WO2012066638A1 - 正極活物質及びその製造方法、並びにこれを用いたリチウム二次電池 - Google Patents
正極活物質及びその製造方法、並びにこれを用いたリチウム二次電池 Download PDFInfo
- Publication number
- WO2012066638A1 WO2012066638A1 PCT/JP2010/070382 JP2010070382W WO2012066638A1 WO 2012066638 A1 WO2012066638 A1 WO 2012066638A1 JP 2010070382 W JP2010070382 W JP 2010070382W WO 2012066638 A1 WO2012066638 A1 WO 2012066638A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- lithium secondary
- secondary battery
- active material
- solid solution
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
- C01G45/006—Compounds containing, besides manganese, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
- C01G45/12—Manganates manganites or permanganates
- C01G45/1221—Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
- C01G45/1228—Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/009—Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/006—Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/40—Cobaltates
- C01G51/42—Cobaltates containing alkali metals, e.g. LiCoO2
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/40—Cobaltates
- C01G51/42—Cobaltates containing alkali metals, e.g. LiCoO2
- C01G51/44—Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
- C01G51/50—Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/006—Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a positive electrode active material, a method for producing the same, and a lithium secondary battery using the same.
- the so-called secondary battery that can be charged and discharged has become increasingly important in recent years as a power source for mounting on vehicles or as a power source for personal computers and portable terminals.
- a lithium secondary battery (typically a lithium ion secondary battery) that is lightweight and obtains a high energy density is expected to be preferably used as a large-sized power source for mounting on a vehicle.
- This type of lithium secondary battery is charged and discharged by the movement of lithium (Li) ions between the constituent positive electrode and negative electrode, but the most important member in determining battery performance is It is a positive electrode material (positive electrode active material).
- the discharge capacity is determined by how much the positive electrode active material can occlude / release Li ions.
- Patent Document 1 various positive electrode active materials that are expected to be capable of realizing higher discharge capacity have been studied (for example, Patent Document 1).
- a positive electrode active material examples thereof include titanium composite oxides such as Li 2 NiTiO 4 and Li 2 MnTiO 4 .
- the titanium composite oxide represented by Li 2 NiTiO 4 has a theoretical capacity of about 150 mAh / g in a one-electron reaction, but may have a two-electron reaction, and in that case, a high capacity of about 300 mAh / g is required. Expected to be achieved.
- titanium composite oxides such as Li 2 NiTiO 4 have a rock salt type crystal structure belonging to the space group Fm-3m, the structure is not suitable for diffusion of Li ions, and the material itself has an electronic conductivity. Very low. For this reason, lithium in the titanium composite oxide cannot be sufficiently extracted, and there is a limit to increasing the capacity. In addition, there is a problem that the crystal structure is unstable, the crystal structure is broken as Li ions enter and exit during charge and discharge, and cycle deterioration is likely to occur.
- an object of the present invention is to provide a lithium secondary battery that has a titanium composite oxide such as Li 2 NiTiO 4 on the positive electrode and has a high capacity and little cycle deterioration.
- Another object of the present invention is to provide a method for suitably producing a lithium secondary battery having such performance.
- the lithium secondary battery provided by the present invention includes a positive electrode and a negative electrode
- the positive electrode is an oxide represented by the following formula (1): Li 2 M1TiO 4 (1) (Where M1 is at least one metal element selected from the group consisting of Mn, Fe, Co and Ni);
- the solid solution, the titanium composite oxide of Li 2 M1TiO 4, is obtained by solid solution LiM2O 2 of layered rock-salt structure. This introduces a path for diffusing Li ions into the original structure of Li 2 M1TiO 4 and further imparts electron conductivity. Therefore, as compared with the case where no solid solution LiM2O 2, will be taken out more lithium in Li 2 M1TiO 4, to increase the amount of lithium available for charging and discharging. Further, by a solid solution of LiM2O 2, the crystal structure becomes stable, distortion due to out of the charge and discharge time of the Li ions is reduced. Therefore, the performance deterioration accompanying charging / discharging decreases. If such a positive electrode active material is used, a high-performance lithium secondary battery having a high capacity and little cycle deterioration can be constructed.
- Li 2 ratio to solid solution M1TiO 4 to LiM2O 2 is, Li 2 M1TiO 4 and LiM2O not particularly limited in the 2 and as long as may form a composition inseparable, Li 2 M1TiO 4 depending on the purpose of the present invention the rate at which a solid solution of LiM2O 2 may be selected as appropriate, but the molar content of Li 2 M1TiO 4 throughout the solid solution, is generally suitable at least 50 mol%, preferably 60 mol% or more, more preferably Is 70 mol% or more, particularly preferably 75 mol% or more.
- the upper limit of the molar content of Li 2 M1TiO 4 is not particularly limited, it is suitably about 95% or less, preferably 90 mol% or less, and particularly preferably 85 mol% or less.
- M1 in the above formula (1) is one or more metal elements of Mn, Fe, Co, and Ni.
- Ni or Mn, or two combinations of Ni and Mn are preferable, and a composition having a high content of such elements is preferable.
- M1 is Ni or that the content of Ni is high (for example, Ni is contained in M1 by 50 mol% or more). The higher the Ni content, the more preferable in that the discharge capacity of the lithium secondary battery constructed using the positive electrode active material is increased.
- M2 in the above formula (2) is one or more metal elements of Mn, Co and Ni. Any combination of two or more of these is preferred. In particular, it is preferable to have a combination of Mn, Co and Ni as M2, and it is most preferable that M2 is Ni 1/3 Co 1/3 Mn 1/3 .
- the manufacturing method of one of the positive electrode active materials for lithium secondary batteries disclosed here is provided.
- This manufacturing method is Oxides represented by the following formula (1): Li 2 M1TiO 4 (1) (Where M1 is at least one metal element selected from the group consisting of Mn, Fe, Co and Ni);
- a lithium secondary battery (typically a lithium ion secondary battery) provided with a positive electrode active material containing any solid solution disclosed herein on a positive electrode is mounted on a vehicle because of its high capacity and low cycle deterioration. With performance suitable as a battery. Therefore, according to the present invention, there is provided a vehicle including the lithium secondary battery disclosed herein (which may be in the form of an assembled battery to which a plurality of lithium secondary batteries are connected). In particular, a vehicle (for example, an automobile) including the lithium secondary battery as a power source (typically, a power source of a hybrid vehicle or an electric vehicle) is provided.
- a power source typically, a power source of a hybrid vehicle or an electric vehicle
- FIG. 1 is a diagram schematically showing a lithium secondary battery according to an embodiment of the present invention.
- FIG. 2 is a diagram schematically showing an electrode body of a lithium secondary battery according to an embodiment of the present invention.
- FIG. 3 is a diagram schematically showing a test coin cell according to this test example.
- FIG. 4 is a side view schematically showing a vehicle including a lithium secondary battery according to an embodiment of the present invention.
- the positive electrode active material included in the positive electrode for the lithium secondary battery of the present embodiment is Oxides represented by the following formula (1): Li 2 M1TiO 4 (1) (Where M1 is at least one metal element selected from the group consisting of Mn, Fe, Co and Ni); When, Oxides represented by the following formula (2): LiM2O 2 (2) (Wherein M2 is at least one metal element selected from the group consisting of Mn, Co and Ni); And a solid solution.
- Li 2 M1TiO 4 represented by the above formula (1) is a titanium composite oxide having a rock salt type crystal structure belonging to the space group Fm-3m, and M1 in the formula (1) is composed of Mn, Fe, Co and Ni. Of these, one or more metal elements. Among these, Ni or Mn, or two combinations of Ni and Mn are preferable, and a composition having a high content of such elements is preferable. In particular, it is preferable that M1 is Ni or that the content of Ni is high (for example, Ni is contained in M1 by 50 mol% or more). The higher the Ni content, the more preferable in that the discharge capacity of the lithium secondary battery constructed using the positive electrode active material is increased.
- LiM2O 2 represented by the above formula (2) is a lithium transition metal composite oxide takes a layered rock-salt structure, in the formula (2) M2 is, Mn, of one or more of Co and Ni It is a metal element. Any combination of two or more of these is preferred. In particular, it is preferable that M2 contains all of Mn, Co, and Ni, and it is most preferable that M2 is Ni 1/3 Co 1/3 Mn 1/3 .
- Solid solution contained in the positive electrode active material according to the present embodiment, the titanium composite oxide of the Li 2 M1TiO 4, are those in which a solid solution of LiM2O 2 of the layered rock-salt structure, LiM2O 2 to Li 2 M1TiO 4
- a solid solution of LiM2O 2 of the layered rock-salt structure, LiM2O 2 to Li 2 M1TiO 4 There is no particular limitation on the ratio at which Li is dissolved, as long as Li 2 M 1 TiO 4 and LiM 2 O 2 can form an inseparably integrated composition.
- the proportion that a solid solution of LiM2O 2 to Li 2 M1TiO 4 depending on the purpose of the present arrangement is appropriately selected, preferably, the molar content of Li 2 M1TiO 4 throughout the solid solution be 50 mol% or more More preferably, it is 60 mol% or more, and particularly preferably 70 mol% or more.
- the upper limit of the molar content of Li 2 M1TiO 4 in the entire solid solution is not particularly limited, but is appropriately 95% or less, preferably 90 mol% or less, and particularly preferably 85 mol% or less. .
- the concept that “the positive electrode active material includes a solid solution” includes an aspect in which a compound that is not a solid solution exists in a part of the positive electrode active material.
- the positive electrode active material disclosed herein while mainly a solid solution of Li 2 M1TiO 4 and LiM2O 2, as a mixed component at least one oxide of Li 2 M1TiO 4 and LiM2O 2 in a part thereof May be included.
- the solid solution of Li 2 M1TiO 4 and LiM 2 O 2 disclosed herein can be synthesized by a solid phase method or a liquid phase method.
- the solid solution when the solid solution is synthesized by a liquid phase method, the solid solution can be manufactured through a raw material mixture slurry preparation step, a heating step, and a firing step.
- ⁇ Raw material mixed slurry preparation process In the raw material mixed slurry preparation step, raw materials (Li supply source, Ti supply source, M1 supply source, M2 supply source) for constituting a solid solution appropriately selected according to the constituent elements of the solid solution are mixed with a predetermined solvent. Thus, a raw material mixed slurry is prepared.
- one or two or more compounds including at least a Li supply source, a Ti supply source, an M1 supply source, and an M2 supply source can be appropriately selected and used.
- the Li supply source, the Ti supply source, the M1 supply source, and the M2 supply source are not particularly limited as long as the target solid solution can be formed by final firing.
- various salts for example, acetate
- hydroxides, oxides, and the like containing these as constituent elements can be selected. These may be used alone or in combination of two or more. Particularly preferred examples include lithium acetate, lithium carbonate, lithium hydroxide, etc.
- Ni supply source nickel acetate, nickel carbonate, nickel oxide, nickel nitrate, nickel hydroxide, nickel oxyhydroxide, etc.
- Cobalt hydroxide or the like, iron acetate, iron carbonate, iron oxide or the like as the Fe supply source, titanium (IV) n-butoxide, titanium oxide, titanium hydroxide or the like as the Ti supply source can be selected.
- water or a mixed solvent mainly containing water is preferably used.
- a solvent component other than water constituting such a mixed solvent one or more organic solvents (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water can be appropriately selected and used.
- an aqueous solvent in which 80% by mass or more (more preferably 90% by mass or more, more preferably 95% by mass or more) of the aqueous solvent is water.
- a particularly preferred example is an aqueous solvent substantially consisting of water. Since the boiling point of water is about 100 ° C., it is possible to easily heat the raw material mixture slurry to a predetermined temperature range while suppressing the evaporation of excess solvent.
- stirring may be performed as necessary.
- the stirring operation can be performed using an appropriate stirring means such as a magnetic stirrer.
- the raw material mixed slurry can be prepared in a short time.
- the raw material may be completely dissolved in the raw material mixed slurry, or a part or all of the raw material may be dispersed in an undissolved state.
- the precursor is obtained by heating the prepared raw material mixed slurry to volatilize the solvent.
- the means for heating the raw material mixed slurry is not particularly limited, and any means such as a hot plate can be adopted.
- the heating temperature varies depending on the solvent used, for example, when water is used as the solvent, it is necessary to heat at a temperature at which the volatilization of water proceeds sufficiently, and usually 70 ° C. or higher (for example, 70 to 90 ° C., The temperature is preferably about 75 ° C. to 85 ° C., particularly preferably about 80 ° C.
- the upper limit of the heating temperature may be a temperature lower than the boiling point of the solvent used.
- the heating time may be a time until the starting material reacts and the precursor sufficiently reacts, and is usually about 5 to 48 hours, preferably about 10 to 24 hours.
- the obtained precursor is fired at 500 ° C. to 800 ° C.
- the target solid solution can be synthesized from the precursor.
- the firing temperature is not particularly limited as long as it is a temperature capable of synthesizing the solid solution. However, in order to sufficiently advance the reaction, the firing temperature needs to be 500 ° C. or higher. When the temperature exceeds 800 ° C., particle growth is promoted and the particle size becomes too large, which is not preferable.
- the firing temperature is usually 500 to 800 ° C, preferably 550 to 700 ° C, more preferably 550 to 650 ° C.
- the firing time may be a time until the components constituting the precursor react uniformly, and is usually 2 to 24 hours.
- the firing means is not particularly limited, and any means such as an electric heating furnace can be adopted.
- the firing atmosphere is not particularly limited, and may be, for example, the air or an oxygen gas atmosphere richer in oxygen than the air. Alternatively, it can be fired in an inert gas atmosphere such as Ar gas as necessary. Preferably, it is in the atmosphere or an oxygen gas atmosphere richer in oxygen than the atmosphere.
- the said baking can also be performed in multiple times as needed. That is, in performing the above-described firing, first, the preliminary firing is performed in a relatively low temperature range (for example, less than 500 ° C., for example, 300 ° C. to 400 ° C.). The main baking is performed (for example, 500 ° C. to 800 ° C.). As described above, when the precursor is fired in a higher temperature range (for example, 500 ° C. to 800 ° C.) from the beginning by first performing preliminary firing in a lower temperature range and then performing main firing in a higher temperature range. In comparison, the homogeneity of the finally obtained solid solution can be improved. The operation of crushing the calcined product and firing it again may be repeated before the main firing.
- the solid solution obtained by firing as described above is preferably cooled and then pulverized by milling or the like and appropriately classified to obtain a solid solution in the form of fine particles having an average particle size of about 0.1 ⁇ m to 10 ⁇ m. .
- Solid solution powder obtained in this way since the electronic conductivity by solid solution of LiM2O 2 to Li 2 M1TiO 4 is good, special processing to compensate for electron conductivity (e.g., the carbon material It is not necessary to carry out a treatment for forming a composite, and it can be used as it is as a positive electrode active material.
- the solid solution powder can be preferably used as a constituent element of various forms of lithium secondary battery or a constituent element (positive electrode active material) of an electrode incorporated in the lithium secondary battery.
- a lithium secondary battery can be constructed by adopting a process similar to the conventional one except that the solid solution powder disclosed herein is used as the positive electrode active material.
- carbon black such as acetylene black and ketjen black and other powdery carbon materials (such as graphite) can be mixed as a conductive material with the positive electrode active material containing the solid solution powder disclosed herein.
- a binder such as polyvinylidene fluoride (PVDF), styrene butadiene rubber (SBR), polytetrafluoroethylene (PTFE), carboxymethyl cellulose (CMC) is added. be able to.
- the composition for forming a positive electrode active material layer (hereinafter referred to as “positive electrode active material layer forming paste”) is in the form of a paste (including slurry or ink. The same shall apply hereinafter). Can be prepared.). An appropriate amount of this paste is applied onto a positive electrode current collector preferably made of aluminum or an aluminum-based alloy, and then dried and pressed to produce a positive electrode for a nonaqueous electrolyte secondary battery. it can.
- the negative electrode for a lithium secondary battery serving as a counter electrode can be produced by a method similar to the conventional one.
- the negative electrode active material may be any material that can occlude and release lithium.
- a typical example is a powdery carbon material made of graphite or the like.
- the powdery material is dispersed in a suitable dispersion medium together with a suitable binder (binder) and kneaded to obtain a paste-like composition for forming a negative electrode active material layer (hereinafter referred to as “negative electrode active material”). May be referred to as “layer forming paste”).
- An appropriate amount of this paste is preferably applied onto a negative electrode current collector composed of copper, nickel, or an alloy thereof, and further dried and pressed, whereby a negative electrode for a lithium secondary battery can be produced.
- the same separator as the conventional one can be used.
- a porous sheet (porous film) made of a polyolefin resin can be used.
- a non-aqueous electrolyte (typically, an electrolytic solution) can be used.
- the composition includes a supporting salt in a suitable nonaqueous solvent.
- the non-aqueous solvent include one or two selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and the like. More than seeds can be used.
- Examples of the supporting salt include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ). 3 , 1 type, or 2 or more types of lithium compounds (lithium salt) selected from LiI etc. can be used.
- the outer package may be a thin sheet type constituted by a laminate film or the like, and the battery outer case may be a cylindrical or cuboid battery, or may be a small button shape.
- a long positive electrode sheet 10 and a long negative electrode sheet 20 are wound flatly via a long separator 40.
- the electrode body (winding electrode body) 80 of the form is housed in a container 50 having a shape (flat box shape) capable of housing the wound electrode body 80 together with a non-aqueous electrolyte (not shown).
- the container 50 includes a flat rectangular parallelepiped container main body 52 having an open upper end, and a lid 54 that closes the opening.
- a metal material such as aluminum or steel is preferably used (in this embodiment, aluminum).
- PPS polyphenylene sulfide resin
- a polyimide resin may be sufficient.
- On the upper surface of the container 50 that is, the lid 54
- a flat wound electrode body 80 is accommodated together with a non-aqueous electrolyte (not shown).
- the material and the member constituting the wound electrode body 80 having the above configuration may be the same as the electrode body of the conventional lithium secondary battery except that the solid solution disclosed herein is adopted as the positive electrode active material, and there is no particular limitation. .
- the wound electrode body 80 according to the present embodiment has a long (strip-shaped) sheet structure in a stage before assembling the wound electrode body 80.
- the positive electrode sheet 10 has a structure in which a positive electrode active material layer 14 containing a positive electrode active material is held on both surfaces of a long sheet-like foil-shaped positive electrode current collector (hereinafter referred to as “positive electrode current collector foil”) 12. ing. However, the positive electrode active material layer 14 is not attached to one side edge (the upper side edge portion in the figure) of the positive electrode sheet 10 in the width direction, and the positive electrode active material 12 in which the positive electrode current collector 12 is exposed with a certain width. A material layer non-formation part is formed.
- the negative electrode sheet 20 holds a negative electrode active material layer 24 containing a negative electrode active material on both sides of a long sheet-like foil-shaped negative electrode current collector (hereinafter referred to as “negative electrode current collector foil”) 22.
- negative electrode current collector foil has a structured.
- the negative electrode active material layer 24 is not attached to one side edge (the lower side edge portion in the figure) of the negative electrode sheet 20 in the width direction, and the negative electrode current collector 22 is exposed with a certain width. An active material layer non-formation part is formed.
- the positive electrode sheet 10 and the negative electrode sheet 20 are laminated via the separator sheet 40.
- the positive electrode sheet 10 and the negative electrode sheet 20 are formed such that the positive electrode active material layer non-formed portion of the positive electrode sheet 10 and the negative electrode active material layer non-formed portion of the negative electrode sheet 20 protrude from both sides in the width direction of the separator sheet 40. Are overlapped slightly in the width direction.
- the laminated body thus stacked is wound, and then the obtained wound body is crushed from the side surface direction and ablated, whereby a flat wound electrode body 80 can be produced.
- a wound core portion 82 (that is, the positive electrode active material layer 14 of the positive electrode sheet 10, the negative electrode active material layer 24 of the negative electrode sheet 20, and the separator sheet 40) is densely arranged in the central portion of the wound electrode body 80 in the winding axis direction. Laminated portions) are formed. In addition, the electrode active material layer non-formed portions of the positive electrode sheet 10 and the negative electrode sheet 20 protrude outward from the wound core portion 82 at both ends in the winding axis direction of the wound electrode body 80.
- a positive electrode lead terminal 74 and a negative electrode lead terminal 76 are respectively provided on the protruding portion 84 (that is, a portion where the positive electrode active material layer 14 is not formed) 84 and the protruding portion 86 (that is, a portion where the negative electrode active material layer 24 is not formed) 86. Attached and electrically connected to the positive terminal 70 and the negative terminal 72 described above.
- the wound electrode body 80 having such a configuration is accommodated in the container body 52, and an appropriate nonaqueous electrolytic solution is disposed (injected) into the container body 52.
- the construction (assembly) of the lithium secondary battery 100 according to this embodiment is completed by sealing the opening of the container body 52 by welding or the like with the lid 54.
- positioning (injection) process of electrolyte solution can be performed similarly to the method currently performed by manufacture of the conventional lithium secondary battery. Thereafter, the battery is conditioned (initial charge / discharge). You may perform processes, such as degassing and a quality inspection, as needed.
- a lithium secondary battery (sample battery) was constructed using the solid solution powder disclosed herein as a positive electrode active material, and its performance was evaluated.
- the solid solution is referred to as xLi 2 M1TiO 4.
- (1-x) LiM2O 2 LiM2O 2 .
- X in the equation is a value indicating the rate at which a solid solution of LiM2O 2 to Li 2 M1TiO 4 in the solid solution.
- Example 1 a solid solution in which Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 was dissolved in Li 2 NiTiO 4 was synthesized.
- the molar content of Li 2 NiTiO 4 in the entire solid solution was 80 mol%.
- the solid solution was synthesized as follows.
- Example 2 ⁇ 0.8Li 2 MnTiO 4 .0.2Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 >
- a solid solution in which Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 was dissolved in Li 2 MnTiO 4 was synthesized.
- the molar content of Li 2 MnTiO 4 in the entire solid solution was 80 mol%.
- 0.8Li 2 MnTiO 4 ⁇ 0.2Li (Ni 1/3 Co 1/3 Mn 1/3) except that O 2 was changed molar ratio of the source so as to obtain in the same manner as in Example 1 Synthesis was performed.
- Example 3 a solid solution in which Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 was dissolved in Li 2 FeTiO 4 was synthesized.
- the molar content of Li 2 FeTiO 4 in the entire solid solution was 80 mol%.
- Iron acetate was used as the Fe supply source.
- 0.8Li 2 FeTiO 4 ⁇ 0.2Li (Ni 1/3 Co 1/3 Mn 1/3) except that O 2 was changed molar ratio of the source so as to obtain in the same manner as in Example 1 Synthesis was performed.
- Li 2 NiTiO 4 in which Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 was not dissolved was synthesized.
- the synthesis was performed in the same manner as in Example 1 except that the molar ratio of each supply source was changed so that Li 2 NiTiO 4 was obtained.
- Li 2 MnTiO 4 in which Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 was not dissolved was synthesized.
- the synthesis was performed in the same manner as in Example 2 except that the molar ratio of each supply source was changed so that Li 2 MnTiO 4 was obtained.
- Li 2 FeTiO 4 in which Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 was not dissolved was synthesized.
- the synthesis was performed in the same manner as in Example 3 except that the molar ratio of each supply source was changed so that Li 2 FeTiO 4 was obtained.
- a composition for forming a paste-like negative electrode active material layer is prepared by weighing SBR as a binder to natural graphite powder as a negative electrode active material so that the mass ratio thereof is 98: 2 and uniformly mixing in water.
- a product was prepared.
- the paste-like negative electrode active material layer forming composition is applied in a layer form on one side of a copper foil (negative electrode current collector: thickness 10 ⁇ m) and dried, so that the negative electrode active material layer is formed on one side of the negative electrode current collector.
- the provided negative electrode sheet was obtained.
- the obtained positive electrode sheet was punched into a circle having a diameter of 16 mm to produce a pellet-shaped positive electrode.
- the negative electrode sheet was punched into a circle having a diameter of 19 mm to produce a pellet-shaped negative electrode.
- the positive electrode, the negative electrode, and the separator (a three-layer structure (a porous sheet of polypropylene (PP) / polyethylene (PE) / polypropylene (PP)) having a diameter of 19 mm and a thickness of 0.02 mm was used) were not used.
- the coin cell 60 half cell for charge / discharge performance evaluation shown in FIG.
- reference numeral 61 denotes a positive electrode
- reference numeral 62 denotes a negative electrode
- reference numeral 63 denotes a separator impregnated with an electrolyte
- reference numeral 64 denotes a gasket
- reference numeral 65 denotes a container (negative electrode terminal)
- reference numeral 66 denotes a lid (positive electrode terminal).
- LiPF 6 as a supporting salt was contained in a mixed solvent containing ethylene carbonate (EC) and dimethyl carbonate (DMC) at a volume ratio of 1: 1 at a concentration of about 1 mol / liter. Things were used. In this way, a lithium secondary battery (test coin cell) 60 was produced.
- EC ethylene carbonate
- DMC dimethyl carbonate
- any of the lithium secondary batteries 100 disclosed herein has a performance suitable as a battery mounted on a vehicle because of its high capacity and low cycle deterioration as described above. Therefore, according to the present invention, as shown in FIG. 4, there is provided a vehicle 1 including the lithium secondary battery 100 disclosed herein (which may be in the form of an assembled battery in which a plurality of lithium secondary batteries are connected).
- a vehicle for example, an automobile
- the lithium secondary battery as a power source (typically, a power source of a hybrid vehicle or an electric vehicle) is provided.
- a positive electrode active material having Li 2 M1TiO 4 on the positive electrode and having a high capacity and little performance deterioration. Therefore, a lithium secondary battery having high capacity and excellent cycle characteristics can be provided by using such a positive electrode active material.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
Li2NiTiO4、Li2MnTiO4等のチタン複合酸化物が挙げられる。例えば、Li2NiTiO4で示すチタン複合酸化物は、理論容量が1電子反応で150mAh/g程度であるが、2電子反応の可能性があり、その場合、約300mAh/g程度の高容量を達成できるものとして期待されている。
Li2M1TiO4 (1)
(ここでM1は、Mn,Fe,CoおよびNiからなる群から選択される少なくとも一種の金属元素である);
と、
以下の式(2)で示す酸化物:
LiM2O2 (2)
(ここでM2は、Mn,CoおよびNiからなる群から選択される少なくとも一種の金属元素である);
との固溶体を有する。
以下の式(1)で示す酸化物:
Li2M1TiO4 (1)
(ここでM1は、Mn,Fe,CoおよびNiからなる群から選択される少なくとも一種の金属元素である);
と、
以下の式(2)で示す酸化物:
LiM2O2 (2)
(ここでM2は、Mn,CoおよびNiからなる群から選択される少なくとも一種の金属元素である);
との固溶体を構成するための原料を所定の溶媒と混合して原料混合スラリーを調製する工程と、
前記原料混合スラリーから溶媒を揮発させて前駆体を得る工程と、
前記前駆体を焼成して前記固溶体を含むリチウム二次電池用正極活物質を得る工程とを包含する。
以下の式(1)で示す酸化物:
Li2M1TiO4 (1)
(ここでM1は、Mn,Fe,CoおよびNiからなる群から選択される少なくとも一種の金属元素である);
と、
以下の式(2)で示す酸化物:
LiM2O2 (2)
(ここでM2は、Mn,CoおよびNiからなる群から選択される少なくとも一種の金属元素である);
との固溶体を含む。
上記式(1)で示すLi2M1TiO4は、空間群Fm-3mに属する岩塩型結晶構造をとるチタン複合酸化物であり、式(1)中のM1は、Mn,Fe,Co及びNiのうちの1種または2種以上の金属元素である。このうち、Ni又はMn、あるいはNiとMnとの2種の組み合わせが好ましく、かかる元素の含有率の高い組成のものが好適である。特に、M1がNiであるか、あるいはNiの含有率が高いこと(例えば、M1中においてNiが50モル%以上含まれていること)が好適である。Niの含有率が高ければ高いほど該正極活物質を用いて構築されたリチウム二次電池の放電容量が増大する点で好ましい。
上記式(2)で示すLiM2O2は、層状岩塩型構造をとるリチウム遷移金属複合酸化物であり、式(2)中のM2は、Mn,Co及びNiのうちの1種または2種以上の金属元素である。これらのいずれか2種以上の組み合わせが好ましい。特に、M2中においてMn,Co及びNiがすべて含まれていることが好適であり、特にM2が、Ni1/3Co1/3Mn1/3であることが最適である。
原料混合スラリー調製工程では、上記固溶体の構成元素に応じて適宜選択される固溶体を構成するための原料(Li供給源、Ti供給源、M1供給源、M2供給源)を、所定の溶媒と混合して原料混合スラリーを調製する。
加熱工程では、上記調製した原料混合スラリーを加熱し溶媒を揮発させることによって、前駆体を得る。原料混合スラリーを加熱する手段としては特に限定されず、ホットプレート等の任意の手段を採用することができる。加熱温度は、使用する溶媒によっても異なるが、例えば溶媒として水を用いる場合、水の揮発が十分に進行する温度で加熱することが必要であり、通常は70℃以上(例えば70~90℃、好ましくは75℃~85℃程度、特に好ましくは80℃程度)にすることが好適である。加熱温度の上限は、使用する溶媒の沸点を下回る温度であればよい。加熱時間は、出発原料が反応して前駆体が十分に反応するまでの時間とすればよく、通常は5~48時間程度であり、好ましくは10~24時間程度である。
焼成工程では、上記得られた前駆体を500℃~800℃で焼成する。この焼成によって、前駆体から目的の固溶体を合成することができる。焼成温度は、上記固溶体を合成し得る温度であればよく特に制限されないが、反応を十分に進行させるためには、焼成温度は500℃以上であることが必要であり、その一方で、焼成温度が800℃を超えると、粒子成長が促進され、粒子サイズが大きくなりすぎるため好ましくない。焼成温度は、通常は500~800℃が適当であり、好ましくは550~700℃であり、より好ましくは550~650℃である。焼成時間は、前駆体を構成する各成分が均一に反応するまでの時間とすればよく、通常は2~24時間である。焼成手段としては特に限定されず、電気加熱炉等の任意の手段を採用することができる。焼成雰囲気としては特に限定されず、例えば大気中であってもよいし、大気よりも酸素がリッチな酸素ガス雰囲気中であってもよい。あるいは、必要に応じてArガス等の不活性ガス雰囲気中で焼成することもできる。好ましくは、大気中もしくは大気よりも酸素がリッチな酸素ガス雰囲気中である。
まず、Li供給源としての酢酸リチウムと、Ni供給源としての酢酸ニッケルと、Mn供給源としての酢酸マンガンと、Co供給源としての酢酸コバルトと、Ti供給源としてのチタン(IV)n-ブトキシドとを、上記組成比となるように水中で混合し、原料混合スラリーを調製した。この原料混合スラリーを約80℃に加熱して攪拌して水を揮発させることにより前駆体を得た。その前駆体を大気中において300℃で仮焼成し、これをいったん解砕した後、さらに600℃で本焼成した。その焼成体を適当な粒径までボールミルで粉砕することにより、0.8Li2NiTiO4・0.2Li(Ni1/3Co1/3Mn1/3)O2粉末を得た。
実施例2では、Li2MnTiO4にLi(Ni1/3Co1/3Mn1/3)O2を固溶させた固溶体を合成した。固溶体全体におけるLi2MnTiO4のモル含有率は80モル%とした。0.8Li2MnTiO4・0.2Li(Ni1/3Co1/3Mn1/3)O2が得られるように各供給源のモル比を変更したこと以外は実施例1と同様にして合成を行った。
上記得られた各実施例1~3及び比較例1~3の固溶体粉末(正極活物質)に、導電材としてのカーボンブラックと、結着剤としてのポリビニリデンフロライド(PVDF)とを、それらの質量比が80:15:5となるように秤量してN-メチルピロリドン(NMP)中で均一に混合し、ペースト状の正極活物質層形成用組成物を調製した。このペースト状正極活物質層形成用組成物をアルミニウム箔(正極集電体:厚さ15μm)の片面に層状に塗布して乾燥することにより、該正極集電体の片面に正極活物質層が設けられた正極シートを得た。
負極活物質としての天然黒鉛粉末に、結着剤としてのSBRを、それらの質量比が98:2となるように秤量して水中で均一に混合し、ペースト状の負極活物質層形成用組成物を調製した。このペースト状負極活物質層形成用組成物を銅箔(負極集電体:厚さ10μm)の片面に層状に塗布して乾燥することにより、該負極集電体の片面に負極活物質層が設けられた負極シートを得た。
上記得られた正極シートを直径16mmの円形に打ち抜いて、ペレット状の正極を作製した。また、上記負極シートを直径19mmの円形に打ち抜いて、ペレット状の負極を作製した。この正極と、負極と、セパレータ(直径19mm、厚さ0.02mmの3層構造(ポリプロピレン(PP)/ポリエチレン(PE)/ポリプロピレン(PP))の多孔質シートを使用した。)とを、非水電解液とともにステンレス製容器に組み込んで、直径20mm、厚さ3.2mm(2032型)の図3に示すコインセル60(充放電性能評価用のハーフセル)を構築した。図3中、符号61は正極を、符号62は負極を、符号63は電解液の含浸したセパレータを、符号64はガスケットを、符号65は容器(負極端子)を、符号66は蓋(正極端子)をそれぞれ示す。なお、非水電解液としては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とを1:1の体積比で含む混合溶媒に支持塩としてのLiPF6を約1mol/リットルの濃度で含有させたものを用いた。このようにしてリチウム二次電池(試験用コインセル)60を作製した。
以上のように得られた各試験用コインセルを、25℃の温度条件にて、電流0.5C、電圧4.8Vの定電流定電圧方式で合計充電時間が3時間となるまで充電し、次いで、0.5Cの定電流で2.5Vまで放電するという充放電サイクルを50回連続して行った。そして、1サイクル目の放電容量(初期放電容量)と、50サイクル目の放電容量との比率から、50サイクル後の容量維持率(「50サイクル目の放電容量/1サイクル目の放電容量(初期放電容量)」×100)を算出した。その結果を表1に示す。
これに対して、Li(Ni1/3Co1/3Mn1/3)O2を固溶したLi2M1TiO4を使用した実施例1~3に係る電池は、比較例1~3に係る電池に比べて、初期放電容量が高く、また充放電を50サイクル繰り返した後の容量維持率も格段に向上していた。この結果から、Li2M1TiO4にLiM2O2を固溶させたxLi2M1TiO4・(1-x)LiM2O2を用いることによって、高容量かつサイクル劣化が少ないリチウム二次電池が得られることが確認できた。
Claims (8)
- 正極及び負極を備えたリチウム二次電池であって、
前記正極は、以下の式(1)で示す酸化物:
Li2M1TiO4 (1)
(ここでM1は、Mn,Fe,CoおよびNiからなる群から選択される少なくとも一種の金属元素である);
と、
以下の式(2)で示す酸化物:
LiM2O2 (2)
(ここでM2は、Mn,CoおよびNiからなる群から選択される少なくとも一種の金属元素である);
との固溶体を有する、リチウム二次電池。 - 前記固溶体全体における前記式(1)で示す酸化物のモル含有率は、50モル%以上である、請求項1に記載のリチウム二次電池。
- 前記式(1)で示す酸化物は前記M1としてNiを有する、請求項1または2に記載のリチウム二次電池。
- 前記式(2)で示す酸化物は前記M2としてMn,CoおよびNiを有する、請求項1~3の何れか一つに記載のリチウム二次電池。
- 前記式(2)で示す酸化物中のM2は、Ni1/3Co1/3Mn1/3である、請求項4に記載のリチウム二次電池。
- 以下の式(1)で示す酸化物:
Li2M1TiO4 (1)
(ここでM1は、Mn,Fe,CoおよびNiからなる群から選択される少なくとも一種の金属元素である);
と、
以下の式(2)で示す酸化物:
LiM2O2 (2)
(ここでM2は、Mn,CoおよびNiからなる群から選択される少なくとも一種の金属元素である);
との固溶体を有する、リチウム二次電池用正極。 - 以下の式(1)で示す酸化物:
Li2M1TiO4 (1)
(ここでM1は、Mn,Fe,CoおよびNiからなる群から選択される少なくとも一種の金属元素である);
と、
以下の式(2)で示す酸化物:
LiM2O2 (2)
(ここでM2は、Mn,CoおよびNiからなる群から選択される少なくとも一種の金属元素である);
との固溶体を含む、リチウム二次電池用正極活物質。 - リチウム二次電池用正極活物質を製造する方法であって、
以下の式(1)で示す酸化物:
Li2M1TiO4 (1)
(ここでM1は、Mn,Fe,CoおよびNiからなる群から選択される少なくとも一種の金属元素である);
と、
以下の式(2)で示す酸化物:
LiM2O2 (2)
(ここでM2は、Mn,CoおよびNiからなる群から選択される少なくとも一種の金属元素である);
との固溶体を構成するための原料を所定の溶媒と混合して原料混合スラリーを調製する工程と、
前記原料混合スラリーから溶媒を揮発させて前駆体を得る工程と、
前記前駆体を焼成して前記固溶体を含むリチウム二次電池用正極活物質を得る工程と
を包含する、リチウム二次電池用正極活物質の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/070382 WO2012066638A1 (ja) | 2010-11-16 | 2010-11-16 | 正極活物質及びその製造方法、並びにこれを用いたリチウム二次電池 |
JP2012544036A JP5674056B2 (ja) | 2010-11-16 | 2010-11-16 | 正極活物質及びその製造方法、並びにこれを用いたリチウム二次電池 |
US13/885,169 US9269948B2 (en) | 2010-11-16 | 2010-11-16 | Positive electrode active material, process for producing same, and lithium secondary battery using same |
CN201080070173.0A CN103222094B (zh) | 2010-11-16 | 2010-11-16 | 正极活性物质及其制造方法、以及使用该正极活性物质的锂二次电池 |
KR1020137015209A KR101531776B1 (ko) | 2010-11-16 | 2010-11-16 | 정극 활물질 및 그 제조 방법, 및 이것을 사용한 리튬 이차 전지 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/070382 WO2012066638A1 (ja) | 2010-11-16 | 2010-11-16 | 正極活物質及びその製造方法、並びにこれを用いたリチウム二次電池 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012066638A1 true WO2012066638A1 (ja) | 2012-05-24 |
Family
ID=46083602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/070382 WO2012066638A1 (ja) | 2010-11-16 | 2010-11-16 | 正極活物質及びその製造方法、並びにこれを用いたリチウム二次電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9269948B2 (ja) |
JP (1) | JP5674056B2 (ja) |
KR (1) | KR101531776B1 (ja) |
CN (1) | CN103222094B (ja) |
WO (1) | WO2012066638A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014073700A1 (ja) * | 2012-11-12 | 2014-05-15 | 国立大学法人九州大学 | リチウム電池用正極活物質、及び当該リチウム電池用正極活物質を含有するリチウム電池 |
JP2015069754A (ja) * | 2013-09-27 | 2015-04-13 | トヨタ自動車株式会社 | 正極活物質及び正極活物質の製造方法並びにリチウム電池 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107408692B (zh) * | 2015-09-16 | 2021-09-17 | 松下知识产权经营株式会社 | 正极活性物质和电池 |
CN106378139B (zh) * | 2016-08-26 | 2019-10-11 | 北京大学深圳研究生院 | 一种水分解催化剂及其制备方法和应用 |
JP6760140B2 (ja) * | 2017-03-06 | 2020-09-23 | トヨタ自動車株式会社 | リチウムイオン二次電池用正極材料の製造方法およびリチウムイオン二次電池用正極材料 |
CN108417823B (zh) * | 2018-02-28 | 2021-03-30 | 华南理工大学 | 一种利用重复球磨法制备的Li2FeTi1-yMoyO4材料及其制备方法与应用 |
US20200067083A1 (en) * | 2018-08-22 | 2020-02-27 | Ecopro Bm Co., Ltd. | Positive electrode active material and lithium secondary battery comprising the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008288005A (ja) * | 2007-05-17 | 2008-11-27 | Hitachi Maxell Ltd | 非水電解質二次電池用正極活物質および非水電解質二次電池 |
JP2009224097A (ja) * | 2008-03-14 | 2009-10-01 | Panasonic Corp | 非水電解質二次電池 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10251020A (ja) | 1997-03-11 | 1998-09-22 | Ishihara Sangyo Kaisha Ltd | 金属置換チタン酸リチウムおよびその製造方法ならびにそれを用いてなるリチウム電池 |
CN101405899B (zh) * | 2006-03-20 | 2012-04-04 | 株式会社Lg化学 | 具有高效能的锂电池阴极材料 |
US7820137B2 (en) | 2006-08-04 | 2010-10-26 | Enerdel, Inc. | Lithium titanate and method of forming the same |
JP4963059B2 (ja) * | 2006-11-20 | 2012-06-27 | 独立行政法人産業技術総合研究所 | チタン及びニッケル含有リチウムマンガン系複合酸化物 |
US7807601B2 (en) * | 2006-12-27 | 2010-10-05 | Exxonmobil Research And Engineering Company | Mixed metal oxide catalysts and processes for their preparation and use |
JP5369447B2 (ja) | 2008-02-18 | 2013-12-18 | 株式会社豊田中央研究所 | リチウムチタン鉄複合酸化物、その使用方法、リチウムイオン二次電池、及びリチウムチタン鉄複合酸化物の製造方法 |
JP5121067B2 (ja) * | 2008-10-22 | 2013-01-16 | 花王株式会社 | 複合粒子の製造方法 |
CN101630736B (zh) * | 2009-08-17 | 2011-11-02 | 深圳市天骄科技开发有限公司 | 锂电池三元正极材料循环性能的改进方法 |
JP5152246B2 (ja) | 2010-04-23 | 2013-02-27 | 株式会社豊田自動織機 | リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池 |
-
2010
- 2010-11-16 KR KR1020137015209A patent/KR101531776B1/ko active IP Right Grant
- 2010-11-16 US US13/885,169 patent/US9269948B2/en active Active
- 2010-11-16 WO PCT/JP2010/070382 patent/WO2012066638A1/ja active Application Filing
- 2010-11-16 CN CN201080070173.0A patent/CN103222094B/zh active Active
- 2010-11-16 JP JP2012544036A patent/JP5674056B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008288005A (ja) * | 2007-05-17 | 2008-11-27 | Hitachi Maxell Ltd | 非水電解質二次電池用正極活物質および非水電解質二次電池 |
JP2009224097A (ja) * | 2008-03-14 | 2009-10-01 | Panasonic Corp | 非水電解質二次電池 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014073700A1 (ja) * | 2012-11-12 | 2014-05-15 | 国立大学法人九州大学 | リチウム電池用正極活物質、及び当該リチウム電池用正極活物質を含有するリチウム電池 |
JP2014096333A (ja) * | 2012-11-12 | 2014-05-22 | Kyushu Univ | リチウム電池用正極活物質、及び当該リチウム電池用正極活物質を含有するリチウム電池 |
CN104781963A (zh) * | 2012-11-12 | 2015-07-15 | 国立大学法人九州大学 | 锂电池用正极活性物质以及含有该锂电池用正极活性物质的锂电池 |
US9780369B2 (en) | 2012-11-12 | 2017-10-03 | Kyushu University, National University Corporation | Cathode active material for lithium batteries, and lithium battery comprising the cathode active material for lithium batteries |
JP2015069754A (ja) * | 2013-09-27 | 2015-04-13 | トヨタ自動車株式会社 | 正極活物質及び正極活物質の製造方法並びにリチウム電池 |
Also Published As
Publication number | Publication date |
---|---|
CN103222094A (zh) | 2013-07-24 |
US9269948B2 (en) | 2016-02-23 |
KR101531776B1 (ko) | 2015-06-25 |
JPWO2012066638A1 (ja) | 2014-05-12 |
JP5674056B2 (ja) | 2015-02-25 |
US20130236787A1 (en) | 2013-09-12 |
CN103222094B (zh) | 2015-05-06 |
KR20130108630A (ko) | 2013-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6524158B2 (ja) | 非水電解質二次電池用負極活物質、負極、非水電解質二次電池、電池パック及び車 | |
US10497936B2 (en) | Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using said positive electrode active material | |
JP5605641B2 (ja) | リチウム二次電池 | |
KR101587293B1 (ko) | 비수전해액 이차 전지용 Li-Ni계 복합 산화물 입자 분말 및 그의 제조 방법, 및 비수전해질 이차 전지 | |
JP5534364B2 (ja) | リチウム二次電池用正極活物質 | |
JP5348510B2 (ja) | リチウム二次電池用正極活物質およびその利用 | |
US20080193846A1 (en) | Positive electrode for nonaqueous electrolyte secondary battery, and production method thereof | |
JP2011134670A (ja) | リチウム二次電池用正極活物質 | |
JP2000082466A (ja) | 正極活物質及び非水電解質二次電池 | |
JP5674056B2 (ja) | 正極活物質及びその製造方法、並びにこれを用いたリチウム二次電池 | |
Ruan et al. | Effect of pre-thermal treatment on the lithium storage performance of LiNi 0.8 Co 0.15 Al 0.05 O 2 | |
KR20130001703A (ko) | 양극활물질, 상기 양극활물질을 포함하는 리튬 이차 전지 및 상기 리튬 이차 전지를 전기화학적으로 활성화시키는 방법 | |
US11677065B2 (en) | Cathode active material of lithium secondary battery | |
JP5561547B2 (ja) | 非水電解質二次電池 | |
JP2011171012A (ja) | リチウム二次電池用正極 | |
JP2013051086A (ja) | 二次電池用電極材料とその製造方法 | |
CN114824244A (zh) | 正极活性物质和使用该正极活性物质的非水电解质二次电池 | |
US20220127160A1 (en) | Positive electrode active material for lithium ion secondary battery, method of manufacturing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery | |
JP5741976B2 (ja) | リチウム二次電池 | |
JP2996234B1 (ja) | 非水電解液二次電池 | |
JP2013089454A (ja) | 電極活物質の製造方法 | |
EP3489198A1 (en) | Cathode active material of lithium secondary battery | |
JP7308586B2 (ja) | 非水系電解質二次電池用正極活物質 | |
WO2015019483A1 (ja) | 非水系二次電池用正極活物質、それを用いた非水系二次電池用正極、非水系二次電池 | |
WO2018143273A1 (ja) | リチウムマンガン系複合酸化物及びその製造方法、並びにそれを用いた正極材料、正極及びリチウムイオン二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10859659 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012544036 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13885169 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20137015209 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10859659 Country of ref document: EP Kind code of ref document: A1 |