WO2012063586A1 - 流体継手用のロックアップ装置 - Google Patents

流体継手用のロックアップ装置 Download PDF

Info

Publication number
WO2012063586A1
WO2012063586A1 PCT/JP2011/073293 JP2011073293W WO2012063586A1 WO 2012063586 A1 WO2012063586 A1 WO 2012063586A1 JP 2011073293 W JP2011073293 W JP 2011073293W WO 2012063586 A1 WO2012063586 A1 WO 2012063586A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer peripheral
peripheral side
elastic members
lockup device
float member
Prior art date
Application number
PCT/JP2011/073293
Other languages
English (en)
French (fr)
Inventor
裕樹 河原
一洋 山下
Original Assignee
株式会社エクセディ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010252579A external-priority patent/JP4930867B1/ja
Priority claimed from JP2010275613A external-priority patent/JP4892630B1/ja
Application filed by 株式会社エクセディ filed Critical 株式会社エクセディ
Priority to CN201180051149.7A priority Critical patent/CN103201538B/zh
Priority to US13/883,960 priority patent/US9011257B2/en
Priority to DE112011103759T priority patent/DE112011103759T5/de
Publication of WO2012063586A1 publication Critical patent/WO2012063586A1/ja
Priority to US14/658,848 priority patent/US20150184719A1/en
Priority to US14/659,659 priority patent/US9506524B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/123Wound springs
    • F16F15/12353Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations
    • F16F15/1236Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations resulting in a staged spring characteristic, e.g. with multiple intermediate plates
    • F16F15/12366Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations resulting in a staged spring characteristic, e.g. with multiple intermediate plates acting on multiple sets of springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/133Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses using springs as elastic members, e.g. metallic springs
    • F16F15/134Wound springs
    • F16F15/13469Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations
    • F16F15/13476Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations resulting in a staged spring characteristic, e.g. with multiple intermediate plates
    • F16F15/13484Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations resulting in a staged spring characteristic, e.g. with multiple intermediate plates acting on multiple sets of springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/50Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members
    • F16D3/64Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members comprising elastic elements arranged between substantially-radial walls of both coupling parts
    • F16D3/66Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members comprising elastic elements arranged between substantially-radial walls of both coupling parts the elements being metallic, e.g. in the form of coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/133Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses using springs as elastic members, e.g. metallic springs
    • F16F15/134Wound springs
    • F16F15/1343Wound springs characterised by the spring mounting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0205Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type two chamber system, i.e. without a separated, closed chamber specially adapted for actuating a lock-up clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0226Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers
    • F16H2045/0231Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0273Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type characterised by the type of the friction surface of the lock-up clutch
    • F16H2045/0294Single disk type lock-up clutch, i.e. using a single disc engaged between friction members

Definitions

  • the present invention relates to a lockup device, and more particularly, to a lockup device for a fluid coupling for transmitting torque and absorbing / damping torsional vibration.
  • the torque converter is often provided with a lock-up device for transmitting torque directly from the front cover to the turbine.
  • the lockup device includes a piston, a drive plate, a plurality of outer torsion springs, a driven plate, a plurality of inner torsion springs, and an intermediate member (see Patent Document 1). ).
  • the piston can be connected to the front cover.
  • the drive plate is connected to the piston.
  • Torque is input from the drive plate to the plurality of outer peripheral torsion springs.
  • the driven plate is connected to the turbine.
  • the plurality of inner peripheral side torsion springs are arranged on the inner peripheral side of the outer peripheral side torsion spring and transmit torque to the driven plate.
  • the intermediate member is rotatable relative to the drive plate and the driven plate, and transmits torque from the outer peripheral side torsion spring to the inner peripheral side torsion spring.
  • the torsion springs are arranged on the outer peripheral part and the inner peripheral part, respectively, and the outer peripheral side torsion spring and the inner peripheral side torsion spring are connected in series by the intermediate member. Therefore, the torsion angle of the damper is designed widely.
  • the present invention has been made in view of such problems, and an object of the present invention is to keep the vibration level as a lock-up device within an allowable range.
  • a lock-up device for a fluid coupling according to claim 1 is a lock-up device for a fluid coupling for transmitting torque and absorbing / damping torsional vibration.
  • the lockup device includes an input rotation member, an output rotation member, a plurality of first elastic members, and a float member.
  • the plurality of first elastic members are compressed in the rotation direction by relative rotation between the input rotation member and the output rotation member.
  • Each of the plurality of first elastic members is arranged in the circumferential direction at a predetermined position in the radial direction.
  • the float member is disposed to be rotatable relative to the input rotation member in order to cause at least two first elastic members among the plurality of first elastic members to act in series in the circumferential direction.
  • the free length of any one first elastic member is set to the free length of the other first elastic member.
  • the rigidity of the first elastic member having a short free length is set larger than the rigidity of the other first elastic members.
  • the torque is transmitted to the output rotating member via the plurality of first elastic members.
  • at least two first elastic members among the plurality of first elastic members are connected in series in the circumferential direction by a float member.
  • the first elastic member having a short free length is used.
  • the rigidity is greater than the rigidity of the other first elastic member.
  • an outline of the vibration level of the lockup device is shown as basic information for explaining the effect of the lockup device.
  • this reference curve shows the natural mode of the lock-up device. (Primary mode) appears at, for example, less than the lockup rotation speed Na.
  • the vibration level decreases as the rotational speed increases.
  • the vibration curve of the lockup device in the presence of the float member is obtained by superimposing the vibration component of the float member on this reference curve (see the solid line in FIG. 5).
  • the resonance rotational speed of the float member in the lockup device is obtained, the resonance rotational speed of the float member is determined by at least two first elastic members arranged in series in the circumferential direction by the float member. to be influenced.
  • the first elastic members arranged in series in the circumferential direction by the float member are set to different lengths (when each first elastic member has a different rigidity)
  • the first elastic members have the same length.
  • the resonance rotational speed of the float member becomes higher.
  • the resonance rotational speed of the float members can be reduced.
  • the rotational speed can be set higher than the resonant rotational speed.
  • the fluid coupling lockup device is the device according to claim 1, further comprising a plurality of second elastic members and intermediate members.
  • the plurality of second elastic members are disposed on either the inner peripheral side or the outer peripheral side of the plurality of first elastic members, and transmit torque to the output rotation member.
  • the intermediate member is disposed to be rotatable relative to the input rotation member in order to transmit torque from the first elastic member to the second elastic member.
  • a plurality of second elastic members and an intermediate member are further provided, and torque from the engine is transmitted from the first elastic member to the second elastic member via the intermediate member.
  • the resonance rotational speed of the float member can be set to a rotational speed higher than the resonance rotational speed of the conventional float member.
  • the first free member having a short free length is provided in the device according to claim 1 or 2 in the at least two first elastic members acting in series in the circumferential direction by the float member.
  • 1 elastic member is arrange
  • the first elastic member having a short free length is arranged on the input side.
  • the resonance rotational speed of the float member is calculated, the first elastic member having a short free length (the rigidity of the first elastic member on the input side) is made higher than the rigidity of the other first elastic members.
  • the resonance rotational speed of the float member can be increased.
  • the resonance level of the float member can be efficiently reduced as compared with the conventional case, and the vibration level as the lockup device can be within an allowable range.
  • the lockup device for a fluid coupling in the device according to claim 1 or 2, in the at least two first elastic members acting in series in the circumferential direction by the float member, 1 elastic member is arrange
  • the first elastic member having a long free length is arranged on the input side.
  • the resonance rotational speed of the float member when the resonance rotational speed of the float member is calculated, the first elastic member having a short free length (the rigidity of the first elastic member on the input side) is made higher than the rigidity of the other first elastic members.
  • the resonance rotational speed of the float member can be increased. In other words, the resonance rotational speed of the float member can be lowered by making the first elastic member having a long free length (the rigidity of the first elastic member on the input side) lower than the rigidity of the other first elastic members. .
  • the lockup device may be strongly influenced by the resonance of the float member at the lockup rotation speed.
  • the resonance rotational speed of the float member can be set to a rotational speed range lower than the lockup rotational speed.
  • the free length of at least two first elastic members acting in series in the circumferential direction by the float member is set so that the sum is constant.
  • the total of the free length of any one of the first elastic members and the free length of the other first elastic members is predetermined.
  • the free length of each first elastic member is set so that In this case, even if the free length of any one of the first elastic members is shortened, the free lengths of the other first elastic members are increased accordingly, so that at least the float member acts in series in the circumferential direction.
  • the overall rigidity of the two first elastic members is ensured to be constant. That is, the resonance speed of the float member can be set higher than the resonance speed of the conventional float member while maintaining the natural mode (primary mode) of the lockup device at, for example, less than the lockup speed. it can. As a result, the resonance problem of the lockup device can be reliably prevented in the normal range.
  • a lockup device for a fluid coupling is a lockup device for a fluid coupling for transmitting torque and absorbing / damping torsional vibration.
  • the lockup device includes an input rotation member, an output rotation member, a plurality of sets of first elastic members, and a float member.
  • the plurality of sets of first elastic members are compressed in the rotation direction by relative rotation between the input rotation member and the output rotation member.
  • Each of the plurality of first elastic members is arranged in the circumferential direction at a predetermined position in the radial direction.
  • Each of the plurality of sets of first elastic members can be rotated relative to the float member.
  • the set of first elastic members is composed of a plurality of spring members.
  • Each of the plurality of spring members is arranged in series continuously in the circumferential direction.
  • the float member restricts the movement of the spring member (first elastic member) in the radial direction.
  • each of the plurality of sets of first elastic members is arranged in the circumferential direction at a predetermined position in the radial direction.
  • the plurality of sets of first elastic members are rotatable relative to the float member, and movement in the radial direction is restricted by the float member.
  • a plurality of spring members constituting each set of first elastic members act in series in the circumferential direction.
  • the vibration level of the conventional lockup device is shown as basic information for explaining the effect of the lockup device.
  • the natural mode (primary mode) of the lockup device is For example, it appears at a lock-up rotational speed Na.
  • the eigenmode of the float member appears in the region of the rotational speed larger than the lockup rotational speed Na.
  • the rotation speed Nf at which the eigenmode of the float member appears is referred to as the rotation speed at which the vibration component of the float member is dominant, that is, the resonance rotation speed of the float member.
  • the vibration component of the float member can be removed from the vibration system. That is, in this lockup device, the resonance caused by the float member can be removed from the vibration system. Thereby, in the lockup device 7, the vibration level can be within the allowable range.
  • both end portions of each of the plurality of spring members and the float member are relatively rotatable.
  • each of the plurality of spring members is continuously connected in series in the circumferential direction without using the float member.
  • the vibration component of the float member that is, the resonance caused by the float member can be removed from the vibration system.
  • the vibration level can be within the allowable range.
  • torque is transmitted in the order of the input rotation member, the plurality of first elastic members, and the output rotation member.
  • torque is transmitted in the order of the input rotating member, the plurality of sets of first elastic members, and the output rotating member. That is, torque is transmitted from the input rotating member to the output rotating member via the plurality of sets of first elastic members without interposing a float member.
  • the vibration component of the float member that is, the resonance caused by the float member can be removed from the vibration system.
  • the vibration level can be within the allowable range.
  • the fluid coupling lockup device is the device according to any one of claims 6 to 8, wherein each of the plurality of spring members is serially connected in series in the circumferential direction via the seat member. Is arranged.
  • each of the plurality of spring members is continuously arranged in series in the circumferential direction via the sheet member, each of the plurality of spring members is caused to continuously act in series in the circumferential direction. Can do.
  • torque fluctuation can be reliably transmitted to each of the plurality of spring members. Further, torque fluctuation can be efficiently absorbed and attenuated in each spring member.
  • each of the plurality of spring members is arranged directly in series in the circumferential direction.
  • each of the plurality of spring members is arranged in series directly and continuously in the circumferential direction.
  • adjacent end portions are brought into contact with each other, whereby each of the plurality of spring members is arranged in series in the circumferential direction.
  • adjacent end winding portions are brought into contact with each other, whereby each of the plurality of spring members is arranged in series in the circumferential direction.
  • the spring member is composed of one of a linear coil spring and an arc-shaped coil spring.
  • the spring member since any one of the linear coil spring and the arc coil spring is used as the spring member, the torsional characteristics of various variations can be easily designed.
  • a lockup device for a fluid coupling according to a twelfth aspect of the invention according to any one of the sixth to eleventh aspects further includes a plurality of second elastic members and intermediate members.
  • the plurality of second elastic members are disposed on either the inner peripheral side or the outer peripheral side of the plurality of sets of first elastic members, and transmit torque to the output rotating member.
  • the intermediate member is disposed to be rotatable relative to the input rotation member in order to transmit torque from the first elastic member to the second elastic member.
  • the lockup device can remove the vibration component of the float member, that is, the resonance caused by the float member, from the vibration system. Can fit inside.
  • the vibration level as the lock-up device can be kept within the allowable range.
  • FIG. 1 is a partial sectional view of a torque converter including a lockup device according to a first embodiment of the present invention.
  • the front fragmentary view of the lockup device. Vibration model of a conventional lock-up device.
  • the conceptual diagram which shows the torsion characteristic of the conventional lockup apparatus.
  • the conceptual diagram which shows the vibration level of the conventional lockup apparatus.
  • the conceptual diagram which shows the twist characteristic of the said lockup apparatus.
  • the fragmentary sectional view of the torque converter by other embodiment different from the said 1st Embodiment.
  • Vibration model of a conventional lock-up device The conceptual diagram which shows the torsion characteristic of the conventional lockup apparatus.
  • the conceptual diagram which shows the vibration level of the said lockup apparatus. The figure which shows the spring seat of the lockup apparatus by other embodiment different from the said 2nd Embodiment (the 1).
  • FIG. 1 is a partial sectional view of a torque converter 1 in which a lockup device according to an embodiment of the present invention is employed.
  • An engine (not shown) is arranged on the left side of FIG. 1, and a transmission (not shown) is arranged on the right side of the figure.
  • FIG. 2 is a partial front view of the lockup device. Note that OO shown in FIG. 1 is a rotation axis of the torque converter and the lockup device.
  • the torque converter 1 is a device for transmitting torque from an engine-side crankshaft (not shown) to an input shaft of a transmission, and includes a front cover 2 fixed to an input-side member and three types of impellers ( A torque converter body 6 including an impeller 3, a turbine 4, and a stator 5) and a lockup device 7 are included.
  • the front cover 2 is a disk-shaped member, and an outer peripheral cylindrical portion 10 protruding toward the axial transmission side is formed on the outer peripheral portion thereof.
  • the impeller 3 includes an impeller shell 12 fixed to the outer peripheral cylindrical portion 10 of the front cover 2 by welding, a plurality of impeller blades 13 fixed to the inside thereof, and a cylindrical shape provided on the inner peripheral side of the impeller shell 12.
  • the impeller hub 14 is disposed to face the impeller 3 in the fluid chamber.
  • the turbine 4 includes a turbine shell 15, a plurality of turbine blades 16 fixed to the turbine shell 15, and a turbine hub 17 fixed to the inner peripheral side of the turbine shell 15.
  • the turbine hub 17 has a flange 17 a extending to the outer peripheral side, and an inner peripheral portion of the turbine shell 15 is fixed to the flange 17 a by a plurality of rivets 18.
  • An input shaft of a transmission (not shown) is splined to the inner peripheral portion of the turbine hub 17.
  • the stator 5 is a mechanism for rectifying the hydraulic oil that is disposed between the inner periphery of the impeller 3 and the turbine 4 and returns from the turbine 4 to the impeller 3.
  • the stator 5 is mainly composed of a disk-shaped stator carrier 20 and a plurality of stator blades 21 provided on the outer peripheral surface thereof.
  • the stator carrier 20 is supported by a fixed shaft (not shown) via a one-way clutch 22.
  • a thrust washer 25 is provided between the front cover 2 and the turbine hub 16 in the axial direction, and a thrust washer is provided between the turbine hub 17 and the stator carrier 20 and between the stator carrier 20 and the impeller shell 12. Bearings 26 and 27 are provided.
  • the lockup device 7 is disposed in an annular space between the front cover 2 and the turbine 4.
  • the lock-up device 7 mainly includes a piston 30, a drive plate 31, a plurality of outer and inner torsion springs 32, 33, an outer torsion spring 32 and an inner torsion spring 33, respectively. And an intermediate plate 34 and a driven plate 35.
  • the piston 30 and the drive plate 31 correspond to the input rotating member
  • the driven plate 35 corresponds to the output rotating member
  • the outer torsion spring 32 corresponds to the first elastic member
  • the inner torsion spring 33 corresponds to the second elastic member.
  • the piston 30 is a disk-shaped plate member, and is disposed so as to divide the space between the front cover 2 and the turbine 4 into two in the axial direction.
  • the outer peripheral portion of the piston 30 is a flat friction connecting portion 30a, and a friction facing 37 is provided on the axial direction engine side of the friction connecting portion 30a.
  • a flat friction surface is formed on the front cover 2 so as to face the friction facing 37.
  • an inner peripheral cylindrical portion 30 b extending toward the axial transmission side is provided on the inner peripheral edge of the piston 30.
  • the inner peripheral surface of the inner peripheral cylindrical portion 30 b is supported so as to be movable in the axial direction and the rotational direction with respect to the outer peripheral surface of the turbine hub 17. In the state where the tip of the inner peripheral cylindrical portion 30b is in contact with a part of the turbine hub 17, the movement of the piston 30 toward the axial transmission side is restricted.
  • a seal ring 38 is provided between the inner peripheral cylindrical portion 30 b and the outer peripheral surface of the turbine hub 17.
  • the drive plate 31 is an annular member made of sheet metal, and is disposed on the axial transmission side of the friction coupling portion 30 a in the piston 30.
  • An inner peripheral portion of the drive plate 31 is fixed to the piston 30 by a plurality of rivets 40.
  • a plurality of locking portions 31 a extending toward the axial transmission side are formed on the outer peripheral portion of the drive plate 31.
  • the plurality of locking portions 31 a are formed at predetermined intervals in the circumferential direction, and support the end surface of the outer peripheral side torsion spring 32. Further, a support portion 31 b extending toward the axial transmission side is formed above the piston mounting portion of the drive plate 31. The inner peripheral side of the outer peripheral side torsion spring 32 is supported by the support portion 31b.
  • Each of the plurality of outer peripheral torsion springs 32 is arranged side by side in the circumferential direction at a predetermined position in the radial direction.
  • the plurality of outer peripheral side torsion springs 32 are composed of a plurality of pairs of outer peripheral side torsion springs 32.
  • a total of eight outer peripheral side torsion springs 32 are provided in two sets.
  • the free lengths of the two outer peripheral side torsion springs 32 in each group are set so that the total free length of the two outer peripheral side torsion springs 32 in each group becomes a predetermined length.
  • each set of two outer torsion springs 32 has a free length shorter than one of the other outer torsion springs 32 of each set.
  • the free length of each of the outer peripheral side torsion springs 32 is set.
  • the outer peripheral side torsion spring 32 having a short free length is indicated by a symbol 32a
  • the outer peripheral side torsion spring 32b having a long free length is indicated by a symbol 32b.
  • the two outer peripheral side torsion springs 32 of each set are set so that the total free length of the two outer peripheral side torsion springs 32 of each group becomes a predetermined length, 2 If the free length of any one of the outer peripheral side torsion springs 32 becomes shorter, the free length of the other outer side of the two outer peripheral side torsion springs 32 becomes longer accordingly.
  • the ratio of the free length of either one of the two outer torsion springs 32 of each set to the free length of either one of the two outer torsion springs 32 of each set is 1.1 to 2.
  • the free length of each outer peripheral side torsion spring 32 is set so as to fall within the range up to 5.
  • the total free length of the two outer peripheral torsion springs 32 in each group is set to a predetermined length, and the free length of each outer peripheral torsion spring 32 is set within the range of the above ratio.
  • the outer peripheral side torsion spring 32b having a long free length can be regulated so as not to be in close contact with the line at an early stage.
  • the total of the free lengths of the two outer peripheral side torsion springs 32 in each group is set to 140 mm.
  • the free length of the outer peripheral side torsion spring 32a with a short free length is set to 60 mm
  • the free length of the outer peripheral side torsion spring 32b with a long free length is set to 80 mm.
  • the outer peripheral side torsion springs 32a having a short free length are arranged on the input side.
  • the spring pressed by the piston 30 and the drive plate 31 in the R1 direction has a free length.
  • the R1 direction corresponds to the main rotation direction of the engine.
  • a float member 42 is provided in the vicinity of the outer peripheral side torsion spring 32 so that the two outer peripheral side torsion springs 32 of each set act in series.
  • the float member 42 is an annular member having a C-shaped cross section and is disposed above the support portion 31 b of the drive plate 31.
  • the float member 42 is disposed so as to be rotatable relative to the drive plate 31.
  • the outer peripheral portion of the float member 42 supports the outer peripheral portion of the outer peripheral torsion spring 32. That is, the float member 42 restricts the outer peripheral side torsion spring 32 from protruding to the outer peripheral side.
  • a tip end portion 42 a on the transmission side in the axial direction of the float member 42 is bent toward the inner peripheral side and the engine side, and the bent portion 42 a at the tip end portion is inserted between the pair of outer peripheral side torsion springs 32. . That is, both end surfaces in the circumferential direction of the bent portion 42 a are in contact with the end surfaces of the corresponding torsion springs 32.
  • both ends in the circumferential direction of the pair of outer peripheral side torsion springs 32 are supported by the locking portions 31 a of the drive plate 31, and intermediate between the pair of outer peripheral side torsion springs 32.
  • the bent part 42a of the float member 42 is inserted into the part. Further, the outer peripheral portion of the outer peripheral side torsion spring 32 is supported by the outer peripheral portion of the float member 42.
  • the intermediate member 34 is an annular and disk-shaped plate member disposed between the piston 30 and the turbine shell 15.
  • the intermediate member 34 includes a first plate 44 and a second plate 45.
  • the first plate 44 and the second plate 45 are arranged with an interval in the axial direction.
  • the first plate 44 is disposed on the axial engine side, and the second plate 45 is disposed on the axial transmission side.
  • the first plate 44 and the second plate 45 are connected to each other by a plurality of stopper pins 46 such that the outer peripheral portions are not rotatable relative to each other and are not movable in the axial direction.
  • the first plate 44 and the second plate 45 are respectively formed with windows 44a and 45a penetrating in the axial direction. As is apparent from FIGS. 1 and 2, the windows 44 a and 45 a are formed to extend in the circumferential direction, and the axially cut and raised portions are formed on the inner and outer peripheral portions. Has been.
  • a plurality of locking portions 44 b extending to the outer peripheral side torsion spring 32 are formed at the outer peripheral end of the first plate 44.
  • the plurality of locking portions 44b are formed by bending the tip of the first plate 44 toward the axial engine side.
  • the plurality of locking portions 44b are arranged at predetermined intervals in the circumferential direction, and a pair of outer peripheral side torsion springs 32 that act in series are arranged between the two locking portions 44b. Yes.
  • Each of the plurality of inner peripheral torsion springs 33 is disposed in the windows 44 a and 45 a of both plates 44 and 45 of the intermediate member 34.
  • Each inner torsion spring 33 is supported at both ends in the circumferential direction and both sides in the radial direction by the windows 44a and 45a. Furthermore, each inner torsion spring 33 is restricted from projecting in the axial direction by the cut and raised portions of the window portions 44 and 45.
  • the driven plate 35 is an annular and disk-shaped member, and an inner peripheral portion thereof is fixed to the flange 17 a of the turbine hub 17 by a rivet 18 together with the turbine shell 15.
  • the driven plate 35 is disposed between the first plate 44 and the second plate 45 so as to be rotatable relative to both the plates 44 and 45.
  • a window hole 35 a is formed in the outer peripheral portion of the driven plate 35 corresponding to the window portions 44 a and 45 a of the first and second plates 44 and 45.
  • the window hole 35a is a hole penetrating in the axial direction, and an inner peripheral torsion spring 33 is disposed in the window hole 35a.
  • a plurality of notches 35b that are long in the circumferential direction are formed on the outer peripheral portion of the driven plate 35, as indicated by broken lines in FIG. And the stopper pin 46 has penetrated this notch 35b to the axial direction. Therefore, the driven plate 35 and the plates 44 and 45 constituting the intermediate member 34 can be rotated relative to each other within an angle range where the notch 35b is formed.
  • the lockup device 7 torque is transmitted in the order of the piston 30, the drive plate 31, the outer peripheral side torsion springs 32 (32 a and 32 b), the intermediate member 34, the inner peripheral side torsion spring 33, and the driven plate 35 to the turbine hub 17. Is output.
  • the lockup device 7 transmits torque and absorbs and attenuates torque fluctuations input from the front cover 2. Specifically, when torsional vibration occurs in the lockup device 7, the outer peripheral side torsion spring 32 and the inner peripheral side torsion spring 33 are compressed in series between the drive plate 31 and the driven plate 35. Further, the outer peripheral side torsion springs 32 are also compressed in series in the outer peripheral side torsion springs 32. For this reason, the twist angle can be widened.
  • outer peripheral side torsion spring 32 that can take a long circumferential distance acts in series, a wider twist angle can be secured. This means that the torsional characteristics can be further reduced in rigidity, and vibration absorption / damping performance can be further improved.
  • this lockup device 7 has a two-stage torsional characteristic.
  • the outer peripheral side torsion spring 32 tries to move to the outer peripheral side by centrifugal force. For this reason, the member which controls the movement to the outer peripheral side of the outer peripheral side torsion spring 32 is needed.
  • the movement of the outer peripheral side torsion spring 32 to the outer peripheral side is regulated by supporting the outer peripheral part of the outer peripheral side torsion spring 32 by the float member 42. At this time, since the float member 42 moves together with the outer peripheral side torsion spring 32, the sliding resistance can be reduced as compared with the case where the outer peripheral portion of the outer peripheral side torsion spring is supported by the drive plate as in the conventional device. it can.
  • the hysteresis torque as a whole is a combination of the hysteresis torque on the inner peripheral side and the outer peripheral side.
  • the hysteresis torque of the outer peripheral side torsion spring 32 is small and the hysteresis torque of the inner peripheral side torsion spring 33 is not different as compared with the conventional case, so that the hysteresis torque as a whole is also smaller. Therefore, vibration absorption / damping performance can be improved, and fuel consumption can be reduced by expanding the lock-up region.
  • Symbol Dr, Symbol F, Symbol M, and Symbol Dv respectively represent a drive plate, a float member, an intermediate member, and a driven plate. Furthermore, a conceptual diagram of torsional characteristics and a conceptual diagram of the vibration level (variation level) of the lockup device in this case are shown in FIGS.
  • K11 is the rigidity of each of the two outer peripheral side torsion springs 32 of each set
  • K13 is the rigidity of the inner peripheral side torsion spring 33.
  • the eigenmode (primary mode) of the lockup device is set below the lockup rotation speed Na.
  • the vibration level (variation amount) decreases.
  • This rotational speed is the resonance rotational speed Nf of the float member.
  • the vibration level at the resonance rotational speed Nf may be higher than the allowable level.
  • the vibration level in FIG. 5 corresponds to the rotational fluctuation of the transmission, and the rotation speed in FIG. 5 corresponds to the engine rotation speed. Further, No in FIG. 5 corresponds to the natural frequency at which the natural mode of the lockup device is dominant, and Nf corresponds to the resonance speed at which the mode of the float member is dominant. Also, So indicates the upper limit of the allowable vibration level. Furthermore, the unit of the vertical axis and the horizontal axis in FIG. 5 is rpm. The description shown here is also applied to FIG. 8 described later.
  • the lockup device 7 will be described.
  • K1 and K2 are the rigidity of the outer peripheral side torsion spring 32
  • K3 is the rigidity of the inner peripheral side torsion spring 33.
  • the free length of one of the two outer peripheral side torsion springs 32 of each set is shorter than the free length of the other of the two outer peripheral side torsion springs 32 of each set.
  • the rigidity K1 of any one of the two outer peripheral side torsion springs 32 of each group is set to be larger than the rigidity K2 of the other of the two outer peripheral side torsion springs 32 of each group.
  • the relationship “K1> K2” is established.
  • the relationship of “K1> K11> K2” is established.
  • the overall rigidity KK1 becomes “K11 ⁇ Ko1”
  • the overall rigidity KK2 becomes “KK2 ⁇ Ko2”.
  • the overall rigidity KK1 of the lockup device 7 is substantially the same as the overall rigidity Ko1 when the two outer peripheral side torsion springs 32 of the respective sets are the same.
  • the eigenmode (primary mode) of the lockup device 7 can be maintained below the lockup rotation speed Na.
  • the vibration level increases.
  • the resonance rotational speed Nf ′ of the float member 42 becomes the resonance shown in FIG. It becomes higher than the rotational speed Nf (Nf ′> Nf).
  • the vibration level at the resonance rotational speed Nf ′ becomes lower than the vibration level shown in FIG. 5, and the vibration level at the resonance rotational speed Nf ′ can be kept below the allowable level as shown in FIG. it can.
  • the rigidity K1 of the outer peripheral torsion spring 32 on the input side is equal to the rigidity K2 of the outer peripheral torsion spring 32b having the longer free length. It can be seen that the influence on the resonance speed Nf ′ is greater than that. Considering this, in the present lock-up device 7, the outer peripheral torsion spring 32a having a short free length is arranged on the input side.
  • the total of the free lengths of the two outer peripheral side torsion springs 32 in each set is set to a predetermined length.
  • the length obtained by subtracting the circumferential length of the bent portion 42a of the float member 42 from the circumferential length between the engaging portions 31a of the two drive plates 31 adjacent in the circumferential direction is Corresponds to a predetermined length of.
  • the wire diameter of the outer peripheral torsion spring used in the lock-up device is too thin, the outer peripheral torsion spring may be fatigued due to repeated stress, and the performance may be significantly reduced. is there. For this reason, the wire diameter of the outer peripheral side torsion spring needs to be set to a predetermined minimum value or more.
  • the resonance rotational speed Nf see FIG. 5
  • the rigidity of one of the two outer peripheral torsion springs This can be realized by increasing the wire diameter of one of the two outer peripheral side torsion springs in each group.
  • the wire diameter of the outer peripheral side torsion spring needs to be secured to some extent, so here, the wire diameter of either one of the two outer peripheral side torsion springs is increased. Then, the overall rigidity Ko1 and Ko2 are increased. Then, the natural mode of the lockup device is shifted to the high rotation speed side, and the vibration level at the lockup rotation speed Na is increased. As a result, in the normal range, there is a risk that vibrations, vibration sounds, and the like due to the natural mode of the lockup device may occur.
  • the two outer peripheral side torsion springs in each group need to be arranged in a limited space between the engaging portions 31a of the two drive plates 31 adjacent in the circumferential direction.
  • the wire diameter of either one of the outer peripheral side torsion springs is increased, the close contact between the wires may occur at an early stage, and the performance as a lock-up device may not be fully exhibited. .
  • the wire diameter (first wire diameter) of any one of the two outer peripheral side torsion springs 32 of each set is set to a predetermined value. Further, the other wire diameter (second wire diameter) of the two outer peripheral side torsion springs 32 of each set is set to a predetermined value.
  • the predetermined value shown here is a value equal to or greater than the predetermined minimum value. Further, the first wire diameter and the second wire diameter are not necessarily the same size.
  • the outer torsion springs 32 of one outer peripheral torsion spring 32 are not changed without changing the wire diameter (first wire diameter and second wire diameter) of each outer torsion spring 32.
  • the free length is set shorter than the free length of the other outer peripheral side torsion spring 32.
  • the free length of one outer peripheral side torsion spring 32 is shortened within the above-mentioned limit range, and the free length of the other outer peripheral side torsion spring 32 is increased accordingly.
  • the rigidity of the torsion spring 32 is set larger than the rigidity of the other outer peripheral side torsion spring 32.
  • the vibration level at the resonance rotational speed Nf ′ of the float member 42 is kept below the allowable level while maintaining the vibration level at the lockup rotational speed Na. be able to. That is, the performance as the lock-up device 7 can be sufficiently exhibited.
  • the elastic member is configured by a coil spring, but an elastic member formed of another resin or the like may be used.
  • the number and length of the coil springs constituting the outer peripheral side and inner peripheral side torsion springs are not limited to the above embodiment.
  • the float member is for arranging at least two torsion springs (elastic members) in series on the same circumference, and the shape thereof is not limited to the above embodiment.
  • positioned at the input side was shown. This assumes, for example, the case where the number of cylinders of the engine is small, for example, the case where an engine of less than 8 cylinders is used.
  • the resonance speed Nf of the float member 42 appears in the vicinity of the lockup speed Na in the normal speed range.
  • in FIG. 5 becomes small, and the influence of resonance of the float member 42 may be strongly influenced at the lockup rotation speed Na.
  • the resonance rotational speed Nf of the float member 42 is set to a rotational speed range lower than the lockup rotational speed Na.
  • the torsion spring 133 is disposed on the outer peripheral side, and the torsion springs 132a and 132b are disposed on the inner peripheral side. Inner circumferential torsion springs 132 a and 132 b are arranged in series via a float member 142.
  • the torsion springs 132a and 132b on the inner peripheral side are arranged so as to act in series.
  • the two float members 142 are each formed in an annular shape.
  • the two float members 142 are disposed to face each other above the torsion springs 132a and 132b on the inner peripheral side.
  • the outer peripheral portions 142a of the two float members 142 support the outer peripheral portions of the inner peripheral torsion springs 132a and 132b.
  • an engaging portion 142b that engages between the two inner peripheral torsion springs 132a and 132b is formed.
  • the engaging portion 142a is a portion that protrudes inward from the outer peripheral portion 142a, and is provided at a predetermined interval in the circumferential direction. Both end surfaces in the circumferential direction of the engaging portion 142b are in contact with the end surfaces of the corresponding torsion springs 132a and 132b.
  • the driven plate 135 engages with the torsion spring 133 and is attached to the turbine shell 115 on the outer peripheral side of the turbine shell 115. Then, torque is transmitted in the order of the piston 130, the drive plate 131, the torsion springs 132 (132 a and 132 b), the intermediate member 134, the torsion spring 133, and the driven plate 135, and is output to the turbine hub 17. Even if it is such a structure, the effect similar to the said embodiment can be acquired. [Second Embodiment]
  • FIG. 10 is a partial sectional view of the torque converter 1 in which the lock-up device as one embodiment of the present invention is employed.
  • An engine (not shown) is arranged on the left side of FIG. 10, and a transmission (not shown) is arranged on the right side of the figure.
  • FIG. 11 is a partial front view of the lockup device. Note that OO shown in FIG. 10 is the rotational axis of the torque converter and the lockup device.
  • the torque converter 1 is a device for transmitting torque from an engine-side crankshaft (not shown) to an input shaft of a transmission, and includes a front cover 2 fixed to an input-side member and three types of impellers ( A torque converter body 6 including an impeller 3, a turbine 4, and a stator 5) and a lockup device 7 are included.
  • the front cover 2 is a disk-shaped member, and an outer peripheral cylindrical portion 10 protruding toward the axial transmission side is formed on the outer peripheral portion thereof.
  • the impeller 3 includes an impeller shell 12 fixed to the outer peripheral cylindrical portion 10 of the front cover 2 by welding, a plurality of impeller blades 13 fixed to the inside thereof, and a cylindrical shape provided on the inner peripheral side of the impeller shell 12.
  • the impeller hub 14 is disposed to face the impeller 3 in the fluid chamber.
  • the turbine 4 includes a turbine shell 15, a plurality of turbine blades 16 fixed to the turbine shell 15, and a turbine hub 17 fixed to the inner peripheral side of the turbine shell 15.
  • the turbine hub 17 has a flange 17 a extending to the outer peripheral side, and an inner peripheral portion of the turbine shell 15 is fixed to the flange 17 a by a plurality of rivets 18.
  • An input shaft of a transmission (not shown) is splined to the inner peripheral portion of the turbine hub 17.
  • the stator 5 is a mechanism for rectifying the hydraulic oil that is disposed between the inner periphery of the impeller 3 and the turbine 4 and returns from the turbine 4 to the impeller 3.
  • the stator 5 is mainly composed of a disk-shaped stator carrier 20 and a plurality of stator blades 21 provided on the outer peripheral surface thereof.
  • the stator carrier 20 is supported by a fixed shaft (not shown) via a one-way clutch 22.
  • a thrust washer 25 is provided between the front cover 2 and the turbine hub 16 in the axial direction, and a thrust washer is provided between the turbine hub 17 and the stator carrier 20 and between the stator carrier 20 and the impeller shell 12. Bearings 26 and 27 are provided.
  • the lockup device 7 is disposed in an annular space between the front cover 2 and the turbine 4.
  • the lock-up device 7 mainly includes a piston 30, a drive plate 31, a plurality of outer and inner torsion springs 32, 33, an outer torsion spring 32 and an inner torsion spring 33, respectively. And an intermediate plate 34 and a driven plate 35.
  • the piston 30 and the drive plate 31 correspond to the input rotating member
  • the driven plate 35 corresponds to the output rotating member
  • the outer torsion spring 32 corresponds to the first elastic member
  • the inner torsion spring 33 corresponds to the second elastic member.
  • the piston 30 is a disk-shaped plate member, and is disposed so as to divide the space between the front cover 2 and the turbine 4 into two in the axial direction.
  • the outer peripheral portion of the piston 30 is a flat friction connecting portion 30a, and a friction facing 37 is provided on the axial direction engine side of the friction connecting portion 30a.
  • a flat friction surface is formed on the front cover 2 so as to face the friction facing 37.
  • an inner peripheral cylindrical portion 30 b extending toward the axial transmission side is provided on the inner peripheral edge of the piston 30.
  • the inner peripheral surface of the inner peripheral cylindrical portion 30 b is supported so as to be movable in the axial direction and the rotational direction with respect to the outer peripheral surface of the turbine hub 17. In the state where the tip of the inner peripheral cylindrical portion 30b is in contact with a part of the turbine hub 17, the movement of the piston 30 toward the axial transmission side is restricted.
  • a seal ring 38 is provided between the inner peripheral cylindrical portion 30 b and the outer peripheral surface of the turbine hub 17.
  • the drive plate 31 is an annular member made of sheet metal, and is disposed on the axial transmission side of the friction coupling portion 30 a in the piston 30.
  • An inner peripheral portion of the drive plate 31 is fixed to the piston 30 by a plurality of rivets 40.
  • a plurality of locking portions 31 a extending toward the axial transmission side are formed on the outer peripheral portion of the drive plate 31.
  • the plurality of locking portions 31 a are formed at predetermined intervals in the circumferential direction, and support the end surface of the outer peripheral side torsion spring 32. Further, a support portion 31 b extending toward the axial transmission side is formed above the piston mounting portion of the drive plate 31. The inner peripheral side of the outer peripheral side torsion spring 32 is supported by the support portion 31b.
  • each of the plurality of outer peripheral side torsion springs 32 is formed to have the same free length.
  • each of the plurality of outer peripheral torsion springs 32 is arranged side by side in the circumferential direction at a predetermined position in the radial direction.
  • Each of the plural sets of outer peripheral side torsion springs 32 includes a plurality of outer peripheral side torsion springs 32.
  • a total of eight outer peripheral side torsion springs 32 are provided in two sets. In each set outer peripheral side torsion spring 32, the two outer peripheral side torsion springs 32 are arranged side by side so as to act in series with each other.
  • a sheet member for example, a spring seat 52 is attached to both ends of each of the plurality of outer peripheral side torsion springs 32.
  • the spring seat 52 has a seat portion 52a and a protruding portion 52b.
  • the end portion of the outer peripheral side torsion spring 32 comes into contact with the seat portion 52a.
  • the protruding portion 52b is a portion extending in a cylindrical shape from the seat portion 52a, and is press-fitted into the end winding of the outer peripheral side torsion spring 32.
  • Each of the two outer torsion springs 32 in each group is arranged in series with each other via a spring seat 52. Further, in a state where the two outer peripheral side torsion springs 32 are arranged in series in each group, the spring seats 52 at both ends of the two outer peripheral side torsion springs 32 arranged in series abut against the drive plate 31. ing.
  • the set of two outer peripheral side torsion springs 32 are indicated by symbols 32 a and 32 b, respectively.
  • the R1 direction shown in FIG. 11 corresponds to the main rotation direction of the engine.
  • a float member 42 is provided in the vicinity of the outer peripheral side torsion spring 32, for example, on the outer peripheral side of the outer peripheral side torsion spring 32, in order to restrict movement of the outer peripheral side torsion spring 32 in the radial direction.
  • the float member 42 is an annular member having a C-shaped cross section and is disposed above the support portion 31 b of the drive plate 31. Specifically, the float member 42 is disposed so as to be rotatable relative to the drive plate 31.
  • the outer peripheral portion of the float member 42 supports the outer peripheral portion of the outer peripheral torsion spring 32. That is, the float member 42 restricts the outer peripheral side torsion spring 32 from protruding to the outer peripheral side.
  • the float member 42 and the outer peripheral side torsion spring 32 are relatively rotatable in the circumferential direction. Specifically, the float member 42 and both end portions of each outer peripheral side torsion spring 32 are relatively rotatable. More specifically, the float member 42 and the spring seats 52 attached to both end portions of each outer peripheral side torsion spring 32 are relatively rotatable. For this reason, in the present lock-up device 7, the two outer peripheral side torsion springs 32 act in series in the circumferential direction without the float member 42 interposed therebetween. Thus, the torque is transmitted to the drive plate 31, the outer peripheral side torsion springs 32 (32a, 32b), and the intermediate member 34 without passing through the float member 42.
  • both ends in the circumferential direction of the two outer peripheral side torsion springs 32 that is, both end portions of the two outer side torsion springs 32a and 32b in a state of being arranged in series in the circumferential direction are spring seats. It is supported by the locking portion 31 a of the drive plate 31 through 52.
  • each spring seat 52 is provided at the circumferential center portion of the two outer torsion springs 32 in each set, that is, at the center portion of the two outer torsion springs 32a and 32b arranged in series in the circumferential direction. Are in contact with each other.
  • the two outer peripheral side torsion springs 32 in each group act in series with each other without the float member, and transmit torque from the drive plate 31 to the intermediate member 34.
  • the intermediate member 34 is an annular and disk-shaped plate member disposed between the piston 30 and the turbine shell 15.
  • the intermediate member 34 includes a first plate 44 and a second plate 45.
  • the first plate 44 and the second plate 45 are arranged with an interval in the axial direction.
  • the first plate 44 is disposed on the axial engine side, and the second plate 45 is disposed on the axial transmission side.
  • the first plate 44 and the second plate 45 are connected to each other by a plurality of stopper pins 46 such that the outer peripheral portions are not rotatable relative to each other and are not movable in the axial direction.
  • the first plate 44 and the second plate 45 are respectively formed with windows 44a and 45a penetrating in the axial direction.
  • the window portions 44 a and 45 a are formed to extend in the circumferential direction, and a cut-and-raised portion that is cut and raised in the axial direction is formed on the inner peripheral portion and the outer peripheral portion. Has been.
  • a plurality of locking portions 44 b extending to the outer peripheral side torsion spring 32 are formed at the outer peripheral end of the first plate 44.
  • the plurality of locking portions 44b are formed by bending the tip of the first plate 44 toward the axial engine side.
  • the plurality of locking portions 44b are arranged at predetermined intervals in the circumferential direction, and a pair of outer peripheral side torsion springs 32 that act in series are arranged between the two locking portions 44b. Yes.
  • Each of the plurality of inner peripheral torsion springs 33 is disposed in the windows 44 a and 45 a of both plates 44 and 45 of the intermediate member 34.
  • Each inner torsion spring 33 is supported at both ends in the circumferential direction and both sides in the radial direction by the windows 44a and 45a. Furthermore, each inner torsion spring 33 is restricted from projecting in the axial direction by the cut and raised portions of the window portions 44 and 45.
  • the driven plate 35 is an annular and disk-shaped member, and an inner peripheral portion thereof is fixed to the flange 17 a of the turbine hub 17 by a rivet 18 together with the turbine shell 15.
  • the driven plate 35 is disposed between the first plate 44 and the second plate 45 so as to be rotatable relative to both the plates 44 and 45.
  • a window hole 35 a is formed in the outer peripheral portion of the driven plate 35 corresponding to the window portions 44 a and 45 a of the first and second plates 44 and 45.
  • the window hole 35a is a hole penetrating in the axial direction, and an inner peripheral torsion spring 33 is disposed in the window hole 35a.
  • a plurality of notches 35b that are long in the circumferential direction are formed on the outer peripheral portion of the driven plate 35, as indicated by broken lines in FIG. And the stopper pin 46 has penetrated this notch 35b to the axial direction. Therefore, the driven plate 35 and the plates 44 and 45 constituting the intermediate member 34 can be rotated relative to each other within an angle range where the notch 35b is formed.
  • torque is transmitted in the order of the piston 30, the drive plate 31, the outer peripheral side torsion springs 32 (32 a and 32 b), the intermediate member 34, the inner peripheral side torsion spring 33, and the driven plate 35 to the turbine hub 17. Is output.
  • the float member 42 does not exist in the torque transmission path.
  • the lockup device 7 transmits torque and absorbs and attenuates torque fluctuations input from the front cover 2. Specifically, when torsional vibration occurs in the lockup device 7, the outer peripheral side torsion spring 32 and the inner peripheral side torsion spring 33 are compressed in series between the drive plate 31 and the driven plate 35. Further, the outer peripheral side torsion springs 32 are also compressed in series in the outer peripheral side torsion springs 32. For this reason, the twist angle can be widened. In addition, since the outer peripheral side torsion spring 32 that can take a long circumferential distance acts in series, a wider twist angle can be secured. This means that the torsional characteristics can be further reduced in rigidity, and vibration absorption / damping performance can be further improved.
  • this lockup device 7 has a two-stage torsional characteristic.
  • the outer peripheral side torsion spring 32 tries to move to the outer peripheral side by centrifugal force. For this reason, the member which controls the movement to the outer peripheral side of the outer peripheral side torsion spring 32 is needed.
  • the movement of the outer peripheral side torsion spring 32 to the outer peripheral side is regulated by supporting the outer peripheral part of the outer peripheral side torsion spring 32 by the float member 42.
  • a frictional resistance F is generated between the float member 42 and the outer peripheral side torsion spring 32.
  • Tk ⁇ F; Tk (Nm) I (kgm 2 ) ⁇ ⁇ (rad / m 2 ))
  • the float member 42 is Rotate with the lock-up device 7 excluding the float member 42.
  • I is the moment of inertia and ⁇ is each acceleration.
  • the inertia torque Tk of the float member 42 is proportional to the inertia moment I, it is desirable to form the float member 42 so that the inertia moment I becomes large. For example, by increasing the plate thickness of the float member 42, the inertia moment I of the float member 42 can be increased. Thus, by increasing the inertia moment I of the float member 42, the lock-up device 7 excluding the float member 42 and the float member 42 can be relatively rotated at a low rotational speed.
  • the lockup device 7 excluding the float member 42 can rotate relative to the float member 42.
  • the vibration component of the float member 42 can be removed from the vibration system of the lockup device 7. That is, the lockup device 7 can remove the resonance caused by the float member that has occurred in the conventional lockup device 7.
  • the vibration level can be kept within an allowable range.
  • Symbol Dr, Symbol F, Symbol M, and Symbol Dv respectively represent a drive plate, a float member, an intermediate member, and a driven plate. Further, a conceptual diagram of torsional characteristics and a conceptual diagram of the vibration level (variation level) of the lockup device in this case are shown in FIGS.
  • the outer peripheral side torsion spring 32 and the inner peripheral side torsion spring 33 operate until the stopper pin 46 comes into contact with the end face of the notch 35b formed in the driven plate 35.
  • K11 is the rigidity of each of the two outer peripheral side torsion springs 32 of each set
  • K12 is the rigidity of the inner peripheral side torsion spring 33.
  • the eigenmode (primary mode) of the lockup device is set below the lockup rotation speed Na.
  • the vibration level (variation amount) decreases.
  • This rotational speed is the resonance rotational speed Nf of the float member.
  • the vibration level at the resonance rotational speed Nf may be higher than the allowable level.
  • the vibration level in FIG. 14 corresponds to the rotation fluctuation of the transmission, and the rotation speed in FIG. 14 corresponds to the engine rotation speed. Further, No in FIG. 14 corresponds to the natural frequency at which the natural mode of the lockup device is dominant, and Nf corresponds to the resonance speed at which the mode of the float member is dominant. Also, So indicates the upper limit of the allowable vibration level. Furthermore, the unit of the vertical axis and the horizontal axis in FIG. 14 is rpm. Note that the description shown here also applies to FIG.
  • the lockup device 7 will be described.
  • the outer peripheral side torsion spring 32 and the inner peripheral side torsion spring 33 operate until the stopper pin 46 comes into contact with the end face of the notch 35 b formed in the driven plate 35. After the stopper pin 46 comes into contact with the end face of the notch 35b formed in the driven plate 35, only the outer peripheral side torsion spring 32 operates.
  • the lock-up device 7 Since the overall rigidity of the lock-up device 7 is the same as the overall rigidity when the two outer peripheral torsion springs 32 of each group act in series by the float member 42, the lock-up device 7 also has the same rigidity as FIG. As shown in FIG. 5, the eigenmode (primary mode) of the lockup device 7 can be maintained at a speed lower than the lockup speed Na. Further, in the present lock-up device 7, since the float member 42 is not involved in the vibration system of the lock-up device 7, the occurrence of resonance of the float member 42 can be suppressed even when the rotational speed increases (FIG. (See 16 solid line). Thereby, in this lockup device 7, as shown in FIG. 16, the vibration level can be kept below the allowable level.
  • the present invention is not limited to the embodiment as described above, and various changes and modifications can be made without departing from the scope of the present invention.
  • the elastic member is configured by a linear coil spring in the embodiment, other elastic members may be used.
  • an arc coil spring may be used instead of a linear coil spring.
  • various variations of torsional characteristics can be easily designed.
  • the number and length of the coil springs constituting the outer peripheral side and inner peripheral side torsion springs are not limited to the above embodiment.
  • the float member 42 is for restricting the movement of the torsion spring (elastic member) to the outer peripheral side, and the shape thereof is not limited to the above embodiment.
  • each of the two outer peripheral side torsion springs 32 one outer peripheral side torsion spring 32a and the other outer peripheral side torsion spring 32b are connected to each other by one spring seat 152.
  • the two outer torsion springs 32 are mounted between the adjacent locking portions 31 a in the drive plate 31 in a state where the two outer torsion springs 32 are integrally connected by the spring seat 152.
  • the assembly efficiency of the lockup device can be improved as compared with the case where the separate spring seat 52 shown in the embodiment is used.
  • the surfaces 252a and 252b of the spring seat 252 with which the two outer peripheral torsion springs 32a and 32b contact may be inclined.
  • the spring seat 252 is formed so that the angle formed by the two surfaces 252a and 252b formed on the spring seat 252 is a predetermined angle ⁇ .
  • the two outer peripheral side torsion springs 32a and 32b are less likely to come into contact with the float member 42, so that the frictional force acting between the outer peripheral side torsion springs 32a and 32b and the float member 42 is reduced. be able to. Thereby, the vibration level of the lockup device can be reduced.
  • worn at the both ends of each outer peripheral side torsion spring 32 was shown.
  • the spring seat 32 is not necessarily used.
  • the end portions of the two outer peripheral side torsion springs 32 may be in direct contact with each other.
  • the end winding portions of the two outer peripheral side torsion springs 32 may be in direct contact with each other.
  • a special member such as a spring seat is not required, the number of parts and the steps required for installing the spring seat can be reduced.
  • the present invention can be used for a lock-up device for a fluid coupling for transmitting torque and absorbing / damping torsional vibration.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

 本発明の目的は、コイルスプリングに起因する振動を確実に抑制できる流体継手用のロックアップ装置を、提供することにある。コイルスプリングに起因する振動を確実に抑制できる流体継手用のロックアップ装置を、提供することにある。このロックアップ装置(7)は、入力回転部材(30),(31)と、出力回転部材(35)と、複数の第1弾性部材(32)と、フロート部材(42)とを、備えている。第1弾性部材(32)は、入力回転部材と前記出力回転部材との相対回転によって回転方向に圧縮される。フロート部材(42)は、2つの第1弾性部材(32)を、円周方向に直列に作用させるために、入力回転部材(30),(31)に相対回転可能に配置されている。

Description

流体継手用のロックアップ装置
 本発明は、ロックアップ装置、特に、トルクを伝達するとともに捩り振動を吸収・減衰するための流体継手用のロックアップ装置に関する。
 トルクコンバータには、トルクをフロントカバーからタービンに直接伝達するためのロックアップ装置が設けられている場合が多い。このロックアップ装置は、ピストンと、ドライブプレートと、複数の外周側のトーションスプリングと、ドリブンプレートと、複数の内周側のトーションスプリングと、中間部材と、を備えている(特許文献1を参照)。ピストンは、フロントカバーに連結可能である。ドライブプレートは、ピストンに連結されている。複数の外周側のトーションスプリングは、ドライブプレートからトルクが入力される。ドリブンプレートは、タービンに連結されている。複数の内周側のトーションスプリングは、外周側のトーションスプリングの内周側に配置され、ドリブンプレートにトルクを伝達する。中間部材は、ドライブプレート及びドリブンプレートと相対回転可能であり、トルクを外周側のトーションスプリングから内周側のトーションスプリングへと伝達する。
特開2001-82577号公報
 ロックアップ装置において、エンジンから入力されるトルク変動を効率良く吸収・減衰するためには、タンパーの広捩じり角化が有効である。そこで、特許文献1に示されたロックアップ装置では、外周部と内周部にそれぞれトーションスプリングを配置し、外周側のトーションスプリングと内周側のトーションスプリングとを中間部材によって直列に連結することによって、ダンパーの捩じり角度が広く設計されている。
 近年では、特性をさらに向上させることによる低燃費化が要求されている。例えば、上記の従来の技術に加えて、特許3717772号公報の技術を用いた場合を考える。この場合、外周側のトーションスプリングと内周側のトーションスプリングとを中間部材によって直列に連結するだけでなく、2つの外周側のトーションスプリングもフロート部材を介して直列に連結することができる。これにより、ダンパーの捩じり角度をより広く設計することができ、上記の要求を満足することができる。
 しかしながら、このように、ダンパーの捩じり角度を広くした場合、フロート部材を追加することによる固有モードが発生するおそれがある。例えば、フロート部材を追加した場合は、高回転数域において固有モードが顕在化する可能性が高くなり、この固有モードがエンジンの常用回転数域に現れると、不快な振動や振動音等が発生してしまうおそれがある。
 本発明は、このような問題に鑑みてなされたものであり、本発明の目的は、ロックアップ装置としての振動レベルを、許容範囲内に収めることにある。
 請求項1に係る流体継手用のロックアップ装置は、トルクを伝達するとともに捩り振動を吸収・減衰するための流体継手用のロックアップ装置である。このロックアップ装置は、入力回転部材と、出力回転部材と、複数の第1弾性部材と、フロート部材とを、備えている。複数の第1弾性部材は、入力回転部材と出力回転部材との相対回転によって回転方向に圧縮される。複数の第1弾性部材それぞれは、半径方向における所定の位置において円周方向に並べて配置される。フロート部材は、複数の第1弾性部材の中の少なくとも2つの第1弾性部材を、円周方向に直列に作用させるために、入力回転部材に相対回転可能に配置される。このようなロックアップ装置では、フロート部材によって円周方向に直列に作用する少なくとも2つの第1弾性部材において、いずれか1つの第1弾性部材の自由長を、他の第1弾性部材の自由長より短くすることによって、自由長が短い第1弾性部材の剛性を、他の第1弾性部材の剛性より大きく設定する。
 このロックアップ装置では、エンジンからのトルクが入力回転部材に入力されると、このトルクは、複数の第1弾性部材を介して、出力回転部材へと伝達される。また、複数の第1弾性部材の中の少なくとも2つの第1弾性部材は、フロート部材によって、円周方向に直列に連結される。ここで、円周方向に直列に連結される少なくとも2つの第1弾性部材のいずれか1つの自由長は、他の第1弾性部材の自由長より短いので、自由長が短い第1弾性部材の剛性は、他の第1弾性部材の剛性より大きくなる。
 ここで、本ロックアップ装置の効果を説明するための基本情報として、ロックアップ装置の振動レベルの概要を示しておく。例えば、フロート部材が存在しない場合のロックアップ装置の振動曲線(回転数-振動レベルの曲線;基準曲線;図5の破線を参照)を、考えると、この基準曲線では、ロックアップ装置の固有モード(一次モード)が、例えばロックアップ回転数Na未満で出現する。そして、この基準曲線では、高回転数になればなるほど、振動レベルは低下する。一方で、フロート部材が存在する場合のロックアップ装置の振動曲線は、この基準曲線に、フロート部材の振動成分を重ね合わせたものになる(図5の実線を参照)。このため、フロート部材が存在する場合の振動曲線では、フロート部材の振動が発生する回転数が、高くなればなるほど、フロート部材の振動成分が卓越する回転数、すなわちフロート部材が共振する回転数も高くなる。このことと、上記の基準曲線において、高回転数になればなるほど振動レベルは低下することとを考え合わせると、フロート部材が共振する回転数が高くなれば、フロート部材の共振レベル(基準曲線の成分+フロート部材の共振成分)は低下する。
 この考えに基づいて、本ロックアップ装置におけるフロート部材の共振回転数を求めた場合、フロート部材の共振回転数は、フロート部材によって円周方向に直列に配置された少なくとも2つの第1弾性部材の影響を、受ける。例えば、フロート部材によって円周方向に直列に配置された各第1弾性部材を異なる長さに設定した場合(各第1弾性部材それぞれを異なる剛性にした場合)、各第1弾性部材を同じ長さに設定した場合(各第1弾性部材を同じ剛性にした場合)と比較して、フロート部材の共振回転数は、より高くなる。このように、本ロックアップ装置では、フロート部材によって円周方向に直列に配置された各第1弾性部材を異なる長さに設定することによって、フロート部材の共振回転数を、従来のフロート部材の共振回転数より高い回転数に設定することができる。これにより、本ロックアップ装置では、フロート部材の共振レベルを、従来と比較して低下させることができ、ロックアップ装置としての振動レベルを、許容範囲内に収めることができる。
 請求項2に係る流体継手用のロックアップ装置は、請求項1の装置において、複数の第2弾性部材と、中間部材とを、さらに備えている。複数の第2弾性部材は、複数の第1弾性部材の内周側及び外周側のいずれか一方に配置され、出力回転部材にトルクを伝達する。中間部材は、トルクを第1弾性部材から第2弾性部材に伝達するために、入力回転部材に相対回転可能に配置されている。
 ここでは、複数の第2弾性部材と中間部材とをさらに備え、エンジンからのトルクが、中間部材を介して第1弾性部材から第2弾性部材へと伝達される。このようにして、ダンパーの捩じり角度を広くしたとしても、本ロックアップ装置では、フロート部材によって円周方向に直列に配置された各第1弾性部材を異なる長さに設定することによって、フロート部材の共振回転数を、従来のフロート部材の共振回転数より高い回転数に設定することができる。これにより、本ロックアップ装置では、フロート部材の共振レベルを、従来と比較して低下させることができ、ロックアップ装置としての振動レベルを、許容範囲内に収めることができる。
 請求項3に係る流体継手用のロックアップ装置では、請求項1又は2に記載の装置において、フロート部材によって円周方向に直列に作用する少なくとも2つの第1弾性部材において、自由長の短い第1弾性部材が、入力回転部材によってトルクが入力される側に配置される。
 ここでは、自由長の短い第1弾性部材が、入力側に配置される。上述したように、フロート部材の共振回転数を計算した場合、自由長の短い第1弾性部材(入力側の第1弾性部材の剛性)を、他の第1弾性部材の剛性より高くすることによって、フロート部材の共振回転数を高くすることができる。これにより、本ロックアップ装置では、フロート部材の共振レベルを、従来と比較して、効率的に低下させることができ、ロックアップ装置としての振動レベルを、許容範囲内に収めることができる。
 請求項4に係る流体継手用のロックアップ装置では、請求項1又は2に記載の装置において、フロート部材によって円周方向に直列に作用する少なくとも2つの第1弾性部材において、自由長の長い第1弾性部材が、入力回転部材によってトルクが入力される側に配置される。
 ここでは、自由長の長い第1弾性部材が、入力側に配置される。上述したように、フロート部材の共振回転数を計算した場合、自由長の短い第1弾性部材(入力側の第1弾性部材の剛性)を、他の第1弾性部材の剛性より高くすることによって、フロート部材の共振回転数を高くすることができる。言い換えると、自由長の長い第1弾性部材(入力側の第1弾性部材の剛性)を、他の第1弾性部材の剛性より低くすることによって、フロート部材の共振回転数を低くすることができる。
 ここで、一般的には、エンジンの気筒数が増えれば増えるほど、フロート部材の共振回転数が、常用回転数域においてロックアップ回転数に近づく傾向がある。この場合、ロックアップ装置は、ロックアップ回転数においてフロート部材の共振の影響を強く受けてしまうおそれがある。このような場合には、自由長の長い第1弾性部材を入力側に配置することによって、フロート部材の共振回転数をロックアップ回転数より低い回転数域に設定することができる。これにより、常用回転数域におけるフロート部材の共振の影響を、排除することができる。すなわち、本ロックアップ装置では、ロックアップ装置としての振動レベルを、許容範囲内に収めることができる。
 請求項5に係る流体継手用のロックアップ装置では、請求項1から4のいずれかに記載の装置において、フロート部材によって円周方向に直列に作用する少なくとも2つの第1弾性部材の自由長の合計が一定になるように、これら少なくとも2つの第1弾性部材それぞれは設定される。例えば、フロート部材によって円周方向に直列に作用する少なくとも2つの第1弾性部材において、いずれか1つの第1弾性部材の自由長と、他の第1弾性部材の自由長との合計が、所定の長さになるように、各第1弾性部材の自由長は設定されている。この場合、いずれか1つの第1弾性部材の自由長を短くしたとしても、それに応じて、他の第1弾性部材の自由長が長くなるので、フロート部材によって円周方向に直列に作用する少なくとも2つの第1弾性部材の全体剛性は、一定に確保される。すなわち、ロックアップ装置の固有モード(一次モード)を、例えばロックアップ回転数未満で維持しながら、フロート部材の共振回転数を、従来のフロート部材の共振回転数より高い回転数に設定することができる。これにより、常用域において、ロックアップ装置の共振問題を、確実に防止することができる。
 請求項6に係る流体継手用のロックアップ装置は、トルクを伝達するとともに捩り振動を吸収・減衰するための流体継手用のロックアップ装置である。このロックアップ装置は、入力回転部材と、出力回転部材と、複数組の第1弾性部材と、フロート部材とを、備えている。複数組の第1弾性部材は、入力回転部材と出力回転部材との相対回転によって回転方向に圧縮される。複数組の第1弾性部材それぞれは、半径方向における所定の位置において円周方向に並べて配置されている。また、複数組の第1弾性部材それぞれは、フロート部材に対して相対回転可能である。1組の第1弾性部材は、複数のバネ部材から構成されている。複数のバネ部材それぞれは、円周方向に連続して直列に配置されている。フロート部材は、バネ部材(第1弾性部材)の半径方向への移動を規制する。
 このロックアップ装置では、エンジンからのトルクが入力回転部材に入力されると、このトルクは、複数組の第1弾性部材を介して、出力回転部材へと伝達される。ここでは、複数組の第1弾性部材それぞれは、半径方向における所定の位置において円周方向に並べて配置されている。ここでは、複数組の第1弾性部材は、フロート部材に対して相対回転可能であり、フロート部材によって半径方向への移動が規制されている。この状態において、トルクが各組の第1弾性部材に入力されると、各組の第1弾性部材を構成する複数のバネ部材が、円周方向に直列に作用する。
 ここで、本ロックアップ装置の効果を説明するための基本情報として、従来のロックアップ装置の振動レベルについての概要を示しておく。フロート部材が存在する場合のロックアップ装置の振動曲線(回転数-振動レベルの曲線;図5の実線を参照)を、考えると、この振動曲線では、ロックアップ装置の固有モード(一次モード)が、例えばロックアップ回転数Na未満で出現する。そして、ロックアップ回転数Naより大きな回転数の領域において、フロート部材の固有モードが出現する。以下では、フロート部材の固有モードが出現する回転数Nfを、フロート部材の振動成分が卓越する回転数、すなわちフロート部材の共振回転数と呼ぶ。
 このような従来のロックアップ装置では、フロート部材が振動系に組み込まれているために、フロート部材の固有モードが出現する。具体的には、従来のロックアップ装置では、フロート部材を2つのバネ部材に係合させることによって、2つのバネ部材を円周方向に直列に作用させているために、フロート部材の固有モードが出現する。これに対して、本ロックアップ装置では、フロート部材は、第1弾性部材の半径方向への移動を規制しているものの、第1弾性部材には係合させていない。具体的には、複数のバネ部材それぞれが、フロート部材を介することなく、円周方向に連続して直列に配置されている。また、複数のバネ部材それぞれが、フロート部材に対して相対回転可能である。これにより、本ロックアップ装置では、フロート部材の振動成分を振動系から取り除くことができる。すなわち、本ロックアップ装置では、フロート部材による共振を、振動系から取り除くことができる。これにより、本ロックアップ装置7では、振動レベルを、許容範囲内に収めることができる。
 請求項7に係る流体継手用のロックアップ装置では、請求項6に記載の装置において、複数のバネ部材それぞれの両端部と、フロート部材とが、相対回転可能である。
 ここでは、複数のバネ部材それぞれの両端部と、フロート部材とが、相対回転可能になっているので、複数のバネ部材それぞれが、フロート部材を介することなく、円周方向に連続して直列に作用する。このため、本ロックアップ装置では、フロート部材の振動成分、すなわちフロート部材による共振を、振動系から取り除くことができる。これにより、本ロックアップ装置7では、振動レベルを、許容範囲内に収めることができる。
 請求項8に係る流体継手用のロックアップ装置では、請求項6又は7に記載の装置において、入力回転部材、複数組の第1弾性部材、出力回転部材の順に、トルクが伝達される。
 ここでは、入力回転部材、複数組の第1弾性部材、出力回転部材の順に、トルクが伝達される。すなわち、トルクが、フロート部材を介在させることなく、入力回転部材から出力回転部材へと複数組の第1弾性部材を介して伝達される。このため、このため、本ロックアップ装置では、フロート部材の振動成分、すなわちフロート部材による共振を、振動系から取り除くことができる。これにより、本ロックアップ装置7では、振動レベルを、許容範囲内に収めることができる。
 請求項9に係る流体継手用のロックアップ装置では、請求項6から8のいずれかに記載の装置において、複数のバネ部材それぞれが、シート部材を介して、円周方向に連続して直列に配置されている。
 ここでは、複数のバネ部材それぞれが、シート部材を介して、円周方向に連続して直列に配置されているので、複数のバネ部材それぞれを、円周方向に連続して直列に作用させることができる。これにより、トルク変動を複数のバネ部材それぞれに確実に伝達することができる。また、トルク変動を各バネ部材において効率良く吸収・減衰することができる。
 請求項10に係る流体継手用のロックアップ装置では、請求項6から9のいずれかに記載の装置において、複数のバネ部材それぞれが、円周方向に直接的に連続して直列に配置されている。
 ここでは、複数のバネ部材それぞれが、円周方向に直接的に連続して直列に配置されている。例えば、複数のバネ部材において、隣接する端部を、互いに当接させることによって、複数のバネ部材それぞれが、円周方向に連続して直列に配置されている。より具体的には、複数のバネ部材において、隣接する座巻き部を、互いに当接させることによって、複数のバネ部材それぞれが、円周方向に連続して直列に配置されている。このように、本ロックアップ装置では、スプリングシートのような特別な部材が不用であるので、部品点数を減らすことができるとともに、複数のバネ部材を容易に組み付けることができる。
 請求項11に係る流体継手用のロックアップ装置では、請求項6から10のいずれかに記載の装置において、バネ部材が、直線状のコイルスプリング及びアーク状のコイルスプリングのいずれか一方から、構成されている。ここでは、直線状のコイルスプリング及びアーク状のコイルスプリングのいずれか一方が、バネ部材として用いられるので、様々なバリエーションの捩り特性を、容易に設計することができる。
 請求項12に係る流体継手用のロックアップ装置は、請求項6から11のいずれかに記載の装置において、複数の第2弾性部材と、中間部材とを、さらに備えている。複数の第2弾性部材は、複数組の第1弾性部材の内周側及び外周側のいずれか一方に配置され、出力回転部材にトルクを伝達する。中間部材は、トルクを第1弾性部材から第2弾性部材に伝達するために、入力回転部材に相対回転可能に配置されている。
 ここでは、複数の第2弾性部材と中間部材とをさらに備え、エンジンからのトルクが、中間部材を介して第1弾性部材から第2弾性部材へと伝達される。このようにして、ダンパーの捩じり角度を広くしたとしても、本ロックアップ装置では、フロート部材の振動成分、すなわちフロート部材による共振を、振動系から取り除くことができるので、振動レベルを許容範囲内に収めることができる。
 以上のような本発明によれば、ロックアップ装置としての振動レベルを、許容範囲内に収めることができる。
本発明の第1実施形態によるロックアップ装置を備えたトルクコンバータの断面部分図。 前記ロックアップ装置の正面部分図。 従来のロックアップ装置の振動モデル。 従来のロックアップ装置の捩り特性を示す概念図。 従来のロックアップ装置の振動レベルを示す概念図。 前記ロックアップ装置の振動モデル。 前記ロックアップ装置の捩り特性を示す概念図。 前記ロックアップ装置の振動レベルを示す概念図。 前記第1の実施形態とは異なる他の実施形態によるトルクコンバータの断面部分図。 本発明の第2実施形態によるロックアップ装置を備えたトルクコンバータの断面部分図。 前記ロックアップ装置の正面部分図。 従来のロックアップ装置の振動モデル。 従来のロックアップ装置の捩り特性を示す概念図。 従来のロックアップ装置の振動レベルを示す概念図。 前記ロックアップ装置の振動モデル。 前記ロックアップ装置の振動レベルを示す概念図。 前記第2実施形態とは異なる他の実施形態によるロックアップ装置のスプリングシートを示す図(その1)。 前記第2実施形態とは異なる他の実施形態によるロックアップ装置のスプリングシートを示す図(その2)。
 [第1実施形態]
 図1は、本発明の一実施形態としてのロックアップ装置が採用されたトルクコンバータ1の断面部分図である。図1の左側にはエンジン(図示せず)が配置され、図の右側にトランスミッション(図示せず)が配置されている。図2はロックアップ装置の正面部分図である。なお、図1に示すO-Oがトルクコンバータ及びロックアップ装置の回転軸線である。
 [トルクコンバータの全体構成]
 トルクコンバータ1は、エンジン側のクランクシャフト(図示せず)からトランスミッションの入力シャフトにトルクを伝達するための装置であり、入力側の部材に固定されるフロントカバー2と、3種の羽根車(インペラー3、タービン4、ステータ5)からなるトルクコンバータ本体6と、ロックアップ装置7とから構成されている。
 フロントカバー2は、円板状の部材であり、その外周部には軸方向トランスミッション側に突出する外周筒状部10が形成されている。インペラー3は、フロントカバー2の外周筒状部10に溶接により固定されたインペラーシェル12と、その内側に固定された複数のインペラーブレード13と、インペラーシェル12の内周側に設けられた筒状のインペラーハブ14とから構成されている。タービン4は、流体室内でインペラー3に対向して配置されている。タービン4は、タービンシェル15と、タービンシェル15に固定された複数のタービンブレード16と、タービンシェル15の内周側に固定されたタービンハブ17とから構成されている。タービンハブ17は外周側に延びるフランジ17aを有しており、このフランジ17aにタービンシェル15の内周部が複数のリベット18によって固定されている。また、タービンハブ17の内周部には、図示しないトランスミッションの入力シャフトがスプライン係合している。
 ステータ5は、インペラー3とタービン4の内周部間に配置され、タービン4からインペラー3へと戻る作動油を整流するための機構である。ステータ5は、主に、円板状のステータキャリア20と、その外周面に設けられた複数のステータブレード21とから構成されている。ステータキャリア20は、ワンウエイクラッチ22を介して図示しない固定シャフトに支持されている。なお、フロントカバー2とタービンハブ16との軸方向間にはスラストワッシャ25が設けられ、タービンハブ17とステータキャリア20との間、及びステータキャリア20とインペラーシェル12との間には、それぞれスラストベアリング26,27が設けられている。
 [ロックアップ装置]
 ロックアップ装置7は、フロントカバー2とタービン4との間の環状の空間に配置されている。ロックアップ装置7は、主に、ピストン30と、ドライブプレート31と、それぞれ複数の外周側及び内周側のトーションスプリング32,33と、外周側のトーションスプリング32と内周側のトーションスプリング33とを連結する中間部材34と、ドリブンプレート35と、を有している。
 ここでは、ピストン30とドライブプレート31とが、入力回転部材に対応し、ドリブンプレート35が、出力回転部材に対応している。また、外周側のトーションスプリング32が第1弾性部材に対応し、内周側のトーションスプリング33が第2弾性部材に対応している。
  <ピストン>
 ピストン30は、円板状のプレート部材であり、フロントカバー2とタービン4との間の空間を軸方向に2分割するように配置されている。ピストン30の外周部は平坦な摩擦連結部30aとなっており、この摩擦連結部30aの軸方向エンジン側には摩擦フェーシング37が設けられている。この摩擦フェーシング37に対向して、フロントカバー2には平坦な摩擦面が形成されている。また、ピストン30の内周縁には軸方向トランスミッション側に延びる内周筒状部30bが設けられている。内周筒状部30bの内周面はタービンハブ17の外周面に対して軸方向及び回転方向に移動可能に支持されている。なお、内周筒状部30bの先端がタービンハブ17の一部に当接した状態では、軸方向トランスミッション側へのピストン30の移動が、規制されている。内周筒状部30bとタービンハブ17の外周面との間にはシールリング38が設けられている。
 このようにして、フロントカバー2とピストン30との間には、空間Aが形成されている。空間Aの外周部は摩擦フェーシング37がフロントカバー2に当接した状態で遮断され、空間Aの内周部は、スラストワッシャ25に形成された溝を介して入力シャフトに形成された油路に連通している。
  <ドライブプレート>
 ドライブプレート31は、板金製の環状の部材であり、ピストン30における摩擦連結部30aの軸方向トランスミッション側に配置されている。このドライブプレート31の内周部が複数のリベット40によってピストン30に固定されている。また、ドライブプレート31の外周部には、軸方向トランスミッション側に延びる複数の係止部31aが形成されている。複数の係止部31aは円周方向に所定の間隔をあけて形成されており、外周側トーションスプリング32の端面を支持している。さらに、ドライブプレート31のピストン取付部の上方には、軸方向トランスミッション側に延びる支持部31bが形成されている。この支持部31bによって外周側トーションスプリング32の内周側が支持されている。
  <外周側トーションスプリング>
 複数の外周側トーションスプリング32それぞれは、半径方向における所定の位置において円周方向に並べて配置されている。複数の外周側トーションスプリング32は、複数対の外周側トーションスプリング32から構成されている。ここでは、1組2個で合計8個の外周側トーションスプリング32が設けられている。
 各組の2個の外周側トーションスプリング32の自由長の合計が、所定の長さになるように、各組の2個の外周側トーションスプリング32の自由長は、設定されている。また、各組の2個の外周側トーションスプリング32のいずれか一方の自由長が、各組の2個の外周側トーションスプリング32のいずれか他方の自由長より短くなるように、各組の2個の外周側トーションスプリング32の自由長は、設定されている。図2では、自由長が短い外周側トーションスプリング32を、記号32aで示し、自由長が長い外周側トーションスプリング32bを、記号32bで示している。
 また、各組の2個の外周側トーションスプリング32の自由長の合計が、所定の長さになるように、各組の2個の外周側トーションスプリング32が設定されるので、各組の2個の外周側トーションスプリング32のいずれか一方の自由長が短くなれば、これに応じて、各組の2個の外周側トーションスプリング32のいずれか他方の自由長は長くなる。
 また、各組の2個の外周側トーションスプリング32のいずれか一方の自由長に対する、各組の2個の外周側トーションスプリング32のいずれか他方の自由長の比が、1.1から2.5までの範囲内になるように、各外周側トーションスプリング32の自由長が設定される。このように、各組の2個の外周側トーションスプリング32の自由長の合計を、所定の長さに設定した上で、上記の比率の範囲内で各外周側トーションスプリング32の自由長を設定することによって、自由長が長い外周側トーションスプリング32bが、早い段階で線間密着しないように規制することができる。
 ここでは、各組の2個の外周側トーションスプリング32の自由長の合計が、140mmに設定されている。また、自由長が短い外周側トーションスプリング32aの自由長は、60mmに設定されており、自由長が長い外周側トーションスプリング32bの自由長は、80mmに設定されている。
 上記のような各組の2個の外周側トーションスプリング32においては、自由長が短い外周側トーションスプリング32aが、入力側に配置される。ここでは、ロックアップ装置7において捩り振動が発生し、ピストン30及びドライブプレート31が図2のR1方向に回転した場合に、ピストン30及びドライブプレート31によってR1方向に押圧されるスプリングが、自由長が短い外周側トーションスプリング32aである。なお、R1方向とは、エンジンの主回転方向に対応している。
 また、外周側トーションスプリング32の近傍には、各組の2個の外周側トーションスプリング32が直列に作用するように、フロート部材42が設けられている。フロート部材42は、断面C字状で環状の部材であり、ドライブプレート31の支持部31bの上方に配置されている。このフロート部材42は、ドライブプレート31と相対回転可能に配置されている。フロート部材42の外周部は、外周側トーションスプリング32の外周部を支持している。すなわち、フロート部材42によって、外周側トーションスプリング32の外周側への飛び出しが、規制されている。フロート部材42の軸方向トランスミッション側の先端部42aは、内周側で且つエンジン側に折り曲げられており、この先端部の折り曲げ部42aが1組の外周側トーションスプリング32の間に挿入されている。すなわち、折り曲げ部42aの円周方向の両端面が、対応するトーションスプリング32の端面に当接している。
 以上のように、複数の外周側トーションスプリング32は、1組の外周側トーションスプリング32の円周方向両端がドライブプレート31の係止部31aによって支持され、1組の外周側トーションスプリング32の中間部にフロート部材42の折り曲げ部42aが挿入されている。また、外周側トーションスプリング32の外周部はフロート部材42の外周部によって支持されている。
  <中間部材>
 中間部材34は、ピストン30とタービンシェル15との間に配置された環状かつ円板状のプレート部材である。中間部材34は第1プレート44と第2プレート45とから構成されている。第1プレート44と第2プレート45とは軸方向に間隔を開けて配置されている。第1プレート44が軸方向エンジン側に配置され、第2プレート45が軸方向トランスミッション側に配置されている。第1プレート44と第2プレート45とは、外周部が複数のストッパピン46によって互いに相対回転不能でかつ軸方向に移動不能に連結されている。第1プレート44及び第2プレート45には、それぞれ軸方向に貫通する窓部44a,45aが形成されている。窓部44a,45aは、図1及び図2から明らかなように、円周方向に延びて形成されており、内周部と外周部には、軸方向に切り起こされた切り起こし部が形成されている。
 また、第1プレート44の外周端には、外周側トーションスプリング32にまで延びる複数の係止部44bが形成されている。複数の係止部44bは第1プレート44の先端を軸方向エンジン側に折り曲げて形成されたものである。この複数の係止部44bは、円周方向に所定の間隔をあけて配置されており、2つの係止部44bの間に、直列に作用する1組の外周側トーションスプリング32が配置されている。
  <内周側トーションスプリング>
 複数の内周側トーションスプリング33のそれぞれは、中間部材34の両プレート44,45の窓部44a,45a内に配置されている。そして、各内周側トーションスプリング33は、窓部44a,45aによって円周方向両端及び半径方向両側が支持されている。さらに、各内周側トーションスプリング33は、窓部44,45の切り起こし部によって軸方向への飛び出しが規制されている。
  <ドリブンプレート>
 ドリブンプレート35は、環状かつ円板状の部材であり、内周部がタービンシェル15とともにリベット18によってタービンハブ17のフランジ17aに固定されている。このドリブンプレート35は、第1プレート44と第2プレート45との間に、両プレート44,45に対して相対回転可能に配置されている。そして、ドリブンプレート35の外周部には、第1及び第2プレート44,45の窓部44a,45aに対応して、窓孔35aが形成されている。窓孔35aは軸方向に貫通する孔であり、この窓孔35aに内周側トーションスプリング33が配置されている。また、ドリブンプレート35の外周部には、図2の破線で示すように、円周方向に長い複数の切欠き35bが形成されている。そして、この切欠き35bをストッパピン46が軸方向に貫通している。したがって、ドリブンプレート35と中間部材34を構成する両プレート44,45とは、この切欠き35bが形成された角度範囲内で相対回転が可能である。
 [動作]
 次に、動作について説明する。エンジン側のクランクシャフトからのトルクはフロントカバー2に入力される。これにより、インペラー3が回転し、作動油がインペラー3からタービン4へ流れる。この作動油の流れによりタービン4は回転し、タービン4のトルクは図示しない入力シャフトに出力される。
 トルクコンバータ1の速度比があがり、入力シャフトが一定の回転速度になると、空間Aの作動油が入力シャフト内部の油路を通ってドレンされる。この結果、ピストン30がフロントカバー2側に移動させられる。この結果、ピストン30の摩擦フェーシング37がフロントカバー2の摩擦面に押し付けられ、フロントカバー2のトルクはロックアップ装置7に出力される。
 ロックアップ装置7において、トルクは、ピストン30、ドライブプレート31、外周側トーションスプリング32(32a,32b)、中間部材34、内周側トーションスプリング33、ドリブンプレート35の順に伝達され、タービンハブ17に出力される。
 ロックアップ装置7においては、トルクを伝達すると共にフロントカバー2から入力されるトルク変動を吸収・減衰する。具体的には、ロックアップ装置7において捩り振動が発生すると、外周側トーションスプリング32と内周側トーションスプリング33とがドライブプレート31とドリブンプレート35との間で直列に圧縮される。さらに、外周側トーションスプリング32においても、各組の外周側トーションスプリング32が直列に圧縮される。このため、捩り角度を広くすることができる。さらに、円周方向距離を長くとれる外周側トーションスプリング32を、直列に作用させているので、より広い捩り角度を確保することができる。このことは、捩り特性をより低剛性化できることを意味し、振動吸収・減衰性能をより向上させることができる。
 なお、ドリブンプレート35に形成された切欠き35bの端面にストッパピン46が当接するまでは、外周側トーションスプリング32と内周側トーションスプリング33が作用し、ストッパピン46が切欠き35bの端面に当接した後は、外周側トーションスプリング32だけが作用する(内周側トーションスプリング33は作用しない)。したがって、このロックアップ装置7は2段の捩り特性を有している。
 ここで、外周側トーションスプリング32は遠心力によって外周側に移動しようとする。このために、外周側トーションスプリング32の外周側への移動を規制する部材が必要になる。この実施形態では、外周側トーションスプリング32の外周部をフロート部材42によって支持することによって、外周側トーションスプリング32の外周側への移動を規制している。このとき、フロート部材42は外周側トーションスプリング32とともに移動するので、従来装置のように、ドライブプレートによって外周側トーションスプリングの外周部を支持する場合に比較して、摺動抵抗を小さくすることができる。
 また、この実施形態では、外周側トーションスプリング32と内周側トーションスプリング33とを中間部材34で連結しているので、全体としてのヒステリシストルクは内周側と外周側のヒステリシストルクの連成となる。すなわち、本実施形態では、従来と比較して、外周側トーションスプリング32のヒステリシストルクは小さく、内周側トーションスプリング33のヒステリシストルクは差異がないため、全体としてのヒステリシストルクもより小さくなる。このため、振動吸収・減衰性能を向上させることができ、ロックアップ領域の拡大により低燃費化を実現できる。
 [ロックアップ装置の特性及び効果]
 ここでは、まず、本ロックアップ装置7の説明を行う前に、各組の2個の外周側トーションスプリング32それぞれの自由長及び剛性が同一に設定されている場合の説明を行う。これは、従来のロックアップ装置に相当し、外周側トーションスプリング32を除いた他の構成は、本ロックアップ装置と同じであるものとする。この場合の捩り特性も、上述したような2段の捩り特性を有する。この2段の捩り特性を示すモデル図を、図3に示す。図3に示す記号Eはエンジンを示し、記号Tはトランスミッションを示す。また、記号Dr、記号F、記号M、及び記号Dvは、それぞれが、ドライブプレート、フロート部材、中間部材、ドリブンプレートを示す。さらに、この場合の捩り特性の概念図及びロックアップ装置の振動レベル(変動レベル)の概念図を、図4及び図5に示す。
 この場合、ドリブンプレート35に形成された切欠き35bの端面にストッパピン46が当接するまでは、外周側トーションスプリング32及び内周側トーションスプリング33が作動する。このため、全体剛性Ko1は、「Ko1=1/(2/K11+1/K13)」となる(図4を参照)。ここで、K11は、各組の2個の外周側トーションスプリング32それぞれの剛性であり、K13は、内周側トーションスプリング33の剛性である。そして、ドリブンプレート35に形成された切欠き35bの端面にストッパピン46が当接した後は、外周側トーションスプリング32だけが作動する。このため、全体剛性Ko2は、「Ko2=K11/2」となる。
 図5を参照すると、従来のロックアップ装置では、ロックアップ回転数Na未満において、ロックアップ装置の固有モード(一次モード)が設定されている。そして、回転数が大きくなるにつれて、振動レベル(変動量)は低下する。しかし、所定の回転数に近づくと、振動レベルが再び上昇する。この回転数が、フロート部材の共振回転数Nfである。従来のロックアップ装置では、この共振回転数Nfにおける振動レベルが、許容レベルより高くなるおそれがある。
 なお、図5における振動レベルは、トランスミッションの回転変動に対応し、図5における回転数は、エンジン回転数に対応する。また、図5におけるNoは、ロックアップ装置の固有モードが卓越する固有振動数に対応し、Nfはフロート部材のモードが卓越する共振回転数に対応する。また、Soは、振動レベルの許容値の上限を示す。さらに、図5の縦軸及び横軸の単位は、rpmである。なお、ここに示した説明は、後述する図8に対しても適用される。
 一方で、本ロックアップ装置7の場合、各組の2個の外周側トーションスプリング32それぞれの自由長、すなわち剛性が異なる。この場合の2段の捩り特性を示すモデル図を、図6に示す。図6に示した記号は、図3で説明した記号の意味と同じである。また、図6では、I1及びI2が示されているが、これらは各部材の慣性二次モーメントである。さらに、この場合の捩り特性の概念図及びロックアップ装置7の振動レベル(変動レベル)の概念図を、図7及び図8に示す。
 次に、本ロックアップ装置7の説明を行う。本ロックアップ装置7では、ドリブンプレート35に形成された切欠き35bの端面にストッパピン46が当接するまでは、外周側トーションスプリング32及び内周側トーションスプリング33が作動する。このため、全体剛性KK1は、「KK1=1/(1/K1+1/K2+1/K3)」となる(図7を参照)。ここで、K1,K2は、外周側トーションスプリング32の剛性であり、K3は、内周側トーションスプリング33の剛性である。そして、ドリブンプレート35に形成された切欠き35bの端面にストッパピン46が当接した後は、外周側トーションスプリング32だけが作動する。このため、全体剛性KK2は、「KK2=(1/K1+1/K2)」となる。
 ここで、本ロックアップ装置7では、各組の2個の外周側トーションスプリング32のいずれか一方の自由長を、各組の2個の外周側トーションスプリング32のいずれか他方の自由長より短くすることによって、各組の2個の外周側トーションスプリング32のいずれか一方の剛性K1が、各組の2個の外周側トーションスプリング32のいずれか他方の剛性K2より大きくなるように設定している。すなわち、「K1>K2」の関係が成立する。より詳細には、本ロックアップ装置7では、「K1>K11>K2」の関係を成立させている。これにより、本ロックアップ装置7では、全体剛性KK1が「K11≒Ko1」となり、全体剛性KK2が「KK2≒Ko2」となる。
 このように、本ロックアップ装置7の全体剛性KK1は、各組の2個の外周側トーションスプリング32が同じである場合の全体剛性Ko1とほぼ同じであるので、本ロックアップ装置7においても、図8に示すように、ロックアップ回転数Na未満において、ロックアップ装置7の固有モード(一次モード)を維持することができる。そして、回転数が大きくなり、フロート部材42の共振回転数Nf’に近づくと、振動レベルが上昇する。しかしながら、本ロックアップ装置7では、上述したように、自由長の短い外周側トーションスプリング32aを、入力側に配置することによって、フロート部材42の共振回転数Nf’が、図5に示した共振回転数Nfより高くなる(Nf’>Nf)。これにより、この共振回転数Nf’における振動レベルが、図5に示した振動レベルより低くなり、図8に示すように、この共振回転数Nf’における振動レベルを、許容レベル未満に収めることができる。
 なお、本ロックアップ装置7においてフロート部材42の振動が卓越する共振回転数(図8に示した共振回転数Nf’)は、「Nf’=1/2π×〔1/2×[(K1+K2)/I1+(K2+K3)/I2]-[1/4×[(K1+K2)/I1-(K2+K3)/I2]2+K22/(I1・I2)]1/21/2」によって評価される。
 この評価式を見ると、入力側すなわちエンジン側の外周側トーションスプリング32の剛性K1(自由長の短い外周側トーションスプリング32aの剛性)が、自由長の長い方の外周側トーションスプリング32bの剛性K2よりも、共振回転数Nf’に与える影響が大きいことが解る。このことを考慮して、本ロックアップ装置7では、自由長の短い外周側トーションスプリング32aを入力側に配置している。
 [トーションスプリングの設定及び効果]
 一般的なロックアップ装置では、各組の2個の外周側トーションスプリング32の自由長の合計が、所定の長さに設定される。例えば、円周方向に隣接する2つのドライブプレート31の係止部31aの間の円周方向長さから、フロート部材42の折り曲げ部42aの円周方向の長さを減算した長さが、上記の所定の長さに対応する。このように、各組の2個の外周側トーションスプリング32の長さの合計を所定の長さに設定するということは、各外周側トーションスプリング32の調整に対して制限があるということを意味する。
 また、一般的には、ロックアップ装置に用いられる外周側トーションスプリングの線径は、細くし過ぎると、この外周側トーションスプリングが繰り返し応力によって疲労してしまい、性能が著しく低下してしまうおそれがある。このため、外周側トーションスプリングの線径は、所定の最低値以上に設定する必要がある。
 ここで、従来のロックアップ装置において、フロート部材42の振動レベルを下げるために、フロート部材42の共振回転数Nf(図5を参照)を、より高い回転数に設定しようとすると、各組の2個の外周側トーションスプリングのいずれか一方の剛性を高くする必要がある。これは、各組の2個の外周側トーションスプリングのいずれか一方の線径を太くすることによって、実現することが可能である。
 しかしながら、上記のように、外周側トーションスプリングの線径は、ある程度の太さを確保する必要があるので、ここで、各組の2個の外周側トーションスプリングのいずれか一方の線径を太くすると、全体剛性Ko1,Ko2が高くなってしまう。すると、ロックアップ装置の固有モードが、高回転数側へとシフトし、ロックアップ回転数Naにおける振動レベルが上昇する。すると、常用域において、ロックアップ装置の固有モードによる振動や振動音等が発生してしまうおそれがある。
 また、各組の2個の外周側トーションスプリングは、円周方向に隣接する2つのドライブプレート31の係止部31aの間の限られた空間に、配置する必要があるので、各組の2個の外周側トーションスプリングのいずれか一方の線径を太くした場合、線間密着が早い段階で発生してしまい、ロックアップ装置としての性能を十分に発揮することができなくなってしまうおそれもある。
 一方で、本ロックアップ装置7では、各組の2個の外周側トーションスプリング32のいずれか一方の線径(第1線径)が、所定の値に設定される。また、各組の2個の外周側トーションスプリング32のいずれか他方の線径(第2線径)が、所定の値に設定される。ここに示す所定の値は、上記の所定の最低値以上の値である。また、第1線径と第2線径とは、必ずしも同じ大きさである必要はない。
 このような各組の2個の外周側トーションスプリング32では、各外周側トーションスプリング32の線径(第1線径及び第2線径)を変更することなく、一方の外周側トーションスプリング32の自由長が、他方の外周側トーションスプリング32の自由長より短く設定される。ここでは、上述した制限の範囲内において、一方の外周側トーションスプリング32の自由長を短くし、これに応じて、他方の外周側トーションスプリング32の自由長を長くしている。このように、各組の2個の外周側トーションスプリング32を設定することによって、[ロックアップ装置の特性及び効果]において説明したように、全体剛性KK1を大きく変更することなく、片方の外周側トーションスプリング32の剛性を、他方の外周側トーションスプリング32の剛性より大きく設定している。
 これにより、本ロックアップ装置7では、図8に示すように、ロックアップ回転数Naにおける振動レベルを維持した状態で、フロート部材42の共振回転数Nf’における振動レベルを、許容レベル未満に収めることができる。すなわち、ロックアップ装置7としての性能を、十分に発揮することができる。
 [第1実施形態とは異なる他の実施形態]
(a)本発明は、以上のような実施形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形又は修正が可能である。例えば、前記実施形態では弾性部材をコイルスプリングによって構成したが、他の樹脂等によって形成された弾性部材を用いても良い。また、外周側及び内周側トーションスプリングを構成するコイルスプリングの数や長さ等については、前記実施形態に限定されない。さらに、フロート部材は、少なくとも2つのトーションスプリング(弾性部材)を同一円周上において直列に配置するためのものであって、その形状は前記実施形態に限定されない。
(b)前記実施形態では、自由長の短い外周側トーションスプリング32aが、入力側に配置される場合の例を示した。これは、例えば、エンジンの気筒数が少ない場合、例えば8気筒未満のエンジンを用いた場合を、想定したものである。一方で、エンジンの気筒数が多い場合、例えば8気筒以上のエンジンを用いた場合を、想定すると、フロート部材42の共振回転数Nfが、常用回転数域においてロックアップ回転数Naの近傍に現れるおそれがある。例えば、図5における|Nf-Na|の値が小さくなってしまい、ロックアップ回転数Naにおいてフロート部材42の共振の影響を強く受けてしまうおそれがある。このような場合には、自由長の長い第1弾性部材32bを入力側に配置することによって、フロート部材42の共振回転数Nfをロックアップ回転数Naより低い回転数域に設定する。これにより、常用回転数域(>Na)におけるフロート部材の共振の影響を、排除することができる。すなわち、ロックアップ装置7としての振動レベルを、許容範囲内に収めることができる。
(c)前記実施形態では、フロート部材42により支持されるトーションスプリング32a,32bが、外周側に配置される場合の例を示したが、フロート部材42により支持されるトーションスプリング32a,32bの配置は、前記実施形態に限定されず、どのようにしても良い。例えば、図1及び図2における、外周側トーションスプリング32a,32bと、内周側トーションスプリング33との半径方向の配置を、反転しても良い。この場合の一例を、図9に示す。図9では、外周側に、トーションスプリング133が配置され、内周側に、トーションスプリング132a,132bが配置される。内周側のトーションスプリング132a,132bは、フロート部材142を介して、直列に配置されている。
 ここでは、フロート部材142例えば2枚のフロート部材142を用いて、内周側のトーションスプリング132a,132bが、直列に作用するように配置されている。2枚のフロート部材142は、それぞれが環状に形成されている。2枚のフロート部材142は、内周側のトーションスプリング132a,132bの上方において、互いに対向して配置されている。2枚のフロート部材142の外周部142aは、内周側トーションスプリング132a,132bの外周部を支持している。また、フロート部材142の外周部142の内周側には、2つの内周側トーションスプリング132a,132bの間に係合する係合部142bが、形成されている。係合部142aは、外周部142aから内方に向けて突出した部分であり、円周方向に所定の間隔を隔てて設けられている。この係合部142bの円周方向の両端面が、対応するトーションスプリング132a,132bの端面に当接している。
 この場合、ドリブンプレート135は、トーションスプリング133に係合し、タービンシェル115の外周側において、タービンシェル115に装着される。すると、トルクが、ピストン130、ドライブプレート131、トーションスプリング132(132a,132b)、中間部材134、トーションスプリング133、ドリブンプレート135の順に伝達され、タービンハブ17に出力される。このような構成にしても、前記実施形態と同様の効果を得ることができる。
 [第2実施形態]
 図10は、本発明の一実施形態としてのロックアップ装置が採用されたトルクコンバータ1の断面部分図である。図10の左側にはエンジン(図示せず)が配置され、図の右側にトランスミッション(図示せず)が配置されている。図11はロックアップ装置の正面部分図である。なお、図10に示すO-Oがトルクコンバータ及びロックアップ装置の回転軸線である。
 [トルクコンバータの全体構成]
 トルクコンバータ1は、エンジン側のクランクシャフト(図示せず)からトランスミッションの入力シャフトにトルクを伝達するための装置であり、入力側の部材に固定されるフロントカバー2と、3種の羽根車(インペラー3、タービン4、ステータ5)からなるトルクコンバータ本体6と、ロックアップ装置7とから構成されている。
 フロントカバー2は、円板状の部材であり、その外周部には軸方向トランスミッション側に突出する外周筒状部10が形成されている。インペラー3は、フロントカバー2の外周筒状部10に溶接により固定されたインペラーシェル12と、その内側に固定された複数のインペラーブレード13と、インペラーシェル12の内周側に設けられた筒状のインペラーハブ14とから構成されている。タービン4は、流体室内でインペラー3に対向して配置されている。タービン4は、タービンシェル15と、タービンシェル15に固定された複数のタービンブレード16と、タービンシェル15の内周側に固定されたタービンハブ17とから構成されている。タービンハブ17は外周側に延びるフランジ17aを有しており、このフランジ17aにタービンシェル15の内周部が複数のリベット18によって固定されている。また、タービンハブ17の内周部には、図示しないトランスミッションの入力シャフトがスプライン係合している。
 ステータ5は、インペラー3とタービン4の内周部間に配置され、タービン4からインペラー3へと戻る作動油を整流するための機構である。ステータ5は、主に、円板状のステータキャリア20と、その外周面に設けられた複数のステータブレード21とから構成されている。ステータキャリア20は、ワンウエイクラッチ22を介して図示しない固定シャフトに支持されている。なお、フロントカバー2とタービンハブ16との軸方向間にはスラストワッシャ25が設けられ、タービンハブ17とステータキャリア20との間、及びステータキャリア20とインペラーシェル12との間には、それぞれスラストベアリング26,27が設けられている。
 [ロックアップ装置]
 ロックアップ装置7は、フロントカバー2とタービン4との間の環状の空間に配置されている。ロックアップ装置7は、主に、ピストン30と、ドライブプレート31と、それぞれ複数の外周側及び内周側のトーションスプリング32,33と、外周側のトーションスプリング32と内周側のトーションスプリング33とを連結する中間部材34と、ドリブンプレート35と、を有している。
 ここでは、ピストン30とドライブプレート31とが、入力回転部材に対応し、ドリブンプレート35が、出力回転部材に対応している。また、外周側のトーションスプリング32が第1弾性部材に対応し、内周側のトーションスプリング33が第2弾性部材に対応している。
  <ピストン>
 ピストン30は、円板状のプレート部材であり、フロントカバー2とタービン4との間の空間を軸方向に2分割するように配置されている。ピストン30の外周部は平坦な摩擦連結部30aとなっており、この摩擦連結部30aの軸方向エンジン側には摩擦フェーシング37が設けられている。この摩擦フェーシング37に対向して、フロントカバー2には平坦な摩擦面が形成されている。また、ピストン30の内周縁には軸方向トランスミッション側に延びる内周筒状部30bが設けられている。内周筒状部30bの内周面はタービンハブ17の外周面に対して軸方向及び回転方向に移動可能に支持されている。なお、内周筒状部30bの先端がタービンハブ17の一部に当接した状態では、軸方向トランスミッション側へのピストン30の移動が、規制されている。内周筒状部30bとタービンハブ17の外周面との間にはシールリング38が設けられている。
 このようにして、フロントカバー2とピストン30との間には、空間Aが形成されている。空間Aの外周部は摩擦フェーシング37がフロントカバー2に当接した状態で遮断され、空間Aの内周部は、スラストワッシャ25に形成された溝を介して入力シャフトに形成された油路に連通している。
  <ドライブプレート>
 ドライブプレート31は、板金製の環状の部材であり、ピストン30における摩擦連結部30aの軸方向トランスミッション側に配置されている。このドライブプレート31の内周部が複数のリベット40によってピストン30に固定されている。また、ドライブプレート31の外周部には、軸方向トランスミッション側に延びる複数の係止部31aが形成されている。複数の係止部31aは円周方向に所定の間隔をあけて形成されており、外周側トーションスプリング32の端面を支持している。さらに、ドライブプレート31のピストン取付部の上方には、軸方向トランスミッション側に延びる支持部31bが形成されている。この支持部31bによって外周側トーションスプリング32の内周側が支持されている。
  <外周側トーションスプリング>
 図11に示すように、複数の外周側トーションスプリング32それぞれは、同じ自由長に形成されている。また、複数の外周側トーションスプリング32それぞれは、半径方向における所定の位置において円周方向に並べて配置されている。複数組の外周側トーションスプリング32それぞれは、複数の外周側トーションスプリング32から構成されている。ここでは、1組2個で合計8個の外周側トーションスプリング32が設けられている。各組外周側トーションスプリング32において、2個の外周側トーションスプリング32は、互いに直列に作用するように並べて配置されている。
 また、複数の外周側トーションスプリング32それぞれの両端部には、シート部材例えばスプリングシート52が、装着されている。詳細には、スプリングシート52は、シート部52aと突出部52bとを有している。シート部52aには、外周側トーションスプリング32の端部が当接する。突出部52bは、シート部52aから筒状に延びた部分であり、外周側トーションスプリング32の座巻きの内部に圧入される。
 各組2個の外周側トーションスプリング32それぞれは、スプリングシート52を介して、互いに直列に並べて配置されている。また、各組2個の外周側トーションスプリング32が直列に並べて配置された状態においては、直列に並べた2個の外周側トーションスプリング32の両端部のスプリングシート52が、ドライブプレート31に当接している。
 なお、図11では、1組2個の外周側トーションスプリング32それぞれを、記号32a,32bで示している。また、図11に示したR1方向とは、エンジンの主回転方向に対応している。
 外周側トーションスプリング32の近傍、例えば外周側トーションスプリング32の外周側には、外周側トーションスプリング32の半径方向への移動を規制するために、フロート部材42が設けられている。フロート部材42は、断面C字状で環状の部材であり、ドライブプレート31の支持部31bの上方に配置されている。詳細には、フロート部材42は、ドライブプレート31と相対回転可能に配置されている。フロート部材42の外周部は、外周側トーションスプリング32の外周部を支持している。すなわち、フロート部材42によって、外周側トーションスプリング32の外周側への飛び出しが、規制されている。
 また、フロート部材42と、外周側トーションスプリング32とは、互いに円周方向に相対回転可能になっている。具体的には、フロート部材42と、各外周側トーションスプリング32の両端部とは、相対回転可能である。より具体的には、フロート部材42と、各外周側トーションスプリング32の両端部に装着されたスプリングシート52とは、相対回転可能である。このため、本ロックアップ装置7では、各組2個の外周側トーションスプリング32は、フロート部材42を介することなく、円周方向に直列に作用する。これにより、トルクは、フロート部材42を介することなく、ドライブプレート31、外周側トーションスプリング32(32a,32b)、中間部材34へと伝達される。
 以上のように、各組2個の外周側トーションスプリング32の円周方向両端部、すなわち円周方向に直列に並んだ状態における2個の外周側トーションスプリング32a,32bの両端部が、スプリングシート52を介して、ドライブプレート31の係止部31aによって支持されている。また、各組2個の外周側トーションスプリング32の円周方向中央部、すなわち円周方向に直列に並んだ状態における2個の外周側トーションスプリング32a,32bの中央部においては、各スプリングシート52が、互いに当接している。これにより、各組2個の外周側トーションスプリング32は、フロート部材を介することなく互いに直列に作用し、ドライブプレート31からのトルクを、中間部材34へと伝達する。
  <中間部材>
 中間部材34は、ピストン30とタービンシェル15との間に配置された環状かつ円板状のプレート部材である。中間部材34は第1プレート44と第2プレート45とから構成されている。第1プレート44と第2プレート45とは軸方向に間隔を開けて配置されている。第1プレート44が軸方向エンジン側に配置され、第2プレート45が軸方向トランスミッション側に配置されている。第1プレート44と第2プレート45とは、外周部が複数のストッパピン46によって互いに相対回転不能でかつ軸方向に移動不能に連結されている。第1プレート44及び第2プレート45には、それぞれ軸方向に貫通する窓部44a,45aが形成されている。窓部44a,45aは、図10及び図11から明らかなように、円周方向に延びて形成されており、内周部と外周部には、軸方向に切り起こされた切り起こし部が形成されている。
 また、第1プレート44の外周端には、外周側トーションスプリング32にまで延びる複数の係止部44bが形成されている。複数の係止部44bは第1プレート44の先端を軸方向エンジン側に折り曲げて形成されたものである。この複数の係止部44bは、円周方向に所定の間隔をあけて配置されており、2つの係止部44bの間に、直列に作用する1組の外周側トーションスプリング32が配置されている。
  <内周側トーションスプリング>
 複数の内周側トーションスプリング33のそれぞれは、中間部材34の両プレート44,45の窓部44a,45a内に配置されている。そして、各内周側トーションスプリング33は、窓部44a,45aによって円周方向両端及び半径方向両側が支持されている。さらに、各内周側トーションスプリング33は、窓部44,45の切り起こし部によって軸方向への飛び出しが規制されている。
  <ドリブンプレート>
 ドリブンプレート35は、環状かつ円板状の部材であり、内周部がタービンシェル15とともにリベット18によってタービンハブ17のフランジ17aに固定されている。このドリブンプレート35は、第1プレート44と第2プレート45との間に、両プレート44,45に対して相対回転可能に配置されている。そして、ドリブンプレート35の外周部には、第1及び第2プレート44,45の窓部44a,45aに対応して、窓孔35aが形成されている。窓孔35aは軸方向に貫通する孔であり、この窓孔35aに内周側トーションスプリング33が配置されている。また、ドリブンプレート35の外周部には、図11の破線で示すように、円周方向に長い複数の切欠き35bが形成されている。そして、この切欠き35bをストッパピン46が軸方向に貫通している。したがって、ドリブンプレート35と中間部材34を構成する両プレート44,45とは、この切欠き35bが形成された角度範囲内で相対回転が可能である。
 [動作]
 次に、動作について説明する。エンジン側のクランクシャフトからのトルクはフロントカバー2に入力される。これにより、インペラー3が回転し、作動油がインペラー3からタービン4へ流れる。この作動油の流れによりタービン4は回転し、タービン4のトルクは図示しない入力シャフトに出力される。
 トルクコンバータ1の速度比があがり、入力シャフトが一定の回転速度になると、空間Aの作動油が入力シャフト内部の油路を通ってドレンされる。この結果、ピストン30がフロントカバー2側に移動させられる。この結果、ピストン30の摩擦フェーシング37がフロントカバー2の摩擦面に押し付けられ、フロントカバー2のトルクはロックアップ装置7に出力される。
 ロックアップ装置7において、トルクは、ピストン30、ドライブプレート31、外周側トーションスプリング32(32a,32b)、中間部材34、内周側トーションスプリング33、ドリブンプレート35の順に伝達され、タービンハブ17に出力される。特に、ロックアップ装置7では、トルクの伝達経路に、フロート部材42が存在していない。
 ロックアップ装置7においては、トルクを伝達すると共にフロントカバー2から入力されるトルク変動を吸収・減衰する。具体的には、ロックアップ装置7において捩り振動が発生すると、外周側トーションスプリング32と内周側トーションスプリング33とがドライブプレート31とドリブンプレート35との間で直列に圧縮される。さらに、外周側トーションスプリング32においても、各組の外周側トーションスプリング32が直列に圧縮される。このため、捩り角度を広くすることができる。さらに、円周方向距離を長くとれる外周側トーションスプリング32を、直列に作用させているので、より広い捩り角度を確保することができる。このことは、捩り特性をより低剛性化できることを意味し、振動吸収・減衰性能をより向上させることができる。
 なお、ドリブンプレート35に形成された切欠き35bの端面にストッパピン46が当接するまでは、外周側トーションスプリング32と内周側トーションスプリング33が作用し、ストッパピン46が切欠き35bの端面に当接した後は、外周側トーションスプリング32だけが作用する(内周側トーションスプリング33は作用しない)。したがって、このロックアップ装置7は2段の捩り特性を有している。
 ここで、外周側トーションスプリング32は遠心力によって外周側に移動しようとする。このために、外周側トーションスプリング32の外周側への移動を規制する部材が必要になる。この実施形態では、外周側トーションスプリング32の外周部をフロート部材42によって支持することによって、外周側トーションスプリング32の外周側への移動を規制している。
 このようなフロート部材42を用いた場合、フロート部材42と外周側トーションスプリング32との間には、摩擦抵抗Fが発生する。ここで、フロート部材42の慣性トルクTkが、上記の摩擦抵抗F以下である場合(Tk≦F;Tk(Nm)=I(kgm2)×ω(rad/m2))、フロート部材42は、フロート部材42を除いたロックアップ装置7とともに回転する。ここで、Iは慣性モーメントであり、ωは各加速度である。一方で、フロート部材42の慣性トルクTkが、上記の摩擦抵抗Fより大きくなった場合(Tk>F)、フロート部材42と外周側トーションスプリング32とが摺動し、フロート部材42を除いたロックアップ装置7は、フロート部材42に対して相対回転可能になる。
 ここで、上記のように、フロート部材42の慣性トルクTkは慣性モーメントIに比例するので、慣性モーメントIが大きくなるように、フロート部材42を形成することが望ましい。例えば、フロート部材42の板厚を厚くすることによって、フロート部材42の慣性モーメントIを大きくすることができる。このように、フロート部材42の慣性モーメントIが大きくすることによって、低い回転数において、フロート部材42を除いたロックアップ装置7と、フロート部材42とを、相対回転可能にすることができる。
 このように、フロート部材42の慣性トルクTkが、上記の摩擦抵抗Fより大きくなった場合は、フロート部材42を除いたロックアップ装置7は、フロート部材42に対して相対回転可能になるため、ロックアップ装置7の振動系からフロート部材42の振動成分を取り除くことができる。すなわち、本ロックアップ装置7では、従来のロックアップ装置7において発生していたフロート部材による共振を、取り除くことができる。これにより、本ロックアップ装置7では、図16に示すように、振動レベルを、許容範囲内に収めることができる。
 [ロックアップ装置の特性及び効果]
 ここでは、まず、本ロックアップ装置7の説明を行う前に、各組の2個の外周側トーションスプリング32が、フロート部材42を介して、直列に作用する場合の説明を行う。これは、従来のロックアップ装置に相当する。従来のロックアップ装置は、各組の2個の外周側トーションスプリング32がフロート部材42を介して直列に作用する点を除くと、他の構成は、本ロックアップ装置7と同じである。この場合の捩り特性も、上述したような2段の捩り特性を有する。この2段の捩り特性を示すモデル図を、図12に示す。図12に示す記号Eはエンジンを示し、記号Tはトランスミッションを示す。また、記号Dr、記号F、記号M、及び記号Dvは、それぞれが、ドライブプレート、フロート部材、中間部材、ドリブンプレートを示す。さらに、この場合の捩り特性の概念図及びロックアップ装置の振動レベル(変動レベル)の概念図を、図13及び図14に示す。
 この場合、ドリブンプレート35に形成された切欠き35bの端面にストッパピン46が当接するまでは、外周側トーションスプリング32及び内周側トーションスプリング33が作動する。このため、全体剛性Ko1は、「Ko1=1/(2/K11+1/K12)」となる(図13を参照)。ここで、K11は、各組の2個の外周側トーションスプリング32それぞれの剛性であり、K12は、内周側トーションスプリング33の剛性である。そして、ドリブンプレート35に形成された切欠き35bの端面にストッパピン46が当接した後は、外周側トーションスプリング32だけが作動する。このため、全体剛性Ko2は、「Ko2=K11/2」となる。
 図14を参照すると、従来のロックアップ装置では、ロックアップ回転数Na未満において、ロックアップ装置の固有モード(一次モード)が設定されている。そして、回転数が大きくなるにつれて、振動レベル(変動量)は低下する。しかし、所定の回転数に近づくと、振動レベルが再び上昇する。この回転数が、フロート部材の共振回転数Nfである。従来のロックアップ装置では、この共振回転数Nfにおける振動レベルが、許容レベルより高くなるおそれがある。
 図14における振動レベルは、トランスミッションの回転変動に対応し、図14における回転数は、エンジン回転数に対応する。また、図14におけるNoは、ロックアップ装置の固有モードが卓越する固有振動数に対応し、Nfはフロート部材のモードが卓越する共振回転数に対応する。また、Soは、振動レベルの許容値の上限を示す。さらに、図14の縦軸及び横軸の単位は、rpmである。なお、ここに示した説明は、図16に対しても適用される。
 一方で、本ロックアップ装置7の場合、各組の2個の外周側トーションスプリング32と、フロート部材42とが相対回転可能になっている。この場合の2段の捩り特性を示すモデル図を、図15に示す。図15に示した記号は、図12で説明した記号の意味と同じである。また、この場合のロックアップ装置7の振動レベル(変動レベル)の概念図を、図16に示す。
 次に、本ロックアップ装置7の説明を行う。本ロックアップ装置7では、ドリブンプレート35に形成された切欠き35bの端面にストッパピン46が当接するまでは、外周側トーションスプリング32及び内周側トーションスプリング33が作動する。そして、ドリブンプレート35に形成された切欠き35bの端面にストッパピン46が当接した後は、外周側トーションスプリング32だけが作動する。
 本ロックアップ装置7の全体剛性は、各組の2個の外周側トーションスプリング32がフロート部材42によって直列に作用する場合の全体剛性と同じであるので、本ロックアップ装置7においても、図16に示すように、ロックアップ回転数Na未満において、ロックアップ装置7の固有モード(一次モード)を維持することができる。また、本ロックアップ装置7では、フロート部材42がロックアップ装置7の振動系には関与しないので、回転数が大きくなったとしても、フロート部材42の共振の発生を抑制することができる(図16の実線を参照)。これにより、本ロックアップ装置7では、図16に示すように、振動レベルを、許容レベル未満に収めることができる。
 [第2実施形態とは異なる他の実施形態]
(a)本発明は、以上のような実施形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形又は修正が可能である。例えば、前記実施形態では弾性部材を直線状のコイルスプリングによって構成したが、他の弾性部材を用いても良い。例えば、直線状のコイルスプリングに代えて、アーク状のコイルスプリングを用いても良い。この場合、様々なバリエーションの捩り特性を、容易に設計することができる。また、外周側及び内周側トーションスプリングを構成するコイルスプリングの数や長さ等については、前記実施形態に限定されない。さらに、フロート部材42は、トーションスプリング(弾性部材)の外周側への移動を規制するためのものであって、その形状は前記実施形態に限定されない。
(b)前記実施形態では、各外周側トーションスプリング32の両端部にスプリングシート52が装着される場合の例を示した。しかしながら、スプリングシート52の形状及び装着形態は、前記実施形態に限定されず、どのようにしても良い。
 例えば、図17に示すように、各組2個の外周側トーションスプリング32において、一方の外周側トーションスプリング32aと、他方の外周側トーションスプリング32bとを、1つのスプリングシート152によって互いに連結するようにしても良い。この場合、スプリングシート152によって2個の外周側トーションスプリング32を一体に連結した状態で、2個の外周側トーションスプリング32を、ドライブプレート31において隣接した係止部31aの間に、装着することができる。これにより、図18に示したスプリングシート152を用いた場合、前記実施形態に示した別体のスプリングシート52を用いた場合と比較して、ロックアップ装置の組み立て効率を向上することができる。
 また、図18に示すように、2つの外周側トーションスプリング32a,32bが接触する、スプリングシート252の面252a,252bが、傾斜していても良い。この場合、たとえば、スプリングシート252に形成された2つの面252a,252bがなす角度が、所定の角度αになるように、スプリングシート252が形成されている。このようにスプリングシート252を形成することによって、各組2個の外周側トーションスプリング32a,32bそれぞれの圧縮方向を、外周側トーションスプリング32の軸方向に適切に誘導することができる。これにより、各組2個の外周側トーションスプリング32a,32bが、フロート部材42に接触しづらくなるので、外周側トーションスプリング32a,32bとフロート部材42との間に作用する摩擦力を、低減することができる。これにより、ロックアップ装置の振動レベルを、低減することができる。
(c)前記実施形態では、各外周側トーションスプリング32の両端部にスプリングシート52が装着される場合の例を示した。しかしながら、各組2個の外周側トーションスプリング32を直列に作用させることができれば、スプリングシート32は必ずしも用いる必要はない。例えば、各組2個の外周側トーションスプリング32の端部を、互いに直接的に当接させるようにしても良い。より具体的には、各組2個の外周側トーションスプリング32の座巻き部を、互いに直接的に当接させても良い。この場合、スプリングシートのような特別な部材が不用となるので、部品点数、及びスプリングシートの設置に要する工程を減らすことができる。
 本発明は、トルクを伝達するとともに捩り振動を吸収・減衰するための流体継手用のロックアップ装置に、利用可能である。
1 トルクコンバータ
2 フロントカバー
4 タービン
7 ロックアップ装置
30 ピストン
31 ドライブプレート
32 外周側トーションスプリング
33 内周側トーションスプリング
34 中間部材
35 ドリブンプレート
42 フロート部材
52 スプリングシート
152 スプリングシート(他の実施形態)
252 スプリングシート(他の実施形態)
K1 外周側トーションスプリングの剛性
K2 外周側トーションスプリングの剛性
I1 フロート部材の慣性2次モーメント
I2 中間部材の慣性2次モーメント

Claims (12)

  1.  トルクを伝達するとともに捩り振動を吸収・減衰するための流体継手用のロックアップ装置であって、
     入力回転部材と、
     出力回転部材と、
     前記入力回転部材と前記出力回転部材との相対回転によって回転方向に圧縮される複数の第1弾性部材と、
     複数の前記第1弾性部材の中の少なくとも2つの前記第1弾性部材を、円周方向に直列に作用させるために、前記入力回転部材に相対回転可能に配置されたフロート部材と、
    を備え、
     複数の前記第1弾性部材それぞれは、半径方向における所定の位置において円周方向に並べて配置され、
     前記フロート部材によって円周方向に直列に作用する前記少なくとも2つの第1弾性部材において、いずれか1つの前記第1弾性部材の自由長を、他の前記第1弾性部材の自由長より短くすることによって、いずれか1つの前記第1弾性部材の剛性を、他の前記第1弾性部材の剛性より大きく設定する、
    流体継手用のロックアップ装置。
  2.  複数の前記第1弾性部材の内周側及び外周側のいずれか一方に配置され、前記出力回転部材にトルクを伝達する複数の第2弾性部材と、
     トルクを前記第1弾性部材から前記第2弾性部材に伝達するために、前記入力回転部材に相対回転可能に配置された中間部材と、
    をさらに備える請求項1に記載の流体継手用のロックアップ装置。
  3.  前記フロート部材によって円周方向に直列に作用する前記少なくとも2つの第1弾性部材において、自由長の短い前記第1弾性部材が、前記入力回転部材によってトルクが入力される側に配置される、
    請求項1又は2に記載の流体継手用のロックアップ装置。
  4.  前記フロート部材によって円周方向に直列に作用する前記少なくとも2つの第1弾性部材において、自由長の長い前記第1弾性部材が、前記入力回転部材によってトルクが入力される側に配置される、
    請求項1又は2に記載の流体継手用のロックアップ装置。
  5.  前記フロート部材によって円周方向に直列に作用する前記少なくとも2つの第1弾性部材の自由長の合計が一定になるように、前記少なくとも2つの第1弾性部材それぞれの自由長が、設定される、
    請求項1から4のいずれかに記載の流体継手用のロックアップ装置。
  6.  トルクを伝達するとともに捩り振動を吸収・減衰するための流体継手用のロックアップ装置であって、
     入力回転部材と、
     出力回転部材と、
     前記入力回転部材と前記出力回転部材との相対回転によって回転方向に圧縮される複数組の第1弾性部材と、
     前記第1弾性部材の半径方向への移動を規制するフロート部材と、
    を備え、
     複数組の前記第1弾性部材それぞれは、半径方向における所定の位置において円周方向に並べて配置され、前記フロート部材に対して相対回転可能であり、
     1組の前記第1弾性部材は複数のバネ部材から構成され、複数のバネ部材それぞれは、円周方向に連続して直列に配置される、
    流体継手用のロックアップ装置。
  7.  複数の前記バネ部材それぞれの両端部と、前記フロート部材とは、相対回転可能である、
    請求項6に記載の流体継手用のロックアップ装置。
  8.  入力回転部材、複数組の第1弾性部材、出力回転部材の順に、トルクが伝達される、
    請求項6又は7に記載の流体継手用のロックアップ装置。
  9.  複数の前記バネ部材それぞれは、シート部材を介して、円周方向に連続して直列に配置される、
    請求項6から8のいずれかに記載の流体継手用のロックアップ装置。
  10.  複数の前記バネ部材それぞれは、円周方向に直接的に連続して直列に配置される、
    請求項6から9のいずれかに記載の流体継手用のロックアップ装置。
  11.  前記バネ部材は、直線状のコイルスプリング及びアーク状のコイルスプリングのいずれか一方から、構成される、
    請求項6から10のいずれかに記載の流体継手用のロックアップ装置。
  12.  複数組の前記第1弾性部材の内周側及び外周側のいずれか一方に配置され、前記出力回転部材にトルクを伝達する複数の第2弾性部材と、
     トルクを前記第1弾性部材から前記第2弾性部材に伝達するために、前記入力回転部材に相対回転可能に配置された中間部材と、
    をさらに備える請求項6から11に記載の流体継手用のロックアップ装置。
PCT/JP2011/073293 2010-11-11 2011-10-11 流体継手用のロックアップ装置 WO2012063586A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180051149.7A CN103201538B (zh) 2010-11-11 2011-10-11 液力偶合器用锁定装置
US13/883,960 US9011257B2 (en) 2010-11-11 2011-10-11 Lock-up device for fluid coupling
DE112011103759T DE112011103759T5 (de) 2010-11-11 2011-10-11 Wandlersperrenvorrichtung für eine Fluidkupplung
US14/658,848 US20150184719A1 (en) 2010-11-11 2015-03-16 Lock-up device for fluid coupling
US14/659,659 US9506524B2 (en) 2010-11-11 2015-03-17 Lock-up device for fluid coupling

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-252579 2010-11-11
JP2010252579A JP4930867B1 (ja) 2010-11-11 2010-11-11 トルクコンバータ用ロックアップ装置
JP2010275613A JP4892630B1 (ja) 2010-12-10 2010-12-10 流体継手用ロックアップ装置
JP2010-275613 2010-12-10

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US13/883,960 A-371-Of-International US9011257B2 (en) 2010-11-11 2011-10-11 Lock-up device for fluid coupling
US14/658,848 Division US20150184719A1 (en) 2010-11-11 2015-03-16 Lock-up device for fluid coupling
US14/659,659 Division US9506524B2 (en) 2010-11-11 2015-03-17 Lock-up device for fluid coupling

Publications (1)

Publication Number Publication Date
WO2012063586A1 true WO2012063586A1 (ja) 2012-05-18

Family

ID=46050739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073293 WO2012063586A1 (ja) 2010-11-11 2011-10-11 流体継手用のロックアップ装置

Country Status (4)

Country Link
US (3) US9011257B2 (ja)
CN (1) CN103201538B (ja)
DE (1) DE112011103759T5 (ja)
WO (1) WO2012063586A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014009124A1 (de) * 2012-07-10 2014-01-16 Schaeffler Technologies AG & Co. KG Torsionsschwingungsdämpfer
WO2014196339A1 (ja) * 2013-06-04 2014-12-11 株式会社エクセディ トルクコンバータのロックアップ装置
JP2015098928A (ja) * 2013-11-20 2015-05-28 株式会社エクセディ トルクコンバータのロックアップ装置
US20150308539A1 (en) * 2014-04-25 2015-10-29 Valeo Embrayages Driven plate with intermediate plate centering guide
CN106855114A (zh) * 2015-12-08 2017-06-16 通用汽车环球科技运作有限责任公司 扭转振动阻尼器
US9732835B2 (en) 2013-07-11 2017-08-15 Exedy Corporation Lockup device for torque converter
US10030740B2 (en) 2013-06-04 2018-07-24 Exedy Corporation Lock-up device for torque converter
US10337596B2 (en) 2015-02-23 2019-07-02 Exedy Corporation Lock-up device for torque converter

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4773553B2 (ja) * 2009-08-26 2011-09-14 株式会社エクセディ トルクコンバータ用ロックアップ装置
DE112011103759T5 (de) * 2010-11-11 2013-11-14 Exedy Corporation Wandlersperrenvorrichtung für eine Fluidkupplung
CN104620015B (zh) * 2012-07-18 2016-07-06 舍弗勒技术股份两合公司 振动减振器,尤其是用于机动车的振动减振器以及相应的摩擦离合器和相应的机动车
JP5791773B1 (ja) * 2014-08-29 2015-10-07 株式会社エクセディ 流体式動力伝達装置
US10422407B2 (en) * 2015-10-16 2019-09-24 Valeo Embrayages Torque converter damper assembly
DE102015221894A1 (de) * 2015-11-06 2017-05-11 Zf Friedrichshafen Ag Drehschwingungsdämpfungsanordnung für den Antriebsstrang eines Fahrzeugs
US10066719B2 (en) * 2016-04-06 2018-09-04 Schaeffler Technologies AG & Co. KG Damper assembly including spring support plate configured for receiving arc springs after assembly
FR3053089B1 (fr) * 2016-06-28 2018-08-10 Valeo Embrayages Dispositif d'amortissement de couple pour vehicule automobile et appareil hydrocinetique comprenant un tel dispositif
US10267376B2 (en) * 2016-06-30 2019-04-23 GM Global Technology Operations LLC Powertrain torque transfer damping mechanism
JP6810562B2 (ja) * 2016-09-15 2021-01-06 株式会社エクセディ ダンパ装置
FR3060689A1 (fr) * 2016-12-20 2018-06-22 Valeo Embrayages Amortisseur de torsion et vehicule automobile
US10352423B2 (en) * 2017-05-16 2019-07-16 Valeo Embrayages Hydrokinetic torque coupling device with centered friction disc

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001082577A (ja) * 1999-09-17 2001-03-27 Exedy Corp トルクコンバータ用ロックアップ装置
JP2002089658A (ja) * 2000-09-13 2002-03-27 Exedy Corp 弾性連結機構及びトルクコンバータのロックアップ装置
JP2002130377A (ja) * 2000-10-18 2002-05-09 Exedy Corp 弾性連結装置
JP2002310238A (ja) * 2001-03-08 2002-10-23 Luk Lamellen & Kupplungsbau Beteiligungs Kg ねじれ振動減衰器
JP2004278744A (ja) * 2003-03-18 2004-10-07 Exedy Corp ダンパー機構及びダンパーディスク組立体
JP3717772B2 (ja) * 2000-05-26 2005-11-16 株式会社エクセディ トルクコンバータのロックアップ装置
JP2009243532A (ja) * 2008-03-28 2009-10-22 Aisin Aw Industries Co Ltd トルクコンバータのロックアップダンパ機構

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58112740U (ja) * 1982-01-27 1983-08-02 株式会社大金製作所 振動ダンパ−組立体
JP2718413B2 (ja) * 1986-07-05 1998-02-25 ルーク・ラメレン・ウント・クツプルングスバウ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 振動緩衝装置
DE4141723C2 (de) * 1991-12-20 1999-12-16 Mannesmann Sachs Ag Torsionsschwingungsdämpfer mit Leerlauffederung
JP2000082577A (ja) 1998-09-08 2000-03-21 Hitachi Hometec Ltd 電磁誘導加熱調理器
DE10123615B4 (de) * 2000-05-26 2015-11-19 Exedy Corp. Drehmomentwandler mit Überbrückungskupplung
WO2007054049A1 (de) * 2005-11-10 2007-05-18 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Hydrodynamische drehmomentwandler-vorrichtung für einen kraftfahrzeug- antriebsstrang
DE112011103759T5 (de) * 2010-11-11 2013-11-14 Exedy Corporation Wandlersperrenvorrichtung für eine Fluidkupplung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001082577A (ja) * 1999-09-17 2001-03-27 Exedy Corp トルクコンバータ用ロックアップ装置
JP3717772B2 (ja) * 2000-05-26 2005-11-16 株式会社エクセディ トルクコンバータのロックアップ装置
JP2002089658A (ja) * 2000-09-13 2002-03-27 Exedy Corp 弾性連結機構及びトルクコンバータのロックアップ装置
JP2002130377A (ja) * 2000-10-18 2002-05-09 Exedy Corp 弾性連結装置
JP2002310238A (ja) * 2001-03-08 2002-10-23 Luk Lamellen & Kupplungsbau Beteiligungs Kg ねじれ振動減衰器
JP2004278744A (ja) * 2003-03-18 2004-10-07 Exedy Corp ダンパー機構及びダンパーディスク組立体
JP2009243532A (ja) * 2008-03-28 2009-10-22 Aisin Aw Industries Co Ltd トルクコンバータのロックアップダンパ機構

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9618054B2 (en) 2012-07-10 2017-04-11 Schaeffler Technologies AG & Co. KG Torsional vibration damper
CN104620017A (zh) * 2012-07-10 2015-05-13 舍弗勒技术股份两合公司 扭转振动减振器
WO2014009124A1 (de) * 2012-07-10 2014-01-16 Schaeffler Technologies AG & Co. KG Torsionsschwingungsdämpfer
WO2014196339A1 (ja) * 2013-06-04 2014-12-11 株式会社エクセディ トルクコンバータのロックアップ装置
JP2015014357A (ja) * 2013-06-04 2015-01-22 株式会社エクセディ トルクコンバータのロックアップ装置
US10030740B2 (en) 2013-06-04 2018-07-24 Exedy Corporation Lock-up device for torque converter
US9784352B2 (en) 2013-06-04 2017-10-10 Exedy Corporation Lock-up device for torque converter
US9732835B2 (en) 2013-07-11 2017-08-15 Exedy Corporation Lockup device for torque converter
WO2015076003A1 (ja) * 2013-11-20 2015-05-28 株式会社エクセディ トルクコンバータのロックアップ装置
JP2015098928A (ja) * 2013-11-20 2015-05-28 株式会社エクセディ トルクコンバータのロックアップ装置
US20150308539A1 (en) * 2014-04-25 2015-10-29 Valeo Embrayages Driven plate with intermediate plate centering guide
US9732825B2 (en) * 2014-04-25 2017-08-15 Valeo Embrayages Driven plate with intermediate plate centering guide
US10337596B2 (en) 2015-02-23 2019-07-02 Exedy Corporation Lock-up device for torque converter
CN106855114A (zh) * 2015-12-08 2017-06-16 通用汽车环球科技运作有限责任公司 扭转振动阻尼器

Also Published As

Publication number Publication date
US20130225302A1 (en) 2013-08-29
US20150184720A1 (en) 2015-07-02
US20150184719A1 (en) 2015-07-02
DE112011103759T5 (de) 2013-11-14
CN103201538B (zh) 2016-05-11
US9506524B2 (en) 2016-11-29
US9011257B2 (en) 2015-04-21
CN103201538A (zh) 2013-07-10

Similar Documents

Publication Publication Date Title
WO2012063586A1 (ja) 流体継手用のロックアップ装置
JP4755277B2 (ja) トルクコンバータ用ロックアップ装置
JP5639204B2 (ja) トルクコンバータのロックアップ装置
JP4773553B2 (ja) トルクコンバータ用ロックアップ装置
JP4892630B1 (ja) 流体継手用ロックアップ装置
JP5418519B2 (ja) ダンパ装置
US9702445B2 (en) Torque converter
JP4930867B1 (ja) トルクコンバータ用ロックアップ装置
US20110031083A1 (en) Lockup device and fluid type power transmitting device
JP5734365B2 (ja) トルクコンバータのロックアップ装置
JP6245871B2 (ja) トルクコンバータのロックアップ装置
JP6514791B2 (ja) ダンパ装置
JP2008249007A (ja) スプリングシートおよびダンパーディスク組立体
JP6182434B2 (ja) トルクコンバータのロックアップ装置
JP2008249008A (ja) スプリングシートおよびダンパーディスク組立体
JP7009370B2 (ja) 流体力学的トルクカップリング装置の捩り振動ダンパのための動吸振器
WO2018079040A1 (ja) ダンパ装置
JP3593435B2 (ja) トルクコンバータのロックアップダンパー
KR101738065B1 (ko) 차량용 토크 컨버터
JP6587715B2 (ja) 動力伝達装置及びトルクコンバータのロックアップ装置
JP2007113745A (ja) 流体式トルク伝達装置およびそれに用いられるロックアップ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180051149.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840684

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13883960

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120111037597

Country of ref document: DE

Ref document number: 112011103759

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11840684

Country of ref document: EP

Kind code of ref document: A1