Li supply source, the Ti supply source, the M1 supply source, and the M2 supply source are not particularly limited as long as the target solid solution can be formed by final firing.
  • various salts for example, acetate
  • hydroxides, oxides, and the like containing these as constituent elements can be selected. These may be used alone or in combination of two or more. Particularly preferred examples include lithium acetate, lithium carbonate, lithium hydroxide, etc.
  • Ni supply source nickel acetate, nickel carbonate, nickel oxide, nickel nitrate, nickel hydroxide, nickel oxyhydroxide, etc.
  • Cobalt hydroxide or the like, iron acetate, iron carbonate, iron oxide or the like as the Fe supply source, titanium (IV) n-butoxide, titanium oxide, titanium hydroxide or the like as the Ti supply source can be selected.
  • water or a mixed solvent mainly containing water is preferably used.
  • a solvent component other than water constituting such a mixed solvent one or more organic solvents (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water can be appropriately selected and used.
  • an aqueous solvent in which 80% by mass or more (more preferably 90% by mass or more, more preferably 95% by mass or more) of the aqueous solvent is water.
  • a particularly preferred example is an aqueous solvent substantially consisting of water. Since the boiling point of water is about 100 ° C., it is possible to easily heat the raw material mixture slurry to a predetermined temperature range while suppressing the evaporation of excess solvent.
  • stirring may be performed as necessary.
  • the stirring operation can be performed using an appropriate stirring means such as a magnetic stirrer.
  • the raw material mixed slurry can be prepared in a short time.
  • the raw material may be completely dissolved in the raw material mixed slurry, or a part or all of the raw material may be dispersed in an undissolved state.
  • the precursor is obtained by heating the prepared raw material mixed slurry to volatilize the solvent.
  • the means for heating the raw material mixed slurry is not particularly limited, and any means such as a hot plate can be adopted.
  • the heating temperature varies depending on the solvent used, for example, when water is used as the solvent, it is necessary to heat at a temperature at which the volatilization of water proceeds sufficiently, and usually 70 ° C. or higher (for example, 70 to 90 ° C., The temperature is preferably about 75 ° C. to 85 ° C., particularly preferably about 80 ° C.
  • the upper limit of the heating temperature may be a temperature lower than the boiling point of the solvent used.
  • the heating time may be a time until the starting material reacts and the precursor sufficiently reacts, and is usually about 5 to 48 hours, preferably about 10 to 24 hours.
  • the obtained precursor is fired at 500 ° C. to 800 ° C.
  • the target solid solution can be synthesized from the precursor.
  • the firing temperature is not particularly limited as long as it is a temperature capable of synthesizing the solid solution. However, in order to sufficiently advance the reaction, the firing temperature needs to be 500 ° C. or higher. When the temperature exceeds 800 ° C., particle growth is promoted and the particle size becomes too large, which is not preferable.
  • the firing temperature is usually 500 to 800 ° C, preferably 550 to 700 ° C, more preferably 550 to 650 ° C.
  • the firing time may be a time until the components constituting the precursor react uniformly, and is usually 2 to 24 hours.
  • the firing means is not particularly limited, and any means such as an electric heating furnace can be adopted.
  • the firing atmosphere is not particularly limited, and may be, for example, the air or an oxygen gas atmosphere richer in oxygen than the air. Alternatively, it can be fired in an inert gas atmosphere such as Ar gas as necessary. Preferably, it is in the atmosphere or an oxygen gas atmosphere richer in oxygen than the atmosphere.
  • the said baking can also be performed in multiple times as needed. That is, in performing the above-described firing, first, the preliminary firing is performed in a relatively low temperature range (for example, less than 500 ° C., for example, 300 ° C. to 400 ° C.). The main baking is performed (for example, 500 ° C. to 800 ° C.). As described above, when the precursor is fired in a higher temperature range (for example, 500 ° C. to 800 ° C.) from the beginning by first performing preliminary firing in a lower temperature range and then performing main firing in a higher temperature range. In comparison, the homogeneity of the finally obtained solid solution can be improved. The operation of crushing the calcined product and firing it again may be repeated before the main firing.
  • the solid solution obtained by firing as described above is preferably cooled and then pulverized by milling or the like and appropriately classified to obtain a solid solution in the form of fine particles having an average particle size of about 0.1 ⁇ m to 10 ⁇ m. .
  • Solid solution powder obtained in this way since the electronic conductivity by solid solution of LiM2O 2 to Li 2 M1TiO 4 is good, special processing to compensate for electron conductivity (e.g., the carbon material It is not necessary to carry out a treatment for forming a composite, and it can be used as it is as a positive electrode active material.
  • the solid solution powder can be preferably used as a constituent element of various forms of lithium secondary battery or a constituent element (positive electrode active material) of an electrode incorporated in the lithium secondary battery.
  • a lithium secondary battery can be constructed by adopting a process similar to the conventional one except that the solid solution powder disclosed herein is used as the positive electrode active material.
  • carbon black such as acetylene black and ketjen black and other powdery carbon materials (such as graphite) can be mixed as a conductive material with the positive electrode active material containing the solid solution powder disclosed herein.
  • a binder such as polyvinylidene fluoride (PVDF), styrene butadiene rubber (SBR), polytetrafluoroethylene (PTFE), carboxymethyl cellulose (CMC) is added. be able to.
  • the composition for forming a positive electrode active material layer (hereinafter referred to as “positive electrode active material layer forming paste”) is in the form of a paste (including slurry or ink. The same shall apply hereinafter). Can be prepared.). An appropriate amount of this paste is applied onto a positive electrode current collector preferably made of aluminum or an aluminum-based alloy, and then dried and pressed to produce a positive electrode for a nonaqueous electrolyte secondary battery. it can.
  • the negative electrode for a lithium secondary battery serving as a counter electrode can be produced by a method similar to the conventional one.
  • the negative electrode active material may be any material that can occlude and release lithium.
  • a typical example is a powdery carbon material made of graphite or the like.
  • the powdery material is dispersed in a suitable dispersion medium together with a suitable binder (binder) and kneaded to obtain a paste-like composition for forming a negative electrode active material layer (hereinafter referred to as “negative electrode active material”). May be referred to as “layer forming paste”).
  • An appropriate amount of this paste is preferably applied onto a negative electrode current collector composed of copper, nickel, or an alloy thereof, and further dried and pressed, whereby a negative electrode for a lithium secondary battery can be produced.
  • the same separator as the conventional one can be used.
  • a porous sheet (porous film) made of a polyolefin resin can be used.
  • a non-aqueous electrolyte (typically, an electrolytic solution) can be used.
  • the composition includes a supporting salt in a suitable nonaqueous solvent.
  • the non-aqueous solvent include one or two selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and the like. More than seeds can be used.
  • Examples of the supporting salt include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ). 3 , 1 type, or 2 or more types of lithium compounds (lithium salt) selected from LiI etc. can be used.
  • the outer package may be a thin sheet type constituted by a laminate film or the like, and the battery outer case may be a cylindrical or cuboid battery, or may be a small button shape.
  • a long positive electrode sheet 10 and a long negative electrode sheet 20 are wound flatly via a long separator 40.
  • the electrode body (winding electrode body) 80 of the form is housed in a container 50 having a shape (flat box shape) capable of housing the wound electrode body 80 together with a non-aqueous electrolyte (not shown).
  • the container 50 includes a flat rectangular parallelepiped container main body 52 having an open upper end, and a lid 54 that closes the opening.
  • a metal material such as aluminum or steel is preferably used (in this embodiment, aluminum).
  • PPS polyphenylene sulfide resin
  • a polyimide resin may be sufficient.
  • On the upper surface of the container 50 that is, the lid 54
  • a flat wound electrode body 80 is accommodated together with a non-aqueous electrolyte (not shown).
  • the material and the member constituting the wound electrode body 80 having the above configuration may be the same as the electrode body of the conventional lithium secondary battery except that the solid solution disclosed herein is adopted as the positive electrode active material, and there is no particular limitation. .
  • the wound electrode body 80 according to the present embodiment has a long (strip-shaped) sheet structure in a stage before assembling the wound electrode body 80.
  • the positive electrode sheet 10 has a structure in which a positive electrode active material layer 14 containing a positive electrode active material is held on both surfaces of a long sheet-like foil-shaped positive electrode current collector (hereinafter referred to as “positive electrode current collector foil”) 12. ing. However, the positive electrode active material layer 14 is not attached to one side edge (the upper side edge portion in the figure) of the positive electrode sheet 10 in the width direction, and the positive electrode active material 12 in which the positive electrode current collector 12 is exposed with a certain width. A material layer non-formation part is formed.
  • the negative electrode sheet 20 holds a negative electrode active material layer 24 containing a negative electrode active material on both sides of a long sheet-like foil-shaped negative electrode current collector (hereinafter referred to as “negative electrode current collector foil”) 22.
  • negative electrode current collector foil has a structured.
  • the negative electrode active material layer 24 is not attached to one side edge (the lower side edge portion in the figure) of the negative electrode sheet 20 in the width direction, and the negative electrode current collector 22 is exposed with a certain width. An active material layer non-formation part is formed.
  • the positive electrode sheet 10 and the negative electrode sheet 20 are laminated via the separator sheet 40.
  • the positive electrode sheet 10 and the negative electrode sheet 20 are formed such that the positive electrode active material layer non-formed portion of the positive electrode sheet 10 and the negative electrode active material layer non-formed portion of the negative electrode sheet 20 protrude from both sides in the width direction of the separator sheet 40. Are overlapped slightly in the width direction.
  • the laminated body thus stacked is wound, and then the obtained wound body is crushed from the side surface direction and ablated, whereby a flat wound electrode body 80 can be produced.
  • a wound core portion 82 (that is, the positive electrode active material layer 14 of the positive electrode sheet 10, the negative electrode active material layer 24 of the negative electrode sheet 20, and the separator sheet 40) is densely arranged in the central portion of the wound electrode body 80 in the winding axis direction. Laminated portions) are formed. In addition, the electrode active material layer non-formed portions of the positive electrode sheet 10 and the negative electrode sheet 20 protrude outward from the wound core portion 82 at both ends in the winding axis direction of the wound electrode body 80.
  • a positive electrode lead terminal 74 and a negative electrode lead terminal 76 are respectively provided on the protruding portion 84 (that is, a portion where the positive electrode active material layer 14 is not formed) 84 and the protruding portion 86 (that is, a portion where the negative electrode active material layer 24 is not formed) 86. Attached and electrically connected to the positive terminal 70 and the negative terminal 72 described above.
  • the wound electrode body 80 having such a configuration is accommodated in the container body 52, and an appropriate nonaqueous electrolytic solution is disposed (injected) into the container body 52.
  • the construction (assembly) of the lithium secondary battery 100 according to this embodiment is completed by sealing the opening of the container body 52 by welding or the like with the lid 54.
  • positioning (injection) process of electrolyte solution can be performed similarly to the method currently performed by manufacture of the conventional lithium secondary battery. Thereafter, the battery is conditioned (initial charge / discharge). You may perform processes, such as degassing and a quality inspection, as needed.
  • a lithium secondary battery (sample battery) was constructed using the solid solution powder disclosed herein as a positive electrode active material, and its performance was evaluated.
  • the solid solution is referred to as xLi 2 M1TiO 4.
  • (1-x) LiM2O 2 LiM2O 2 .
  • X in the equation is a value indicating the rate at which a solid solution of LiM2O 2 to Li 2 M1TiO 4 in the solid solution.
  • Example 1 a solid solution in which Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 was dissolved in Li 2 NiTiO 4 was synthesized.
  • the molar content of Li 2 NiTiO 4 in the entire solid solution was 80 mol%.
  • the solid solution was synthesized as follows.
  • Example 2 ⁇ 0.8Li 2 MnTiO 4 .0.2Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 >
  • a solid solution in which Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 was dissolved in Li 2 MnTiO 4 was synthesized.
  • the molar content of Li 2 MnTiO 4 in the entire solid solution was 80 mol%.
  • 0.8Li 2 MnTiO 4 ⁇ 0.2Li (Ni 1/3 Co 1/3 Mn 1/3) except that O 2 was changed molar ratio of the source so as to obtain in the same manner as in Example 1 Synthesis was performed.
  • Example 3 a solid solution in which Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 was dissolved in Li 2 FeTiO 4 was synthesized.
  • the molar content of Li 2 FeTiO 4 in the entire solid solution was 80 mol%.
  • Iron acetate was used as the Fe supply source.
  • 0.8Li 2 FeTiO 4 ⁇ 0.2Li (Ni 1/3 Co 1/3 Mn 1/3) except that O 2 was changed molar ratio of the source so as to obtain in the same manner as in Example 1 Synthesis was performed.
  • Li 2 NiTiO 4 in which Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 was not dissolved was synthesized.
  • the synthesis was performed in the same manner as in Example 1 except that the molar ratio of each supply source was changed so that Li 2 NiTiO 4 was obtained.
  • Li 2 MnTiO 4 in which Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 was not dissolved was synthesized.
  • the synthesis was performed in the same manner as in Example 2 except that the molar ratio of each supply source was changed so that Li 2 MnTiO 4 was obtained.
  • Li 2 FeTiO 4 in which Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 was not dissolved was synthesized.
  • the synthesis was performed in the same manner as in Example 3 except that the molar ratio of each supply source was changed so that Li 2 FeTiO 4 was obtained.
  • a composition for forming a paste-like negative electrode active material layer is prepared by weighing SBR as a binder to natural graphite powder as a negative electrode active material so that the mass ratio thereof is 98: 2 and uniformly mixing in water.
  • a product was prepared.
  • the paste-like negative electrode active material layer forming composition is applied in a layer form on one side of a copper foil (negative electrode current collector: thickness 10 ⁇ m) and dried, so that the negative electrode active material layer is formed on one side of the negative electrode current collector.
  • the provided negative electrode sheet was obtained.
  • the obtained positive electrode sheet was punched into a circle having a diameter of 16 mm to produce a pellet-shaped positive electrode.
  • the negative electrode sheet was punched into a circle having a diameter of 19 mm to produce a pellet-shaped negative electrode.
  • the positive electrode, the negative electrode, and the separator (a three-layer structure (a porous sheet of polypropylene (PP) / polyethylene (PE) / polypropylene (PP)) having a diameter of 19 mm and a thickness of 0.02 mm was used) were not used.
  • the coin cell 60 half cell for charge / discharge performance evaluation shown in FIG.
  • reference numeral 61 denotes a positive electrode
  • reference numeral 62 denotes a negative electrode
  • reference numeral 63 denotes a separator impregnated with an electrolyte
  • reference numeral 64 denotes a gasket
  • reference numeral 65 denotes a container (negative electrode terminal)
  • reference numeral 66 denotes a lid (positive electrode terminal).
  • LiPF 6 as a supporting salt was contained in a mixed solvent containing ethylene carbonate (EC) and dimethyl carbonate (DMC) at a volume ratio of 1: 1 at a concentration of about 1 mol / liter. Things were used. In this way, a lithium secondary battery (test coin cell) 60 was produced.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • any of the lithium secondary batteries 100 disclosed herein has a performance suitable as a battery mounted on a vehicle because of its high capacity and low cycle deterioration as described above. Therefore, according to the present invention, as shown in FIG. 4, there is provided a vehicle 1 including the lithium secondary battery 100 disclosed herein (which may be in the form of an assembled battery in which a plurality of lithium secondary batteries are connected).
  • a vehicle for example, an automobile
  • the lithium secondary battery as a power source (typically, a power source of a hybrid vehicle or an electric vehicle) is provided.
  • a positive electrode active material having Li 2 M1TiO 4 on the positive electrode and having a high capacity and little performance deterioration. Therefore, a lithium secondary battery having high capacity and excellent cycle characteristics can be provided by using such a positive electrode active material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明は、LiNiTiO等のチタン複合酸化物を正極に備え、高容量かつサイクル劣化が少ないリチウム二次電池を提供することを目的とする。 本発明によって提供されるリチウム二次電池100は、正極10及び負極20を備えたリチウム二次電池100であって、正極10は、LiM1TiO(ここでM1は、Mn,Fe,CoおよびNiからなる群から選択される少なくとも一種の金属元素である)と、LiM2O(ここでM2は、Mn,CoおよびNiからなる群から選択される少なくとも一種の金属元素である)との固溶体を有する。

Description

正極活物質及びその製造方法、並びにこれを用いたリチウム二次電池
 本発明は、正極活物質及びその製造方法、並びにこれを用いたリチウム二次電池に関する。
 充放電可能ないわゆる二次電池は、車両搭載用電源として或いはパソコンおよび携帯端末の電源として近年益々重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウム二次電池(典型的にはリチウムイオン二次電池)は、車両搭載用大型電源として好ましく用いられるものとして期待されている。この種のリチウム二次電池は、その構成材料である正極と負極との間をリチウム(Li)イオンが行き来することによって充電および放電を行うが、電池性能を決定付けるうえで最も重要な部材が正極材料(正極活物質)である。例えば、正極活物質がLiイオンをどれほど吸蔵・放出できるかで放電容量が決定される。
 そのため、より高い放電容量を実現し得るものと期待される正極活物質が種々検討されている(例えば特許文献1)。そのような正極活物質の一例として、
LiNiTiO、LiMnTiO等のチタン複合酸化物が挙げられる。例えば、LiNiTiOで示すチタン複合酸化物は、理論容量が1電子反応で150mAh/g程度であるが、2電子反応の可能性があり、その場合、約300mAh/g程度の高容量を達成できるものとして期待されている。
日本国特許出願公開第平10-251020号公報
 しかしながら、LiNiTiO等のチタン複合酸化物は、空間群Fm-3mに属する岩塩型結晶構造を取るため、構造上、Liイオンの拡散に適しておらず、また材料自身の電子伝導性も極めて低い。そのため、チタン複合酸化物中のリチウムを十分に取り出すことができず、高容量化には限界がある。また、結晶構造が不安定であり、充放電時のLiイオンの出入りに伴って結晶構造が壊れ、サイクル劣化が生じやすいという問題があった。
 そこで本発明は、LiNiTiO等のチタン複合酸化物を正極に備え、高容量かつサイクル劣化が少ないリチウム二次電池を提供することを目的とする。また、そのような性能を有するリチウム二次電池を好適に製造する方法を提供することを他の目的とする。
 本願発明者は、上記目的を達成するために鋭意検討を行った結果、LiNiTiO等のチタン複合酸化物に、層状岩塩型構造のリチウム遷移金属複合酸化物を固溶させることによって、Liイオン拡散性及び電子伝導性が格段に向上し、それにより該チタン複合酸化物中のリチウムをより多く取り出すことができることを見出し、本発明を完成した。
 即ち、本発明によって提供されるリチウム二次電池は、正極及び負極を備え、前記正極は、以下の式(1)で示す酸化物:
  LiM1TiO    (1)
(ここでM1は、Mn,Fe,CoおよびNiからなる群から選択される少なくとも一種の金属元素である);
と、
 以下の式(2)で示す酸化物:
LiM2O     (2)
(ここでM2は、Mn,CoおよびNiからなる群から選択される少なくとも一種の金属元素である);
との固溶体を有する。
 上記固溶体は、LiM1TiOのチタン複合酸化物に、層状岩塩型構造のLiM2Oを固溶させたものである。このことによって、LiM1TiOの本来の構造内にLiイオンを拡散させる経路が導入され、さらに電子伝導性が付与される。そのため、LiM2Oを固溶していない場合に比べて、LiM1TiO中のリチウムをより多く取り出せるようになり、充放電に利用できるリチウム量を増大することができる。また、LiM2Oを固溶させることによって、結晶構造が安定となり、充放電時のLiイオンの出入りによる歪が緩和される。そのため、充放電に伴う性能劣化が少なくなる。かかる正極活物質を用いれば、高容量かつサイクル劣化が少ない高性能なリチウム二次電池を構築することができる。
 LiM1TiOにLiM2Oを固溶させる割合は、LiM1TiOとLiM2Oとが不可分一体の組成物を形成し得る限りにおいて特に制限されず、本発明の目的に応じてLiM1TiOにLiM2Oを固溶させる割合は適宜選択され得るが、上記固溶体全体におけるLiM1TiOのモル含有率は、概ね50モル%以上が適当であり、好ましくは60モル%以上であり、より好ましくは70モル%以上であり、特に好ましくは75モル%以上である。LiM1TiOのモル含有率の上限は特に限定されないが、概ね95%以下にすることが適当であり、好ましくは90モル%以下であり、特に好ましくは85モル%以下である。
 上記式(1)中のM1は、Mn,Fe,Co及びNiのうちの1種または2種以上の金属元素である。このうち、Ni又はMn、あるいはNiとMnとの2種の組み合わせが好ましく、かかる元素の含有率の高い組成のものが好適である。特に、M1がNiであるか、あるいはNiの含有率が高いこと(例えば、M1中においてNiが50モル%以上含まれていること)が好適である。Niの含有率が高ければ高いほど該正極活物質を用いて構築されたリチウム二次電池の放電容量が増大する点で好ましい。
 また、上記式(2)中のM2は、Mn,Co及びNiのうちの1種または2種以上の金属元素である。これらのいずれか2種以上の組み合わせが好ましい。特に、上記M2としてMn,CoおよびNiの組み合わせを有することが好適であり、中でもM2が、Ni1/3Co1/3Mn1/3であることが最適である。
 また、本発明によると、ここに開示されるいずれかのリチウム二次電池用正極活物質の製造方法が提供される。この製造方法は、
 以下の式(1)で示す酸化物:
  LiM1TiO    (1)
(ここでM1は、Mn,Fe,CoおよびNiからなる群から選択される少なくとも一種の金属元素である);
と、
 以下の式(2)で示す酸化物:
  LiM2O     (2)
(ここでM2は、Mn,CoおよびNiからなる群から選択される少なくとも一種の金属元素である);
との固溶体を構成するための原料を所定の溶媒と混合して原料混合スラリーを調製する工程と、
 前記原料混合スラリーから溶媒を揮発させて前駆体を得る工程と、
 前記前駆体を焼成して前記固溶体を含むリチウム二次電池用正極活物質を得る工程とを包含する。
 本発明の製造方法によれば、高容量かつサイクル劣化が少ないリチウム二次電池を構築するのに資する最適な正極活物質を製造することができる。
 ここに開示されるいずれかの固溶体を含む正極活物質を正極に備えるリチウム二次電池(典型的にはリチウムイオン二次電池)は、高容量かつサイクル劣化が少ないことから、車両に搭載される電池として適した性能を備える。したがって本発明によると、ここに開示されるリチウム二次電池(複数のリチウム二次電池が接続された組電池の形態であり得る。)を備える車両が提供される。特に、該リチウム二次電池を動力源(典型的には、ハイブリッド車両または電気車両の動力源)として備える車両(例えば自動車)が提供される。
図1は、本発明の一実施形態に係るリチウム二次電池を模式的に示す図である。 図2は、本発明の一実施形態に係るリチウム二次電池の電極体を模式的に示す図である。 図3は、本試験例に係る試験用コインセルを模式的に示す図である。 図4は、本発明の一実施形態に係るリチウム二次電池を備えた車両を模式的に示す側面図である。
 以下、図面を参照しながら、本発明による実施の形態を説明する。以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。なお、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。また、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、正極および負極を備えた電極体の構成および製法、セパレータや電解質の構成および製法、リチウム二次電池その他の電池の構築に係る一般的技術等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。
 本実施形態のリチウム二次電池用正極が有する正極活物質は、
 以下の式(1)で示す酸化物:
  LiM1TiO    (1)
(ここでM1は、Mn,Fe,CoおよびNiからなる群から選択される少なくとも一種の金属元素である);
と、
 以下の式(2)で示す酸化物:
  LiM2O     (2)
(ここでM2は、Mn,CoおよびNiからなる群から選択される少なくとも一種の金属元素である);
との固溶体を含む。
 <LiM1TiO
 上記式(1)で示すLiM1TiOは、空間群Fm-3mに属する岩塩型結晶構造をとるチタン複合酸化物であり、式(1)中のM1は、Mn,Fe,Co及びNiのうちの1種または2種以上の金属元素である。このうち、Ni又はMn、あるいはNiとMnとの2種の組み合わせが好ましく、かかる元素の含有率の高い組成のものが好適である。特に、M1がNiであるか、あるいはNiの含有率が高いこと(例えば、M1中においてNiが50モル%以上含まれていること)が好適である。Niの含有率が高ければ高いほど該正極活物質を用いて構築されたリチウム二次電池の放電容量が増大する点で好ましい。
 <LiM2O
 上記式(2)で示すLiM2Oは、層状岩塩型構造をとるリチウム遷移金属複合酸化物であり、式(2)中のM2は、Mn,Co及びNiのうちの1種または2種以上の金属元素である。これらのいずれか2種以上の組み合わせが好ましい。特に、M2中においてMn,Co及びNiがすべて含まれていることが好適であり、特にM2が、Ni1/3Co1/3Mn1/3であることが最適である。
 本実施形態に係る正極活物質に含まれる固溶体は、上記LiM1TiOのチタン複合酸化物に、上記層状岩塩型構造のLiM2Oを固溶させたものであり、LiM1TiOにLiM2Oを固溶させる割合は、LiM1TiOとLiM2Oとが不可分一体の組成物を形成し得る限りにおいて特に制限されない。即ち、本構成の目的に応じてLiM1TiOにLiM2Oを固溶させる割合は適宜選択されるが、好ましくは、上記固溶体全体におけるLiM1TiOのモル含有率が50モル%以上であり、より好ましくは60モル%以上であり、特に好ましくは70モル%以上である。上記固溶体全体におけるLiM1TiOのモル含有率の上限は特に限定されないが、概ね95%以下にすることが適当であり、好ましくは90モル%以下であり、特に好ましくは85モル%以下である。
 このようにLiM1TiOにLiM2Oを固溶させることによって、本来の岩塩型構造内にLiイオンを拡散させる経路が導入され、さらに電子伝導性が付与される。そのため、LiM2Oを固溶していない場合に比べて、LiM1TiO中のリチウムをより多く取り出せるようになり、充放電に利用できるリチウム量を増大することができる。また、LiM2Oを固溶させることによって、結晶構造が安定となり、充放電時のLiイオンの出入りによる歪が緩和される。そのため、充放電に伴う性能劣化が少なくなる。かかる正極活物質を用いれば、高容量かつサイクル劣化が少ない高性能なリチウム二次電池を構築することができる。
 なお、ここに開示される技術において、「正極活物質が固溶体を含む」という概念のなかには、該正極活物質の一部に固溶体でない化合物が存在する態様も含まれる。例えば、ここに開示される正極活物質は、LiM1TiOとLiM2Oとの固溶体を主体としつつ、その一部にLiM1TiO及びLiM2Oのうちの少なくとも一方の酸化物を混合成分として含んでいてもよい。
 ここで開示されるLiM1TiOとLiM2Oとの固溶体は、固相法または液相法によって合成することができる。例えば、上記固溶体を液相法により合成する場合、上記固溶体は、原料混合スラリー調製工程と、加熱工程と、焼成工程とを経て製造され得る。以下、各プロセスについて詳細に説明する。
<原料混合スラリー調製工程>
 原料混合スラリー調製工程では、上記固溶体の構成元素に応じて適宜選択される固溶体を構成するための原料(Li供給源、Ti供給源、M1供給源、M2供給源)を、所定の溶媒と混合して原料混合スラリーを調製する。
 上記原料としては、少なくともLi供給源、Ti供給源、M1供給源およびM2供給源を包含する一種または二種以上の化合物を適宜選択して用いることができる。Li供給源、Ti供給源、M1供給源およびM2供給源としては、最終的な焼成により目的の固溶体を形成し得るものであれば特に限定されない。例えば、これらを構成元素とする各種の塩(例えば酢酸塩)、水酸化物、酸化物、等が選択され得る。これらを単独で使用してもよいし、あるいは2種以上を併用して用いてもよい。特に好ましい例として、Li供給源としての酢酸リチウム、炭酸リチウム、水酸化リチウム等、Ni供給源としての酢酸ニッケル、炭酸ニッケル、酸化ニッケル、硝酸ニッケル、水酸化ニッケル、オキシ水酸化ニッケル等、Mn供給源としての酢酸マンガン、炭酸マンガン、酸化マンガン、硝酸マンガン、水酸化マンガン、オキシ水酸化マンガン等、Co供給源としての酢酸コバルト、炭酸コバルト、酸化コバルト、硫酸コバルト、硝酸コバルト、水酸化コバルト、オキシ水酸化コバルト等、Fe供給源としての酢酸鉄、炭酸鉄、酸化鉄等、Ti供給源としてのチタン(IV)n-ブトキシド、酸化チタン、水酸化チタン等、が選択され得る。
 上記溶媒としては、水または水を主体とする混合溶媒が好ましく用いられる。かかる混合溶媒を構成する水以外の溶媒成分としては、水と均一に混合し得る有機溶媒(低級アルコール、低級ケトン等)の一種または二種以上を適宜選択して用いることができる。例えば、該水系溶媒の80質量%以上(より好ましくは90質量%以上、さらに好ましくは95質量%以上)が水である水系溶媒の使用が好ましい。特に好ましい例として、実質的に水からなる水系溶媒が挙げられる。水の沸点は約100℃であるため、過剰な溶媒の蒸発を抑止しつつ原料混合スラリーを所定の温度域に加温することを容易に行うことができる。
 上記原料混合スラリーを調製するときには、必要に応じて攪拌を行ってもよい。上記攪拌する操作は、例えばマグネチックスターラー等の適当な攪拌手段を用いて行うことができる。この攪拌により原料混合スラリーの調製を短時間で行うことができる。なお、原料混合スラリー中には、上記原料が完全に溶解していてもよいし、上記原料の一部または全部が未溶解の状態で分散していてもよい。
 <加熱工程>
 加熱工程では、上記調製した原料混合スラリーを加熱し溶媒を揮発させることによって、前駆体を得る。原料混合スラリーを加熱する手段としては特に限定されず、ホットプレート等の任意の手段を採用することができる。加熱温度は、使用する溶媒によっても異なるが、例えば溶媒として水を用いる場合、水の揮発が十分に進行する温度で加熱することが必要であり、通常は70℃以上(例えば70~90℃、好ましくは75℃~85℃程度、特に好ましくは80℃程度)にすることが好適である。加熱温度の上限は、使用する溶媒の沸点を下回る温度であればよい。加熱時間は、出発原料が反応して前駆体が十分に反応するまでの時間とすればよく、通常は5~48時間程度であり、好ましくは10~24時間程度である。
 <焼成工程>
 焼成工程では、上記得られた前駆体を500℃~800℃で焼成する。この焼成によって、前駆体から目的の固溶体を合成することができる。焼成温度は、上記固溶体を合成し得る温度であればよく特に制限されないが、反応を十分に進行させるためには、焼成温度は500℃以上であることが必要であり、その一方で、焼成温度が800℃を超えると、粒子成長が促進され、粒子サイズが大きくなりすぎるため好ましくない。焼成温度は、通常は500~800℃が適当であり、好ましくは550~700℃であり、より好ましくは550~650℃である。焼成時間は、前駆体を構成する各成分が均一に反応するまでの時間とすればよく、通常は2~24時間である。焼成手段としては特に限定されず、電気加熱炉等の任意の手段を採用することができる。焼成雰囲気としては特に限定されず、例えば大気中であってもよいし、大気よりも酸素がリッチな酸素ガス雰囲気中であってもよい。あるいは、必要に応じてArガス等の不活性ガス雰囲気中で焼成することもできる。好ましくは、大気中もしくは大気よりも酸素がリッチな酸素ガス雰囲気中である。
 なお、必要に応じて、上記焼成を複数回に分けて行うこともできる。即ち、上記の焼成を行うにあたっては、まず比較的低めの温度域(例えば500℃未満、例えば300℃~400℃)で仮焼成し、その仮焼成物をいったん解砕した後、より高い温度域(例えば500℃~800℃)で本焼成する。このように、まず低めの温度域で仮焼成を行った後に高めの温度域で本焼成を行うことにより、前駆体を最初から高めの温度域(例えば500℃~800℃)で焼成する場合に比べて、最終的に得られる固溶体の均質性を高めることができる。仮焼成物を解砕し、再度焼成するという操作を本焼成前に繰り返し行ってもよい。
 上記のような焼成により得られた固溶体を、好ましくは冷却後、ミルがけ等により粉砕し適当に分級することによって、平均粒子径が0.1μm~10μm程度の微粒子形態の固溶体を得ることができる。
 このようにして得られた固溶体粉末は、LiM1TiOにLiM2Oを固溶させることによって電子伝導性が良好であることから、電子伝導性を補うための特別な処理(例えば炭素材との複合体を形成する処理)をする必要がなく、正極活物質としてそのまま用いることができる。例えば、上記固溶体粉末を、種々の形態のリチウム二次電池の構成要素または該リチウム二次電池に内蔵される電極の構成要素(正極活物質)として好ましく使用し得る。この場合、ここで開示される固溶体粉末を正極活物質として使用すること以外は、従来と同様のプロセスを採用してリチウム二次電池を構築することができる。
 例えば、ここで開示される固溶体粉末を含む正極活物質に、導電材としてアセチレンブラック、ケッチェンブラック等のカーボンブラックやその他(グラファイト等)の粉末状カーボン材料を混合することができる。また、正極活物質と導電材の他に、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンラバー(SBR)、ポリテトラフルオロエチレン(PTFE)、カルボキシメチルセルロース(CMC)等の結着材(バインダ)を添加することができる。これらを適当な分散媒体に分散させて混練することによって、ペースト状(スラリー状またはインク状を含む。以下同じ。)の正極活物質層形成用組成物(以下、「正極活物質層形成用ペースト」という場合がある。)を調製することができる。このペーストを、好ましくはアルミニウムまたはアルミニウムを主成分とする合金から構成される正極集電体上に適当量塗布しさらに乾燥ならびにプレスすることによって、非水電解質二次電池用正極を作製することができる。
 他方、対極となるリチウム二次電池用負極は、従来と同様の手法により作製することができる。例えば負極活物質としては、リチウムを吸蔵且つ放出可能な材料であればよい。典型例として黒鉛(グラファイト)等から成る粉末状の炭素材料が挙げられる。そして正極と同様、かかる粉末状材料を適当な結着材(バインダ)とともに適当な分散媒体に分散させて混練することによって、ペースト状の負極活物質層形成用組成物(以下、「負極活物質層形成用ペースト」という場合がある。)を調製することができる。このペーストを、好ましくは銅やニッケル或いはそれらの合金から構成される負極集電体上に適当量塗布しさらに乾燥ならびにプレスすることによって、リチウム二次電池用負極を作製することができる。
 ここで開示される固溶体粉末を正極活物質に用いるリチウム二次電池において、従来と同様のセパレータを使用することができる。例えばポリオレフィン樹脂から成る多孔質のシート(多孔質フィルム)等を使用することができる。
 また、電解質としては非水系の電解質(典型的には電解液)を使用することができる。典型的には、適当な非水溶媒に支持塩を含有させた組成である。上記非水溶媒としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等からなる群から選択された一種又は二種以上を用いることができる。また、上記支持塩としては、例えば、LiPF、LiBF、LiClO、LiAsF、LiCFSO、LiCSO、LiN(CFSO、LiC(CFSO、LiI等から選択される一種または二種以上のリチウム化合物(リチウム塩)を用いることができる。
 また、ここで開示される固溶体粉末を正極活物質として採用される限りにおいて、構築されるリチウム二次電池の形状(外形やサイズ)には特に制限はない。外装がラミネートフィルム等で構成される薄型シートタイプであってもよく、電池外装ケースが円筒形状や直方体形状の電池でもよく、或いは小型のボタン形状であってもよい。
 以下、捲回電極体を備えるリチウム二次電池を例にしてここで開示される正極の使用態様を説明するが、本発明をかかる実施形態に限定することを意図したものではない。
 図1に示すように、本実施形態に係るリチウム二次電池100は、長尺状の正極シート10と長尺状の負極シート20が長尺状のセパレータ40を介して扁平に捲回された形態の電極体(捲回電極体)80が、図示しない非水電解液とともに、該捲回電極体80を収容し得る形状(扁平な箱型)の容器50に収容された構成を有する。
 容器50は、上端が開放された扁平な直方体状の容器本体52と、その開口部を塞ぐ蓋体54とを備える。容器50を構成する材質としては、アルミニウム、スチール等の金属材料が好ましく用いられる(本実施形態ではアルミニウム)。あるいは、ポリフェニレンサルファイド樹脂(PPS)、ポリイミド樹脂等の樹脂材料を成形してなる容器50であってもよい。容器50の上面(すなわち蓋体54)には、捲回電極体80の正極と電気的に接続する正極端子70および該電極体80の負極20と電気的に接続する負極端子72が設けられている。容器50の内部には、扁平形状の捲回電極体80が図示しない非水電解液とともに収容される。
 上記構成の捲回電極体80を構成する材料および部材自体は、正極活物質としてここで開示される固溶体を採用する以外、従来のリチウム二次電池の電極体と同様でよく、特に制限はない。本実施形態に係る捲回電極体80は、図2に示すように、捲回電極体80を組み立てる前段階において長尺状(帯状)のシート構造を有している。
 正極シート10は、長尺シート状の箔状の正極集電体(以下「正極集電箔」と称する)12の両面に正極活物質を含む正極活物質層14が保持された構造を有している。ただし、正極活物質層14は正極シート10の幅方向の一方の側縁(図では上側の側縁部分)には付着されず、正極集電体12を一定の幅にて露出させた正極活物質層非形成部が形成されている。負極シート20も正極シート10と同様に、長尺シート状の箔状の負極集電体(以下「負極集電箔」と称する)22の両面に負極活物質を含む負極活物質層24が保持された構造を有している。ただし、負極活物質層24は負極シート20の幅方向の一方の側縁(図では下側の側縁部分)には付着されず、負極集電体22を一定の幅にて露出させた負極活物質層非形成部が形成されている。
 捲回電極体80を作製するに際しては、正極シート10と負極シート20とがセパレータシート40を介して積層される。このとき、正極シート10の正極活物質層非形成部分と負極シート20の負極活物質層非形成部分とがセパレータシート40の幅方向の両側からそれぞれはみ出すように、正極シート10と負極シート20とを幅方向にややずらして重ね合わせる。このように重ね合わせた積層体を捲回し、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって扁平状の捲回電極体80が作製され得る。
 捲回電極体80の捲回軸方向における中央部分には、捲回コア部分82(即ち正極シート10の正極活物質層14と負極シート20の負極活物質層24とセパレータシート40とが密に積層された部分)が形成される。また、捲回電極体80の捲回軸方向の両端部には、正極シート10および負極シート20の電極活物質層非形成部分がそれぞれ捲回コア部分82から外方にはみ出ている。かかる正極側はみ出し部分(すなわち正極活物質層14の非形成部分)84および負極側はみ出し部分(すなわち負極活物質層24の非形成部分)86には、正極リード端子74および負極リード端子76がそれぞれ付設されており、上述の正極端子70および負極端子72とそれぞれ電気的に接続される。
 かかる構成の捲回電極体80を容器本体52に収容し、その容器本体52内に適当な非水電解液を配置(注液)する。そして、容器本体52の開口部を蓋体54との溶接等により封止することにより、本実施形態に係るリチウム二次電池100の構築(組み立て)が完成する。なお、容器本体52の封止プロセスや電解液の配置(注液)プロセスは、従来のリチウム二次電池の製造で行われている手法と同様にして行うことができる。その後、該電池のコンディショニング(初期充放電)を行う。必要に応じてガス抜きや品質検査等の工程を行ってもよい。
 以下の試験例において、ここで開示される固溶体粉末を正極活物質として使用してリチウム二次電池(サンプル電池)を構築し、その性能評価を行った。以下、固溶体をxLiM1TiO・(1-x)LiM2Oと示す。式中の「x」は、上記固溶体においてLiM1TiOにLiM2Oを固溶させる割合を示す値である。
 実施例1では、LiNiTiOにLi(Ni1/3Co1/3Mn1/3)Oを固溶させた固溶体を合成した。固溶体全体におけるLiNiTiOのモル含有率は80モル%とした。固溶体の合成は以下のようにして行った。
<0.8LiNiTiO・0.2Li(Ni1/3Co1/3Mn1/3)O
 まず、Li供給源としての酢酸リチウムと、Ni供給源としての酢酸ニッケルと、Mn供給源としての酢酸マンガンと、Co供給源としての酢酸コバルトと、Ti供給源としてのチタン(IV)n-ブトキシドとを、上記組成比となるように水中で混合し、原料混合スラリーを調製した。この原料混合スラリーを約80℃に加熱して攪拌して水を揮発させることにより前駆体を得た。その前駆体を大気中において300℃で仮焼成し、これをいったん解砕した後、さらに600℃で本焼成した。その焼成体を適当な粒径までボールミルで粉砕することにより、0.8LiNiTiO・0.2Li(Ni1/3Co1/3Mn1/3)O粉末を得た。
<0.8LiMnTiO・0.2Li(Ni1/3Co1/3Mn1/3)O
 実施例2では、LiMnTiOにLi(Ni1/3Co1/3Mn1/3)Oを固溶させた固溶体を合成した。固溶体全体におけるLiMnTiOのモル含有率は80モル%とした。0.8LiMnTiO・0.2Li(Ni1/3Co1/3Mn1/3)Oが得られるように各供給源のモル比を変更したこと以外は実施例1と同様にして合成を行った。
 実施例3では、LiFeTiOにLi(Ni1/3Co1/3Mn1/3)Oを固溶させた固溶体を合成した。固溶体全体におけるLiFeTiOのモル含有率は80モル%とした。Fe供給源としては、酢酸鉄を用いた。0.8LiFeTiO・0.2Li(Ni1/3Co1/3Mn1/3)Oが得られるように各供給源のモル比を変更したこと以外は実施例1と同様にして合成を行った。 
 比較例1では、Li(Ni1/3Co1/3Mn1/3)Oを固溶していないLiNiTiOを合成した。LiNiTiOが得られるように各供給源のモル比を変更したこと以外は実施例1と同様にして合成を行った。
 比較例2では、Li(Ni1/3Co1/3Mn1/3)Oを固溶していないLiMnTiOを合成した。LiMnTiOが得られるように各供給源のモル比を変更したこと以外は実施例2と同様にして合成を行った。
 比較例3では、Li(Ni1/3Co1/3Mn1/3)Oを固溶していないLiFeTiOを合成した。LiFeTiOが得られるように各供給源のモル比を変更したこと以外は実施例3と同様にして合成を行った。
<正極シートの作製>
 上記得られた各実施例1~3及び比較例1~3の固溶体粉末(正極活物質)に、導電材としてのカーボンブラックと、結着剤としてのポリビニリデンフロライド(PVDF)とを、それらの質量比が80:15:5となるように秤量してN-メチルピロリドン(NMP)中で均一に混合し、ペースト状の正極活物質層形成用組成物を調製した。このペースト状正極活物質層形成用組成物をアルミニウム箔(正極集電体:厚さ15μm)の片面に層状に塗布して乾燥することにより、該正極集電体の片面に正極活物質層が設けられた正極シートを得た。
<負極シートの作製>
 負極活物質としての天然黒鉛粉末に、結着剤としてのSBRを、それらの質量比が98:2となるように秤量して水中で均一に混合し、ペースト状の負極活物質層形成用組成物を調製した。このペースト状負極活物質層形成用組成物を銅箔(負極集電体:厚さ10μm)の片面に層状に塗布して乾燥することにより、該負極集電体の片面に負極活物質層が設けられた負極シートを得た。
<コインセルの作製>
 上記得られた正極シートを直径16mmの円形に打ち抜いて、ペレット状の正極を作製した。また、上記負極シートを直径19mmの円形に打ち抜いて、ペレット状の負極を作製した。この正極と、負極と、セパレータ(直径19mm、厚さ0.02mmの3層構造(ポリプロピレン(PP)/ポリエチレン(PE)/ポリプロピレン(PP))の多孔質シートを使用した。)とを、非水電解液とともにステンレス製容器に組み込んで、直径20mm、厚さ3.2mm(2032型)の図3に示すコインセル60(充放電性能評価用のハーフセル)を構築した。図3中、符号61は正極を、符号62は負極を、符号63は電解液の含浸したセパレータを、符号64はガスケットを、符号65は容器(負極端子)を、符号66は蓋(正極端子)をそれぞれ示す。なお、非水電解液としては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とを1:1の体積比で含む混合溶媒に支持塩としてのLiPFを約1mol/リットルの濃度で含有させたものを用いた。このようにしてリチウム二次電池(試験用コインセル)60を作製した。
<初期放電容量>
 以上のように得られた各試験用コインセルを、25℃の温度条件にて、電流0.5C、電圧4.8Vの定電流定電圧方式で合計充電時間が3時間となるまで充電し、次いで、0.5Cの定電流で2.5Vまで放電するという充放電サイクルを50回連続して行った。そして、1サイクル目の放電容量(初期放電容量)と、50サイクル目の放電容量との比率から、50サイクル後の容量維持率(「50サイクル目の放電容量/1サイクル目の放電容量(初期放電容量)」×100)を算出した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、Li(Ni1/3Co1/3Mn1/3)Oを固溶していないLiM1TiOを使用した比較例1~3に係る電池は、初期放電容量が低く、また充放電を50サイクル繰り返した後の容量維持率も劣っていた。
 これに対して、Li(Ni1/3Co1/3Mn1/3)Oを固溶したLiM1TiOを使用した実施例1~3に係る電池は、比較例1~3に係る電池に比べて、初期放電容量が高く、また充放電を50サイクル繰り返した後の容量維持率も格段に向上していた。この結果から、LiM1TiOにLiM2Oを固溶させたxLiM1TiO・(1-x)LiM2Oを用いることによって、高容量かつサイクル劣化が少ないリチウム二次電池が得られることが確認できた。
 ここで供試したリチウム二次電池の場合、LiM1TiO中の「M1」をNiまたはMnにすることによって、1.45mAh以上という高い初期放電容量を達成できた(実施例1,2)。特にLiM1TiO中の「M1」をNiにすることによって、1.55mAh以上という極めて高い初期放電容量を達成できた(実施例1)。初期放電容量を向上させる観点からは、LiM1TiO中の「M1」をNi及び/又はMnにすることが望ましい。
 また、ここで供試したリチウム二次電池の場合、LiM1TiO中の「M1」をNiまたはFeにすることによって、66%以上という高い容量維持率を達成できた(実施例1,3)。特にLiM1TiO中の「M1」をNiにすることによって、68%以上という極めて高い容量維持率を達成できた(実施例1)。容量維持率を向上させる観点からは、LiM1TiO中の「M1」をNi及び/又はFeにすることが望ましい。
 以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。
 ここに開示されるいずれかのリチウム二次電池100は、上述したように高容量かつサイクル劣化が少ないことから、車両に搭載される電池として適した性能を備える。したがって本発明によると、図4に示すように、ここに開示されるリチウム二次電池100(複数のリチウム二次電池が接続された組電池の形態であり得る。)を備える車両1が提供される。特に、該リチウム二次電池を動力源(典型的には、ハイブリッド車両または電気車両の動力源)として備える車両(例えば自動車)が提供される。
 本発明によると、LiM1TiOを正極に備え、高容量かつ性能劣化が少ない正極活物質を提供することができる。従って、かかる正極活物質を利用することによって、高容量かつサイクル特性に優れるリチウム二次電池を提供することができる。

Claims (8)

  1.  正極及び負極を備えたリチウム二次電池であって、
     前記正極は、以下の式(1)で示す酸化物:
      LiM1TiO    (1)
    (ここでM1は、Mn,Fe,CoおよびNiからなる群から選択される少なくとも一種の金属元素である);
    と、
     以下の式(2)で示す酸化物:
    LiM2O     (2)
    (ここでM2は、Mn,CoおよびNiからなる群から選択される少なくとも一種の金属元素である);
    との固溶体を有する、リチウム二次電池。
  2.  前記固溶体全体における前記式(1)で示す酸化物のモル含有率は、50モル%以上である、請求項1に記載のリチウム二次電池。
  3.  前記式(1)で示す酸化物は前記M1としてNiを有する、請求項1または2に記載のリチウム二次電池。
  4.  前記式(2)で示す酸化物は前記M2としてMn,CoおよびNiを有する、請求項1~3の何れか一つに記載のリチウム二次電池。
  5.  前記式(2)で示す酸化物中のM2は、Ni1/3Co1/3Mn1/3である、請求項4に記載のリチウム二次電池。
  6.  以下の式(1)で示す酸化物:
      LiM1TiO    (1)
    (ここでM1は、Mn,Fe,CoおよびNiからなる群から選択される少なくとも一種の金属元素である);
    と、
     以下の式(2)で示す酸化物:
      LiM2O     (2)
    (ここでM2は、Mn,CoおよびNiからなる群から選択される少なくとも一種の金属元素である);
    との固溶体を有する、リチウム二次電池用正極。
  7.  以下の式(1)で示す酸化物:
      LiM1TiO    (1)
    (ここでM1は、Mn,Fe,CoおよびNiからなる群から選択される少なくとも一種の金属元素である);
    と、
     以下の式(2)で示す酸化物:
      LiM2O     (2)
    (ここでM2は、Mn,CoおよびNiからなる群から選択される少なくとも一種の金属元素である);
    との固溶体を含む、リチウム二次電池用正極活物質。
  8.  リチウム二次電池用正極活物質を製造する方法であって、
     以下の式(1)で示す酸化物:
      LiM1TiO    (1)
    (ここでM1は、Mn,Fe,CoおよびNiからなる群から選択される少なくとも一種の金属元素である);
    と、
     以下の式(2)で示す酸化物:
      LiM2O     (2)
    (ここでM2は、Mn,CoおよびNiからなる群から選択される少なくとも一種の金属元素である);
    との固溶体を構成するための原料を所定の溶媒と混合して原料混合スラリーを調製する工程と、
     前記原料混合スラリーから溶媒を揮発させて前駆体を得る工程と、
     前記前駆体を焼成して前記固溶体を含むリチウム二次電池用正極活物質を得る工程と
    を包含する、リチウム二次電池用正極活物質の製造方法。
PCT/JP2010/070382 2010-11-16 2010-11-16 正極活物質及びその製造方法、並びにこれを用いたリチウム二次電池 WO2012066638A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2010/070382 WO2012066638A1 (ja) 2010-11-16 2010-11-16 正極活物質及びその製造方法、並びにこれを用いたリチウム二次電池
JP2012544036A JP5674056B2 (ja) 2010-11-16 2010-11-16 正極活物質及びその製造方法、並びにこれを用いたリチウム二次電池
US13/885,169 US9269948B2 (en) 2010-11-16 2010-11-16 Positive electrode active material, process for producing same, and lithium secondary battery using same
CN201080070173.0A CN103222094B (zh) 2010-11-16 2010-11-16 正极活性物质及其制造方法、以及使用该正极活性物质的锂二次电池
KR1020137015209A KR101531776B1 (ko) 2010-11-16 2010-11-16 정극 활물질 및 그 제조 방법, 및 이것을 사용한 리튬 이차 전지

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/070382 WO2012066638A1 (ja) 2010-11-16 2010-11-16 正極活物質及びその製造方法、並びにこれを用いたリチウム二次電池

Publications (1)

Publication Number Publication Date
WO2012066638A1 true WO2012066638A1 (ja) 2012-05-24

Family

ID=46083602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070382 WO2012066638A1 (ja) 2010-11-16 2010-11-16 正極活物質及びその製造方法、並びにこれを用いたリチウム二次電池

Country Status (5)

Country Link
US (1) US9269948B2 (ja)
JP (1) JP5674056B2 (ja)
KR (1) KR101531776B1 (ja)
CN (1) CN103222094B (ja)
WO (1) WO2012066638A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073700A1 (ja) * 2012-11-12 2014-05-15 国立大学法人九州大学 リチウム電池用正極活物質、及び当該リチウム電池用正極活物質を含有するリチウム電池
JP2015069754A (ja) * 2013-09-27 2015-04-13 トヨタ自動車株式会社 正極活物質及び正極活物質の製造方法並びにリチウム電池

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107408692B (zh) * 2015-09-16 2021-09-17 松下知识产权经营株式会社 正极活性物质和电池
CN106378139B (zh) * 2016-08-26 2019-10-11 北京大学深圳研究生院 一种水分解催化剂及其制备方法和应用
JP6760140B2 (ja) * 2017-03-06 2020-09-23 トヨタ自動車株式会社 リチウムイオン二次電池用正極材料の製造方法およびリチウムイオン二次電池用正極材料
CN108417823B (zh) * 2018-02-28 2021-03-30 华南理工大学 一种利用重复球磨法制备的Li2FeTi1-yMoyO4材料及其制备方法与应用
US20200067083A1 (en) * 2018-08-22 2020-02-27 Ecopro Bm Co., Ltd. Positive electrode active material and lithium secondary battery comprising the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288005A (ja) * 2007-05-17 2008-11-27 Hitachi Maxell Ltd 非水電解質二次電池用正極活物質および非水電解質二次電池
JP2009224097A (ja) * 2008-03-14 2009-10-01 Panasonic Corp 非水電解質二次電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251020A (ja) 1997-03-11 1998-09-22 Ishihara Sangyo Kaisha Ltd 金属置換チタン酸リチウムおよびその製造方法ならびにそれを用いてなるリチウム電池
CN101405899B (zh) * 2006-03-20 2012-04-04 株式会社Lg化学 具有高效能的锂电池阴极材料
US7820137B2 (en) 2006-08-04 2010-10-26 Enerdel, Inc. Lithium titanate and method of forming the same
JP4963059B2 (ja) * 2006-11-20 2012-06-27 独立行政法人産業技術総合研究所 チタン及びニッケル含有リチウムマンガン系複合酸化物
US7807601B2 (en) * 2006-12-27 2010-10-05 Exxonmobil Research And Engineering Company Mixed metal oxide catalysts and processes for their preparation and use
JP5369447B2 (ja) 2008-02-18 2013-12-18 株式会社豊田中央研究所 リチウムチタン鉄複合酸化物、その使用方法、リチウムイオン二次電池、及びリチウムチタン鉄複合酸化物の製造方法
JP5121067B2 (ja) * 2008-10-22 2013-01-16 花王株式会社 複合粒子の製造方法
CN101630736B (zh) * 2009-08-17 2011-11-02 深圳市天骄科技开发有限公司 锂电池三元正极材料循环性能的改进方法
JP5152246B2 (ja) 2010-04-23 2013-02-27 株式会社豊田自動織機 リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288005A (ja) * 2007-05-17 2008-11-27 Hitachi Maxell Ltd 非水電解質二次電池用正極活物質および非水電解質二次電池
JP2009224097A (ja) * 2008-03-14 2009-10-01 Panasonic Corp 非水電解質二次電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073700A1 (ja) * 2012-11-12 2014-05-15 国立大学法人九州大学 リチウム電池用正極活物質、及び当該リチウム電池用正極活物質を含有するリチウム電池
JP2014096333A (ja) * 2012-11-12 2014-05-22 Kyushu Univ リチウム電池用正極活物質、及び当該リチウム電池用正極活物質を含有するリチウム電池
CN104781963A (zh) * 2012-11-12 2015-07-15 国立大学法人九州大学 锂电池用正极活性物质以及含有该锂电池用正极活性物质的锂电池
US9780369B2 (en) 2012-11-12 2017-10-03 Kyushu University, National University Corporation Cathode active material for lithium batteries, and lithium battery comprising the cathode active material for lithium batteries
JP2015069754A (ja) * 2013-09-27 2015-04-13 トヨタ自動車株式会社 正極活物質及び正極活物質の製造方法並びにリチウム電池

Also Published As

Publication number Publication date
CN103222094A (zh) 2013-07-24
US9269948B2 (en) 2016-02-23
KR101531776B1 (ko) 2015-06-25
JPWO2012066638A1 (ja) 2014-05-12
JP5674056B2 (ja) 2015-02-25
US20130236787A1 (en) 2013-09-12
CN103222094B (zh) 2015-05-06
KR20130108630A (ko) 2013-10-04

Similar Documents

Publication Publication Date Title
JP6524158B2 (ja) 非水電解質二次電池用負極活物質、負極、非水電解質二次電池、電池パック及び車
US10497936B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using said positive electrode active material
JP5605641B2 (ja) リチウム二次電池
KR101587293B1 (ko) 비수전해액 이차 전지용 Li-Ni계 복합 산화물 입자 분말 및 그의 제조 방법, 및 비수전해질 이차 전지
JP5534364B2 (ja) リチウム二次電池用正極活物質
JP5348510B2 (ja) リチウム二次電池用正極活物質およびその利用
US20080193846A1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and production method thereof
JP2011134670A (ja) リチウム二次電池用正極活物質
JP2000082466A (ja) 正極活物質及び非水電解質二次電池
JP5674056B2 (ja) 正極活物質及びその製造方法、並びにこれを用いたリチウム二次電池
Ruan et al. Effect of pre-thermal treatment on the lithium storage performance of LiNi 0.8 Co 0.15 Al 0.05 O 2
KR20130001703A (ko) 양극활물질, 상기 양극활물질을 포함하는 리튬 이차 전지 및 상기 리튬 이차 전지를 전기화학적으로 활성화시키는 방법
US11677065B2 (en) Cathode active material of lithium secondary battery
JP5561547B2 (ja) 非水電解質二次電池
JP2011171012A (ja) リチウム二次電池用正極
JP2013051086A (ja) 二次電池用電極材料とその製造方法
CN114824244A (zh) 正极活性物质和使用该正极活性物质的非水电解质二次电池
US20220127160A1 (en) Positive electrode active material for lithium ion secondary battery, method of manufacturing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP5741976B2 (ja) リチウム二次電池
JP2996234B1 (ja) 非水電解液二次電池
JP2013089454A (ja) 電極活物質の製造方法
EP3489198A1 (en) Cathode active material of lithium secondary battery
JP7308586B2 (ja) 非水系電解質二次電池用正極活物質
WO2015019483A1 (ja) 非水系二次電池用正極活物質、それを用いた非水系二次電池用正極、非水系二次電池
WO2018143273A1 (ja) リチウムマンガン系複合酸化物及びその製造方法、並びにそれを用いた正極材料、正極及びリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859659

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012544036

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13885169

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137015209

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10859659

Country of ref document: EP

Kind code of ref document: A1