WO2012063812A1 - ダイアライザー - Google Patents

ダイアライザー Download PDF

Info

Publication number
WO2012063812A1
WO2012063812A1 PCT/JP2011/075701 JP2011075701W WO2012063812A1 WO 2012063812 A1 WO2012063812 A1 WO 2012063812A1 JP 2011075701 W JP2011075701 W JP 2011075701W WO 2012063812 A1 WO2012063812 A1 WO 2012063812A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl aromatic
aromatic hydrocarbon
mass
dialyzer
conjugated diene
Prior art date
Application number
PCT/JP2011/075701
Other languages
English (en)
French (fr)
Inventor
尚彦 佐藤
高橋 聡
收 石原
Original Assignee
旭化成ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成ケミカルズ株式会社 filed Critical 旭化成ケミカルズ株式会社
Priority to JP2012542927A priority Critical patent/JP5555329B2/ja
Publication of WO2012063812A1 publication Critical patent/WO2012063812A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1621Constructional aspects thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/10Copolymers of styrene with conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/20Specific housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/20Specific housing
    • B01D2313/205Specific housing characterised by the shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the present invention relates to a dialyzer.
  • a “main body” formed of a cylindrical container called “dialyzer” is filled with a separation membrane such as a hollow fiber in order to remove a target component from the body fluid, and body fluid is provided at both ends thereof.
  • a dialysis part having a structure in which a cap part called a “header” equipped with a nozzle for entering and exiting is attached is used.
  • a cap part called a “header” is formed as a separate part from the main body, and is used for joining in a later process after filling the main body with a separation membrane of hollow fibers.
  • Header are combined and commercialized as “Dializer”.
  • the dialyzer is a disposable product, it is required to be inexpensive and compact, and further, the inside of the dialyzer is required to be visible, and the transparency of the dialyzer is required for practical use. Most of the headers are currently made of resin.
  • the dialyzer body and header are sterilized by electron beams and gamma rays
  • the component materials are required to have resistance to electron beams and gamma rays. It is required to maintain the physical characteristics and the quality of appearance such as color tone.
  • thermosetting resin such as urethane
  • the material used for the dialyzer body needs to have heat resistance that can sufficiently withstand the heat generation temperature when the thermosetting resin is cured.
  • the heat resistance of the material used for the dialyzer body is insufficient, a dimensional change occurs due to the heat of curing, and inconveniences such as poor fitting occur in the process of attaching the header later.
  • the higher the heat generation temperature of a thermosetting resin the shorter the curing time. From the viewpoint of production efficiency and economy, the need for the use of a thermosetting resin with a high heat generation temperature that cures in a short time Therefore, the dialyzer body is strongly required to have higher heat resistance.
  • a resin material for the above-described dialyzer body and header for example, general-purpose polystyrene exhibits excellent properties with respect to transparency, rigidity, ⁇ -ray resistance and heat resistance, but is easily broken and inferior in impact strength.
  • rubber-modified impact-resistant polystyrene has a good impact strength, but is milky white and opaque, and therefore has a problem of poor visibility inside the product.
  • the polycarbonate resin has excellent transparency and impact strength, but there is a problem that when sterilization with an electron beam or ⁇ -rays is performed, the product value is lost.
  • thermoplastic block copolymer composed of a vinyl aromatic hydrocarbon and a conjugated diene
  • a resin composition comprising a thermoplastic block copolymer comprising a vinyl aromatic hydrocarbon and a conjugated diene, and a rubber-modified impact-resistant polystyrene having a specific rubber particle diameter is disclosed (for example, Patent Document 1). reference).
  • Patent Document 1 is excellent in ⁇ -ray resistance and transparency, but still has sufficient characteristics, particularly from the viewpoint of the balance between heat resistance and impact resistance. Not.
  • Patent Document 1 and Patent Document 2 when the materials disclosed in Patent Document 1 and Patent Document 2 are used, when the end surface is cut after fixing the hollow fiber membrane to the dialyzer body with a thermosetting resin such as urethane, the main body is cracked or chipped. Such defects are expected to occur, and it is necessary to improve material properties from the viewpoint of manufacturing yield and prevention of defective products.
  • the resin has good resistance to electron beam or ⁇ -ray, transparency, and good machinability, which are characteristics of vinyl aromatic hydrocarbon resin, and impact resistance and heat resistance.
  • An object of the present invention is to provide a dialyzer that is extremely excellent in balance.
  • the present inventors have made a block copolymer (a) composed of a vinyl aromatic hydrocarbon having a specific structure and a conjugated diene, and a vinyl aromatic carbon mainly composed of the specific vinyl aromatic hydrocarbon.
  • a resin composition comprising a hydrogen-based resin (b) and a rubber-modified vinyl aromatic hydrocarbon polymer (c) as a material for the dialyzer body and header, it has been found that the above-mentioned problems of the prior art can be solved, The present invention has been completed. That is, the present invention is as follows.
  • the total amount of conjugated dienes contained in each of the block copolymer (a) and the vinyl aromatic hydrocarbon resin (b) is such that the block copolymer (a) and the vinyl aromatic carbonization.
  • the total amount of conjugated dienes contained in each of the block copolymer (a), the vinyl aromatic hydrocarbon resin (b) and the rubber-modified vinyl aromatic hydrocarbon polymer (c) is the above ( The dialyzer according to any one of the above [1] to [4], which is 3 to 14% by mass with respect to the total amount of a), (b) and (c).
  • the vinyl aromatic hydrocarbon resin (b) has a molecular weight distribution Mw / Mn measured by GPC of 1 to 1.5 and a vinyl aromatic hydrocarbon content of 93 to 99.9% by mass.
  • the vinyl aromatic hydrocarbon / conjugated diene copolymer (b-1) is contained in an amount of 7 to 0.1% by mass of a conjugated diene, according to any one of [1] to [5] above.
  • the vinyl aromatic hydrocarbon resin (b) has a molecular weight distribution Mw / Mn measured by GPC method in the range of 2.1 to 10, and is a vinyl aromatic hydrocarbon homopolymer (b-2). The dialyzer according to any one of [1] to [5].
  • the vinyl aromatic hydrocarbon / conjugated diene copolymer (b-1) has at least two or more vinyl aromatic hydrocarbon polymer blocks, and the two or more vinyl aromatic hydrocarbon polymer blocks have The dialyzer according to [6] or [8], which is bonded to both ends of the vinyl aromatic hydrocarbon / conjugated diene copolymer (b-1).
  • the rubber-modified vinyl aromatic hydrocarbon polymer (c) contains graft rubber particles having an average particle diameter of 1.5 ⁇ m to 5 ⁇ m, according to any one of the above [1] to [9]. Dialyzer.
  • the Vicat softening temperature specified in ISO 306 is 93 ° C. or higher under a load condition of 10 N,
  • regulated to JISK5400 of the said resin composition is 3 kg * cm or more.
  • the inside of the dialyzer has good transparency, discoloration and physical property degradation are effectively reduced even after sterilization treatment by electron beam or ⁇ -ray irradiation, and cutting workability in the manufacturing process. And a dialyzer having an excellent balance between high heat resistance and impact resistance can be obtained.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described with reference to the drawings.
  • the present invention is not limited to the following description, and various modifications can be made within the scope of the gist thereof.
  • the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified, and the dimensional ratios in the drawings are not limited to the illustrated ratios.
  • the term “abbreviated” indicates the meaning of the term excluding the “abbreviation” within the scope of technical common knowledge of those skilled in the art. Shall also be included.
  • the dialyzer of this embodiment is A block copolymer (a) containing 60 to 80% by weight of vinyl aromatic hydrocarbon and 40 to 20% by weight of conjugated diene and having two or more vinyl aromatic hydrocarbon polymer blocks; Vinyl aromatic hydrocarbon resin (b) containing 93 to 100% by weight of vinyl aromatic hydrocarbon and 0 to 10% by weight of conjugated diene; A rubber-modified vinyl aromatic hydrocarbon polymer (c); Containing,
  • FIG. 1 shows a schematic side view of the dialyzer of the present embodiment.
  • the “dialyzer” of the present embodiment includes a substantially cylindrical dialyzer body 10 having openings at both ends, and headers 12a and 12b provided in the openings of the dialyzer body.
  • Nozzle portions 11a and 11b are provided in the side wall portion of the dialyzer main body 10 and in the vicinity of the openings at both ends, respectively, and can be connected to an external dialysis apparatus.
  • the headers 12a and 12b are provided with nozzles 20a and 20b, respectively, which form part of the header.
  • a predetermined hollow fiber membrane is accommodated in the dialyzer body 10 and sealed with the headers 12a and 12b, and body fluid is passed through the nozzle 20a (or 20b). inject. Further, an aqueous electrolyte solution called “dialysis solution” is circulated through the nozzle portions 11a and 11b.
  • the configuration of the dialyzer according to the present embodiment will be described for the sake of convenience as a molded resin composition. However, the dialyzer targeted in the present embodiment includes a hollow fiber membrane that is actually used for dialysis. It may be a configuration.
  • the hollow fiber membrane accommodated in the dialyzer is not particularly limited in terms of its structure, function, constituent material, and the like, and any conventionally known one can be used.
  • the body fluid is guided from the nozzle 20b (or 20a) to the nozzle 20a (or 20b) and further circulated. After dialysis is performed using the hollow fiber membrane, the nozzle portions 11a and 11b are guided to the outside.
  • the resin composition constituting the dialyzer of this embodiment is A block copolymer (a) containing 60 to 80% by weight of vinyl aromatic hydrocarbon and 40 to 20% by weight of conjugated diene and having two or more vinyl aromatic hydrocarbon polymer blocks; Vinyl aromatic hydrocarbon resin (b) containing 93 to 100% by weight of vinyl aromatic hydrocarbon and 7 to 0% by weight of conjugated diene; A rubber-modified vinyl aromatic hydrocarbon polymer (c); Containing.
  • the resin composition which comprises the dialyzer of this embodiment is the said block copolymer (a), vinyl aromatic hydrocarbon-type resin (b), rubber-modified vinyl aromatic hydrocarbon polymer (c) as a compounding component.
  • the resin composition as a whole contains mainly vinyl aromatic hydrocarbons and 2 to 14% by mass of conjugated dienes.
  • “mainly” means that the content is 50% by mass or more, and preferably 60% by mass or more.
  • Examples of the vinyl aromatic hydrocarbon constituting the resin composition include styrene, o-methylstyrene, p-methylstyrene, p-tert-butylstyrene, 1,3-dimethylstyrene, ⁇ -methylstyrene, vinylnaphthalene. Vinyl anthracene, 1,1-diphenylethylene and the like.
  • styrene is common and preferred. These may be used alone or in combination of two or more.
  • the conjugated diene constituting the resin composition is a diolefin having a pair of conjugated double bonds.
  • Examples thereof include 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene and the like.
  • 1,3-butadiene and isoprene are common and preferred. These may be used alone or in combination of two or more.
  • the resin composition contains a vinyl aromatic hydrocarbon as a main component and 2 to 14% by mass of a conjugated diene.
  • the resin composition may contain components other than the component (a), the component (b), and the component (c), as will be described later.
  • the vinyl aromatic hydrocarbon content is 86% by mass to 97% by mass in the resin composition.
  • the conjugated diene content is preferably 3% by mass to 14% by mass. More preferably, the vinyl aromatic hydrocarbon content is 87 mass% to 93 mass%, and the conjugated diene content is 7 mass% to 13 mass%.
  • the vinyl aromatic hydrocarbon content is 87 mass% to 91 mass%
  • the conjugated diene content is 9 mass% to 13 mass%.
  • the vinyl aromatic hydrocarbon content and the conjugated diene content in the resin composition can be measured using a UV meter (ultraviolet absorptiometer). Specifically, it can measure by the method described in the Example mentioned later.
  • the block copolymer (a) constituting the resin composition contains 60 to 80% by mass of vinyl aromatic hydrocarbon and 40 to 20% by mass of conjugated diene, and two or more vinyl aromatic hydrocarbon polymers.
  • the vinyl aromatic hydrocarbon content of the block copolymer (a) is preferably 64% by mass to 76% by mass, and more preferably 68% by mass to 72% by mass.
  • the conjugated diene content is preferably 36% by mass to 24% by mass, and more preferably 28% by mass to 32% by mass.
  • block copolymer (a) having a vinyl aromatic hydrocarbon content of 60% by mass to 80% by mass and a conjugated diene content of 40% by mass to 20% by mass, a balance between impact resistance and heat resistance is achieved. And a dialyzer molded from the resin composition.
  • the vinyl aromatic hydrocarbon content and the conjugated diene content of the block copolymer (a) can be measured using a UV meter (ultraviolet absorptiometer). Specifically, it can measure by the method described in the Example mentioned later.
  • a block copolymer (a) is not limited to the structural formula illustrated below at all, For example, what has the following block structure is mentioned.
  • S1-B1-S2 S1-B1-S2-B2 S1-B / S1-S2 S1-B / S1-S2-B / S2 S1-B / S1-B / S2-S2 S1-B1-B / S1-S2 S1-B1-B / S1-B2-S2
  • the numbers given to S, B and B / S in the formulas representing the block structures are the vinyl aromatic hydrocarbon block (S) and the conjugated diene polymer block (B) in the block copolymer, respectively.
  • the block copolymer (a) may be linear or branched, but the linear block copolymer is preferred from the viewpoint of a balance between molding processability and physical properties. From the viewpoint of heat resistance, it is preferable that two or more vinyl aromatic hydrocarbon blocks exist at both ends of the linear block copolymer.
  • the block copolymer (a) is obtained by copolymerizing a vinyl aromatic hydrocarbon and a conjugated diene using a polymerization initiator in a hydrocarbon solvent.
  • hydrocarbon solvent used for the production of the block copolymer (a) conventionally known hydrocarbon solvents can be used, for example, n-butane, isobutane, n-pentane, n-hexane, n-heptane, n-octane.
  • Aliphatic hydrocarbons such as cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, cycloheptane, and methylcycloheptane
  • aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene Etc. These may be used alone or in combination of two or more.
  • n-hexane and cyclohexane are generally used preferably.
  • Examples of the polymerization initiator include aliphatic hydrocarbon alkali metal compounds, aromatic hydrocarbon alkali metal compounds, and organic amino alkali metal, which are generally known to have anionic polymerization activity for conjugated dienes and vinyl aromatic compounds.
  • a compound or the like can be used.
  • Examples of the alkali metal include lithium, sodium, potassium, and the like, and preferable organic alkali metal compounds are aliphatic and aromatic hydrocarbon lithium compounds having 1 to 20 carbon atoms, each having one molecule per molecule. Examples thereof include compounds containing lithium, dilithium compounds containing a plurality of lithium atoms in one molecule, trilithium compounds, and tetralithium compounds.
  • organic alkali metal compounds disclosed in US Pat. No. 5,708,092, British Patent 2,241,239, US Pat. No. 5,527,753, etc. are also used. can do. These may be used alone or in combination of two or more.
  • n-butyl lithium is generally used preferably.
  • the block copolymer (a) There are no restrictions on the production process of the block copolymer (a). A method of adding an initiator from the middle of the polymerization, an alcohol having a polymerization active point lower than the polymerization point, water, etc. are added during the polymerization, and then the monomer is supplied again.
  • the block copolymer (a) having a plurality of components having different molecular weights can be prepared by appropriately selecting a method for continuing the polymerization.
  • the vinyl aroma of the finally obtained block copolymer (a) is adjusted by adjusting the charging ratio of the vinyl aromatic hydrocarbon and the conjugated diene as the polymerization raw materials. Group hydrocarbon content and conjugated diene content can be controlled.
  • the vinyl aromatic hydrocarbon block (S) and the conjugated diene polymer block (B) can be formed by using a vinyl aromatic hydrocarbon compound as a raw material or a conjugate. Polymerization may be carried out by continuously supplying only one of the dienes to the polymerization system.
  • a copolymer block (B / S) comprising a vinyl aromatic hydrocarbon and a conjugated diene
  • a mixture of the vinyl aromatic hydrocarbon and the conjugated diene is continuously supplied to the polymerization system. The method of superposing
  • polar compounds and randomizing agents include ethers such as tetrahydrofuran, diethylene glycol dimethyl ether and diethylene glycol dibutyl ether, amines such as triethylamine and tetramethylethylenediamine, thioethers, phosphines, phosphoramides, alkylbenzene sulfonates, potassium and the like.
  • ethers such as tetrahydrofuran, diethylene glycol dimethyl ether and diethylene glycol dibutyl ether
  • amines such as triethylamine and tetramethylethylenediamine
  • thioethers such as triethylamine and tetramethylethylenediamine
  • phosphines phosphines
  • phosphoramides alkylbenzene sulfonates
  • potassium and the like examples include sodium alkoxide.
  • the block copolymer (a) has a weight average molecular weight (Mw) and a number average molecular weight (Mn) of 10,000 to from the viewpoint of the balance between physical properties and processability of the resin composition constituting the dialyzer of the present embodiment.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • a range of 1 million is preferable, and a range of 30,000 to 300,000 is more preferable.
  • Mw / Mn of a block copolymer (a) The average molecular weight and molecular weight distribution of the block copolymer (a) can be measured by gel permeation chromatography (GPC).
  • a block copolymer (a) having a combination of different molecular weights can be obtained by associating the polymerization active terminal of a part of the polymer with a coupling agent or the like. Thereby, the molecular weight and molecular weight distribution Mw / Mn of the block copolymer (a) can be controlled. Furthermore, during the polymerization, it is possible to stop the polymerization of a part of the polymer by adding an alcohol such as ethanol in an amount of a smaller number of moles than the polymerization initiator used.
  • S block ratio of block copolymer (a) The proportion of the total vinyl aromatic hydrocarbon units in the block copolymer (a) constituting the polymer block (hereinafter referred to as S block ratio) is preferably 60 to 100% by mass, and more The amount is preferably 70 to 100% by mass, and more preferably 80 to 100% by mass.
  • the proportion constituting the polymer block is the proportion of all vinyl aromatics constituting the block copolymer (a).
  • vinyl aromatic hydrocarbon units constituting homopolymers S1 and S2 described as specific structures described above
  • This ratio can be controlled by adjusting the copolymerization ratio with the vinyl aromatic hydrocarbon during the polymerization process of the conjugated diene.
  • the proportion constituting the polymer block is determined by block copolymerization with ditertiary butyl hydroperoxide using osmium tetroxide as a catalyst.
  • Vinyl aromatic hydrocarbon polymer block component (however, average polymerization) obtained by a method of oxidatively decomposing the polymer (method described in IM KOLTHOFF, et al., J. Polym. Sci. 1, 429 (1946))
  • the vinyl aromatic hydrocarbon polymer component having a degree of about 30 or less is excluded.
  • melt flow rate of block copolymer (a) The melt flow rate (ISO 1133 temperature 200 ° C., load 5 kgf) of the block copolymer (a) is 0.1 to 50 g from the viewpoint of processability and mechanical properties of the resin composition constituting the dialyzer of this embodiment. / 10 minutes is preferable, and 1 to 20 g / 10 minutes is more preferable.
  • the total content of conjugated dienes contained in each of the block copolymer (a) and the vinyl aromatic hydrocarbon resin (b) described later is such that the block copolymer (a) and the vinyl aromatic hydrocarbon are included.
  • the composition ratio is in the range of 4 to 15% by mass with respect to the total mass of the resin (b).
  • a more preferable composition range depends on the conjugated diene content contained in each of the block copolymer (a) and the vinyl aromatic hydrocarbon resin (b).
  • the total amount of conjugated diene contained in each is preferably 3 to 14% by mass with respect to the total amount of (a), (b) and (c).
  • the total conjugated diene content is 3 to 14% by mass based on the total amount of the block copolymer (a), the vinyl aromatic hydrocarbon resin (b) and the rubber-modified vinyl aromatic hydrocarbon polymer (c).
  • the vinyl aromatic hydrocarbon resin (b) constituting the resin composition includes a vinyl aromatic / conjugated diene copolymer (b-1) and a vinyl aromatic hydrocarbon homopolymer (b-2) described later. It consists of either one or a mixture of both.
  • the vinyl aromatic hydrocarbon resin (b) contains 93 to 100% by mass of vinyl aromatic hydrocarbon and 7 to 0% by mass of conjugated diene.
  • each of the polymers (b-1) and (b-2) will be described.
  • the vinyl aromatic hydrocarbon / conjugated diene copolymer (b-1) has a vinyl aromatic hydrocarbon content of 93 mass% to 99.9 mass% and a conjugated diene content of 0.1 mass% to 7 mass%. % By mass.
  • a vinyl aromatic hydrocarbon / conjugated diene copolymer (b-1) in this composition range a resin composition excellent in the balance between high heat resistance and impact resistance and a dialyzer molded from the resin composition are obtained. Is possible.
  • composition ratio of the vinyl aromatic hydrocarbon / conjugated diene copolymer (b-1) is such that the vinyl aromatic hydrocarbon content is 95% by mass to 99.5% by mass and the conjugated diene content is 0.5%. % By mass to 5% by mass, most preferably 97% by mass to 99.5% by mass.
  • the component (b-2) is distinguished from the component (b-1).
  • the specific structure of the vinyl aromatic hydrocarbon / conjugated diene copolymer (b-1), that is, the chain structure of the vinyl aromatic hydrocarbon compound and the conjugated diene is not limited at all. Either a random structure in which a vinyl aromatic hydrocarbon compound and a conjugated diene are bonded at random or a block structure may be used.
  • vinyl aromatic hydrocarbon / conjugated diene copolymer (b-1) include, but are not limited to, those having the following structures.
  • the numbers given to S, B and B / S in the formulas representing the block structures are the vinyl aromatic hydrocarbon block (S) and the conjugated diene polymer block (B) in the block copolymer, respectively.
  • a number for identifying the block of vinyl aromatic hydrocarbon / conjugated diene copolymer block (B / S) and those with different numbers are different even if the molecular weight (degree of polymerization) is the same. It may be.
  • the vinyl aromatic hydrocarbon / conjugated diene copolymer (b-1) is preferably a block copolymer comprising a vinyl aromatic hydrocarbon compound block and a conjugated diene block.
  • a block structure in which a diene block is encapsulated in a polymer chain and vinyl aromatic hydrocarbon compound blocks at both ends is more preferable.
  • S1-B1-S2 S1-B / S1-S2 are more preferable
  • S1-B1-S2 The structure of is more preferable.
  • the vinyl aromatic hydrocarbon / conjugated diene copolymer (b-1) is that the peak molecular weights Mw of the two vinyl aromatic hydrocarbon blocks at both ends coincide with each other in the GPC curve, or the difference between the peak molecular weights Mw.
  • the vinyl aromatic hydrocarbon / conjugated diene copolymer (b-1) is preferably a linear block copolymer from the balance between moldability and physical properties.
  • the vinyl aromatic hydrocarbon / conjugated diene copolymer (b-1) constituting the resin composition is obtained by copolymerizing a vinyl aromatic hydrocarbon and a conjugated diene using a polymerization initiator in a predetermined hydrocarbon solvent. Is obtained.
  • the vinyl aromatic hydrocarbon include styrene, o-methylstyrene, p-methylstyrene, p-tert-butylstyrene, 1,3-dimethylstyrene, ⁇ -methylstyrene, vinylnaphthalene, vinylanthracene, 1,1. -Diphenylethylene and the like.
  • styrene is common and preferred.
  • a conjugated diene is a diolefin having a pair of conjugated double bonds.
  • examples thereof include 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene and the like.
  • 1,3-butadiene and isoprene are common and preferred. These may be used alone or in combination of two or more.
  • hydrocarbon solvent used for the production of the vinyl aromatic hydrocarbon / conjugated diene copolymer (b-1) examples include n-butane, isobutane, n-pentane, n-hexane, n-heptane, and n-octane.
  • Aliphatic hydrocarbons such as cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, cycloheptane, and methylcycloheptane; and aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene Is mentioned. These may be used alone or in combination of two or more.
  • n-hexane and cyclohexane are generally used preferably.
  • Examples of the polymerization initiator include aliphatic hydrocarbon alkali metal compounds, aromatic hydrocarbon alkali metal compounds, and organic amino alkali metal, which are generally known to have anionic polymerization activity for conjugated dienes and vinyl aromatic compounds.
  • a compound or the like can be used.
  • Examples of the alkali metal include lithium, sodium, potassium, and the like, and preferable organic alkali metal compounds are aliphatic and aromatic hydrocarbon lithium compounds having 1 to 20 carbon atoms, each having one molecule per molecule. Examples thereof include compounds containing lithium, dilithium compounds containing a plurality of lithium atoms in one molecule, trilithium compounds, and tetralithium compounds.
  • organic alkali metal compounds disclosed in US Pat. No. 5,708,092, British Patent 2,241,239, US Pat. No. 5,527,753, etc. are also used. can do. These may be used alone or in combination of two or more.
  • n-butyl lithium is generally used preferably.
  • the vinyl aromatic hydrocarbon / conjugated diene copolymer (b-1) has a weight average molecular weight (Mw) and a number average molecular weight (Mn) of 10,000 to 100 from the viewpoint of the balance between physical properties and processability of the resin composition.
  • the range is preferably 10,000, more preferably 30,000 to 300,000.
  • the average molecular weight and molecular weight distribution of the vinyl aromatic hydrocarbon / conjugated diene copolymer (b-1) can be measured by gel permeation chromatography (GPC).
  • the average molecular weight and molecular weight distribution of the vinyl aromatic hydrocarbon / conjugated diene copolymer (b-1) can be determined by using a standard sample having a known molecular weight and applying a calibration curve method.
  • the molecular weight distribution Mw / Mn of the vinyl aromatic hydrocarbon / conjugated diene copolymer (b-1) is preferably in the range of 1 to 1.5, more preferably in the range of 1 to 1.4. A range of 1 to 1.2 is more preferable.
  • the molecular weight distribution of the copolymer (b-1) can be calculated by calculating the component ratio from the area ratio using the GPC curve obtained by GPC measurement. The narrower the molecular weight distribution, the closer the value of Mw / Mn is to 1. When all the molecules have the same molecular weight and no distribution exists, the value of Mw / Mn is 1. It is theoretically impossible for the value of the molecular weight distribution Mw / Mn to be less than 1.
  • the vinyl aromatic hydrocarbon / conjugated diene copolymer (b-1) has at least two or more vinyl aromatic hydrocarbon polymer blocks, and the two or more vinyl aromatic hydrocarbon polymer blocks are
  • the vinyl aromatic hydrocarbon / conjugated diene copolymer (b-1) preferably has a structure bonded to both ends, and one conjugated diene polymer block is bonded to the center of the copolymer chain.
  • the structure is more preferable.
  • Such a structure is obtained by measuring an average molecular weight and a molecular weight distribution of a vinyl aromatic hydrocarbon compound block in the vinyl aromatic hydrocarbon / conjugated diene copolymer (b-1) to obtain a vinyl aromatic hydrocarbon / conjugated diene copolymer.
  • the molecular weight of the vinyl aromatic hydrocarbon compound block of the vinyl aromatic hydrocarbon / conjugated diene copolymer (b-1) was determined by using the above-mentioned osmium tetroxide as a catalyst and di-tertiary butyl hydroperoxide as a block copolymer.
  • Vinyl aromatic hydrocarbon polymer block component (however, the average degree of polymerization is obtained by the method of oxidative decomposition (method described in IM KOLTHOFF, et al., J. Polym. Sci. 1, 429 (1946)). The vinyl aromatic hydrocarbon polymer component of about 30 or less is excluded.)) By GPC measurement.
  • the molecular weight distribution curve of the vinyl aromatic hydrocarbon polymer block component is a peak and is about half the average molecular weight of the original polymer, the two block chain lengths are equal and the conjugated diene block is a copolymer ( It can be seen that it is located at the center of b-1).
  • the conjugated diene block is not the center of the vinyl aromatic hydrocarbon / conjugated diene copolymer (b-1) but has a structure biased to either one. I understand that.
  • melt flow rate of vinyl aromatic hydrocarbon / conjugated diene copolymer (b-1) The melt flow rate of the vinyl aromatic hydrocarbon / conjugated diene copolymer (b-1) (ISO 1133 temperature 200 ° C., load 5 kgf) depends on the workability and mechanical properties of the resin composition and the dialyzer molded from the resin composition. Therefore, 0.1 to 50 g / 10 min is preferable, and 1 to 20 g / 10 min is more preferable.
  • the vinyl aromatic hydrocarbon homopolymer (b-2) is a polymer using only vinyl aromatic hydrocarbon as a monomer unit.
  • vinyl aromatic hydrocarbons used in the polymerization reaction include styrene, o-methylstyrene, p-methylstyrene, p-tert-butylstyrene, 1,3-dimethylstyrene, ⁇ -methylstyrene, vinylnaphthalene, vinyl Anthracene, 1,1-diphenylethylene and the like can be mentioned.
  • ⁇ -methylstyrene and styrene are common and preferred.
  • Styrene is most preferred industrially, but from the viewpoint of the heat resistance of the resulting polymer, a copolymer of styrene and ⁇ -methylstyrene can also be preferably used. Moreover, these may be used independently and may use 2 or more types together.
  • the vinyl aromatic hydrocarbon homopolymer (b-2) can be generally produced by a radical polymerization method, for example, a polymerization method using a radical initiator such as peroxide, or a thermal polymerization method in which radicals are generated by heating. .
  • the average molecular weight of the vinyl aromatic hydrocarbon homopolymer (b-2) is preferably in the range of 200,000 to 1,000,000 from the viewpoint of the balance between physical properties and processability of the resin composition and the dialyzer molded from the resin composition. More preferably, it is in the range of 200,000 to 500,000.
  • Mn is preferably in the range of 50,000 to 300,000, more preferably in the range of 90,000 to 240,000 for the same reason.
  • the molecular weight distribution Mw / Mn is preferably in the range of 2.1 to 10, more preferably in the range of 2.1 to 5.
  • the molecular weight distribution falls within a high probability.
  • polymerization may be performed using a radical initiator such as peroxide, or thermal polymerization for generating radicals by heating may be used.
  • a polymerization initiator such as an aliphatic hydrocarbon alkali metal compound typified by n-butyllithium used in the production of the block copolymer (a)
  • a continuous polymerization method in the polymerization system, the monomer is sequentially added.
  • the molecular weight distribution Mw / Mn in the above preferred range can be obtained.
  • the molecular weight distribution Mw / Mn of the vinyl aromatic hydrocarbon homopolymer (b-2) is the same as that of the block copolymer (a) and the vinyl aromatic hydrocarbon / conjugated diene copolymer (b-1) described above. Similarly, it can be determined by performing GPC measurement.
  • the melt flow rate (ISO 1133 temperature 200 ° C., load 5 kgf) of the above-mentioned vinyl aromatic hydrocarbon homopolymer (b-2) is 0.1 to 50 g from the viewpoint of obtaining good moldability in the resin composition. / 10 minutes, preferably 0.5 to 20 g / 10 minutes, more preferably 1 to 10 g / 10 minutes.
  • GPPS general-purpose polystyrene resin
  • the above-mentioned vinyl aromatic hydrocarbon is used as the above-mentioned (b) vinyl aromatic hydrocarbon-based resin in the resin composition.
  • the homopolymer (b-2) and the vinyl aromatic hydrocarbon / conjugated diene copolymer (b-1) are preferably used in combination.
  • Is in the range of ⁇ 80/20, more preferably in the range of (b-1) / (b-2) 30/70 to 80/20.
  • the resin composition constituting the dialyzer of this embodiment contains a rubber-modified vinyl aromatic hydrocarbon polymer (c).
  • a rubber-modified vinyl aromatic hydrocarbon polymer (c) for example, what is known as impact-resistant polystyrene (HIPS) can be used, and it is not particularly limited.
  • the component (a) and the component (b) By blending the rubber-modified vinyl aromatic hydrocarbon polymer (c) in combination with the block copolymer (a) and the vinyl aromatic hydrocarbon resin (b), the component (a) and the component (b) Due to the synergistic effect of the combination of the component and the component (c), or the synergistic effect of the combination of the component (a) and the component (c), only the Dupont impact strength is greatly increased without substantially affecting the mechanical properties such as rigidity. There is an effect to improve. On the other hand, the amount of blending is adjusted in order to improve the balance of physical properties in consideration of not greatly reducing the transparency.
  • the rubber-modified vinyl aromatic hydrocarbon polymer (c) is used from the viewpoint of the balance of physical properties while improving the DuPont impact strength while preventing good mechanical properties while maintaining good mechanical properties.
  • the total amount of the component (a), the component (b) and the component (c) is 100% by mass, it is 1 to 15% by mass, preferably 3 to 12% by mass, and 5 to 10% by mass. % Is more preferable.
  • the rubber-modified vinyl aromatic hydrocarbon polymer (c) is industrially produced by a continuous polymerization method, a suspension polymerization method, or an emulsion polymerization method in the presence of a rubbery polymer using a radical polymerization method. can do.
  • the rubbery polymer used as a raw material for the rubber-modified vinyl aromatic hydrocarbon polymer (c) include a homopolymer, a copolymer, and / or a copolymer mainly composed of a conjugated diene monomer such as butadiene and isoprene.
  • a hydrogenated product can be used, and other preferable examples include copolymer rubbers with vinyl aromatic hydrocarbon monomers such as styrene.
  • the rubber-modified vinyl aromatic hydrocarbon polymer (c) contains graft rubber particles.
  • the graft rubber particles are insoluble in toluene. From this, if the content of the graft rubber particles in the component (c) is known, the insoluble component with respect to toluene is separated from the resin composition constituting the dialyzer of the present embodiment and measured to obtain a resin composition.
  • the blending amount of the blended rubber-modified vinyl aromatic hydrocarbon polymer (c) can be calculated. Specifically, about 1 g of the resin composition is accurately weighed into a settling tube, poured into 20 mL of toluene, and dissolved by shaking for 1 hour at room temperature.
  • the graft rubber particles are settled and separated from the soluble components by centrifuging for 30 minutes at 20000 rpm at 10 ° C. or less using a centrifuge.
  • the supernatant, which is soluble is removed by gently tilting the settling tube, and the content of toluene insolubles is measured by heating and vacuum drying at 80 ° C. for 2 hours.
  • the resin composition used for the measurement may be a resin composition at a stage before molding the dialyzer of the present embodiment, or may be a pulverized dialyzer after molding.
  • the toluene insoluble content is 0.3. ⁇ 5% by mass.
  • the content of the component (c) in the resin composition is 1 to 15% by mass when the total amount of the component (a), the component (b) and the component (c) is 100% by mass, This is because the content of the graft rubber particles in the component (c) is about 30% by mass at the maximum.
  • the toluene-insoluble matter is derived from the graft rubber particles in the component (c).
  • the content of the toluene insoluble matter is more preferably 1.0% by mass to 5.0% by mass, and still more preferably 1.2% by mass to 4.0% by mass.
  • the average particle diameter of the graft rubber particles in the rubber-modified vinyl aromatic hydrocarbon polymer (c) is preferably in the range of 1.5 ⁇ m to 5 ⁇ m.
  • the average particle diameter of the graft rubber particles in the range of 1.5 ⁇ m to 5 ⁇ m the effect of improving impact strength by a small amount can be obtained. From the viewpoint of obtaining such an effect, the range of 2 ⁇ m to 4 ⁇ m is more preferable.
  • the method for measuring the average particle size of the graft rubber particles is shown below.
  • the rubber-modified vinyl aromatic hydrocarbon polymer (c) is dyed with osmium tetroxide, and then an ultrathin section having a thickness of about 75 nm is prepared and photographed using a transmission electron microscope. Get a photo.
  • the number of particles having a long diameter Di is n.
  • Graft rubber particles include a so-called salami structure and a core-shell structure in which polystyrene is encapsulated.
  • melt flow rate of rubber-modified vinyl aromatic hydrocarbon polymer (c) The melt flow rate (ISO 1133 temperature 200 ° C., load 5 kgf) of the rubber-modified vinyl aromatic hydrocarbon polymer (c) is 0.1 to 50 g / 10 min in order to obtain good molding processability in the resin composition. 1 to 20 g / 10 min is more preferable.
  • thermoplastic polymers You may mix
  • a copolymer of vinyl aromatic hydrocarbon and (meth) acrylic acid and / or (meth) acrylic acid alkyl ester compound can be preferably used, but is limited to these. is not.
  • the alkyl group of the (meth) acrylic acid alkyl ester compound preferably has 1 to 20 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, octyl, 2-ethylhexyl, dodecyl, lauryl, palmityl, stearyl, cyclohexyl and the like. And an alkyl group having 1 to 4 carbon atoms is more preferable.
  • the amount of the thermoplastic polymer blended is not limited in accordance with the gist of the present invention, but is preferably in the range of 0 to 30% by mass in the resin composition.
  • ⁇ Additives> You may mix
  • a thermal stabilizer such as an antioxidant in order to suppress thermal degradation and oxidation degradation during kneading and molding of each component.
  • the compounding amount of the additive is preferably 0.1 to 1.5% by mass in the resin composition. When the amount is less than 0.1% by mass, the effect of the additive becomes insufficient, and even if it exceeds 1.5% by mass, the effect is meaningless.
  • the additive examples include a heat stabilizer such as 2-t-butyl-6 (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate, n-octadecyl- ⁇ - (4 And antioxidants such as '-hydroxy-3', 5'-di-t-butylphenylpropionate.
  • a heat stabilizer such as 2-t-butyl-6 (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate, n-octadecyl- ⁇ - (4
  • antioxidants such as '-hydroxy-3', 5'-di-t-butylphenylpropionate.
  • inorganic fillers such as glass fiber, glass beads, silica, calcium carbonate and talc; organic fillers such as organic fiber and coumarone indene resin; cross-linking agents such as organic peroxide and inorganic peroxide; titanium oxide, Inorganic pigments such as carbon black and iron oxide; dyes such as blue, red, purple and yellow; flame retardants; UV absorbers; antistatic agents; lubricants such as fatty acids, fatty acid amides and fatty acid metal salts; Oils and the like. These may be used alone or in combination of two or more.
  • the resin composition constituting the dialyzer of this embodiment can be produced by a conventionally known kneading and mixing method.
  • a melt kneading method using a known kneader such as a roll, a mixer, a kneader, a banbury, an extruder (single screw or twin screw, etc.), a plurality of materials are dry blended at the time of molding a dialyzer or a header,
  • a method of mixing in the melting process a method of stirring and mixing each component in a solution dissolved in an organic solvent, etc., and then removing the solvent by any method such as heating or decompression to obtain a mixture, or a combination of the above,
  • the solvent is removed by any method such as heating or decompression to obtain a partial mixture, and then the kneader described above is used.
  • the solvent is removed by any method such as heating or decompression to obtain a partial mixture, and then the kneader described above is
  • the dialyzer of the present embodiment is excellent in heat resistance.
  • the resin composition constituting the dialyzer of the present embodiment preferably has a load deflection temperature of 65 ° C. or higher at ISO 75 and a load of 1.8 MPa. More preferably, it is 70 ° C. or higher.
  • a load deflection temperature of 65 ° C. or higher at ISO 75 and a load of 1.8 MPa. More preferably, it is 70 ° C. or higher.
  • the deflection temperature under load can be controlled by selecting a vinyl aromatic hydrocarbon material or adjusting the amount of conjugated diene component.
  • the deflection temperature under load of the styrene homopolymer is about 83 ° C. by radical polymerization.
  • the deflection temperature under load increases more than when styrene is used, and the ratio of the copolymer constituting the resin composition Can also be adjusted.
  • the deflection temperature under load is less than 65 ° C., the heat resistance is insufficient, so when fixing the dialyzer body and the hollow fiber membrane with a thermosetting resin, the reaction heat is low and the curing time is long.
  • thermosetting resin Since a thermosetting resin must be used in a limited manner, it is not preferable in terms of industrial and economic aspects.
  • the deflection temperature under load can be measured by the method described in Examples described later.
  • the test piece used in the measurement method may be a molded piece of the resin composition in the previous stage of molding the dialyzer, or may be a molded piece that is formed again after being molded as a dialyzer. .
  • the dialyzer of this embodiment is excellent in heat resistance.
  • the resin composition constituting the dialyzer of this embodiment has a Vicat softening temperature of 93 ° C. or higher at a load of 10 N defined by ISO306. preferable.
  • the Vicat softening temperature can be measured at a heating rate of 50 ° C./hr using a test apparatus manufactured by Toyo Seiki Seisakusho, with a test piece thickness of 3 mm or more (in the example, 4 mm).
  • the Vicat softening temperature can be measured by the method described in Examples described later.
  • the test piece used in the measurement method may be a molded piece of the resin composition in the previous stage of molding the dialyzer, or may be a molded piece that is formed again after being molded as a dialyzer. .
  • the dialyzer of this embodiment is excellent in impact strength characteristics.
  • the resin composition constituting the dialyzer of this embodiment is a 50% fracture DuPont impact strength (missile tip diameter 1/4 inch, JIS K5400).
  • the sample cradle has an inner diameter of 30 mm) measured using a 2 mm-thick exit mirror flat plate, it should be 3.0 kg ⁇ cm or more, preferably 5.0 kg ⁇ cm or more, more preferably 10 kg ⁇ cm or more.
  • the dialyzer body preferably has a DuPont impact strength of 3.0 kg ⁇ cm or more because it requires an operation to tap the dialysate to remove the air bubbles inside the dialyzer.
  • the DuPont impact strength is higher.
  • the DuPont impact strength is preferably 10 kg ⁇ cm or more in order to prevent damage when the header is accidentally dropped on the floor.
  • the upper limit value of the DuPont impact strength is not particularly limited, but from the viewpoint of balance with other required characteristics such as rigidity and transparency, as an actual value, in an exit mirror plane plate having a thickness of 2 mm The upper limit is about 100 kg ⁇ cm.
  • the DuPont impact strength can be measured by the method described in Examples described later. Note that the test piece used in the measurement method may be a molded piece of the resin composition in the previous stage of molding the dialyzer, or may be a molded piece that is formed again after being molded as a dialyzer. .
  • the dialyzer of the present embodiment is excellent in transparency.
  • the resin composition constituting the dialyzer of the present embodiment has a haze value of ISO14782 measured using an emission mirror surface plate having a thickness of 2 mm. 30% or less, more preferably 25% or less.
  • the haze value can be measured by the method described in Examples described later.
  • the test piece used in the measurement method may be a molded piece of the resin composition in the previous stage of molding the dialyzer, or may be a molded piece that is formed again after being molded as a dialyzer. .
  • the dialyzer according to the present embodiment is usually subjected to electron beam sterilization or ⁇ -ray sterilization in the process of assembling a molded product into a product. Therefore, it is required to have resistance to electron beams and ⁇ rays.
  • the yellowing degree ( ⁇ YI) upon irradiation can be applied as resistance to electron beams and ⁇ rays.
  • the yellowing degree ( ⁇ YI) can be measured in accordance with JIS K7105 after irradiation with 25 kGy using an electron beam as irradiation energy.
  • the resin composition constituting the dialyzer of the present embodiment has a yellowing degree ( ⁇ YI) of preferably 10 or less, and more preferably 5 or less.
  • ⁇ YI yellowing degree
  • the yellowing degree can be measured by the method described in the examples described later.
  • the test piece used in the measurement method may be a molded piece of the resin composition in the previous stage of molding the dialyzer, or may be a molded piece that is formed again as a dialyzer and then pulverized. Or even measured against the dialyzer itself.
  • the dialyzer of this embodiment can be molded by a known molding method.
  • a blow molding method, an extrusion molding method, and an injection molding method are possible, but the injection molding method is particularly preferable because of its excellent production efficiency.
  • the dialyzer according to the present embodiment has a Vicat softening temperature of 93 ° C. or more, more preferably 95 ° C. or more at ISO 306 and a load of 10 N.
  • the upper limit value of the Vicat softening temperature is not particularly limited, but is about 120 ° C. or less because it is a resin composition mainly composed of vinyl aromatic hydrocarbons.
  • the Vicat softening temperature can be measured by preparing a test piece using a resin composition as a raw material and measuring it, but even a resin piece obtained by cutting out a part of a dialyzer is reheated to a thickness of 3 mm. It can measure by setting it as the above test piece.
  • ⁇ Machinability> When the dialyzer body constituting the dialyzer of the present embodiment is molded, the hollow fiber inside is fixed at the opening surface by a thermosetting resin such as urethane, and cutting is performed at a predetermined position from the end surface by a cutting machine. The occurrence of cracks and chips is not confirmed, and the machinability is extremely good.
  • the Dupont impact strength is 3 kg ⁇ cm or more as the resin composition constituting the dialyzer of the present embodiment, the above-described good cutting workability can be realized.
  • a block copolymer (a), a vinyl aromatic hydrocarbon resin (b), and a rubber-modified vinyl aromatic hydrocarbon polymer (c) are produced. Using these raw materials, a test piece and a dialyzer are prepared. Molded and evaluated.
  • Block copolymer (a)] (Block copolymer (a) -1) Under a nitrogen gas atmosphere, 0.08 parts by mass of n-butyllithium and 0.015 parts by mass of tetramethylmethylenediamine are added to a cyclohexane solution containing 20 parts by mass of styrene at a concentration of 25% by mass. Polymerized for minutes. Thereafter, a cyclohexane solution containing 8 parts by mass of 1,3-butadiene at a concentration of 25% by mass was added all at once and polymerized at 80 ° C. for 15 minutes. Next, polymerization was carried out at 80 ° C.
  • a cyclohexane solution containing 9 parts by mass of 1,3-butadiene and 15 parts by mass of styrene at a concentration of 25% by mass was added all at once and polymerized at 80 ° C. for 15 minutes.
  • a cyclohexane solution containing 3 parts by mass of styrene at a concentration of 25% by mass was added and polymerized at 80 ° C. for 5 minutes.
  • ethanol was added in a molar amount 0.4 times that of n-butyllithium and held for 5 minutes.
  • a cyclohexane solution containing 37 parts by mass of styrene at a concentration of 25% by mass was added and polymerized at 80 ° C. for 25 minutes. Thereafter, in order to completely stop the polymerization, 0.6 times mole of ethanol was added to n-butyllithium in the reactor, and 2-t-butyl was added as heat stabilizer to 100 parts by mass of the block copolymer.
  • the block copolymer was recovered by adding 0.3 parts by mass of -6 (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate and then removing the solvent.
  • the block copolymer thus obtained was a linear block copolymer having two peak molecular weights having an S1-B1-B / S1-B2-S2 structure with a styrene content of 75% by mass. It was.
  • the numbers given to S, B and B / S in the formula representing the block structure are the vinyl aromatic hydrocarbon block (S) and the conjugated diene polymer block (B) in the block copolymer, respectively. It is a number for identifying the block of the vinyl aromatic hydrocarbon / conjugated diene copolymer block (B / S), and different numbers have different molecular weights (degree of polymerization) even if they are the same.
  • Block copolymer (a) -2) Under a nitrogen gas atmosphere, 0.08 parts by mass of n-butyllithium and 0.015 parts by mass of tetramethylmethylenediamine are added to a cyclohexane solution containing 20 parts by mass of styrene at a concentration of 25% by mass. Polymerized for minutes. Next, polymerization was carried out at 80 ° C. while continuously adding a cyclohexane solution containing 14 parts by mass of 1,3-butadiene and 10 parts by mass of styrene at a concentration of 25% by mass over 30 minutes. Next, polymerization was carried out at 80 ° C.
  • the block copolymer was recovered by adding 0.3 parts by mass of (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate and then removing the solvent.
  • the block copolymer thus obtained was a linear block copolymer having an S1-B / S1-B / S2-S2 structure and a styrene content of 70% by mass.
  • Block copolymer (a) -3-7) The styrene content of the block copolymer was adjusted by the weight ratio of butadiene and styrene.
  • the molecular weight of the block copolymer was adjusted by the amount of initiator, the position and amount of ethanol added.
  • the S block ratio was adjusted by the quantity ratio of the B / S part.
  • the styrene block molecular weight was adjusted by the amount ratio of S (styrene) and the addition position and addition amount of ethanol.
  • Other conditions were the same as in (a) -2 to produce a block copolymer.
  • S block ratio means “weight ratio of polymer block (in this example, styrene block) to all vinyl aromatic hydrocarbon units constituting block copolymer (a)”. It shall be.
  • Block copolymer (a) shown in following Table 1 was measured in accordance with the following method.
  • Block Copolymer (a) ⁇ Conjugated Diene (Butadiene) Content of Block Copolymer (a)> Based on the mass% of the styrene content obtained above, it was calculated by subtracting from 100 mass%.
  • tetrahydrofuran is used as a solvent, and 10 mL of tetrahydrofuran is added to 50 mg of the target polymer for molecular weight measurement, completely dissolved, filtered to remove insoluble matters, and a measurement sample is prepared. Obtained.
  • a calibration curve was prepared using nine standard polystyrene samples with different molecular weights and known molecular weights. The highest molecular weight standard polystyrene used had a weight average molecular weight Mw of 1.09 million and the lowest molecular weight of 1050. Then, the sample for a measurement was adjusted in the said way using the target block polymer (a) which measures molecular weight.
  • styrene content was measured as described above, and then the styrene content constituting the polymer block was measured. Specifically, about 50 mg of accurately weighed polymer was dissolved in about 10 mL of chloroform, osmium acid solution was added to decompose the conjugated diene moiety, and the polymer solution after decomposition was gently dissolved in about 200 mL of methanol. It was dripped. Thereby, the polymer block styrene component which does not melt
  • Styrene monomers not forming a block and styrene having a low polymerization degree were dissolved in a methanol / chloroform mixed solution.
  • the polymer precipitate was filtered, vacuum-dried, and the weight of the block styrene as the residue was weighed to obtain the value of the block styrene content.
  • the “S block ratio” was a value obtained by dividing the amount of block styrene by the total amount of styrene.
  • the number of molecular weight peaks is 2 or more when ethanol is added during polymerization to partially inactivate.
  • the vinyl aromatic hydrocarbon / conjugated diene copolymer (b-1) having a vinyl aromatic hydrocarbon content of 93 mass% to 99.9 mass% and a conjugated diene content of 7 to 0.1 mass% is: In a nitrogen gas atmosphere, using n-butyllithium as an initiator in a cyclohexane solvent, styrene, 1,3-butadiene, styrene in this order, or styrene, a mixture of styrene and 1,3-butadiene, styrene in order, In any of the above methods, a cyclohexane solution of a monomer is added for polymerization, and then ethanol is added to stop the polymer
  • the structures and physical properties of the vinyl aromatic hydrocarbon / conjugated diene copolymers (b-1) -1 to 6 shown in Table 2 below were measured according to the following methods.
  • the styrene content was measured as described above, and then the styrene content constituting the vinyl aromatic hydrocarbon / conjugated diene copolymer (b-1) was measured.
  • about 50 mg of accurately weighed polymer was dissolved in about 10 mL of chloroform, osmium acid solution was added to decompose the conjugated diene moiety, and the polymer solution after decomposition was gently dissolved in about 200 mL of methanol. It was dripped.
  • the precipitated polymer is only block styrene.
  • Styrene monomers not forming a block and styrene having a low polymerization degree were dissolved in a methanol / chloroform mixed solution.
  • the polymer precipitate was filtered, vacuum-dried, and the weight of the block styrene as the residue was weighed to obtain the value of the block styrene content.
  • the S block ratio was a value obtained by dividing the amount of block styrene by the total amount of styrene.
  • G condition indicates a test temperature of 200 ° C. and a load of 5 kgf.
  • Vinyl aromatic hydrocarbon homopolymer (b-2) As the vinyl aromatic hydrocarbon homopolymer (b-2), commercially available polystyrene (PSJ polystyrene 685 manufactured by PS Japan Co., Ltd.) was used. The molecular weight distribution Mw / Mn by GPC measurement was 2.6, and the melt flow rate (conditions: 200 ° C., load 5 kgf) was 2.1.
  • Rubber-modified vinyl aromatic hydrocarbon polymer rubber-modified polymer (c)] (Rubber-modified vinyl aromatic hydrocarbon polymer (c) -1) Styrene-butadiene copolymer rubber (SBR: manufactured by Asahi Kasei Chemicals Corporation, Toughden 2000A, bound styrene content 25% by mass) is dissolved in styrene, then ethylbenzene and 1,1-di-t-butylperoxy 3,3 , 5-trimethylcyclohexane and di-t-butyl peroxide were added in small amounts, and finally a polymerization stock solution having the following composition was prepared.
  • SBR Styrene-butadiene copolymer rubber
  • Styrene-butadiene copolymer rubber 8.0% by mass Styrene: 76.9% by mass Ethylbenzene: 15.0% by mass 1,1-di-t-butylperoxy 3,3,5-trimethylcyclohexane: 0.01% by mass Di-t-butyl peroxide: 0.02% by mass Alpha methyl styrene dimer: 0.04% by mass
  • the above polymerization stock solution was continuously fed at a rate of 2.2 L / hour to a 3-tank reactor equipped with a stirrer having an internal volume of 6.2 liters. The temperature in the reactor was controlled so that the solid content concentration at the outlet of the first tank reactor was 38% by mass.
  • the temperature in the reactor was adjusted so that the solid content concentration at the outlet of the final tank reactor was 80% by mass.
  • it was sent to a devolatilizer at 230 ° C. under vacuum to remove unreacted styrene and ethylbenzene, and granulated with an extruder to obtain a pellet-like rubber-modified vinyl aromatic hydrocarbon polymer (c) -1. .
  • the proportion of styrene / butadiene copolymer rubber in the rubber-modified vinyl aromatic hydrocarbon polymer was 10% by mass.
  • Rubber-modified vinyl aromatic hydrocarbon polymer (c) -2) Polybutadiene rubber (BR: manufactured by Asahi Kasei Chemicals Corporation, diene 55AE) is dissolved in styrene, then ethylbenzene, 1,1-di-tert-butylperoxy 3,3,5-trimethylcyclohexane, di-tert-butyl A small amount of peroxide was added, and finally a polymerization stock solution having the following composition was prepared.
  • Polybutadiene rubber 4.0% by mass Styrene: 80.9% by mass Ethylbenzene: 15.0% by mass 1,1-di-t-butylperoxy 3,3,5-trimethylcyclohexane: 0.01% by mass Di-t-butyl peroxide: 0.02% by mass Alpha methyl styrene dimer: 0.04% by mass
  • the above polymerization stock solution was polymerized by the same procedure as (c) -1 described above to obtain a pellet-like rubber-modified vinyl aromatic hydrocarbon polymer (c) -2.
  • the ratio of polybutadiene rubber in the rubber-modified vinyl aromatic hydrocarbon polymer was 5% by mass.
  • the average particle diameter of the rubber particles was adjusted by adjusting the rotation speed of the stirring blade.
  • the method for measuring the average particle size is shown below.
  • the rubber-modified vinyl aromatic hydrocarbon polymer (c) is dyed with osmium tetroxide, and then an ultrathin section having a thickness of about 75 nm is prepared and photographed using a transmission electron microscope, and the magnification is 10,000 times. I took a picture.
  • the diameter of rubber particles dyed black in the photograph was measured and calculated according to the following formula.
  • (Average particle diameter) ⁇ nDi 4 / ⁇ nDi 3
  • the number of particles having a long diameter Di is n.
  • Table 3 shows the rubber-modified vinyl aromatic hydrocarbon polymer (c) -1 to rubber component, rubber component content, rubber particle average particle diameter ( ⁇ m), toluene insoluble matter, melt flow rate (G Condition).
  • the structures and physical properties of the rubber-modified vinyl aromatic hydrocarbon polymers (c) -1 and 2 shown in Table 3 below were measured according to the following methods.
  • BR polybutadiene
  • SBR styrene / butadiene copolymer (25% by mass of bound styrene).
  • each of the block copolymer (a) -4 and the vinyl aromatic hydrocarbon resin (b-1) -4 is polymerized, the polymerization is stopped, and a thermal stabilizer is added.
  • the two polymer solutions were mixed so as to have the ratio shown in Table 5, stirred for 1 minute, and then the solvent was removed to obtain a polymer mixture.
  • the modified vinyl aromatic hydrocarbon polymer (c) -2 was melt-kneaded with the above twin screw extruder to obtain pellets of a resin composition constituting a dialyzer.
  • Comparative Example 7 a polystyrene simple (PSJ Polystyrene 685 manufactured by PS Japan Co., Ltd.) which is a vinyl aromatic hydrocarbon homopolymer (b-2), and as a Comparative Example 8, a commercially available polycarbonate resin alone (Idemitsu).
  • a comparative example 9 methyl methacrylate / styrene / butadiene resin (MBS resin) alone (Denka TH Polymer TH-11, manufactured by Denki Kagaku Kogyo Co., Ltd.) was used as a resin composition constituting the dialyzer.
  • a dialyzer configured as shown in FIG. 1 was molded using the resin composition prepared or prepared as described above.
  • the resin compositions constituting the dialyzer produced in Examples 1 to 24 and Comparative Examples 1 to 9 characteristics and physical properties were evaluated. Specifically, the resin composition was measured using an injection molding machine with a clamping force of 120 tons, a cylinder temperature of 210 ° C. and a mold temperature of 40 ° C., an ISO standard test piece, a length of 90 mm, a width of 50 mm, and a thickness of 2 mm. A mirror-like flat plate test piece was molded. However, only the Vicat softening temperature was obtained by cutting a dialyzer main body container, crushing it, and molding it again by hot press molding. After conditioning for 24 hours at 23 ° C., the following tests and measurement evaluations were performed.
  • Toluene insoluble matter About 1 g of the resin composition was accurately weighed in a settling tube, poured with 20 mL of toluene, and dissolved by shaking at room temperature for 1 hour. Subsequently, the graft rubber particles were settled and separated from the soluble components by centrifuging at 10 ° C. or less and 20000 rpm for 30 minutes using a centrifuge. The supernatant, which is soluble, was removed by gently tilting the settling tube, and the content of toluene insolubles was measured by heating and vacuum drying at 80 ° C. for 2 hours. The content (mass%) of the toluene insoluble component was calculated when the total of component (a) + component (b) + component (c) was 100 mass%.
  • the deflection temperature under load was measured using an ISO test piece under the condition of a load of 1.8 MPa according to the test standard ISO75. The results of the deflection temperature under load were evaluated as follows. Below 65 ° C: ⁇ (practical heat resistance is insufficient) 65 ° C. or higher and lower than 70 ° C .: ⁇ (has practically minimum heat resistance) 70 ° C or higher: ⁇ (particularly excellent in heat resistance)
  • the Vicat softening temperature was measured under the condition of a load of 10 N according to the test standard ISO306.
  • the dialyzer was cut with a band saw, and after removing the hollow fiber membrane, the pulverized product crushed to a size of 1 to 2 mm with a pulverizer was 12 mm ⁇ 25 mm in thickness with a hot press molding machine at a temperature of 200 ° C. What was obtained by molding a test piece of 4 mm was used.
  • the results of Vicat softening temperature were evaluated as follows. Less than 93 ° C: ⁇ (practical heat resistance is insufficient) 93 ° C or higher and lower than 97 ° C: ⁇ (has practically minimum heat resistance) 97 ° C or higher: ⁇ (especially excellent in heat resistance)
  • the DuPont impact strength was determined in accordance with the test standard JIS K5400 using a mirror-like flat plate test piece and a 50% breaking strength using a cradle having a missile tip diameter of 1/4 inch and an inner diameter of 30 mm.
  • the testing machine used was a manual and tabletop testing machine manufactured by Toyo Seiki Co., Ltd. with a maximum height of 50 cm.
  • Two types of weights, 300 g and 1 kg, were used depending on the strength, and when the strength exceeded 10 kg ⁇ cm, the weight was calculated using a 1 kg weight.
  • the calculation method is as follows: When a 1 kg weight is used to break with a 50% probability of free fall from a height of 30 cm, the DuPont impact strength is 30 kg ⁇ cm.
  • the degree of yellowing (hereinafter abbreviated as ⁇ YI) is determined by measuring the yellow index (YI) before and after irradiation with an electron beam of 25 kGy using a specular flat specimen in accordance with JIS K7105. A certain ⁇ YI (yellowing degree) was determined.
  • the index of the measurement result of ⁇ YI is shown below. 5 or less: It has sufficient resistance, and its influence on appearance and mechanical strength is small and limited. More than 5 and 10 or less: Some yellowing is observed, but the influence on impact resistance and rigidity is small and limited. More than 10: The degree of yellowing is large, and there is a concern not only about the quality deterioration in appearance but also the adverse effect on impact resistance and rigidity.
  • machinability Furthermore, a main body container of the dialyzer was prepared using the resin composition pellets constituting the dialyzer prepared in Examples 1 to 24 and Comparative Examples 1 to 9, and the machinability was evaluated. For machinability, 350 ton injection molding is performed using pellets of the above resin compositions in order to evaluate the presence or absence of chipping or cracking defects in the molded body during cutting, or incompatibility with the header due to shape changes, etc. With the machine, the dialyzer body 10 shown in FIG. 1 was molded at a cylinder temperature of 220 ° C. and a mold temperature of 55 ° C., and the opening was closed with a thermosetting urethane resin, and at a position 5 mm from the end face.
  • the amount of conjugated diene in the resin composition means a block copolymer (a), a vinyl aromatic hydrocarbon resin (b), and a rubber-modified vinyl aromatic hydrocarbon polymer (c).
  • the total content of conjugated dienes contained in the resin composition is shown.
  • the amount of conjugated diene was calculated from the total content of conjugated diene contained in each of (a), (b), and (c) / the total mass of the resin composition.
  • the amount of conjugated diene in the resin composition refers to the block copolymer (a), the vinyl aromatic hydrocarbon resin (b), and the rubber-modified vinyl aromatic hydrocarbon polymer (c).
  • the total content of conjugated dienes contained in the resin composition is shown.
  • the amount of conjugated diene was calculated by “total content of conjugated diene contained in each of (a), (b), and (c) / total mass of resin composition”.
  • the resin compositions of Examples 1 to 24 all have a good balance between the Vicat softening temperature, the deflection temperature under load, and the DuPont impact strength, and can ensure sufficient transparency and visibility for practical use. It has been found that ⁇ YI after irradiation has been reduced and has excellent physical properties as a dialyzer. Also, good evaluation has been obtained for the machinability in the process of producing the dialyzer using the resin compositions of Examples 1 to 24, the production yield is good, the occurrence of defective products is extremely low, and the production cost is low. It turned out that it was excellent also from a viewpoint.
  • the resin compositions of Comparative Examples 1 to 9 are inferior to at least one of Vicat softening temperature, deflection temperature under load, DuPont impact strength, and their balance, transparency, ⁇ YI, and machinability, and are practical as a dialyzer. It has been found that it does not have sufficient characteristics.
  • the resin compositions produced in Examples 1 to 24 were evaluated as having a good balance of Vicat softening temperature, deflection temperature under load, and DuPont impact strength, and had excellent dimensional stability even when molded into a dialyzer. It can be securely connected to an external dialysis machine, and has good transparency because it is practically transparent, so that it will not be damaged even if it is struck or dropped with a pin. It was. Further, the machinability was also good.
  • the dialyzer of the present invention has industrial applicability as a medical member for artificial dialysis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Urology & Nephrology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Vascular Medicine (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Emergency Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Medical Uses (AREA)

Abstract

〔課題〕良好な電子線或いはγ線に対する耐性と透明性と、さらには良好な切削加工性とを有し、耐衝撃性と耐熱性のバランスに極めて優れるダイアライザーを提供する。 〔解決手段〕ビニル芳香族炭化水素が60~80質量%、共役ジエンが40~20質量%、含有されており、2以上のビニル芳香族炭化水素重合体ブロックを有するブロック共重合体(a)と、 ビニル芳香族炭化水素が93~100質量%、共役ジエンが7~0質量%、含有されているビニル芳香族炭化水素系樹脂(b)と、 ゴム変性ビニル芳香族炭化水素重合体(c)と、を含有し、 ブロック共重合体(a)とビニル芳香族炭化水素系樹脂(b)とが質量比で、(a)/(b)=20/80~80/20の範囲であり、 前記(a)と(b)と(c)の合計を100質量%としたとき、前記ゴム変性ビニル芳香族炭化水素重合体(c)の含有量が1~15質量%である、樹脂組成物を成形してなる、ダイアライザー。

Description

ダイアライザー
 本発明は、ダイアライザーに関する。
 近年、腎臓の機能が低下した患者に対し、患者の血液を体外に取り出して血液中の老廃物を透析やろ過により除去した後、浄化された血液を患者の体内へ戻す、体外循環式血液浄化療法(人工透析)が普及している。
 このような人工透析においては、「ダイアライザー」と呼ばれる、筒状容器からなる「本体」の内部に、体液から目的成分を除去するために中空糸等の分離膜が充填され、その両端部に体液を出入りさせるためのノズルが備わった「ヘッダー」と呼ばれるキャップ部品が取り付けられた構造の透析用部品が用いられている。
 一般的に、「ヘッダー」と呼ばれるキャップ部品は、本体とは別部品として成形され、本体に中空糸の分離膜を充填した後において、後工程で接合されるために用いられ、前記「本体」と「ヘッダー」とを合わせて「ダイアライザー」として製品化されている。
 また、体液が流れるダイアライザーの出口側と入口側とを明確に区別するため、本体の両端に取り付けられるヘッダーとしては、異なる色のものを使用することが一般的に行われている。
 また、ダイアライザーは使い捨て製品であるため、安価かつコンパクトであることが要求され、さらには、ダイアライザー内部の視認性が必要とされ、実用上十分な透明性が要求されていることからダイアライザーの本体及びヘッダーは現在その殆どが樹脂化されている。
 さらに、ダイアライザーの本体及びヘッダーには、電子線やγ線による滅菌処理が施されるため、構成材料には電子線やγ線に対する耐性が要求され、これらによる滅菌処理を施された場合に機械的特性の維持と色調等の外観上の品質の維持が要求される。
 さらにまた、ダイアライザーの使用に際し、誤って床に落とした場合や、透析液を充填する際に残留空気を抜くため、かん子等で繰り返し強く叩いた場合等においても破損しない程度の、実用上十分な衝撃強度(耐衝撃性)を有していることが要求される。
 またさらには、ダイアライザー本体に透析用の中空糸膜を固定する際にウレタン等の熱硬化性樹脂を用いて封止を行うことが一般的に行われているが、通常、熱硬化性樹脂は硬化時に発熱を伴う。そのため、ダイアライザー本体に使用する材料は、熱硬化性樹脂の硬化時の発熱温度に十分耐え得る耐熱性を有している必要がある。ダイアライザー本体に使用する材料の耐熱性が不十分な場合、硬化熱によって寸法変化を生じ、後のヘッダーを取り付ける工程において、勘合不良等の不具合を生じる。
 一般的に、熱硬化性樹脂の発熱温度が高いほど、硬化時間が短くなる傾向があり、生産効率や経済性の観点で、短時間で硬化する発熱温度の高い熱硬化性樹脂の利用に対するニーズは高く、それゆえダイアライザー本体には、より高い耐熱性を有することが強く要求される。
 上述したダイアライザー本体及びヘッダー用の樹脂材料として、例えば、汎用ポリスチレンは、透明性、剛性、耐γ線性及び耐熱性については、優れた特性を発揮するものの、割れやすく衝撃強度に劣っているという問題がある。
 一方、ゴム変性耐衝撃性ポリスチレンは、衝撃強度は良好であるが、乳白色で不透明となるため、製品内部の視認性に劣るという問題がある。
 また、ポリカーボネート樹脂は、優れた透明性と衝撃強度を有しているが、電子線やγ線による滅菌処理を行うと黄変し、製品価値を損なうという問題がある。
 上述した問題に対し、ダイアライザーの本体及びヘッダー用の材料として、ビニル芳香族炭化水素と共役ジエンとからなる熱可塑性ブロック共重合体を主体とした材料の開発が行われており、具体的には、ビニル芳香族炭化水素と共役ジエンとからなる熱可塑性ブロック共重合体と、特定のゴム粒子径を有するゴム変性耐衝撃性ポリスチレンとからなる樹脂組成物が開示されている(例えば、特許文献1参照)。
 さらには、特定のスチレン系共重合樹脂からなる人工腎臓透析器が提案されている(例えば、特許文献2参照)。
特許第3192253号 特許第3409823号
 しかしながら、特許文献1に開示されている樹脂組成物は、耐γ線性及び透明性については優れているものの、特に耐熱性と耐衝撃性とのバランスの観点からは、未だ十分な特性が得られていない。
 また、特許文献2に開示されている特定のスチレン系共重合樹脂からなる人工腎臓透析器の本体においては、実際に回路に組み込んで使用する際、透析装置の接続部に軟質塩化ビニル製チューブが用いられていると、軟質塩化ビニルに配合されている可塑剤が移行して極度に白化するという欠点があり、人工腎臓透析器としての要求特性が満足できないという問題がある。
 さらに、特許文献1及び特許文献2に開示されている材料を用いると、ダイアライザー本体に中空糸膜をウレタン等の熱硬化性樹脂で固定した後に端面の切削加工を行う際、本体の割れや欠けといった不具合が多く発生することが予想され、製造歩留まりの観点や、不良品発生の防止の観点から、材料物性の改善を図る必要がある。
 そこで本発明においては、ビニル芳香族炭化水素系樹脂の特徴である、良好な電子線或いはγ線に対する耐性と透明性と、さらには良好な切削加工性とを有し、耐衝撃性と耐熱性のバランスに極めて優れるダイアライザーを提供することを目的とする。
 本発明者らは鋭意検討の結果、特定の構造を有するビニル芳香族炭化水素と共役ジエンとからなるブロック共重合体(a)と、特定のビニル芳香族炭化水素を主体とするビニル芳香族炭化水素系樹脂(b)と、ゴム変性ビニル芳香族炭化水素重合体(c)、とからなる樹脂組成物をダイアライザー本体及びヘッダーの材料に用いることによって、上記従来技術の課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の通りである。
〔1〕
 ビニル芳香族炭化水素が60~80質量%、共役ジエンが40~20質量%、含有されており、2以上のビニル芳香族炭化水素重合体ブロックを有するブロック共重合体(a)と、
 ビニル芳香族炭化水素が93~100質量%、共役ジエンが7~0質量%、含有されているビニル芳香族炭化水素系樹脂(b)と、
 ゴム変性ビニル芳香族炭化水素重合体(c)と、
を、含有し、
 前記ブロック共重合体(a)と前記ビニル芳香族炭化水素系樹脂(b)とが質量比で、(a)/(b)=20/80~80/20の範囲であり、
 前記(a)と(b)と(c)の合計を100質量%としたとき、前記ゴム変性ビニル芳香族炭化水素重合体(c)の含有量が1~15質量%である、樹脂組成物を成形してなる、ダイアライザー。
〔2〕
 ビニル芳香族炭化水素が60~80質量%、共役ジエンが40~20質量%、含有されており、2以上のビニル芳香族炭化水素重合体ブロックを有するブロック共重合体(a)と、
 ビニル芳香族炭化水素が93~100質量%、共役ジエンが7~0質量%、含有されているビニル芳香族炭化水素系樹脂(b)と、
 ゴム変性ビニル芳香族炭化水素重合体(c)と、
を、含有し、
 前記ブロック共重合体(a)と前記ビニル芳香族炭化水素系樹脂(b)とが質量比で、(a)/(b)=20/80~80/20の範囲であり、
 前記(a)と(b)と(c)の合計を100質量%としたとき、トルエン不溶分が0.3~5質量%である樹脂組成物を成形してなる、ダイアライザー。
〔3〕
 前記樹脂組成物は、ISO75に規定される荷重1.8MPaにおける荷重たわみ温度が、65℃以上である前記〔1〕又は〔2〕に記載のダイアライザー。
〔4〕
 前記ブロック共重合体(a)と前記ビニル芳香族炭化水素系樹脂(b)の各々に含まれる共役ジエンの含有量の合計量が、前記ブロック共重合体(a)と、前記ビニル芳香族炭化水素系樹脂(b)の合計量に対して4~15質量%である、前記〔1〕乃至〔3〕のいずれか一に記載のダイアライザー。
〔5〕
 前記ブロック共重合体(a)と前記ビニル芳香族炭化水素系樹脂(b)とゴム変性ビニル芳香族炭化水素重合体(c)の各々に含まれる共役ジエンの含有量の合計量が、前記(a)と(b)と(c)の合計量に対して3~14質量%である、前記〔1〕乃至〔4〕のいずれか一に記載のダイアライザー。
〔6〕
 前記ビニル芳香族炭化水素系樹脂(b)が、GPC法により測定した分子量分布Mw/Mnが1~1.5の範囲であって、かつ、ビニル芳香族炭化水素が93~99.9質量%、共役ジエンが7~0.1質量%、含有されているビニル芳香族炭化水素・共役ジエン共重合体(b-1)である、前記〔1〕乃至〔5〕のいずれか一に記載のダイアライザー。
〔7〕
 前記ビニル芳香族炭化水素系樹脂(b)が、GPC法により測定した分子量分布Mw/Mnが2.1~10の範囲であり、ビニル芳香族炭化水素単独重合体(b-2)である、前記〔1〕乃至〔5〕のいずれか一に記載のダイアライザー。
〔8〕
 前記ビニル芳香族炭化水素系樹脂(b)が、
 GPC法により測定した分子量分布Mw/Mnが1~1.5の範囲であって、かつ、ビニル芳香族炭化水素が93~99.9質量%、共役ジエンが7~0.1質量%、含有されている、ビニル芳香族炭化水素・共役ジエン共重合体(b-1)と、
 GPC法により測定した分子量分布Mw/Mnが2.1~10の範囲である、ビニル芳香族炭化水素単独重合体(b-2)と、から構成され、
 前記ビニル芳香族炭化水素・共役ジエン共重合体(b-1)と前記ビニル芳香族炭化水素単独重合体(b-2)とが、重量比で(b-1)/(b-2)=20/80~80/20の範囲である、前記〔1〕乃至〔5〕のいずれか一に記載のダイアライザー。
〔9〕
 前記ビニル芳香族炭化水素・共役ジエン共重合体(b-1)が、少なくとも2以上のビニル芳香族炭化水素重合体ブロックを有し、かつ、当該2以上のビニル芳香族炭化水素重合体ブロックが、前記ビニル芳香族炭化水素・共役ジエン共重合体(b-1)の両末端に結合している、前記〔6〕又は〔8〕に記載のダイアライザー。
〔10〕
 前記ゴム変性ビニル芳香族炭化水素重合体(c)には、平均粒子径が1.5μm~5μmのグラフトゴム粒子が含有されている、前記〔1〕乃至〔9〕のいずれか一に記載のダイアライザー。
〔11〕
 ビニル芳香族炭化水素を主体とし、共役ジエンを2~14質量%含有する樹脂組成物を成形したダイアライザーであって、
 ISO306に規定されるビカット軟化温度が、荷重条件10Nにて93℃以上であり、
 前記樹脂組成物のJIS K5400に規定されるデュポン衝撃強度が3kg・cm以上である、ダイアライザー。
 本発明によれば、ダイアライザー内部の視認性が良好な透明性を有し、電子線やγ線照射による滅菌処理後も変色や物性低下が効果的に低減化され、かつ製造工程における切削加工性も良好であり、高い耐熱性と耐衝撃性とのバランスに優れる、ダイアライザーが得られる。
本実施形態のダイアライザーの概略側面図を示す。
 以下、本発明を実施するための形態(以下、「本実施形態」と言う。)について、図を参照して説明する。
 本発明は、以下の記載に限定されるものではなく、その要旨の範囲内で種々変形して実施できる。
 なお、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとし、さらに図面の寸法比率は、図示の比率に限定されるものではない。
 さらに、本明細書において、「略」を付した用語は、当業者の技術常識の範囲内でその「略」を除いた用語の意味を示すものであり、「略」を除いた意味自体をも含むものとする。
〔ダイアライザー〕
 本実施形態のダイアライザーは、
 ビニル芳香族炭化水素が60~80質量%、共役ジエンが40~20質量%、含有されており、2以上のビニル芳香族炭化水素重合体ブロックを有するブロック共重合体(a)と、
 ビニル芳香族炭化水素が93~100質量%、共役ジエンが0~10質量%、含有されているビニル芳香族炭化水素系樹脂(b)と、
 ゴム変性ビニル芳香族炭化水素重合体(c)と、
を、含有し、
 前記ブロック共重合体(a)と前記ビニル芳香族炭化水素系樹脂(b)とが質量比で、(a)/(b)=20/80~80/20の範囲であり、
 前記(a)と(b)と(c)の合計を100質量%としたとき、ゴム変性ビニル芳香族炭化水素重合体(c)の含有量が1~15質量%である、樹脂組成物を成形してなるものである。
 (ダイアライザーの構成)
 図1に本実施形態のダイアライザーの概略側面図を示す。
 本実施形態の「ダイアライザー」とは、両端に開口を有する略円筒形状のダイアライザー本体10と、当該ダイアライザー本体の開口に設けられているヘッダー12a、12bを具備している。
 前記ダイアライザー本体10の側壁部であって、両端の開口近傍には、それぞれノズル部11a、11bが設けられており、外部の透析装置と接続可能になされている。
 前記ヘッダー12a、12bには、それぞれヘッダーの一部を成すノズル20a、20bが設けられている。
 実際に人工透析を実施する際には、ダイアライザー本体10の内部に所定の中空糸膜を収納し、ヘッダー12a、12bで封止した状態で使用し、ノズル20a(又は20b)を介して体液を注入する。また、「透析液」と呼ばれる電解質水溶液をノズル部11a、11bを介して循環させる。
 本実施形態のダイアライザーの構成に関しては、便宜上、所定の樹脂組成物を成形したものとして説明するが、本実施形態において対象としているダイアライザーは、実際に透析を行う際に使用する中空糸膜を含んだ構成であってもよい。
 なお、ダイアライザー内部に収納される中空糸膜は、その構造、機能、及び構成材料等、特に限定されるものではなく、従来公知のものをいずれも使用できる。
 体液は、ノズル20b(又は20a)からノズル20a(又は20b)へと導かれ、さらに循環するようになされる。
 中空糸膜により透析が行われた後、ノズル部11a、11bから外部へと導かれるようになされる。
 (樹脂組成物)
 本実施形態のダイアライザーを構成する樹脂組成物は、
 ビニル芳香族炭化水素が60~80質量%、共役ジエンが40~20質量%、含有されており、2以上のビニル芳香族炭化水素重合体ブロックを有するブロック共重合体(a)と、
 ビニル芳香族炭化水素が93~100質量%、共役ジエンが7~0質量%、含有されているビニル芳香族炭化水素系樹脂(b)と、
 ゴム変性ビニル芳香族炭化水素重合体(c)と、
を、含有する。
 前記ブロック共重合体(a)と前記ビニル芳香族炭化水素系樹脂(b)とが質量比で、(a)/(b)=20/80~80/20の範囲であり、
 前記(a)と(b)と(c)の合計を100質量%としたとき、ゴム変性ビニル芳香族炭化水素重合体(c)の含有量が1~15質量%である。
 なお、本実施形態のダイアライザーを構成する樹脂組成物は、配合成分として前記ブロック共重合体(a)、ビニル芳香族炭化水素系樹脂(b)、ゴム変性ビニル芳香族炭化水素重合体(c)を上述した比率で含有しているが、樹脂組成物全体しては、ビニル芳香族炭化水素を主体として含有し、共役ジエンを2~14質量%含有する。
 なおここで「主体とする」とは、含有量が50質量%以上であることを意味し、60質量%以上であることが好ましい。
 前記樹脂組成物を構成するビニル芳香族炭化水素としては、例えば、スチレン、o-メチルスチレン、p-メチルスチレン、p-tert-ブチルスチレン、1,3-ジメチルスチレン、α-メチルスチレン、ビニルナフタレン、ビニルアントラセン、1,1-ジフェニルエチレン等が挙げられる。特にスチレンが一般的であり好ましい。これらは単独で用いてもよく、2種以上を併用してもよい。
 前記樹脂組成物を構成する共役ジエンとは、一対の共役二重結合を有するジオレフィンである。例えば、1,3-ブタジエン、2-メチル-1,3-ブタジエン(イソプレン)、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン等が挙げられる。特に、1,3-ブタジエン、イソプレンが一般的であり好ましい。これらは単独で用いてもよく、2種以上を併用してもよい。
 上述したように、前記樹脂組成物は、ビニル芳香族炭化水素を主体として含有し、共役ジエンを2~14質量%含有する。
 前記樹脂組成物中には、後述するように、前記(a)成分、(b)成分、(c)成分以外の成分が含まれている場合もある。樹脂組成物を上記(a)成分、(b)成分、(c)成分により構成されるものとした場合、ビニル芳香族炭化水素含有量は、樹脂組成物中86質量%~97質量%であり、共役ジエン含有量は3質量%~14質量%であることが好ましい。
 より好ましくは、ビニル芳香族炭化水素含有量が87質量%~93質量%であり、共役ジエン含有量が7質量%~13質量%である。
 さらに好ましくは、ビニル芳香族炭化水素含有量が87質量%~91質量%であり、共役ジエン含有量が9質量%~13質量%である。
 ビニル芳香族炭化水素を主体として含有し、共役ジエンを2~14質量%含有する樹脂組成物を用いることにより、耐衝撃性及び耐熱性のバランスに優れたダイアライザーが得られる。
 前記樹脂組成物におけるビニル芳香族炭化水素の含有量、及び共役ジエンの含有量は、UV計(紫外線吸光光度計)を用いて測定できる。具体的には、後述する実施例に記載した方法により測定できる。
<ブロック共重合体(a)>
 [ブロック共重合体(a)の構造]
 前記樹脂組成物を構成するブロック共重合体(a)は、ビニル芳香族炭化水素を60~80質量%、共役ジエンを40~20質量%、含有し、2以上のビニル芳香族炭化水素重合体ブロックを有する。
 ブロック共重合体(a)のビニル芳香族炭化水素含有量は、好ましくは64質量%~76質量%であり、より好ましくは68質量%~72質量%である。共役ジエン含有量は、好ましくは36質量%~24質量%であり、より好ましくは28質量%~32質量%である。
 ビニル芳香族炭化水素含有量が60質量%~80質量%、共役ジエン含有量が40質量%~20質量%であるブロック共重合体(a)を用いることにより、耐衝撃性及び耐熱性のバランスに優れた樹脂組成物及びこれを成形したダイアライザーが得られる。
 ブロック共重合体(a)のビニル芳香族炭化水素の含有量、及び共役ジエンの含有量は、UV計(紫外線吸光光度計)を用いて測定できる。具体的には、後述する実施例に記載した方法により測定できる。
 ブロック共重合体(a)の具体的な構造は、下記に例示する構造式になんら限定されないが、例えば下記のブロック構造を有するものが挙げられる。
 S1-B1-S2
 S1-B1-S2-B2
 S1-B/S1-S2
 S1-B/S1-S2-B/S2
 S1-B/S1-B/S2-S2
 S1-B1-B/S1-S2
 S1-B1-B/S1-B2-S2
 なお、上記のブロック構造を表す式中の、S、B、B/Sに付した番号は、それぞれブロック共重合体におけるビニル芳香族炭化水素ブロック(S)と、共役ジエン重合体ブロック(B)と、ビニル芳香族炭化水素/共役ジエン共重合体ブロック(B/S)のブロックを同定するための番号であり、数字が異なるものは、それぞれの分子量(重合度)が同じであっても異なっていてもよい。
 ブロック共重合体(a)は、線状でも分岐状でもよいが、線状ブロック共重合体の方が成形加工性と物性とのバランスの観点から好ましい。
 また、耐熱性の観点から、2以上のビニル芳香族炭化水素ブロックが、線状ブロック共重合体の両端に存在していることが好ましい。
 [ブロック共重合体(a)の製造方法]
 ブロック共重合体(a)は、炭化水素溶媒中、重合開始剤を用い、ビニル芳香族炭化水素及び共役ジエンを共重合することにより得られる。
 ブロック共重合体(a)の製造に用いる炭化水素溶媒としては、従来公知の炭化水素溶媒が使用でき、例えば、n-ブタン、イソブタン、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン等の脂肪族炭化水素類、シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン、シクロヘプタン、メチルシクロヘプタン等の脂環式炭化水素類、また、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素等が挙げられる。
 これらは1種単独で使用してもよく、2種以上混合使用してもよい。特に、n-へキサン、シクロヘキサンが一般的で好ましく使用される。
 前記重合開始剤としては、一般的に共役ジエン及びビニル芳香族化合物に対しアニオン重合活性があることが知られている脂肪族炭化水素アルカリ金属化合物、芳香族炭化水素アルカリ金属化合物、有機アミノアルカリ金属化合物等を用いることができる。
 アルカリ金属としては、リチウム、ナトリウム、カリウム等が挙げられ、好適な有機アルカリ金属化合物としては、炭素数1~20の脂肪族及び芳香族炭化水素リチウム化合物であって、1分子中に1個のリチウムを含む化合物や1分子中に複数のリチウムを含むジリチウム化合物、トリリチウム化合物、テトラリチウム化合物が挙げられる。
 具体的には、n-プロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、ヘキサメチレンジリチウム、ブタジエニルジリチウム、イソプレニルジリチウム、ジイソプロペニルベンゼンとsec-ブチルリチウムの反応生成物、さらにはジビニルベンゼンとsec-ブチルリチウムと少量の1,3-ブタジエンとの反応生成物等が挙げられる。
 また更に、米国特許第5,708,092号明細書、英国特許第2,241,239号明細書、米国特許第5,527,753号明細書等に開示されている有機アルカリ金属化合物も使用することができる。
 これらは1種単独で使用してもよく、2種以上混合使用してもよい。特に、n-ブチルリチウムが一般的で好ましく使用される。
 ブロック共重合体(a)の製造プロセスには、何ら制約は無く、重合途中から開始剤を添加する方法、重合途中に重合活性点未満のアルコール、水等を添加した後、再度モノマーを供給して重合を継続する方法等を適宜選択することにより、互いに分子量の異なる複数の成分が存在するブロック共重合体(a)を作製することができる。
 また、ブロック共重合体(a)の製造プロセスにおいて、重合原料であるビニル芳香族炭化水素及び共役ジエンの仕込み比率を調整することにより、最終的に得られるブロック共重合体(a)のビニル芳香族炭化水素含有量及び共役ジエン含有量を制御できる。
 ブロック共重合体(a)の製造プロセスにおいて、前記ビニル芳香族炭化水素ブロック(S)、共役ジエン重合体ブロック(B)を形成する方法としては、原料となるビニル芳香族炭化水素化合物、あるいは共役ジエンの一方のみを連続的に重合系に供給して重合を行えばよい。
 また、ビニル芳香族炭化水素と共役ジエンとからなる共重合体ブロック(B/S)を作製する方法としては、ビニル芳香族炭化水素と共役ジエンとの混合物を連続的に重合系に供給して重合する方法が挙げられる。または極性化合物あるいはランダム化剤を使用して、ビニル芳香族炭化水素と共役ジエンとを共重合する等の方法が挙げられる。
 極性化合物やランダム化剤としては、例えば、テトラヒドロフラン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル等のエーテル類、トリエチルアミン、テトラメチルエチレンジアミン等のアミン類、チオエーテル類、ホスフィン類、ホスホルアミド類、アルキルベンゼンスルホン酸塩、カリウムやナトリウムのアルコキシド等が挙げられる。
 [ブロック共重合体(a)の平均分子量及び分子量分布]
 ブロック共重合体(a)は、本実施形態のダイアライザーを構成する樹脂組成物の物性と加工性とのバランスの観点から、重量平均分子量(Mw)、数平均分子量(Mn)ともに、1万~100万の範囲が好ましく、より好ましくは3万~30万の範囲である。ブロック共重合体(a)の分子量分布Mw/Mnに関しては特に制限は無い。
 ブロック共重合体(a)の平均分子量及び分子量分布は、ゲルパーミエーションクロマトグラフィー(GPC)により測定できる。これらの測定は、既知の分子量を有する標準サンプルを使用し、検量線法を適用することにより求めることができる。具体的には、分子量はGPC用の単分散ポリスチレンを用いて検量線を作成し、常法(例えば「ゲルクロマトグラフィー<基礎編>」講談社発行)に従って算出する。測定方法の詳細については、後述の実施例にて説明する。
 カップリング剤等により一部ポリマーの重合活性末端を会合させることにより、異なる分子量の組み合わせを有するブロック共重合体(a)を得ることができる。これによりブロック共重合体(a)の分子量や分子量分布Mw/Mnを制御することができる。さらには、重合途中に、エタノール等のアルコールを、用いた重合開始剤よりも少ないモル数の量を添加することにより、一部のポリマーの重合を停止させることが可能である。
 [ブロック共重合体(a)のSブロック率]
 ブロック共重合体(a)における全ビニル芳香族炭化水素単位のうち、重合体ブロックを構成している割合(以下、Sブロック率と言う。)は、好ましくは60~100質量%であり、より好ましくは70~100質量%であり、さらに好ましくは80~100質量%である。
 この範囲のSブロック率を有するブロック共重合体(a)を用いることにより、耐衝撃性と耐熱性に優れた樹脂組成物及びこれを成形したダイアライザーが得られる。
 ブロック共重合体(a)における全ビニル芳香族炭化水素単位のうち、重合体ブロックを構成している割合(Sブロック率)は、ブロック共重合体(a)を構成している全てのビニル芳香族炭化水素単位のうち、共役ジエンとの共重合に関与していない単独重合体(前述の具体的な構造として記載したS1やS2)を構成しているビニル芳香族炭化水素単位の割合を意味している。
 この割合は、共役ジエンの重合過程に際に、ビニル芳香族炭化水素との共重合比率を調整することにより制御できる。
 ブロック共重合体(a)における全ビニル芳香族炭化水素単位のうち、重合体ブロックを構成している割合(Sブロック率)は、四酸化オスミウムを触媒としてジターシャリーブチルハイドロパーオキサイドによりブロック共重合体を酸化分解する方法(I.M.KOLTHOFF,et al.,J.Polym.Sci.1,429(1946)に記載の方法)により得たビニル芳香族炭化水素重合体ブロック成分(但し平均重合度が約30以下のビニル芳香族炭化水素重合体成分は除かれている。)を、ブロック共重合体(a)中の全ビニル芳香族炭化水素の重量で除することにより算出できる。
 [ブロック共重合体(a)のメルトフローレート]
 ブロック共重合体(a)のメルトフローレート(ISO 1133 温度200℃、荷重5kgf)は、本実施形態のダイアライザーを構成する樹脂組成物の加工性や機械的特性の観点から、0.1~50g/10分が好ましく、1~20g/10分がより好ましい。
 [ブロック共重合体(a)の含有量]
 本実施形態のダイアライザーを構成する樹脂組成物においては、ブロック共重合体(a)は、当該ブロック共重合体(a)と後述するビニル芳香族炭化水素系樹脂(b)との組成比率が、質量比で(a)/(b)=20/80~80/20の範囲で含有されている。
 好ましくは、ブロック共重合体(a)と後述するビニル芳香族炭化水素系樹脂(b)の、各々に含まれる共役ジエンの総含有量が、ブロック共重合体(a)とビニル芳香族炭化水素系樹脂(b)の合計質量に対して4~15質量%の範囲に含まれる組成比率となるようにする。そのため、より好ましい組成範囲は、ブロック共重合体(a)とビニル芳香族炭化水素系樹脂(b)各々に含まれる共役ジエン含有量に依存する。
 上記共役ジエン総含有量が、ブロック共重合体(a)とビニル芳香族炭化水素系樹脂(b)の合計量に対して4~15質量%の範囲とすることにより、耐熱性と耐衝撃性のバランスに優れた樹脂組成物及びこれを成形したダイアライザーが得られる。
 また、本実施形態のダイアライザーを構成する樹脂組成物においては、前記ブロック共重合体(a)と前記ビニル芳香族炭化水素系樹脂(b)とゴム変性ビニル芳香族炭化水素重合体(c)の各々に含まれる共役ジエンの含有量の合計量が、前記(a)と(b)と(c)の合計量に対して3~14質量%であることが好ましい。
 上記共役ジエン総含有量が、ブロック共重合体(a)とビニル芳香族炭化水素系樹脂(b)とゴム変性ビニル芳香族炭化水素重合体(c)の合計量に対して3~14質量%の範囲とすることにより、耐熱性と耐衝撃性のバランスに優れた樹脂組成物及びこれを成形したダイアライザーが得られる。
<ビニル芳香族炭化水素系樹脂(b)>
 前記樹脂組成物を構成するビニル芳香族炭化水素系樹脂(b)は、後述するビニル芳香族・共役ジエン共重合体(b-1)、ビニル芳香族炭化水素単独重合体(b-2)のいずれか一方、あるいはそれら双方の混合物からなる。
 ビニル芳香族炭化水素系樹脂(b)は、ビニル芳香族炭化水素を93~100質量%、共役ジエンを7~0質量%含有する。
 以下、前記重合体(b-1)と(b-2)について、各々説明する。
 [ビニル芳香族炭化水素・共役ジエン共重合体(b-1)及びその製造方法]
 ビニル芳香族炭化水素・共役ジエン共重合体(b-1)は、ビニル芳香族炭化水素含有量が93質量%~99.9質量%であり、共役ジエン含有量が0.1質量%~7質量%である。この組成範囲のビニル芳香族炭化水素・共役ジエン共重合体(b-1)を使用することにより、高い耐熱性と耐衝撃性のバランスに優れる、樹脂組成物及びこれを成形したダイアライザーを得ることが可能となる。
 より好ましいビニル芳香族炭化水素・共役ジエン共重合体(b-1)の組成比率は、ビニル芳香族炭化水素含有量が95質量%~99.5質量%で、共役ジエン含有量が0.5質量%~5質量%であり、最も好ましくは、97質量%~99.5質量%である。
 (b)成分としてビニル芳香族炭化水素単独重合体を用いる場合は、(b-2)とし、前記(b-1)成分と区別することとする。
 ビニル芳香族炭化水素・共役ジエン共重合体(b-1)の具体的な構造、すなわち、ビニル芳香族炭化水素化合物と共役ジエンとの連鎖構造については、なんら限定されない。ビニル芳香族炭化水素化合物と共役ジエンがランダムに結合したランダム構造でも、ブロック構造のいずれでもよい。
 ビニル芳香族炭化水素・共役ジエン共重合体(b-1)の具体的な構造は、例えば下記の構造を有するものが例示することができるが、これらに限定されるものではない。
 B/S1
 B/S1-B/S2
 S1-B1
 S1-B/S1
 S1-B1-S2
 S1-B/S1-S2
 S1-B1-B/S1-S2
 S1-B1-S2-B/S1
 S1-B/S1-S2-B1
 なお、上記のブロック構造を表す式中の、S、B、B/Sに付した番号は、それぞれブロック共重合体におけるビニル芳香族炭化水素ブロック(S)と、共役ジエン重合体ブロック(B)と、ビニル芳香族炭化水素/共役ジエン共重合体ブロック(B/S)のブロックを同定するための番号であり、数字が異なるものは、それぞれの分子量(重合度)が同じであっても異なっていてもよい。
 また、耐熱性の観点から、ビニル芳香族炭化水素・共役ジエン共重合体(b-1)は、ビニル芳香族炭化水素化合物ブロックと共役ジエンブロックからなるブロック共重合体であることが好ましく、共役ジエンブロックが重合体連鎖中に内包された、両端にビニル芳香族炭化水素化合物ブロックを有するブロック構造がより好ましい。
 例示した上記構造で言えば、
 S1-B1-S2
 S1-B/S1-S2
の2つがより好ましく、
 S1-B1-S2
の構造がさらに好ましい。
 さらにより好ましいビニル芳香族炭化水素・共役ジエン共重合体(b-1)の構造は、両端の2つのビニル芳香族炭化水素ブロックのピーク分子量MwがGPC曲線にて一致、あるいはピーク分子量Mwの差が2万以内と近い構造、すなわち、共役ジエンブロックがビニル芳香族炭化水素・共役ジエン共重合体(b-1)の中央付近に存在している構造である。また、ビニル芳香族炭化水素・共役ジエン共重合体(b-1)は、成形加工性と物性とのバランスから線状ブロック共重合体であることが好ましい。
 樹脂組成物を構成するビニル芳香族炭化水素・共役ジエン共重合体(b-1)は、所定の炭化水素溶媒中、重合開始剤を用い、ビニル芳香族炭化水素及び共役ジエンを共重合することにより得られる。
 ビニル芳香族炭化水素としては、例えば、スチレン、o-メチルスチレン、p-メチルスチレン、p-tert-ブチルスチレン、1,3-ジメチルスチレン、α-メチルスチレン、ビニルナフタレン、ビニルアントラセン、1,1-ジフェニルエチレン等が挙げられる。特にスチレンが一般的であり好ましい。これらは単独で用いてもよく、2種以上を併用してもよい。
 共役ジエンとは、一対の共役二重結合を有するジオレフィンである。例えば、1,3-ブタジエン、2-メチル-1,3-ブタジエン(イソプレン)、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン等が挙げられる。特に、1,3-ブタジエン、イソプレンが一般的であり好ましい。これらは単独で用いてもよく、2種以上を併用してもよい。
 ビニル芳香族炭化水素・共役ジエン共重合体(b-1)の製造に用いる炭化水素溶媒としては、例えば、n-ブタン、イソブタン、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン等の脂肪族炭化水素類;シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン、シクロヘプタン、メチルシクロヘプタン等の脂環式炭化水素類;また、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素等が挙げられる。
 これらは1種を単独で使用してもよく、2種以上混合使用してもよい。特に、n-へキサン、シクロヘキサンが一般的で好ましく使用される。
 前記重合開始剤としては、一般的に共役ジエン及びビニル芳香族化合物に対しアニオン重合活性があることが知られている脂肪族炭化水素アルカリ金属化合物、芳香族炭化水素アルカリ金属化合物、有機アミノアルカリ金属化合物等を用いることができる。
 アルカリ金属としては、リチウム、ナトリウム、カリウム等が挙げられ、好適な有機アルカリ金属化合物としては、炭素数1~20の脂肪族及び芳香族炭化水素リチウム化合物であって、1分子中に1個のリチウムを含む化合物や1分子中に複数のリチウムを含むジリチウム化合物、トリリチウム化合物、テトラリチウム化合物が挙げられる。
 具体的には、n-プロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、ヘキサメチレンジリチウム、ブタジエニルジリチウム、イソプレニルジリチウム、ジイソプロペニルベンゼンとsec-ブチルリチウムの反応生成物、さらにはジビニルベンゼンとsec-ブチルリチウムと少量の1,3-ブタジエンとの反応生成物等が挙げられる。
 また更に、米国特許第5,708,092号明細書、英国特許第2,241,239号明細書、米国特許第5,527,753号明細書等に開示されている有機アルカリ金属化合物も使用することができる。
 これらは1種を単独で使用してもよく、2種以上を混合使用してもよい。特に、n-ブチルリチウムが一般的で好ましく使用される。
[ビニル芳香族炭化水素・共役ジエン共重合体(b-1)の平均分子量及び分子量分布]
 ビニル芳香族炭化水素・共役ジエン共重合体(b-1)は、樹脂組成物の物性及び加工性のバランスの観点から、重量平均分子量(Mw)、数平均分子量(Mn)ともに1万~100万の範囲であることが好ましく、より好ましくは3万~30万の範囲である。
 ビニル芳香族炭化水素・共役ジエン共重合体(b-1)の平均分子量及び分子量分布は、ゲルパーミエーションクロマトグラフィー(GPC)により測定できる。
 ビニル芳香族炭化水素・共役ジエン共重合体(b-1)の平均分子量及び分子量分布は、既知の分子量を有する標準サンプルを使用し、検量線法を適用することにより求められる。
 ビニル芳香族炭化水素・共役ジエン共重合体(b-1)の分子量分布Mw/Mnは、1~1.5の範囲であることが好ましく、1~1.4の範囲であることがより好ましく、1~1.2の範囲であることがさらに好ましい。共重合体(b-1)の分子量分布はMw/Mnは、GPC測定により得られたGPC曲線を用い面積比から成分比率を求めることで算出できる。
 分子量分布が狭いほどMw/Mnの値は1に限りなく近付く。全ての分子の分子量が同一であり、分布が存在しない場合、Mw/Mnの値は1となる。分子量分布Mw/Mnの値が1未満になることは理論上あり得ない。
 ビニル芳香族炭化水素・共役ジエン共重合体(b-1)は、少なくとも2以上のビニル芳香族炭化水素重合体ブロックを有し、かつ、当該2以上のビニル芳香族炭化水素重合体ブロックが、前記ビニル芳香族炭化水素・共役ジエン共重合体(b-1)の両末端に結合している構造であることが好ましく、共役ジエン重合体ブロックが共重合体の連鎖の中央部に1個結合している構造がより好ましい。かかる構造は、ビニル芳香族炭化水素・共役ジエン共重合体(b-1)中のビニル芳香族炭化水素化合物ブロックの平均分子量及び分子量分布を測定し、ビニル芳香族炭化水素・共役ジエン共重合体(b-1)の平均分子量及び分子量分布と比較することにより検証できる。
 ビニル芳香族炭化水素・共役ジエン共重合体(b-1)のビニル芳香族炭化水素化合物ブロックの分子量は、前述の四酸化オスミウムを触媒としてジ・ターシャリーブチルハイドロパーオキサイドによりブロック共重合体を酸化分解する方法(I.M.KOLTHOFF,et al.,J.Polym.Sci.1,429(1946)に記載の方法)により得たビニル芳香族炭化水素重合体ブロック成分(但し平均重合度が約30以下のビニル芳香族炭化水素重合体成分は除かれている。)をGPC測定することにより求めることができる。
 ビニル芳香族炭化水素重合体ブロック成分の分子量分布曲線が一山で、元の重合体の平均分子量の約半分の値であれば、2つのブロック鎖長は等しく、共役ジエンブロックが共重合体(b-1)の中央に位置していることが分かる。二山に分かれたGPC曲線が得られた場合は、共役ジエンブロックがビニル芳香族炭化水素・共役ジエン共重合体(b-1)の中央ではなく、いずれか一方に偏った構造となっていることが分かる。
 [ビニル芳香族炭化水素・共役ジエン共重合体(b-1)のメルトフローレート]
 ビニル芳香族炭化水素・共役ジエン共重合体(b-1)のメルトフローレート(ISO 1133 温度200℃、荷重5kgf)は、樹脂組成物及びこれを成形したダイアライザーの加工性や機械的特性の点から、0.1~50g/10分が好ましく、1~20g/10分がより好ましい。
 [ビニル芳香族炭化水素単独重合体(b-2)、及びその製造方法]
 ビニル芳香族炭化水素単独重合体(b-2)は、単量体単位としてビニル芳香族炭化水素のみを用いた重合体である。
 重合反応に用いられるビニル芳香族炭化水素としては、例えば、スチレン、o-メチルスチレン、p-メチルスチレン、p-tert-ブチルスチレン、1,3-ジメチルスチレン、α-メチルスチレン、ビニルナフタレン、ビニルアントラセン、1,1-ジフェニルエチレン等が挙げられる。特にα-メチルスチレン、スチレンが一般的であり好ましい。工業的にはスチレンが最も好ましいが、得られる重合体の耐熱性の観点では、スチレンとα-メチルスチレンとの共重合体も好ましく使用できる。また、これらは単独で用いてもよく、2種以上を併用してもよい。
 ビニル芳香族炭化水素単独重合体(b-2)は、一般的に、ラジカル重合法、例えば、パーオキサイド等のラジカル開始剤を用いる重合法や、加熱によりラジカルを発生させる熱重合法により製造できる。
 [ビニル芳香族炭化水素単独重合体(b-2)の平均分子量、分子量分布]
 ビニル芳香族炭化水素単独重合体(b-2)の平均分子量は、樹脂組成物及びこれを成形したダイアライザーの物性と加工性とのバランスの観点より、Mwは20万~100万の範囲が好ましく、より好ましくは20万~50万の範囲である。一方、Mnも同様の理由より5万~30万の範囲が好ましく、より好ましくは9万~24万の範囲である。分子量分布Mw/Mnは2.1~10の範囲が好ましく、より好ましくは、2.1~5の範囲である。
 一般的に、ラジカル重合プロセス法を利用してビニル芳香族炭化水素単独重合体(b-2)を作製した場合、高い確率でこの分子量分布の範囲に入る。
 ラジカル重合プロセスにおいては、パーオキサイド等のラジカル開始剤を使用して重合してもよく、加熱によるラジカルを発生させる熱重合でもよい。
 また、ブロック共重合体(a)の製造時に使用するn-ブチルリチウムに代表される脂肪族炭化水素アルカリ金属化合物等の重合開始剤を用いて、連続重合方式(重合系内に、逐次、モノマーと開始剤を添加しながら、逐次、ポリマーを取り出す方法)でも、分子量分布Mw/Mnは、上記の好ましい範囲のものが得られる。
 ビニル芳香族炭化水素単独重合体(b-2)の分子量分布Mw/Mnは、上述したブロック共重合体(a)やビニル芳香族炭化水素・共役ジエン共重合体(b-1)の場合と同様に、GPC測定を行うことにより求めることができる。
 [ビニル芳香族炭化水素単独重合体(b-2)のメルトフローレート]
 上述したビニル芳香族炭化水素単独重合体(b-2)のメルトフローレート(ISO 1133 温度200℃、荷重5kgf)は、樹脂組成物において良好な成形加工性を得る観点から、0.1~50g/10分が好ましく、0.5~20g/10分がより好ましく、さらに好ましくは1~10g/10分の範囲のものである。
 ビニル芳香族炭化水素単独重合体(b-2)としては、特に、汎用ポリスチレン樹脂(GPPS)と呼ばれるスチレンの単独重合体が好ましく使用される。
 高い耐熱性と耐衝撃性とのバランスに優れた樹脂組成物を得ることができるため、樹脂組成物においては、上述した(b)ビニル芳香族炭化水素系樹脂として、上述したビニル芳香族炭化水素単独重合体(b-2)とビニル芳香族炭化水素・共役ジエン共重合体(b-1)とを併用することが好ましい。
 なお、ビニル芳香族炭化水素系樹脂(b)として、ビニル芳香族・共役ジエン共重合体(b-1)とビニル芳香族炭化水素単独重合体(b-2)を併用する場合、これらの比率は重量比で(b-1)/(b-2)=20/80~90/10の範囲であることが好ましく、より好ましくは、(b-1)/(b-2)=20/80~80/20の範囲であり、さらに好ましくは、(b-1)/(b-2)=30/70~80/20の範囲である。この組成範囲で(b-1)と(b-2)を併用することにより、高い耐熱性と耐衝撃性とのバランスに優れた樹脂組成物及びこれを成形したダイアライザーを得ることができる。
<ゴム変性ビニル芳香族炭化水素重合体(c)>
 本実施形態のダイアライザーを構成する樹脂組成物は、ゴム変性ビニル芳香族炭化水素重合体(c)を含有する。
 ゴム変性ビニル芳香族炭化水素重合体(c)としては、例えば、耐衝撃性ポリスチレン(HIPS)として知られているものを使用でき、特に限定されるものではない。
 ゴム変性ビニル芳香族炭化水素重合体(c)を、上述したブロック共重合体(a)とビニル芳香族炭化水素系樹脂(b)と組み合わせて配合することにより、(a)成分と(b)成分と(c)成分との組み合わせによる相乗効果、又は(a)成分と(c)成分との組み合わせによる相乗効果より、剛性等の機械物性に殆ど影響せずにデュポン衝撃強度のみを更に大幅に向上させる効果がある。一方において、透明性を大幅に低下させないことを考慮し、物性バランスを改善する上で配合量を調整する。
 上述したように、良好な機械物性を維持しつつデュポン衝撃強度の向上を図り、かつ透明性の低下を防止するという物性バランス上の観点から、ゴム変性ビニル芳香族炭化水素重合体(c)は、前記(a)成分、(b)成分、当該(c)成分の合計量を100質量%としたとき、1~15質量%とし、3~12質量%とすることが好ましく、5~10質量%とすることがより好ましい。
[ゴム変性ビニル芳香族炭化水素重合体(c)の製造方法]
 ゴム変性ビニル芳香族炭化水素重合体(c)は、工業的にはラジカル重合法を用いて、ゴム状重合体の存在下で、連続塊状重合法、懸濁重合法、あるいは乳化重合法により製造することができる。
 ゴム変性ビニル芳香族炭化水素重合体(c)の原料として用いられる前記ゴム状重合体としては、ブタジエン、イソプレン等の共役ジエンモノマーを主体とした単独重合体、共重合体、及び/又はこれらの水素添加物が挙げられ、その他、スチレン等のビニル芳香族炭化水素モノマーとの共重合ゴムも好ましい例として挙げられる。
 [ゴム変性ビニル芳香族炭化水素重合体(c)中のグラフトゴム粒子]
 ゴム変性ビニル芳香族炭化水素重合体(c)は、グラフトゴム粒子を含有している。
 前記グラフトゴム粒子は、トルエンに対し不溶成分となる。このことから、(c)成分中のグラフトゴム粒子含有量が既知であれば、本実施形態のダイアライザーを構成する樹脂組成物からトルエンに対する不溶成分を分離し、測定することにより、樹脂組成物に配合したゴム変性ビニル芳香族炭化水素重合体(c)の配合量を算出することができる。
 具体的には、樹脂組成物約1gを沈降管に正確に秤量し、トルエン20mLを注ぎ、室温にて1時間掛けて振とう溶解させる。
 次いで、遠心分離器を用いて10℃以下、20000rpmにて30分間遠心分離を行うことで、グラフトゴム粒子は沈降し可溶分と分離される。
 可溶分である上澄み液を、沈降管を静かに傾けて除去し、80℃で2時間、加熱真空乾燥を行うことで、トルエン不溶分の含有量を測定する。
 なお、測定に用いる樹脂組成物は、本実施形態のダイアライザーを成形する前の段階の樹脂組成物であってもよく、成形後のダイアライザーを粉砕したものであってもよい。
 本実施形態のダイアライザーを構成する樹脂組成物においては、上述した(a)成分、(b)成分、及び(c)成分の合計量を100質量%としたとき、トルエン不溶分は、0.3~5質量%である。これは、前記樹脂組成物中の(c)成分含有量が、(a)成分、(b)成分、(c)成分の合計量を100質量%としたときに1~15質量%であり、(c)成分中のグラフトゴム粒子の含有量がおよそ最大30質量%程度であることに起因する。
 なお、トルエン不溶分は、(c)成分中のグラフトゴム粒子に由来したものである。
 この範囲内になるようにゴム変性ビニル芳香族炭化水素重合体(c)を配合することにより、内部の視認性に必要な透明性を維持しつつ、実用上十分な衝撃強度を有する樹脂組成物が得られる。
 より好ましいトルエン不溶分の含有量は、1.0質量%~5.0質量%であり、さらに好ましくは1.2質量%~4.0質量%の範囲である。
 ゴム変性ビニル芳香族炭化水素重合体(c)中のグラフトゴム粒子の平均粒子径は、1.5μm~5μmの範囲が好ましい。
 グラフトゴム粒子の平均粒子径を1.5μm~5μmの範囲とすることにより、少量配合による衝撃強度改善効果が顕著に得られる。かかる効果を得る観点から2μm~4μmの範囲とすることがより好ましい。
 グラフトゴム粒子の平均粒子径の測定方法を下記に示す。
 先ず、ゴム変性ビニル芳香族炭化水素重合体(c)を、四酸化オスミウムで染色し、それから厚み約75nmの超薄切片を作製し、透過型電子顕微鏡を用いて撮影し、倍率1万倍の写真を得る。
 次に、写真中、黒く染色されたゴム粒子径を測定して、次式により算出する。
 (平均粒子径)=ΣnDi/ΣnDi 
 なお、上記式においては、長径Diの粒子の個数がnとする。
 グラフトゴム粒子は、その内部にポリスチレンを内包した、いわゆるサラミ構造のものやコアシェル構造のものがある。
[ゴム変性ビニル芳香族炭化水素重合体(c)のメルトフローレート]
 ゴム変性ビニル芳香族炭化水素重合体(c)のメルトフローレート(ISO 1133 温度200℃、荷重5kgf)は、樹脂組成物において良好な成形加工性を得るためには0.1~50g/10分が好ましく、1~20g/10分がより好ましい。
 <その他の熱可塑性重合体>
 本実施形態のダイアライザーを構成する樹脂組成物には、必要に応じてその他の熱可塑性重合体を配合してもよい。
 熱可塑性重合体としては、ビニル芳香族炭化水素と(メタ)アクリル酸及び/又は(メタ)アクリル酸アルキルエステル化合物との共重合体が好適に使用することができるが、これらに限定されるものではない。
 前記(メタ)アクリル酸アルキルエステル化合物のアルキル基の炭素数は1~20であることが好ましい。当該アルキル基としては、例えば、メチル、エチル、プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシル、オクチル、2-エチルヘキシル、ドデシル、ラウリル、パルミチル、ステアリル、シクロヘキシル等が挙げられ、炭素数1~4のアルキル基がより好ましい。
 上記熱可塑性重合体は、本発明の主旨に沿えば、配合量についてなんら制限は無いが、樹脂組成物中0~30質量%の範囲とすることが好ましい。
 <添加剤>
 本実施形態のダイアライザーを構成する樹脂組成物には、必要に応じて添加剤を配合してもよい。
 特に、加熱による各成分の混練や成形加工時の熱劣化や酸化劣化を抑制するために、酸化防止剤等の熱安定剤等を添加することが好ましい。
 添加剤の配合量は、樹脂組成物中0.1~1.5質量%とすることが好ましい。0.1質量%未満とすると添加剤の効果が不十分となり、1.5質量%を超えて添加しても効果上意味が無いものとなる。
 添加剤としては、例えば、2-t-ブチル-6(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート等の熱安定剤、n-オクタデシル-β-(4’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニルプロピオネート等の酸化防止剤が挙げられる。
 その他、例えば、ガラス繊維、ガラスビーズ、シリカ、炭酸カルシウム、タルク等の無機充填剤;有機繊維、クマロンインデン樹脂等の有機充填剤;有機パーオキサイド、無機パーオキサイド等の架橋剤;酸化チタン、カーボンブラック、酸化鉄等の無機顔料;青,赤,紫,黄等の染料;難燃剤;紫外線吸収剤;帯電防止剤;脂肪酸、脂肪酸アマイド、脂肪酸金属塩等の滑剤;ミネラルオイル、シリコンオイル等のオイル類等が挙げられる。
 これらは単独で用いてもよく、二種以上を併用してもよい。
(樹脂組成物の製造方法)
 本実施形態のダイアライザーを構成する樹脂組成物は、従来公知の混練・混合方法によって製造できる。
 例えば、ロール、ミキサー、ニーダー、バンバリー、押出機(単軸あるいは二軸等)等の公知の混練機を用いた溶融混練方法、ダイアライザーやヘッダーを成形時に複数の材料をドライブレンドし、成形機内の溶融過程で混合させる方法、各成分を有機溶剤等に溶解した溶液状態で攪拌・混合した後、溶剤を加熱や減圧等の任意の方法により除去して混合物を得る方法、あるいは、上記の組み合わせ、例えば、一部の成分を有機溶剤等に溶解した溶液状態で攪拌・混合した後、溶剤を加熱や減圧等の任意の方法により除去して部分的に混合物を得た後に、前述の混練機を用いた溶融混練法や成形機内の溶融過程で混合させる方法を併用すること等が挙げられる。
(物性)
 <荷重たわみ温度>
 本実施形態のダイアライザーは耐熱性に優れており、具体的には、本実施形態のダイアライザーを構成する樹脂組成物は、ISO75、荷重1.8MPaにおける荷重たわみ温度が65℃以上であることが好ましく、より好ましくは70℃以上である。荷重たわみ温度の上限値については特に制限は無いが、ビニル芳香族炭化水素を主体とする樹脂組成物であるため、おおよそ100℃以下程度となる。
 荷重たわみ温度は、ビニル芳香族炭化水素の材料を選択したり、共役ジエン成分量を調整したりすることにより制御できる。
 例えば、ビニル芳香族炭化水素としてスチレンを用いた場合、スチレン単独重合体での荷重たわみ温度がラジカル重合法で約83℃である。樹脂組成物を構成するビニル芳香族炭化水素としてα-メチルスチレン等を用いた場合はスチレンを用いた場合よりも荷重たわみ温度が上昇し、さらには、樹脂組成物を構成する共重合体の比率によっても調整することができる。
 一方、荷重たわみ温度が65℃未満であると、耐熱性が不十分であるため、ダイアライザー本体と中空糸膜とを熱硬化性樹脂を用いて固定する際、反応熱が低く、硬化時間が長い熱硬化性樹脂を限定して使用せざるを得ないため、工業的、経済的な面で好ましくない。
 荷重たわみ温度は、後述する実施例に記載する方法により測定することができる。なお、当該測定方法において用いる試験片は、ダイアライザーを成形する前段階の樹脂組成物の成形片であってもよく、ダイアライザーとして成形後、これを粉砕して再度作製した成形片であってもよい。
 <ビカット軟化温度>
 本実施形態のダイアライザーは耐熱性に優れており、具体的には、本実施形態のダイアライザーを構成する樹脂組成物は、ISO306で規定される荷重10Nにおけるビカット軟化温度が93℃以上であることが好ましい。
 ビカット軟化温度が93℃であることで、ダイアライザーとして十分な耐熱性を有し、生産効率や経済性の要求に十分応えることが可能となる。
 なおビカット軟化温度は、東洋精機製作所製の試験装置を使用し、試験片厚み3mm以上とし(実施例では4mmで実施)、昇温速度50℃/hrで測定できる。
 ビカット軟化温度は、後述する実施例に記載する方法により測定することができる。なお、当該測定方法において用いる試験片は、ダイアライザーを成形する前段階の樹脂組成物の成形片であってもよく、ダイアライザーとして成形後、これを粉砕して再度作製した成形片であってもよい。
 <デュポン衝撃強度>
 本実施形態のダイアライザーは衝撃強度特性に優れており、具体的には、本実施形態のダイアライザーを構成する樹脂組成物は、JIS K5400における50%破壊デュポン衝撃強度(ミサイル先端径1/4インチ、サンプル受け台の内径30mm)が、厚さ2mmの射出鏡面平板を用いて測定したとき、3.0kg・cm以上であるものとし、好ましくは5.0kg・cm以上であり、より好ましくは10kg・cm以上である。
 特に、ダイアライザー本体については、透析液を充填する際、かん子等で叩いて内部の空気泡を抜く作業が必要であることから、デュポン衝撃強度が3.0kg・cm以上であることが好ましい。なお、例えば、誤って床に落下させた際に破損を防止するためには、デュポン衝撃強度はより高い方が望ましい。
 一方、ヘッダーは、誤って床に落下させた際の破損を防止するために、デュポン衝撃強度が10kg・cm以上であることが好ましい。
 なお、デュポン衝撃強度の上限値については、特に制約されるものではないが、剛性や透明性等の他の要求特性とのバランスの観点から、その実力値として、厚さ2mmの射出鏡面平板における上限値は100kg・cm程度である。
 デュポン衝撃強度は、後述する実施例に記載する方法により測定することができる。なお、当該測定方法において用いる試験片は、ダイアライザーを成形する前段階の樹脂組成物の成形片であってもよく、ダイアライザーとして成形後、これを粉砕して再度作製した成形片であってもよい。
<曇価>
 本実施形態のダイアライザーは透明性に優れており、具体的には、本実施形態のダイアライザーを構成する樹脂組成物は、ISO14782における曇価が、厚さ2mmの射出鏡面平板を用いて測定したとき、30%以下であることが好ましく、25%以下であることがより好ましい。
 曇価が30%以下であるものとすることにより、本実施形態のダイアライザーの内部視認性が実用上問題無いものとなる。
 曇価は、後述する実施例に記載する方法により測定することができる。なお、当該測定方法において用いる試験片は、ダイアライザーを成形する前段階の樹脂組成物の成形片であってもよく、ダイアライザーとして成形後、これを粉砕して再度作製した成形片であってもよい。
<黄変度>
 本実施形態におけるダイアライザーは、成形品を製品へ組立て製造する過程において、通常、電子線滅菌やγ線滅菌が行われる。
 そのため、電子線やγ線に対する耐性を有していることが要求される。電子線やγ線に対する耐性として照射した際の黄変度(ΔYI)が適用できる。
 黄変度(ΔYI)は、電子線を照射エネルギーとして25kGyを照射後、JIS K7105の規定に従い測定できる。
 外観上の品質の低下や機械的特性の低下を抑制する観点から、本実施形態のダイアライザーを構成する樹脂組成物は、黄変度(ΔYI)は、10以下が好ましく、5以下がより好ましい。
 黄変度は、後述する実施例に記載する方法により測定することができる。なお、当該測定方法において用いる試験片は、ダイアライザーを成形する前段階の樹脂組成物の成形片であってもよく、ダイアライザーとして成形後、これを粉砕して再度作製した成形片であってもよく、またさらには、ダイアライザー自体に対して測定することもできる。
〔ダイアライザーの製造方法〕
 本実施形態のダイアライザーは、公知の成形加工方法によって成形することができる。例えば、ブロー成形法、押出成形法、射出成形法が可能であるが、特に射出成形法が生産効率上優れているため好ましい。
〔ダイアライザーの物性〕
 <ビカット軟化温度>
 本実施形態におけるダイアライザーは、ISO306、荷重10Nにおけるビカット軟化温度が93℃以上であり、より好ましくは95℃以上である。一方、ビカット軟化温度の上限値については特に制限は無いが、ビニル芳香族炭化水素を主体とする樹脂組成物であるため、おおよそ120℃以下程度となる。
 ビカット軟化温度は、上述したように、原料である樹脂組成物を用いて試験片を作製し、これにより測定することもできるが、ダイアライザーの一部を切り出した樹脂片でも、再加熱し厚み3mm以上の試験片とすることにより測定することができる。
<切削加工性>
 本実施形態のダイアライザーを構成するダイアライザー本体の成形を行い、ウレタン等の熱硬化性樹脂により内部の中空糸を開口部面で固定し、端面から所定の位置にて切削加工機により切削を行うと、割れや欠けの発生が確認されず、切削加工性が極めて良好である。
 本実施形態のダイアライザーを構成する樹脂組成物として、デュポン衝撃強度が3kg・cm以上であるものとすることにより、上記良好な切削加工性が実現できる。
 以下、本発明のダイアライザーについて、具体的な実施例と、これとの比較例を挙げて説明する。
 先ず、ブロック共重合体(a)、ビニル芳香族炭化水素系樹脂(b)、ゴム変性ビニル芳香族炭化水素重合体(c)を製造し、これらの原料を用いて、試験片、及びダイアライザーを成形し、評価を行った。
〔ブロック共重合体(a)〕
 (ブロック共重合体(a)-1)
 窒素ガス雰囲気下において、スチレン20質量部を25質量%の濃度で含むシクロヘキサン溶液に、n-ブチルリチウムを0.08質量部とテトラメチルメチレンジアミン0.015質量部を添加し、80℃で20分間重合した。
 その後、1,3-ブタジエン8質量部を25質量%の濃度で含むシクロヘキサン溶液を一度に添加し、80℃で15分間重合した。
 次に、1,3-ブタジエン9質量部とスチレン15質量部を25質量%の濃度で含むシクロヘキサン溶液を30分かけて連続的に添加しながら80℃で重合した。
 次に、1,3-ブタジエン8質量部を25質量%の濃度で含むシクロヘキサン溶液を一度に添加して、80℃で15分間重合した。
 次に、スチレン3質量部を25質量%の濃度で含むシクロヘキサン溶液を添加して80℃で5分間重合した。
 次に、エタノールをn-ブチルリチウムに対して0.4倍モル添加して、5分間保持した。
 次に、スチレン37質量部を25質量%の濃度で含むシクロヘキサン溶液を添加し、80℃で25分間重合した。
 その後、重合を完全に停止するため、反応器中にエタノールをn-ブチルリチウムに対して0.6倍モル添加し、熱安定剤としてブロック共重合体100質量部に対して2-t-ブチル-6(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレートを0.3質量部添加し、その後、溶媒を除去することによってブロック共重合体を回収した。
 このようにして得られたブロック共重合体は、スチレン含有量75質量%の、S1-B1-B/S1-B2-S2構造の、2つのピーク分子量を有する線状のブロック共重合体であった。
 なお、ブロック構造を表す式中の、S、B、B/Sに付した番号は、それぞれブロック共重合体におけるビニル芳香族炭化水素ブロック(S)と、共役ジエン重合体ブロック(B)と、ビニル芳香族炭化水素/共役ジエン共重合体ブロック(B/S)のブロックを同定するための番号であり、数字が異なるものは、それぞれの分子量(重合度)が同じであっても異なっていてもよく、また更には、ビニル芳香族炭化水素/共役ジエン共重合体ブロック(B/S)の場合は、ビニル芳香族炭化水素と共役ジエンとの共重合比率が同じであっても異なっていてもよい(以下、(a)-2~(a)-7についても同様とする。)。
 (ブロック共重合体(a)-2)
 窒素ガス雰囲気下において、スチレン20質量部を25質量%の濃度で含むシクロヘキサン溶液に、n-ブチルリチウムを0.08質量部とテトラメチルメチレンジアミン0.015質量部を添加し、80℃で20分間重合した。
 次に、1,3-ブタジエン14質量部とスチレン10質量部を25質量%の濃度で含むシクロヘキサン溶液を30分かけて連続的に添加しながら80℃で重合した。
 次に、1,3-ブタジエン16質量部とスチレン10質量部を25質量%の濃度で含むシクロヘキサン溶液を30分かけて連続的に添加しながら80℃で重合した。
 次に、スチレン30質量部を25質量%の濃度で含むシクロヘキサン溶液を添加して80℃で30分間重合した。
 その後、重合を完全に停止するため、反応器中にエタノールをn-ブチルリチウムに対して等倍モル添加し、熱安定剤としてブロック共重合体100質量部に対して2-t-ブチル-6(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレートを0.3質量部添加し、その後、溶媒を除去することによってブロック共重合体を回収した。
 このようにして得られたブロック共重合体は、スチレン含有量70質量%の、S1-B/S1-B/S2-S2構造の線状のブロック共重合体であった。
 (ブロック共重合体(a)-3~7)
 ブロック共重合体のスチレン含有量をブタジエンとスチレンとの重量比で調整した。
 ブロック共重合体の分子量を開始剤の量とエタノールの添加位置と添加量で調整した。
 そのSブロック率をB/S部の量比で調整した。
 さらに、スチレンブロック分子量を、S(スチレン)の量比とエタノールの添加位置と添加量とで調整した。
 その他の条件は、(a)-2と同様としてブロック共重合体を製造した。
 下記表1に、ブロック共重合体(a)-1~7の構造、組成等を示す。
 表1中、「Sブロック率」とは、「ブロック共重合体(a)を構成している全ビニル芳香族炭化水素単位に対する、重合体ブロック(当該例においては、スチレンブロック)の重量割合であるものとする。
 なお、下記表1に示すブロック共重合体(a)に関する構造は、下記の方法に従い測定した。
<ブロック共重合体(a)の全ビニル芳香族炭化水素(スチレン)含有量>
 UV計(紫外線吸光光度計)により測定した。
 具体的には、ブロック共重合体(a)を約30mg(0.1mg単位まで正確に秤量)をクロロホルム100mLに溶解させ、そのポリマー溶液を石英セルに満たして分析装置にセットし、これに紫外線波長260~290nmを走査させ、得られた吸光ピーク高さの値により検量線法を用いて求めた。ビニル芳香族炭化水素がスチレンの場合、ピーク波長は269.2nmに現れた。
<ブロック共重合体(a)の共役ジエン(ブタジエン)含有量>
 上記で得られたスチレン含有量の質量%を元に、100質量%から差し引いて算出した。
<ブロック共重合体(a)の重量平均分子量Mw、数平均分子量Mn、分子量分布Mw/Mn、分子量ピーク数>
 GPC装置により測定した。GPC装置は、東ソー社製 HLC-8220、カラムは、東ソー社製 SuperMultiporeHZ-Mを2本直列に接続し、カラム温度は40℃一定に保ち、送液量は0.2mL/分の条件で測定を行った。検出器は、屈折計(RI)を用いた。
 一方、サンプル調整方法としては、溶媒としてテトラヒドロフランを使用し、分子量測定を行う目的の重合体50mgに対し、テトラヒドロフラン10mLを加え、完全に溶解させ、ろ過して不溶分を除去して測定用サンプルを得た。
 まず、分子量が各々異なる分子量既知の標準ポリスチレンサンプルを9点用いて検量線を作成した。最も高分子量の標準ポリスチレンの重量平均分子量Mwは109万、最も低分子量のものは1050のものを使用した。
 続いて、分子量を測定する目的のブロック重合体(a)を用いて上記の要領で測定用サンプルを調整した。
 実際の測定は、カラムが収納されている槽内温度が一定になったことを確認した後、溶液サンプルを注入し、測定を開始する。
 測定終了後、分子量分布曲線が得られた。分布曲線の統計処理を行い、重量平均分子量Mw及び数平均分子量Mnを算出した。
 分子量分布は、得られた重量平均分子量Mwを数平均分子量Mnで除した値とした。
 分子量ピーク数は、上記分子量分布曲線より判断した。
<ブロック共重合体(a)のビニル芳香族炭化水素(スチレン)のブロック率(%)>
 先ず、上記のようにしてスチレン含有量を測定し、次に、重合体ブロックを構成しているスチレン含有量の測定を行った。具体的には、正確に秤量した重合体約50mgを約10mLのクロロホルムに溶解した後、オスミウム酸溶液を加えて共役ジエン部分を分解し、分解後のポリマー溶液を約200mLのメタノール中に静かに滴下した。これによりメタノールに溶解しない重合体ブロックスチレン成分が沈殿した。
 この沈殿したポリマー分がブロックスチレンのみである。ブロックを形成していないスチレン単量体や、重合度の低いスチレンは、メタノール/クロロホルム混合溶液に溶解した。
 ポリマー沈殿分をろ過し、真空乾燥後、残渣としてのブロックスチレンの重量を秤量することにより、ブロックスチレン量の値が得られた。「Sブロック率」は、ブロックスチレン量を全スチレン量で除した値とした。
Figure JPOXMLDOC01-appb-T000001
 表1中、分子量ピークの数は、重合途中にエタノールの添加を行って、一部失活させた場合、2以上となる。
〔ビニル芳香族炭化水素系樹脂(b)〕
 (ビニル芳香族炭化水素・共役ジエン共重合体(b-1))
  [ビニル芳香族炭化水素・共役ジエン共重合体(b-1)-1~6]
 ビニル芳香族炭化水素含有量が93質量%~99.9質量%、共役ジエン含有量が7~0.1質量%からなるビニル芳香族炭化水素・共役ジエン共重合体(b-1)は、窒素ガス雰囲気下で、シクロヘキサン溶媒中で、開始剤としてn-ブチルリチウムを用い、スチレン、1,3-ブタジエン、スチレンの順、又はスチレン、スチレンと1,3-ブタジエンの混合物、スチレンの順、のいずれかの方法で、モノマーのシクロヘキサン溶液を添加して重合し、その後、エタノールを添加して重合を停止し、その後、安定剤として当該重合体100質量部に対して、2-〔1-(2-ヒドロキシ-3,5-ジ-t-ペンチルフェニル)エチル〕-4,6-ジ-t-ペンチルフェニルアクリレートを0.3質量部添加し、その後、溶媒を除去することによって、目的とする線状のビニル芳香族炭化水素・共役ジエン共重合体(b-1)を回収した。
 なお、(b-1)-5のみ、スチレン、1,3-ブタジエンの順でモノマーのシクロヘキサン溶液を添加して重合を行った。
 得られたビニル芳香族炭化水素・共役ジエン共重合体(b-1)は、S1-B1-S2、又はS1-B/S1-S2、又はS1-B1の構造であった。
 ビニル芳香族炭化水素・共役ジエン共重合体(b-1)-1~6の構造、スチレン含有量(質量%)、(b-1)を構成する全スチレンにおけるSブロック率(Sブロック率)、分子量分布、ブロック共重合体のピーク分子量に対するブロックスチレンのピーク分子量の比率、ブロックスチレンのピーク分子量の数を、下記表2に示す。
 なお、下記表2に示すビニル芳香族炭化水素・共役ジエン共重合体(b-1)-1~6の構造、物性は、下記の方法に従い測定した。
<ビニル芳香族炭化水素(スチレン)含有量(質量%)>
 上述したブロック共重合体(a)と同様な方法にて、UV計を用いて測定した。具体的には、正確に秤量した重合体約50mgを100mLのクロロホルムに溶解して石英セルに満たして分析装置にセットし、これに紫外線波長260~290nmを走査させ、得られた吸光ピーク高さの値により検量線法を用いて求めた。ビニル芳香族炭化水素がスチレンの場合、ピーク波長は269.2nmに現れる。
<ビニル芳香族炭化水素・共役ジエン共重合体(b-1)のビニル芳香族炭化水素(スチレン)のSブロック率(質量%)>
 先ず、上記のようにしてスチレン含有量を測定し、次に、ビニル芳香族炭化水素・共役ジエン共重合体(b-1)を構成しているスチレン含有量の測定を行った。具体的には、正確に秤量した重合体約50mgを約10mLのクロロホルムに溶解した後、オスミウム酸溶液を加えて共役ジエン部分を分解し、分解後のポリマー溶液を約200mLのメタノール中に静かに滴下した。これによりメタノールに溶解しない重合体ブロックスチレン成分が沈殿した。
 この沈殿したポリマー分がブロックスチレンのみである。ブロックを形成していないスチレン単量体や、重合度の低いスチレンは、メタノール/クロロホルム混合溶液に溶解した。
 ポリマー沈殿分をろ過し、真空乾燥後、残渣としてのブロックスチレンの重量を秤量することにより、ブロックスチレン量の値が得られた。Sブロック率は、ブロックスチレン量を全スチレン量で除した値とした。
<ビニル芳香族炭化水素・共役ジエン共重合体(b-1)の分子量分布Mw/Mn>
 ブロック共重合体(a)の測定と同じ装置を用いて同じ要領にて、重量平均分子量及び数平均分子量を算出した。
 分子量分布の値は、得られた重量平均分子量Mwを数平均分子量Mnで除した値とした。
<ビニル芳香族炭化水素・共役ジエン共重合体(b-1)のビニル芳香族炭化水素ブロック(ブロックスチレン)のピーク分子量>
 上記でSブロック率の測定の際に得られた、ポリマー沈殿分について、上記と同様にGPC測定を行い、分子量分布曲線を得た。ピーク分子量が1つのピークで、かつ元のビニル芳香族炭化水素・共役ジエン共重合体(b-1)の約半分の分子量であれば、共役ジエンブロックが重合体連鎖のほぼ中央に存在し、両端のビニル芳香族炭化水素ブロック鎖の分子量がほぼ同等であることが示唆される。
 ブロックスチレンのGPC測定において、得られた分子量曲線のピーク分子量が2個以上確認された場合は、最も高分子量側のピーク分子量と、最も低分子側のピーク分子量の差を求めた。
<ビニル芳香族炭化水素・共役ジエン共重合体(b-1)のメルトフローレート>
 ISO 1133の規格に準じ、温度200℃、荷重5kgfの条件で測定した。
Figure JPOXMLDOC01-appb-T000002
 表2中、「G条件」とは、試験温度200℃、荷重5kgfを示す。
 (ビニル芳香族炭化水素単独重合体(b-2))
 ビニル芳香族炭化水素単独重合体(b-2)は市販のポリスチレン(PSジャパン(株)製 PSJポリスチレン 685)を使用した。
 GPC測定による分子量分布Mw/Mnは2.6、メルトフローレート(条件:200℃、荷重5kgf)は2.1であった。
〔ゴム変性ビニル芳香族炭化水素重合体:ゴム変性重合体(c)〕
 (ゴム変性ビニル芳香族炭化水素重合体(c)-1)
 スチレン・ブタジエン共重合ゴム(SBR:旭化成ケミカルズ(株)製、タフデン2000A、結合スチレン量25質量%)をスチレンに溶解し、次いでエチルベンゼン及び、1,1-ジ-t-ブチルパーオキシ3,3,5-トリメチルシクロヘキサン、ジ-t-ブチルパーオキサイドを少量加え、最終的に下記の組成より成る重合原液を調製した。
 スチレン・ブタジエン共重合ゴム:8.0質量%
 スチレン:76.9質量%
 エチルベンゼン:15.0質量%
 1,1-ジ-t-ブチルパーオキシ3,3,5- トリメチルシクロヘキサン:0.01質量%
 ジ-t-ブチルパーオキサイド:0.02質量%
 アルファメチルスチレンダイマー:0.04質量%
 上記の重合原液を、各々の内容積が6.2リットルの撹拌機付きの3槽式反応機に2.2L/時間にて連続的に送液した。第一槽反応機出口の固形分濃度が38質量%となるように反応機内温度を制御した。最終槽反応機出口の固形分濃度が80質量%となるように反応機内温度を調整した。次いで230℃、真空下の脱揮装置に送り込み、未反応のスチレン及びエチルベンゼンを除去し、押出機にて造粒しペレット状のゴム変性ビニル芳香族炭化水素重合体(c)-1を得た。ゴム変性ビニル芳香族炭化水素重合体中のスチレン・ブタジエン共重合ゴムの割合は10質量%であった。
 (ゴム変性ビニル芳香族炭化水素重合体(c)-2)
 ポリブタジエンゴム(BR:旭化成ケミカルズ(株)製、ジエン55AE)をスチレンに溶解し、次いでエチルベンゼン及び、1,1-ジ-t-ブチルパーオキシ3,3,5-トリメチルシクロヘキサン、ジ-t-ブチルパーオキサイドを少量加え、最終的に下記の組成より成る重合原液を調製した。
 ポリブタジエンゴム:4.0質量%
 スチレン:80.9質量%
 エチルベンゼン:15.0質量%
 1,1-ジ-t-ブチルパーオキシ3,3,5- トリメチルシクロヘキサン:0.01質量%
 ジ-t-ブチルパーオキサイド:0.02質量%
 アルファメチルスチレンダイマー:0.04質量%
 上記の重合原液を、上述した(c)-1と同様の手順により重合を行い、ペレット状のゴム変性ビニル芳香族炭化水素重合体(c)-2を得た。ゴム変性ビニル芳香族炭化水素重合体中のポリブタジエンゴムの割合は5質量%であった。
 このとき攪拌翼の回転速度を調節することにより、ゴム粒子の平均粒子径を調整した。
 平均粒子径の測定方法を下記に示す。
 先ず、ゴム変性ビニル芳香族炭化水素重合体(c)を、四酸化オスミウムで染色し、それから厚み約75nmの超薄切片を作製し、透過型電子顕微鏡を用いて撮影し、倍率1万倍として写真を撮影した。
 次に、写真中、黒く染色されたゴム粒子径を測定して、次式により算出した。
 (平均粒子径)=ΣnDi/ΣnDi
 なお、上記式においては、長径Diの粒子の個数がnとする。
 下記表3に、ゴム変性ビニル芳香族炭化水素重合体(c)-1~2の、ゴム成分、ゴム成分含有量、ゴム粒子の平均粒子径(μm)、トルエン不溶分、メルトフローレート(G条件)を示した。
 なお、下記表3に示すゴム変性ビニル芳香族炭化水素重合体(c)-1~2の構造、物性は、下記の方法に従い測定した。
 <ゴム成分含有量>
 製造時に使用したゴム状重合体の仕込み量と最終槽反応機出口の固形分濃度から、質量%として算出した。
 <トルエン不溶分(質量%)>
 ゴム変性ビニル芳香族炭化水素重合体(c)約1gを沈降管に正確に秤量し、トルエン20mLを注ぎ、室温にて1時間掛けて振とう溶解させた。
 次に、遠心分離器を用いて10℃以下、20000rpmにて30分間遠心分離を行うことで、グラフトゴム粒子は沈降し、可溶分と分離した。
 可溶分である上澄み液を、沈降管を静かに傾けて除去し、80℃で2時間、加熱真空乾燥を行い、(c)中のトルエン不溶分の含有量を測定した。
 <メルトフローレート>
 ISO 1133の規格に従い、G条件(200℃、荷重5kgf)で測定した。
Figure JPOXMLDOC01-appb-T000003
 表3中、BR:ポリブタジエン、SBR:スチレン・ブタジエン共重合体(結合スチレン量25質量%)をそれぞれ示す。
〔実施例1~24、比較例1~9〕
 上述のようにして製造したブロック共重合体(a)と、ビニル芳香族炭化水素系樹脂(b)と、ゴム変性ビニル芳香族炭化水素重合体(c)とを用いて、下記表4、5に示す配合比率に従って、スクリュー径30mm、L/D=42、シリンダー設定温度210℃の二軸押出機で溶融混練し、ダイアライザーを構成する樹脂組成物のペレットを得た。
 なお、実施例23は、用いた各成分とそれらの比率は実施例22と同一であるが、混合方法を以下の通りとした。
 すなわち、ブロック共重合体(a)-4と、ビニル芳香族炭化水素系樹脂(b-1)-4を各々重合し、重合停止し、熱安定剤を添加した後、各々の重合体がシクロヘキサンに溶解した状態にて、2つの重合体溶液を表5に示す比率になるように混合し、1分間攪拌した後、溶媒を除去することによって重合体混合物を得、当該重合体混合物と、ゴム変性ビニル芳香族炭化水素重合体(c)-2を上記二軸押出機で溶融混練し、ダイアライザーを構成する樹脂組成物のペレットを得た。
 なお、比較例7としてはビニル芳香族炭化水素系単独重合体(b-2)であるポリスチレン単味(PSジャパン(株)製 PSJポリスチレン 685)、比較例8としては市販のポリカーボネート樹脂単独(出光石油化学製 タフロンA2200)、比較例9としてメタクリル酸メチル・スチレン・ブタジエン樹脂(MBS樹脂)単独(電気化学工業製 デンカTHポリマー TH-11)を、ダイアライザーを構成する樹脂組成物として用いた。
 上述のようにして作製、又は用意した樹脂組成物を用いて、図1に示すような構成のダイアライザーを成形した。
 上記実施例1~24、比較例1~9において作製したダイアライザーを構成する樹脂組成物を用いて、特性及び物性の評価を行った。
 具体的には、樹脂組成物を、型締力120トンの射出成形機を用いて、シリンダー温度210℃、金型温度40℃として、ISO規格の試験片と、縦90mm、横50mm、厚み2mmの鏡面状平板試験片を成形した。ただし、ビカット軟化温度のみは、その試験片は、ダイアライザーの本体容器を切削後、粉砕し、熱プレス成形により再度成形して得た試験片を用いた。
 23℃で24時間状態調節後、下記試験、測定評価を行った。
(トルエン不溶分)
 樹脂組成物約1gを沈降管に正確に秤量し、トルエン20mLを注ぎ、室温にて1時間掛けて振とう溶解させた。
 次いで、遠心分離器を用いて10℃以下、20000rpmにて30分間遠心分離を行うことで、グラフトゴム粒子は沈降し可溶分と分離した。
 可溶分である上澄み液を、沈降管を静かに傾けて除去し、80℃で2時間、加熱真空乾燥を行うことで、トルエン不溶分の含有量を測定した。
 (a)成分+(b)成分+(c)成分の合計を100質量%としたときの、トルエン不溶分の含有量(質量%)を算出した。
(荷重たわみ温度)
 荷重たわみ温度は、試験規格ISO75に準じ、荷重1.8MPaの条件でISO試験片を用いて測定した。
 荷重たわみ温度の結果について、下記のように評価した。
 65℃未満:×(実用上の耐熱性が不足)
 65℃以上70℃未満:○(実用上の最低限の耐熱性を有する)
 70℃以上:◎(特に耐熱性に優れている)
(ビカット軟化温度)
 ビカット軟化温度は、試験規格ISO306に準じ、荷重10Nの条件で測定を行った。
 試験片は、ダイアライザーをバンドソーで切断し、更に中空糸膜を取り除いた後、粉砕機で1~2mm大に粉砕した粉砕品を、温度200℃の加熱プレス成形機にて、12mm×25mm、厚み4mmの試験片を成形して得たものを使用した。
 ビカット軟化温度の結果について、下記のように評価した。
 93℃未満:×(実用上の耐熱性が不足)
 93℃以上97℃未満:○(実用上の最低限の耐熱性を有する)
 97℃以上:◎(特に耐熱性に優れている)
(デュポン衝撃強度)
 デュポン衝撃強度は、試験規格JIS K5400に準じ、鏡面状平板試験片を用いて、ミサイル先端径1/4インチ、内径30mmの受け台を用いて、50%破壊強度を求めた。
 試験機は、東洋精機社製の最高高さ50cm、手動型で卓上設置型の試験機を使用した。
 錘は300gと1kgの2種類をその強度によって使い分けを行い、10kg・cm超の強度の場合は1kgの錘を用いて算出した。
 算出方法は、1kgの錘を用いて30cmの高さから自由落下で50%の確率にて破壊する場合、デュポン衝撃強度は30kg・cmとなる。
 デュポン衝撃強度の結果について、下記のように評価した(単位:kg・cm)。
 3未満:×(不良)
 3以上5未満:○(良好)
 5以上10未満:◎(優れている)
 10以上:◎+(極めて優れている)
(曇価)
 曇価は、試験規格ISO14782に準じ、鏡面状平板試験片を用いて、ヘイズメーターにて測定した。
 曇価の測定結果の指標を下記に示す。
 20%以下:内部の視認に十分かつ良好な透明性を有する。
 20%超30%以下:若干の曇りがあるものの、実用上、内部の視認性に問題が無い。
 30%超100%以下:透明性がかなり損なわれており、内部の視認性が妨げられている。
(黄変度)
 黄変度(以下、ΔYIと略記)は、試験規格JIS K7105に準じ、鏡面平板試験片を用いて、照射前と電子線25kGy照射後について各々のイエローインデックス(YI)を測定し、その差であるΔYI(黄変度)を求めた。
 ΔYIの測定結果の指標を下記に示す。
 5以下:十分な耐性を有し、外観及び機械的強度への影響は小さく限定的である。
 5超10以下:若干の黄変が認められるが、耐衝撃性や剛性への影響は小さく限定的である。
 10超:黄変度が大きく、外観における品質低下のみならず、耐衝撃性や剛性への悪影響が懸念される。
(切削加工性)
 さらに、実施例1~24、比較例1~9により作製したダイアライザーを構成する樹脂組成物のペレットを用いてダイアライザーの本体容器を作製し、切削加工性を評価した。
 切削加工性は、切削加工時における成形体の欠けや割れの不具合や、形状変化等によるヘッダーとの勘合不具合の有無を評価するため、上記各樹脂組成物のペレットを用いて、350トン射出成形機により、シリンダー温度220℃、金型温度55℃として、図1に示されているダイアライザー本体10の成形を行い、熱硬化性ウレタン樹脂により開口部を塞いだ後、端面から5mmの位置にて切削加工機にて、n=10(サンプル数:10)で切削を実施し、欠けや割れの不具合や、変形による勘合の不具合の発生数を下記の基準により評価した。
 10本全てにおいて欠け・割れ・開口部の変形が発生せず、切削加工性良好:◎
 10本の内、少なくとも1本に欠け・割れが発生した:×
Figure JPOXMLDOC01-appb-T000004
 表4中、「樹脂組成物中の共役ジエン量」とは、ブロック共重合体(a)とビニル芳香族炭化水素系樹脂(b)とゴム変性ビニル芳香族炭化水素重合体(c)からなる樹脂組成物に含まれる共役ジエンの総含有量を示す。
 共役ジエン量は、(a)、(b)、(c)の各々に含まれる共役ジエンの総含有量/樹脂組成物の総質量により算出した。
Figure JPOXMLDOC01-appb-T000005
 表5中、「樹脂組成物中の共役ジエン量」とは、ブロック共重合体(a)とビニル芳香族炭化水素系樹脂(b)とゴム変性ビニル芳香族炭化水素重合体(c)からなる樹脂組成物に含まれる共役ジエンの総含有量を示す。
 共役ジエン量は、(a)、(b)、(c)の各々に含まれる共役ジエンの総含有量/樹脂組成物の総質量」により算出した。
 実施例1~24の樹脂組成物は、いずれもビカット軟化温度と荷重たわみ温度とデュポン衝撃強度とのバランスが良好であり、かつ実用上十分な透明性、視認性が確保できており、電子線照射後のΔYIが低減化されており、ダイアライザーとして、優れた物性を有していることが分かった。
 また、実施例1~24の樹脂組成物を用いてダイアライザーを製造する工程における切削加工性についても良好な評価が得られており、製造歩留まりが良く、不良品の発生が極めて低く、製造コストの観点からも優れていたことが分かった。
 比較例1~9の樹脂組成物は、ビカット軟化温度、荷重たわみ温度、デュポン衝撃強度、及びこれらのバランス、透明性、ΔYI、切削加工性の、少なくともいずれかの評価に劣り、ダイアライザーとして、実用上十分な特性を有していないことが分かった。
〔実施例1~24、比較例1~9により作製した樹脂組成物を用いたダイアライザーの実用性の評価〕
 上述した実施例1~24、比較例1~9において作製した表4、表5に示す配合比率の樹脂組成物ペレットを、350トン射出成形機により、シリンダー温度220℃、金型温度55℃として、図1に示すダイアライザー本体とヘッダーとを各々成形し、互いを溶着させてダイアライザーを得た。
 このダイアライザーを、実際に所定の外部透析装置に接続し使用した。
 実施例1~24により作製した樹脂組成物は、ビカット軟化温度、荷重たわみ温度、デュポン衝撃強度のバランスが良好であるとの評価が得られ、ダイアライザーに成形した場合にも寸法安定性に優れ、外部透析装置と確実に接続させることができ、さらには実用上十分な透明性を有しているため良好な視認性が得られ、かん子で叩いたり落下させたりした場合においても破損することが無かった。また、切削加工性についても良好であった。
 本出願は、2010年11月9日に日本国特許庁へ出願された、日本特許出願(特願2010-251111)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明のダイアライザーは、人工透析用の医療部材として産業上の利用可能性がある。
 10 ダイアライザー本体
 11a,11b ノズル部
 12a,12b ヘッダー
 20a,20b ノズル

Claims (11)

  1.  ビニル芳香族炭化水素が60~80質量%、共役ジエンが40~20質量%、含有されており、2以上のビニル芳香族炭化水素重合体ブロックを有するブロック共重合体(a)と、
     ビニル芳香族炭化水素が93~100質量%、共役ジエンが7~0質量%、含有されているビニル芳香族炭化水素系樹脂(b)と、
     ゴム変性ビニル芳香族炭化水素重合体(c)と、
    を、含有し、
     前記ブロック共重合体(a)と前記ビニル芳香族炭化水素系樹脂(b)とが質量比で、(a)/(b)=20/80~80/20の範囲であり、
     前記(a)と(b)と(c)の合計を100質量%としたとき、前記ゴム変性ビニル芳香族炭化水素重合体(c)の含有量が1~15質量%である、樹脂組成物を成形してなる、ダイアライザー。
  2.  ビニル芳香族炭化水素が60~80質量%、共役ジエンが40~20質量%、含有されており、2以上のビニル芳香族炭化水素重合体ブロックを有するブロック共重合体(a)と、
     ビニル芳香族炭化水素が93~100質量%、共役ジエンが7~0質量%、含有されているビニル芳香族炭化水素系樹脂(b)と、
     ゴム変性ビニル芳香族炭化水素重合体(c)と、
    を、含有し、
     前記ブロック共重合体(a)と前記ビニル芳香族炭化水素系樹脂(b)とが質量比で、(a)/(b)=20/80~80/20の範囲であり、
     前記(a)と(b)と(c)の合計を100質量%としたとき、トルエン不溶分が0.3~5質量%である樹脂組成物を成形してなる、ダイアライザー。
  3.  前記樹脂組成物は、ISO75に規定される荷重1.8MPaにおける荷重たわみ温度が、65℃以上である請求項1又は2に記載のダイアライザー。
  4.  前記ブロック共重合体(a)と前記ビニル芳香族炭化水素系樹脂(b)の各々に含まれる共役ジエンの含有量の合計量が、
     前記ブロック共重合体(a)と、前記ビニル芳香族炭化水素系樹脂(b)の合計量に対して4~15質量%である、
     請求項1乃至3のいずれか一項に記載のダイアライザー。
  5.  前記ブロック共重合体(a)と前記ビニル芳香族炭化水素系樹脂(b)とゴム変性ビニル芳香族炭化水素重合体(c)の各々に含まれる共役ジエンの含有量の合計量が、
     前記(a)と(b)と(c)の合計量に対して3~14質量%である、
     請求項1乃至4のいずれか一項に記載のダイアライザー。
  6.  前記ビニル芳香族炭化水素系樹脂(b)が、
     GPC法により測定した分子量分布Mw/Mnが1~1.5の範囲であって、かつ、ビニル芳香族炭化水素が93~99.9質量%、共役ジエンが7~0.1質量%、含有されているビニル芳香族炭化水素・共役ジエン共重合体(b-1)である、請求項1乃至5のいずれか一項に記載のダイアライザー。
  7.  前記ビニル芳香族炭化水素系樹脂(b)が、
     GPC法により測定した分子量分布Mw/Mnが2.1~10の範囲であり、ビニル芳香族炭化水素単独重合体(b-2)である、請求項1乃至5のいずれか一項に記載のダイアライザー。
  8.  前記ビニル芳香族炭化水素系樹脂(b)が、
     GPC法により測定した分子量分布Mw/Mnが1~1.5の範囲であって、かつ、ビニル芳香族炭化水素が93~99.9質量%、共役ジエンが7~0.1質量%、含有されている、ビニル芳香族炭化水素・共役ジエン共重合体(b-1)と、
     GPC法により測定した分子量分布Mw/Mnが2.1~10の範囲である、ビニル芳香族炭化水素単独重合体(b-2)との双方から構成され、
     前記ビニル芳香族炭化水素・共役ジエン共重合体(b-1)と前記ビニル芳香族炭化水素単独重合体(b-2)とが、重量比で(b-1)/(b-2)=20/80~80/20の範囲である、請求項1乃至5のいずれか一項に記載のダイアライザー。
  9.  前記ビニル芳香族炭化水素・共役ジエン共重合体(b-1)が、少なくとも2以上のビニル芳香族炭化水素重合体ブロックを有し、かつ、当該2以上のビニル芳香族炭化水素重合体ブロックが、前記ビニル芳香族炭化水素・共役ジエン共重合体(b-1)の両末端に結合している、請求項6又は8に記載のダイアライザー。
  10.  前記ゴム変性ビニル芳香族炭化水素重合体(c)には、平均粒子径が1.5μm~5μmのグラフトゴム粒子が含有されている請求項1乃至9のいずれか一項に記載のダイアライザー。
  11.  ビニル芳香族炭化水素を主体とし、共役ジエンを2~14質量%含有する樹脂組成物を成形したダイアライザーであって、
     ISO306に規定されるビカット軟化温度が、荷重条件10Nにて93℃以上であり、
     前記樹脂組成物のJIS K5400に規定されるデュポン衝撃強度が3kg・cm以上である、ダイアライザー。
PCT/JP2011/075701 2010-11-09 2011-11-08 ダイアライザー WO2012063812A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012542927A JP5555329B2 (ja) 2010-11-09 2011-11-08 ダイアライザー

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-251111 2010-11-09
JP2010251111 2010-11-09

Publications (1)

Publication Number Publication Date
WO2012063812A1 true WO2012063812A1 (ja) 2012-05-18

Family

ID=46050954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075701 WO2012063812A1 (ja) 2010-11-09 2011-11-08 ダイアライザー

Country Status (2)

Country Link
JP (1) JP5555329B2 (ja)
WO (1) WO2012063812A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015099163A1 (ja) * 2013-12-27 2015-07-02 日本ゼオン株式会社 ブロック共重合体組成物、その製造方法およびフィルム
CN107207812A (zh) * 2015-02-09 2017-09-26 旭化成株式会社 嵌段共聚物组合物、成型材料、树脂组合物以及成型体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04220450A (ja) * 1990-12-21 1992-08-11 Asahi Chem Ind Co Ltd 透明スチレン系樹脂
JPH06184400A (ja) * 1992-12-17 1994-07-05 Asahi Chem Ind Co Ltd 樹脂組成物
JP2008272352A (ja) * 2007-05-07 2008-11-13 Asahi Kasei Kuraray Medical Co Ltd 中空糸膜型血液浄化器
JP2008280527A (ja) * 2007-04-10 2008-11-20 Toray Ind Inc 軟質熱可塑性樹脂組成物および成形品
JP2009197241A (ja) * 2009-04-28 2009-09-03 Techno Polymer Co Ltd 熱可塑性エラストマー組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04220450A (ja) * 1990-12-21 1992-08-11 Asahi Chem Ind Co Ltd 透明スチレン系樹脂
JPH06184400A (ja) * 1992-12-17 1994-07-05 Asahi Chem Ind Co Ltd 樹脂組成物
JP2008280527A (ja) * 2007-04-10 2008-11-20 Toray Ind Inc 軟質熱可塑性樹脂組成物および成形品
JP2008272352A (ja) * 2007-05-07 2008-11-13 Asahi Kasei Kuraray Medical Co Ltd 中空糸膜型血液浄化器
JP2009197241A (ja) * 2009-04-28 2009-09-03 Techno Polymer Co Ltd 熱可塑性エラストマー組成物

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015099163A1 (ja) * 2013-12-27 2015-07-02 日本ゼオン株式会社 ブロック共重合体組成物、その製造方法およびフィルム
JPWO2015099163A1 (ja) * 2013-12-27 2017-03-23 日本ゼオン株式会社 ブロック共重合体組成物、その製造方法およびフィルム
US9963584B2 (en) 2013-12-27 2018-05-08 Zeon Corporation Block copolymer composition, production method therefor, and film
CN107207812A (zh) * 2015-02-09 2017-09-26 旭化成株式会社 嵌段共聚物组合物、成型材料、树脂组合物以及成型体
EP3257896A4 (en) * 2015-02-09 2018-03-07 Asahi Kasei Kabushiki Kaisha Block copolymer composition, molding material, resin composition, and molded article
KR20190060880A (ko) * 2015-02-09 2019-06-03 아사히 가세이 가부시키가이샤 블록 공중합체 조성물, 성형 재료, 수지 조성물 및 성형체
CN107207812B (zh) * 2015-02-09 2019-06-07 旭化成株式会社 嵌段共聚物组合物、成型材料、树脂组合物以及成型体
KR101995192B1 (ko) 2015-02-09 2019-07-02 아사히 가세이 가부시키가이샤 블록 공중합체 조성물, 성형 재료, 수지 조성물 및 성형체
US10501617B2 (en) 2015-02-09 2019-12-10 Asahi Kasei Kabushiki Kaisha Block copolymer composition, molded material, resin composition, and molded product

Also Published As

Publication number Publication date
JP5555329B2 (ja) 2014-07-23
JPWO2012063812A1 (ja) 2014-05-12

Similar Documents

Publication Publication Date Title
JP6266762B2 (ja) 熱可塑性エラストマー組成物、医療容器用栓体及び医療容器
JPH1121413A (ja) シクロオレフィン系共重合体樹脂組成物及びその製造方法
JP5046469B2 (ja) ブロック共重合体組成物
KR101801505B1 (ko) 열가소성 수지 조성물, 및 성형체 및 그의 제조 방법
WO2001090207A1 (fr) Copolymere sequence et composition a base de ce dernier
US10501617B2 (en) Block copolymer composition, molded material, resin composition, and molded product
JPH07268151A (ja) 熱可塑性樹脂組成物
JP5555329B2 (ja) ダイアライザー
JPH06192502A (ja) 熱可塑性樹脂組成物
JP2007169436A (ja) 医療用樹脂組成物およびこれを用いた医療用栓
JP3204412B2 (ja) 難燃性熱可塑性樹脂組成物
JP5451252B2 (ja) 人工透析用ダイアライザー本体及びヘッダー用の樹脂組成物、人工透析用ダイアライザー本体及びヘッダー
JP4841074B2 (ja) 樹脂組成物、及び樹脂改質用ブロック共重合体
JP2011041682A (ja) 人工透析用ダイアライザー本体及びヘッダー用の樹脂組成物、人工透析用ダイアライザー本体及びヘッダー
JPH0657128A (ja) 低温の耐衝撃性に優れた樹脂組成物
JP4404969B2 (ja) 熱可塑性樹脂組成物
JPH0812847A (ja) 透明マガジンレール
JPH06184400A (ja) 樹脂組成物
JPH0525360A (ja) ブロツク共重合体樹脂組成物
JP4386772B2 (ja) ゴム変性共重合樹脂及び製造方法
JP4850323B2 (ja) ゴム変性熱可塑性樹脂
JPWO2006068064A1 (ja) 熱可塑性樹脂組成物
JPH06263943A (ja) スチレン系樹脂組成物およびそのシート
JPH0693167A (ja) 熱可塑性樹脂組成物
JPH10237244A (ja) スチレン系樹脂組成物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11839095

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012542927

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11839095

Country of ref document: EP

Kind code of ref document: A1