WO2012063501A1 - ガス絶縁開閉装置 - Google Patents

ガス絶縁開閉装置 Download PDF

Info

Publication number
WO2012063501A1
WO2012063501A1 PCT/JP2011/051292 JP2011051292W WO2012063501A1 WO 2012063501 A1 WO2012063501 A1 WO 2012063501A1 JP 2011051292 W JP2011051292 W JP 2011051292W WO 2012063501 A1 WO2012063501 A1 WO 2012063501A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable
vacuum valve
bellows
pressure
insulating
Prior art date
Application number
PCT/JP2011/051292
Other languages
English (en)
French (fr)
Inventor
吉田 忠広
有岡 正博
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201180053660.0A priority Critical patent/CN103201918B/zh
Priority to JP2012542259A priority patent/JP5183831B2/ja
Priority to DE112011103758.9T priority patent/DE112011103758B4/de
Priority to US13/882,714 priority patent/US9214306B2/en
Publication of WO2012063501A1 publication Critical patent/WO2012063501A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/53Cases; Reservoirs, tanks, piping or valves, for arc-extinguishing fluid; Accessories therefor, e.g. safety arrangements, pressure relief devices
    • H01H33/56Gas reservoirs
    • H01H33/565Gas-tight sealings for moving parts penetrating into the reservoir
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • H01H2033/6665Details concerning the mounting or supporting of the individual vacuum bottles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66238Specific bellows details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • H02B13/0354Gas-insulated switchgear comprising a vacuum switch

Definitions

  • This invention relates to a gas insulated switchgear used in, for example, power transmission / distribution and power receiving facilities, and more particularly to a gas insulated switchgear in which a vacuum valve is housed in a pressure tank filled with an insulating gas.
  • Patent Document 1 Japanese Patent Laid-Open No. 2007-306701
  • a part of the movable part of the vacuum valve (insulating rod is at high pressure) and the inside of the cylindrical conductor connected to the movable part are communicated with the atmosphere.
  • the portion that communicates with the inner peripheral side of the bellows 25 and does not receive a high electric field is made atmospheric pressure.
  • the inside of the movable conductor 35, the support 7 and the movable contact case 8 is set to atmospheric pressure.
  • a high-temperature seal portion (portion that seals at a high temperature) 37 to 39 that is an airtight seal portion is provided between the insulating operation rod 12 and the support 7.
  • the linear seal part 40 which is an airtight seal part is provided between the two.
  • the conventional gas-insulated switchgear described above has the linear seal portions 40 and 41 that are slide-like airtight seal portions on the movable portion of the vacuum interrupter 10 that is a vacuum valve, and is therefore dedicated for sliding while ensuring airtightness.
  • the linear seal portions 40 and 41 have a structure that is sensitive to adhesion, contamination, and damage to component parts. Therefore, in order to maintain airtightness for a long period of time, high quality is required for the component parts. In addition, there is a problem that the cost is high for realizing them.
  • the high temperature seal portions 37 to 39 have a problem of high cost, such as applying packing that can withstand high temperatures.
  • the inside of the movable conductor 35, the support 7 and the inside of the movable contact case 8 are at atmospheric pressure.
  • air intake is from the vent portion 20a of the bushing terminal 20 at the upper end of the bushing 16 having a height of 2 m to 3 m.
  • the inner surface of the cylindrical movable-side conductor 35 that is in contact with the atmosphere may be corroded by high humidity or a fouling atmosphere (NOx, SOx, etc.).
  • a fouling atmosphere NOx, SOx, etc.
  • measures are required to prevent fouling and corrosion.
  • it is necessary to provide a gas filling port in the high voltage portion, which is practically impossible.
  • This invention has been made to solve the above-described problems, and an object of the invention is to provide a gas insulated switchgear that can reduce the differential pressure in the bellows portion of the vacuum valve.
  • a gas insulated switchgear includes a vacuum valve having a movable contact provided on one side of a movable conductor penetrating the bellows and a fixed contact provided on the fixed conductor in a vacuum, and penetrating the bellows of the vacuum valve.
  • An insulating rod connected to the other side of the movable conductor, and an insulating support that houses the other side of the insulating rod and the movable conductor and electrically insulates and supports the vacuum valve.
  • a gas-insulated switchgear comprising an operation box that is disposed at a movable side end of the pressure tank and houses an operation mechanism connected to the insulating rod, and an inner peripheral space of the bellows of the vacuum valve;
  • the internal space of the insulating support and the internal space of the operation box are configured to communicate with each other, and the pressure in these spaces is configured to be lower than the pressure in the pressure tank.
  • a vacuum valve having a movable contact provided on one side of the movable conductor penetrating the bellows and a fixed contact provided on the fixed conductor in a vacuum, and the other side of the movable conductor penetrating the bellows of the vacuum valve are connected.
  • An insulating rod, and an insulating support that houses the other side of the insulating rod and the movable conductor and that electrically insulates and supports the vacuum valve is disposed in the pressure tank, and the movable side end of the pressure tank.
  • a gas insulated switchgear comprising an operation box that accommodates an operation mechanism that is disposed on and connected to the insulating rod, the inner peripheral space of the bellows of the vacuum valve, the internal space of the insulating support, and the The internal space of the operation box and the external space of the operation box are configured to communicate with each other, and the pressure in these spaces is configured to be lower than the pressure in the pressure tank.
  • a vacuum valve having a movable contact provided on one side of the movable conductor penetrating the bellows and a fixed contact provided on the fixed conductor in a vacuum, and the other side of the movable conductor penetrating the bellows of the vacuum valve are connected.
  • An insulating rod, and an insulating support that houses the other side of the insulating rod and the movable conductor and that electrically insulates and supports the vacuum valve is disposed in the pressure tank, and the movable side end of the pressure tank.
  • a gas insulated switchgear comprising an operation box that accommodates an operation mechanism that is disposed on and connected to the insulating rod, the inner peripheral space of the bellows of the vacuum valve, the internal space of the insulating support, and the The internal space of the operation box is configured to communicate with each other, the pressure in these spaces is configured to be lower than the pressure in the pressure tank, and the operation box is an external space of the operation box. It is those that have been sealed.
  • the inner peripheral space of the bellows of the vacuum valve, the inner space of the insulating support, and the inner space of the operation box are configured to communicate with each other, and the pressure in these spaces Is configured to be lower than the pressure in the pressure tank, it is possible to obtain a gas insulated switchgear that can reduce the differential pressure of the bellows portion of the vacuum valve.
  • FIG. 1 is a sectional view showing a gas insulated switchgear according to Embodiment 1 of the present invention.
  • FIG. 2 is an enlarged cross-sectional view showing a main part of the gas insulated switchgear according to Embodiment 1 of the present invention.
  • the electrically grounded pressure tank 102 is installed with the body portion 102a horizontal, and a movable side opening portion 102b and a fixed side opening portion 102c are provided at both ends thereof.
  • an insulating gas such as dry air, nitrogen, or carbon dioxide is sealed in the internal space A of the pressure tank 102 at a high pressure as an insulating gas.
  • dry air having a warming coefficient of approximately zero and effective in preventing global warming is enclosed at a high pressure.
  • a movable side opening 102d and a fixed side opening 102e are provided above the pressure tank 102.
  • the movable side branch 102f, the fixed side branch 102g, and the fixed side branch 102g are coaxial with the movable side opening 102d and the fixed side opening 102e, respectively. It consists of a flange that connects them.
  • Current transformers 107a and 107b for measuring current are installed on the outer periphery of each of the movable side branch tube 102f and the fixed side branch tube 102g.
  • a vacuum valve 140 is installed in the pressure tank 102 through the body 102a and a gap.
  • the vacuum valve 140 includes a cylindrical vacuum vessel 141 made of an insulating material such as ceramic, and an end plate 142 that is housed in the vacuum vessel 141 and that has one end hermetically sealing the fixed side end 141a of the vacuum vessel 141.
  • the vacuum container is connected via a fixed conductor 143 that is joined, and a bellows 144 that is attached to and can be separated from the fixed conductor 143 and is attached to an end plate 146 that hermetically seals the movable side end 141b of the vacuum container 141.
  • 141 and a movable conductor 145 extending outside.
  • An operation mechanism 103 that opens and closes the fixed contact 143a and the movable contact 145a is provided outside the pressure tank 102.
  • the operating mechanism 103 opens and closes the fixed contact 143a and the movable contact 145a by moving the movable conductor 145 in the horizontal direction via the operation rod 105 and the insulating rod 106.
  • the bellows 144 follows the movement of the movable conductor 145, the vacuum in the vacuum valve 140 is maintained.
  • both ends of the insulating rod 106 are connected to the operation rod 105 and the movable conductor 145 (pin connection in the figure), while ensuring an insulation distance that can electrically insulate the movable conductor 145 and the operation rod 105. It is connected.
  • Reference numeral 150 denotes a connecting portion between the insulating rod 106 and the movable conductor 145.
  • a movable side shield 151 and a fixed side shield 152 are provided at both ends of the vacuum valve 140.
  • the vacuum valve 140 has a shape that covers the fixed side end 141 a and the movable side end 141 b, and is connected to the fixed side end plate 142 and the movable side end plate 146.
  • the movable shield 151 and the fixed shield 152 are mechanically held by the movable insulating support 131 and the fixed insulating support 132 while maintaining insulation from the pressure tank 102.
  • the movable insulating support 131 and the fixed insulating support 132 are made of an insulating resin.
  • the movable-side shield 151 and the fixed-side shield 152 are connected to the movable-side outer tube 120a and the fixed-side outer tube 120b so that the movable-side outer conductor 121 and the fixed-side outer conductor 122 are inserted.
  • Such a gas-insulated switchgear has a structure in which, for example, power drawn from the upper part of the fixed side pipe 120b is drawn out to the upper side of the movable side pipe 120a through the vacuum valve 140.
  • FIG. 2 shows an enlarged cross-sectional view of the main part of the gas insulated switchgear 101 according to Embodiment 1 of the present invention. That is, an enlarged structure around the movable side of the vacuum valve 140 is shown.
  • the inner space B of the bellows 144 of the vacuum valve 140, the inner space C of the movable shield 151, the inner space D of the movable insulating support 131, and the inner space of the operation box 104 are shown.
  • E is configured to communicate with the external space F of the operation box 104 outside the pressure tank 102, and each of these spaces has the same pressure, that is, an atmospheric pressure space.
  • the pressure in these spaces is configured to be lower than the pressure in the internal space A of the pressure tank 102.
  • fixed seal portions 133 to 136 are required.
  • the fixed seal part 135 and the fixed seal part 136 are made of a heat-resistant material because the temperature of the movable shield 151 may increase.
  • the linear seal portion on which the operation rod 105 or the movable conductor 145 slides is not required while maintaining airtightness, the air density in each of the spaces B to E is highly reliable.
  • the operation energy required for the operation mechanism 103 can be reduced, the operation mechanism 103 can be reduced, simplified, and reduced in cost.
  • the movable shield 151 integrates the function of relaxing the electric field of the movable end 141b of the vacuum valve 140 and the function of fixing the movable insulating support 131, and the function of connecting the movable outer conductor 121 into one component. As a result, the number of seals can be reduced as compared with the above-described conventional device, and the cost is excellent.
  • the inner space B of the bellows 144 of the vacuum valve 140, the inner space C of the movable shield 151, the inner space D of the movable insulating support 131, and the inner space E of the operation box 104 are subjected to humidity and polluted air.
  • a desiccant is disposed inside the operation box 104 that houses the operation mechanism 103, and the attachment portion of the operation box 104 to the lid plate 112 or the joint of the operation box 104 itself is packed or welded. The purpose can be achieved by blocking it.
  • an electric field relaxation shield 153 connected to the fixing buried metal is disposed inside the resin of the movable insulating support 131.
  • the electric field relaxation shield 153 is made of, for example, copper mesh, aluminum die cast, conductive plastic, or the like.
  • the tip of the electric field relaxation shield 153 is extended to a position closer to the movable side end of the pressure tank 102 than the connecting end 150 between the insulating rod 106 and the other side of the movable conductor 145, that is, a position closer to the lid plate 112.
  • the electric field around the connecting end 150 can be relaxed.
  • the electric field relaxation shield 153 enables the electric field relaxation.
  • the differential pressure at the bellows 144 portion of the vacuum valve 140 can be reduced, and the mechanical stress generated at the bellows 144 portion is relieved, resulting in a mechanical life. Can be extended. Further, since the airtight function between the movable part of the vacuum valve 140 and the high pressure part of the pressure tank 102 is not required, the reliability of the airtight part is improved and the components can be made inexpensive.
  • FIG. 3 is an enlarged cross-sectional view showing a main part of a gas insulated switchgear according to Embodiment 2 of the present invention.
  • the electric field relaxation shield 154 is disposed outside the movable side insulating support 131 and is connected to the movable side shield 151.
  • the movable insulating support 131 can be manufactured more easily than the structure provided inside the resin of the movable insulating support 131.
  • FIG. 4 is an enlarged cross-sectional view of a main part showing a gas insulated switchgear according to Embodiment 3 of the present invention.
  • the inner space B of the bellows 144 of the vacuum valve 140, the inner space C of the movable shield 151, the inner space D of the movable insulating support 131, and the inner space of the operation box 104 are shown.
  • E is configured to communicate with E
  • the pressure in these spaces B to E is configured to be lower than the pressure in the pressure tank 102
  • the operation box 104 is provided with a seal portion 137 to provide an external space F of the operation box 104. It is a sealed configuration.
  • the pressure relationship in each space is configured such that A> B to E> F (atmosphere).
  • the operation box 104 becomes a pressure vessel, and an insulating gas such as dry air or nitrogen is sealed in the spaces B to E.
  • the pressure is lower than the pressure tank 102 and does not impair the mechanical life of the bellows 144.
  • the insulating performance around the insulating rod 106 can be further improved as compared with the case of the atmospheric pressure in the first embodiment.
  • the movable insulating support 131, the insulating rod 106, and the electric field relaxation shield 153 can be reduced and simplified, and the connecting end 150 between the insulating rod 106 and the other side of the movable conductor 145 can be simplified. Therefore, an economical gas insulated switchgear can be obtained.
  • the third embodiment can be applied to the second embodiment described above, and a gas insulated switchgear excellent in economy can be obtained.
  • This invention is suitable for realizing a gas-insulated switchgear that can reduce the differential pressure in the bellows portion of the vacuum valve.

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Gas-Insulated Switchgears (AREA)

Abstract

  この発明に係わるガス絶縁開閉装置は、ベローズを貫通する可動導体の一方側に設けられた可動接点と固定導体に設けられた固定接点を真空中に有する真空バルブと、真空バルブのベローズを貫通する可動導体の他方側と連結された絶縁ロッドと、絶縁ロッドおよび可動導体の他方側が収納され真空バルブを電気的に絶縁して支持する絶縁支持物とが圧力タンク内に配設され、圧力タンクの可動側端部に配設され絶縁ロッドと接続された操作機構を収納する操作箱を備えたガス絶縁開閉装置において、真空バルブのベローズの内周側空間と、絶縁支持物の内部空間と、操作箱の内部空間とは連通するように構成され、これら空間内の圧力を圧力タンク内の圧力よりも低く構成したものである。

Description

ガス絶縁開閉装置
  この発明は、例えば、電力の送配電および受電設備などに用いられるガス絶縁開閉装置に関し、特に絶縁性ガスを封入した圧力タンク内に真空バルブを収納したガス絶縁開閉装置に関するものである。
  従来、例えば、電力の送配電および受電設備などに用いられるガス絶縁開閉装置としては、特許文献1(特開2007-306701号公報)に示されるものがある。
  真空バルブのベローズ部の差圧を小さくするため、真空バルブ可動部の一部(絶縁ロッドは高気圧)と可動部に接続された円筒導体の内側を大気と連通させている。
  すなわち、真空バルブである真空インタラプタ10のベローズ25の内周側を大気圧とするために、ベローズ25の内周側と連通する部分であって、高電界が加わらない部分を大気圧とする。具体的には、可動側導体35内、サポート7内及び可動側コンタクトケース8内を大気圧とする。
  そのために、可動側導体35の外周と可動側コンタクトケース8の筒状部8aとの間、サポート7と可動側コンタクトケース8との間及び真空インタラプタ10の可動側端板24と可動側コンタクトケース8との間に気密シール部である高温シール部(高温でシールする部分)37~39を設け、また絶縁支持筒5内を高圧力の乾燥空気とするために、絶縁操作ロッド12とサポート7との間に気密シール部である直線シール部40を設ける。
特開2007-306701号公報
  上述した従来のガス絶縁開閉装置は、真空バルブである真空インタラプタ10の可動部にスライド状の気密シール部である直線シール部40,41を有するため、気密を確保させながら摺動させるための専用パッキンが必要となるとともに、直線シール部40,41は異物の付着、混入および構成部品の傷に対して敏感な構造となるので、長期間気密を保つために、構成部品に高い品質が要求され、また、それらの実現のためにコスト高となるという問題点があった。
  また、直線シール部40,41を気密に保たれて貫挿された絶縁操作ロッド12および絶縁操作ロッド12が連結された操作機構の駆動力対策が必要となる。それらは摩擦荷重が大きいため、絶縁操作ロッド12が連結された操作機構に多大な操作エネルギーが必要となるという問題点があった。
  また、高温シール部37~39については、高温に耐えるパッキンを適用するなど高コストとなるという問題点があった。
  また、ベローズ25の内周側を大気圧とするために、可動側導体35内、サポート7内及び可動側コンタクトケース8内を大気圧としている。しかし、大気の取り入れは、2m~3mの高さであるブッシング16の上端のブッシング端子20の通気口部20aからである。
  ここで、ガス絶縁開閉装置の設置環境によっては、高湿度や汚損性雰囲気(NOx、SOxなど)によって、大気が触れる円筒状の可動側導体35内面などが腐食される恐れがある。また、汚損、腐食を防止するための対策が必要となる。また、この部分を密封させるためには、ガス封入口を高電圧部に設ける必要があり、実用上不可能である。
  この発明は、上記のような課題を解決するためになされたものであり、その目的は、真空バルブのベローズ部の差圧を小さくすることができるガス絶縁開閉装置を提供するものである。
  この発明に係わるガス絶縁開閉装置は、ベローズを貫通する可動導体の一方側に設けられた可動接点と固定導体に設けられた固定接点を真空中に有する真空バルブと、前記真空バルブのベローズを貫通する前記可動導体の他方側と連結された絶縁ロッドと、前記絶縁ロッドおよび前記可動導体の他方側が収納され前記真空バルブを電気的に絶縁して支持する絶縁支持物とが圧力タンク内に配設され、前記圧力タンクの可動側端部に配設され前記絶縁ロッドと接続された操作機構を収納する操作箱を備えたガス絶縁開閉装置において、前記真空バルブの前記ベローズの内周側空間と、前記絶縁支持物の内部空間と、前記操作箱の内部空間とは連通するように構成され、これら空間内の圧力を前記圧力タンク内の圧力よりも低く構成したものである。
  ベローズを貫通する可動導体の一方側に設けられた可動接点と固定導体に設けられた固定接点を真空中に有する真空バルブと、前記真空バルブのベローズを貫通する前記可動導体の他方側と連結された絶縁ロッドと、前記絶縁ロッドおよび前記可動導体の他方側が収納され前記真空バルブを電気的に絶縁して支持する絶縁支持物とが圧力タンク内に配設され、前記圧力タンクの可動側端部に配設され前記絶縁ロッドと接続された操作機構を収納する操作箱を備えたガス絶縁開閉装置において、前記真空バルブの前記ベローズの内周側空間と、前記絶縁支持物の内部空間と、前記操作箱の内部空間と、前記操作箱の外部空間とは連通するように構成され、これら空間内の圧力を前記圧力タンク内の圧力よりも低く構成したものである。
  ベローズを貫通する可動導体の一方側に設けられた可動接点と固定導体に設けられた固定接点を真空中に有する真空バルブと、前記真空バルブのベローズを貫通する前記可動導体の他方側と連結された絶縁ロッドと、前記絶縁ロッドおよび前記可動導体の他方側が収納され前記真空バルブを電気的に絶縁して支持する絶縁支持物とが圧力タンク内に配設され、前記圧力タンクの可動側端部に配設され前記絶縁ロッドと接続された操作機構を収納する操作箱を備えたガス絶縁開閉装置において、前記真空バルブの前記ベローズの内周側空間と、前記絶縁支持物の内部空間と、前記操作箱の内部空間とは連通するように構成され、これら空間内の圧力を前記圧力タンク内の圧力よりも低く構成するとともに前記操作箱は前記操作箱の外部空間と密封されたものである。
  この発明に係わるガス絶縁開閉装置によれば、真空バルブのベローズの内周側空間と、絶縁支持物の内部空間と、操作箱の内部空間とは連通するように構成され、これら空間内の圧力を前記圧力タンク内の圧力よりも低く構成したことにより、真空バルブのベローズ部の差圧を小さくすることができるガス絶縁開閉装置を得ることができる。
この発明の実施の形態1に係わるガス絶縁開閉装置を示す断面図である。 この発明の実施の形態1に係わるガス絶縁開閉装置を示す要部拡大断面図である。 この発明の実施の形態2に係わるガス絶縁開閉装置を示す要部拡大断面図である。 この発明の実施の形態3に係わるガス絶縁開閉装置を示す要部拡大断面図である。 従来のガス絶縁開閉装置を示す要部拡大断面図である。
実施の形態1.
  以下、この発明の実施の形態1を図1に基づいて説明するが、各図において、同一、または相当部材、部位については同一符号を付して説明する。図1はこの発明の実施の形態1に係わるガス絶縁開閉装置を示す断面図である。図2はこの発明の実施の形態1に係わるガス絶縁開閉装置を示す要部拡大断面図である。
  101はガス絶縁開閉装置を示す。電気的に接地された圧力タンク102は、胴部102aを水平にして設置されており、その両端には可動側開口部102b、固定側開口部102cが設けられている。なお、圧力タンク102の内部空間Aには、絶縁性ガスとして、乾燥空気や窒素、二酸化炭素といった絶縁性ガスが高圧力で封入されている。なお、この実施の形態1における絶縁性ガスとして、例えば温暖化係数がほぼ零で地球温暖化防止に有効な乾燥空気が高圧力で封入されている。
  また、圧力タンク102の上方には可動側開口部102d、固定側開口部102eが設けられ、可動側開口部102d、固定側開口部102eとそれぞれ同軸を成す可動側枝管102f、固定側枝管102gおよびそれらを接続するフランジから構成されている。可動側枝管102f、固定側枝管102gのそれぞれの外周部には電流を測定するための変流器107a,107bが設置されている。
  圧力タンク102内には真空バルブ140が胴部102aと空隙を介して設置されている。この真空バルブ140は、セラミック等の絶縁材料からなる筒状の真空容器141と、この真空容器141内に収容され、一端が真空容器141の固定側端部141aを気密封止する端板142に接合された固定導体143と、この固定導体143と接離可能に設けられ他端が真空容器141の可動側端部141bを気密封止する端板146に装着されたベローズ144を介して真空容器141外に伸びる可動導体145とで構成されている。
  圧力タンク102の外部には固定接点143aと可動接点145aとを接離開閉する操作機構103が設けられている。操作機構103は、操作ロッド105および絶縁ロッド106を介して可動導体145を水平方向に移動させることで、固定接点143aと可動接点145aを接離開閉する。このとき、ベローズ144が可動導体145の移動に追従するので、真空バルブ140内の真空は保持される。
  なお、絶縁ロッド106は、その両端を操作ロッド105および可動導体145と連結されており(図中はピン連結)、可動導体145と操作ロッド105とを電気的に絶縁できる絶縁距離を確保しながら接続されている。150は絶縁ロッド106と可動導体145との連結部である。
  真空バルブ140の両端には、可動側シールド151および固定側シールド152が設けられている。真空バルブ140の固定側端部141aおよび可動側端部141bを覆うような形状を有しており、固定側端板142および可動側端板146に接続されている。また、可動側シールド151および固定側シールド152は、可動側絶縁支持物131および固定側絶縁支持物132によって、圧力タンク102との絶縁を保ちながら、機械的に保持されている。可動側絶縁支持物131および固定側絶縁支持物132は絶縁性樹脂により形成されている。
  可動側シールド151および固定側シールド152には、可動側碍管120aおよび固定側碍管120b上部まで繋がる可動側外部導体121および固定側外部導体122が挿入される形で接続されている。
  このようなガス絶縁開閉装置は、例えば、固定側碍管120b上部から引き込まれた電力を真空バルブ140を介してまた可動側碍管120a上部に引き出す構造である。通常流れている電流および電力系統において、電気的な事故(地絡、短絡)が起きた際に発生する事故電流を真空バルブ140で遮断することで、周辺の機器への事故の波及を防ぐ機能がある。
  図2はこの発明の実施の形態1に係るガス絶縁開閉装置101の要部拡大断面図を示している。すなわち、真空バルブ140の可動側周辺の拡大構造を示すものである。この実施の形態1においては、真空バルブ140のベローズ144の内周側空間Bと、可動側シールド151の内部空間Cと、可動側絶縁支持物131の内部空間Dと、操作箱104の内部空間Eとは連通するように構成され、さらに、圧力タンク102外である操作箱104の外部空間Fとが連通された構成となっており、これら各空間は同一圧力、すなわち、大気圧の空間に構成され、これら空間内の圧力を圧力タンク102の内部空間Aの圧力よりも低く構成している。そのためには、固定シール部133~136が必要である。このうち、固定シール部135および固定シール部136は可動側シールド151の温度が高くなる可能性があるため、耐熱性材料で構成されている。
  すなわち、ベローズ144の内周側を大気圧とするために、圧力タンク102近傍の操作箱104周辺から大気を取り入れることができるので、大気を取り入れる箇所のフィルタ点検・交換などが簡易な作業で行うことができる。
  また、この実施の形態1では、気密を保ちながら操作ロッド105もしくは可動導体145が摺動する直線シール部を必要としないため、各空間B~Eの気密度は信頼性の高いものとなる。加えて、操作機構103に求められる操作エネルギーを縮小することができるため、操作機構103の縮小化、簡素化、低コスト化を図ることができる。
  また、可動側シールド151が、真空バルブ140の可動側端部141bの電界緩和機能と可動側絶縁支持物131との固定機能、さらに、可動側外部導体121との接続機能が一つの部品に集約されていることで、上述した従来装置と比較してシール箇所を削減することができ、経済性に優れたものである。
  ところで、真空バルブ140のベローズ144の内周側空間Bと、可動側シールド151の内部空間Cと、可動側絶縁支持物131の内部空間Dと、操作箱104の内部空間Eを湿度や汚損大気の影響を防ぎたい場合には、操作機構103を収納する操作箱104の内部に例えば乾燥剤を配置し、操作箱104のふた板112への取り付け部や操作箱104自身の継ぎ目をパッキンや溶接などによってふさぐことでその目的は達成される。
  さらに、可動側絶縁支持物131の樹脂内部には、固定用の埋金に連接した電界緩和シールド153が配設されている。この電界緩和シールド153は、例えば、銅網、アルミダイキャスト、導電性プラスチックなどで構成される。そして、電界緩和シールド153の先端は絶縁ロッド106と可動導体145の他方側との連結端部150よりも圧力タンク102の可動側端部に近い箇所、すなわち、ふた板112に近い位置まで延伸させて配置することにより、連結端部150周辺の電界を緩和することができる。絶縁ロッド106周辺は圧力が低い大気で覆われているため、連結部150および絶縁ロッド106の沿面電界を十分に低減させる必要があるが、この電界緩和シールド153によってその電界緩和が可能となる。
  以上のように、この実施の形態1によれば、真空バルブ140のベローズ144部の差圧を小さくすることができ、ベローズ144部に発生する機械的応力を緩和し、その結果機械的寿命を延ばすことができる。さらに、真空バルブ140の可動部に、圧力タンク102の高気圧部との間の気密機能が必要とならないため、気密部の信頼性が向上し、構成部品を安価にできる。
実施の形態2.
  この発明の実施の形態2に係わるガス絶縁開閉装置を図3に基づいて説明する。図3はこの発明の実施の形態2に係わるガス絶縁開閉装置を示す要部拡大断面図である。
  この実施の形態2においては、電界緩和シールド154が可動側絶縁支持物131の外部に配設されており、可動側シールド151と連接している。この構造によって、可動側絶縁支持物131の樹脂内部に設ける構造より容易に可動側絶縁支持物131を製作することができる。
実施の形態3.
  この発明の実施の形態3に係わるガス絶縁開閉装置を図4に基づいて説明する。図4はこの発明の実施の形態3に係わるガス絶縁開閉装置を示す要部拡大断面図である。
  この実施の形態3においては、真空バルブ140のベローズ144の内周側空間Bと、可動側シールド151の内部空間Cと、可動側絶縁支持物131の内部空間Dと、操作箱104の内部空間Eとは連通するように構成され、これら空間B~E内の圧力を圧力タンク102内の圧力よりも低く構成するとともに、操作箱104はシール部137を設けて操作箱104の外部空間Fと密封された構成としたものである。各空間の圧力関係は、A>B~E>F(大気)となるように構成される。
  すなわち、操作箱104は圧力容器となり、空間B~Eに絶縁性ガス、例えば乾燥空気や窒素などを封入し、圧力タンク102よりは低い圧力で、かつ、ベローズ144の機械的寿命を損ねない圧力まで上昇させることによって、上述した実施の形態1における大気圧の場合と比較して、絶縁ロッド106周辺の絶縁性能をさらに向上させることができる。その結果、可動側絶縁支持物131、絶縁ロッド106および電界緩和シールド153の縮小化、簡素化が図れるとともに、絶縁ロッド106と可動導体145の他方側との連結端部150の簡素化が図れる。したがって、経済性に優れたガス絶縁開閉装置を得ることができる。
  ところで、この実施の形態3を上述した実施の形態2にも適用することができ、経済性に優れたガス絶縁開閉装置を得ることができる。
  この発明は、真空バルブのベローズ部の差圧を小さくすることができるガス絶縁開閉装置の実現に好適である。

Claims (5)

  1.   ベローズを貫通する可動導体の一方側に設けられた可動接点と固定導体に設けられた固定接点を真空中に有する真空バルブと、前記真空バルブのベローズを貫通する前記可動導体の他方側と連結された絶縁ロッドと、前記絶縁ロッドおよび前記可動導体の他方側が収納され前記真空バルブを電気的に絶縁して支持する絶縁支持物とが圧力タンク内に配設され、前記圧力タンクの可動側端部に配設され前記絶縁ロッドと接続された操作機構を収納する操作箱を備えたガス絶縁開閉装置において、前記真空バルブの前記ベローズの内周側空間と、前記絶縁支持物の内部空間と、前記操作箱の内部空間とは連通するように構成され、これら空間内の圧力を前記圧力タンク内の圧力よりも低く構成したことを特徴とするガス絶縁開閉装置。
  2.   ベローズを貫通する可動導体の一方側に設けられた可動接点と固定導体に設けられた固定接点を真空中に有する真空バルブと、前記真空バルブのベローズを貫通する前記可動導体の他方側と連結された絶縁ロッドと、前記絶縁ロッドおよび前記可動導体の他方側が収納され前記真空バルブを電気的に絶縁して支持する絶縁支持物とが圧力タンク内に配設され、前記圧力タンクの可動側端部に配設され前記絶縁ロッドと接続された操作機構を収納する操作箱を備えたガス絶縁開閉装置において、前記真空バルブの前記ベローズの内周側空間と、前記絶縁支持物の内部空間と、前記操作箱の内部空間と、前記操作箱の外部空間とは連通するように構成され、これら空間内の圧力を前記圧力タンク内の圧力よりも低く構成したことを特徴とするガス絶縁開閉装置。
  3.   ベローズを貫通する可動導体の一方側に設けられた可動接点と固定導体に設けられた固定接点を真空中に有する真空バルブと、前記真空バルブのベローズを貫通する前記可動導体の他方側と連結された絶縁ロッドと、前記絶縁ロッドおよび前記可動導体の他方側が収納され前記真空バルブを電気的に絶縁して支持する絶縁支持物とが圧力タンク内に配設され、前記圧力タンクの可動側端部に配設され前記絶縁ロッドと接続された操作機構を収納する操作箱を備えたガス絶縁開閉装置において、前記真空バルブの前記ベローズの内周側空間と、前記絶縁支持物の内部空間と、前記操作箱の内部空間とは連通するように構成され、これら空間内の圧力を前記圧力タンク内の圧力よりも低く構成するとともに前記操作箱は前記操作箱の外部空間と密封されたことを特徴とするガス絶縁開閉装置。
  4.   前記絶縁支持物の内部に、前記絶縁ロッドと前記可動導体の他方側との連結端部より前記圧力タンクの可動側端部に近い箇所まで延伸し、先端に前記絶縁ロッドと前記可動導体の他方側との連結端部の電界を緩和する電界緩和シールドを配設したことを特徴とする請求項1~請求項3のいずれか1項に記載のガス絶縁開閉装置。
  5.   前記絶縁支持物の外部に、前記絶縁ロッドと前記可動導体の他方側との連結端部より前記圧力タンクの可動側端部に近い箇所まで延伸し、先端に前記絶縁ロッドと前記可動導体の他方側との連結端部の電界を緩和する電界緩和シールドを配設したことを特徴とする請求項1~請求項3のいずれか1項に記載のガス絶縁開閉装置。
PCT/JP2011/051292 2010-11-12 2011-01-25 ガス絶縁開閉装置 WO2012063501A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180053660.0A CN103201918B (zh) 2010-11-12 2011-01-25 气体绝缘开关装置
JP2012542259A JP5183831B2 (ja) 2010-11-12 2011-01-25 ガス絶縁開閉装置
DE112011103758.9T DE112011103758B4 (de) 2010-11-12 2011-01-25 Gasisolierte Schalteinrichtung
US13/882,714 US9214306B2 (en) 2010-11-12 2011-01-25 Gas insulated switchgear

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010253729 2010-11-12
JP2010-253729 2010-11-12

Publications (1)

Publication Number Publication Date
WO2012063501A1 true WO2012063501A1 (ja) 2012-05-18

Family

ID=46050665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051292 WO2012063501A1 (ja) 2010-11-12 2011-01-25 ガス絶縁開閉装置

Country Status (5)

Country Link
US (1) US9214306B2 (ja)
JP (1) JP5183831B2 (ja)
CN (1) CN103201918B (ja)
DE (1) DE112011103758B4 (ja)
WO (1) WO2012063501A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011097686A (ja) * 2009-10-28 2011-05-12 Mitsubishi Electric Corp ガス絶縁電気機器
JP2014212677A (ja) * 2013-04-22 2014-11-13 日新電機株式会社 開閉装置
JP6452901B1 (ja) * 2017-12-21 2019-01-16 三菱電機株式会社 開閉装置
JP6482738B1 (ja) * 2018-03-14 2019-03-13 三菱電機株式会社 ガス絶縁開閉装置
JP2019164900A (ja) * 2018-03-19 2019-09-26 株式会社日立産機システム 固体絶縁形の真空開閉器
WO2020157933A1 (ja) 2019-01-31 2020-08-06 三菱電機株式会社 真空遮断器
WO2023079740A1 (ja) * 2021-11-08 2023-05-11 三菱電機株式会社 消弧室、真空遮断器及び消弧室の組立方法
WO2023084700A1 (ja) 2021-11-11 2023-05-19 三菱電機株式会社 真空遮断器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5615467B1 (ja) * 2014-01-27 2014-10-29 三菱電機株式会社 ガス遮断器およびブッシングの取付け方法
EP2975710B1 (fr) * 2014-07-18 2017-09-06 General Electric Technology GmbH Disjoncteur comportant un tube creux isolant
EP3217416A4 (en) * 2014-11-07 2018-07-04 Mitsubishi Electric Corporation Vacuum circuit breaker and direct current circuit breaker
DE102016213158A1 (de) * 2016-07-19 2018-01-25 Siemens Aktiengesellschaft Schaltgeräteanordnung
CN113410087B (zh) * 2021-06-17 2023-06-20 西安西电开关电气有限公司 一种紧凑型的高压罐式快速机械组合开关设备
CN113745042A (zh) * 2021-09-07 2021-12-03 南京南瑞继保电气有限公司 一种多断口罐式高压快速断路器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141038U (ja) * 1984-02-29 1985-09-18 株式会社日立製作所 真空開閉装置
JP2003111225A (ja) * 2001-10-02 2003-04-11 Toshiba Corp スイッチギヤ
JP2004056845A (ja) * 2002-07-16 2004-02-19 Meidensha Corp 絶縁開閉装置
JP2004220922A (ja) * 2003-01-15 2004-08-05 Nissin Electric Co Ltd ガス絶縁開閉装置
JP2005086925A (ja) * 2003-09-10 2005-03-31 Japan Ae Power Systems Corp 開閉装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204429A (ja) 1982-05-24 1983-11-29 株式会社東芝 ガス絶縁開閉器
JPH0479117A (ja) * 1990-07-19 1992-03-12 Fuji Electric Co Ltd ガス絶縁開閉装置
DE4210370A1 (de) 1992-03-30 1993-10-07 Abb Patent Gmbh Hochspannungsschaltfeld
DE4212756C2 (de) 1992-04-16 1994-05-05 Pfisterer Elektrotech Karl Stopfen zum elektrisch dichten Verschließen einer Steckbuchse
DE29620438U1 (de) * 1996-11-13 1997-01-23 Siemens Ag Kapselungsgehäuse für gasisolierte, metallgekapselte Schaltanlagen
DE29821292U1 (de) 1998-11-20 1999-01-28 Siemens Ag Hochspannungs-Leistungsschalter mit zwei Schaltkammern
DE102006015310C5 (de) 2006-03-29 2012-08-09 Siemens Ag Sammelschienenkupplung
JP4709062B2 (ja) 2006-05-11 2011-06-22 株式会社日本Aeパワーシステムズ タンク形真空遮断器
JP4729600B2 (ja) * 2008-06-30 2011-07-20 株式会社日立製作所 真空スイッチギヤ
TWI416568B (zh) 2008-06-30 2013-11-21 Hitachi Ltd Vacuum switch and vacuum switch mechanism
JP5363065B2 (ja) * 2008-11-05 2013-12-11 株式会社エフテック 車両用l型サスペンションアーム
JP5239913B2 (ja) * 2009-01-30 2013-07-17 三菱電機株式会社 タンク型真空遮断器
DE112010005301B4 (de) * 2010-02-23 2015-08-20 Mitsubishi Electric Corporation Leistungsschaltanlage
WO2012081264A1 (ja) * 2010-12-17 2012-06-21 三菱電機株式会社 ガス絶縁開閉装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141038U (ja) * 1984-02-29 1985-09-18 株式会社日立製作所 真空開閉装置
JP2003111225A (ja) * 2001-10-02 2003-04-11 Toshiba Corp スイッチギヤ
JP2004056845A (ja) * 2002-07-16 2004-02-19 Meidensha Corp 絶縁開閉装置
JP2004220922A (ja) * 2003-01-15 2004-08-05 Nissin Electric Co Ltd ガス絶縁開閉装置
JP2005086925A (ja) * 2003-09-10 2005-03-31 Japan Ae Power Systems Corp 開閉装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011097686A (ja) * 2009-10-28 2011-05-12 Mitsubishi Electric Corp ガス絶縁電気機器
JP2014212677A (ja) * 2013-04-22 2014-11-13 日新電機株式会社 開閉装置
WO2019123615A1 (ja) * 2017-12-21 2019-06-27 三菱電機株式会社 開閉装置
JP6452901B1 (ja) * 2017-12-21 2019-01-16 三菱電機株式会社 開閉装置
CN111837304B (zh) * 2018-03-14 2021-12-31 三菱电机株式会社 气体绝缘开关装置
WO2019175999A1 (ja) 2018-03-14 2019-09-19 三菱電機株式会社 ガス絶縁開閉装置
CN111837304A (zh) * 2018-03-14 2020-10-27 三菱电机株式会社 气体绝缘开关装置
US11095099B2 (en) 2018-03-14 2021-08-17 Mitsubishi Electric Corporation Gas-insulated switching device
JP6482738B1 (ja) * 2018-03-14 2019-03-13 三菱電機株式会社 ガス絶縁開閉装置
JP2019164900A (ja) * 2018-03-19 2019-09-26 株式会社日立産機システム 固体絶縁形の真空開閉器
WO2019181271A1 (ja) * 2018-03-19 2019-09-26 株式会社日立産機システム 固体絶縁形の真空開閉器
CN111837213A (zh) * 2018-03-19 2020-10-27 株式会社日立产机系统 固体绝缘型的真空开关
CN111837213B (zh) * 2018-03-19 2022-08-26 株式会社日立产机系统 固体绝缘型的真空开关
WO2020157933A1 (ja) 2019-01-31 2020-08-06 三菱電機株式会社 真空遮断器
US11462376B2 (en) 2019-01-31 2022-10-04 Mitsubishi Electric Corporation Vacuum circuit breaker
WO2023079740A1 (ja) * 2021-11-08 2023-05-11 三菱電機株式会社 消弧室、真空遮断器及び消弧室の組立方法
WO2023084700A1 (ja) 2021-11-11 2023-05-19 三菱電機株式会社 真空遮断器

Also Published As

Publication number Publication date
DE112011103758B4 (de) 2017-03-23
CN103201918B (zh) 2016-01-20
CN103201918A (zh) 2013-07-10
US9214306B2 (en) 2015-12-15
JP5183831B2 (ja) 2013-04-17
US20130213937A1 (en) 2013-08-22
DE112011103758T5 (de) 2013-10-02
JPWO2012063501A1 (ja) 2014-05-12

Similar Documents

Publication Publication Date Title
JP5183831B2 (ja) ガス絶縁開閉装置
TWI627650B (zh) Switching device and fuse unit
JP5140190B2 (ja) ガス絶縁真空遮断器
US20110000922A1 (en) Pressurized container arrangement with a compensation bellows
US9601240B2 (en) High-voltage insulator
JP6469226B2 (ja) 高電圧回路遮断器、およびシステム
JP5612335B2 (ja) 電力接続装置
JP5239913B2 (ja) タンク型真空遮断器
JP5116907B2 (ja) ガス絶縁開閉装置
JP5400227B2 (ja) ガス絶縁電気機器
JP5693797B2 (ja) 電力開閉装置
US10347447B2 (en) Tank type vacuum circuit breaker
JP2004220999A (ja) 密閉型開閉装置
JP5330192B2 (ja) ガス絶縁電気機器
JP6462973B1 (ja) ガス絶縁開閉装置
CN111630619B (zh) 高压功率开关和用于固持真空开关管的方法
JP4309386B2 (ja) スイッチギア
JPWO2019175999A1 (ja) ガス絶縁開閉装置
KR20130008541A (ko) 가스-절연된, 금속-클래드, 단상 또는 다상 개폐기 유닛
JP5152148B2 (ja) ガス絶縁開閉装置およびその製造方法
WO2019123615A1 (ja) 開閉装置
JPS6341785Y2 (ja)
JP2004320854A (ja) 密閉形開閉器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840388

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012542259

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13882714

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112011103758

Country of ref document: DE

Ref document number: 1120111037589

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11840388

Country of ref document: EP

Kind code of ref document: A1