WO2012062016A1 - 发光二极管及其制造方法、发光装置 - Google Patents

发光二极管及其制造方法、发光装置 Download PDF

Info

Publication number
WO2012062016A1
WO2012062016A1 PCT/CN2010/080652 CN2010080652W WO2012062016A1 WO 2012062016 A1 WO2012062016 A1 WO 2012062016A1 CN 2010080652 W CN2010080652 W CN 2010080652W WO 2012062016 A1 WO2012062016 A1 WO 2012062016A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
substrate
emitting diode
electrode
led
Prior art date
Application number
PCT/CN2010/080652
Other languages
English (en)
French (fr)
Inventor
张汝京
肖德元
Original Assignee
映瑞光电科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 映瑞光电科技(上海)有限公司 filed Critical 映瑞光电科技(上海)有限公司
Priority to EP10829323.4A priority Critical patent/EP2560216B1/en
Priority to MYPI2011002043A priority patent/MY186695A/en
Priority to US13/129,386 priority patent/US8937322B2/en
Publication of WO2012062016A1 publication Critical patent/WO2012062016A1/zh
Priority to US14/549,286 priority patent/US9306122B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector

Definitions

  • Light emitting diode manufacturing method thereof, and light emitting device
  • the present invention relates to the field of semiconductor technology, and more particularly to a light emitting diode, a method of fabricating the same, and a light emitting device.
  • a light emitting diode is a semiconductor device that is excited in response to a current to generate light of various colors.
  • the III-V compound semiconductor represented by gallium nitride has characteristics such as wide band gap, high luminous efficiency, high electron saturation drift speed, and stable chemical properties, and high-intensity blue light-emitting diodes, blue lasers, and the like.
  • the field of optoelectronic devices has great potential for application and has attracted widespread attention.
  • semiconductor light emitting diodes currently have a problem of low luminous efficiency.
  • the light extraction efficiency is generally only a few percent.
  • a large amount of energy is collected inside the device and cannot be emitted, which causes energy waste and affects the service life of the device. Therefore, it is important to improve the light-emitting efficiency of the semiconductor light-emitting diode.
  • Chinese Patent Application Publication No. CN1858918A discloses a light-emitting diode, and the lower surface of the light-emitting diode forms a full-angle mirror structure, which can improve the light-emitting efficiency of the light-emitting diode.
  • this method requires more formation on the substrate.
  • the thin film structure in which the layer is composed of a high refractive index layer and a low refractive index layer is complicated in fabrication process.
  • the problem to be solved by the present invention is to provide a light emitting diode having high luminous efficiency.
  • the present invention provides a light emitting diode comprising a first electrode for connecting a light emitting diode and a negative electrode of a power source; a substrate on the first electrode; a light emitting diode die on the substrate; Wherein, a plurality of contact holes penetrating through the substrate are formed in the substrate, the upper aperture size of the contact hole is smaller than a size of a lower aperture, and the contact hole is filled with an electrode for connecting the first electrode and the LED die Plug.
  • the present invention also provides a light emitting device comprising any one of the light emitting diodes, wherein the light emitting device further comprises a base, and the light emitting diode is mounted on the base.
  • the present invention further provides a method for fabricating a light emitting diode, comprising: sequentially forming a light emitting diode die and a second electrode on a substrate; patterning a back surface of the substrate to form an inverted trapezoidal contact exposing the LED die a hole; filling the inverted trapezoidal contact hole with a conductive material until the conductive material covers the back surface of the substrate.
  • the present invention has the following advantages:
  • a contact hole is formed in the substrate, and the first electrode is electrically connected to the LED die through the electrode plug formed in the contact hole, thereby reducing the current density, thereby reducing the Auger recombination and improving the LED.
  • the upper aperture size of the contact hole is smaller than the lower aperture size, and the substrate surrounding the contact hole has a sidewall that can reflect the light emitted by the LED die to the light emitting surface of the LED. Thereby improving the light-emitting efficiency of the light-emitting diode;
  • FIG. 1 is a schematic view of an embodiment of a light-emitting device of the present invention
  • FIG. 2 is a schematic flow chart of an embodiment of a light-emitting diode manufacturing method of the present invention
  • Fig. 9 is a flow chart of the step S2 - embodiment shown in Fig. 2.
  • the inventors of the present invention provide a light emitting device including a light emitting diode, the light emitting diode including a first electrode for connecting the light emitting diode and the negative electrode of the power source; a substrate on the first electrode, a light emitting diode die, wherein a plurality of contact holes penetrating through the substrate are formed in the substrate, and an upper aperture size of the contact hole is larger than a size of a lower aperture, and the contact hole is filled with a useful And an electrode plug connecting the first electrode and the LED die, wherein the first electrode is connected to the LED die through an electrode plug formed in the plurality of contact holes, thereby reducing current density and reducing Auger recombination, thereby
  • the internal quantum efficiency of the light-emitting diode can be improved, thereby improving the light-emitting efficiency of the light-emitting diode.
  • the light emitting device includes: the light emitting device includes: a base 101; and a light emitting diode 109 mounted in the base 101, wherein
  • the susceptor 101 includes a mounting recess for accommodating the light emitting diode 109, and an angle ⁇ 130 between the side wall of the mounting recess and the bottom surface of the mounting recess. ⁇ 150.
  • the sidewall of the mounting recess can be used to reflect the light emitted by the LED 109 and reflect the light emitted by the LED 109 to the light-emitting surface of the LED 109, thereby improving the light-emitting efficiency of the LED.
  • the susceptor 101 is made of a conductive material having a good heat dissipation property. On the one hand, the heat generated by the light emitting diode can be conducted, and the susceptor 101 is used to electrically connect the light emitting diode 109 and the negative pole of the power source.
  • the pedestal is made of a material such as silicon or aluminum; the upper opening of the mounting recess has a size of 4 micrometers, and the bottom opening of the mounting recess has a size of 2 micrometers, and the upper opening is large, and the bottom opening is small.
  • the pit can ensure that the angle between the side wall of the fitting pit and the bottom surface of the fitting pit is 130. ⁇ 150. In the range, the sidewall of the assembly pit can reflect the light emitted by the LED to the light-emitting surface of the light-emitting device.
  • the base 101 is further connected with a first lead for connecting the base 101 and the power source.
  • the light emitting diode 109 is disposed in the mounting recess of the susceptor 101 and includes: a first electrode 102, a substrate 103 on the first electrode 102, a light emitting diode die on the substrate 103, and a light emitting diode die.
  • the second electrode 108 wherein the first electrode 102 is disposed on the bottom surface of the pedestal of the pedestal 101 for electrically connecting the light emitting diode 109 and the negative pole of the power source.
  • the first electrode 102 is used. Made of conductive metal such as titanium, aluminum or gold.
  • the first electrode 102 also covers the sidewall of the susceptor 101 to increase the contact area of the first electrode 102 with the susceptor 101.
  • a plurality of contact holes penetrating the substrate 103 are formed in the substrate 103, and the contact holes are filled with electrode plugs 104 for connecting the first electrodes and the LED dies.
  • the material of the substrate 103 is sapphire.
  • the material of the electrode plug 104 is a conductive metal such as titanium, aluminum or gold.
  • the plurality of contact holes are evenly distributed in the sapphire substrate, and the electrode plugs 104 formed in the plurality of contact holes are used to realize electrical connection between the first electrode and the LED die, which can be reduced. The effect of current density, thereby reducing Auger recombination, and improving the internal quantum efficiency of the LED, thereby improving the light-emitting efficiency of the LED.
  • the contact hole Above the contact hole is a light emitting diode die, and below the contact hole is a first electrode.
  • the contact hole has a trapezoidal cross section, and the upper aperture size is smaller than the lower aperture size.
  • the contact aperture has a lower aperture size of between 5 micrometers and 20 micrometers.
  • the upper aperture size of the contact hole is smaller than the lower aperture size, so that the sidewall surrounding the contact hole has a certain inclination angle, and the sidewall can reflect the light emitted by the LED die to the sidewall of the light emitting diode light emitting surface. , thereby improving the light-emitting efficiency of the light-emitting diode.
  • the material includes N-type gallium nitride; the active layer 106 includes a multiple quantum well active layer, specifically, the material of the multiple quantum well active layer includes indium gallium nitride; the P-doped semiconductor layer 107 Materials include P-type gallium nitride.
  • the second electrode 108 is disposed above the LED die for electrically connecting the LED 109 and the positive electrode of the power source.
  • the second electrode 108 is made of a conductive metal material of nickel or gold.
  • the A second lead is also connected to the second electrode 108 for connecting the light emitting diode 109 and the positive electrode of the power source.
  • the illuminating device further includes a lens structure 110.
  • the lens structure covers the light emitting diode for concentrating light emitted by the light emitting diode 109 to improve the brightness of the illuminating device.
  • the lens structure 110 is further filled in a gap between the light emitting diode 109 and the susceptor 101; in particular, the lens structure 110 can condense light emitted by the LED dies (as shown by the optical path B).
  • the light emitting diode die may be concentrated, transmitted through the sidewall of the pedestal or by light reflected from the first electrode on the sidewall of the pedestal (as shown by the optical path A); the luminescent diode die may also be condensed, Light reflected by the sidewalls of the trapezoidal substrate assembly (as shown by optical path C), which can increase the brightness of the illumination device.
  • the light emitting device further includes a phosphor (not shown) overlying the lens structure for emitting white light. Specifically, for a blue light emitting diode, the phosphor is a Ce 3+ containing YAG phosphor.
  • the present invention also provides a method for fabricating a light emitting diode.
  • FIG. 2 a schematic flow chart of an embodiment of a method for fabricating a light emitting diode according to the present invention is shown.
  • Manufacturer of the light emitting diode The law includes:
  • step S1 is performed.
  • the substrate 201 is sapphire.
  • N is sequentially formed on the substrate 201 by a metal-organic chemical vapor deposition (MOCVD) method.
  • MOCVD metal-organic chemical vapor deposition
  • the doped semiconductor layer 207, the active layer 208, and the P-type doped semiconductor layer 209 are formed to form an N-doped semiconductor layer 207, an active layer 208, and a P-type doped semiconductor layer 209.
  • the material of the N-doped semiconductor layer 207 is N-type gallium nitride; the active layer 208 may be a single quantum well active layer or a multiple quantum well active
  • the layer, for example, the active layer 208 is a multi-quantum well active layer material of indium gallium nitride; the material of the P-doped semiconductor layer 209 is P-type gallium nitride.
  • step S1 is continued to form a second electrode on the LED die.
  • the second electrode is made of nickel or gold, and is vapor-deposited by physical vapor deposition (PVD) or electron gun. The method forms the second electrode.
  • step S1 and step S2 further comprising performing a thinning process on the back surface of the substrate 201, specifically, performing a thinning process on the back surface of the substrate 201 by chemical mechanical polishing.
  • the thinned substrate 201 has a thickness of 20 to 50 microns, and the thinning process reduces the thickness of the substrate 201 (as shown in FIG. 5), facilitating subsequent patterning.
  • step S2 referring to FIG. 9, a flowchart of the step S2 shown in FIG. 2 is shown.
  • the step S2 includes: Step S21, forming a hard mask on the back surface of the substrate;
  • Step S22 using the hard mask as a mask to directly engrave the back surface of the substrate, forming a plurality of inverted trapezoidal contact holes until the LED die is exposed;
  • Step S23 removing the hard mask.
  • step S21 is performed to deposit a hard mask material on the back side of the substrate 201, and then the hard mask material is patterned by photolithography and etching to form a hard mask 206, specifically, the hard mask.
  • the material of 206 is silica.
  • step S22 is performed, using the hard mask 206 as a mask, etching is performed from the back surface of the substrate 201 by wet etching, and a plurality of cross sections are formed in the unmasked area of the hard mask 206 pattern.
  • a trapezoidal contact hole until the contact hole exposes the LED die specifically, the substrate is sapphire, and the sapphire substrate 201 is anisotropically etched using a mixed solution of sulfuric acid and phosphoric acid;
  • the solution used in the wet etching method requires a large selection ratio of the substrate 201 and the hard mask 206, thereby avoiding etching the hard mask 206 while etching the substrate 201.
  • the substrate 201 is sapphire.
  • the hard mask 206 is silicon dioxide, and the substrate 201 is etched by using a mixed solution of sulphuric acid and an acid, and the corrosive effect of the mixed solution of the acid and the acid on the silicon dioxide is compared. small.
  • the material of the hard mask is silicon dioxide, and the hard mask 206 is removed by a hydrofluoric acid solution.
  • the spacing between the plurality of hard mask patterns in the hard mask 206 is 5 to 20 microns; the depth of the contact hole exposing the LED die is the same as the depth of the substrate 201 Specifically, the contact hole has a depth in a range of 20 to 50 micrometers, and the contact hole has a lower aperture size of 5 to 20 micrometers.
  • step S3 is performed to fill the contact hole with a conductive material by physical vapor deposition (PVD) until the contact hole is filled, and a conductive material layer covering the back surface of the substrate is formed.
  • PVD physical vapor deposition
  • the conductive material layer covering the back surface of the substrate constitutes the first electrode 202, and the conductive material filled in the contact hole constitutes the electrode plug of the first electrode 202, and the first electrode 202 is doped by the electrode plug and the N-type doping.
  • the semiconductor layer 207 is electrically connected.
  • the conductive material is a conductive metal such as titanium, aluminum or gold.
  • the angle between the side wall of the assembly pit of the base and the bottom surface is 130. ⁇ 150.
  • the sidewall of the mounting pit can reflect the light emitted by the LED, and can improve the light-emitting efficiency of the LED.
  • the susceptor is made of a conductive material having good heat dissipation properties, such as silicon or aluminum; the upper opening of the mounting pit has a size of 4 micrometers, and the bottom surface of the mounting recess has a size of 2 micrometers.
  • the method for fabricating the light emitting device further includes: forming a lens structure covering the second electrode, preferably forming a lens junction covering the second electrode and filling the gap between the light emitting diode and the base
  • the lens structure can condense light emitted by the light emitting diode.
  • the manufacturing method of the light emitting device further comprises: coating a phosphor structure on the lens structure for emitting white light, for example, a light emitting diode for emitting blue light, and coating a lens structure with a Ce 3+ containing YAG phosphor to emit White light.
  • the method for fabricating the light emitting device further comprises: forming a conductive material covering the sidewall, the conductive material being connected to the first electrode at the bottom of the LED (as shown in FIG. 1) to increase the first The contact area of the electrode and the pedestal to achieve a good electrical connection.
  • the manufacturing method of the light-emitting device further includes a first lead connecting the base and the negative pole of the power source, a second lead connecting the second electrode and the positive pole of the power source, and the like, which is the same as the prior art, and will not be described again. At this point, the illuminating device is completed. In the manufacturing method of the present invention, the manufacturing process is relatively simple.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Description

发光二极管及其制造方法、 发光装置
本申请要求于 2010 年 11 月 9 日提交中国专利局、 申请号为 201010538428.3、 发明名称为 "发光二极管及其制造方法、 发光装置"的中国 专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及半导体技术领域, 更具体地, 本发明涉及一种发光二极管及其 制造方法、 发光装置。
背景技术
发光二极管( LED )是响应电流而被激发从而产生各种颜色的光的半导体 器件。其中, 以氮化镓(GaN )为代表的 III- V族化合物半导体由于具有带隙宽、 发光效率高、 电子饱和漂移速度高、 化学性质稳定等特点, 在高亮度蓝光发光 二极管、蓝光激光器等光电子器件领域有着巨大的应用潜力, 引起了人们的广 泛关注。
然而, 目前半导体发光二极管存在着发光效率低的问题。对于未经封装的 发光二极管, 其出光效率一般只有百分之几。 大量的能量聚集在器件内部不能 出射, 既造成能量浪费, 又影响器件的使用寿命。 因此, 提高半导体发光二极 管的出光效率至关重要。
基于上述的应用需求,许多种提高发光二极管出光效率的方法被应用到器 件结构中, 例如表面粗糙化法, 金属反射镜结构等。 公开号为 CN1858918A的 中国专利申请公开了一种发光二极管,所述的发光二极管下表面形成全角度反 射镜结构, 可以提高发光二极管出光效率。 然而, 该方法需要在衬底上形成多 层由高折射率层与低折射率层堆叠而成的薄膜结构, 制作工艺复杂。
发明内容
本发明解决的问题是提供一种发光效率较高的发光二极管。
为解决上述问题, 本发明提供一种发光二极管, 包括第一电极, 用于连接 发光二极管与电源负极; 衬底, 位于所述第一电极上; 发光二极管管芯, 位于 所述衬底上; 其中, 所述衬底中形成有多个贯穿衬底的接触孔, 所述接触孔的 上孔径尺寸小于下孔径尺寸,所述接触孔中填充有用于连接第一电极和发光二 极管管芯的电极插塞。 相应地,本发明还提供一种包括所述任意一发光二极管的发光装置,其中, 所述发光装置还包括基座, 所述发光二极管安装于所述基座上。 相应地, 本发明还提供一种发光二极管的制造方法, 包括: 在衬底上依次 形成发光二极管管芯、 第二电极; 图形化所述衬底背面、 形成露出发光二极管 管芯的倒梯形接触孔; 向所述倒梯形接触孔中填充导电材料、直至所述导电材 料覆盖于衬底背面上。
与现有技术相比, 本发明具有以下优点:
1. 在衬底中形成有接触孔, 第一电极通过所述接触孔中形成的电极插塞 与发光二极管管芯电连接, 可达到降低电流密度的效果, 从而减少俄 歇复合, 提高 LED的内部量子效率的效果;
2. 所述接触孔的上孔径尺寸小于下孔径尺寸, 围成所述接触孔的衬底具 有可以将发光二极管管芯发出的光反射到发光二极管出光面的侧壁, 从而提高了发光二极管出光效率;
3. 所述制造方法中, 无需在衬底上形成多层薄膜结构, 制造方法较为筒 单。
附图说明 图 1是本发明发光装置一实施例的示意图; 图 2是本发明发光二极管制造方法一实施例的流程示意图; 图 3至图 8是本发明发光二极管制造方法形成的发光二极管一实施例的侧 面示意图; 图 9是图 2所示步骤 S2—实施例的流程图。
具体实施方式 为使本发明的上述目的、特征和优点能够更加明显易懂, 下面结合附图对 本发明的具体实施方式做详细的说明。 在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明 还可以采用其他不同于在此描述的其它方式来实施,因此本发明不受下面公开 的具体实施例的限制。 正如背景技术所述, 为提高发光二极管的出光效率,现有技术的发光二极 管需要在衬底上形成多层由高折射率层与低折射率层堆叠而成的薄膜结构,但 所述薄膜结构的制作工艺复杂。 针对上述问题, 本发明的发明人提供了一种包括发光二极管的发光装置, 所述发光二极管包括用于连接发光二极管与电源负极的第一电极;依次位于所 述第一电极上的衬底、发光二极管管芯, 所述衬底中形成有多个贯穿衬底的接 触孔, 所述接触孔的上孔径尺寸大于下孔径尺寸, 所述接触孔中填充有用于连 接第一电极和发光二极管管芯的电极插塞,所述第一电极通过多个接触孔内形 成的电极插塞与发光二极管管芯相连, 可减小电流密度, 减少俄歇复合, 从而 可提高发光二极管的内部量子效率, 进而提高了发光二极管的出光效率。
参考图 1 , 示出了本发明发光装置一实施例的示意图。 所述发光装置包括 所述发光装置包括: 基座 101、 以及安装于基座 101 内的发光二极管 109, 其 中,
基座 101 , 所述基座 101包括装配凹坑, 用于容纳所述发光二极管 109, 所述装配凹坑的侧壁与装配凹坑的底面之间的角度 Θ为 130。~150。, 所述装配 凹坑的侧壁可用于反射发光二极管 109发出的光, 并将所述发光二极管 109 发出的光反射至发光二极管 109 的出光面, 进而可以提高发光装置的出光效 率。
所述基座 101采用散热性能好的导电材料,一方面可以使发光二极管产生 的热量传导出去,另一方面基座 101用于实现发光二极管 109和电源负极的电 连接。
具体地, 所述基座采用硅或铝等材料; 所述装配凹坑的上开口尺寸为 4 微米, 所述装配凹坑的底面开口尺寸为 2微米, 上开口大、底面开口小的装配 凹坑, 可以保证装配凹坑的侧壁与装配凹坑的底面之间的角度 Θ在 130。~150。 范围内, 装配 坑的侧壁可将发光二极管发出的光反射到发光装置的出光面。 较佳地, 所述基座 101上还连接有第一引线, 用于连接基座 101和电源的 所述发光二极管 109设置于基座 101的装配凹坑中,包括:第一电极 102、 位于第一电极 102上的衬底 103、 位于衬底 103上的发光二极管管芯、 位于发 光二极管管芯上的第二电极 108, 其中 所述第一电极 102、 设置于基座 101装配凹坑的底面上, 用于实现发光二 极管 109和电源负极之间的电连接, 具体地, 第一电极 102采用钛、 铝或金等 导电金属制成。 为了实现良好的电性连接, 较佳地, 所述第一电极 102还覆盖 于所述基座 101的侧壁上, 以增大第一电极 102与基座 101的接触面积。 衬底 103中形成有多个贯穿所述衬底 103的接触孔,所述接触孔中填充有 用于连接第一电极和发光二极管管芯的电极插塞 104。 具体地, 衬底 103的材 料为蓝宝石, 具体地, 所述电极插塞 104的材料为钛、 铝或金等导电金属。 所 述多个接触孔均匀分布于所述蓝宝石衬底中,形成于所述多个接触孔中的电极 插塞 104, 用于实现第一电极和发光二极管管芯间的电连接, 可以达到降低电 流密度的效果, 从而减少俄歇复合, 提高 LED的内部量子效率的效果, 从而 提高了发光二极管出光效率。 所述接触孔的上方为发光二极管管芯, 所述接触孔的下方为第一电极。所 述接触孔的横截面为梯形, 其上孔径尺寸小于下孔径尺寸, 本实施例中, 所述 接触孔的下孔径尺寸在 5微米至 20微米之间。 所述接触孔的上孔径尺寸小于 下孔径尺寸,使围成所述接触孔的侧壁具有一定倾斜角度, 所述侧壁可以将发 光二极管管芯发出的光反射到发光二极管出光面的侧壁,从而提高了发光二极 管出光效率。 依次位于衬底 103和电极插塞 104上的 N型掺杂的半导体层 105、有源层 106和 P型掺杂的半导体层 107构成发光二极管管芯, 其中, N型掺杂的半导 体层 105的材料包括 N型氮化镓; 有源层 106包括多量子阱有源层, 具体地, 所述多量子阱有源层的材料包括氮化铟镓;所述 P型掺杂的半导体层 107的材 料包括 P型氮化镓。 所述第二电极 108 位于发光二极管管芯上方, 用于实现发光二极管 109 和电源正极之间的电连接,具体地,第二电极 108采用镍或金的导电金属材料, 较佳地, 所述第二电极 108 上还连接有第二引线, 用于连接发光二极管 109 和电源正极。 较佳地, 所述发光装置还包括透镜结构 110, 所述透镜结构覆盖于发光二 极管之上, 用于会聚发光二极管 109发出的光线, 以提高发光装置的亮度。 较 佳地,所述透镜结构 110还填充于所述发光二极管 109和基座 101之间的空隙 中; 具体地, 所述透镜结构 110可以会聚发光二极管管芯发出的光(如光路 B 所示); 可以会聚发光二极管管芯发出、 经由基座侧壁或由覆盖于基座侧壁上 的第一电极反射的光(如光路 A所示); 还可以会聚发光二极管管芯发出、 经 由倒梯形的衬底组件的侧壁反射的光(如光路 C所示), 所述透镜结构可以提 高发光装置的亮度。 所述发光装置还包括覆盖于透镜结构上的荧光粉(图未示), 用于发出白 光。具体地,对于发出蓝光的发光二极管,所述荧光粉为含 Ce3+的 YAG荧光粉。
相应地, 本发明还提供一种发光二极管的制造方法, 参考图 2, 示出了本 发明发光二极管制造方法一实施方式的流程示意图。所述发光二极管的制造方 法包括:
51 , 在衬底上依次形成发光二极管管芯、 第二电极;
52, 图形化所述衬底背面、 形成露出发光二极管管芯的倒梯形接触孔;
53 , 向所述倒梯形接触孔中填充导电材料、直至形成覆盖于衬底背面上的 第一电极。
参考图 3至图 8, 示出了本发明发光二极管制造方法形成的发光装置一实 施例的侧面示意图。 下面结合附图对各步骤进行详细描述。 参考图 3 , 执行步骤 S1 , 本实施例中, 衬底 201为蓝宝石, 具体地, 通过 金属有机化合物化学气相淀积 (Metal-organic Chemical Vapor Deposition , MOCVD)的方法在衬底 201上依次形成 N型掺杂的半导体层 207、有源层 208、 P型掺杂的半导体层 209 ,从而形成了由 N型掺杂的半导体层 207、有源层 208、 P型掺杂的半导体层 209构成的发光二极管管芯,具体地, 所述 N型掺杂的半 导体层 207的材料为 N型氮化镓; 所述有源层 208可以是单量子阱有源层, 也可以是多量子阱有源层,例如所述有源层 208为氮化铟镓的多量子阱有源层 材料; 所述 P型掺杂的半导体层 209的材料为 P型氮化镓。
参考图 4,继续执行步骤 S1 ,在发光二极管管芯上形成第二电极,具体地, 第二电极的材料为镍或金, 通过物理气相沉积法 (Physical Vapor Deposition, PVD) 或电子枪蒸镀的方法形成所述第二电极。
较佳地,在执行步骤 S1和步骤 S2之间,还包括对所述衬底 201背面进行 减薄处理, 具体地, 通过化学机械研磨对所述衬底 201的背面进行减薄处理, 减薄后的衬底 201厚度为 20至 50微米,所述减薄处理减小了衬底 201的厚度 (如图 5所示), 便于进行后续图形化处理。
对于步骤 S2, 参考图 9, 示出了图 2所示步骤 S2—实施例的流程图, 所 述步骤 S2包括: 步骤 S21 , 在衬底的背面形成硬掩模;
步骤 S22, 以所述硬掩模为掩模独刻所述衬底背面, 形成多个倒梯形接触 孔、 直至露出发光二极管管芯;
步骤 S23 , 去除硬掩模。
参考图 6, 执行步骤 S21 , 在衬底 201的背面沉积硬掩模材料, 然后通过 光刻和蚀刻的方法将硬掩模材料图形化, 形成硬掩模 206, 具体地, 所述硬掩 模 206的材料为二氧化硅。
参考图 7, 执行步骤 S22, 以所述硬掩模 206为掩模, 通过湿法腐蚀法, 从衬底 201背面开始蚀刻,在硬掩膜 206图形未遮挡的区域形成多个横截面为 倒梯形的接触孔, 直至所述接触孔露出发光二极管管芯, 具体地, 衬底为的蓝 宝石, 采用硫酸和磷酸的混合溶液对蓝宝石的衬底 201进行各向异性腐蚀; 需要说明的是, 所述湿法腐蚀法采用的溶液需对衬底 201 和硬掩模 206 具有较大的选择比,从而避免在蚀刻衬底 201的同时腐蚀硬掩模 206,具体地, 所述衬底 201为蓝宝石衬底(即氧化铝), 所述硬掩模 206为二氧化硅, 采用 石克酸和騎酸混合溶液蚀刻所述衬底 201 , 酸和騎酸的混合溶液对二氧化硅的 腐蚀作用较小。 对于步骤 S23 , 具体地, 硬掩膜的材料为二氧化硅, 通过氢氟酸溶液去除 硬掩模 206。 对于步骤 S1 ,较佳地,所述硬掩模 206中多个硬掩模图形之间的间距为 5 至 20微米;所述露出发光二极管管芯的接触孔的深度与衬底 201的深度相同, 具体地, 所述接触孔的深度在 20至 50微米的范围内, 所述接触孔的下孔径尺 寸为 5至 20微米。 参考图 8,执行步骤 S3 ,通过物理气相沉积法 (Physical Vapor Deposition, PVD)向所述接触孔中填充导电材料直至填满所述接触孔, 并形成覆盖于衬底 背面上的导电材料层, 其中覆盖于衬底背面上的导电材料层构成第一电极 202、 填充于接触孔中的导电材料构成第一电极 202的电极插塞, 所述第一电 极 202通过电极插塞与 N型掺杂的半导体层 207电连接, 具体地, 所述导电 材料为钛、 铝或金等导电金属。 至此, 完成了发光二极管的制作过程。 包括发光二极管的发光装置的制作方法还包括: 提供基座, 所述基座包括 装配凹坑; 按照第一电极与装配凹坑底面相连的倒装方式,将发光二极管固定 于基座的装配 坑底面。其中, 所述基座的装配 坑侧壁与底面之间的角度为 130。~150。, 所述装配凹坑的侧壁可以反射发光二极管发出的光, 可以提高发 光二极管的出光效率。 所述基座采用散热性能好的导电材料, 例如硅或铝等; 所述装配凹坑的上开口尺寸为 4微米,所述装配凹坑的底面开口尺寸为 2微米。 所述发光装置的制作方法还包括: 形成覆盖于第二电极上的透镜结构,较 佳地, 形成覆盖于第二电极上、并填充于发光二极管和基座之间空隙的透镜结 构, 所述透镜结构可以会聚发光二极管发出的光。 所述发光装置的制作方法还包括: 在透镜结构上涂覆荧光粉, 用于发出白 光,例如,发光二极管用于发出蓝光,在透镜结构上涂覆含 Ce3+的 YAG荧光粉, 以发出白光。
较佳地,所述发光装置的制作方法还包括,形成覆盖于侧壁上的导电材料, 所述导电材料与发光二极管底部的第一电极相连(如图 1所示), 以增大第一 电极与基座的接触面积, 以实现良好的电性连接。 所述发光装置的制造方法还包括设置连接基座和电源负极的第一引线、设 置连接第二电极和电源正极的第二引线等, 与现有技术相同, 不再赘述。 至此, 发光装置即制作完成。 本发明的制造方法, 制造工艺较为筒单。
虽然本发明己以较佳实施例披露如上,但本发明并非限定于此。任何本领 域技术人员, 在不脱离本发明的精神和范围内, 均可作各种更动与修改, 因此 本发明的保护范围应当以权利要求所限定的范围为准。

Claims

权 利 要 求
1. 一种发光二极管, 其特征在于, 包括:
第一电极, 用于连接发光二极管与电源负极;
衬底, 位于所述第一电极上;
发光二极管管芯, 位于所述衬底上; 其中,
所述衬底中形成有多个贯穿衬底的接触孔, 所述接触孔的上孔径尺寸小于 下孔径尺寸,所述接触孔中填充有用于连接第一电极和发光二极管管芯的电极 插塞。
2. 如权利要求 1 所述的发光二极管, 其特征在于, 所述接触孔下孔径的尺寸 在 5至 20微米的范围内。
3. 如权利要求 1 所述的发光二极管, 其特征在于, 所述发光二极管还包括位 于发光二极管管芯上的第二电极, 所述第二电极连接发光二极管与电源正 极。
4. 一种包括如权利要求 1 所述发光二极管的发光装置, 其中, 所述发光装置 还包括基座, 所述发光二极管安装于所述基座上。
5. 如权利要求 4所述的发光装置, 其中, 所述基座包括用于安装所述发光二 极管的装配 坑, 所述装配 坑的侧壁与装配 坑的底面之间的角度为 130ο~150ο
6. 如权利要求 4所述的发光装置, 其中, 所述发光装置还包括覆盖于发光二 极管上的透镜结构。
7. 如权利要求 4所述的发光装置, 其中, 所所述发光装置还包括覆盖于发光 二极管上、 且填充于所述发光二极管和装配凹坑的侧壁之间的空隙中的透 镜结构。
8. 如权利要求 6所述的发光装置, 其中, 所述发光装置还包括覆盖于透镜结 构上的荧光粉。
9. 如权利要求 7所述的发光装置, 其中, 所述发光装置还包括覆盖于透镜结 构上的荧光粉。
10.—种发光二极管的制造方法, 其特征在于, 包括:
在衬底上依次形成发光二极管管芯、 第二电极;
图形化所述衬底背面、 形成露出发光二极管管芯的倒梯形接触孔; 向所述倒梯形接触孔中填充导电材料、 直至所述导电材料覆盖于衬底背面。
11.如权利要求 10所述的发光二极管的制造方法, 其特征在于, 图形化所述衬 底背面、 形成露出发光二极管管芯的倒梯形接触孔的步骤包括: 在衬底的 背面形成硬掩模; 以所述硬掩模为掩模蚀刻所述衬底背面, 形成多个倒梯 形接触孔、 直至露出发光二极管管芯; 去除硬掩模。
12.如权利要求 11所述的发光二极管的制造方法, 其特征在于, 所述衬底为蓝 宝石, 所述硬掩膜为二氧化硅, 所述以所述硬掩模为掩模蚀刻所述衬底背 面, 形成多个倒梯形接触孔、 直至露出发光二极管管芯的步骤包括: 采用 硫酸和磷酸的混合溶液对蓝宝石衬底的上表面进行各向异性腐蚀。
13.如权利要求 11所述的发光二极管的制造方法, 其特征在于, 所述去除硬掩 模的步骤包括, 通过氢氟酸溶液去除硬掩模。
14.如权利要求 10所述的发光二极管的制造方法, 其特征在于, 图形化衬底背 面之前, 还包括从衬底的背面对衬底进行减薄处理。
15.如权利要求 10所述的发光二极管的制造方法, 其特征在于, 所述向所述倒 梯形接触孔中填充导电材料的步骤包括: 通过物理气相沉积法向所述接触 孔中填充导电材料。
PCT/CN2010/080652 2010-11-09 2010-12-31 发光二极管及其制造方法、发光装置 WO2012062016A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10829323.4A EP2560216B1 (en) 2010-11-09 2010-12-31 Light emitting diode and manufacturing method thereof, light emitting device
MYPI2011002043A MY186695A (en) 2010-11-09 2010-12-31 A light emitting diode and a manufacturing method thereof a light emitting device
US13/129,386 US8937322B2 (en) 2010-11-09 2010-12-31 Light emitting diode and a manufacturing method thereof, a light emitting device
US14/549,286 US9306122B2 (en) 2010-11-09 2014-11-20 Light emitting diode and a manufacturing method thereof, a light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010538428.3 2010-11-09
CN201010538428.3A CN102054914B (zh) 2010-11-09 2010-11-09 发光二极管及其制造方法、发光装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/129,386 A-371-Of-International US8937322B2 (en) 2010-11-09 2010-12-31 Light emitting diode and a manufacturing method thereof, a light emitting device
US14/549,286 Division US9306122B2 (en) 2010-11-09 2014-11-20 Light emitting diode and a manufacturing method thereof, a light emitting device

Publications (1)

Publication Number Publication Date
WO2012062016A1 true WO2012062016A1 (zh) 2012-05-18

Family

ID=43959062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/080652 WO2012062016A1 (zh) 2010-11-09 2010-12-31 发光二极管及其制造方法、发光装置

Country Status (5)

Country Link
US (2) US8937322B2 (zh)
EP (1) EP2560216B1 (zh)
CN (1) CN102054914B (zh)
MY (1) MY186695A (zh)
WO (1) WO2012062016A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113066791A (zh) * 2020-06-05 2021-07-02 友达光电股份有限公司 显示装置
CN113838842A (zh) * 2020-12-22 2021-12-24 友达光电股份有限公司 显示面板

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102916101A (zh) * 2011-08-04 2013-02-06 东莞市福地电子材料有限公司 一种倒装结构的发光二极管芯片
CN102810609B (zh) * 2012-08-16 2015-01-21 厦门市三安光电科技有限公司 一种紫外半导体发光器件及其制造方法
CN103066191A (zh) * 2013-01-08 2013-04-24 鹤山丽得电子实业有限公司 一种led光源及其制造方法
CN104993031B (zh) * 2015-06-12 2018-03-06 映瑞光电科技(上海)有限公司 高压倒装led芯片及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020117681A1 (en) * 2001-02-23 2002-08-29 Weeks T. Warren Gallium nitride material devices and methods including backside vias
US20040173810A1 (en) * 2003-03-03 2004-09-09 Ming-Der Lin Light emitting diode package structure
US20040217361A1 (en) * 2003-04-30 2004-11-04 Negley Gerald H. Light-emitting devices having an active region with electrical contacts coupled to opposing surfaces thereof and methods of forming the same
CN1858918A (zh) 2005-04-30 2006-11-08 中国科学院半导体研究所 全角度反射镜结构GaN基发光二极管及制作方法
CN1860620A (zh) * 2003-09-30 2006-11-08 株式会社东芝 发光装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6657237B2 (en) * 2000-12-18 2003-12-02 Samsung Electro-Mechanics Co., Ltd. GaN based group III-V nitride semiconductor light-emitting diode and method for fabricating the same
EP1225643A1 (en) * 2001-01-23 2002-07-24 Interuniversitair Microelektronica Centrum Vzw High efficiency unilateral light emitting device and method for fabricating such device
US6833566B2 (en) 2001-03-28 2004-12-21 Toyoda Gosei Co., Ltd. Light emitting diode with heat sink
EP1460694A1 (en) 2001-11-19 2004-09-22 Sanyo Electric Co., Ltd. Compound semiconductor light emitting device and its manufacturing method
US6794282B2 (en) * 2002-11-27 2004-09-21 Infineon Technologies Ag Three layer aluminum deposition process for high aspect ratio CL contacts
JP2006066868A (ja) 2004-03-23 2006-03-09 Toyoda Gosei Co Ltd 固体素子および固体素子デバイス
CA2552908C (en) * 2004-08-06 2010-07-20 A. L. M. T. Corp. Collective substrate, semiconductor element mount, semiconductor device, imaging device, light emitting diode component and light emitting diode
TW200616254A (en) * 2004-11-12 2006-05-16 Univ Nat Central Light emitting diode structure and manufacturing method thereof
KR101197046B1 (ko) 2005-01-26 2012-11-06 삼성디스플레이 주식회사 발광다이오드를 사용하는 2차원 광원 및 이를 이용한 액정표시 장치
JP5148849B2 (ja) * 2006-07-27 2013-02-20 スタンレー電気株式会社 Ledパッケージ、それを用いた発光装置およびledパッケージの製造方法
JP2008060330A (ja) 2006-08-31 2008-03-13 Toshiba Corp 素子搭載用回路基板およびそれを用いた発光装置
US7520644B2 (en) 2006-12-28 2009-04-21 Robert Jordan Transom drain light
CN201044245Y (zh) 2007-04-29 2008-04-02 亿光电子工业股份有限公司 发光二极管
CN101315959A (zh) * 2007-06-01 2008-12-03 富士迈半导体精密工业(上海)有限公司 高亮度发光二极管
CN100555691C (zh) 2007-09-11 2009-10-28 东南大学 提高功率型发光二极管出光效率的封装结构
KR100891761B1 (ko) 2007-10-19 2009-04-07 삼성전기주식회사 반도체 발광소자, 그의 제조방법 및 이를 이용한 반도체발광소자 패키지
KR101449035B1 (ko) 2008-04-30 2014-10-08 엘지이노텍 주식회사 반도체 발광소자
US20110108800A1 (en) 2008-06-24 2011-05-12 Pan Shaoher X Silicon based solid state lighting
CN201307601Y (zh) * 2008-09-09 2009-09-09 厦门市三安光电科技有限公司 一种填充式倒梯形微结构高亮度发光二极管
JP2010080800A (ja) * 2008-09-29 2010-04-08 Seiko Instruments Inc 発光デバイス及びその製造方法
KR101103882B1 (ko) * 2008-11-17 2012-01-12 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
JP5363789B2 (ja) 2008-11-18 2013-12-11 スタンレー電気株式会社 光半導体装置
TW201034258A (en) * 2009-03-11 2010-09-16 Forward Electronics Co Ltd LED packaging structure
KR101541512B1 (ko) 2009-03-31 2015-08-03 삼성전자 주식회사 발광 장치
US20120037935A1 (en) * 2010-08-13 2012-02-16 Wen-Kun Yang Substrate Structure of LED (light emitting diode) Packaging and Method of the same
CN102130256A (zh) 2010-10-15 2011-07-20 映瑞光电科技(上海)有限公司 发光二极管及其制造方法
CN102054913B (zh) 2010-11-09 2013-07-10 映瑞光电科技(上海)有限公司 发光二极管及其制造方法、发光装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020117681A1 (en) * 2001-02-23 2002-08-29 Weeks T. Warren Gallium nitride material devices and methods including backside vias
US20040173810A1 (en) * 2003-03-03 2004-09-09 Ming-Der Lin Light emitting diode package structure
US20040217361A1 (en) * 2003-04-30 2004-11-04 Negley Gerald H. Light-emitting devices having an active region with electrical contacts coupled to opposing surfaces thereof and methods of forming the same
CN1860620A (zh) * 2003-09-30 2006-11-08 株式会社东芝 发光装置
CN1858918A (zh) 2005-04-30 2006-11-08 中国科学院半导体研究所 全角度反射镜结构GaN基发光二极管及制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2560216A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113066791A (zh) * 2020-06-05 2021-07-02 友达光电股份有限公司 显示装置
CN113066791B (zh) * 2020-06-05 2023-06-30 友达光电股份有限公司 显示装置
CN113838842A (zh) * 2020-12-22 2021-12-24 友达光电股份有限公司 显示面板
CN113838842B (zh) * 2020-12-22 2023-11-10 友达光电股份有限公司 显示面板

Also Published As

Publication number Publication date
CN102054914A (zh) 2011-05-11
CN102054914B (zh) 2013-09-04
EP2560216A1 (en) 2013-02-20
EP2560216A4 (en) 2013-11-06
EP2560216B1 (en) 2016-11-30
US20130221387A1 (en) 2013-08-29
US9306122B2 (en) 2016-04-05
MY186695A (en) 2021-08-09
US8937322B2 (en) 2015-01-20
US20150079713A1 (en) 2015-03-19

Similar Documents

Publication Publication Date Title
CN102130260B (zh) 发光装置及其制造方法
WO2011143918A1 (zh) 发光二极管及其制造方法
US9306122B2 (en) Light emitting diode and a manufacturing method thereof, a light emitting device
WO2015101068A1 (zh) 发光二极管芯片及其制作方法
WO2012048506A1 (zh) 发光二极管及其制造方法
WO2012058961A1 (zh) 发光二极管及其制造方法
WO2016041471A1 (zh) 一种具有特殊粗化形貌的led垂直芯片结构及其制备方法
JP2012169615A (ja) ナノ構造を有する発光ダイオードおよびその製造方法
WO2021115473A1 (zh) 衬底及其制造方法、led及其制造方法
US8945958B2 (en) Methods for manufacturing light emitting diode and light emitting device
US8580587B2 (en) Light emitting device and manufacturing method thereof
WO2011143919A1 (zh) 发光二极管及其制造方法
CN101980391A (zh) 发光二极管及其制造方法
WO2012040978A1 (zh) 发光装置及其制造方法
KR20150091805A (ko) 반도체 발광소자 및 반도체 발광소자 패키지
KR20120005662A (ko) 발광 소자
TWI458129B (zh) 發光二極體晶片結構及其製造方法
TWI425656B (zh) 發光二極體晶片及其製造方法
TWI405358B (zh) 發光二極體晶片及其製作方法
TWI550900B (zh) 半導體元件層及其製造方法
TWI377707B (en) White light emitting device and method for making same
KR20100028885A (ko) 질화물 반도체 발광소자 및 그 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13129386

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2010829323

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010829323

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE